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Variants The key point behind the results is that under unanimity rule a juror’s

vote makes a difference to the outcome only if every other juror votes for convic-

tion. Consequently, a juror, when deciding how to vote, rationally assesses the de-

fendant’s probability of guilt under the assumption that every other juror votes for

conviction. The fact that this implication of unanimity rule drives the results sug-

gests that the Nash equilibria might be quite different if less than unanimity were

required for conviction. The analysis of such rules is difficult, but indeed the Nash

equilibria they generate differ significantly from the Nash equilibria under una-

nimity rule. In particular, the analogue of the mixed strategy Nash equilibria con-

sidered earlier generates a probability that an innocent defendant is convicted that

approaches zero as the jury size increases, as Feddersen and Pesendorfer (1998)

show.

The idea behind the equilibria of the model in the next exercise is related to the

ideas in this section, though the model is different.

? EXERCISE 307.1 (Swing voter’s curse) Whether candidate 1 or candidate 2 is elected

depends on the votes of two citizens. The economy may be in one of two states, A

and B. The citizens agree that candidate 1 is best if the state is A and candidate 2

is best if the state is B. Each citizen’s preferences are represented by the expected

value of a Bernoulli payoff function that assigns a payoff of 1 if the best candidate

for the state wins (obtains more votes than the other candidate), a payoff of 0 if the

other candidate wins, and payoff of 1
2 if the candidates tie. Citizen 1 is informed of

the state, whereas citizen 2 believes it is A with probability 0.9 and B with proba-

bility 0.1. Each citizen may either vote for candidate 1, vote for candidate 2, or not

vote.

a. Formulate this situation as a Bayesian game. (Construct the table of payoffs

for each state.)

b. Show that the game has exactly two pure Nash equilibria, in one of which

citizen 2 does not vote and in the other of which she votes for 1.

c. Show that an action of one of the players in the second equilibrium is weakly

dominated.

d. Why is “swing voter’s curse” an appropriate name for the determinant of

citizen 2’s decision in the first equilibrium?

9.8 Appendix: auctions with an arbitrary distribution of valuations

9.8.1 Firstprice sealedbid auctions

In this section I construct a symmetric equilibrium of a first-price sealed-bid auc-

tion for a distribution F of valuations that satisfies the assumptions in Section 9.6.2

and is differentiable on (v, v). (Unlike the remainder of the book, the section uses

calculus.)

As before, denote the bid of type v of player i (i.e. player i when her valuation is

v) by βi(v). In a symmetric equilibrium, every player uses the same bidding func-
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tion: for some function β we have βi = β for every player i. A reasonable guess

is that if such an equilibrium exists, β is increasing: the higher a player’s valua-

tion, the more she bids. Under the additional assumption that β is differentiable, I

derive a condition that it must satisfy in any symmetric equilibrium. Exactly one

function satisfies this condition, and this function is in fact increasing (as you are

asked to show in an exercise).

Suppose that all n − 1 players other than i bid according to the increasing dif-

ferentiable function β. Then, given the assumptions on F, the probability of a tie is

zero, and hence for any bid b, the expected payoff of player i when her valuation

is v and she bids b is

(v − b) Pr(Highest bid is b) = (v − b) Pr(All n − 1 other bids ≤ b). (308.1)

Now, a player bidding according to the function β bids at most b, for β(v) ≤ b ≤
β(v), if her valuation is at most β−1(b) (the inverse of β evaluated at b). Thus the

probability that the bids of the n − 1 other players are all at most b is the probabil-

ity that the highest of n − 1 randomly selected valuations—a random variable de-

noted X in Section 9.6.2—is at most β−1(b). Denoting the cumulative distribution

function of X by H, the expected payoff in (308.1) is thus

(v − b)H(β−1(b)) if β(v) ≤ b ≤ β(v)

(and 0 if b < β(v), v − b if b > β(v)).

I now claim that in a symmetric equilibrium in which every player bids accord-

ing to β, we have β(v) ≤ v if v > v and β(v) = v. If v > v and β(v) > v, then

a player with valuation v wins with positive probability (players with valuations

less than v bid less than β(v), because β is increasing) and obtains a negative pay-

off if she does so. She obtains a payoff of zero by bidding v, so for equilibrium we

need β(v) ≤ v whenever v > v. Given that β satisfies this condition, if β(v) > v

then a player with valuation v wins with positive probability, and obtains a nega-

tive payoff if she does so. Thus β(v) ≤ v. If β(v) < v, then players with valuations

slightly greater than v also bid less than v (because β is continuous), so that a player

with valuation v who increases her bid slightly wins with positive probability and

obtains a positive payoff if she does so, rather than obtaining the payoff of zero.

We conclude that β(v) = v.

Now, the expected payoff of a player of type v when every other player uses

the bidding function β is differentiable on (v, β(v)) (given that β is increasing and

differentiable, and β(v) = v) and, if v > v, is increasing at v. Thus the derivative

of this expected payoff with respect to b is zero at any best response less than β(v):

−H(β−1(b)) +
(v − b)H′(β−1(b))

β′(β−1(b))
= 0. (308.2)

(The derivative of β−1 at the point b is 1/β′(β−1(b)).)

In a symmetric equilibrium in which every player bids according to β, the best

response of type v of any given player to the other players’ strategies is β(v). Be-

cause β is increasing, we have β(v) < β(v) for v < v, so β(v) must satisfy (308.2)
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whenever v < v < v. If b = β(v), then β−1(b) = v, so that substituting b = β(v)
into (308.2) and multiplying by β′(v) yields

β′(v)H(v) + β(v)H
′(v) = vH

′(v) for v < v < v.

The left-hand side of this differential equation is the derivative with respect to

v of β(v)H(v). Thus for some constant C we have

β(v)H(v) =
∫

v

v

xH
′(x) dx + C for v < v < v.

The function β is bounded, so considering the limit as v approaches v, we deduce

that C = 0.

We conclude that if the game has a symmetric Nash equilibrium in which

each player’s bidding function is increasing and differentiable on (v, v), then this

function is defined by

β∗(v) =

∫
v

v
xH′(x) dx

H(v)
for v < v ≤ v

and β∗(v) = v. Now, the function H is the cumulative distribution function of X,

the highest of n − 1 independently drawn valuations. Thus β∗(v) is the expected

value of X conditional on its being less than v: β∗(v) = E[X | X < v], as claimed in

Section 9.6.2.

We may alternatively express the numerator in the expression for β∗(v) as

vH(v) −
∫

v

v
H(x)dx (using integration by parts), so that given H(v) = (F(v))n−1

(the probability that n − 1 valuations are at most v), we have

β∗(v) = v −

∫
v

v
H(x) dx

H(v)
= v −

∫
v

v
(F(x))n−1 dx

(F(v))n−1
for v < v ≤ v. (309.1)

In particular, β∗(v) < v for v < v ≤ v.

?? EXERCISE 309.2 (Property of the bidding function in a first-price auction) Show

that the bidding function β∗ defined in (309.1) is increasing.

? EXERCISE 309.3 (Example of Nash equilibrium in a first-price auction) Verify that

for the distribution F uniform from 0 to 1 the bidding function defined by (309.1)

is (1 − 1/n)v.

9.8.2 Revenue equivalence of auctions

I argued in the text that the expected price paid by the winner of a first-price auc-

tion is the same as the expected price paid by the winner of a second-price auction.

A much more general result may be established.

Suppose that n risk-neutral bidders are involved in a sealed-bid auction in

which the price is an arbitrary function of the bids (not necessarily the highest, or


