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Notes on Notes etc. 

l) The Lecture notes are intended to supplement ordinary reading and lectures. 
They are not remotely exhaustive. An asterisk denotes sections which are 
intended for the numerate only and can readily be skipped by everyone on first 
reading. 

2) There are no good textbooks in English for what I want to do although there 
is an excellent one in French (English edition expected). It is 

E. Malinvaud: Lecons de theorie microeconomique. Dunod. Paris 1969. 
You will easily find in this book the part corresponding to various parts of 
the lectures. 

Anyone seriously interested should 9 by the end of the sessions on micro-
.~ .. economics have read the essay entitled: "Allocation of Resources and the Price 
11 System" ~n l,.C. Koopmans: Three Essays on The State of Economic Science, 

McGraw H~ll, 1957. 

K. Lancaster: Mathematical Economics, Macmillan N.Y. 1968 contains .mistakes 
but is a useful reference. 

E.A.:..G ... Robins.9.Il: The Structure of Competitive Industry. C .u .P. is a must 
for the early part of the lectures. 
If you want a critique of the whole approach to be followed read 

J. Korn~,i: Anti-Equilibrium, North Holland 1971. You do not have to read 
it all to get the point. 

E.H. Chamberlin: Monopolistic Competition and 

J. Graaff: Theoretical Welfare Economics 
serious students will want to have digested. 

1 Further references will be. given during lectures and again before I get to 
f Macro-economics. But you should have a look also at 

"" ·· ' A.A. Walters: "Production and Cost Functions: An Econometric Survey". 
Econometrica~ Vol. 31 No. 1-2 1963. 

3) The lecturGs, (and notes), are intended to serve a small minority of those 
4 f reading Economics. They are not required for examinations. Moreover there 

'\ are many successful practicai"Eiconomist:r everywhere who are quite innocent of 
the matters to be discussed so that the lectures are not required to ensure 
co~fort in later life: There are also many people who-regard this kind of 

· careful and abstract approach as not worthwhile and they are just as often 
respected academically as are those who hold the opposite view. So the lectures 

· · are ~required for academic respectability. 

If you are impatient with abstractions and/or find that mathematical 
reasoning does not come easily and fairly effortlessly, do not pursue these 
;lectures; there are better things to do with your time. On~e other hand if 
!these objections do not apply and t-he outline given in the first lecture seems 
pnteresting enough t"o pursue, then if you are to get anything for this at all, 
you will have to do some work on your own. It is not my intention to utter 
only sente:1ccs 'lvhich can be understood at first hearing. . So if you do not like 
'difficult lectures' then these are not for you. 
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Principles of Economics I. 

The Production Possibilities of the Firm 

1) Goods 

We shall distinguish goods by three properties: a) their characteristics 

b) the date at which they are available and c) the place at which they are 

available. Thus one distinguishes butter of a certain grade in Glasgow on 

the 22nd September 1972 from butter of the same grade in Glasgow on the 23rd 
+rovK-

September 1972 and~butter of the same grade in Liverpool on the 23rd 

September 1972 etc. There are no great difficulties with b) or c) but a) 

may be hard in practice. This is particularily so with 'second-hand' goods 

and with services. Indeed there are interesting economic consequences from 

the actual difficulties of distinguishing between goods. For instance some 

people maintain that an important function of a University is to grade the 

'goods' graduates represent. But one thing at a time end for the moment 

take goods as always well defined. 

2) Activity of Firm 

Production uses goods to make goods. One calls the goods used inputs 

and the goods produced output~. A list on which are entered all the outputs 

and inputs of a firm is called an activity. This suggests that an activity 

is best thought of as a vector. It is convenient to regard inputs as negative 

and outputs as positive. If nfgoods are involved we then think of the vector 
and 

in En which is n-dimensional Euclidean space/each component of the vector is 

read offfrom use of the co-ordinates of that space. More formally, 

Definition D.I.l. A vector y £ En i.e. y = (y
1 

•• yn) is called an activity 

of the firm if the components y. have the following interpretations 
J. 

a) if y. > 0 then y. is the amount of output of good i by the firm 
J. J. 

h) if y. < 0 then y. is the amount of input of good i by the firm. 
l. l. 

3) Timefc 

It is useful to think of time as divided into discrete intervals and 

prudent at this stage to take the number of days as finite (else En might 

have to be taken as infinite dimensional). Let us take our view point as 

today and write y0 when we want to emphasise that we are looking at the firm's 

activity today (that is the day labelled ze~; tomorrow gets the label 1 etc.). 
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Then note that y0 contains goods dated today, tomorrow etc so it 

contains items which may not exist yet. 0 One may for the moment say that y 

includes current and ~pned inputs and outputs. This interpretation will be 

.important later. For the moment I shall not be emphasising this aspect and 

so omit superscripts to y. 

4) The P".!'oduction Set of the Firm. 

One is interested in the technological environment of the firm and 

it seems natural to describe it as the list of activities y it could choose -

sometimes for vividness called the book of blue prints. One has here an 

important ambiguity: should we not distinguish between the book of blue-prints 

and that part of it which is already known to the firm? The answer is yes, 

we should so distinguish. Indeed reflection suggests that there may be 

activities, other than the ones so far described, which have inputs - say 

labour time, and outputs consisting of new pages of the book which have been 

learned. These are "knowledge producing activities" and they may be required 

even if every page of the book is already known to someone in the economy. 

Again, it would be as unwise to pursue this difficult problem now as 

it would be to forget that it exists. At the moment we take the available 

set of activities y in the economy as identical with those known by the firm. 

This set we write as Y. Formally 

Definition D.t.2. Y is called the production set of the firm if the members 

of this set, (written y), are the activities the firm could choose. 

Example. a) Suppose there are three goods (n = 3) and that the production 

set of the firm is given by 

C The expression: rnin(x, z) says "take the smaller of the two members x and z" ]. 

Let us interprete this set. Consider any input pair (y2, y
3

) say (-3, -5). 

Let a - 1 a - 1 So 2 - ' 3 - 2 " 

= 

The smallest of these two numbers is 2~ and so Y tells us tha~ th~ firm ean 

produce quantity of output y
1 

bounded asfollows: 
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OP alternatively suppose the firm wants to produce one unit of good 1 (y
1 

= 1). 

What is the minimum quantity of input that it requires?: Since a = 1 it must 
2 

use at least one unit of good 2 as input. Since a 3 = ~ it must use at least 

two units of good 3; then 

min (-a2y2, -a3y3) = min (1 x 1~ ~ x 2) = 1 

Check that if it used any less of either input it could not produce one unit 

of good 1, while if it used more of one input and no more of the other it could 

still produce no more than one unit of output. In Fig. 1 I have drawn a 

curve showing all the combinations of inputs of goods 2 and 3 which just enable 

the firm to produce just one unit of output 

-y 
3 

2 -·-----

1 -y 2 
~/ ·~ 1 Draw the curve\ for y
1 

= 2, y1 = 2. Notice that from the definition of Y any 

combination of inputs given by a point in the shaded area also allows the 

production of one unit of good 1 (although it could produce more than that). 

Example. b) Let 

y = { y 

Y '> 0 y. < 0 i = 1 = , ~ = 
x. ~ 0 all i, and a .. < 0 all i, j } 
~ ~J 

(If you know about matrices you will see how Y can be written more succinctly). 

Let us consider all the ways of producing one unit of good 1. 

(i) = o. Then since we want y1 = 1 we must set x1 > 1. 

Take x
1 

= 1. !'hen we shall need at least a11 of good 2 and a 21 of good 3 as 

inputs. TheSe are here take as negative numbers but if we want to speak of 

positive quantities we simply say we need at least - a11 of good 2 and - ~l 

of good 3. Then setting x
1 

= x3 = 0 and the x1 = x2 = 0 and proceeding as before 
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we obtain the pointslabelled P1 ~ P
2

, P3 in Fig. 2. Each one of these points 

Pi shows The minimum amounts of the two inputs needed to produce one unit of 

output where x. = 0 for j # i. I have also shown the shaded areas associated J 

with each of these points which show that the firm could use more of the 

inputs than is indicated by pi to produce one unit of output. 

Fig. 2 

(ii) Set x3 = 0. Then any combination of non-negative x
1

, x
2 

such that 

x1 + x2 = 1 and y2 = a11 x1 + a12 x2, y3 = a21 x
1 

+ a22 x
2 

allows the firm 

to produce one unit of ouTput without using more of any one input than is 

strictly required. 

In our diagram the co-ordinates of P1 are multiplied by x
1 

and added 

to the co-ordinates of P
2 

multiplied by x
2

• The resulting point is on the 

chord joining P
1 

to P
2 (why?)~ when x

1 
> ~ x

2 
> o. So each one of these 

points for different values of x1 and x2 shows a way of producing one unit of 

output without being able to use less of any one input; given x
3 

= 0. By 

repeating this operation with x1 = 0, x2 + x
3 

= 1 we obtain the following 

picture, 

-y 
3 

-y 
2 

Fig. 3 

giving us all the possible input combinations in Y which allow us to produce 

one unit of good 1. ~~hat is The picture for y 
1 

= 2? 

-- --~------------------------------------------------------------
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Exam.I?le. c) 

1 >a > o, 1 > b > o.} 

Let us write z2 = -y2 ~ z3 = -y3 • Then if z2 = z
3 

= 1 one can at most 

produce one unit of good 1. To see whether the same amount can be produced 

by using less of any one input we differentiate 

a b 
1 = yl = (z2) (z3) 

totally at z2 = z3 = 1 and set equal to zero (why?). One has 

yl y 
= a-dz + b ..1:. dz

3 = a dz2 + bdz
3 

when y
1 z2 2 z3 

So a dz
3 -b = dz2 

Verify that the by now familiar diagram looks as in Fig. 4 

-y 
2 

Example. d) 

1 

i = 3,4 

-y 
2 

= z2 = z3 

Fig. 4. 

Notice that the firm can produce two different goods. Let us ask: what 

combination of the two goods can the firm produce if it does not use more 

than one unit of either input? 

= 1. 

Suppose the produced only good 1. ~ince -y
3 

< 1, -y
4 
~ 1 we have 

that 
y = x = min (- ! 

1 1 a
1 
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If the firm produced only good 2 the same reasoning gives 

x2 = min 1 1 y = (- - - - ) 2 bl b2 

If the firm produces both goods one must have 

In Fig. 5 we plot (i) and (ii) as equations. All combinations of output which 
lines 

lie below or on both the ·I representing the equations are possible. The -
heavy kinked curve shows the maximum of any one output which can be produced 

given the output of the other goods and the restriction~ y
2 

> 1, y
3 

> 1. 

Plotted for 

a
1

b
2 

- a
2

b
1 

> 0 

Try other values. 

\-a x 
-1 \ 2 1 
i ~ \ 
1:~~~ 

/ ....... 

~~ 

. ~ 
5) Efficient Activities 

....... 
....... 

....... 

-1/b 
2 

L.; 

-alxl - blx2 = 1 

....... 
....... 

" 
Fig. 5 • 

-1/b 
1 

y2 

He shall now assume that Y always contains the null activity 6hat is_... 

Y with all components zero\ Thus the firm always has the choice of not 
fi 

producing at all. 

Let Q be a scalar1 

and if 0 < a < 1 abreviate to a € [o, 1] 

and recall the following two simple properties of vectors: 

• • • Yn + y~). 

[Illustrate these two properties geometricallyJ. I shall also use 

c) y = y' means y. = y! all i 
J. 1. 

y > y' means y. not < y! any i 
J. 1. 

y >> y' means y. not < y! any i. 
1. = 1. 
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It is useful to begin with to seperate members of Y which we want to 
1~/t Gt 

efficient ~the re!Jtii.nder. But by what do we want to characterise call 

efficient activities? The natural procedure is to say that an activity is 

efficient if the technology does not permit any other activity by which either 

(i) one could produce more of any one good without producing less of another 

or using more of any input, or (ii) one could produce the same outputs but 

use less of some input without using more of another or (iii) both (i) and (ii). 

The reason why this is ~ 'natural' definition is because in general one thinks 

of outputs as 'desirable' and of input as scarce. Formally 

Definition D.I.3. An activity y* e Y is called efficient if y > y* implies 

"y is not a member of Y". (Say y~~ is not dominated in Y). 

Which points in Figs. 1, 3 5 4 and 5 are efficient? 

Suppose the firm wan~ to produce y-=': > 
1 

0 units of good 1 and that there 

is some activity in Y which permits this. We want to characterise the efficient 

ways in which it can produce this amount of good 1. By D.I.3 that means 

searching for all the activities in Y which have y1 as a component and are not 

dominated in Y. In· example (a) there is only one such vector y tvith y 
1 

= y 
1 

t 

1 ;~ 1 ~ 
Y 2 = a

2 
Y 

1
' Y 3 = a

3 
Y 1 • In ~;:~ample (b) the set of efficient vectors for Y! 

is given by y with 

In exanple (c) the 

y1,y2 such that 

y~~ 
1 = 

Y2 = allxl + al2x2 + al3x3 

1 3 = a2lxl + a22x2 + a23x3 

all x. > 0 
~= 

efficient set for y~ is y with y1 = Yi and any combination 

a b Yi = (-y2) (-y3) etc. 

It is seen that by varying the attainable value of y
1 

we can in each 

case trace out a subset of Y which we may call the efficient set. Let Y* 

denote the subset of efficient ac~ivities in Y. Then in example (c) for instance: 

y~~ = (1) 

It will be clear that good one plays no special role in the definition 

of Y~~ and althoug~ continue -co single it out below you should J:'eetate. all 

that has gone before and that follows by singling out some other good. 

One can o£ten find convenient ways of characterising the efficient 

subset of Y. 
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By the definition of efficient activities a necessary condition for y* 

to be efficient isthat given any (n - 1) components of y* the remaining 

component should be as large as possible in Y. (Notice (i) that inputs are 

taken as negative so that making an input component larger means making it 

less negative i.e. using less of it and (ii) that I am assuming that efficient 

points exi~t in Y.) So suppose we write 

y(l) = (y2 ••• yn) 

so that y(l) is the activity y without the first component. Let the function 

F(.) from En-l to E1 be defined by 

A A 

F(y(l)) = m~x (y1 1<Y2 ••• yn) = y(l)) 

" So that F(y(l)) gives us the maximum value of y1 of any activities Y which 

"" A A A 

has y(l) = y(l). Then y1 = F(y(l)) is necessary if the activity y = 
is to be efficient in Y. I now introduce the following assumption. 

Assumption A • I • ,! • If y'(l) > y(l) thel,f(y1 (1)) < F(y(l)). 

Here is one interpretation of A.I.l: Suppose y(l) represents a vector of 

inputs so that y1 is quantity of output. The assumption says that using less 

of any input without using more of any other must reduce the maximum output 

attainable in Y, 

Given A.I.l one may characterise Y* by 

Y* = {y I yl = F(y(l))} 

or more succinctly as the set of y such that 

T(y) : y1 - F(y(l)) = 0 (2) 

where T(y) is a function on En. 

Compare (2) with the example in (1). There 

F(y(l)) = ( - Y )a( - Y )b 
2 3 

(3) 

D.I.4. If the firm produc~a single output, (e.g. good 1); then F(y(l)) is 

called the production function (p. f) 

Notice that p.f. picks out efficient points in Y and that it may be a 

good d~i=ll more complicated than in ( 3 ) • 
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Example I.4.(b) again 

In.'that example as we have drawn the diagram one has for efficient 

production 

0 for 
a21 2 a22 

x3 = > > --all y2 = al2 
(4) 

0 for 
a22 y3 a23 

xl = - > /y2 > -
a12 a13 

(5) 

So for the case (4) one solves 

= 

= 

for x
1

• x
2 

in terms of y 2 and y
3 

and in case (5) one solves 

= 

= 

But y
1 = x1 + x2 + x

3 
and so one finds 

(4) 
a2l)y2 + (all - al2)y3 

when 
alla22 - a12a21 

(5) 

F(y(l)) = 
a22)y2 + (al2 - al3)y3 

when 
al2a23 - al3a22 

Notice that A. Llis not satisfied for 

> 
Y3 a21 
- >-
Y~- all 

(why?), so that for that range the production function is not defined. 

I return to p. f. and (2) later. But before going on note 

a) By what was said in I.4. the set of efficient activities in Y are as 

'subject-ive'" as Y iTself; that is one thinks of the technological knowledge 

of the firm and not of what ij, in a economy, technologically known by someone. 

b) By I.l, goods include in their definition the date at which they are 

available. 
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6) Returns to Scale. 

~· Constant Returns to S~ prevail if when y e Y, ay e Y all a > 0 

(The production set is said to be a ~). 

Check the examples and show that with the exception of (cO they are 

all examples of (C.R) and that (c) is also~ provided a + b = 1. 

One is inclined to argue that C.R should be a property of every Y. 

For suppose a = 2 so that in ay all inputs are duplicated, should it not be 

the case that all outputs are duplicated? But suppose the output is spherical 

storeage volume. Then the output will increase in more than proportion to the 

input used to make the spherical container. Even so C.R has given rise to 

some controversy on this matter and it must be admitted straight away that 

this is an instance where we may be in difficulties with the definition of 

goods. Two identical twins working separately may not produce the same output, 

or may represent different goods, from their working together. Also you will 

notice that C.R implies that goods are finely divisible. For further discussion 

see A. Robinson: Structure of Competitive Industry. 

We may with the aid of a definition clarify C.R •. 

~: Y is additiye if when y andy' are in Y, y + y' e Y. 

Y is divisible if when y e Y, ky e Y all 0 < k ~ l. 

Theorem. X.l. If Y is divisible and additive then Y has C.R. 

Proof. One wants to show that if y e Y, ay £ Y all a> 0. Let k = a-n where 
n 

n is the largest integer not> a• Then ny = 'i.y and by additivity is in Y. 

ky e Y by divisibility so by additivity again ky + ny, = ay e Y. 

Example I.4.(b) 

This is the production cone 

for the example where the y1 - axis 

goes "into~~ the• paper. 

/ 

Pig. 6 • 

~---------------------------Y2 
D.I.7. Diminishing Returns to fcale. (D.R) prevail in Y if when·y e Y, and 

0 < a < l, ay e Y and ay is not efficient 

\L+ J 
~-------===='"""·~-
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output 

Fig. 7. 

The Fig. illustrates. In example I.4.(c), Y has D.R when a + b < 1. One of 

the 'explanations' often given for D.R is that higher output will be associated 

with increase organisational difficulties. But refer to lectures and 

Robinson. 

~· Increasing Return to Scale. (I.R) prevail in Y if for every efficient 

activity y E Y and 0 <a< l~ ay l Y. 

output 

Fig. 8. 

input 
The container case is an example of I.R. But there are many less artifical 

ones and many of them turn of indivisibility of Y. Suppose that inputs 

only come in inte~r quantities then one might have a picture as in Fig. 9 

output 

Fig. 9. 

input 3 2 1 0 

If one joined the_p_<?ints a, b, c, 0 one might have a picture like 

Fig. 7. Yet the 'inbetween 1 points are not attainable and there are I.R between 

Oc. Once again Robinson and lectures for further discussion. But note that 

as Fig. 9 hints, Y may be characterised by all three kinds of return. 

It will be useful to have a mathematical way of distinguishing the 

Y which ha~e C.R or D.R from those that have I.R 
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In Fig. 6 or 1 take any two members y and y' of Y. Join them by 

a straight line. Notice that every point on this line is a point in Y. But 

the equation of the straight line is given by 

ay + (1 - a)y' 0 < a < 1 
= == 

and this leads to the following definition 

Definition D.I.9. Any set, and in particular the production set Y, is 

said to be convex if when y and y' E Y then ay + (1 - a)y' e Y for any a 

with 0 < a < 1. 
= = 

An example of a non-convex 

set with members s. 
Fig. 10 

Theo~~ !.~. If Y is convex it cannot have I.R. 

Proof. Let y e Y. We know that 0 E Y. Hence for all 0<< a < 1, convexity -
of Y implies: ay + (1 - a)O = ay E Y and so Y does not have I.R. 

This simple result is rather important. Indeed we shall see that 

much of "traditional!! economic theory depends crucially on the suposition that 

Y is indeed convex, which is not well born out by the facts. 

Fig. 12 will help to elucidate the connection between the convexity of 

Y and the production function. 

Fig. 12 

input Y2 Y2 
So that for diminishing returns one has: 

a E (o, 1] 

Generalising: 

D.I.ll Let x E En and F(x) 

a) F(x) is said to be a concave function if for x # x'~ a E [o, 1] 

F(ax + (1- a)x') > aF(x) + (1- a)F(x') (6) 
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and x strictly concave function if for 0 < a < 1 the inequality in (6} is strict 

b) F(x) is said to be a convex function if - F(x) is concave. 

Now one can prove what we have expected all along 
3 ~~-,J~o>c. 

Theo/m T.~. If Y is convex and a productionrf(y(l)) can be defined on Y, 

then F(y(l)) is concave 

~· Let y and y' be two efficient points in F and write 

y = (F(y(l), y(l)), y' = (F(y'(l), y'(l)) 

By convexity y(a) = [a F(y(l)) + (1- a) F(y'(l)), ay(l) + (1- a)y'(l)] E Y. 

By the definition of F then 

F(ay(l) + (1 - a) y' (1)) > a F(y(l)) + (1 - a) F(y' (1)). 



Principles of Economics II 

The Actions of Firms. 

1) Prices: 

Take it that there is a unit of account, say bancors in terms of 

which pric.es can be reckoned. For the moment this unit of account is all 

entry into a ledger. Then write p. as the number of units of bancors one 
~ 

unit of i exchanges against. So p. is the price of good i in terms of bancors. 
~ 

Let p = (p .•• p ) be the vector of prices and let us only concern ourselves 
~ n 

with p E E!n, i.e."those p for which 

p > o. 

From I.l we know that p. can be the price of any object available 
~ 

at any place or time. For simplicity let us suppose that there is only one 
j{v{;J.-t/~~~Y~~ 

place at which all objects are available. t~e ,~~~i! '1'. denR!.: ~~~~~' 1· 

q. 
~ 

= 

p
1 

> 0 we can form new prices 

1 
(ql ••• q) = - p 

pl 

and q. will be the price of good i in terms of good one. So q. is the number 
~ ~ 

of units of good one we get for one unit of good i. When we chose to express 

prices in terms of a good which exists (rather than in terms of an abstract 

unit of account like bancors), we call this good the num~raire. Any good which 

has a positive price in terms of bancors can be chosen as num6raire. 

Notice that q gives the prices of all goods, i.e. including those 

available t~orrow or the day after etc. in terms of good one which is available 

today. So if x. represents a quantity of good i, the expression 
~ 

Eq.x. 
~ ~ 

is the value of a basket of goods: x = (x 
1 

x ) in terms of a currently 
n 

available good, (good one), and we think of it as a present value. That is it 

tells us how much of good one available today we could get for the basket x 

which has goods available at all sorts of times. (E.g. if good one is pound 

notes available today and p
1 

is the "bancor price" of pound notes, Eqixi 

tells us how many present pound notes we can obtain for the bundle x when prices 

are q). I return to some of these matters later. 



- 2 -

2). The Sim_Elest Market Environment. 

We know that Y describes the set of activities y which are technologically 

feasible for the firm. We now want to describe the market feasible set of 

activities, by which I mean the terms at which the market allows the transformation 

of one good into another. 
in 

Suppose that the firm has no bancors/its accounts and can get no gifts 

when the story starts. Suppose further that p is given and fixed. Then the 

market allows it to chose all activities y which have the property 

Ep.y. > 0 
~ ~ = 

Or when p
1 

> 0, we can write (1) as 

i:q .y. > 0 
~ ~ 

Notice that once we know p, we know all the activities y which are market 

feasible for the firm. In (1') q. is as usual the number of units of good 
~ 

one which must be given up for, (or are received for), one unit of good i. 

(1) 

(1' ) 

Notice also that (1') is a present value and in words can be put as follows: 

the amount of good one the firm receives from the sales of output in any day 

imust not be less than the amount of good one it spends in acquiring inputs at 

1any date. (Recall that inputs are taken as negative quantities.) 

In any event in this case p ful]y describes the market environment 

of the firm. When that is the case we shall say that the firm is a .erice taker. 

lFor the present I shall be investigating this simple case. 

To understand why it is a simple case, consider a firm which produces 

lone good (y
1 

> 0) with one input (y
2 

< 0). Suppose good one is cheese-cake in 

~Cambridge today and good 2 is labour in Cambridge today. Suppose further that 

~11 today's cheese-cake in Cambridge is produced by this firm. Then it would 

~surely be fanciful to suppose that the firm could exchange any amount of 

\?heese-cake at a fixed price. Indeed, 1-1e know enough to suspect that as the 

' 
~irm tries to sell more cheese-cake~ the bancor price of cheese-cake will have 

~o be lowered. In any case we may have 

= 
~o describe the dependance of p

1 
on y

1
• 

:~ 
~heese-cake bakers one may also have 
:0 
:c 

= g(y2) 

'I 
If the labour item~ is specialised 

~\~,; ""- -J 
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o describe the dependance of the price of labour on the amount of it used by 

the form. (1) now becomes 

and to describe the market environment one needs to know the functions f and g. 

But things may be even more complicated. Suppose there are just two 

cheese-cake firms in Cambridge today. The p
1 

may depend on the total output 

of the two firms so that any firm will not only have to know the form of this 

dependance but also the output of the other firm. And so it goes on. It is plain 

that the assumption that firms are price-takers is extremely suspect. 

If one thinks about these examples one will see that the price-taking 

assumption will probably serve best when there are "a very large number" of 

identical firms so that over the range which we are interested variations in 

the demand (supply) of any one good by any of the firms are negligible 

relatively to the total demand, (supply), of that good. This idea can be made 

precise. But I return to this whole question later. Here I simply assert 

that while price-takina is not likely to be a correct assumption it allows us 

to construct bench-marks which will prove useful. 

Before I leave the assumptio~for the moment, there is a more important 

difficulty I must draw to your attention. By our definition of goods, p will 

be a pretty large vector. It not only includes the price of bread today but 

also the price of bread tomorrow etc. etc. But in practice these prices are not 

If there were markets today for all goods e.g. for bread tomorrow~ 

this difficulty would not be decisive; but there are very few such future markets 

in the real world. In real life firms must form expectations of the terms at 

which goods available in the future can be exchanged; these terms are not given 

to them. Once again by shutting our eyes to this problem to begin with we shall 

get rather important insights int0why it is in fact of great importance. It 
as 

is/silly to think that the idealised, (and wrong), case of price taking can 

teach one no economics as it would be to suppose that the study of frictionless, 

(and so wrong), penduli can teach one no physics. 
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3). The Motives of the Firm. 

The firm is an abstraction which as such of course can have no 

motives; people have motives. In life, not only are there often many people 

involved in production decisions but these people may not coincide with those 

who are going to receive the profits. So there are really great difficulties 

in getting to grip with this problem and later I shall return to discuss it. 

At the moment let us think of a ruthless competitive struggle for 

survival which has been going on for a long time in a stationary environment. 

If certain relatively plausible assumptions are made one can show that the 

surviving firms will be those Hho have maximised profits. Of course I am 

continuing the assumption of section (2) above. In any case it is with reference 

to this Darwinian picture that the assumption which I am going to make has 

often been justified in the literatu:t'e. So when I assuoo that firms maximise 

profits I want to be understood as saying that those firms have survived which 

happened to have followed the strategy. (Read the first essay of Friedman's 

Essays in Positive Economics, but do not be entirely persuaded by it. Also 

Samuelson's Nobel-lecture in Vol. 3 of his 11Collected Scientific Papers" is 

interesting). 

Let me now be formal about this assumption. Let n be the profit of 

the firm. Then n depends on p and y. In particular 

n = '1f (p, y) = L:p .y. 
~ ~ 

Why? 

-Assumption II.l. A price taking firm choses y from Y so that n(p, y) is a 

maximum. Or equivalently if y* is chosen by the firm then y* solves 

max n (p, y): 
y 

A.II.l will now be employed for some time - but keep in mind that it needs to 

be scrutinised again. 

l.J.). Existence of a Maximum* 

The problem of A.II.l may not have a solution. For instance if A 

is a scalar and S = {A I 0 ~ A < 1} then max A does not exist. Why? Here 
s 

is a Theorem, (not proved here, it is due to Weierstrass and all calculus 

texts have it), which settles the problem. 

"' 
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Theorem II.l*: Let x be a vector, g(x) a continuous function on a given domain 

X of vectors x. (X is the set of x we can choose from). Then.g(x) has a 

maximum on X if X is closed and bounded . 

a) A set is closed if it contains it's limit points 

b) A set is bounded if there is a finite vector 'longer' than any member 

of X. 

In what follows let Y have the property that ~ (p, y) has a maximum 

on Y. 

5) Profit-Maximising Conditions. 

a) Necessary Conditions are those which are implied by the claim that 

y* solves the maximising problem. 

b) Sufficient conditions are those which if they hold at y* imply that y* 

solves the maximising problem. 

I shall discuss these conditions in turn. To be specific I take 

Y = {y I Y1 < f(-y2 , -y3), Y1 > O, yi < 0 i = 2, 3, f strictly convave} 

I shall also assume that f is differentiable. 

... A Simple Method. 

Suppose that y* solves the problem 

max; (p, y):: max [ Ep.y. J (a) 
~ ~ 

subject to (b) I. 

Theorem II.2. y* is efficient in Y if p > > 0 

Proof. If not there is y e Y, y > y* whence py > py* since p > > o. 

So if profits are maximised the firm must be producing efficiently and 

= 

So -~(p, y~·~) = 

f(-y~, -y~) 

+ 
l 
E 

i=2 
p.y~ 
~ ~ 

{2) 

(3) 

You may find it more convenient if I define the new vector z = (z
1 

$ z 2 ~ z
3

) as 

zl = Yp z. = -y. (i 3) ~ ~ = 2, 

and write (3) as 

- J 
~(p, z~':) - pl f(z~" z~':) - E p.z1'! - 1T'":i': (3') 2' 3 i=2 ~ ~ 

, 
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Now let dz. = (z.-z•!). We say if z~·, is our solution then for no 
~ 1. 1. 

z -J z~~ which is possible should 1T(p, z) > ·'· Now z. = z~ + dz. so for 1fd". 
~ ~ 1. 

z 'f z;': to be possible, I(c) tells us that we need 

z~: + dz. > 0 
1. 1. 

i = 2, 3 (4) 

Case 1. (Interior) Let z~ > o, i = 2~ 3. 
1. 

Then for dz = (dz2 ~ dz
3

) small enough, 

dz and - dz are possible and 

= '" E (p
1
f. - p . ) dz . 

• ~ 1. 1. 
1. 

(5) 

Definition II .1. f~ = 
1. 

af(z~, z~) 

az. is called the marginal produ~t of input i. 
1. 

Warning (a) I have assumed that f is differentiable. rvhen this is not 

true e.g. example I.4.(b), we must modify (5) and marginal products simpliciter 

do not exist. 

(b) More nonsense has been written on this concept than on most 

things. Don't make up your minds until you see what can and cannot be proved. 

If (5) > 0 plainly z* cannot be maximising. If (5) is negative then 

it will be > 0 for -dz and since that is feasible z* cannot be maximising. 

Hence if z~': is maximising 

(5) = 0 for all small dz when Z'~ > 0 i :: 
1. 2' 3 

Setting dz2 and dz3 in turn equal to zero in (5) = 0 gives 

plf1: - p. = 0 
1. 1. 

i=2,3, 

(6) 

(6') 

In words: If some of input i is used at maximum grofit then the value of itte 
""~4#JOI'Ui!;:~~ 

marginal product must e9.ual it$~111 pri~e. (/ •&s,~.:?) ~ 
('"U ,,¥,W1",;, '· ,.,.. ~ 
~~1 ~~- --· ~ 

Case 2 (Corner) Suppose z·2:~ = 0. Then from (!.J.) only variations in profit • ) 
~ & 57 

obtainable w·ith dz2 > 0 need concern us. But then even if p
1
f! - pi < 0 we 

cannot improve profits because dz
2 

< 0 is impossible. 

Combining the two cases we have 

Theorem II .-3. y•': (or z"') must be such that 

p1f•~ - p. ~ 0, (p
1

f1! - p.) z•~ = 0, 
1. 1. 1. 1. 1. 

i :: 2, 3 (7) 

Warning Do~ proceed until you can explain (7) to someone without mathematics. 
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Let us look at some implications of (7) 

a) Conditions (7) are necessary if z* solves the problem 

subject to 

~ 
min L: p.z. 

i=a. ~ ~ 

z~~ > 0 
~ 

i = 2, 3 

II 

'rhat is the cost of producing z~·: is as low as it can be. This should be 
1 

0 

obvious but I shall be pedantic and show it. Suppose z~~ z~ solves the problem 

II. and take z'~! > 0. Let dz. be Q. 11 small11 deviation satisfying 
~ ~ 

= dz~" = 0 
1 

(8) 

'~' 
Such a deviation must not enable the cost of producing y

1
* to fall below L:p .z .• 

~ ~ 

But when (7) holds p. = p f* (recall z* > > 0) and so 
~ 1 1 

"J~ 

p
1 

Lf. dz. 
~ ~ 

= 0 by (8) Ep. dz. = 
~ ~ 

and there is no dz. satisfying (8) which reduces the cost of producing the 
~ 

given output. 

= l:p • Z~' 
~ ~ 

i.e. the lowest cost of producing the profit 

maximising output. Note that this cost depends on the parameters of problem 

II: input prices and output. Let 

ac (p2 ,p3 ,zf) 
= 

Definition II.2. The change in the minimum cost of producing a given output 

for an infinitesimal change in the latter is called marginal cost 

So 

Now if z* > 0 z* > 0 
2 ' 3 

= 

= 

( ) l L:p. dz. 
~ ~ pl 

dz. 
~ r p. -d = 

~ zl 
(9) 

But if zy = 0~ z~ = z§ = 0 (see Notes I) and dz
1 

> 0 is the only possibility. 

Since now fi < pi/p1 we obtain 
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Corollary II.3. y~·, (or z)") must be such that 

P < c~" 
1 = z ' 1 

= 0 (10) 

In words: if profit maximising output is positive price = marginal cost and 

price can only be less than marginal cost if nothing is produced. 

c) Lastly note that when z~ > 0 i = 2, 3, (7) can be written as 
~ 

p 

nd also 

2 /f~" 
2 

= 

= 

p 
3 /f'~ 

3 
= = 

(11) 

efinition II.3 is called the marginal rate of substitution of input 

two for input three. 

Explain the terminology and condition (11) without mathematics. 

Sufficiency 

I start with an elementary mathematical result which will be proved 

Heal's lectures on Convexity. 

Let x € En be a vector, g(x) a concave function on En. 

g (x) - g(x*) < Ig~ (x. - x~) = ~ ~ ~ 

Here is a one dimensional intuitive demonstration 

f(x) 
g(x) 

x'j': X 

g(x) 

Fig. I\.1 

Here I take x € E•1 i.e. the set of non-negative values of x. It is obvious 
"" •1 f(x) > g(x) all x £ E.1~ • J 
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Now let us ask whether if (7) holds at y, (z), that then y must be 

profit maximising. ~iTe easily prove 

Theorem II.s. Iff(.) is concave, (Y is convex), then if (7) holds at z* then 

z~'c solves problem I. 

Proof. Suppose not. Let n* be profit at n profit at any z ¢ z*.z 

satisfies I(b) and I(c). Then 

= 

By (7) which holds at z~': 

P .(z. - z~) > p f~(z. - z*) i = 2. 3 
~ ~ ~ = 1 ~ ~ ~ ~ 

why? So 

~ 0 by Th. II.4 

So n - n* ~ 0 contradicting that z* does not maximise profits. 

Now notice the following Corrollary. Suppose (12) holds with 

equality (z~ > o, i = 2, 3): Suppose f(.) were convex for all 
~ 

z. = 
~ 

zi: 
i 

+ e: > 0 and small e:, 

(12) 

and (7) holds at z*. Then z* could not be a maximum. Prove that for yourself. 

One has 

Corollary II.S: If z* solv~s problem I then (7) must hold and f must be 

concave in the neighbourhood of z*. 

It is clear that (7) can only qualify as a sufficient condition if 

f( ) is concave everywhere. Indeed if f( ) were convex everywhere i.e. if 

there were increasing returns everywhere in Y, the profit maximising theory 

of a price taker would be meaningl,ess. Why? I return to this later. 

Sometimes one assumes 

f( ) concave if and only if z 2 > a > 0~ z
3 

> b > 0 

Then if (7) holds for z~ ~a, z~ > b, (7) will be sufficient for a maximum. 

Prove that. 
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One can get a little more insight into sufficiency by commonsense. 

In Fig. II.2 I have plotted p1f~ as a function of z2 where z
3 

is held constant 

Fig. II.2 

If the curve f~p1 looked like the broken curve, (z~, z§) could not be a point 

of maximum profit. Why? So one has at once that sufficiency requires 

£~': = 
ii 

< 0 

i.e. the marginal product of every input must be non-increasing as we have 

more of it. 

This can be generalised by the use of Th. II.4. Take x and g(x) 

as defined there. By Taylorfs theorem, for llx - x~': II "small" enough 

g(x) g(x*) Eg~~(x. x:n 1 
E E g1; (x. - = - +2T ij x~)(x. - x~) + 0 (e) 

~ ~ ~ 
j i ~ ~ J J 

(g ~'; = a 2~(x*) ) 
ij ax.ax. 

~ J 

So using this and Th. II.4 on has 

C 1 II 4 If ( ) · f · En h ' n oro lary • • g x ~s a concave unct ~on on t en at all x:: e E 

E E g~.(x. - x~)(x. - x*) < 0 
i j ~] ~ ~ J J 

(If you don't know Taylor's expansion yet ignore this until you do). 

It is now clear that f( ) concave, gives f*. < o. 
~~ = 

for j ¢ 2 in (13). 

7) Profit and Cost Functions 

(set z. = z1: 
J J 

(13) 

I have shown some of the main features of maximising pvofits in a 

simple context. The next section is more general. But first I want to 

discuss the positive content, i.e. the falsifiable propositions, which are 

implied by the theory. For this profit functions (and cost functions) are 

very useful. 
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~(p) is called the profit function where 

~(p) = sup { Ep .y. I y e Y } • 
~ ~ 

the 'highbrow' sup." The assumptions ~Jhich I use allow us 

C(p, y
1

) is called the cost function where 

C(p, yl) = inf {-(p2y2 + P3Y3) I (yl, Y2:f3) e: y }. 

Interpreias min • ) } 

So ~(p) gives the profits of a price taking firm maximising at p 

y
1

) gives the costs of this firm when it is producing y
1

• 

Left to you. 

Th. II .6 says: "~(p) is homogeneous of deg:;:ee one in p" 

n g(x), x e: E is homogeneous of degree r in x when 

r k g(x) = g(kx), k > o. 

II.6 becomes interesting when we see what it predicts about the actions 

the firm. 

II 6: 
~: 
1~re 
' 't'! 

~· c', 

:# 
\>' 
\{i 

nark. 
' l!, 
/ '</ 

:~r y. 

Let us define 

The set y(p) is called the supply set, (correspondence) of the firm 

(a) A member of y(p) is an activity in Y which maximises profits at p 

The terminology 'supply set' is a little confusing since -y
2 

for 

~tance is the demand for input z. But think about it and do not let it 
'It' 
~fuse you. 

(b) If for all p, y(p) has only one member we shall call it the supply 

With this out of the way we can prove 
,;? 

~~~' 
~l'ollary II .6. : For all p and k > 0 

y(p) = y(kp) 

equalities between sets this means 

y(p) c y(kp) and y(kp) c: y(p). 

, every y e:y(p) is also a member of y(kp) and 'i-cte versa]. 
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Suppose not 1 so that there is a vectorp y 

y £ y(p), y t. y(kp) 

by the definitions there is y' £ y(kp) with 

E p.k y. < Ep. k y! 
~ ~ ~ ~ 

both sides by k shows y t y(p), a contradiction. 

(a) The prediction is: if all prices are different in the same -
,.,.,"'"""''"~-ion the firm will not find any activity which is preferable to the 

erred activities at the old price. 

(b) If y(p) is a function we make the stronger statement that the 

will chose to do the same thing 

(c) If y(p) is a function, 

at p and kp. 

1 set k = - , p1 > 0 and note 
pl 

y(p) = y(kp) = y(q) 

notice that the supply of the firm depends only in relative prices (see 

(y(p) is homogeneous of degpee zero in p) 

Let us see whether we can state more precisely the circumstances in 

is a function, i.e. contains only one member. Here is the relevent 

Suppose y(p) has two distinct members~ y and y'. Then by the definition 

= E p.y! 
~ ~ 

the definition of strict convexity to two things are true: 

a) y(ct) = o.y + (1 - o.)y' £ Y o.e[O,lJ 

b) There exists y" > y(a) with y" £ Y 

then since E p.y.(a) = Ep.y. = E p.y!$ Ep.y.(o.) > Ep.y. etc 
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

So diminishing returns ensure that y(p) is a function. Since the 

•rex~~nle we are working with has f(.) strictly concave we may indeed treat y(p) 

s a function. 
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Next let us see how y(p) and ~(p) are related. This~ very useful 

ionship is summed up in 

Let ~. (p) 
~ 

a~<p) 
ap. 

~ 

-

Then 

i = 1,.~,,3 

Notice that ~(p) = max ~(p, y) = ~ (p, y(p)) and that by the 

conditions of a maximum 

a~<P > = 
ap. 

~ 

~. (p) 
~ 

= 

-
a~(p, y(p)) 

ayi 

-
a~(p,y(Q)) + 

ap. 
~ 

= 0 

t.: a~(p, y(p)) dyi = 
ay i dpi 

= a~ (p ~ Y ( P ) ) = Y • < P ) 
ap. ~ 

~ 

as we shall see is a useful result for it implies 

2 a ~(p) ay. 
~ /ap. 

~ 2 
(api) 

= ~ .. (p) 
~~ 

= 

we know something about the sign of~ ..• 
~~ 

by (15) 

(14) 

(15) 

Mathematicians may wonder whether we are justified in assuming ~ 

be twice differentiable. The Theorem which follows can be shown to imply 

t indaed we are justified "almost everywhere". 

~(p) is a convex function of p • 

• Let p f: p'; p(a) = ap + (1 - a)p'. 

want to prove 

~(p(a)) < a ~(p) + (1- a) ~(p') 

~(p): Ep.y.(p) > Ep.y.(p(a)) 
~ ~ = ~ ~ 

(a) 

(16) 
~ ( p ' ) : Ep ~ y . ( p ' ) > Ep ! y . ( p (a ) ) ( b ) 

~ ~ = ~ ~ 

Add a 16(a) to (1 - a) 16(b): 

a ~(p) + (1- a) ~(p') > I:p . (a ) y . ( p (a) - ~ ( p (a) ) • 
~ ~ 
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i 
E (p!- p.)(y!(p')- y.(p)) > 0 

~ ~ ~ ~ 
(17) 

E E 1T • • (p )(p! - p. )(p! - p. ) > 0 
~J ~ ~ J J = i j 

(18) 

In 16(a) set a = 0 so p(a) = p', in 16(b)~t a = 1 so p(a) = p. 

do ~ proceed until yo~~~:_. done :~.::=__~-t~"'"the inequalities are 

Subtract the right hand side of each inequality from both sides 

add the two resulting inequalities to obtain (17). 

By taking p' close enough to p one has 

proves (18). 

y!(p')- y.(p) = E TI .. (p! -
~ ~ j ~J J 

Compare (18) with Cor. II.4. 
ayl (p) 

(a) 1r
11 

(p) > 0 so > 
apl 

p.) 
J 

by (15) 

0 and the profit maximising 

non-decreasinz function of it•s price. 

(b) 1T •• (p) > 0 so 
~~ = 

ay. (p) 
~ 

ap. 
~ 

> 0 
= Since y. < 0, 

~= 

of input used is a ?on-increasin5 function of it~s price. 

What is the economics of all this? In Fig. II.3 I have drawn TI(p) 

a function of p1 when p2 and p
3 

are fixed 

1T 

/ 
1T {p) 

/ 

/ 

Fig. II.3 

TI(pl' p2 , p3 ). It'~Ps slope 1r
1

Cp
1

, p
2

, p
3

) = y
1

(p
1

, p
2

, p
3

). When the 

taken at p1 > p1 the firm has the choice of staying where it was at 

If it did that n(p1 , p2 , p3 )- TI(p
1

, P2 $ P
3

) = Y
1

(p
1

, P
2

, P
3

)(p
1

- pl) = 

the profit curve would be given by the broken line i.e. the tangent to 

, p2, p3 ). If the firm can do better than that profits will increase by 

e (fall by less), than indicated by the broken line. In any case TI(p) 

Do ~ proceed until you can explain this result to a 

hematical economist of modest intelligence. 
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As a matter of fact Cor. II.9' can be strengthened when f(.) is 

concave and y (p) is a function. 
p. 

Let q. = ~/p and write (7) as 
~ 

q. 
~ 

= i=2, 3 (19) 

-yi (q). Consider a small change in q of dq. Then since (19) must 

+ dq we get 

dq. = E f .. dz. i = 2 ~ 3 (20) 
~ j=z ~J J 

af. (z 
l. = 

(q), z3(q)) 

az. 
J 

is plain dz
2 = = 0 is not a solution of {20). So if in 16 (a ) 

(b), p(a) is not proportional to p or p' i.e. if p(a) represents different 

we can assert: 

y(p) f; y(p(a)) 

if the inequality in 16(a) is not strict then by the argument of the 

Th. II.7 we have a contradiction since Y is strictly convex. So the 

One has 

II. 9 1 ' (a) If Y strictly convex and p f; kp', k > 0 then 

E 1T • • (p )(p ~ - p. )(p ~ - p. ) > 0 
ij 1] 1 1 J J 

(b) The profit max1~ising output is an increasing function 

the profit maximising input a C!_ecreasing function of it~s price. 

Notice now that these are Eredictipns and they can be falsified. In 

one might be tempted to argue that whenever the output of a firm is 

the price of the output is larger. This would be falsified: think of 

firm. The trouble may be that there are increasing returns. But there 

troubles: we take Y as given. But it may change not only through 

, (we have agreed to ignore~ for the moment), but with p. Why? Because 

I have argued Y is not as objective as all that and at different p the firm 

have cause to consult the existing book of blue prints more closely. On 

other hand there may be many firms$ (say dairy farmers), for whom our 



- 16 -

I now turn to Cost functions. I leave it to you to prove 

Cost functions are concave in p. 

Hint: use Th. II.9 and notice definition of convex functjDns and of 

When f(.) is strictly concave marginal costs are increasing 

We know that: pl = ~ c~. 

and 
() ~~~~j ()y 1 (p) - p = 1 = ~ l.!li)l ()p ()pl 1 

1 

by Cor. II.9' 1 : 

ayl (p) 
> 0 

()pl 
so 

I shall be using Cost functions a good deal later in these lectures. 

completeness I want to lay out a number of fairly simple results. 

C(p, y
1

) is called the average cost function. 

If Y has constant returns to scale 

k > 0 

cost depends only on p and not on y
1 

By C .R: y e Y'implies ky e Y, k > o. Let k = and let 

3. Then 

(l; -al2' -al3) e y 

2, 3) has been chose to minimise the cost of producing one 

of output. Then E a1iyl must minimise the cost of y 
1 

units. O.Jhy? ). 

Lastly let us consider a matter which, as we shall see, will be of 

interest to us. 

Let 

( ) . 1 ~ c p, y
1 

= m~n- l..p.z. 
y yl ~ ~ 

az. 
~ 

= 0 i = 2, 3 

let us suppose that for some reason or another the firm must use z~·, of 
3 

or better that the firm must maximise profits under the additional 

z':i':. 
3 = (21) 
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to lectures for an economic basis to this problem). Let 

-
c(p, zg, yl) 

average cost when (21) is a constraint. Then we notice 

At p (when z* would be chosen so (21) is not a constraint) 
3 

b) At p 1 f. kp, 

c) At p 

follows from 

-c(p, zg, y
1

) = 

-
c(p', z* y) > c(p', y

1
*) Why? 3 l 

ac(p, Yf) 

ayl = 
-

ac(p, 

+ c:.l [ -Y\1., Yi 

(22) 

the last term is zero whence variations in z~·, play no role in evaluating 

der>ivative. The picture is in Fig. II.lf 

-C(p,z;, y
1

) 
r C(p, y

1
) 

p 

Fig. n.t. 

An example. 

a b 
Let f(z2 , z3 ) = z2 z3 ; a + b = 1- c, a > o, b > J, c > o. 

(7) with p > > 0 

f~': = 
yl 

= pl D -a p2 2 ~ l z 
2 

f~·, 
yl 

pl = p -b ::: p3 3 1 z3 

these for z2, z3 in terms of y
1 

and parameters and substitute in 

a b 
z2 z3 to get 

= 

(23) 

(24) 

dz. 
~ -dyl 



Or solving for y
1 

= 

And (2~) i~ our equation for y
1 

(p). 

Also 

'!T(p) = 
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Find y. (p) 
~ 

i = 2, 3. 

= p
1
(25)- (a+ b) p

1 
(25) 

(25) 

= 

(26) 

And that is the profit function. 

pl (25) c 

Check '!T(p) etc. Find the Cost function. 

9) • A Fundamental Theorem. 

n Let x e E be a vector, gi (x), i = o1, • • ,m, (m + 1) functions 
n on E • We are given the problem 

Suppose ll 

max g (x) 
0 

subject to g.(x) > 0 
~ = 

= (}.11 , ••• ) ll) an<t m-vector ~ m 

i = 1, .... , m 

u = { }.1 1 }.1 > o l 

(a) 
III 

(b) 

and consider the following related problem: Find ll e u, x satisfying III(b) so 

that the function v(x, }.1) given by 

v(x, }.1) = g {x) + E }.l.g.(x) 
0 • ~ ~ 

~ 

is maximised with respect to x and minimised with respect to ll· Formally 

Find x1~ with gi (x~·,) > 0 i = 1_,.. •J m and }.11: £ U so that all x with 

gi(x) _:: O, v(x, }.1) < v(x~·,, ll1') .::_ v(x1'~ Jl), all 11 £ U 

We show that the x~~ solving problem IV solves problem III. 

From the right hand inequality of IV 

g (x*) + L"~g.(x*) < g (x*) + E}.l.g.(x*) all ll £ U. 
0 ~~ l = 0 l ~ 

IV 

Suppose E}.l~g.(x*) > o. Then ll = kll* £ U with k < 1 and E}.l.g.(x*) < E}.l~g.(x*), 
l ~ l l l l 

contradicting the required inequality. But by definition E}.l~g.(x*) > 0 whence 
l l 

But by III(b) and ll* £ u,(27) gives 

g . ( x~'t ) > 0 , ll . g . ( x1: ) = 0 all i = 1 • • m 
l = l ~ 

(27) 

(28) 
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Now look at the left hand inequality of IV • By (27) 

But E ll~g.(x) > 0 and so 
~~ -

g (x) + L: ll1:g.(x) < g (xi') 
0 ~ ~ = 0 

We have proved the following result: If x~~ solves problem IV then 

it solves problem III. We have .!l2!, proved the reverse namely that if x~~ solves 

III that there exists ll* so that (x*, ll*) solve IV. For that we need more 

assumptions and more mathematics. In the theorem which follows I make the 

assumptiombut I will not prove the necessary part. 

Theorem (Kuhn-Tucker). Let x t: En, gi (x), i = 0, •• •; m be (m + 1) 

n concave functions from E to the reals. Let 

and assume that G has an interior pPint (i.e. there is x' t: G; g.(x') > 0 
~ 

i = 1 ;•. "J m.) Then a necessary and sufficient condition for xi' to solve the 

problem max g0 (x) with x t: G is that there exist ll* t: E!m, (i.e. ll~> O), such 

that x*$ ll* solves 
mx T:lin ["g (x) + L: ll.g.(x)J. +m o ~ ~ Xt:G llt:E+ 

The full proof, serious mathematical economists will get at some stage of 

their lectures. At the moment, provided you lave checked on concavity$ use 

it like a cookimg-recipe. 

Here is how one does it. Take problem I. Then let z = -y and 

g. (z) 
~ 

= 

= > 0 

Check that they are concave. Also 

g (z) 
0 

x1' must maximise 

= 

g (z) + 
0 

L: ll~~ g. (z) 
~ ~ 

{29) 

since we have assumed differentiability and we now have an unconstrained problem 

we must at the solution z* have 

(i) av(z1' 2 lli') 
az. 

~ 

= 0 (30) 
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This gives 

... + ll* = 0 p.l - ll" .l 2 (a) 

or 

-p. + ll~': f'lt + ... = 0 
~ .l 2 lli+l (b) i = 2, 3 

(ii) If zy = 0 then one may have J.l~ > 0 by (28) whence 

(iii) If z~·, = 0 certainly z:·: = 0 
1 i 

< 0' (pl - ll*) z~~ 
1 1 = 0 

i = 2, 3 and ll1+l > 0 is possible. 

(30') 

(31) 

On 

the other hand since p. > 0 our assumption ensure z~ > 0 implies z* > o. 
~ ~ 1 

So using (31 ), (30~(b) gives 

which is (7) 

zi: = 0 
~ 

(iv) It is plain that one has llf = marginal cost when 

i = 2' 3 (32) 

o. But there is 

an instructive way examining the measuring of J.l* (and J.l~ generally). 
1 ~ 

Let us notice that we have taken what is produced of good one as 

" equal to sales. But let us now distinguish sales written z
1

, from production 
A A 

z1 • Let us write z = (z
1

, z
2

, z
3

) and modify 

" = f(z 2 , z
3

) +a - z
1 

> 0 

where a may be interpreted as the amount of good 1 the firm has before 

production starts. Above we took a = 0 and when that is done the problem is 

as before. Also 

= 
A 

A 

z - a 
1 

Now consider max v(z, J.l*). This maximum value, i.e. the maximum profits 

z 
attainable will depend on the parameters p and a so we WFite 

A A 

V(p, a) = max v(z, J.l*) = v(z*, ll*, a) 

Consider 

av(p, a) 

a a = r 2.:::.. 
A 

az~~ 
~ 

z 

dz. 
~ -da 

By (30) all the terms under the first 
ov A 

o]..l1: = 0 certainly if g.(z*) = 0. 
~ 

~ 

zero for small p~turbations. Hence 

d ·'· ov lJ .... 

lY. l. + r a;)~ - + da a a 
~ 

surmnation sign are zero. 
A 

If g. (z~'') > 0 then l.l~~ = 
~ ~ 

the terms under the second 

(33) 

Next by (28) 

0 and remain 

summation sign 
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are zero. But you calculate when z~'1~ = 
1 

av 
a a 

= Jl~: 
1 

and so from (33) ll! measures the increase in the maximum profit made possible 

by a small increase in a. If I offered the firm a little of good 1 at it~s 

maximum profi·t position then ]..If would be the maximum price it tvould be willing 

to pay for it. One calls llf the shadow price of good one - "shadow" because 

it is not a quoted price. Since z* > 0 the firm will not be willing to buy 
1 

a little more of good one at a price is excess of marginal cost. Notice that 
A 

z1 - a = 0 may allow ]..!~ > 0 as 

:: 

Warning~ The Method of this section is important but it takes some time to 

understand. It will come with practice. Try the following problem: Take 

p > > 0 and 

y = i = 2, 3, a + b = 1 - c 

c > o, a > o, b > 0 } 

Profits are to be maximised on Y and the following further constraints: 

y.+k.>O i=2,3, k.>O 
~ ~ = ~ 

Interpret the Jl~!'s of your problem. Do not say: "I will not do it I already 
~ 

understand it all" for your are almost certainly wrong. 
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Principles of Economics III 

The Firm (Continued) 

1) Tidying Up 

In this section I want to take up a number of l~se ends of II, 

before returning to the main story. 

(a) Constant RetUr>ns to Scale.; For much of II I assumed that there were 

diminishing retUr>ns to scale (P.fl strictly concave} This, amongst other 
-·· ,7' 

things, had the advantage that (i) we could deal with supply functions 

(see II ) and (ii) that it was not difficult to suppose that a maximum 

existed. 

-Now if Y has constant retUr>ns to scale and 'IT(p, y) > 0 some y € Y5 

then it is easy to see that a maximum profit choice will not exist unless we 

do something about it. For E p.y. > 0 and constant retUr>ns give E p.y. < 
~ ~ ~ ~ 

E p.y.k, all k > 1 and ky € Y all k > 1, by assumption and so profits can 
~ ~ 

be indefinitely increased. On the other hand if a maximum profit choice 

exists then 

'IT(p) = 0 III.l 

This follows from the fact that 'IT(p) > 0 we have already seen to be impossible 

and 'IT (p) < 0 is also impossible since it can be improved upon by cht::l~Sing 

y = 0 € Y. We thus have the following. 

Th. Ili.l. If Y is a cone (C .R. s.) then either at p > 0 no profit maximising 

choice exists or 'IT(p) = 0. 

Th.lli.2. If Y is a cone and 'IT(p) = 0 then y(p) is a convex set and except 

for y(p) = 0, y(p) is not a function. -
Proof. Let y(p) ¢ O, E p.y.(p) = O. 

~ ~ 

andy' € Y. Convexity is obvious. 

Since C.R.s., E p.y! = o, y' = ky(p) 
~ ~ 

Now you know that unbounded y is silly for two reasons. Reason 

one is that as a firm choses larger and larger y we will not be able to 

continue to suppose that it is a price taker. Reason two is that some of 

the inputs, say labour.-servicesor land are available in finite quantities in 

any economy. 

So what we do is this: we cook the story by arbitrarily chasing 

a large number K > 0 and assuming that the firm in fact faces a fictional 

production set Y* where 

y-lt = { y I y € y' II y II < K } 
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The argument is that if one considers an economy with these fictional 

production sets one will not go far wrong since the world will see to it 

that prices are in fact established such that no-one could make unbounded 

profits. I return to this much later in these lectures. 

In Fig. III.l I illustrate the argument by a simple example. 

Let y = { y I y 1 < -ay 2 ' a > 0 ' y 1 > 0 ' y 2 < 0 } • 

or I r 2 2"1" ~ K l Y* = { y y £ Y and 't y 1 + y 2 "~ < 

p 

Fig. III.l 

(i) Look first at the (y
1

, y 2 ) quadrant. The production set is every point 

on or below the line OA. Only points on the line are efficient (why?) 

The length K of the line is by a well known Greek Theorem equal 2 2 to yl + y2. 

Rotating the line towards the y2 
axis traces out part of a circle and any 

point on this circle is a vector of length K. Hence Y* consists of the 

cloud, set OBC. 
·~:.. 

(ii) In the right hand quadrant I measure prices, i.e. p
1 

and p
2 

on each 

of the ax!s. Consider the ~e<itor oP at right angles to OB. It is known 

(see Heal~~ lectures) that the product of two vectors which are at right 

angles to each other is zero. I.e. OB x Op = p
1

y1 + p 2y2 = 0. It is obvious 

that the length of either of these vectors is of no consequence. (I.e. the 

result does not depend on p1 , p2 but on the ratio of these prices. This 

sounds I hope f~miliar; see II. Also kOB x Op = 0 for k < 1). So at 

-.. A 
the relative prices implied by p the producers maximum profit will be the 

same which ever -point on OB (including the end point), he choses. Hence 

y(p) is a correspondence. 
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But Op'' makes an acute angle with OB so OB x Op 11 > 0 and the 

producer will chose the point B - a corner solution on yi~. Why? Also 

OB x Op' < 0 and the producer will close the point o. 

So let us write y1 (p) 
pl 

= y ( -- ) = y1 (q) and plot it in Fig. III.2 
1 p2 

yl (p) 

Fig. IIl.2 

you can interpret it yourselves. 

Lastly recall that the average cost function under constant returns 

to scale can be written as c(p), p = p1 •••• Pn· (See II ). So far a 

single product firm (y
1 

> 0), (yi < 0 i > 1), we can put what we have 

learned quite generally: 

yl (p) is a set for all p such that p
1 

= c(p) 

yl (p) is zero for all p such that p
1 

< c(p) 

yl (p) is at itf• max in the fictional set for pl > c(p) 

(b) Marginal Products again. 

In II we noted that if f( ) is not differ•entiable then one will 

not have an obvious measuring to marginal product. 

Consider again the production function of I.4(b) given on page 9 

of I. Let us see what we can say about Here we go: 

= 

= 

a22 - a21 

alla22- a12a21 

al2a23 - 4:!_34.22 

a22 
B say, when­

a12 

aF -ay2 
So in these ranges is well defined. But suppose 

= 

III.l 

III.2 
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Then using a little more of input two bring us in to range III.l. So we have 

to distinguish between left and right hand derivatives i.e. 

= B, ( -
ar )-
ay2 

= A. 

So what about our maximising conditions? 
I -

Suppose -~ < p1 ~· The plainly profits can be increased by having 

more of input two so at an equlibrium 

< III.3 

""~":1.'-jC'W. $ 
By an ynsJ,ogo.as argument 

'-~·~"""'=-"""-==="''""'"""""""""' 

> III.4 

And so the equilibrium condition is 

> > III.5 

which has a perfectly good commonsense interpretation, hasn't it? 

Now, condition III.5 is not~ powerful as are the usual ones. After 

all, if for instance~ having a little more of input two does not allow you 

to produce any more at all, (because say inputs two and three must be used in 

fiscal proportions), then the right hand side of III.5 is zero and that does 

not tell us very much. 

There are economists who believe that the world looks more like 

III.5 with very wide limits than it does like II.8. But although this is 

an empirical matter much that is said on this matter is muddled with quite 

different problems such as whether there is any meaningful way in which inputs, 

or a subset of inputs, can be aggregated. There is also a "short and long 

run" distinction to be considered. Since I come to these matters later I 

postpone a full discussion until then. 

But notice that care must be taken with these arguments. Consider 

r~;: a double-decker bus manned by a driver and a conductor. It is possible to 

!i dispense with the conductor (and have the driver collect the money):. or 

to have two conductors one upstairs and one downstairs. The bounds of 

III.5 may not be too far apart. But you do need a driver and without him 

output is zero. But now consider the firm which is deciding for the first 
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time how to produce and it can chose not only it's labour inputs but also 

whether to have a single decker or double decker bus. Then the story will 

be different and having one driver fewer• (in the glans)will still allow 

positive output provided the equilibrium number of drivers exceeds one. 

So you see at once that the problem will be different for a firm which is 

already committed than for one which is not. I shall return to this. 

2) Back to Square One 

In this section I want to discuss problems which arise from our 

treatment of Y. In the next section I consider problems which arise from 

our assumption of price taking and absence of increasing Returns. 

(a) The Future 

I started this story by saying that Y is at any time rather 

subjective - it gives the production possibilities known to the firm and 

not the production possibilities known in general. When technical knowledge 

is stationary we would expect diffusion of knowledge and sooner or later 

we might expect the actual and known production possibilities to coincide. 

But technical knowledge is not stationary and so we better be explicit and 

write Y f as the production set known to firm f, and for good measure let 

us put in at to indicate that it is the production set off as viewed from t. 

But now we have a problem. Recall that Y f(t) will refer to 

goods at different dates and in particular at dates after t. Certainly any 

technique known to f at t will presumably also be known to it at t + 1, 

(the firm has a memory), and so 

Yf(t)t;;Yf(t + 1) 

But if the firm learns something new about production (because either 

something new has been invented or because it becomes acquainted with some 

existing knowledge), it will~ be true that Yf(t) = Yf(t + 1). But 

the firm does E2! know at t what it will learn with certainty, for if it 

did it would have nothing to learn. So the plot thickens. When that happens 

the worse thing to do is to relax precision in concepts and to go off into 

after-dinner conversation. 
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Consider, for concreteness the following examples 

Example A. There are only two time periods (the argument could proceed 

equally well if there were T such periods). For concreteness also I now 

label a good by two indices (i, t ). Here i gives the physical characteristic 

of the good~ t it~• date. Suppose i = 1, 2t t = 1, 2, so when y(l) e Yf(l) 

one has 

and this is a plan known by f to be feasible at 1. But now suppose that 

-+ y(l) e: Yt(l) + (y11 (1)~ y21 (1), 0, 0) and (0 5 o, y12 (1), y22 (1)) e: Yf(l) 

~ Yf(l) is additive.ln commonsense terms this means that the plan can be 

split into two independant plans for t = 1 and t = 2. But then the firm 

which is uncertain about Yf(2) will do best to make no plans for t = 2 at 

all and simply wait and see what the future brings. That is the firm will 

maximise 

and then 

So: if the present value of profits is maximised by maximising the 

profits of each period separately i.e. if profits in period,t are 

independant of actions in period t - 1, then ignorance about future 

technology would cause no new problems. Here is the reason why this 

avenue of excape is unlikely to be very wide. 

(b) Durable Inputs. Suppose that in our example input 2 is durable 

in the sense that when it is used in period one some of it is left over 

for pe:r>iod two. Formally, we now have a new good, units of "second hand" 

or used input 2. This can be thought of as an output of the firm in period 

one. If there were a market for this good with prices known in period one 

nothing new would be added to our analysis. For in maximising first period 

profits the receipts from selling used units of input 2 would be included. 

When period two arrives the firm still has the choice of whether to sell 

or keep it. 
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But markets in second hand goods are very thin and especially is 

that true for inputs, which in my case may not be divisible~ In general 

firms probably do not even attempt to calculate the price of such second 

hand inputs and act as if they had no market at all. But then the firm 

must certainly consider that it~p first period plan will ~...:..it with 
J>·JtL·\,. 

second hand inputs which may not be well ~~ to the best plans 

available when period two technology is known. 

So in real situations a firm will be uncertain (a) about future 

technology, and (b) future prices. In general this uncertainty will 

matter because decisions taken today will have consequences for tomorrow 

and the day after. There are various formal theories available to discuss 

the actions of the firm. For instance one of these says that the firm 

considers all possible future situations, attaches probabilities to their 

~urence and maximises the actuarial, (expected), present value of profits. 

i t This yields answers but is open to the crucial objection that it requires 

~ enormous computational effort on the part of the firm. Alternative 

approaches note that when rational decisions are difficult social routines, 

"rules of thumb" grow up. Various of such rules have been suggested but 

none of them are very c6nvincing. Lastly there are theories which 

compromise between these two extremes. If the truth be told: we do not 

really know the answer. 

The question, as usual then arises, how badly wrong we shall be 

by abstracting from some of these complications. Consider (a) that the 

stock of knowledge is large relatively to new accretions and that we need 

not think of production sets as chan~ing drastically or unforseeably all 

the time) (b) while there is some fluctuation in most prices they too are 

not usually very violent or.terribly unpredictable. So one might certainly 

argue that a theory which abstracts from the difficulties which we have 

been conside~ing may not do terribly badly in 'normal' times (though it 

is bound to be wrong). On the other hand in times of crises and turbulence, 

(perhaps the U.K. in 1972?}1 a mechanical use of the abstracted theory 

is likely to lead us badly astray. (There will be more discussion in 

lectures and I return to these matters much later). 
I 
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Let us consider a slightly different example to bring out the 

next important point. 

are scalars) and z
1 

(l) > 0 and z
1 

(2) > 0 input of type one in period one 

and two. Assume that it takes one period to obtain input of type two which 

is not durable. So when the story starts the firm cannot use more of that 

input than it has available as a result of past decisions. So let us 

write b2(t) as the amount of input two bought in period (t) but which will 

not be available until t + l. Let z
2
(t) > 0 be the amount of input two 

used in production at t. Then the firm will be constrained by: 

Z/l) < b
2

(0) 

z
2

(2) < b
2
(l) 

(a) 

(b) III.6 

The firms' profits are, when superscript e denotes "expected and discounted" 

e p y(l) + p y(2) 

where p = price of output~ q. = price of input i. Notice that at t = l 
~ 

the firm can do nothing about what it bought at t = 0$: "bygones are 

forever bygones". Now suppose 

y(t) = ·t = l, 2 III. 8 

III. 7 

is the production function. Notice that it is assumed to have the property 

discussed in example A. 

It is now straightforward to apply the usual method to the problem: 

max III.7 subject to III.6 and III.8 

I leave details to you. But notice that we maximise 

'IT + l: A (t) [b2(t-l) - z2(t)] + E JJ (t) !Hz
1 
(t), z

2
(t))- y(t)J + 

t=l t=l 

where 'IT = III.? and I have 

Notice that even if prices are not expected to change,output in the 

two periods may be different. In fact if prices had been constant for a 

long time in the past and are now different at t = l, it will in general 

take the firm two periods to adjust to the new situation. Here the past 
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is important in understanding the present. For the past (decisions) will 

constrain what the firm can do currently. This leads to the following 

definition which I leave to you to generalise beyond the confines of this 

example. 

Definition III.l. The action taken by the firm in period one is called 

a short period action if A(l) ~ q2(1). Otherwise call it a long period 

action. 

The idea is I hope obvious in light of what we learned in II. 

If say A(l) > q2(1), the pr•ice the firm would be willing to pay for an 

extra unit of input two in period one exceeds the market price. But 

the firm is stuck with the decisions which it took in the past. The 

distinction between short and long period actions is of great practical 

importance; I discuss it more fully in lectures. 

Example c.· 

'ft>ansport services are provided by buses. Once you have chosen 

the type of bus you know how many drivers you need. If it takes time to 

change the type of bus then for some time you are stuck with these 

proportions whatever relative prices of bus services and drivers. But 

you say: in due course I will switch to double deckers. That is what 

you are doing now is !hert period. 

It is the case that the analytical, conceptual and empirical 

problems posed by placing an economic agent in real time are (a) great 

(b) good to work on. But do not despair of sense. The exercise we do 

when we abstract from these matters often help us to say what is not true 

without telling us what is true. Also some progress has been made which 

serious students will learn at a later stage. On the other hand enough 

has been said to show how silly it would be to use say the tricks of 

lecture II mechanically. Don't do it! 

Price taking and Increasing Returns 

We know that to assume price taking and increasing returns at optimum 

Is 
output levels.~ inconsistent. It is plain that we observe cases 

where retarns are still increasing at the point chosen by the firm. So 

we must often abandon price taking as an assumption. 
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There are a number of reasons why price-taking is a wrong 

description of some markets 

(i) The Firm is large simply by virtue of increasing returns 

(ii) The goods produced by any one firm are not usually identical to 

those produced by any other. Recall that goods are distinguished by 

location which in itself tends to differentiate the output of one firm 

:from that of another. But firms also have an incentive to differentiate 

their products from those of other firms precisely because it enables them 

to escape the price taking straight jacket. What all this means is that 

the outputs of two firms will not be perfect substitutes for consumers. 

(iii) firms may have natural monopolies: e.g. oil well or legal 

monopolies e.g. telephones. There are other reasons; (see lectures). 

From our point of view it is important to subdivide the problem 

into two different cases 

a) The Atomistic Case: here the firm is small enough to assume 

correctly that it!• own actions will not influence the actions of other 

firms. 

b) The Oligopoly Case: occurs when the firm in taking an action can 

only calculate it's consequences if it knows the reactions of other firms. 

I discuss the two cases in turn. 

a) In general we may write 

p. 
~ 

= i = 1 ••• n III. 7-f> 

This says that the price the firm can charge (if y. > 0) or must pay 
~ 

(if y. < 0) deper~s on it's activity choice y. So if y. > 0 III.7 tells 
~ ~ 

us something about the property of the demand for good i by customers and 

if y. < 0 it tells us something about the property of the supply of good i 
~ 

to the firm. 

Let 
ap. (y) 

~ p .. = 
~J ayj 

y . a log p. 
._2 ~ 

CJ • • = p .. -
~J ~J p. a log y. 

~ J 

Consider p. . when y. > 0. 
~J ~ 

It tells us by how much the price of good i will 

have to be changed if the firm wishes to sell a little more (or less) of 

it. It is usual to take p .• ~ 0. But as a number it is not very informative. 
~~ 
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Why? So we prefer to work with a... {When y. < 0 J p .. tells us the 
~] ~ ~~ 

change in the price of the ith input the firm has to pay if it wants a 1 

little more (or less) of it. Again it is usual to take p .. < 0 (a . . > 0) 
~~ ~~ 

i.e. the firm has to pay more per unit of input i if it wants more of it]. 

But then we can define 

-1 
e .. = (a .• ) 
~~ ~~ 

and call eii the own elasticity of demand when yi > 0 and the own elasticity 

of supply when yi < o. Why? 

Suppose a firm produces two brands of soap. We would not be 

suprised if one brand is 11 i" and the other "j" if a .. f:. 0. Then with 
~] 

-1 
e .. = (a •• ) 
~] ~] 

we call e •. the cross-elasticity of demand. In the present example we would 
~] 

expect e. . > 0. V.Jhy? 
~] 

In general we should expect that many e .. = o. For instance we 
l.J 

do not expect that a change in the price of the labour used by the firm, 

will have a perceptible effect on the demand for that firms output. 

Profits are now given by 

'IT = !:p. (y) y. 
~ ~ 

III. 8b 

Suppose first that: 

Pij = 0 for j f:. i all i. 

Then 

d'IT - = p. (y) + p. . y. = p. (y) (1 + C1 • • ) ay. ~ ~~ ~ ~ ~~ 
~ 

III. 9~ 

Notice: if a .. = 0 (then e .. =-co), III.9\lreduces to the price taking 
~~ ~~ 

case. 

Definition III.2. !II.9bis called the marainal revenue of output i 

(y i > 0) or the marginal cost of input i (y i < 0;. 

Th. III.3. When a firm faces a downward sloping demand curve for it~• 

output then price of output > marginal revenue of output. If it faces 

an upward sloping supply curve of an input then price of input < marginal 

cost of input. 

Proof. Obvious. 



- 12 -

Now go back to the example worked in section (5) of II and verify 

that a necessary condition for the maximisation of III.8 under present 

assumptions yield the following modification of Theorem II.3: 

-Theorem III.4. If p .. = 0 i j j all i andy* solves the problem 
~J 

max III.~subject to y
1 

< f(-y2 , -y
3

), y
1 

> 0~ yi < 0 i = 2, 3 

then we must have 

Example 2.1. Suppose a firm employs men and women to manufacture baskets. 

Let yb > 0 be the output of baskets, ym ~ 0 the input of men, yw ~ 0 the 

input of women. The women have very few alternative job opportunities 

and so we assume that e > e • Also e = e = 0. Show that even if 
mm ww mw wm 

= f(-(y + y )) m w 

women will be paid a lower wage than men when both are employed. 

Example 2.2. In the above example assume that the men and women join to form 

a Trade Union. This sets a common wage below which neither menr~r wcmen 

will work. Show that the Union can set a wage which will improve the lot 

of both men and women. 

Notice that Th.III.4 shows that inputs will be paid less than 

the value of their marginal product whenever the demand and/or the.supply 

of input is less than perfectly elastic. 

So far, so good. If we drop the assumption of zero cross 

elasticities we get a more complicated result but we know how to get it -

do we not? The interesting question is not that elaboration but the 

reminder that we are no longer wanting to assume that f is concave and 

so we must pay attention to sufficient conditions 

We showed in II that increasing returns and price taking leads to 

contradictions. What is the present situation? We may write for our 

example 

1T(y) = 
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and we can easily prove 

Theorem III.S. If rr(y) is a concave function then the conditions 

of Th.III.4 are necessary and sufficient to solve max rr(y) 
y 

Proof I consider only the case of an interior solution; the corner case 

is left to you. 

We need only prove sufficiency i.e.: if conditions of III.4 

hold at y* then profits are maximised. We may write these conditions as 

= 

Let y e: Y, y f. y~':. By Th. II .4 and rr(.) concave: 

":J'~ 

arr (y~·~) 
ay. 

J_ 

rr(y)- rr(y*) < E rrJ..(y*) (y. - y.) = 0 
J_ J_ 

so that for all such y, rr(y) < rr(y*) as was to be proved. 

Remarks. a) Let us write 

rr(y) = 

III.9t 

where C(.) is the minimum cost function. Notice that this function now 

depends on inputs because prices do. But check that 

ac 
ap. 

l. 

= y. 
1 

i = 2, 3 

as before. Assume that all cross elasticities are zero. The marginal cost 

of output now depends (i) on the production function and (ii) on how the 

price of inputs varies when there is a change in the amount of them which 

is used. 

a2c 
Let ac represent marginal cost at constant input prices, and 

ayl 

-2 the rate at which this marginal cost is changing. Then if the firm 

a2c ayl 
is producing under increasing returns one can have ---2 < 0. On the other 

ay 
is the marginal cost when input prices 1 may vary, then hand if ~c 

2 yl 
d C b 0 .,Jc . f . . Wh ? B h"l th --2- may e > 1/sp1te o 1ncreasJ.ng returns. y. ecause w 1 e ere 
dy 
is1 some economising in inputs per unit of output the marginal cost of 

inputs is rising. If you can differentiate you can calculate these derivatives 

for yourselves and see precisely how the behaviour of marginal cost depends 

on the production function and on the supply conditions of inputs. 
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p1(y)y
1 

for total revenue, 

= 

1T (y*) 
1 

the:o 

= 

= ' 

0 

and 1T (y1:) 
11 = III.lO 

One sees at once that at a maximum,n
11

(y*) 1 o. To assume n(y) 

concave allows one to say that not only are profits no higher than n(y*) 

in the vicinity of y~~ but they are no higher anywhere. Notice that 

applying a Taylor exp&nsion to III.9cyields nii(y*) < 0 all i. What 

III.lO says is: if marginal cost are falling at the maximum profit point 

they must be falling less rapidly than marginal revenue is falling. (See 

lectures for diagram). 

(b) It will be clear that we can now no longer express the profit 

maximising choices as functions of (or more generally, as depending on), 

prices. For prices are now no longer parameters describing the market 

environment of the firm. In fact that environment is described by the 

functions p.(y). This is an important point to be bornein mind. When a 
~ 

firm is a price taker we can talk of the firm having a supply functiou, 

(correspondence), depending only on the prices; when the firm is not a 

price taker this is in general impossible. I return to this later in 

these lectures. 

Once the price taking assumption is dropped the way is open to 

other modifications. Here is one. 

Example 2.3. Suppose the firm is a price taker in the markets for 

inputs (goods 2 and 3) but not in the market for output (good 1). Let 

a be the amount spent by the firm on advertising its output and assume 

= 

(Interpret this). Profits are now: 

> 

p.y. -a 
~ ~ 

0 a > 0 
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The firm maximises profits subject to the usual constraints. 

Let 

= 

Then at a maximum one has 

and 

a~"c 

' 

R,•: 
yl 

R·'· " -a 

- C* 
yl 

1 < 

etc. 

mainimum cost of producing y
1

• 

= 

< o, (R c ) g~';: = 0 

] 
(a) 

yl yl 1 

01 (Ra - 1) -J· = 0 (b) a· 

III.ll 

Notice that the firm must now chose y and a and we may think of the latter 

choice as how most profitably to sell a given output. 

If we assume~(.) to be strictly concave at the optimum we have 

(R,': 1 )(a 
a 

Let us see what use we can make of III.l2. 

a,>:) = 0 III.l2 

First notice that for all (y
1

, a) close enough to (yy a*) one has 

~(yl, a, p2, p3) - ~<Yy;a,, p2' p3) = ~! f (R* - C* )(yl - y*)2 
YJY, ylyl 1 

R~': (y - y-l:)(a - a~") + R'l: (a - a1:) 2Jnr. 
y a 1 1 aa 

1 

where we have used R = R • By III.l2 v<e have III.l3:b < o. 
X:L a~l~ 

With this out of the way let us examine the effect on the firm's 

action of imposing a tax on advertising. To keep things simply assume 

= = 0 

(is that a good assumption?}. If the firm pays ta in tax for every amount 

a spent on advertising we now have 

= R(y
1

, a) 

To start with we take t = 0 and aS$ume a* > 0 so III.ll(b) is 

R•': = 1 + t 
a 

III.l3 
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Now let t be made positive. Then taking yf > 0, in the new position the 

firm chases III.ll(a) and III.l2 must again hold. So 

da from III .12 R·'· .. 
a a dt 

da from II !.11:~ R'': 
yla dt 

Since we take R '# 
ylyl 

and so 

dy 
R)': 1 + 
ayl dt 

dyl 
+ R~'~ --

ylyl dt 

0 one has 

da < 
dt 0 

dyl 

dt 

da 
R1~ 1 (a) = = a a dt 

III.l4 
-.'~ dyl 

= R = 0 (b) 
ylyl dt 

o. But from III.la..\ 
) 

= 

So the imposition 

advertising expenditure. 

of the tax will leave output unchanged and reduce 
apl 

But --- > 0 so the tax on advertising will a a 

reduce the price of output under preGent assumptions. 

But now take R . > 0 while C 
yla Y1Y1 

= 0 as before. Multiply the 

l.h.s. + r.h.s. 
da 

of III.ll(a) by dt and the l.h.s. and r.h.s. of III.l4(b) 

by* and add: 

R'f: (da)2 
aa dt + 

da 2 Ri: 
ay

1 
dt = da 

dt 

By III.l~then once again~~< 0 i.e. advertising expenditure will be 

reduced. On the other hand since we must have R* < 0 (why?), III.l4 (b) 
. dyl ylyl 

now g~ves dt < 0 so that output is also reduced and we can not in 

general say what will happen to the equilibrium price of output when a tax 

is imposed on advertising. 

But it is not surprising that our predictions will depend on the 

parameters. What one wants to do in these cases is to ~prove one's 

understanding of what the crucial parameters are. A little thought will 

tell us that our prediction is likely to depe~d not only on the efficiency 

of advertising in allowing a higher price to be charged for a given output 
apl 

(i.e. on da ) but also on whether advertising affects the elasticity of 

demand. Suppose for instance that 

0 < a < 1, 1 > e > 0 

So log p
1 

= - a log y
1 

+ (3 log a 
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1 
and the elasticity of demand = - /a, a constant which is independant 

of a. Now check that R > 0, R < 0, R > 0, R < o. Next we 
·t yl ylyl a aa 

know (see III.9), that 

So III.l4(b) becomes 

apl da 
( 1 - a) [ aa dt + = 

dpl 
(1 - a) dt = 0 III.l5 

So that in this case the tax on advertising has no effect on price of 

output at all. Next note that if C > 
ylyl 

0, (instead of C = 0), 
ylyl 

the r.h.s. of III.l5 is not zero but 

dyl 
But it is easily checked that one still has dt < 0 whence we can now 

predict that certainly the price of output will be reduced by the tax. 

Lastly if C < 0 that conclusion will be reversed. Now think about 
ylyl 

the economics of these examples. Notice that increasing returns to scale 

is one of the main pleas made by business etc. in favour of advertising. 

But before reaching conclusions remember that we are looking at one firm 

in isolation. Try some other examples e.g. the effect of a tax (or subsidy) 

on labour. 

Notice how the operational content of the theory comes from sufficient 

conditions as in Th.III.5~ 

Theorem III. 6. 
ap 

Suppose that a) n* = 0 and b) __! < o. Then if C(y1 ) is 
ayl 

the minimum average cost of producing y1 (I have supressed price arguments), 

< 0 

Proof. At a maximum 

By assumption o
11 

< 0 and p
1 

= c (y~:) since n~' = 0. 
~ 1 

and 

c(y1;) 
1 

ac 

ac So c(y·
1
k)(l + o

11
) = ~ 

oyl 

I I 
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But if average cost > marginal cost then average costs are fallJ~ .. 

Draw the diagram for this case. Notice that it is of interest 

because in the old literature £e.g. ~Robinson: Economics of Imperfect 

Competition] it was argued that entry of new firms into the production 

of similar commoditie$ will eliminate all profit. This is a somewhat 

confusing story with a large literature. It will be discussed in lectures. 

But read the appropriate section of Chamberlin: Theory of Monopolistic 

Competition. 

b) Tbe Oligopoly Case 

I start with two observations {i) we do not really know the answers 

and (ii) I can only sketch some of the main considerations. (These problems 

will be treated much more fully in lectures for Part II). 

The problem, or at least one part of it, is best illustrated in a 

simple Duopoly example. We think now of two producers a and b producing 

an identical output. Let xa be the amount produced by a and let xb be the 

ffinount produced by b and let p be the price (a scalar$) at which output 

is sold. Notice that it is assumed that both producers must charge the 

same price. It is assumed that 

Let both producers have the some minimum cost function C(x.), i =a, b. 
1. 

Because there are only two producers each one knows that if he 

causes a change in price (by changing output), the other producer may 

be induced to change his output also. But he does not know how the other 

producer will change it. 

let us call d~ 
v (x) = a dx a 

dx 
vb (x) 

a = 
dxb 

where v (.)is the change in b's output a expects his own change to 
a 

cause and vb(.) is the change in a's output b expects his own change to 

cause. Frish called v , a's conjectural variation and similarily 
a 

for vb. 

At a's maximum profit we have: 

p(x) + p'x + p'v (x) x = C'(x ) 
a a a a " (a) ) 

~ III.l6 
' and for b p(x) + p'x + p'v (x)x = C'(x ) b b b b ) (b) 
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Notice that the equation (a) involves xb and the equation (b) 

involves x , so that we can only discover what each firm vdll close to do a 

if we already know what the other firm is doing. 

To be more precise: given any xb, III.l6(a) will determine 

the optimum choice x of a given his conjectural variation. We write 
a 

X a = 

= 
where Ra(xb) is a's profit maximising choice of output given xb. In the 

literature Ra{.) and~(.) are called reaction functions. 

\ 

~~~------~~------ R 

X (1) 
a 

a 

X 
a 

Fig. III.3 

The fig. is self-explanatory although the slope which I have given the 

two reaction functions is plausible (is it?) but by no means the only 

possible one. (x1: 
a' 

x-:.'~) 
b is the solution to the equations in III.l6. 

Cournot who was one of the first to study this problem set 

v (.) 
a = vb (.) :: o. This has always struck me as very dubious since it 

seems to remove all the most interesting features of the problem. But 

specify a cost and demand function and try out some Cournot examples. 

In the fig. I have also drawn a rectangle and arrows. I am 

indicating a difficulty. Suppose we tell the follo~tling story. Firm b 

has ch:,sen xb ( 0) • In the next period firm a will ~ c~ose x (1). Then 
a 

in the period after that b will c~e ~{2). etc. You see that in this 

sequential story the two producers will keep going round the mulbery bush. 
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That of course is due to ( i) the story I have decid.ed.· to tell and ( ii) to 

the slopes I have given to the curves. As a matter of fact in the Cournot­

case mild assumptions would lead the story to the intersection point. 

But we can notice two things: (i) there is no good reason why in general 

the intersection should be reached and (ii) one finds it hard to believe 

that the reaction curves would not be shifting during such a process. 

Why should they shift? Because during the process each firm learns some­

thing about the behaviour of the other and so its conjectural variations 

will change. 

The plot thickens but will be thicker yet. For suppose firm a 

never changes it's conjectural variations and always behaves according 

to Ra(xb). Then firm (b) by varying it's output can discover what this 

reaction function is and almost certainly do better than it would do if 

it stuck to ~(xa). 

Let us be precise. Suppose firm (b) discovers a's reaction 

function Ra(xb). Then equation III.l6(b) becomes 

which is an equation in ~ alone. There is no reason why the solution 

to that equation should be the x£ of Fig. III. 3. Horeover firm (a) may 

now make much lower profits. 

So we have now found that firms must in general take care not 

to let their rivals discover too acurately how they will react. It is 

here that we make contact with the theory of games. It is plain that 

the way in which we have formulated the problem is unsatisfactory. But 

I must confess at once that while the game theoretic formulation is an 

improvement we do not believe that it has solved the problem. 

I cannot even scratch the surface of game theory but you might 

enjoy this example. 

Example 2.4. Suppose (I keep things simple), that firm a must produce 

either xa or x~ and firm b must produce either xb or xb. In the table 
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below the first entry is profit for firm (a) the second profit for firm b. 

For instance if firm a c~e)xa and firm b c1ase~xb then a gets a profit 

of 1 and b a profit of 2 

X 
a 

x' a 

(2, 1} 

(1, 2) 

x' 
b 

(1, 2) 

(2' 1) 

Suppose a chases x • Then whatever b choses it can make certain of a 
a 

profit of 1. Similarily if a choses x~ it can make certain of a profit 

1. Notice that if b discovers a'~ choice it will always be able to 

ensure a profit of 2. 

But now assume that firm a choses x with probability q and x' a a 

with probability 1 - q. In the same way let p be the probability of b 

chosing xb and (1 - r> the probability of it chosing xb. 

Then 2p + 1 - p is the expected gain to a of c~osing x 
a 

p + 2(1 - p) is the expected gain to a of chosing x' 
a 

So since it choses x and x' with probability q, 1 - q, the expected gain, 
a a 

E(~) of this behaviour is given by 

E(~) = q(2p + (1 - p)) + (1 - q)(p + 2(1-p)) 

= 2 - q + p(2q - 1) III.l7 

But now notice the following nice property. If firm a chases q = ~ then 

it can make sure of an expected profit of 1~ whatever p is ch08eP py b. 

If we think of this "game" as repeated many times and if we think that the 

firm is always out to maximise the "sure" expected gain then it will 

behave in this fashion. 

The example is sufficient to show (a) that there is some fascinating 

work to be done here and (b) that there is a great deal of work to be done. 

For it is clear that the simple game example can also be criticised. 
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But we have not discussed the most serious problem yet. Here is 

a result which I leave it to you to prove. 

Theorem III.7. There always exists a distribution of total profits between 

two duopolists which ensures that each has at least as much profit when 

they join forces and act as a monopolist as the\, \vould have had when they 
,,) 

do not join forces. 

This therefore is of considerable importance. It points to 

centrifugal forces which are bound to be at work - there will always be a 

tendency for duopolists (oligopolists) to join forces to forD a monopoly. 

What are the counter-forces?~ evidently the distribution of the swag. To 

assert that there exists a distribution is not the same thing as saying 

that if two duopolists joined up the actual distribution would have each 

one at least as satisfied as before. For more discussion see lectures. 

The point that there will be tendencies towards "joint profit maximisation" 

may help to explain a good deal of observed behaviour in this field. 

Enough has been said to sketch the enormous complexity of these 

problems. More will be said in lectures. I conclude with one last 

remark. 

If we think of duopoly or oligopoly we find very soon that the 

hypothesis that every firm is rationally seeking its self interest leads 

at best to enormously complicated calculations. Remember that when there 

are say 4 producers, sub groups of them can form joint-profit maximising 

coalitions. But if we find the calculations complex so do the participants. 

When rational behaviour becomes very complicated we seek social conventions 

and rules of thumb to help us out. One such rule in this context is price 

leadership. That is1 it becomes established that one firm sets the price 

which all others follow. Moreover should one firm attempt to lower itSs 

price below that of the leader all other firms will do so as YrJell (and so 

possibly not make it worth while to break the discipline of price leadership). 

If a firm raises it~• price, the others stay put. This results in each 

firm facing a kinked demand curve, the kink occuring at the price set by 

the leader. Why? Dravr the curve. This part of the story will be more 

fully discussed in lectures. 



Principles of Economics IV 

The Economy of Producers. 

(1) Total Production Sets etc. 

I shall now once again ignore for a time the complications 

discussed in III although I shall return to some of them. The prime aim 

at the moment is to see what can be said of the economy as a whole 

without bringing in the consumer. 

Recall that yf is an activity of firm f and Yf the set of 

activities which are technologically feasible 

Definition IV.l. The aggregate production activity vector y of the 

economy is defined by 

y = 

and the aggregate production set Y, by 

Y = { y I y = Eyf with yf E Yf each f }. 

Notice that since inputs in yf are taken as negative and outputs as 

positive, the components of y are the ~ inputs and net outputs of 

the economy. 

Tbe9rem IV.l. If Yf is convex each f thenY is convex 

Proof: Obvious. 

I shall make the following assumptions 

Assumption IV.l. a) Y is bounded and closed and convex. 

b) 

c) 

d) 

0 E Yf each f (possibility of inaction) 

Y n Rn = C/J (no net output without net input) 
++ 

If y e Y and y' < y then y' e Y (Free disposal) 

Of these, (a) is most restrictive not only because convexity is not a 

very appealing assumption, but because boundedness seems silly. But 

you will be happy to learn at a more advanced stage that this is not 

something we need to postulate (we can postulate something more appealing 

and just as good) and that it is done here to make life simple. In (c) 

one takes 

= the set of strictly positive n - vectors. 

I 

~~--~~-----~~----~ 
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The Free Disposal assumption means what it says and if you have ever 

dealt with dustmen you will know that it is dubious. But again one 

can go a long way without it (by allowing some negative prices in 

subsequent analysis) and it is here to keep things nice and simple. 

One certainly now can prove the following 

Theorem IV.2. Let yf(p) be the activity choice by f at prices p, 

(see II), and y(p) = ~ yf(p). Then 
.f 

a) py(p) solves: max(py) on Y 

b) py(p) > 0 all p > 0 
= 

Proof 

a) Suppose not. Then there is 

By the definitions then: p Ey' 
f > p Eyf(p), y' 

f 

so for some f one has 

py' 
f > PY/P) 

a contradiction of the definition of y (p) 
p 

b) By A IV.l (b) pyf(p) > = 

y' € Y, py' > py(p). 

€ yf each f 

0 all f. 

So that the economy of independant producers maximises the total profits 

of all producers over the total production possibility set. One can 

now prove the following basic result. 

Theorem IV.3: For p >> 0: 
-+ y' > y(p) -+ y' t y 

Proof. If not then py' > py(p), y' e Y,a contradiction of Th. IV.2 (a). 

So what this says is that, (when all prices are strictly positive), 

the economy cannot attain an activity of higher net output of any good 

without having less net output of some other good or some more net inputs, 

than it has at the profit maximising activity. So in that sense profit 

maximisation entails production efficiency. Since efficiency turns out 

to be interesting let us devote a section to studying it further. 

(2) Production Efficiency. 

Definition IV.2. An activity y* e Y is said to be production efficient 

if: 

Y 0 { Y I Y > y* } = 0 

I 
' I 

I 
I 

/ 
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I leave the intepretation of D.IV.2 to you, but it will be convenient 

to have a notation for the set of activities which are production superior 

to y* and so I write 

S(y*) = { y I y > y* } 

Notice that S(y*) is an open convex set. Why? 

I now appeal to the theorem of separating hyperplanes (see 

Mathematical notes), which says that if there are two convex disjoint 

sets there is a vector q # 0 and a scalar C~ such that 

qy > c all y e: S(y*) (1) 

qy ~ c all y e: Y (2) 

Lemma IV.l. q > 0. Clearly y » 0 and "large enough" is in S(y*). If 

some q. < 0 one can make y. > 0 and arbitrarily large without leaving 
1 1 

S(y*) and contradicting (1). So q. ~ 0 all i. But q ~ 0. 
l. 

So since q > 0 we can interpret it as a vector of prices, a~d 

we have straight away a theorem which used to excite writers on Socialist 

economics in the past and is now exciting some Russians. 

Theorem IV.4. If y* is production efficient then there exists a price 

vector q which if it ruled would cause profit maximising firms to choose 

yf(q) such that 

Proof. Take the price vector to be q of (1) and (2). Notice that in 

S(y*) there are points arbitrarily close to y* and for all of these 

(1) holds. So by straight forward limiting argument 

qy* > c 

But y* e: Y and so by (2) qy* < c 

which gives: qy* = c. 

But then (2) now says 

' ~. 
qy ~ qy* all y e: Y 

and by Th. IV.t the present theorem is proved. 

I will discuss this further in lectures, here is a simple example. 

Example IV.l 

Suppose y with y1 > 0, y2 > 0, y
3 

< 0 is possible~ 
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Consider the set of such y e: Y with y3 > - 1, and that it is 

as in Fig. IV.l 

Fig. IV.l 
It explains itsel~does it not? 

(3) Equilibrium: The Special case of Constant Returns. 

Given p we know y(p), that is, the set of activities which may 

result from the profit maximising activities of all firms. But how are 

we to determine p? In general we should agree that we need more 

information to do that: we need to know the demand for net outputs and 

the supply of net inputs by households. If these depended on p as well 
. 

then we would be inclined to say that we can determine the equilibrium 

p by using the further conditions that demand should equal supply in 

each market. 

But as you know economists form the Classics to Mr. Sraffa 

have wanted to determine the equilibrium p fracr considerations of 

production alone (the demand side is regarded as somehow 'less real' or 

'psychic' and perhaps as subversive). So I now enquire into the conditions 

on Yf which will allow us to carry out this programme. It is a striking 

1 · fact that the theory "'hich makes Ricardo right was provided by 
I, 

'I Samuelson ("The Ncn-Substi tution Theorem".) 

' We introduce the following special postulates: 
I 
l 

Assumption IV.2. For each f 

a) Yf 1s a cone (constant returns to scale) 

b) If yf e: Yf, yfi < 0 all i ~ f (only one produced 

output, yff'or no joint production) 

c) There is an input, say i = 0, and only one such 

inout such that it is not an output of any firm. 
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d) 
-+ 

Yf e: Yf' Yff > 0-+ Yfo < 0 all f (The input 11011 

is required by all firms with non-zero output.) 

I discuss A.IV.2 in lectures. But note that (b) and (d) are at least 

as restrictive as is the postulate of constant returns. 

~ have introduced an input 11011 which for concreteness we 

may call "labour". The vector yf is (n + 1) dimensional: 

and we now let there be n firms or sectors i.e. 

f = 1 , ••• 1 n. 

So there are as many firms as there are produced goods. 

We know the following facts (!!!1. about an economy in which 

all goods are produced under constant returns: 

a) The minimum unit cost function of each firm depends 

only on p. v1ri te 

R
n+l 

p E 
+ 

b) Cf(.) is homogeneous of degree one in p and concave in p. 

c) No firm can be in equilibrium at a positive profit and no 

firm will produce at a negative profit. So if the economy is in equilibrium 

we have: 

all f 

(3) 

The relations (3) follow from A.IV.3(b) since each firm produces only 

one good. 

d) We know that 

say, all f and i 

since that was demonstrated in Theorem II.B. 'Which you all know! 

Of course 9 afi is the amount of input i per unit of output fused when 

, prices are p. 
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e) We all know Euler's Theorm on homogeneous functions of 

the first degree: 

n If x e R , f(x k) = k f(x), k > 0 then 

f(x) 

So (3) can be written: 

< 
pf = 

pf = 

(Notice that each afi 

I shall now 

= L f .. (x)x, 
1. 

~ af. p. 
i=O 1. 1. 

~ afi p. 
i=O 1 

depends on p). 

introduce 

f. (x) 
1. 

= ()f(x) 
ax. 

l. 

all f 

~ for y ff > 0 ) 

a) 

~' 
b) 

Assumption IV.3: There is a yf e Yf each f and so y e Y such that 

> 0 all f 

- ~ Yio 1 < 
= 

(i.e. By using no more than one unit of labour it is possible to have 

a positive net output of every produce~ good). 

Suppose then that we are interested in an equilibrium of the 

economy in which the net output of every produced good is positive. We 

know that this is technologically feasible. One must therefore have 

- ~ 
f 

< 1. 

Do not proceed until you understand. 

So if x = (y11 )•••; ynn)' A= [ aij ], ann x n matrix we 1 

have from ( 4} 

x[I-A]»O 

has a solution x >> 0, where I is the n-dimensional unit matrix. 

(4) 

(5) 
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Now notice that in the matrix I- A the diagonal elements 

are the only positive elements. This allows us to prove 

Lemma IV .l.. If x LI - A] » 0 has a solution x » 0 then (a) C I - A] 

-1 is non singular and (b) C I - A] has no negative elements. 

Proof. (i) Suppose first that z t: I - A] 2:.. 0 has a solution with some 

component of z negative. Let 

So certainly 

and 

z. 
l./x. 

l. 

< o. 

w = 

all i (by assumption x » 

Then if 

0). 

z 
w {I - A] = z [I - A J -( k/~) x CI - A J » 0 (6) 

why? th But in the vector w the k component wk = th 0, so the k 

element in the vector w [I - A J is given by 

which contradicts (6). 

- E aik w. < 0 
i=fk l. 

Hence z /..-I - A] > 0 t z > 0. 
~....:_-

(ii) But both z /:I- A]> 0 and (-z) [I- A]> 0 imply 

z ~ 0 and -z ~ 0 by (i) whence z [ I - A ] = 0 implies z = 0, whence (I - A) 

is non-singular 

(iii) For any vector b > 0, z 1: I - A] = b has the solution 

z = b [I - A J-l, z{~ 0 by (i) 

it follows that C I - A _7-l > 0. 
= 

OK. we are now ready for the first stage. It is claimed that 

the economy has an equilibrium with strictly positive net outputs of all 

produced good~. Then we know that a necessary condition for that to be 

true is that there is p*>O with 

or using 3*(b): 

= f=l, ••• ,n (7) 
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where 

= 

So if a* = (a*1 , ••• ,a*) etc. one has in obvious notation o o no 

[I - A*] p* = 
... 

a* p* 
0 0 

p* = (p! , •• •J p~). But our Lemma applies to L I - A* J, why? 

and so 
A 

- A* J-1 p* = [I a*p* > 0 
0 0 ·-... 

But then by the Lemma if p* = 0 the p* = 0 which is impossible. 
0 

Hence p* > 0. By A.IV.2(d) a >> 0, where p* >> o. So if 
0 0 

is the price vector in terms of labour we have 

= L I - A*]-l a* 
0 

For the moment I am assuming that.an equilibrium with (7) is possible. 

(8) 

(9*) 

Later I sketch a proof. At the moment I am interested in a more striking 

result. 

Suppose that (9*) gives us the equilibrium (relative) prices 

when a given strictly positive basket of net outputs is specified. Now 

specify another basket. Hill relative prices be different? 

Suppose that it is claimed that ~vith the new basket, the price 

vector q* solves 

Let 

= 

argument as before 

q* = 
f 

b* = 
0 

all f. 

/: I - B* J-l b* 
0 

Now surely setting q* = p* = 1 
0 0 

(10) 

0 = ['I - A* ] p* - a* > [I - B* ] p* - b* (11) 
0 0 



- 9 -

for all that says is that if profits are maximised by firms choosing 
A 

the techniques (A*, a*) when prices are p* then these profits cannot 
0 

be less than they would have had if they had chosen (B*, b*) which by 
0 

-1 
assumption they could have done. From (11)• remembering [I - B* J ~ 0, 

one has 
A 

[I - B* J-l 
A 

q* = b* < p* 
0 = 

But by the same argument 

"' 
0 = [I - B*] q* - b* > [I - A* J 

or 

p* = [I - A* -7-l a* 
0 

0 

< q* 

Combining (12, 13) gives 

A A 

p* = q* when p* = q* = 1 
0 0 

(12) 

... 
q* - a* 

0 

(13) 

So relative prices are the same for both baskets. Here is the theorem. 

Theorem IV.5.: If A.IV.2; 3 then if the economy is in equilibrium at 

one positive net output vector at relative prices p* then these prices 

must be the equilibrium price for ali attainable positive net output 

vectors. In particula~ the equilibrium relative prices are inde~endent 
~ 

of either the composition or scale of demand. 

Remark: I have in the last sentence gone slightly beyond what has been 
a 

proved: for I have been dealing with/strictly positive net output vector. 

Because}howeve~ Y is taken as closed there is a simple limiting argument 

to show that the result applies to all equilibria with semi-positive net 

output vectors. 

In lectures this result will be further discussed. Here I want 

to draw your attention to an obvious point. 

It is easy to prove that under the conditions of Lemma IV.l-

Let us then consider (9*) with p* = 1 
0 

= [ I + A'~~ + A*
2 

+ ••••• ] 

p* = 
2 L I + A* + A* + •••• J a* 

0 

Looking at the first row one has 
.... 
p* = 1 

(14) 
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The first term on r.h.s. of (14) is the direct labour cost per unit of 

producing good 1. But one unit of that good requires atj of good j 

which in turn has a labour cost of a*
1 

.• a*. and so on-so that the second 
J OJ 

term is the first stage indirect cost of labour of producing one unit 

of good one. But to produce alj units of good j requires ajk alj units 

of good k which requires aok ajk alj expenditure on labour and so the 

meaning of the third term is obvious. As we proceed the terms become 

smaller (why?). So we have 

Corollary rv.s. Under the assumptions of Th.IV.5 the price of any good 

in terms of labour is equal to the sum of the direct and indirect 

amount~of labour needed to produce one unit of it. 

So we have here a labour theory of prices. Notice that our 

choice of calling the non-produced input 'labour' was rather arbitrary. 

In the lectures I discuss the case for calling it land. 

(4) Efficiency once again. 

So far I have assumed that an equilibrium exists which is 

quite proper in elementary lectures. But it turns out that we can 

pursue this problem further and learn some economics rather than 

mathematics. 

In Fig. IV.2 I have drawn the production curves of two producers 

(Y1, Y
2
). I assume that y1 € Y

1 
produces good 1 y11 ~ 0 uses good 2, 

y12 < o and labour y10 ~ o. Also y
2 

£ Y2 has y20 ~ o, y21 ~ o, y22 ~ o. 

I have drawn a projection (since I cannot draw easily in three dimensions) 

and have shown yf with yfo = - 1, f = 1, 2, i.e. the feasible activities 

if each firm only uses one unit of labour. 

+ 
Yzz 

y ,-
21 
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I here also drawn Y which is obtained by taking all points in the 

diagram which can be written 

ay
1 

+ (1 - a) y2 ~ y 

for if I do that I get all the combinations of output which are possible 

and do not use more than one unit of labour. I have drawn the intersection 

of Y with the non-negative orthant R2 
by shading. The frontier of ks 

+ 
intersection you notice is a straight line. It is the economy's 

transformation curve. But then unless the price vector p* is as shown 

for any point on the transformation curve some firm would make a positive 

profit or a loss. For since p* is normal (orthogonal) to that curve, 

one has for any two points which use one unit of labour 

... 
P! (yl - Y1) + P~ <Yz - Yz) = o. 7 

I 

I shall discuss this further in lectures. I shall also illustrate 

the force of A.IV.2 by means of Fig. IV.2. But here is how we can go 

about a general way of stating the insight. 

Theorem IV.6. Under A.IV.2, A.IV.3 for any y* E Y which is production 

efficient there exists p* independant of y* such that 

p* y 
f 

= p*y* 
f 

= 0 all f 

Proof. (i) We assume that there is one unit of labour and define 

which gives the set of activities y feasible for the economy if it uses 

no more than one unit of labour. One has of course: 

F is closed and convex 

Also let 

H(y*) = { y I y > y* } 

so that 

H(y*) is open and convex 

Then if y* >> 0 ie Pareto efficient in F one has 

F (l H(y*) = r/1. 
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One can therefore find the hyperplane separating H(y*) and F. That is, 

there is p e: R:+l such that 

PY > py* = 0 all y E H(y*) 

PY < py* = 0 all y e: F 

Let (A*, a*) be 
0 

the activity matrix which generates y*. Certainly 

.... 
py* ::: [I -A* J p - a* P = 0 

0 0 

and of course by (16) these activities are profit maximising. 

Let y** >> 0, y** # y* 1 be another activity in F which is 

production efficient and let it be generated by the matrix (B*, b*). 
0 

Since by (16) 

py** ~ 0 

one has 

(15) 

(16) 

(17) 

J: I - B* J p - b p ~ /:I - A* 1 p - a p = 0 (18) 
0 0 - 0 0 

which is (11) so as before 
1 ;.. 1 

L I - B* J- b* < p (-) 
o Po 

But if y** is production efficient there is q e: R~+l such that 

qy 2. qy** = 0 all y E F 

So proceeding as before we get (13) and deduce 

= 

So we have proved, as before, that the relative prices which lead any 

production efficient y to be profit maximising are independent of the 

choice of production efficient activity. Nice?! 

(5) Difficulties 

The most obvious difficulty is time. Recall that we agreed 

long ago to treat goods at different dates as different. But then 

labour at different dates is different and the postulate of one non-

produced input will be hard to sustain. Very closely allied to those 

difficulties is the problem of durable inputs. Because if these exist 

the output of a firm consists not only of the good which it produces 

but also of the used durable input transferred from one moment to the next. 
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nd This is a 2 year course so we cannot devote time to a careful 

exploration of these problems and I shall only discuss the simplest 

cases. In particular I shall not now discuss the case of durable inputs. 

Suppose that yf still has the properties of A.IV.2 but that 

it has a temporal structure of the following kind: inputs at date t 

give rise to output at date t + 1. So if we now are explicit about 

time structure we write 

Assumption IV.4. Labour is paid at the end of the production period. 

This assumption is not at all required but is so usual in 

the literature that I make it for completeness sake. 

When the firm has to pay for inputs one period before it can 

sell the resulting output it must charge itself the rate of interest 

or profit foregone. I write this rate as r and 

R = 1 + r 

What we are now looking for is a set of relative prices - say 

prices in terms of labour-which we vrrite as p, (with p = l)O'_,which 
0 

5 remaintindependent oft and at r cause• producers to make the same profit 

maximising choices. 

Let us therefore now write the minimum cost function: 

= cf (R p, 1) 

which gives the minimum cost in terms of labour of producing one unit 
A 

of output at (p, R). As before 

= = 

and afi depends on (p, R). For an equilibrium with positive net output 

for each firm one must have 

= 

Using homogeneity this becomes 

= l: af. R p. 
l. 1. 

f = 1) ••• _, n (19) 

+ f = 1.~ •• ") n (20) 
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Or in obvious matrix notation 

[I-RA]p = 

... 

a 
0 

(21) 

In (21) A depends on (p, R). Also (21) gives usn equations in (n + 1) 

unknown: (p, R). Therefore the theorem which we have discussed before 

is modified to: 

Th.IV.7: For any R such that [I- RAJ-l exists and is non-negative for 
A 

some p, the equilibrium prices are independant of the composition of 

demand. 

Notice that I am taking a short cut in stating the conditions 

of the theorem. If you look back at Lemma IV.1 and the assumption which 

I have used you will see that what we are saying is that we can only 

allow R which is not so large as to make impossible the assumption that 

there is a strictly positive net output vector which is now defined by: 

net output vector = output vector - Rx input vector. 

Otherwise the story is unchanged and I leave it to you to prove the 

theorem. Notice that 

So that the labour theory of prices gets modified. How? t-Jell obviously 

by making indirect labour input bear an interest charge. Work it out! 

Now let me briefly deal with nonsense. It is plain that (19), 

(or 21), leaves us one degree of freedom. We can for instance arbitrarily 

fix one price in terms of labour. Or we might fix the "real wage" by 

demanding that for some weight a. > 0: 
]. 

E -1 
0 i pi = constant. 

Or we could fix R. All of these procedures will "close the system". 

(22) 

But of course what ~;re fix should have some justification. For instance 

a Malthusian might have an argument for (22) might he not! Professor 

Joan Robinson - Japanese etc. evidence notwithstanding-believes that all 

savings is done by capitalists and that they have animal spirits. By 
assuming 

I that investment = saving in equilibrium she gets an equation for r. 
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(Of course one should elaborate here a little). But you could also have 

a Pigovian story that the supply of labour depends on the real wage ~ 

A-1 
(i.e. on p ), and that the demand for labour = supply. Or you could 

A 

have a story that the saving people do depends on (p, R) and again 
A 

that investment depends on (p, R) and whoops you have another equation. 

You could even determine R by Keynesian liquidity preference. But the 

point is this: it is nonsense to say that in general R is "determined" 

before p is or indeed vice versa. There is nothing in the logic of the 

story to falsify the general theorem that (p f R) are determined simultaneously 

by (19) and market clearing equation. 

Of course in Cambridge this is a bone of contention. Think 

about it and see whether the argument has a flaw! 

Lastly let us see hm-1 different values of R go with different 

equilibrium p. 

Differentiate (19) with respect to R to get 

Or in matrix 

"' 
But A p > 

whence 

= 

notation 

0 

[I -RAJ 

and 

[I - RA J-l 

dp 
. dR 

> 0 

A 

dp A 

= Ap dR 

> 0 

So if now we write the "real wage" as vl with 

-1 
w = L: a. p. 

one has 

aw 
aR 

1. 1. 

< 0 

(23) 

(24) 

(25) 

(26) 

which is the 'i:actor price-frontier" proposition i.e. real v1ages are lm.rer 

the higher the rate of profit. 

Question: Does that mean that the share of labour in the value of output 

is lower the higher R?? 

rl 



- 16 -

Now you are ready if you want to, to read and understand all 

about double-switching etc. etc. I shall briefly mention it in lectures. 

But here is a theorem for the fastidious. 

Theorem IV.8. If Yf has a differentiable frontier for each f then 
A 

with every equilibrium (p, R) there is associated one and only one 

technique (A, a). 
0 

Proof. Left to you. 



Principles of Economics V 

The Choices of Households. 

1) Introduction: In this lecture I consider the actions of a household 

"that knows what it wants and knows how to get it". In a precise sense 

this will be a theory of rational actions. Many people object that 

households in fact are not rational. A good many of these objectors do 

not know the theory. But they may be right. One of the objects of the 

theory will thus have to be to generate propositions which can in 

principle be shown to be false. This we shall do. But in learning the 

theory clear your minds of the fetters of what you regard as "common 

sense". The common sense of anyone is usually a vulgarisation of an old­

fashioned theory or plain prejudice. Also notice that the theory is 

beautiful. 

2) The Consumption space Xh 

A household's action is a vector ~ the co!llponents of which 

(e.g. ~i) are the amounts of various goods consumed. The set Xh is the 

set of all ~ which are physically possible for the household h. For 

instance1 it cannot consume more than twenty four hours of leisure per 

day, or if it consumes only one hour of leisure per day it will have to 

consume at least n calories.etc. 

I shall take it that there are n goods and make the following 

assumption 

A.V.l: ~ C R~ and Xh is closed and convex, 

Notice that A.V.l. postulates (a) that. goods are consumed in non-negative 

quantities and (b) that goods are finely divisible. For if not, ~ E Xh 

and xb e Xh would not allow a~ + (1 - a) xb e Xh for all 0 < a < 1. 

In modern work A.V.l can be greatly relaxed. For instance,we 

have results on consumption spaces where goods can only be consumed in 

integral quantities. Moreover, it is possible to develop the theory for 

much more general spaces which contain objects other than goods. All 

this will have to be ignored. 
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3) The ordering of~· 

"The household knows what it wants" is interpreted as meaning 

that the household has a complete preordering of~· More specifically, 

for ~ and xh £ Xh read 

xh R ~ as "~ is not preferred to ~" 

sometimes I shall also use 

~ R ~ and xh R~ read ~ I ~ "~ and xh are indifferent" 

~ R xh and not ~ R ~, read ~ P ~ 11~ is preferred to ~", 

I shall make the following assumptions: 

Assumption V.2 • a) 

.2!. ~ R ~ !?.!: both. 

b) Transitivity for xh', xh and ~ £ Kh 

xh' R ~and~ R ~implies xh' R xh. 
f('··· I , ~, \ 
\. ,/l!.t?,J--t.J! ,lr- f._f '') 0 

c) ~ontinuity: For any ~ e Xh the sets: 

xh R x~, xh E xh,t and 

are both closed. 

d) Non-Sa.tiation. There is no 

These assumptions will be further discussed in lectures. 

It may be worthwhile commenting here on (c) •. What it implies 

is this: 1 2 
Let~ P ~· Then let 

~(a) = a ~ + (1 - a) ~ 0 < a < 1 = = 

2 Then for a "close to unity" xh (a) P xh and for a. "close to zero", 

I th ' b dl " 1 1" w.1'll be f d t n o er '"or:~s~ un es c ose to ~ pre erre o 

~ and bundles close to ~, are inferior to x~. 



- 3 -

4) The Numerical Representation of an Ordering: Uh(~). 

Let us ask: does there exist a continuous function Uh(xh) 

uh (~): 

(R1 = the real line), such that 

1 
X -+ R 
h 

If such a function exists,call it a utility function. 

Suppose that a utility function exists. Let 

Vh = Vh(Uh(xh)), Vh > 0 everywhere. 

Then Vh will also be a utility function. Why? One has 

(1) 

(2) 

Theorem V.l: A utility function satisfying (1), (2) is defined only 

up to a monotone transformation (it is ordinal). 

Thus Uh (.)measures nothing: it represents an ordering of Xh. 

In particular there is no intrinsic meaning to the partial derivatives 

of Uh{xh) (if they exist,they are called marginal utilities) since 

these partials are not invariant under monotone transformation of Uh(.). 

A utility function need not exist if the ordering does not 

satisfy A.V.2. 

Example. Let Xh c R~. Let h have a lexicographical: ordering: 

iff xh I xh and xhl > ~l or if xhl = ~l' xh2 > xh2• 

Notice that for any two distinct points in Xh one must be preferred to 

the other so that no two distinct points are indifferent. But then if 

a utility function exists, every point in the plane Xh must get a 

different number i.e. be assigned a different point on the real line. 

But that cannot be done; there are not enough numbers to do that. 

So if we are to have a utility function we must be able to 

"economise in numbers" and this requires that the ordering be continuous. 

For consider 
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Since ~ is a limit point of both sets and both sets are closed the 

0 intersection is not empty since it must contain xh. Let xh be any 

+ 0 - 0 - 0) -( 0) other l.p. of H (xh). Either ~ e: lv (~)or~ i ~v (xh • If xh e: W xh 

0 + 0 0 0 
t.ten ~ R xh and since xh e: W ( ~) one has xh R ~ and so ~ I xh. 

Horeover xh is a limit point of l .. r ( ~) since every small neighbourhood 

+ 0 - 0 of ~ contains points in W (~). If ~ i W (~) then by definition 

~ P ~· But then ~ cannot be a limit point of W+(~). Why? So indeed 

+ 0 - 0 xh e: T¥ (xh) (1 \-l (xh). 

So the intersection of the two sets gives us a set of points 

of Xb which are indifferent to ~ and to each other. 

The rest is now fairly easy but requires oreto perform some 

little manipulation with the rationals and I omit all that. 

Heuristically the picture looks like this: 

Fig. V.l. 
. .,. J ;,y~'.': . . Y.-.: / f.iL~·t,-r).:i-i. '-- /!::., _1 0

-._
1 

-- '"' 
1
. 

In Fig. V.l I have choose ~' ~' xh to lie on a line though the origin. 

I have drawn in W+ (x~~ (\ W-(~), \nl+(x~) ('\ W- (x~) etc. Also x~ » x~=: 

x~ >>~etc. and I have made the mild assumption~ P ~~ x~ P x~. 
Then we can plainly label the curves by the numbe~we read off on the 

straight line (I here ignore the problem of 'irrationals'). These numbers 

can serve as a utility function. 

I hope this heuristic account suffices for an understanding of 

Theorem V.2. n 
If A.V.2 and Xh c R+ then there exists a continuous real 

valued function Uh(xh) : Xh ~ R1 which satisfies (1) and (2). 
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Later I shall discuss special forms of utility functions and 

indicate certain assumptions which allow us to deduce functions which 

are defined up to a linear transformation. 

5) Convexity~ 

The assumption which I shall be using is that the ordering 

by "R" of Xh is convex. 

Definition D.V.l. (a) The ordering is convex if xh P xh then 

0 < a < 1 
= 

= 

(b) The ordering is strictly convex if ~ R ~ then 

all 0.-:_a<l. 

Convexity does not exclude flat segments of indifference surfaces but 

strict convexity does so. Why? 

To assume convexity of the ordering is neither harmless nor 

does it have a special appeal. I may prefer a sausage and a glass of 

milk to a sausage and a glass of whisky but greatly dislike the convex 

combination of the two bundles. Or one may prefer living in Cambridge 

to living in London but hate all points "in between". (This is stretching 

things a bit~is it not?). So convexity will depend a good deal on what 

commodity space is chosen and_.of course, on divisibility. The troubles 

that arise from non-convex preferences need not be serious although they 

can be. But here I stick to convexity. 

Now convex preferences will be reflected in the utility function. 

First a definition 

Definition D.V.2. A function f(x) : R; + R1 is quasi-concave if for 

any x0 
€: R"'the set { x I f(x) > f(x0

)} is convex. The function is 
J:f 

strictly quasi-concave if the above set is strictly convex. 

If then f(x) is a utility function for all x in the above set 

0 one has x R x • Certainly you can now prove for yourselves 
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Theorem V.3. A quasi-concave utility function represents a convex 

ordering; a strictly quasi-concave utility function represents a strictly 

convex ordering. 

Remark*: A concave function is quasi-concave but the reverse need not 

be the case. 

6) The set of Budget-Feasible Choices: Bh(p) 

One supposes that each household has an endowment of goods 

~ e: R~. Notice that (a) the endowment includes leisure as one item 

(b) that some endowments can be zero and (c) that we do not know the 

n wealth of h until we know the price vector p e: R+. 

In addition each h is entitled to a fraction dhf of the 

profits p.yf of firm f. One has 

= 1 

The constraint on profit shares assumes that all firms are owned by 

households although it is not postulated that all households hold 

entitlements to the profits of any or of all firms. 

In the notation just introduced we now have 

Definition D.V.3. The wealth wh of his defined as 

= p • ~ + 

Notice that wh depends on p. 

This then leads to the 

Definition D.V.4. a) The set of budget-feasible choices at p open to 

= 

b) The set of feasible choices at p: 

I shall also use the technical assumption: 

B:~ (p) is 
h 

Assumption V.3, There exists ~ e: Xh such that xh ~ xh and xhi < xhi 

if xhi > o. 

This assumption I shall use later. 
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7) The demand ~(p, wh) 

In what follows I shall only consider p >> 0. To a general 

equilibrium theorist,this is bad- for a second year course it is 

sensible. 1fuen some p. = O,technical problems arise but nothing of 
l 

what follows is invalidated. 

Notice that B~(p) is a bounded and closed and convex set for 

p » 0. \fuy? Therefore the problem 

max Uh (xh) for xh e: B~(p) (3) 

has a solution since Uh(.) is a continuous function on a compact set. 

The solution is found in the usual way and first order conditions are 

au 
= o, axhk - = Lagrangean ( 3* ) 

Definition. D.V.5. The demand of household h at p >> 0 and wh{p) is 

the set of ~ which solve (3). This set is written: 

and is often cal~lthe demand correspondence. 

The following theorem will enable us, by making the appropriate 

assumption, to deal with the simplest case. 

Theorem V.4. If the ordering of h is strictly convex then ~ (p, ~h(p)) 

contains only one element for each p.;it is a, (vector valued), demand 
J 

function. 

Proof. Suppose not}i.e., xh 1 xh are both elements of ~(p, wh(p)). 

Then it must be that xh R xh and~ R ~since ~ e: Bh(p), ~ e: Bh(p). 

By strict convexity and in the usual notation 

and one verifies xh(a) e: B~':(p). 

But then neither xh nor xh can solve (3) contrary to assumptions. 

From now onwards I shall assume a strictly convex ordering -

this is no way limits the essential generality of what follows. 

----------~----------------~--------~----------------------------------------------------------
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Also it H'ill be useful to have the following 

Theorem V.S: xh(p, wh(p}) is a frontier point of B~ (p). 

Proof. Suppose not i.e. 

By non-satiation there exists ~ € Xh so that 

By convexity 0 < (l < 1 

But also for some a in the range 

and xh(a) E. B*(p) (since Xh is convex). But the xh (p, wh(p)) cannot 

be the solution to (3),contrary to definition. 
,,.,(.~\ 

Theorem V.6. ~(p, wh(p)) = ~(kp,/~h(p}), k > 0 (demand function is 

homogeneous of degree zero in p). 

Proof: Obvious. 

Lastly I prove the following result for those who have not 

spent their few pence on Arrow-Hahn. It should be skipped by the not 

so mathematical. 

Theorem V.7*: xh (p, wh(p)) is continuous at all p >> 0. 

Proof. (i) v . v 0 
Let p >>0 a.ll v a sequence with p + p • Let 

= 

We want to prove that If not then there is € > 0 and 

11~-~11 > € all v. 

(ii) Define: 

av € 
and note v = 1 > B > 0 

II v 0 II = h = 
X - ~ h 

lv 
8
v v (1 - Sv) 0 

~ = xh + xh 

xh is lv 
€ xh all convex so ~ v. 

(iii) If it is the case that Uh(x~) lv 
> uh < x 1-- ) then 

For if not a convex combination of two points would be inferior to each 

of them which is impossible when Uh(.) is quasi concave. 
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(iv) Now 

II xhlv o - xh 
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X~-~ II = e: 

lv 
SO X is bounded and has a limit point xt E: Xh since Xh is Closed. 

But 

so v lv v v 
p x < 8 wh(p ) + (1 

v 0 
p ~ + 

0 v) v o 
~-> p xh = 

S. v o ( o) ( v) ( o) v 
~nee p ~ + wh p , wh p + wh p and S bounded one has 

Since xt ¢ ~ by assumption and xt e: B~(p0 ) one has 

> 

So for v large enough 

> 

and so by (iii) 

(v) Let xh be the vector defined in A.V.3. 

xh 0.) = A xh (1 - A) 0 + ~ 

Then by continuity for some A > 0 one has from (7) 

uh (x~v) < uh (xh (A.) ) 

and so as before 

< 

v But by the definition of xh (8) implies 

Take limits to get 

or 

or 

(5) 

(6) 

{7) 

(8) 

But if wh(p
0

) > 0 this is impossible by the definition of xh. Hence 
v 0 

xh + xh. 
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(8) Expenditure Functions. 

Let us ask what is the dual problem to (3). I claim that 

it is the following. If Uh is the utility attained when (3) is 

solved then solving 

will "almost always" give the same answer as solving problem 3 does. 

I shall write 

= 

that is,as the minimum expenditure required at p to guarantee utility of 

Uh. I now prove my assertion. 

Theorem V.8. a) If~ solves max Uh(~) on B~ (p) then~ solves 

min p~ subject to ~ R xg. 

b) If ~ solves min p~ subject to ~ R ~ then it also 

solves max Uh(~) subject to p~ < p~ provided there exists xh c px~. 

~-(a) If not then for some ~ R X}; 

Px < pxf: 
h · n 

By non-satiation there exists xh P ~· Let 

= 

For a close enough to unity 

p ~(a) < 

But since~ E B*(p) so does ~(a} and by convexity 

contradicting the definition of xg. 

(b) Define 

~ ~{a) = (1 - a) xh + a xh any xh such that p~ < p~ 
So P ~{a) < 0 < a < 1 

= 

Suppose Then by the definition of x£ 

a contradiction,and so 
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But the set 

= { ~ I X~ R ~) 

is closed and so xh(l) = xh belongs to it and 

But we know that 

So by transitivity 

which was to be proved. 

In what follows I shall take it that the conditions of the 

Theorem hold. 

tve now have a rather powerful tool and one which is quite 

similar to the cost functions of production theory. In particular 

Theorem V.9. a) e(kp, Uh) = ke(p, Uh)' k > 0 

b) e {p, Uh) is a concave function of p. 

Proof: Left to you (see T.II.lO) 

The expenditure function has the envelope property. I prove 

this important result now but compare to cr.II.8) 

Let 

Uh) 
Cle(p~ Uh) 

ek (p, = Clpk 
2 -

(p, uh) 
a e(p, Uh) 

ekj = apkap. 
J 

Then 

Theorem V.lO 

= k = 
;:....'\ th 

where ~k (p, ~~·~· is the k component of the utility maximising demand 

vector when maximum utility is Uh and prices are p. 

Proof. Let h e Rn and consider p + h 
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Then 

= 

(9) 

From (9) 

From (10) 

Divide both sides of 10* by I I h I I and let h + 0. Then since ~ is 

continuous the r.h.s. of 10* approaches zero i.e. 

lim 
h+O (11) 

Dividing (9*) by lhl letting h + 0 and combining with (11) now gives 

lim 
h+O 

So e(.) is differentiable for any h. Let 

h = (0 0 1 0 0) 

where (1) is in the kth place. Then from (12) 

as was to be proved. 

This result will be further discussed in lectures. 

(12) 
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9) Compensated Demand functioneand Slutsk¥ equation. 

T.V.lO provides us with a number of easy but famous results. 

Here they are 
xhk(p, Uh) a 

Let ~kj (p, uh) = dp, 
- J 

and let E (.) denote summation over (n-1) indices which include 
n-1 

the index k. Then 

Theorem V.ll (a) ~kk<p, uh) < 0 

(b) xhkj (p, "i\) = xhjk (p, 0h) 

n 
(c) E ~kj{p, uh) Pj = 0 

j=l 

{d) t E ~kj(p, Uh) pjpk < 0 
n•lfl ... l 

Proof. For notational ease I shall now simply omit the arguments of 

functions but you must remember that all partial and second partial 

derivatives are taken at (p, Uh) 

a) By T.V.lO 

= 
as can be seen by differentiating both sides of ek = xhk. But e is 

strictly concave and so ekk < 0. (See Corollary II.4) 

b) Since e is a continuous twice differentiable function 

= 

or ~kj = ~jk 
This is the Slutsky ~mmetry result. 

c) Since e is homogeneous of degree one in p, ek is homogeneous 

of degree zero in p. {lfuy?) By Euler's Theorem on homogeneous functions 

one has 

E ek. p. 
J J 

= 0 = 
d) This again follows from strict concavity of e. I here spell 

it out. 



- 14 -

Let h = (0, h2 ) ••• ,hn). We know, do we not; that for a 

strictly concave function f(x), f(x + h) - f(x) < V f(x) h~ ~here 

V f(x) is the gradient vector of the first order partial differential 

coefficients of f(x). So in our case 

e(p + h, Uh) - e(p~ Uh) < r ek(p, Uh) hk 
k 

(13) 

But by a Taylor expansion of e(.) about (p, Uh) of pup to the second 

order, one has 

e(p + h, Uh) - e(p, Uh) 

Using {13) then gives 

E E ek. ( -u ) h h < o 
j k J p, h k j (14) 

Since h1 = O, and the other values of hi can be anything e.g. hi = pi 

one gets (d) when xhk" is substituted for ek. in (14). 
J J 

Now notice that>in all the above results,the households' 

utility has remained fixed at Uh. Hence we have been investigating 

the effect of price changes on demand when somehow utility is kept 

constant. In fact we have been studying the compensated demand curve. 

We have shown that under our present postulates it must slope downwards. 

In fact here is a restatement of T.V.ll in words 

a) A compensated change in its own price must reduce the 

demand for a good. 

b) A compensated change in the price of good j must have 

the same effect on the demand for good k as does a compensated change 

in the price of good k on the demand for good j 

c) If all prices change in the same proportion demand remains 

unchanged, i.e. demand is homogeneous of degree zero in p 

d) Let E pk xhk be the expenditure on a group of goods where 

the number of goods is less than n. Then a compensated equi-proportionate 

change in the prices of the goods in that group ~}11 reduce E pk xhk" 

This will be further discussed in lectures and in section 11. 
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These results are nice and empirically useful. Because 

of their importance here is an alternative simple proof which is only 

sketched, the rest is left to you. 

Consider p 1 ~ p and let~= xh(p, Uh)' xh = ~(p~ Uh). 

So that the choices xh and ~ in the two price situation give the 

same utility. By T.V.8 one has when preference strictly convex 

and 

From which 

p' x' 
h 

< 

< p' X 
h 

(p'-p){xh-~) < 0 

Setting p! = p. all i ~ k you at once get the discrete version of 
l. l. 

(a). Taking a Taylor exp~~•sion up to the second order one gets 

(d). Symmetry cannot be established in this way~ 

(15) 

So far we have found the behaviour of compensated demand -

what about the behaviour of demand? 

Plainly when,at (p, wh(p)),the household has maximised i~ 

utility one has 

= (16) 

Nmv as long as (16) continues to hold when some price changes, Uh 
J 

constant, the household can stay on i~ compensated demand curve since 

the wh changes by just enough to enable h to continue to attain the same 

utility at minimum cost. So we can write 

= (17) 

Let 

e(p, Uh) - wh(p) = yh (18) 

In equilr~ yh = 
dyh 

0 b he h . th . . h d , ut w n say t e J pr1.ce 1.s c ange we can 

calcula ~ do. as the compensation (positive or negative) the household 
\ . )\ 

needs in order\ that he should have just enough to maintain his old 

utility at minimum cost. 

\_ 

) 
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Differentiating both sides of (17) partially with respect to 

p. one now has 
J 

xhkj(p, Uh) 

From (18) 

But by Th.V.ll.(a): 

If we suppose dhf 

dXhk(p, yh) 
+ 

d~k dyh 
(19) = ap. ayh dp. 

J J 

dyh 
= 

dVlh (p) 
e -dp. J ap. 

J J 

e. = xhj J 

= 0 all ~ the~t 

awh(p) a 
()p • = ap . ( P xh ) = xh j 
- J J 

So substituting in (19) and rearranging we obtain the famous Slutsky 

equation: 

'v. 
If t 

= xhkj(p, uh) + <X"hj (.20) 

The left hand side of (20) is the change in demand for good k when the 

price of good j varies. The first term on the r.h.s. of (20) is the 

compensated change in the demand for k whenYj varies. I.e. that change 

in demand which would occur if h stayed at his old utility level. It 

is called the substitution effect. The last term on the r.h.s. of (20) 

is called the income effect. 

Notice that 

and so measures the rise (fall) of wealth above (below) the minimum cost 

of staying at the old utility level. E.g. if that expression is positive 

the individual after the change of p. >'fill 
J 

have more wealth than he needs 
axhk 

Then -
3
--- measures the 
yh 

to stay at Uh and so he can reach higher Uh. 

rate at which h changes his demand for k when p is constant but the gap 

between wealth and minimum expenditure to stay at Uh, changes. Let 

us call it the marginal propensity to 

axhk 

ayh 

consume good k and write 

------'-~~~------------~-~---------

I 

J 
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Here is the familiar picture 

). 

I'-
: .. ,, wh (p) 

a c b r 
'>!e(p' U 

Fig. v .1 ' h) 

\'le start at B where wh (p) = e(p, Uh). 
~ 

So wh(p') is as drawn,as is e(p', Uh). 

One reads off 

= 

axhj = 
()p. 

J 

ac - ab = -cb 

a(3 + ay. 

p! = p. all i ~ j, p! < P.• 
l l J J 

A~ wh ( p ' ) > e ( p ' , uh ) • 

All this will be discussed in lectures. Here to finish the section are 

some defintions 

Definition D.V.6 

a) Good j and k are substitutes C2om~!~~nts) according as 

xhkj(p, Uh) > 0 (resp. ~kj(p, Uh) < 0). Recall symmetry. 

b) Goods j is a gross-substitute (gross-complement) for good k 
axhk(p, yh) axhk(p, yh) 

according as > 0 (resp. < 0). (i.e. income 
ap. ap. 

J J 
effects are included and symmetry is lost so that j may be a gross 

substitute fork and k a gross complement of j). 

c) Good k is normal if xhky > 0 and inferior. if xhky < O. 
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Example. Prove that for the utility function 

= a log xhl + (1 - a) log xh2 ' 0 < a < 1 

•J'"I!vk 1. 

both goods are normal and 
11
gross substitutes for each other. 

We now have deduced a good many implications for the demand 

of a household from tbe postulate that it knows what it wants and 

how to get it. Certainly we coul~ for instance) by cross-section studies 

over households which we take as similar or by keeping records of a 

given households' expenditure (as was done in Wisconsin)1 hope to estimate 

income and substitution effects separately. Read 

A. Brown & A. Deaton: "Models of Consumer Behaviour: 

A Survey." E. J. Dec. 1972 for a survey. . 

But we can use the theory also for purposes of welfare economics 

and we can specialise the theory to make it both empirically more 

tractable and perhaps also more realistic. I shall now take a brief 

and very incomplete look at both of these matters. 

Let us investigate this further. To do so I shall introduce 

an important new concep~. 
/ 

Definition D.V.7. The indirect utility function Vh(p, yh) is defined 

by 

or equivalently: 

Think about this! Vh(.) gives the maximum utility attainable at (p, yh). 

[I have implicitly taken y = 0, else I should have to write 
h 

Now notice: 

= 

Hhy? Because if xhj 

for small changes in 

in ( 22). 

axh. 
b_y (3*) = A ~ __Ql pj Clp 

k 
(22) 

- APj < 0 the xhj will remain zero 

simply leave it out of the summation 
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But 

= 0 

So differentiat~} with respect to pi.: 

= 

and so 

= (23) 

It is important to understand and know this result. Also one has 

v 
avh 

= !: 
auhj clxhj 

= by ( 3~':) = A· E p. 
axhj 

= A. (24) 
hy -

ayh ()~j ayh ayh J 

So the Lagrange an in ( 3;':) measures the increase in maximum utility from 

a little more wealth. It is thus not invariant under a monotone 

transformation of the utility function. 

10) Welfare Theory: Examples. 

Example (1) Consumer Surplus 

If the household d6es not exchange at all and it receives no 

profit then it~• utility is Uh(xh) = Uh say. Associated with uh is 

the minimum expenditure e(p, Uh). Then it may appear reasonable at 

first sight to call 

a measure of the gain the household in fact makes from exchange. For 

if (2~ > 0 plainly the household will exchange and we could tax (~) 

away from the household and still allow it to reach Uh. The difference 

between the wealth the household has and the wealth it would nee~to have 

the "no-exchange" utility is one measure of what Marshall called 

consume~'• surplus. 

How do people gain from exchange? They do so from the fact 

that only on the marginal transaction is the marginal utility of what 

is gained equal to the marginal utility of what is given up. On the 

intra-marginal transactions the former exceeds the latter. Hence a 

kind of rent is earned. This will be further discussed in lectures but 

any one who does not understand this is not an economist~ 
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But evidently (24f) is trying to measure a "utility gain" by 

a value sum and there may not in general be a unique measure of consumer 

surplus. Let Uh be the utility actually attained after exchange and 

e(p, Uh) it~a minimum cost. Suppose that for one p 

Then 

e(p~ uh) - e(p, oh) 

could be different from (24r.) yet also a measure of consumer surplus. 

Why? So in general the measure will depend on p. If you have this 

under your belt let us return once more to consumer's surplus. 

I am now interested in measuring the consumers' surplus on a 

single good)say k,given the prices and consumption of all other goods. 

Let 

= ~k) 

the net demand for good k at p. I take zhk > 0 at p) i.e. the guy is 

buying it at p. Now by (22) 

vhk dpk = -A. zhk dpk 

Suppose that Hhen pk = pk' other prices constant, zhk = o. Then 

= (25) 

provided that A. is independant of Fl(:• Now the l.h.s. of (25) measures 

the total utility gained from facing the price pk rather than the price 

pk. We may chiDse A = 1 since it will be constant anyHay and integrate 

the r.h.s. of (25) by parts: 

= 
pk 

( 
_) dzhk pk - pk zhk 

pk 
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So geometrically one has 

' / / 
··--. · ~· I I · 

...... .>:// //, /~ 
/I/ 1/il/ ,. . ,<z-'1 ,, 

. / .f'k/ h'k/ / I/ 
11'///.-"'/// 

So the well known Marshallian triangle emerges if A can be taken to be 

independent of pk. 

But of course in general A is not constant and very often other 

prices are not constant either so that the greatest care must be taken 

in trying to arrive at actual numerical estimates. 

Example (2). Index Numbers. 

This is a large and fascinating topic and I can do no more 

than scratch the surface. A good reference is: F. Fisher and K. Shell: 

The Economic Theory of Price Indices, (Academic Press). 

Let a superscript 1 denote "today" and a superscript 2, "tomorrow". 

One has 
1 2 1 2 

p ' p ' uh, uh etc. 

He ask: At 2 
p how much would we have to tax (positive or 

negative) h in order that he is indifferent between facing the budget 

constraint of 2 with this tax and the budget constraint he faced at 1?. 

That is,we could calculate 

2 (26) 

yh 1 
An equivalent formt:.:!-'ition is to solve for /yh , where y1 

h 
is given, 

from 

1 1 2 2 (27) V(p ' yh) = V(p ' yh) 

Notice that (26) measures the gain (loss) in "consumer surplus" from a 

change in price for 2 1 
Also the reference point, if you like p to p . 

"the .weig~ts" , is situation ( 1). If we could solve (26) or (27) then 
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giving (26) to h in "2" would leave him indifferent between the two 

situations. Plainly (26) therefore has a claim to be a measure of 

the change in "the cost of living". 

But in principle we could reverse the question and treat 2 

as our reference point. He would then get 

( 2 02) 
e p ' h ( 1 02) 

e p ' h (28) 

and we are asking: how much income would we have had to give to h 

in 1 so that he should be indifferent between the resulting budget 

constraint of 1 and that of 2? Unfortunately except in special cases, 

there is no reason for (26) and (28) to coincide. 

Before I proceed notice (a) that the ambiguity of the "true 

cost of living index" i.e. whether (26) or (28) should be used, is 

identical to that which arises if one tries to measure consumers surplus. 

(b) Both (26) and (28) assume two things: tastes are constant and ·the 

quality and number of goods is constant as between (1) and (2). This 

in general may be a bad assumption. The vulgar thing is to conclude 

that this difficulty must vitiate all attempts at a satisfactory index. 

Read Fisher-Shell to see what can be done although you should be able 
t!LA'~\r- . 

to prove some of theS"e results more elegantly than they do. 

Let me now re-formulate (26) as 

( 26~':) 

as one possible index. But we do not observe "indifference". So 

suppose we asked instead, which is what of course is often done in 

practice: how much income would we have tc assure to h in 2 so that 

he could buy the goods he bought in 1? So we have the Laspey•res~ price 

index 

1 1 
But p xh = 

2 1 
p X 
- hI 1 1 

{ 1 Ul) e p , h and so 

> 

p~ 

2 01) e(p , h 

(29) 

(30) 



- 23 -

(29) follows from the fact that the minimum cost of attaining U~ 

at prices p
2 

cannot be greater than the cost of the bundle known to 

yield U~ at prices p
2

• The inequality may be strict for the obvious 

reason that there will now be substitution possibilities. Do not 

proceed until you understand. Draw a diagram in two dimensions. 

So we have 

Laspeyi're.;, > 
e(p

2
, u~) 

'/ 1 Ul) • 
e(p ' h 

Rewriting (28) as 

We consider the Paasd« Index 

2 2 
But p xh 

whence 

= 

2 2 
p X 

hi 1 2 
p xh 

( 
2 u2) d b h b. efore e p , h an y t e same argument as 

Paashe < 

> ( 1 U:;e) 
e p ' h 

( 2 U2) 
e P ' h 

I 1 2-
e(p , Uh) 

Now if ( 261=) = ( 28~':) we would have 

LaspeyMTel > (26*) = (28*) > Paashe 

(31) 

(32) 

(33) 

(34) 

and then, since Laspeyere and Paashe are observable one could argue 

that there is a good case for saying that the "true" index is some sort 

of mean of these two. In fact it can be shown that in the very special 

case of ( 26~':) = ( 281:) the geometric mean of Laspeyfre~\ and Paas:he 

does best. 

When will (26*) = (28*)? Start with a definition: 

Definition D.V.8: A function f(x) is homothetic if 

f(J~x) = e(k) f(x). k > o. 
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Suppose then that Uh(~) is homothetic. Then we can solve: 

Right. Next notice that 

e(k) u2 
h 

Why? Because for a homothetic function 

af(k x) 1 af(k x) 
ax. 1 ax. 

~ ,' J 
= 

I 

3f(x) / 3f(x) 
axi / axj 

(35) 

( 36) 

So when we are dealing with utility functions, the marginal rates of 

substitution between any two goods remain the same when all goods 

consumed are multiplied by k. But if prices are constant)(36) then 

follows. Make sure you understand! 

But then using (35) or (36) we have 

= 2 U2) I k/ 1 U2) k e(p , h e(p h 

and we have proved 

Theorem V .11. When Uh(xh) is homothetic (34) holds 

(11) Separability. 

Once again I shall deal skrtchily with an interesting and much 
... ~t:,..t../r 11b 

studied problem. t1ost of the decent work here is due to W. H. Gorman 

and I follow his procedure. 

It seems reasonable or at least acceptable to suppose that a 

household engages in two - or more-stage budgeting. First it divides 

goods into categories such as "food" "clothes", "holidays" etc. and 

divides it's income between these categories. Then it proceeds to 

choose "within" each category. 

expect 

Let w be the wealth allocated to category r. Then one would 
r 

= i e:: r (37) 
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That is) the demand for good i in category r depends ~nly on the price 

r vector p of goods in that category and on'the wealth allocated to 

category r. Of course 

E w = w 
r 

Let us say when demand functions can be written as in (37~that there 

is two stage budgeting. 

Next let us say that the utility function is separable if 

( 38) 

One may think he~of v (.)as the 'sub-utility' or 'felicity' of bundler. 
r 

That is~we have an ordering over bundler which has a numerical 

representation and then we have an ordering over the composites v {.) 
r 

which is represented by Uh( ). One has the following 

Theorem (Gorman). If U is quasi-concave and continuous then it is 

separable iff two stage budgeting is possible. 
' 

Necessity is obvious. For if (38) then ~lainly the household 

must at it~• maximum utility have solved the problem 

r r 
p ~ s.t < w 

r 

and that must give a solution of the form (37). Sufficiency is harder 

and is not given here. 

Let us see why separability is of great interest. To do that 

adopt the following notational convention 

x:': 
nij = 

So that x~ij is the substitution effect of the price change. 

Now for (37) 

x~ij = (xhiw} w;j · ~==========~~ 
Clxh. 

where~. = ~ and w*. is the compensating change in the wealth 
n~w Clw rJ 

r 
allocated to group r when p. changes and utility is to remain constant. 

J 

Notice by assumption xhi does ~ depend directly on pj when i e r and 

j e s. But from symmetry 

(xh. ) w~·: 
~w rj = ( x.. ) w~': 

hjw si 
(40) 
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= ( 4-l) 

Now the l.h.s. of (41) does not depend on i and the right hand side 

does not depend on j so we can write 

(41) = A. say 
rs 

Whence 

w~·~. = A xh. (42) 
rJ rs JW 

and substituting in (39) 

x~·· = A 
hij rs 

i E r, j E S (43) 

which is very nice3 is it not,since we can now in empirical work estimate 

substitution effects from income effects like xh. and xh. • Since we 
JW 1.W 

need income effects anyway this saves a lot of work. 

What is the meaning of A ? 
rs 

To examine that multiply both 
I 

sides of (42) by p., and add over j E s. Recall that 
J 

so that we get 

!: 
j e:s 

p Ttl~·: 
j rj 

= 

= A 
rs 

= w s 

L: p, xh. ~= A 
J JW . rs jes _ 

(44-) 

But the l.h.s. of (44) is the increase in the expenditure on 

goods in group r when the prices in group s change in the same proportion. 

It is like the expression in Theorem 

goods in group r at constant prices 

X and do the same for goods in group 
r 

~gc.r) 
V .11. (d ~ So if we aggregate all 

r 
L: Pi xhi and call this a new good 

iEr 
s and call the aggregate X and 

s 

say that the price of X changes when all prices in group s change in 
s 

the same proportion, the A »& is the substitution term between X and X • 
I:J r s 

So, of course 1 

A = A rs sr 

So we need only estimate in-between··group substitution terms 

and income terms in order to estimate demand. 



So E 
ie:r 

r 
p. 

1 

Lastly, notice 

·'· W"'"• = rl 

that 

l: 
j e:r 

= 
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r 1: p. xhji J 

E 
ie:r 

-

+ :r 
}':hi 

w 
r = 

for i e r 

A 
rr 

(45) 

since the r.h.s. of(4~measures the substitution effect on the aggregate 

X of an equi-proportionate change in the prices of the goods comprising 
r 

the aggregate. So then as in T.Vll, (c) we get 

E A 
rs s 

l: p. w* - w = 0 
• J rj r 
J 

since w is homogeneous of degree one in p. 
r 

This is only a very small part of the available theory. Notice 

that as we specialise our assumptions we get sharper predictions. 

(12) Revealed Preference 

This section is in the nature of an appendix. Serious study 

can be postponed until the third year. 

Dear Professor Joan Robinson and many others have a dislike 

of a theory which starts with assuming that households have preferences. 

How is it to be tested? The answer is by observing the households in 

certain situations. 

Suppose we use the notation of section (10) and find, by 

looking, that 

> (46) 

Then we say: 
2. 1 1 2 

h ld t h b ht . K ~ B~··(p ), but dl."d cou a p ,ave oug xh, 1.e. h ~ · 

not. So if h does have decent strictly convex preferences it must be 

that 

But then we must not observe 

> (47} 

for by the same argument, (47) implies 
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and that would be horrid. So if (46) and not (47) we say the household 

satisfies the Weak Axiom of Revealed Preference. OJ.R.P.) 

In principle it would appear that if we choose enough suitable 

1 2 & 
pairs (p , p ) and incomes;~ 

' ' ' A " ') ) ,j~;:....,, /'"'~' 
if W .R. P ,, for all of them;we could 

experimentally determine what the preferences of h are. But that is 

too hasty. For even though W.~.~. holds the household may choose 

intransitively. So we need it never to reveal intransitive choices,however 
' 

long the chain. For-rnallyJlet 

Then by W.f\..~. 

i-1 
p 

For transitivity one wants 

> 
i 

p 

< 

p 

i-1 
p 

T-2 
'P X - ' h 

i = 

... 

T ••• 1 

/ 
) 

(48) 

{49) 

That means that given a choice like (48) no experimental known choice 

r o between xh and ~ should contradict (49). If this is the case the 

household is said to obey the Strong Axiom of Revealed Preference. 

Lastly,to get a proper utility function the household must 

reveal certain continuity properties. But that is getting beyond 

where we reasonably want to get to. 

The point is really this: It is extremely unlikely that any 

actual experiment can fully reveal preferences. What is true is this: 

we can use evidence to say that so far we have not observed anything 

which falsifies the assumption that the evidence is generated by the 

choices of rational households. 
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