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2.1 Strategic games

ASTRATEGIC GAME is a model of interacting decision-makers. In recognition
of the interaction, we refer to the decision-makers as players. Each player

has a set of possible actions. The model captures interaction between the players
by allowing each player to be affected by the actions of all players, not only her
own action. Specifically, each player has preferences about the action profile—the
list of all the players’ actions. (See Section 17.4, in the mathematical appendix, for
a discussion of profiles.)

More precisely, a strategic game is defined as follows. (The qualification “with
ordinal preferences” distinguishes this notion of a strategic game from a more
general notion studied in Chapter 4.)

◮ DEFINITION 13.1 (Strategic game with ordinal preferences) A strategic game (with
ordinal preferences) consists of

• a set of players

• for each player, a set of actions

• for each player, preferences over the set of action profiles.

A very wide range of situations may be modeled as strategic games. For exam-
ple, the players may be firms, the actions prices, and the preferences a reflection of
the firms’ profits. Or the players may be candidates for political office, the actions
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14 Chapter 2. Nash Equilibrium: Theory

campaign expenditures, and the preferences a reflection of the candidates’ proba-
bilities of winning. Or the players may be animals fighting over some prey, the ac-
tions concession times, and the preferences a reflection of whether an animal wins
or loses. In this chapter I describe some simple games designed to capture funda-
mental conflicts present in a variety of situations. The next chapter is devoted to
more detailed applications to specific phenomena.

As in the model of rational choice by a single decision-maker (Section 1.2), it is
frequently convenient to specify the players’ preferences by giving payoff functions

that represent them. Suppose, for example, that a player prefers the action profile
a to the profile b, and prefers b to c. We may specify these preferences by assigning
the payoffs 3 to a, 2 to b, and 1 to c. Or, alternatively, we may specify the preferences
by assigning the payoffs 100 to a, 0 to b, and −2 to c. The two specifications are
equally good; in particular, the latter does not imply that the player’s preference
between a and b is stronger than her preference between b and c. The point is that a
strategic game with ordinal preferences is defined by the players’ preferences, not
by payoffs that represent these preferences.

Time is absent from the model. The idea is that each player chooses her ac-
tion once and for all, and the players choose their actions “simultaneously” in the
sense that no player is informed, when she chooses her action, of the action chosen
by any other player. (For this reason, a strategic game is sometimes referred to
as a “simultaneous-move game”.) Nevertheless, an action may involve activities
that extend over time, and may take into account an unlimited number of contin-
gencies. An action might specify, for example, “if company X’s stock falls below
$10, buy 100 shares; otherwise, do not buy any shares”. (For this reason, an action
is sometimes called a “strategy”.) However, the fact that time is absent from the
model means that when analyzing a situation as a strategic game, we abstract from
the complications that may arise if a player is allowed to change her plan as events
unfold: we assume that actions are chosen once and for all.

2.2 Example: the Prisoner’s Dilemma

One of the most well-known strategic games is the Prisoner’s Dilemma. Its name
comes from a story involving suspects in a crime; its importance comes from the
huge variety of situations in which the participants face incentives similar to those
faced by the suspects in the story.

EXAMPLE 14.1 (Prisoner’s Dilemma) Two suspects in a major crime are held in sep-
arate cells. There is enough evidence to convict each of them of a minor offense,
but not enough evidence to convict either of them of the major crime unless one of
them acts as an informer against the other (finks). If they both stay quiet, each will
be convicted of the minor offense and spend one year in prison. If one and only
one of them finks, she will be freed and used as a witness against the other, who
will spend four years in prison. If they both fink, each will spend three years in
prison.
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This situation may be modeled as a strategic game:

Players The two suspects.

Actions Each player’s set of actions is {Quiet, Fink}.

Preferences Suspect 1’s ordering of the action profiles, from best to worst, is
(Fink, Quiet) (she finks and suspect 2 remains quiet, so she is freed), (Quiet,
Quiet) (she gets one year in prison), (Fink, Fink) (she gets three years in
prison), (Quiet, Fink) (she gets four years in prison). Suspect 2’s ordering is
(Quiet, Fink), (Quiet, Quiet), (Fink, Fink), (Fink, Quiet).

We can represent the game compactly in a table. First choose payoff functions
that represent the suspects’ preference orderings. For suspect 1 we need a function
u1 for which

u1(Fink, Quiet) > u1(Quiet, Quiet) > u1(Fink, Fink) > u1(Quiet, Fink).

A simple specification is u1(Fink, Quiet) = 3, u1(Quiet, Quiet) = 2, u1(Fink, Fink) =
1, and u1(Quiet, Fink) = 0. For suspect 2 we can similarly choose the function
u2 for which u2(Quiet, Fink) = 3, u2(Quiet, Quiet) = 2, u2(Fink, Fink) = 1, and
u2(Fink, Quiet) = 0. Using these representations, the game is illustrated in Fig-
ure 15.1. In this figure the two rows correspond to the two possible actions of
player 1, the two columns correspond to the two possible actions of player 2, and
the numbers in each box are the players’ payoffs to the action profile to which the
box corresponds, with player 1’s payoff listed first.

Suspect 1

Suspect 2
Quiet Fink

Quiet 2, 2 0, 3
Fink 3, 0 1, 1

Figure 15.1 The Prisoner’s Dilemma (Example 14.1).

The Prisoner’s Dilemma models a situation in which there are gains from coop-
eration (each player prefers that both players choose Quiet than they both choose
Fink) but each player has an incentive to “free ride” (choose Fink) whatever the
other player does. The game is important not because we are interested in under-
standing the incentives for prisoners to confess, but because many other situations
have similar structures. Whenever each of two players has two actions, say C

(corresponding to Quiet) and D (corresponding to Fink), player 1 prefers (D, C) to
(C, C) to (D, D) to (C, D), and player 2 prefers (C, D) to (C, C) to (D, D) to (D, C),
the Prisoner’s Dilemma models the situation that the players face. Some examples
follow.

2.2.1 Working on a joint project

You are working with a friend on a joint project. Each of you can either work hard
or goof off. If your friend works hard, then you prefer to goof off (the outcome of
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the project would be better if you worked hard too, but the increment in its value
to you is not worth the extra effort). You prefer the outcome of your both working
hard to the outcome of your both goofing off (in which case nothing gets accom-
plished), and the worst outcome for you is that you work hard and your friend
goofs off (you hate to be “exploited”). If your friend has the same preferences,
then the game that models the situation you face is given in Figure 16.1, which, as
you can see, differs from the Prisoner’s Dilemma only in the names of the actions.

Work hard Goof off

Work hard 2, 2 0, 3
Goof off 3, 0 1, 1

Figure 16.1 Working on a joint project.

I am not claiming that a situation in which two people pursue a joint project
necessarily has the structure of the Prisoner’s Dilemma, only that the players’ pref-
erences in such a situation may be the same as in the Prisoner’s Dilemma! If, for
example, each person prefers to work hard than to goof off when the other person
works hard, then the Prisoner’s Dilemma does not model the situation: the players’
preferences are different from those given in Figure 16.1.

? EXERCISE 16.1 (Working on a joint project) Formulate a strategic game that models
a situation in which two people work on a joint project in the case that their pref-
erences are the same as those in the game in Figure 16.1 except that each person
prefers to work hard than to goof off when the other person works hard. Present
your game in a table like the one in Figure 16.1.

2.2.2 Duopoly

In a simple model of a duopoly, two firms produce the same good, for which each
firm charges either a low price or a high price. Each firm wants to achieve the
highest possible profit. If both firms choose High, then each earns a profit of $1000.
If one firm chooses High and the other chooses Low, then the firm choosing High

obtains no customers and makes a loss of $200, whereas the firm choosing Low

earns a profit of $1200 (its unit profit is low, but its volume is high). If both firms
choose Low, then each earns a profit of $600. Each firm cares only about its profit,
so we can represent its preferences by the profit it obtains, yielding the game in
Figure 16.2.

High Low
High 1000, 1000 −200, 1200
Low 1200,−200 600, 600

Figure 16.2 A simple model of a price-setting duopoly.
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Bearing in mind that what matters are the players’ preferences, not the partic-
ular payoff functions that we use to represent them, we see that this game, like the
previous one, differs from the Prisoner’s Dilemma only in the names of the actions.
The action High plays the role of Quiet, and the action Low plays the role of Fink;
firm 1 prefers (Low, High) to (High, High) to (Low, Low) to (High, Low), and firm 2
prefers (High, Low) to (High, High) to (Low, Low) to (Low, High).

? EXERCISE 17.1 (Games equivalent to the Prisoner’s Dilemma) Determine whether
each of the games in Figure 17.1 differs from the Prisoner’s Dilemma only in the
names of the players’ actions, or whether it differs also in one or both of the players’
preferences.

X Y

X 3, 3 1, 5
Y 5, 1 0, 0

X Y

X 2, 1 0, 5
Y 3,−2 1,−1

Figure 17.1 The strategic games for Exercise 17.1.

As in the previous example, I do not claim that the incentives in a duopoly are
necessarily those in the Prisoner’s Dilemma; different assumptions about the relative
sizes of the profits in the four cases generate a different game. Further, in this case
one of the abstractions incorporated into the model—that each firm has only two
prices to choose between—may not be harmless. If the firms may choose among
many prices, then the structure of the interaction may change. (A richer model is
studied in Section 3.2.)

2.2.3 The arms race

Under some assumptions about the countries’ preferences, an arms race can be
modeled as the Prisoner’s Dilemma. (The Prisoner’s Dilemma was first studied in
the early 1950s, when the United States and the Soviet Union were involved in a
nuclear arms race, so you might suspect that U.S. nuclear strategy was influenced
by game theory; the evidence suggests that it was not.) Assume that each country
can build an arsenal of nuclear bombs, or can refrain from doing so. Assume also
that each country’s favorite outcome is that it has bombs and the other country
does not; the next best outcome is that neither country has any bombs; the next
best outcome is that both countries have bombs (what matters is relative strength,
and bombs are costly to build); and the worst outcome is that only the other coun-
try has bombs. In this case the situation is modeled by the Prisoner’s Dilemma, in
which the action Don’t build bombs corresponds to Quiet in Figure 15.1 and the ac-
tion Build bombs corresponds to Fink. However, once again the assumptions about
preferences necessary for the Prisoner’s Dilemma to model the situation may not be
satisfied: a country may prefer not to build bombs if the other country does not,
for example (bomb-building may be very costly), in which case the situation is
modeled by a different game.
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2.2.4 Common property

Two farmers are deciding how much to allow their sheep to graze on the village
common. Each farmer prefers that her sheep graze a lot rather than a little, re-
gardless of the other farmer’s action, but prefers that both sets of sheep graze a
little rather than a lot (in which case the common is ruined for future use). Under
these assumptions the game is the Prisoner’s Dilemma. (A richer model is studied
in Section 3.1.5.)

2.2.5 Other situations modeled as the Prisoner’s Dilemma

A huge number of other situations have been modeled as the Prisoner’s Dilemma,
from mating hermaphroditic fish to tariff wars between countries.

? EXERCISE 18.1 (Hermaphroditic fish) Members of some species of hermaphroditic
fish choose, in each mating encounter, whether to play the role of a male or a
female. Each fish has a preferred role, which uses up fewer resources and hence
allows more future mating. A fish obtains a payoff of H if it mates in its preferred
role and L if it mates in the other role, where H > L. (Payoffs are measured in
terms of number of offspring, which fish are evolved to maximize.) Consider an
encounter between two fish whose preferred roles are the same. Each fish has two
possible actions: mate in either role or insist on its preferred role. If both fish offer
to mate in either role, the roles are assigned randomly, and each fish’s payoff is
1
2 (H + L) (the average of H and L). If each fish insists on its preferred role, the fish
do not mate; each goes off in search of another partner, and obtains the payoff S.
The higher the chance of meeting another partner, the larger is S. Formulate this
situation as a strategic game and determine the range of values of S, for any given
values of H and L, for which the game differs from the Prisoner’s Dilemma only in
the names of the actions.

2.3 Example: Bach or Stravinsky?

In the Prisoner’s Dilemma the main issue is whether the players will cooperate
(choose Quiet). In the following game the players agree that it is better to cooperate
than not to cooperate, but they disagree about the best outcome.

EXAMPLE 18.2 (Bach or Stravinsky?) Two people wish to go out together. Two con-
certs are available: one of music by Bach, and one of music by Stravinsky. One per-
son prefers Bach and the other prefers Stravinsky. If they go to different concerts,
each of them is equally unhappy listening to the music of either composer.

We may model this situation as the two-player strategic game in Figure 19.1,
in which the person who prefers Bach chooses a row and the person who prefers
Stravinsky chooses a column.

This game is also referred to as the “Battle of the Sexes” (though the conflict
it models surely occurs no more frequently between people of the opposite sex
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Bach Stravinsky

Bach 2, 1 0, 0
Stravinsky 0, 0 1, 2

Figure 19.1 Bach or Stravinsky? (BoS) (Example 18.2).

than it does between people of the same sex). I call the game BoS, an acronym
that fits both names. (I assume that each player is indifferent between listening
to Bach and listening to Stravinsky when she is alone only for consistency with
the standard specification of the game. As we shall see, the analysis of the game
remains the same in the absence of this indifference.)

Like the Prisoner’s Dilemma, BoS models a wide variety of situations. Consider,
for example, two officials of a political party deciding the stand to take on an issue.
Suppose that they disagree about the best stand, but are both better off if they
take the same stand than if they take different stands; the cases in which they
take different stands, leading voters to be confused, are equally bad. Then BoS

captures the situation they face. Or consider two merging firms that currently use
different computer technologies. As two divisions of a single firm they will both be
better off if they both use the same technology; each firm prefers that the common
technology be the one it used in the past. BoS models the choices the firms face.

2.4 Example: Matching Pennies

Aspects of both conflict and cooperation are present in both the Prisoner’s Dilemma

and BoS. The next game is purely conflictual.

EXAMPLE 19.1 (Matching Pennies) Two people choose, simultaneously, whether
to show the head or the tail of a coin. If they show the same side, person 2 pays
person 1 a dollar; if they show different sides, person 1 pays person 2 a dollar. Each
person cares only about the amount of money she receives, and (naturally!) prefers
to receive more than less. A strategic game that models this situation is shown
in Figure 19.2. (In this representation of the players’ preferences, the payoffs are
equal to the amounts of money involved. We could equally well work with another
representation—for example, 2 could replace each 1, and 1 could replace each −1.)

In this game the players’ interests are diametrically opposed (such a game is
called “strictly competitive”): player 1 wants to take the same action as the other
player, whereas player 2 wants to take the opposite action.

Head Tail
Head 1,−1 −1, 1

Tail −1, 1 1,−1

Figure 19.2 Matching Pennies (Example 19.1).
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This game may, for example, model the choices of appearances for new prod-
ucts by an established producer and a new firm in a market of fixed size. Suppose
that each firm can choose one of two different appearances for the product. The
established producer prefers the newcomer’s product to look different from its
own (so that its customers will not be tempted to buy the newcomer’s product),
whereas the newcomer prefers that the products look alike. Or the game could
model a relationship between two people in which one person wants to be like the
other, whereas the other wants to be different.

? EXERCISE 20.1 (Games without conflict) Give some examples of two-player strate-
gic games in which each player has two actions and the players have the same pref-
erences, so that there is no conflict between their interests. (Present your games as
tables like the one in Figure 19.2.)

2.5 Example: the Stag Hunt

A sentence in Discourse on the origin and foundations of inequality among men (1755)
by the philosopher Jean-Jacques Rousseau discusses a group of hunters who wish
to catch a stag. (See Rousseau 1988, 36.) They will succeed if they all remain
sufficiently attentive, but each is tempted to desert her post and catch a hare. One
interpretation of the sentence is that the interaction between the hunters may be
modeled as the following strategic game.

EXAMPLE 20.2 (Stag Hunt) Each of a group of hunters has two options: she may
remain attentive to the pursuit of a stag, or she may catch a hare. If all hunters
pursue the stag, they catch it and share it equally; if any hunter devotes her energy
to catching a hare, the stag escapes, and the hare belongs to the defecting hunter
alone. Each hunter prefers a share of the stag to a hare.

The strategic game that corresponds to this specification is:

Players The hunters.

Actions Each player’s set of actions is {Stag, Hare}.

Preferences For each player, the action profile in which all players choose Stag

(resulting in her obtaining a share of the stag) is ranked highest, followed
by any profile in which she chooses Hare (resulting in her obtaining a hare),
followed by any profile in which she chooses Stag and one or more of the
other players chooses Hare (resulting in her leaving empty-handed).

Like other games with many players, this game cannot easily be presented in a
table like that in Figure 19.2. For the case in which there are two hunters, the game
is shown in the left panel of Figure 21.1.

The variant of the two-player Stag Hunt shown in the right panel of Figure 21.1
has been suggested as an alternative to the Prisoner’s Dilemma as a model of an arms
race, or, more generally, of the “security dilemma” faced by a pair of countries. The
game differs from the Prisoner’s Dilemma in that a country prefers the outcome in
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Stag Hare

Stag 2, 2 0, 1
Hare 1, 0 1, 1

Refrain Arm

Refrain 3, 3 0, 2
Arm 2, 0 1, 1

Figure 21.1 Left panel: The Stag Hunt (Example 20.2) for the case of two hunters. Right panel: A variant
of the two-player Stag Hunt that models the “security dilemma”.

which both countries refrain from arming themselves to the one in which it alone
arms itself: the cost of arming outweighs the benefit if the other country does not
arm itself.

2.6 Nash equilibrium

What actions will be chosen by the players in a strategic game? We wish to assume,
as in the theory of a rational decision-maker (Section 1.2), that each player chooses
the best available action. In a game, the best action for any given player depends,
in general, on the other players’ actions. So when choosing an action a player must
have in mind the actions the other players will choose. That is, she must form a
belief about the other players’ actions.

On what basis can such a belief be formed? The assumption underlying the
analysis in this chapter and the next two chapters is that each player’s belief is
derived from her past experience playing the game, and that this experience is suf-
ficiently extensive that she knows how her opponents will behave. No one tells her
the actions her opponents will choose, but her previous involvement in the game
leads her to be sure of these actions. (The question of how a player’s experience can
lead her to the correct beliefs about the other players’ actions is addressed briefly
in Section 4.9.)

Although we assume that each player has experience playing the game, we
assume that she views each play of the game in isolation. She does not become
familiar with the behavior of specific opponents and consequently does not condi-
tion her action on the opponent she faces; nor does she expect her current action to
affect the other players’ future behavior.

It is helpful to think of the following idealized circumstances. For each player in
the game there is a population of many decision-makers who may, on any occasion,
take that player’s role. In each play of the game, players are selected randomly, one
from each population. Thus each player engages in the game repeatedly, against
ever-varying opponents. Her experience leads her to beliefs about the actions of
“typical” opponents, not any specific set of opponents.

As an example, think of the repeated interaction of buyers and sellers. To a first
approximation, many of the pairings may be modeled as random; in many cases a
buyer transacts only once with any given seller, or interacts anonymously (when
the seller is a large store, for example).

In summary, the solution theory we study has two components. First, each
player chooses her action according to the model of rational choice, given her be-
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lief about the other players’ actions. Second, every player’s belief about the other
players’ actions is correct. These two components are embodied in the following
definition.

A Nash equilibrium is an action profile a∗ with the property that no
player i can do better by choosing an action different from a∗i , given
that every other player j adheres to a∗j .

In the idealized setting in which the players in any given play of the game are
drawn randomly from a collection of populations, a Nash equilibrium corresponds
to a steady state. If, whenever the game is played, the action profile is the same Nash
equilibrium a∗, then no player has a reason to choose any action different from her
component of a∗; there is no pressure on the action profile to change. Expressed
differently, a Nash equilibrium embodies a stable “social norm”: if everyone else
adheres to it, no individual wishes to deviate from it.

The second component of the theory of Nash equilibrium—that the players’
beliefs about each other’s actions are correct—implies, in particular, that two play-
ers’ beliefs about a third player’s action are the same. For this reason, the condi-
tion is sometimes referred to as the requirement that the players’ “expectations are
coordinated”.

The situations to which we wish to apply the theory of Nash equilibrium do
not in general correspond exactly to the idealized setting described above. For
example, in some cases the players do not have much experience with the game;
in others they do not view each play of the game in isolation. Whether the no-
tion of Nash equilibrium is appropriate in any given situation is a matter of judg-
ment. In some cases, a poor fit with the idealized setting may be mitigated by
other considerations. For example, inexperienced players may be able to draw
conclusions about their opponents’ likely actions from their experience in other
situations, or from other sources. (One aspect of such reasoning is discussed in the
box on page 32). Ultimately, the test of the appropriateness of the notion of Nash
equilibrium is whether it gives us insights into the problem at hand.

With the aid of an additional piece of notation, we can state the definition of
a Nash equilibrium precisely. Let a be an action profile, in which the action of
each player i is ai. Let a′i be any action of player i (either equal to ai, or different
from it). Then (a′i, a−i) denotes the action profile in which every player j except

i chooses her action aj as specified by a, whereas player i chooses a′i. (The −i

subscript on a stands for “except i”.) That is, (a′i, a−i) is the action profile in which
all the players other than i adhere to a while i “deviates” to a′i. (If a′i = ai, then
of course (a′i, a−i) = (ai, a−i) = a.) If there are three players, for example, then
(a′2, a−2) is the action profile in which players 1 and 3 adhere to a (player 1 chooses
a1, player 3 chooses a3) and player 2 deviates to a′2.

Using this notation, we can restate the condition for an action profile a∗ to be a
Nash equilibrium: no player i has any action ai for which she prefers (ai, a∗−i) to a∗.
Equivalently, for every player i and every action ai of player i, the action profile a∗

is at least as good for player i as the action profile (ai, a∗−i).
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JOHN F. NASH, JR.

A few of the ideas John F. Nash, Jr., developed while he
was a graduate student at Princeton from 1948 to 1950
transformed game theory. Nash was born in 1928 in
Bluefield, West Virginia, where he grew up. He was an
undergraduate mathematics major at Carnegie Institute
of Technology from 1945 to 1948. In 1948 he obtained
both a B.S. and an M.S., and began graduate work in
the Department of Mathematics at Princeton University.
(One of his letters of recommendation, from a profes-
sor at Carnegie Institute of Technology, was a single sen-
tence: “This man is a genius” (Kuhn et al. 1995, 282).) A
paper containing the main result of his thesis was sub-

mitted to the Proceedings of the National Academy of Sciences in November 1949, four-
teen months after he started his graduate work. (“A fine goal to set . . . graduate
students”, to quote Harold Kuhn! (See Kuhn et al. 1995, 282.)) He completed his
Ph.D. the following year, graduating on his twenty-second birthday. His thesis
(Nash 1950b), 28 pages in length, introduces the equilibrium notion now known
as “Nash equilibrium” and delineates a class of strategic games that have Nash
equilibria (Proposition 119.1 in this book). The notion of Nash equilibrium vastly
expanded the scope of game theory, which had previously focused on two-player
“strictly competitive” games (in which the players’ interests are directly opposed).
While a graduate student at Princeton, Nash also wrote the seminal paper in bar-
gaining theory, Nash (1950c) (the ideas of which originated in an elective class in
international economics he took as an undergraduate). He went on to take an aca-
demic position in the Department of Mathematics at MIT, where he produced “a
remarkable series of papers” (Milnor 1995, 15); he has been described as “one of
the most original mathematical minds of [the twentieth] century” (Kuhn 1996). He
shared the 1994 Nobel Prize in Economic Sciences with the game theorists John C.
Harsanyi and Reinhard Selten.

◮ DEFINITION 23.1 (Nash equilibrium of strategic game with ordinal preferences) The
action profile a∗ in a strategic game with ordinal preferences is a Nash equilibrium

if, for every player i and every action ai of player i, a∗ is at least as good according
to player i’s preferences as the action profile (ai, a∗−i) in which player i chooses ai

while every other player j chooses a∗j . Equivalently, for every player i,

ui(a∗) ≥ ui(ai, a∗−i) for every action ai of player i, (23.2)

where ui is a payoff function that represents player i’s preferences.

This definition implies neither that a strategic game necessarily has a Nash
equilibrium, nor that it has at most one. Examples in the next section show that
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some games have a single Nash equilibrium, some possess no Nash equilibrium,
and others have many Nash equilibria.

The definition of a Nash equilibrium is designed to model a steady state among
experienced players. An alternative approach to understanding players’ actions in
strategic games assumes that the players know each other’s preferences, and con-
siders what each player can deduce about the other players’ actions from their
rationality and their knowledge of each other’s rationality. This approach is stud-
ied in Chapter 12. For many games, it leads to a conclusion different from that of
Nash equilibrium. For games in which the conclusion is the same, the approach
offers us an alternative interpretation of a Nash equilibrium, as the outcome of ra-
tional calculations by players who do not necessarily have any experience playing
the game.

STUDYING NASH EQUILIBRIUM EXPERIMENTALLY

The theory of strategic games lends itself to experimental study: arranging for sub-
jects to play games and observing their choices is relatively straightforward. A few
years after game theory was launched by von Neumann and Morgenstern’s (1944)
book, reports of laboratory experiments began to appear. Subsequently a huge
number of experiments have been conducted, illuminating many issues relevant
to the theory. I discuss selected experimental evidence throughout the book.

The theory of Nash equilibrium, as we have seen, has two components: the
players act in accordance with the theory of rational choice, given their beliefs
about the other players’ actions, and these beliefs are correct. If every subject
understands the game she is playing and faces incentives that correspond to the
preferences of the player whose role she is taking, then a divergence between the
observed outcome and a Nash equilibrium can be blamed on a failure of one or
both of these two components. Experimental evidence has the potential of indi-
cating the types of games for which the theory works well and, for those in which
the theory does not work well, of pointing to the faulty component and giving us
hints about the characteristics of a better theory. In designing an experiment that
cleanly tests the theory, however, we need to confront several issues.

The model of rational choice takes preferences as given. Thus to test the theory
of Nash equilibrium experimentally, we need to ensure that each subject’s prefer-
ences are those of the player whose role she is taking in the game we are exam-
ining. The standard way of inducing the appropriate preferences is to pay each
subject an amount of money directly related to the payoff given by a payoff func-
tion that represents the preferences of the player whose role the subject is taking.
Such remuneration works if each subject likes money and cares only about the
amount of money she receives, ignoring the amounts received by her opponents.
The assumption that people like receiving money is reasonable in many cultures,
but the assumption that people care only about their own monetary rewards—
are “selfish”—may, in some contexts at least, not be reasonable. Unless we check
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whether our subjects are selfish in the context of our experiment, we will jointly test
two hypotheses: that humans are selfish—a hypothesis not part of game theory—
and that the notion of Nash equilibrium models their behavior. In some cases we
may indeed wish to test these hypotheses jointly. But to test the theory of Nash
equilibrium alone we need to ensure that we induce the preferences we wish to
study.

Assuming that better decisions require more effort, we need also to ensure
that each subject finds it worthwhile to put in the extra effort required to obtain a
higher payoff. If we rely on monetary payments to provide incentives, the amount
of money a subject can obtain must be sufficiently sensitive to the quality of her de-
cisions to compensate her for the effort she expends (paying a flat fee, for example,
is inappropriate). In some cases, monetary payments may not be necessary: under
some circumstances, subjects drawn from a highly competitive culture like that of
the United States may be sufficiently motivated by the possibility of obtaining a
high score, even if that score does not translate into a monetary payoff.

The notion of Nash equilibrium models action profiles compatible with steady
states. Thus to study the theory experimentally we need to collect observations of
subjects’ behavior when they have experience playing the game. But they should
not have obtained that experience while knowingly facing the same opponents
repeatedly, for the theory assumes that the players consider each play of the game
in isolation, not as part of an ongoing relationship. One option is to have each
subject play the game against many different opponents, gaining experience about
how the other subjects on average play the game, but not about the choices of any
other given player. Another option is to describe the game in terms that relate to
a situation in which the subjects already have experience. A difficulty with this
second approach is that the description we give may connote more than simply
the payoff numbers of our game. If we describe the Prisoner’s Dilemma in terms
of cooperation on a joint project, for example, a subject may be biased toward
choosing the action she has found appropriate when involved in joint projects,
even if the structures of those interactions were significantly different from that of
the Prisoner’s Dilemma. As she plays the experimental game repeatedly she may
come to appreciate how it differs from the games in which she has been involved
previously, but her biases may disappear only slowly.

Whatever route we take to collect data on the choices of subjects experienced
in playing the game, we confront a difficult issue: how do we know when the
outcome has converged? Nash’s theory concerns only equilibria; it has nothing to
say about the path players’ choices will take on the way to an equilibrium, and so
provides no guidance about whether 10, 100, or 1,000 plays of the game are enough
to give a chance for the subjects’ expectations to become coordinated.

Finally, we can expect the theory of Nash equilibrium to correspond to real-
ity only approximately: like all useful theories, it definitely is not exactly correct.
How do we tell whether the data are close enough to the theory to support it?
One possibility is to compare the theory of Nash equilibrium with some other the-
ory. But for many games there is no obvious alternative theory—and certainly not
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one with the generality of Nash equilibrium. Statistical tests can sometimes aid in
deciding whether the data are consistent with the theory, though ultimately we re-
main the judge of whether our observations persuade us that the theory enhances
our understanding of human behavior in the game.

2.7 Examples of Nash equilibrium

2.7.1 Prisoner’s Dilemma

By examining the four possible pairs of actions in the Prisoner’s Dilemma (repro-
duced in Figure 26.1), we see that (Fink, Fink) is the unique Nash equilibrium.

Quiet Fink

Quiet 2, 2 0, 3
Fink 3, 0 1, 1

Figure 26.1 The Prisoner’s Dilemma.

The action pair (Fink, Fink) is a Nash equilibrium because (i) given that player 2
chooses Fink, player 1 is better off choosing Fink than Quiet (looking at the right
column of the table we see that Fink yields player 1 a payoff of 1 whereas Quiet

yields her a payoff of 0), and (ii) given that player 1 chooses Fink, player 2 is better
off choosing Fink than Quiet (looking at the bottom row of the table we see that
Fink yields player 2 a payoff of 1 whereas Quiet yields her a payoff of 0).

No other action profile is a Nash equilibrium:

• (Quiet, Quiet) does not satisfy (23.2) because when player 2 chooses Quiet,
player 1’s payoff to Fink exceeds her payoff to Quiet (look at the first compo-
nents of the entries in the left column of the table). (Further, when player 1
chooses Quiet, player 2’s payoff to Fink exceeds her payoff to Quiet: player 2,
as well as player 1, wants to deviate. To show that a pair of actions is not a
Nash equilibrium, however, it is not necessary to study player 2’s decision
once we have established that player 1 wants to deviate: it is enough to show
that one player wishes to deviate to show that a pair of actions is not a Nash
equilibrium.)

• (Fink, Quiet) does not satisfy (23.2) because when player 1 chooses Fink,
player 2’s payoff to Fink exceeds her payoff to Quiet (look at the second
components of the entries in the bottom row of the table).

• (Quiet, Fink) does not satisfy (23.2) because when player 2 chooses Fink,
player 1’s payoff to Fink exceeds her payoff to Quiet (look at the first com-
ponents of the entries in the right column of the table).



2.7 Examples of Nash equilibrium 27

In summary, in the only Nash equilibrium of the Prisoner’s Dilemma both play-
ers choose Fink. In particular, the incentive to free ride eliminates the possibility
that the mutually desirable outcome (Quiet, Quiet) occurs. In the other situations
discussed in Section 2.2 that may be modeled as the Prisoner’s Dilemma, the out-
comes predicted by the notion of Nash equilibrium are thus as follows: both peo-
ple goof off when working on a joint project; both duopolists charge a low price;
both countries build bombs; both farmers graze their sheep a lot. (The overgrazing
of a common thus predicted is sometimes called the “tragedy of the commons”.
The intuition that some of these dismal outcomes may be avoided if the same pair
of people play the game repeatedly is explored in Chapter 14.)

In the Prisoner’s Dilemma, the Nash equilibrium action of each player (Fink) is
the best action for each player not only if the other player chooses her equilib-
rium action (Fink), but also if she chooses her other action (Quiet). The action pair
(Fink, Fink) is a Nash equilibrium because if a player believes that her opponent
will choose Fink, then it is optimal for her to choose Fink. But in fact it is opti-
mal for a player to choose Fink regardless of the action she expects her opponent to
choose. In most of the games we study, a player’s Nash equilibrium action does
not satisfy this condition: the action is optimal if the other players choose their
Nash equilibrium actions, but some other action is optimal if the other players
choose nonequilibrium actions.

? EXERCISE 27.1 (Variant of Prisoner’s Dilemma with altruistic preferences) Each of
two players has two possible actions, Quiet and Fink; each action pair results in
the players’ receiving amounts of money equal to the numbers corresponding to
that action pair in Figure 26.1. (For example, if player 1 chooses Quiet and player 2
chooses Fink, then player 1 receives nothing, whereas player 2 receives $3.) The
players are not “selfish”; rather, the preferences of each player i are represented by
the payoff function mi(a) + αmj(a), where mi(a) is the amount of money received
by player i when the action profile is a, j is the other player, and α is a given non-
negative number. Player 1’s payoff to the action pair (Quiet, Quiet), for example, is
2 + 2α.

a. Formulate a strategic game that models this situation in the case α = 1. Is this
game the Prisoner’s Dilemma?

b. Find the range of values of α for which the resulting game is the Prisoner’s

Dilemma. For values of α for which the game is not the Prisoner’s Dilemma,
find the Nash equilibria.

? EXERCISE 27.2 (Selfish and altruistic social behavior) Two people enter a bus. Two
adjacent cramped seats are free. Each person must decide whether to sit or stand.
Sitting alone is more comfortable than sitting next to the other person, which is
more comfortable than standing.

a. Suppose that each person cares only about her own comfort. Model the situ-
ation as a strategic game. Is this game the Prisoner’s Dilemma? Find its Nash
equilibrium (equilibria?).
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b. Suppose that each person is altruistic, ranking the outcomes according to the
other person’s comfort, but, out of politeness, prefers to stand than to sit if the
other person stands. Model the situation as a strategic game. Is this game the
Prisoner’s Dilemma? Find its Nash equilibrium (equilibria?).

c. Compare the people’s comfort in the equilibria of the two games.

EXPERIMENTAL EVIDENCE ON THE Prisoner’s Dilemma

The Prisoner’s Dilemma has attracted a great deal of attention by economists, psy-
chologists, sociologists, and biologists. A huge number of experiments have been
conducted with the aim of discovering how people behave when playing the game.
Almost all these experiments involve each subject’s playing the game repeatedly
against an unchanging opponent, a situation that calls for an analysis significantly
different from the one in this chapter (see Chapter 14).

The evidence on the outcome of isolated plays of the game is inconclusive.
No experiment of which I am aware carefully induces the appropriate preferences
and is specifically designed to elicit a steady state action profile (see the box on
page 24). Thus in each case the choice of Quiet by a player could indicate that
she is not “selfish” or that she is not experienced in playing the game, rather than
providing evidence against the notion of Nash equilibrium.

In two experiments with very low payoffs, each subject played the game a
small number of times against different opponents; between 50 and 94% of subjects
chose Fink, depending on the relative sizes of the payoffs and some details of the
design (Rapoport, Guyer, and Gordon 1976, 135–137, 211–213, and 223–226). In
a more recent experiment, 78% of subjects chose Fink in the last 10 of 20 rounds
of play against different opponents (Cooper, DeJong, Forsythe, and Ross 1996).
In face-to-face games in which communication is allowed, the incidence of the
choice of Fink tends to be lower: from 29 to 70% depending on the nature of the
communication allowed (Deutsch 1958, and Frank, Gilovich, and Regan 1993, 163–
167). (In all these experiments, the subjects were college students in the United
States or Canada.)

One source of the variation in the results seems to be that some designs in-
duce preferences that differ from those of the Prisoner’s Dilemma; no clear answer
emerges to the question of whether the notion of Nash equilibrium is consistent
with humans’ choices in the Prisoner’s Dilemma. If, nevertheless, one interprets the
evidence as showing that some subjects in the Prisoner’s Dilemma systematically
choose Quiet rather than Fink, one must fault the rational choice component of
Nash equilibrium, not the coordinated expectations component. Why? Because,
as noted in the text, Fink is optimal no matter what a player thinks her opponent
will choose, so that any model in which the players act according to the model of
rational choice, regardless of whether their expectations are coordinated, predicts
that each player chooses Fink.
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2.7.2 BoS

To find the Nash equilibria of BoS (Figure 19.1), we can examine each pair of actions
in turn:

• (Bach, Bach): If player 1 switches to Stravinsky, then her payoff decreases from
2 to 0; if player 2 switches to Stravinsky, then her payoff decreases from 1 to
0. Thus a deviation by either player decreases her payoff. Thus (Bach, Bach)
is a Nash equilibrium.

• (Bach, Stravinsky): If player 1 switches to Stravinsky, then her payoff increases
from 0 to 1. Thus (Bach, Stravinsky) is not a Nash equilibrium. (Player 2 can
increase her payoff by deviating, too, but to show that the pair is not a Nash
equilibrium, it suffices to show that one player can increase her payoff by
deviating.)

• (Stravinsky, Bach): If player 1 switches to Bach, then her payoff increases from
0 to 2. Thus (Stravinsky, Bach) is not a Nash equilibrium.

• (Stravinsky, Stravinsky): If player 1 switches to Bach, then her payoff de-
creases from 1 to 0; if player 2 switches to Bach, then her payoff decreases
from 2 to 0. Thus a deviation by either player decreases her payoff. Thus
(Stravinsky, Stravinsky) is a Nash equilibrium.

We conclude that BoS has two Nash equilibria: (Bach, Bach) and (Stravinsky,
Stravinsky). That is, both of these outcomes are compatible with a steady state;
both outcomes are stable social norms. If, in every encounter, both players choose
Bach, then no player has an incentive to deviate; if, in every encounter, both play-
ers choose Stravinsky, then no player has an incentive to deviate. If we use the
game to model the choices of men when matched with women, for example, then
the notion of Nash equilibrium shows that two social norms are stable: both play-
ers choose the action associated with the outcome preferred by women, and both
players choose the action associated with the outcome preferred by men.

2.7.3 Matching Pennies

By checking each of the four pairs of actions in Matching Pennies (Figure 19.2) we
see that the game has no Nash equilibrium. For the pairs of actions (Head, Head)
and (Tail, Tail), player 2 is better off deviating; for the pairs of actions (Head, Tail)
and (Tail, Head), player 1 is better off deviating. Thus for this game the notion of
Nash equilibrium isolates no steady state. In Chapter 4 we return to this game;
an extension of the notion of a Nash equilibrium gives us an understanding of the
likely outcome.

2.7.4 The Stag Hunt

Inspection of the left panel of Figure 21.1 shows that the two-player Stag Hunt has
two Nash equilibria: (Stag, Stag) and (Hare, Hare). If one player remains attentive
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to the pursuit of the stag, then the other player prefers to remain attentive; if one
player chases a hare, the other one prefers to chase a hare (she cannot catch a stag
alone). (The equilibria of the variant of the game in the right panel of Figure 21.1
are analogous: (Refrain, Refrain) and (Arm, Arm).)

Unlike the Nash equilibria of BoS, one of these equilibria is better for both play-
ers than the other: each player prefers (Stag, Stag) to (Hare, Hare). This fact has no
bearing on the equilibrium status of (Hare, Hare), since the condition for an equi-
librium is that a single player cannot gain by deviating, given the other player’s be-
havior. Put differently, an equilibrium is immune to any unilateral deviation; coor-
dinated deviations by groups of players are not contemplated. However, the exis-
tence of two equilibria raises the possibility that one equilibrium might more likely
be the outcome of the game than the other. I return to this issue in Section 2.7.6.

I argue that the many-player Stag Hunt (Example 20.2) also has two Nash equi-
libria: the action profile (Stag, . . . , Stag) in which every player joins in the pursuit
of the stag, and the profile (Hare, . . . , Hare) in which every player catches a hare.

• (Stag, . . . , Stag) is a Nash equilibrium because each player prefers this profile
to that in which she alone chooses Hare. (A player is better off remaining
attentive to the pursuit of the stag than running after a hare if all the other
players remain attentive.)

• (Hare, . . . , Hare) is a Nash equilibrium because each player prefers this profile
to that in which she alone pursues the stag. (A player is better off catching a
hare than pursuing the stag if no one else pursues the stag.)

• No other profile is a Nash equilibrium, because in any other profile at least
one player chooses Stag and at least one player chooses Hare, so that any
player choosing Stag is better off switching to Hare. (A player is better off
catching a hare than pursuing the stag if at least one other person chases a
hare, since the stag can be caught only if everyone pursues it.)

? EXERCISE 30.1 (Variants of the Stag Hunt) Consider variants of the n-hunter Stag

Hunt in which only m hunters, with 2 ≤ m < n, need to pursue the stag in order
to catch it. (Continue to assume that there is a single stag.) Assume that a cap-
tured stag is shared only by the hunters who catch it. Under each of the following
assumptions on the hunters’ preferences, find the Nash equilibria of the strategic
game that models the situation.

a. As before, each hunter prefers the fraction 1/n of the stag to a hare.

b. Each hunter prefers the fraction 1/k of the stag to a hare, but prefers a hare to
any smaller fraction of the stag, where k is an integer with m ≤ k ≤ n.

The following more difficult exercise enriches the hunters’ choices in the Stag

Hunt. This extended game has been proposed as a model that captures Keynes’
basic insight about the possibility of multiple economic equilibria, some of which
are undesirable (Bryant 1983, 1994).
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?? EXERCISE 31.1 (Extension of the Stag Hunt) Extend the n-hunter Stag Hunt by giv-
ing each hunter K (a positive integer) units of effort, which she can allocate be-
tween pursuing the stag and catching hares. Denote the effort hunter i devotes
to pursuing the stag by ei, a nonnegative integer equal to at most K. The chance
that the stag is caught depends on the smallest of all the hunters’ efforts, denoted
minj ej. (“A chain is as strong as its weakest link.”) Hunter i’s payoff to the ac-
tion profile (e1, . . . , en) is 2 minj ej − ei. (She is better off the more likely the stag is
caught, and worse off the more effort she devotes to pursuing the stag, which
means she catches fewer hares.) Is the action profile (e, . . . , e), in which every
hunter devotes the same effort to pursuing the stag, a Nash equilibrium for any
value of e? (What is a player’s payoff to this profile? What is her payoff if she
deviates to a lower or higher effort level?) Is any action profile in which not all the
players’ effort levels are the same a Nash equilibrium? (Consider a player whose
effort exceeds the minimum effort level of all players. What happens to her payoff
if she reduces her effort level to the minimum?)

2.7.5 Hawk–Dove

The game in the next exercise captures a basic feature of animal conflict.

? EXERCISE 31.2 (Hawk–Dove) Two animals are fighting over some prey. Each can
be passive or aggressive. Each prefers to be aggressive if its opponent is passive,
and passive if its opponent is aggressive; given its own stance, it prefers the out-
come in which its opponent is passive to that in which its opponent is aggressive.
Formulate this situation as a strategic game and find its Nash equilibria.

2.7.6 A coordination game

Consider two people who wish to go out together, but who, unlike the dissidents
in BoS, agree on the more desirable concert—say they both prefer Bach. A strate-
gic game that models this situation is shown in Figure 31.1; it is an example of a
coordination game. By examining the four action pairs, we see that the game has
two Nash equilibria: (Bach, Bach) and (Stravinsky, Stravinsky). In particular, the ac-
tion pair (Stravinsky, Stravinsky) in which both people choose their less-preferred
concert is a Nash equilibrium.

Is the equilibrium in which both people choose Stravinsky plausible? People
who argue that the technology of Apple computers originally dominated that of
IBM computers, and that the Beta format for video recording is better than VHS,
would say “yes”. In both cases users had a strong interest in adopting the same

Bach Stravinsky

Bach 2, 2 0, 0
Stravinsky 0, 0 1, 1

Figure 31.1 A coordination game.
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FOCAL POINTS

In games with many Nash equilibria, the theory isolates more than one pattern of
behavior compatible with a steady state. In some games, some of these equilibria
seem more likely to attract the players’ attentions than others. To use the termi-
nology of Schelling (1960), some equilibria are focal. In the coordination game in
Figure 31.1, where the players agree on the more desirable Nash equilibrium and
obtain the same payoff to every nonequilibrium action pair, the preferable equi-
librium seems more likely to be focal (though two examples are given in the text
of steady states involving the inferior equilibrium). In the variant of this game in
which the two equilibria are equally good (i.e. (2, 2) is replaced by (1, 1)), noth-
ing in the structure of the game gives any clue to which steady state might occur.
In such a game, the names or nature of the actions, or other information, may
predispose the players to one equilibrium rather than the other.

Consider, for example, voters in an election. Pre-election polls may give them
information about each other’s intended actions, pointing them to one of many
Nash equilibria. Or consider a situation in which two players independently di-
vide $100 into two piles, each receiving $10 if they choose the same divisions and
nothing otherwise. The strategic game that models this situation has many Nash
equilibria, in each of which both players choose the same division. But the equilib-
rium in which both players choose the ($50, $50)division seems likely to command
the players’ attentions, possibly for esthetic reasons (it is an appealing division),
and possibly because it is a steady state in an unrelated game in which the chosen
division determines the players’ payoffs.

The theory of Nash equilibrium is neutral about the equilibrium that will occur
in a game with many equilibria. If features of the situation not modeled by the
notion of a strategic game make some equilibria focal, then those equilibria may
be more likely to emerge as steady states, and the rate at which a steady state is
reached may be higher than it otherwise would have been.

standard, and one standard was better than the other; in the steady state that
emerged in each case, the inferior technology was adopted by a large majority
of users.

If two people played this game in a laboratory it seems likely that the outcome
would be (Bach, Bach). Nevertheless, (Stravinsky, Stravinsky) also corresponds to a
steady state: if either action pair is reached, there is no reason for either player to
deviate from it.

2.7.7 Provision of a public good

The model in the next exercise captures an aspect of the provision of a “public
good”, like a park or a swimming pool, whose use by one person does not diminish
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L M R

T 1, 1 1, 0 0, 1
B 1, 0 0, 1 1, 0

Figure 33.1 A game with a unique Nash equilibrium, which is not a strict equilibrium.

its value to another person (at least, not until it is overcrowded). (Other aspects of
public good provision are studied in Section 2.8.4.)

? EXERCISE 33.1 (Contributing to a public good) Each of n people chooses whether
to contribute a fixed amount toward the provision of a public good. The good is
provided if and only if at least k people contribute, where 2 ≤ k ≤ n; if it is not
provided, contributions are not refunded. Each person ranks outcomes from best
to worst as follows: (i) any outcome in which the good is provided and she does
not contribute, (ii) any outcome in which the good is provided and she contributes,
(iii) any outcome in which the good is not provided and she does not contribute,
(iv) any outcome in which the good is not provided and she contributes. For-
mulate this situation as a strategic game and find its Nash equilibria. (Is there a
Nash equilibrium in which more than k people contribute? One in which k people
contribute? One in which fewer than k people contribute? (Be careful!))

2.7.8 Strict and nonstrict equilibria

In all the Nash equilibria of the games we have studied so far, a deviation by a
player leads to an outcome worse for that player than the equilibrium outcome.
The definition of Nash equilibrium (23.1), however, requires only that the outcome
of a deviation be no better for the deviant than the equilibrium outcome. And,
indeed, some games have equilibria in which a player is indifferent between her
equilibrium action and some other action, given the other players’ actions.

Consider the game in Figure 33.1. This game has a unique Nash equilibrium,
namely (T, L). (For every other pair of actions, one of the players is better off
changing her action.) When player 2 chooses L, as she does in this equilibrium,
player 1 is equally happy choosing T or B (her payoff is 1 in each case); if she
deviates to B, then she is no worse off than she is in the equilibrium. We say that
the Nash equilibrium (T, L) is not a strict equilibrium.

For a general game, an equilibrium is strict if each player’s equilibrium action
is better than all her other actions, given the other players’ actions. Precisely, an
action profile a∗ is a strict Nash equilibrium if for every player i we have ui(a∗) >
ui(ai, a∗−i) for every action ai 6= a∗i of player i. (Contrast the strict inequality in this
definition with the weak inequality in (23.2).)

2.7.9 Additional examples

The following exercises are more difficult than most of the previous ones. In the
first two, the number of actions of each player is arbitrary, so you cannot mechan-



34 Chapter 2. Nash Equilibrium: Theory

ically examine each action profile individually, as we did for games in which each
player has two actions. Instead, you can consider groups of action profiles that
have features in common, and show that all action profiles in any given group are
or are not equilibria. Deciding how best to group the profiles into types calls for
some intuition about the character of a likely equilibrium; the exercises contain
suggestions on how to proceed.

?? EXERCISE 34.1 (Guessing two-thirds of the average) Each of three people an-
nounces an integer from 1 to K. If the three integers are different, the person whose
integer is closest to 2

3 of the average of the three integers wins $1. If two or more
integers are the same, $1 is split equally between the people whose integer is clos-
est to 2

3 of the average integer. Is there any integer k such that the action profile
(k, k, k), in which every person announces the same integer k, is a Nash equilib-
rium? (If k ≥ 2, what happens if a person announces a smaller number?) Is any
other action profile a Nash equilibrium? (What is the payoff of a person whose
number is the highest of the three? Can she increase this payoff by announcing a
different number?)

Game theory is used widely in political science, especially in the study of elec-
tions. The game in the following exercise explores citizens’ costly decisions to
vote.

?? EXERCISE 34.2 (Voter participation) Two candidates, A and B, compete in an elec-
tion. Of the n citizens, k support candidate A and m (= n− k) support candidate B.
Each citizen decides whether to vote, at a cost, for the candidate she supports, or
to abstain. A citizen who abstains receives the payoff of 2 if the candidate she
supports wins, 1 if this candidate ties for first place, and 0 if this candidate loses.
A citizen who votes receives the payoffs 2 − c, 1 − c, and −c in these three cases,
where 0 < c < 1.

a. For k = m = 1, is the game the same (except for the names of the actions) as
any considered so far in this chapter?

b. For k = m, find the set of Nash equilibria. (Is the action profile in which
everyone votes a Nash equilibrium? Is there any Nash equilibrium in which
the candidates tie and not everyone votes? Is there any Nash equilibrium in
which one of the candidates wins by one vote? Is there any Nash equilibrium
in which one of the candidates wins by two or more votes?)

c. What is the set of Nash equilibria for k < m?

If, when sitting in a traffic jam, you have ever thought about the time you might
save if another road were built, the next exercise may lead you to think again.

?? EXERCISE 34.3 (Choosing a route) Four people must drive from A to B at the same
time. Each of them must choose a route. Two routes are available, one via X and
one via Y. (Refer to the left panel of Figure 35.1.) The roads from A to X, and from
Y to B are both short and narrow; in each case, one car takes 6 minutes, and each
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Figure 35.1 Getting from A to B: the road networks in Exercise 34.3. The numbers beside each road are
the travel times per car when 1, 2, 3, or 4 cars take that road.

additional car increases the travel time per car by 3 minutes. (If two cars drive from
A to X, for example, each car takes 9 minutes.) The roads from A to Y, and from X
to B are long and wide; on A to Y one car takes 20 minutes, and each additional car
increases the travel time per car by 1 minute; on X to B one car takes 20 minutes,
and each additional car increases the travel time per car by 0.9 minutes. Formulate
this situation as a strategic game and find the Nash equilibria. (If all four people
take one of the routes, can any of them do better by taking the other route? What
if three take one route and one takes the other route, or if two take each route?)

Now suppose that a relatively short, wide road is built from X to Y, giving each
person four options for travel from A to B: A–X–B, A–Y–B, A–X–Y–B, and A–Y–
X–B. Assume that a person who takes A–X–Y–B travels the A–X portion at the
same time as someone who takes A–X–B, and the Y–B portion at the same time as
someone who takes A–Y–B. (Think of there being constant flows of traffic.) On the
road between X and Y, one car takes 7 minutes and each additional car increases
the travel time per car by 1 minute. Find the Nash equilibria in this new situation.
Compare each person’s travel time with her travel time in the equilibrium before
the road from X to Y was built.

2.8 Best response functions

2.8.1 Definition

We can find the Nash equilibria of a game in which each player has only a few
actions by examining each action profile in turn to see if it satisfies the conditions
for equilibrium. In more complicated games, it is often better to work with the
players’ “best response functions”.

Consider a player, say player i. For any given actions of the players other than i,
player i’s actions yield her various payoffs. We are interested in the best actions—
those that yield her the highest payoff. In BoS, for example, Bach is the best action
for player 1 if player 2 chooses Bach; Stravinsky is the best action for player 1 if
player 2 chooses Stravinsky. In particular, in BoS, player 1 has a single best action
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for each action of player 2. By contrast, in the game in Figure 33.1, both T and B are
best actions for player 1 if player 2 chooses L: they both yield the payoff of 1, and
player 1 has no action that yields a higher payoff (in fact, she has no other action).

We denote the set of player i’s best actions when the list of the other play-
ers’ actions is a−i by Bi(a−i). Thus in BoS we have B1(Bach) = {Bach} and
B1(Stravinsky) = {Stravinsky}; in the game in Figure 33.1 we have B1(L) = {T, B}.

Precisely, we define the function Bi by

Bi(a−i) = {ai in Ai : ui(ai, a−i) ≥ ui(a′i, a−i) for all a′i in Ai} :

any action in Bi(a−i) is at least as good for player i as every other action of player i

when the other players’ actions are given by a−i. We call Bi the best response

function of player i.
The function Bi is set-valued: it associates a set of actions with any list of the

other players’ actions. Every member of the set Bi(a−i) is a best response of
player i to a−i: if each of the other players adheres to a−i, then player i can do no
better than choose a member of Bi(a−i). In some games, like BoS, the set Bi(a−i)
consists of a single action for every list a−i of actions of the other players: no matter
what the other players do, player i has a single optimal action. In other games, like
the one in Figure 33.1, Bi(a−i) contains more than one action for some lists a−i of
actions of the other players.

2.8.2 Using best response functions to define Nash equilibrium

A Nash equilibrium is an action profile with the property that no player can do bet-
ter by changing her action, given the other players’ actions. Using the terminology
just developed, we can alternatively define a Nash equilibrium to be an action pro-
file for which every player’s action is a best response to the other players’ actions.
That is, we have the following result.

PROPOSITION 36.1 The action profile a∗ is a Nash equilibrium of a strategic game with

ordinal preferences if and only if every player’s action is a best response to the other players’

actions:

a∗i is in Bi(a∗−i) for every player i. (36.2)

If each player i has a single best response to each list a−i of the other players’
actions, we can write the conditions in (36.2) as equations. In this case, for each
player i and each list a−i of the other players’ actions, denote the single member of
Bi(a−i) by bi(a−i) (that is, Bi(a−i) = {bi(a−i)}). Then (36.2) is equivalent to

a∗i = bi(a∗−i) for every player i, (36.3)

a collection of n equations in the n unknowns a∗i , where n is the number of players
in the game. For example, in a game with two players, say 1 and 2, these equations
are

a∗1 = b1(a∗2)

a∗2 = b2(a∗1).
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L C R

T 1 , 2∗ 2∗, 1 1∗, 0
M 2∗, 1∗ 0 , 1∗ 0 , 0
B 0 , 1 0 , 0 1∗, 2∗

Figure 37.1 Using best response functions to find Nash equilibria in a two-player game in which each
player has three actions.

That is, in a two-player game in which each player has a single best response to ev-
ery action of the other player, (a∗1 , a∗2) is a Nash equilibrium if and only if player 1’s
action a∗1 is her best response to player 2’s action a∗2 , and player 2’s action a∗2 is her
best response to player 1’s action a∗1 .

2.8.3 Using best response functions to find Nash equilibria

The definition of a Nash equilibrium in terms of best response functions suggests
a method for finding Nash equilibria:

• find the best response function of each player

• find the action profiles that satisfy (36.2) (which reduces to (36.3) if each
player has a single best response to each list of the other players’ actions).

To illustrate this method, consider the game in Figure 37.1. First find the best
response of player 1 to each action of player 2. If player 2 chooses L, then player 1’s
best response is M (2 is the highest payoff for player 1 in this column); indicate the
best response by attaching a star to player 1’s payoff to (M, L). If player 2 chooses
C, then player 1’s best response is T, indicated by the star attached to player 1’s
payoff to (T, C). And if player 2 chooses R, then both T and B are best responses
for player 1; both are indicated by stars. Second, find the best response of player 2
to each action of player 1 (for each row, find highest payoff of player 2); these
best responses are indicated by attaching stars to player 2’s payoffs. Finally, find
the boxes in which both players’ payoffs are starred. Each such box is a Nash
equilibrium: the star on player 1’s payoff means that player 1’s action is a best
response to player 2’s action, and the star on player 2’s payoff means that player 2’s
action is a best response to player 1’s action. Thus we conclude that the game has
two Nash equilibria: (M, L) and (B, R).

? EXERCISE 37.1 (Finding Nash equilibria using best response functions)

a. Find the players’ best response functions in the Prisoner’s Dilemma (Figure
15.1), BoS (Figure 19.1), Matching Pennies (Figure 19.2), and the two-player
Stag Hunt (left panel of Figure 21.1) (and verify the Nash equilibria of each
game).

b. Find the Nash equilibria of the game in Figure 38.1 by finding the players’
best response functions.
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L C R

T 2, 2 1, 3 0, 1
M 3, 1 0, 0 0, 0
B 1, 0 0, 0 0, 0

Figure 38.1 The game in Exercise 37.1b.

The players’ best response functions for the game in Figure 37.1 are presented
in a different format in Figure 38.2. In this figure, player 1’s actions are on the hor-
izontal axis and player 2’s are on the vertical axis. (Thus the columns correspond
to choices of player 1, and the rows correspond to choices of player 2, whereas the
reverse is true in Figure 37.1. I choose this orientation for Figure 38.2 for consis-
tency with the convention for figures of this type.) Player 1’s best responses are
indicated by circles, and player 2’s by dots. Thus the circle at (T, C) reflects the
fact that T is player 1’s best response to player 2’s choice of C, and the circles at
(T, R) and (B, R) reflect the fact that T and B are both best responses of player 1 to
player 2’s choice of R. Any action pair marked by both a circle and a dot is a Nash
equilibrium: the circle means that player 1’s action is a best response to player 2’s
action, and the dot indicates that player 2’s action is a best response to player 1’s
action.

? EXERCISE 38.1 (Constructing best response functions) Draw the analogue of Fig-
ure 38.2 for the game in Exercise 37.1b.

? EXERCISE 38.2 (Dividing money) Two people have $10 to divide between them-
selves. They use the following procedure. Each person names a number of dollars
(a nonnegative integer), at most equal to 10. If the sum of the amounts that the
people name is at most 10, then each person receives the amount of money she
named (and the remainder is destroyed). If the sum of the amounts that the peo-
ple name exceeds 10 and the amounts named are different, then the person who
named the smaller amount receives that amount and the other person receives the

A1

︸ ︷︷ ︸
T M B

A2






L

C

R

Figure 38.2 The players’ best response functions for the game in Figure 37.1. Player 1’s best responses
are indicated by circles, and player 2’s by dots. The action pairs for which there is both a circle and a
dot are the Nash equilibria.
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remaining money. If the sum of the amounts that the people name exceeds 10 and
the amounts named are the same, then each person receives $5. Determine the
best response of each player to each of the other player’s actions, plot them in a
diagram like Figure 38.2, and thus find the Nash equilibria of the game.

A diagram like Figure 38.2 is a convenient representation of the players’ best
response functions also in a game in which each player’s set of actions is an interval
of numbers, as the next example illustrates.

EXAMPLE 39.1 (A synergistic relationship) Two individuals are involved in a syn-
ergistic relationship. If both individuals devote more effort to the relationship, they
are both better off. For any given effort of individual j, the return to individual i’s
effort first increases, then decreases. Specifically, an effort level is a nonnegative
number, and individual i’s preferences (for i = 1, 2) are represented by the payoff
function ai(c + aj − ai), where ai is i’s effort level, aj is the other individual’s effort
level, and c > 0 is a constant.

The following strategic game models this situation.

Players The two individuals.

Actions Each player’s set of actions is the set of effort levels (nonnegative num-
bers).

Preferences Player i’s preferences are represented by the payoff function ai(c +
aj − ai), for i = 1, 2.

In particular, each player has infinitely many actions, so that we cannot present the
game in a table like those used previously (Figure 38.1, for example).

To find the Nash equilibria of the game, we can construct and analyze the play-
ers’ best response functions. Given aj, individual i’s payoff is a quadratic function
of ai that is zero when ai = 0 and when ai = c + aj, and reaches a maximum in
between. The symmetry of quadratic functions (see Section 17.3) implies that the
best response of each individual i to aj is

bi(aj) =
1
2 (c + aj).

(If you know calculus, you can reach the same conclusion by setting the derivative
of player i’s payoff with respect to ai equal to zero.)

The best response functions are shown in Figure 40.1. Player 1’s actions are
plotted on the horizontal axis and player 2’s actions are plotted on the vertical axis.
Player 1’s best response function associates an action for player 1 with every action
for player 2. Thus to interpret the function b1 in the diagram, take a point a2 on
the vertical axis, and go across to the line labeled b1 (the steeper of the two lines),
then read down to the horizontal axis. The point on the horizontal axis that you
reach is b1(a2), the best action for player 1 when player 2 chooses a2. Player 2’s best
response function, on the other hand, associates an action for player 2 with every
action of player 1. Thus to interpret this function, take a point a1 on the horizontal
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0 a1 →

↑
a2

1
2 c

1
2 c

c

c

b1(a2)

b2(a1)

Figure 40.1 The players’ best response functions for the game in Example 39.1. The game has a unique
Nash equilibrium, (a∗1 , a∗2) = (c, c).

axis, and go up to b2, then across to the vertical axis. The point on the vertical axis
that you reach is b2(a1), the best action for player 2 when player 1 chooses a1.

At a point (a1, a2) where the best response functions intersect in the figure, we
have a1 = b1(a2), because (a1, a2) is on the graph of b1, player 1’s best response
function, and a2 = b2(a1), because (a1, a2) is on the graph of b2, player 2’s best
response function. Thus any such point (a1, a2) is a Nash equilibrium. In this
game the best response functions intersect at a single point, so there is one Nash
equilibrium. In general, they may intersect more than once; every point at which
they intersect is a Nash equilibrium.

To find the point of intersection of the best response functions precisely, we can
solve the two equations in (36.3):

a1 = 1
2 (c + a2)

a2 = 1
2 (c + a1).

Substituting the second equation in the first, we get a1 = 1
2 (c +

1
2 (c + a1)) =

3
4 c +

1
4 a1, so that a1 = c. Substituting this value of a1 into the second equation, we get
a2 = c. We conclude that the game has a unique Nash equilibrium (a1, a2) = (c, c).
(To reach this conclusion, it suffices to solve the two equations; we do not have
to draw Figure 40.1. However, the diagram shows us at once that the game has a
unique equilibrium, in which both players’ actions exceed 1

2 c, facts that serve to
check the results of our algebra.)

In the game in this example, each player has a unique best response to every ac-
tion of the other player, so that the best response functions are lines. If a player has
many best responses to some of the other players’ actions, then her best response
function is “thick” at some points; several examples in the next chapter have this
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a∗1

a∗2

a2

a∗∗1

a∗∗2

a∗∗∗2

a∗∗∗1

a2

B1(a2)

B2(a1)

A1

A2

Figure 41.1 An example of the best response functions of a two-player game in which each player’s
set of actions is an interval of numbers. The set of Nash equilibria of the game consists of the pairs of
actions (a∗1 , a∗2) and (a∗∗∗1 , a∗∗∗2 ), and all the pairs of actions on player 2’s best response function between
(a∗∗1 , a∗∗2 ) and (a∗∗∗1 , a∗∗∗2 ).

property (see, for example, Figure 66.1). The game in Example 39.1 is special also
because it has a unique Nash equilibrium—the best response functions cross once.
As we have seen, some games have more than one equilibrium, and others have
none. Figure 41.1 shows a pair of best response functions that illustrates some of
the possibilities. The shaded area of player 1’s best response function indicates
that for a2 between a2 and a2, player 1 has a range of best responses. For example,
all actions of player 1 greater than a∗∗1 and at most a∗∗∗1 are best responses to the ac-
tion a∗∗∗2 of player 2. For a game with these best response functions, the set of Nash
equilibria consists of the pairs of actions (a∗1 , a∗2) and (a∗∗∗1 , a∗∗∗2 ), and all the pairs
of actions on player 2’s best response function between (a∗∗1 , a∗∗2 ) and (a∗∗∗1 , a∗∗∗2 ).

? EXERCISE 41.1 (Strict and nonstrict Nash equilibria) Which of the Nash equilibria
of the game whose best response functions are given in Figure 41.1 are strict (see
the definition on page 33)?

Another feature that differentiates the best response functions in Figure 41.1
from those in Figure 40.1 is that the best response function b1 of player 1 is not
continuous. When player 2’s action is a2, player 1’s best response is a∗∗1 (indicated
by the small disk at (a∗∗1 , a2)), but when player 2’s action is slightly greater than
a2, player 1’s best response is significantly less than a∗∗1 . (The small circle indicates
a point excluded from the best response function.) Again, several examples in
the next chapter have this feature. From Figure 41.1 we see that if a player’s best
response function is discontinuous, then depending on where the discontinuity
occurs, the best response functions may not intersect—the game may, like Matching

Pennies, have no Nash equilibrium.
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? EXERCISE 42.1 (Finding Nash equilibria using best response functions) Find the
Nash equilibria of the two-player strategic game in which each player’s set of
actions is the set of nonnegative numbers and the players’ payoff functions are
u1(a1, a2) = a1(a2 − a1) and u2(a1, a2) = a2(1 − a1 − a2).

? EXERCISE 42.2 (A joint project) Two people are engaged in a joint project. If each
person i puts in the effort xi, a nonnegative number equal to at most 1, which
costs her c(xi), the outcome of the project is worth f (x1, x2). The worth of the
project is split equally between the two people, regardless of their effort levels.
Formulate this situation as a strategic game. Find the Nash equilibria of the game
when (a) f (x1, x2) = 3x1x2 and c(xi) = x2

i for i = 1, 2, and (b) f (x1, x2) = 4x1x2
and c(xi) = xi for i = 1, 2. In each case, is there a pair of effort levels that yields
higher payoffs for both players than do the Nash equilibrium effort levels?

2.8.4 Illustration: contributing to a public good

Exercise 33.1 models decisions on whether to contribute to the provision of a “pub-
lic good”. We now study a model in which two people decide not only whether to
contribute, but also how much to contribute.

Denote person i’s wealth by wi, and the amount she contributes to the public
good by ci (0 ≤ ci ≤ wi); she spends her remaining wealth wi − ci on “private
goods” (like clothes and food, whose consumption by one person precludes their
consumption by anyone else). The amount of the public good is equal to the sum
of the contributions. Each person cares both about the amount of the public good
and her consumption of private goods.

Suppose that person i’s preferences are represented by the payoff function
vi(c1 + c2) + wi − ci, where vi is an increasing function. Because wi is a constant,
person i’s preferences are alternatively represented by the payoff function

ui(c1, c2) = vi(c1 + c2)− ci. (42.3)

This situation is modeled by the following strategic game.

Players The two people.

Actions Player i’s set of actions is the set of her possible contributions (nonneg-
ative numbers less than or equal to wi), for i = 1, 2.

Preferences Player i’s preferences are represented by the payoff function ui

given in (42.3), for i = 1, 2.

To find the Nash equilibria of this strategic game, consider the players’ best
response functions. Player 1’s best response to the contribution c2 of player 2 is
the value of c1 that maximizes v1(c1 + c2) − c1. Without specifying the form of
the function v1 we cannot explicitly calculate this optimal value. However, we can
determine how it varies with c2.



2.8 Best response functions 43

k
k

0 w1b1(0)b1(k) c1 →

u1(c1, k)

u1(c1, 0)

Figure 43.1 The relation between player 1’s best responses b1(0) and b1(k) to c2 = 0 and c2 = k in the
game of contributing to a public good.

First consider player 1’s best response to c2 = 0. Suppose that the form of
the function v1 is such that the function u1(c1, 0) increases up to its maximum,
then decreases (as in Figure 43.1). Then player 1’s best response to c2 = 0, which
I denote b1(0), is unique. This best response is the value of c1 that maximizes
u1(c1, 0) = v1(c1) − c1 subject to 0 ≤ c1 ≤ w1. Assume that 0 < b1(0) < w1:
player 1’s optimal contribution to the public good when player 2 makes no contri-
bution is positive and less than her entire wealth.

Now consider player 1’s best response to c2 = k > 0. This best response is
the value of c1 that maximizes u1(c1, k) = v1(c1 + k)− c1. Now, we have u1(c1 +
k, 0) = v1(c1 + k)− c1 − k by the definition of u1, so that

u1(c1, k) = u1(c1 + k, 0) + k.

That is, the graph of u1(c1, k) as a function of c1 is the translation to the left k units
and up k units of the graph of u1(c1, 0) as a function of c1 (refer to Figure 43.1).
Thus if k ≤ b1(0), then b1(k) = b1(0)− k: if player 2’s contribution increases from
0 to k, then player 1’s best response decreases by k. If k > b1(0), then, given the
form of u1(c1, 0), we have b1(k) = 0.

We conclude that if player 2 increases her contribution by k, then player 1’s best
response is to reduce her contribution by k (or to zero, if k is larger than player 1’s
original contribution)!

The same analysis applies to player 2: for every unit more that player 1 con-
tributes, player 2 contributes a unit less, so long as her contribution is nonnegative.
The function v2 may be different from the function v1, so that player 1’s best contri-
bution b1(0) when c2 = 0 may be different from player 2’s best contribution b2(0)
when c1 = 0. But both best response functions have the same character: the slope
of each function is −1 where the value of the function is positive. They are shown
in Figure 44.1 for a case in which b1(0) > b2(0).

We deduce that if b1(0) > b2(0), then the game has a unique Nash equilibrium,
(b1(0), 0): player 2 contributes nothing. Similarly, if b1(0) < b2(0), then the unique
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0 c1 →

↑
c2

b1(0)

b1(0)

b2(0)

b2(0)

b1(c2)

b2(c1)

Figure 44.1 The best response functions for the game of contributing to a public good in a case in which
b1(0) > b2(0). The best response function of player 1 is the black line; that of player 2 is the gray line.

Nash equilibrium is (0, b2(0)): player 1 contributes nothing. That is, the person
who contributes more when the other person contributes nothing is the only one
to make a contribution in a Nash equilibrium. Only if b1(0) = b2(0), which is not
likely if the functions v1 and v2 differ, is there an equilibrium in which both people
contribute. In this case the downward-sloping parts of the best response functions
coincide, so that any pair of contributions (c1, c2) with c1 + c2 = b1(0) and ci ≥ 0
for i = 1, 2 is a Nash equilibrium.

In summary, the notion of Nash equilibrium predicts that, except in unusual
circumstances, only one person contributes to the provision of the public good
when each person’s payoff function takes the form vi(c1 + c2) + wi − ci, each func-
tion vi(ci)− ci increases to a maximum, then decreases, and each person optimally
contributes less than her entire wealth when the other person does not contribute.
The person who contributes is the one who wishes to contribute more when the
other person does not contribute. In particular, the identity of the person who
contributes does not depend on the distribution of wealth; any distribution in
which each person optimally contributes less than her entire wealth when the other
person does not contribute leads to the same outcome.

The next exercise asks you to consider a case in which the amount of the public
good affects each person’s enjoyment of the private good. (The public good might
be clean air, which improves each person’s enjoyment of her free time.)

? EXERCISE 44.1 (Contributing to a public good) Consider the model in this section
when ui(c1, c2) is the sum of three parts: the amount c1 + c2 of the public good
provided, the amount wi − ci person i spends on private goods, and a term (wi −
ci)(c1 + c2) that reflects an interaction between the amount of the public good and
her private consumption—the greater the amount of the public good, the more she
values her private consumption. In summary, suppose that person i’s payoff is
c1 + c2 + wi − ci + (wi − ci)(c1 + c2), or

wi + cj + (wi − ci)(c1 + c2),
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where j is the other person. Assume that w1 = w2 = w, and that each player i’s
contribution ci may be any number (positive or negative, possibly larger than w).
Find the Nash equilibrium of the game that models this situation. (You can cal-
culate the best responses explicitly. Imposing the sensible restriction that ci lie
between 0 and w complicates the analysis but does not change the answer.) Show
that in the Nash equilibrium both players are worse off than they are when both
contribute half of their wealth to the public good. If you can, extend the analysis to
the case of n people. As the number of people increases, how does the total amount
contributed in a Nash equilibrium change? Compare the players’ equilibrium pay-
offs with their payoffs when each contributes half her wealth to the public good,
as n increases without bound. (The game is studied further in Exercise 388.1.)

2.9 Dominated actions

2.9.1 Strict domination

You drive up to a red traffic light. The left lane is free; in the right lane there is a
car that may turn right when the light changes to green, in which case it will have
to wait for a pedestrian to cross the side street. Assuming you wish to progress
as quickly as possible, the action of pulling up in the left lane “strictly dominates”
that of pulling up in the right lane. If the car in the right lane turns right, then you
are much better off in the left lane, where your progress will not be impeded; and
even if the car in the right lane does not turn right, you are still better off in the left
lane, rather than behind the other car.

In any game, a player’s action “strictly dominates” another action if it is supe-
rior, no matter what the other players do.

◮ DEFINITION 45.1 (Strict domination) In a strategic game with ordinal preferences,
player i’s action a′′i strictly dominates her action a′i if

ui(a′′i , a−i) > ui(a′i, a−i) for every list a−i of the other players’ actions,

where ui is a payoff function that represents player i’s preferences. We say that the
action a′i is strictly dominated.

In the Prisoner’s Dilemma, for example, the action Fink strictly dominates the
action Quiet: regardless of her opponent’s action, a player prefers the outcome
when she chooses Fink to the outcome when she chooses Quiet. In BoS, on the other
hand, neither action strictly dominates the other: Bach is better than Stravinsky

if the other player chooses Bach, but is worse than Stravinsky if the other player
chooses Stravinsky.

A strictly dominated action is not a best response to any actions of the other
players: whatever the other players do, some other action is better. Since a player’s
Nash equilibrium action is a best response to the other players’ Nash equilibrium
actions,

a strictly dominated action is not used in any Nash equilibrium.
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L R

T 1 0
M 2 1
B 1 3

L R

T 1 0
M 2 1
B 3 2

Figure 46.1 Two games in which player 1’s action T is strictly dominated by M. (Only player 1’s payoffs
are given.) In the left-hand game, B is better than M if player 2 chooses R; in the right-hand game, M
itself is strictly dominated, by B.

When looking for the Nash equilibria of a game, we can thus eliminate from con-
sideration all strictly dominated actions. For example, in the Prisoner’s Dilemma we
can eliminate Quiet for each player, leaving (Fink, Fink) as the only action pair that
can possibly be a Nash equilibrium. (As we know, this action pair is indeed a Nash
equilibrium.)

The fact that the action a′′i strictly dominates the action a′i of course does not

imply that a′′i strictly dominates all actions. Indeed, a′′i may itself be strictly dom-
inated. In the left-hand game in Figure 46.1, for example, M strictly dominates T,
but B is better than M if player 2 chooses R. (I give only the payoffs of player 1
in the figure, because those of player 2 are not relevant.) Since T is strictly domi-
nated, the game has no Nash equilibrium in which player 1 uses it; but the game
may also not have any equilibrium in which player 1 uses M. In the right-hand
game, M strictly dominates T, but is itself strictly dominated by B. In this case,
in any Nash equilibrium player 1’s action is B (her only action that is not strictly
dominated).

A strictly dominated action is incompatible not only with a steady state, but
also with rational behavior by a player who confronts a game for the first time.
This fact is the first step in a theory different from Nash equilibrium, explored in
Chapter 12.

2.9.2 Weak domination

As you approach the red light in the situation at the start of the previous section
(2.9.1), there is a car in each lane. The car in the right lane may, or may not, be
turning right; if it is, it may be delayed by a pedestrian crossing the side street.
The car in the left lane cannot turn right. In this case your pulling up in the left
lane “weakly dominates”, though does not strictly dominate, your pulling up in
the right lane. If the car in the right lane does not turn right, then both lanes are
equally good; if it does, then the left lane is better.

In any game, a player’s action “weakly dominates” another action if the first
action is at least as good as the second action, no matter what the other players do,
and is better than the second action for some actions of the other players.

◮ DEFINITION 46.1 (Weak domination) In a strategic game with ordinal preferences,
player i’s action a′′i weakly dominates her action a′i if

ui(a′′i , a−i) ≥ ui(a′i, a−i) for every list a−i of the other players’ actions
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L R

T 1 0
M 2 0
B 2 1

Figure 47.1 A game illustrating weak domination. (Only player 1’s payoffs are given.) The action M
weakly dominates T; B weakly dominates M. The action B strictly dominates T.

and

ui(a′′i , a−i) > ui(a′i, a−i) for some list a−i of the other players’ actions,

where ui is a payoff function that represents player i’s preferences. We say that the
action a′i is weakly dominated.

For example, in the game in Figure 47.1 (in which, once again, only player 1’s
payoffs are given), M weakly dominates T, and B weakly dominates M; B strictly
dominates T.

In a strict Nash equilibrium (Section 2.7.8) no player’s equilibrium action is
weakly dominated: for every player, the payoff to each nonequilibrium action is
less than her equilibrium payoff, so that no nonequilibrium action weakly domi-
nates her equilibrium action.

Can an action be weakly dominated in a nonstrict Nash equilibrium? Defi-
nitely. Consider the games in Figure 47.2. In both games B weakly (but not strictly)
dominates C for both players. But in both games (C, C) is a Nash equilibrium:
given that player 2 chooses C, player 1 cannot do better than choose C, and given

that player 1 chooses C, player 2 cannot do better than choose C. Both games also
have a Nash equilibrium, (B, B), in which neither player’s action is weakly dom-
inated. In the left-hand game this equilibrium is better for both players than the
equilibrium (C, C) in which both players’ actions are weakly dominated, whereas
in the right-hand game it is worse for both players than (C, C).

? EXERCISE 47.1 (Strict equilibria and dominated actions) For the game in Fig-
ure 48.1, determine, for each player, whether any action is strictly dominated or
weakly dominated. Find the Nash equilibria of the game; determine whether any
equilibrium is strict.

? EXERCISE 47.2 (Nash equilibrium and weakly dominated actions) Give an exam-
ple of a two-player strategic game in which each player has finitely many actions
and in the only Nash equilibrium both players’ actions are weakly dominated.

B C
B 1, 1 0, 0
C 0, 0 0, 0

B C
B 1, 1 2, 0
C 0, 2 2, 2

Figure 47.2 Two strategic games with a Nash equilibrium (C, C) in which both players’ actions are
weakly dominated.
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L C R

T 0, 0 1, 0 1, 1
M 1, 1 1, 1 3, 0
B 1, 1 2, 1 2, 2

Figure 48.1 The game in Exercise 47.1.

2.9.3 Illustration: voting

Two candidates, A and B, vie for office. Each of an odd number of citizens may
vote for either candidate. (Abstention is not possible.) The candidate who obtains
the most votes wins. (Because the number of citizens is odd, a tie is impossible.) A
majority of citizens prefer A to win.

The following strategic game models the citizens’ voting decisions in this
situation.

Players The citizens.

Actions Each player’s set of actions consists of voting for A and voting for B.

Preferences All players are indifferent among all action profiles in which a ma-
jority of players vote for A; all players are also indifferent among all action
profiles in which a majority of players vote for B. Some players (a majority)
prefer an action profile of the first type to one of the second type, and the
others have the reverse preference.

I claim that a citizen’s voting for her less preferred candidate is weakly domi-
nated by her voting for her favorite candidate. Suppose that citizen i prefers candi-
date A; fix the votes of all citizens other than i. If citizen i switches from voting for
B to voting for A, then, depending on the other citizens’ votes, either the outcome
does not change, or A wins rather than B; such a switch cannot cause the winner
to change from A to B. That is, citizen i’s switching from voting for B to voting for
A either has no effect on the outcome, or makes her better off; it cannot make her
worse off.

The game has Nash equilibria in which some, or all, citizens’ actions are weakly
dominated. For example, the action profile in which all citizens vote for B is a Nash
equilibrium (no citizen’s switching her vote has any effect on the outcome).

? EXERCISE 48.1 (Voting) Find all the Nash equilibria of the game. (First consider
action profiles in which the winner obtains one more vote than the loser and at least
one citizen who votes for the winner prefers the loser to the winner, then profiles in
which the winner obtains one more vote than the loser and all citizens who vote for
the winner prefer the winner to the loser, and finally profiles in which the winner
obtains three or more votes more than the loser.) Is there any equilibrium in which
no player uses a weakly dominated action?

Consider a variant of the game in which the number of candidates is greater
than two. A variant of the argument above shows that a citizen’s voting for her
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least preferred candidate is weakly dominated by her voting for her favorite candi-
date. The next exercise asks you to show that no other action is weakly dominated.

? EXERCISE 49.1 (Voting between three candidates) Suppose there are three candi-
dates, A, B, and C, and no citizen is indifferent between any two of them. A tie for
first place is possible in this case; assume that a citizen who prefers a win by x to a
win by y ranks a tie between x and y between an outright win for x and an outright
win for y. Show that a citizen’s only weakly dominated action is a vote for her least
preferred candidate. Find a Nash equilibrium in which some citizen does not vote
for her favorite candidate, but the action she takes is not weakly dominated.

? EXERCISE 49.2 (Approval voting) In the system of “approval voting”, a citizen
may vote for as many candidates as she wishes. If there are two candidates, say
A and B, for example, a citizen may vote for neither candidate, for A, for B, or for
both A and B. As before, the candidate who obtains the most votes wins. Show that
any action that includes a vote for a citizen’s least preferred candidate is weakly
dominated, as is any action that does not include a vote for her most preferred
candidate. More difficult: show that if there are k candidates, then for a citizen
who prefers candidate 1 to candidate 2 to . . . to candidate k, the action that consists
of votes for candidates 1 and k − 1 is not weakly dominated.

2.9.4 Illustration: collective decision­making

The members of a group of people are affected by a policy, modeled as a number.
Each person i has a favorite policy, denoted x∗i ; she prefers the policy y to the
policy z if and only if y is closer to x∗i than is z. The number n of people is odd.
The following mechanism is used to choose a policy: each person names a policy,
and the policy chosen is the median of those named. (That is, the policies named
are put in order, and the one in the middle is chosen. If, for example, there are
five people, and they name the policies −2, 0, 0.6, 5, and 10, then the policy 0.6 is
chosen.)

What outcome does this mechanism induce? Does anyone have an incentive
to name her favorite policy, or are people induced to distort their preferences? We
can answer these questions by studying the following strategic game.

Players The n people.

Actions Each person’s set of actions is the set of policies (numbers).

Preferences Each person i prefers the action profile a to the action profile a′ if
and only if the median policy named in a is closer to x∗i than is the median
policy named in a′.

I claim that for each player i, the action of naming her favorite policy x∗i weakly
dominates all her other actions. The reason is that relative to the situation in which
she names x∗i , she can change the median only by naming a policy further from her
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favorite policy than the current median; no change in the policy she names moves
the median closer to her favorite policy.

Precisely, I show that for each action xi 6= x∗i of player i, (a) for all actions of
the other players, player i is at least as well off naming x∗i as she is naming xi,
and (b) for some actions of the other players she is better off naming x∗i than she is
naming xi. Take xi > x∗i .

a. For any list of actions of the players other than player i, denote the value of
the 1

2 (n − 1)th highest action by a and the value of the 1
2 (n + 1)th highest

action by a (so that half of the remaining players’ actions are at most a and
half of them are at least a).

• If a ≤ x∗i or a ≥ xi, then the median policy is the same whether player i

names x∗i or xi.

• If a > x∗i and a < xi, then when player i names x∗i the median policy is
at most the greater of x∗i and a and when player i names xi the median
policy is at least the lesser of xi and a. Thus player i is at least as well off
naming x∗i as she is naming xi.

b. Suppose that half of the remaining players name policies less than x∗i and
half of them name policies greater than xi. Then the outcome is x∗i if player i

names x∗i , and xi if she names xi. Thus she is better off naming x∗i than she is
naming xi.

A symmetric argument applies when xi < x∗i .
If we think of the mechanism as asking the players to name their favorite

policies, then the result is that telling the truth weakly dominates all other actions.
An implication of the fact that player i’s naming her favorite policy x∗i weakly

dominates all her other actions is that the action profile in which every player
names her favorite policy is a Nash equilibrium. That is, truth-telling is a Nash
equilibrium, in the interpretation of the previous paragraph.

? EXERCISE 50.1 (Other Nash equilibria of the game modeling collective decision-
making) Find two Nash equilibria in which the outcome is the median favorite
policy, and one in which it is not.

? EXERCISE 50.2 (Another mechanism for collective decision-making) Consider the
variant of the mechanism for collective decision-making in which the policy cho-
sen is the mean, rather than the median, of the policies named by the players.
Does a player’s action of naming her favorite policy weakly dominate all her other
actions?

2.10 Equilibrium in a single population: symmetric games and

symmetric equilibria

A Nash equilibrium of a strategic game corresponds to a steady state of an in-
teraction between the members of several populations, one for each player in the
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A B

A w, w x, y

B y, x z, z

Quiet Fink

Quiet 2, 2 0, 3
Fink 3, 0 1, 1

Stag Hare

Stag 2, 2 0, 1
Hare 1, 0 1, 1

Figure 51.1 The general form of a two-player symmetric game (left), and two examples, the Prisoner’s
Dilemma (middle) and the two-player Stag Hunt (right).

game; each play of the game involves one member of each population. Sometimes
we want to model an interaction in which the members of a single homogeneous
population are involved anonymously and symmetrically. Consider, for example,
pedestrians approaching each other on a sidewalk or car drivers arriving simul-
taneously at an intersection from different directions. In each case, the members
of an encounter (pairs of pedestrians who meet each other, groups of car drivers
who simultaneously approach intersections) are drawn from a single population
and have the same role.

I restrict attention here to cases in which each interaction involves two partic-
ipants. Define a two-player game to be “symmetric” if each player has the same
set of actions and each player’s evaluation of an outcome depends only on her
action and that of her opponent, not on whether she is player 1 or player 2. That
is, player 1 feels the same way about the outcome (a1, a2), in which her action is
a1 and her opponent’s action is a2, as player 2 feels about the outcome (a2, a1), in
which her action is a1 and her opponent’s action is a2. In particular, the players’
preferences may be represented by payoff functions in which both players’ payoffs
are the same whenever the players choose the same action: u1(a, a) = u2(a, a) for
every action a.

◮ DEFINITION 51.1 (Symmetric two-player strategic game with ordinal preferences) A
two-player strategic game with ordinal preferences is symmetric if the players’
sets of actions are the same and the players’ preferences are represented by payoff
functions u1 and u2 for which u1(a1, a2) = u2(a2, a1) for every action pair (a1, a2).

A two-player game in which each player has two actions is symmetric if the
players’ preferences are represented by payoff functions that take the form shown
in the left panel of Figure 51.1, where w, x, y, and z are arbitrary numbers. Sev-
eral of the two-player games we have considered are symmetric, including the
Prisoner’s Dilemma and the two-player Stag Hunt (given again in the middle and
right panels of Figure 51.1), and the game in Exercise 38.2. BoS (Figure 19.1) and
Matching Pennies (Figure 19.2) are not symmetric.

? EXERCISE 51.2 (Symmetric strategic games) Which of the games in Exercises 31.2
and 42.1, Example 39.1, Section 2.8.4, and Figure 47.2 are symmetric?

When the players in a symmetric two-player game are drawn from a single
population, nothing distinguishes one of the players in any given encounter from
the other. We may call them “player 1” and “player 2”, but these labels are only
for our convenience. There is only one role in the game, so that a steady state
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Left Right

Left 1, 1 0, 0
Right 0, 0 1, 1

Figure 52.1 Approaching pedestrians.

is characterized by a single action used by every participant whenever she plays
the game. An action a∗ corresponds to such a steady state if no player can do
better by using any other action, given that all the other players use a∗. An action
a∗ has this property if and only if (a∗, a∗) is a Nash equilibrium of the game. In
other words, the solution that corresponds to a steady state of pairwise interactions
between the members of a single population is “symmetric Nash equilibrium”: a
Nash equilibrium in which both players take the same action. The idea of this
notion of equilibrium does not depend on the game’s having only two players, so
I give a definition for a game with any number of players.

◮ DEFINITION 52.1 (Symmetric Nash equilibrium) An action profile a∗ in a strategic
game with ordinal preferences in which each player has the same set of actions is
a symmetric Nash equilibrium if it is a Nash equilibrium and a∗i is the same for
every player i.

As an example, consider a model of approaching pedestrians. Each participant
in any given encounter has two possible actions—to step to the right, and to step
to the left—and is better off when participants both step in the same direction
than when they step in different directions (in which case a collision occurs). The
resulting symmetric strategic game is given in Figure 52.1. The game has two
symmetric Nash equilibria, namely (Left, Left) and (Right, Right). That is, there
are two steady states, in one of which every pedestrian steps to the left as she
approaches another pedestrian, and in another of which both participants step to
the right. (The latter steady state seems to prevail in the United States and Canada.)

A symmetric game may have no symmetric Nash equilibrium. Consider, for
example, the game in Figure 52.2. This game has two Nash equilibria, (X, Y) and
(Y, X), neither of which is symmetric. You may wonder if, in such a situation,
there is a steady state in which each player does not always take the same action
in every interaction. This question is addressed in Section 4.7.

? EXERCISE 52.2 (Equilibrium for pairwise interactions in a single population) Find
all the Nash equilibria of the game in Figure 53.1. Which of the equilibria, if any,
correspond to a steady state if the game models pairwise interactions between the
members of a single population?

X Y
X 0, 0 1, 1
Y 1, 1 0, 0

Figure 52.2 A symmetric game with no symmetric Nash equilibrium.
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A B C

A 1, 1 2, 1 4, 1
B 1, 2 5, 5 3, 6
C 1, 4 6, 3 0, 0

Figure 53.1 The game in Exercise 52.2.

Notes

The notion of a strategic game originated in the work of Borel (1921) and von Neu-
mann (1928). The notion of Nash equilibrium (and its interpretation) is due to
Nash (1950a). (The idea that underlies it goes back at least to Cournot 1838, Ch. 7.)

The Prisoner’s Dilemma appears to have first been considered by Melvin Dresher
and Merrill Flood, who used it in an experiment at the RAND Corporation in Jan-
uary 1950 (Flood 1958/59, 11–17); it is an example in Nash’s Ph.D. thesis (Nash
1950b), submitted in May 1950. The story associated with it is due to Tucker (1950)
(see Straffin 1980). O’Neill (1994, 1010–1013) argues that there is no evidence that
game theory (and in particular the Prisoner’s Dilemma) influenced U.S. nuclear
strategists in the 1950s. The precise analysis of the idea that common property
will be overused was initiated by Gordon (1954). Hardin (1968) coined the phrase
“tragedy of the commons”.

BoS, like the Prisoner’s Dilemma, is an example in Nash’s Ph.D. thesis; Luce
and Raiffa (1957, 90–91) name it and associate a story with it. Matching Pennies

was first considered by von Neumann (1928). Rousseau’s sentence about hunting
stags is interpreted as a description of a game by Ullmann-Margalit (1977, 121) and
Jervis (1977/78), following discussion by Waltz (1959, 167–169) and Lewis (1969,
7, 47).

The information about John Nash in the box on page 23 comes from Leonard
(1994), Kuhn et al. (1995), Kuhn (1996), Myerson (1996), Nasar (1998), and Nash
(1995). Hawk–Dove is known also as “Chicken” (two drivers approach each other
on a narrow road; the one who pulls over first is “chicken”). It was first suggested
(in a more complicated form) as a model of animal conflict by Maynard Smith
and Price (1973). The discussion of focal points in the box on page 32 draws on
Schelling (1960, 54–58).

Games modeling voluntary contributions to a public good were first consid-
ered by Olson (1965, Section I.D). The game in Exercise 33.1 is studied in detail by
Palfrey and Rosenthal (1984). The result in Section 2.8.4 is due to Warr (1983) and
Bergstrom, Blume, and Varian (1986).

Game theory was first used to study voting behavior by Farquharson (1969)
(whose book was completed in 1958; see also Niemi 1983). The system of “ap-
proval voting” in Exercise 49.2 was first studied formally by Brams and Fish-
burn (1978, 1983).

Exercise 18.1 is based on Leonard (1990). Exercise 27.2 is based on Ullmann-
Margalit (1977, 48). The game in Exercise 31.1 is taken from Van Huyck, Bat-
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talio, and Beil (1990). The game in Exercise 34.1 is taken from Moulin (1986b,
72). The game in Exercise 34.2 was first studied by Palfrey and Rosenthal (1983).
Exercise 34.3 is based on Braess (1968); see also Murchland (1970). The game in
Exercise 38.2 is taken from Brams, Kilgour, and Davis (1993).




