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LBCTURES ON GAl'lli TfiEOHY 

b,y-

Robert Al.llllarm* 

ChaEter 1: Zermelo's Theorem 

Game theory is a theory of rational behavior of people with.non-

identicd interests. Its area of application extends considerably 

beyond games in the usual sense--it includes) for e:r:ample, economics)· 

politics, and war. By the term "game 11 ~re mean any such situation, 

defined by some set of nrules." 'l'he term ''l.1lay1
: refers to a particular 

occurrence of a game. Thus chess is a game, and several plays of chess 
\ 

took place in the summer of 1972 betvreen Fisher a..lld Spas sky. 

He begin \vi th Zermelo 1 s theorem on chess. 

\ 

l.l l'Jl9=9.J'.t2El (Zerme1p [1912])~ In chesFJ either 1-rhite can force a \vin, 

Proof: We vrill prove the :result ·for a famil:/ of games\ that 

includes chess. Each game in this family is ci1aracterized b;r: ( l) a 

position in chess, (2) an indication of '\rho must move 11 (black or white), 

and ( 3) a positive integer n (with the tmderstanding that if the game 

O.oes not end in mate or dra\r within n single moves at most' then it is 

declared a drm·r). (Chess is a member of this family b-2cause the number 

·*Based on lectures delivered at Stanford Lmi versi ty in tr1e fall of 197) 
and 1Jinter of 1976. Notes tal'-en b:t' Haruo Imai, Jose Corao"ua, and 
Martin J. Osborne. 
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of moves in chess is boooded (by the rule vrhereby a play of 

chess ends vrhen the same position is repeated three times).) 

We prove the result by induction on n. ·The reason for using 
~· ,· 

the larger family is that it strengthens the inductive hypothesis and 
; ' 

·\i 
' so makes the inductive proof possible. This is typical of inductive 

proofs. 

Suppose n = 1. If black moves, black can either mate on that 

move, or he cannot; in the first case black can force a wi~, and in the ~· 

second c:_-,se, both players force a draw. Similarly for white. Now t;_ 

) 
I 

assume the theorem is correct for all n < m - l. Ide wish to deduce 

the theorem for n ~ m. Without loss of generality (henceforth abbre-

J 
I 

viated w.l.o.g.) suppose black moves first. By the induction hypothesis, 
''-~· , I 

I 
\. 

after black has ntade the first move, either black can force a win or 

white can force a win or both can force at least a, draw. In other words, 

vri th each move by black~ designated by p, there is associated a letter 

f(p) that may be b, w, or d (b, w and d stand respectively for 

"black can 'force a vrin, 11 "white can force a win~ 11 and 11both can force at 

least a draw"). Then there arise three mutually exclusive and exhaus-

\ 
tive 'cases: 

(l) If there is a move p of black such that f(p) = b, then 

black can force a win in the original game. 

(2) If for all p, f(p) w, then white can force a win in the 

original game. 
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(3) Otherwise, there is no p for which f(p) = b, but there is 

a p for which f(p) = d. Hence black can force at least a draw, and 
·', 

so can white. 

This completes the proof of the theorem. 

We now introduce a concept of fundamental importance in game 

theory, that of strategy. By the term?tr~, we mean a complete plan 

for playing a game (for one player), taking all contingencies into 

account, including what all other players might do in the course of the 

play. 

For example, in Tic-Tac-·Toe the first player has at most 5 moves, 

and for each move there are at most 9 possibilities. Nevertheless he 

has far more than 45 strategies. For a strategy is a complete plan, 

and the munber of possibilities in a complete plan which covers only 

the first two moves of the first player is already 504. This is because 

for the first move there a,re 9 possibilities~ and for each of the 8 

possible responses of the second player~ player 1 has 7 choices for his 

second move. 

In terms of strategies, Zermelo's theorem is illustrated in the 

three tables on page 4. The rows represent strategies of uhite, and the 

columns strategies of black. The numbers 1,2, ... index the strategies. 

To each pair of strategies of 1-rhite and black, there correspond;:; one of 

·! the letters w, b and d. If uhite can force a win then there exists a 
0 

strategy of white which, no matter which strategy black plays, assures 

-vr. If black can force a ~orin, then there exists a strategy of black 

\ 
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Black can force a win if and only 
there is a colunm k that is 
filled with b's. 

1fui te can force a win if and only if there 
is a row k that is filled 1-rith w' s. 
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Both can force at least a drav if and only if there are 
a column k that does not have a '<r and a rovr k' that 
does not have a b. 
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A line connecting two sides in Hex. 

which, no matter which strategy white plays, assures b, If both can 

force at least a draw, then there is no strategy which assures w 

to white and no strategy which assures b to black, but there are 

strategies of white and black which assure at least d for both white 
/ 

and black, 

1. 2 Exam_:pl~ (Hex): The following rules define the ga:me of 11Hex." 

There are t;w players, vrhite and black, The 11boEtrdn consists o.f a 

parallelogram of dots, as in the drawing above. The first move is made 

by white, vrho circles a dot on one side of the parallelogram. Black 

then circles a dot on an adjacent side. The players then take turns to 

form a connected series of dots from their chosen stm~ting points> each 

aiming to reach the sid.e of the parallelogram opposite his starting 

point. A connecting line must coincide with the side of. one of the 

small equilateral triangles defined by the dots, and must not cross the 

line formed by the other player. It is clear that this game belongs to 

the family of games for which Zermelo's theorem is applicable. Also, 
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a little thought will show that a draw is impossible in this game. 

Thus either 11hi te can force a win or black can force a win. He now 

prove that in fact white can force a win. To this end~ we show that 

if black could force a 1-rin ~ then white could force a win. 

Let us define Reversed Hex to be the same as Hex, except that 

black moves first. If black could force a win in Hex, then 11hi te could 

force a win in Reversed Hex. Consider now. a play of Hex. Hhite can 

play by making an arbitrary move to begin with, subsequently ignoring 

that move and playing to ~<rin as if he ·Here in Reversed Hex. If at any 

time his strateE,-y dictates occupying the point he occupied on his first 

move~ then he can simply occupy another arbitrary point. This will 

lead to a win for him, which is a contradiction. Thus it is impossible 

for black to force a win in Hex; hence white can force a win. 

Note that this is simply a proof of the €xistence of a· winning 

strategy for vhi te; even for boards of moderate size (say 12 x 12 or 

13 x 13) no winning strategy for white is actually known. 

"(,·., 

1. 3 Example (Kriegsspiel): Consider the game known as 11Kriegsspiel ~ 11 

whose rules are as follows. Black and white play chess separately 

without knowing each other's position; each is informed when a move he 

proposes is illegal because of the positions of the pieces of the other 

player. For this game, the proof of Zermelo's theorem given above can­

not be applied, and in fact the theorem itself probably does not hold. 

'I'he difference betvreen chess and Kriegsspiel lies in the fact that at 

each stage in chess every move made up to that stage is known by both 

players, while this is not true in Kriegsspiel. This makes the 
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inductive step in the proof of Zermelo's theorem invalid, because the 

player whose turn it is to move does not l\:now to 1rhat position his 

move will lead. Technically, chess is a game of perfect information, 

whereas Kriegsspiel is not. 

Chapter 2: Noncooperative Games 

In the games we have discussed up to now there are 2 players 

whose interests are completely opposed. It is clear that when there are 

more than 2 players, they cannot have completely opposed interests. 

This motivates the following definition. 

2.1 Definition: A game is strictly com~titive if it has two players 

(1 and 2) and for any two possible outcomes x and y, if 1 prefers 

x to y~ then 2 prefers y to x. 

In a strictly competitive game? we can assign numbers to the out-

comes such that a higher number corresponds to an. outcome that player 1 

prefers. If we do this in chess, then Zermelo's theorem asserts that 

there is a number v such that white can guarantee that his payoff will 

be at least v, and black can guarantee that white's pa~roff will be no 

·more than v. This motivates the following definition. 

2.2 Definition: A nUmber v is said to be the minimax value of a 

strictly competitive game if player 1 can guarantee that his payoff 

will be at least v, and player 2 can guarantee that the payoff of 

player 1 will be no more than v. 
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Not all strictly competitive games have minimax values. For 

example~ the game "matching pennies," in which the payoffs to 1 are 

those given in the follo;.ring table has no minimax value. 

Strategy l 
Player 1 

Strategy 2 

Player _2 

Strategy 1 

1 

Strategy 2 

-l 

l 

\>/e would now like to_ generalize our considerations to games that 

are not necessarily strictly competitive and may have more than 2 players. 

2.3 Definition: A r~a!he G 
D~· ~--

(in strategic form) consists of: 

(1) a set N (the players); "f-l.. 

(2) for each player i, a set si (the strategies of i); and 

(3) for each player i, a function hi: X s i +lli (the payoff 
iEN 

function of i). 

2.4 Remark: The term "strategic form 11 is used to indicate that we 

have abstracted from individual moves and are looking only at strategies. 

If s E X si (i.e. ·s is an n-tuple of strategies) and 
iEU 

ti E si (i.e. ti is a strategy of i), write s I ti for the n-tuple 

of strategies which is the same as s except that ti is substituted 

for i's strategy si in s. 

2.5 Definition: An ~uilibrium point_ of G is an n-tuple s of 

strategies such that for any player i and for any strategy ti of i, 

· .. - ... ·~· ·. ' 
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A tw·o-person zero-sum game is a game G with n = 2 such that 

for all strategy pairs s, we have h1 (s) + h2 (s) = 0. Clearly, a two-

person 0-sum game is strictly competitive. In such a game,· a pair s 

is an equilibrium point if for any t 1 and t
2

, h1 (slt1 ) < h1 (s) and 

and 

This llle"""S +.h·~+ h1 (s1 .s2 ) th . • al nth _ =~ " <-<>U _ , 1r1 ·_ e mu:umax v ue ox .e game. Thus we 

see that a t1w-person 0-svm game has a minimax va,lue if and only if it 

has ar1 equilibrium point. \~e nm·r vrish to prove n proposition that 

connects the existence of an equilibrium point (or equivalently, of a 

minimax value) in a t1w~person 0-sum game to what is called the "minimax .... 

property." 

2.6 Definition: A subset of a Euclidean space is said to be ~ompact 

if it is boQnded and closed. 

2.7 Remark: A real-valued continuous function on a compact set 

attains its maximum and its minimum (the proof is left to the reader). 

2.8 Proposition: Let G be at·vlo--person zero-sum game. Assume that 

the Si are compact subsets of Eu2lidean spaces and the hi are conti-

nuous. Then a necessar,;y and ~ufficient condition for the existence of 

is that 

max min h1 (s1 ,s2 ) = 
1 2 

s s 

ml·n 1 1( 1 2) max 1 s ,s 
2 1 

s s 
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Rem.ark: rr'h t . ~ max ml' n h1 ( s1 's2 ) .1. e quan n,y 
c; \ ~ .. 

represents the largest 

amotmt that player 1 can guarantee to himself by playing an appropriate 

strategy. S . '1 1 . hl ( 1 2 ) 1m1 ar y, m1n max s , s represents the smallest amount 

such that player 2 can guarantee that player 1 will not obtain more 

than that amotmt. In "matching pennies, 11 which has no minimax value, 

these amounts are different: we have max min= -1 and min max= 1. 

2.10 Remark: The compactness and coniinuity of the payoff functions 

hi are needed to assure that max min and min max exist. 

2.11 Remark: The Cartesian product of compact sets is compact (the 

proof is left to the reader)~ 

2.12 Remark: Let h be continuous on s1 
X s2 and let s1 and s2 

' be compact. Then 1 2 min h(s ,s ) 
2 

s 

proof is left to the reader.) 

is a continuous function of 

.Proof of Proposition: VIe first assert that always 

(1) max min 
1 2 

s s 

max 
1 

s 
./~~>-

,' .J 

max hl(c! c . 
\ ...• ) " ! 

Taking the minimum over· '-;;l on both sides, we deduce 

(The 
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. hl( 1 2) nun max s ~s 

2 1 
s s 

1-l I 
~x ~x 

.· Since this holds for aJ,.l }3 , it holds also for the s at which· the 

right hand side attains its maximum; hence 

This completes the proof of (1). 

{ ~: J <;~) 
Assume now that s 0':: is an equilibrium point; i.e. for all s 1 

and 

Then for all 1 s and 

h 1 C5~ 5?.-) 

max min tiJJ' > 
l 2 1\ -

s s 

2 
s ' 

Together with (1), this yields 

max min 
1 2 

s s 

1( 1 2) = v > max h s ,s0 
1 

s 

hl( sl. 5 2) > min max , 
2 1 

s s 

. - ~ . 
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Finally assume, conversely, that 

max min h1 
== min max h1 

l 2 2 l 
s s s s 

Suppose the maximum on the left is a.c:hieved at 

Similarly, let 

1 l 2 min h (s
0

,s ) 
2 

s 

For all s1 and s 2 , we therefore have 

Substituting s = s 0 we get 

and hence 

-~ 
\ 

max min h1 = 
l 2 

s s 

1 l 2 l l 2 h( ) 'h"( ) max . s ;)s0 ~ . s ~s0 
l 

s 

min max h1 

2 1 
s s 

Thus s0 is an equi~ibrium point, and the proof of the proposition is 

complete. 

----------------- ---------- -· -~...- -- - ----- ---.- ---.---
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We introduce now the concept of the "mixed extension of a game. 11 

2.13 Example: Consider the game "matching pennies," introduced above. 

The interpretation is that each player shows the other one side of a coin. 

If both players show the same side then player 1 wins. If not, player 

2 -vrins. We have seen that this game has no minimax value, or, eq_uiva-

lently, no equilibrium point. As a consequence, no playing system can 

be sustained by a player 9 since the other player can outguess it and win. 

So each player ends up playing 8,1~ random; i.e. each player goes to a 
,. 

corner, tosses the coin and shows the side thus deter.mined. Playing at 

Tandom in this i<TaY is equivalent to choosing strategies 1 and 2 

each with probability 1/2. If a player plays at random, his expected 

payoff is 0, no matter what the strategy chosen by the other player is. 

Y.Te notice that random play expands the possibilities for strategy choices. 

Each player can now choose among a continuum of strategies--a continuum 

that -vre may represent by the unit interval [ 0 ,1] . We have a new game 

defined by: 

N = {1,2} 

s1 = {p: o ~ P < 1} s2 = {q: 0 < q < 1} 

and H
1 (p,q) = pq_ • 1 -· (1- p)q • 1 + (1- p)(l -- q)_l- (1- q)p • 1 

= (1 2p) ( 1 - 2q_) 

_This new game is called the mixed extension of "matching pennies." 
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2.14 Definition: A mixed strategy: in a game G is a strategy in 

the mixed extension of the game. 

Sometimes, ~<rhen we want to emphasize that we are dealing with 

strategies in G, rather than mixed strategies, we call them pure 

strategies. 

2 .15 [\._s_s~_rj:;j..Qp._: The mixed extension of 11matching pennies 11 has a 

unique equilibrium point. The equilibrium point is p = 1/2, q = 1/2. 

Proof: The existence of an equilibrium point (e.p.) follows 

directly from the fact that 

Since min 
q 

is unique. 

1 . 
H (p,q) is a function of p 1·ri th a unique maximum~ the e . p . 

The following is another example of a zero-sum game vi th no pm"e 

strategy equilibria~ but with an equilibrium. point in the mixed extension. 

2.16 Example: Consider a game with payoff matrix as belmr. 

2 2 
sl 82 

(q) (1 - q) 

1 
(p) 1 3 sl 

1 
(1 - p) 4 2 s2 
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He see that there is no pure strategy equilibrium in this game. Let p 

a:..1d g_ be the mixed strategies of players 1 and 2. Then 

Jf(p,q) = pq • 1 + p(l - q)3 + (1 - p)g_ • 4 + (1 - p)(l- q)2 

= -4pq + p + 2q + 2 

= -(1 - 2-p}(!- 2q) + 5_ 
- 2 2 

l<'rom this formula it can be seen that p = 1/2, g_ == 1/4 is an eg_uil-i-

brium point. We can also compute it by a direct method: namely by 

computing p such that min H
1 (p ,q) is maximum (end q such that 

q 

:max r(p,q) 
p 

is minimum) and verifying that max min 1 H (p,q) = min max 

He have 

r. 2 
if 1 

p <-

~(p,q) 
- 2 

min = 
q 

if l 
-3p + 4 p >-

- 2 

The graph of min H1 (p,q) looks as follows: 
q 

t 
min xr-w ,q_ 

q 

2 

0 

(1,1) 

1 

p q q p 

p+ 

.·-. 
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From this it is apparent that max min l 
5/2. H (p,q) == Similarly, 

p q 

r2q + 3 if < 
1 q = 4-

l max H (p,q) = 
p 

if 1 2q + 2• q >-= 4 

the graph of 
l . 

max H (p,q) thus looks as follows: 
p ; 

1 t 
max H (p,q) (1,4) p 

3 

Hence min max H1 (p,q) = 5/2. Since max min is achieved when p = l/2, 
q p p q 

and min max H1(p ,q) is achieved 1/.hen q = 1/h ~ it follows that 
q p 

(l/2,1/4) is an equilibrium point. 

In the games we are going to discuss next, the interests of the 

players are not completely divergent. They are called non-zero-sum games. 

2 .1 7 Example: Consider the game with payoff matrix as below. 'l'his 

game has two pure strategy equilibriUlll points 

These points remain equilibrium points in the mixed extension of the game; 

they corresp~nd to p = l, q = 1 and p = O, q = o; There is however-

---~-----------.----- ----·~-------·-------- --.. 
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2 2 
sl s 2 

{q) (1 - q) 

1 ( p) 1,1 0,0 sl 

'1 (1 - p) o,o 1,1 82 

an additional equilibrium point, p = 1/2, q = 1/2, since 

2(1 ) 1 
H 2'q = 2 

for all p 

for all q 

The expected payoff associated with this equilibrium point is (1/2,1/2) 

which is smaller than the payoff corresponding to the two other equi-

libria. This result provides a case for two possible interpretations 

of an equilibrium point. First, an e.p. may be interpreted as a self~ 

enforcing agreement. Once such an agreement is written dmm, it is of 

no advantage to either one of the two sides to violate it. For instance, 

if the two players agree to choose the point 1 2 ( s
1

, s
1

) , neither has any 

advantage in moving away from it. An agreement that is not an equili·-

brium point will be violated because there is an incentive to do so 

.and there is no enforcement mechanism. This interpretation is relevant 

in situations like international treaties and illegal collusions on 

constrained trade. Alternatively, an e.p. can be interpreted as a 

.'<t~: •• 
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natural outcome vrhen there is no possibility of communication between 

the players, but somehovr the e.p. in question is "prominent" or "natura.l;"· 

i.e. each player has reason to believe that the other one vrill play in 

accordance with it. In the case above the e.p. (1/2,1/2) is such an 

outcome·since the players cannot agree on either 

2.18 Example: Consider the game with payoff matrix as below. 

2 2 
sl s2 

(q) (1 ~ q) 
-

1,1 OsO 

1 s
2 

(1 - p) 0,0 2~2 

·•,$.-

The mixed extension o:f this game has three equilibria: 

p -- l q = :J pure strategies 
p = 0 q = 

2 2 mixed strategies p = q :::: 

3 3 

Note that the mixed strategy equilibrium yields a payoff that is vrorse 

for both players than either of the pure strategy e.p. 's. So it seems 

unlikely that this e.p. will be chosen even when communication is 

impossible. However, in this case it seems just as unlikely that the 

pure e.p. (1,1) will be chosen, since the e.p. (2,2) is better for 

both players than all other e.p. 's._ 

. -----~-- .. _.:._ --- ------------------~ ----------·----· --------------
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2.19 ExamRle: In the two above examples, we dealt with purely compe-

titive situations. Consider now a bargaining situation. 

2 2 
sl s2 

( q) (1 - q) 

l (p) 2,1 o,o sl 

1 (l ~ p) 0,0 1,2 82 

This game is sometimes called the 11Eattle of.the Sexes." (We may imagine 

'Ghat the husband prefers vacationing in the mountains while the wife 

prefers vacationing by the seaside, but both prefer a vacation to staying 

at home.) There exist two pure strategy equilibria p = 1, q = 1 and 

p = 0, q = 0~ and one mixed strategy equilibrium p = 1/3, q = 2/3. The 

mixed strategies outcome (1/3,2/3) makes the two players equally well 

·' (or badly) off, but is not efficient. It is dominated by both of the 

two other equilibria: both players are better off when moving to either 

pure strategy equilibrium. Here, the main problem is one of bargaining. 

Both players have an incentive to reach an agreement through bargaining, 

since it would ensure one of the two pure strategy equilibria. However, 

if an agreement c;annot be reached (either because the bargaining process 

is unsuccessful or because conmn.mication is impossible), then the mixed 

strategy equilibrium is the natural outcome. 

2.20 Example (Prisoners' Dilemma): Two prisoners are arrested by the 

police, but there is not enough evidence to convict them. The police ask. 

them to give evidence against each other. 

.~: . 
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There are three possible cases (two out of the four situations are 

symmetric). If one cooperates with the police and the other does not, 

the outcome is best for the one who cooperates (he gets freedom plus 

side advantages, such as a job and new identity)and worst for the 

other (he stays in jail under hard conditions). If both turn state's 

evidence, they will not be freed but will benefit from good treatment 

in jail; If both do not, both will be freed but cannot get side advan-

tages. 

The situation is expressed by the following payoff matrix: 

Prisoner 1 

not cooperating -vrith 
police 

cooperating w·i th the 
police 

not cooperating 
with the police 

5,0 

cooperating with 
the police 

0,5 

1,1 

(1,1) is seen to be the only equilibrium in either pure or mixed stra-

tegies. Some questions arise here. Why is (4,4) not called an equili~ 

brium in game theory, since (4,4) dominates (1,1)? According to the 

logic of game theory, though (4,4) may be a "good" outcome, it is not 

self-enforcing and so in a sense not "stable." 
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2.21 Example: Consider the game with payoff matrix below. 

2 2 
sl s2 

c (3 r (1 ~ (3) 

1 (a) 1,0 0,1 sl 

1 (1 - a) 1 1 1,0 s2 2'3 

Like matching pennies) this game has no pure strategy equilibrium; unlike 

matching pennies it is not strictly competitive. Now 9 let mixed strate-

gies a.~ (3 be as in the table. 

Assertion: If (a,(3) is an equilibrium point, then 0 < a < 1, 

0<13<1. 

Proof: Suppose not; for example, let a = 0. Then (3 = 1; 

but this is not an equilibrium point. Similarly for the other case. 

If player 2 plays 2 s1 he will get (1/3)(1- a.), and if he 

plays s~ he will get a. So for an e·quilibrium (1/3)(1- a) =a~ given 

the claim of the assertion. Thus a = 1/4. A similar calculation for 

1 yields (3 = 2/3. Note that to calculate a, only the payoff of 2 is 

considere~and to get S, only the payoff of 1 is. This is because 

for an equilibrium the strategy of 1 has to be such that there is no 

incentive for 2 to change his strategy, and vice versa. 

Player 2's payoff at the equilibrium point is, then, 1/4, and 

player l's is 2/3. An interesting aspect of the situation is that 

<t,._ •• ·"': .• 
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player 1 can actually guarantee himself a payoff of 2/3 (by playing 

the strategy a= 1/3), and player 2 can .~arantee himself a payoff 

of 1/4 (by playing the strategy S - 3/1~). So at the equilibrium point, 

.the two players get >rhat they can guarantee themselves: when each 

player looks only at his own payoff and plays as if the game were strictly 

competitive, each will receive his equilibrium payoff. But this behavior 

does not generate the equilibrium strategies: if player 1 chooses 

(1/3,2/3) and player 2 chooses (3/4,1/4), by changing to the strategy 

(0,1) player 2 can improve his outcome. Conversely, use of the equi-

lib:dum strategies does not guarantee that the players will receive the 

equilibrium payoffs: each player depends on the behavior of the other 

to do so. In this case, then, the equilibrium point seems lmconvincing 

as a recommendation for a self-enforcing agreement, since each player 

on his own pan guarantee the exact amount yielded by this "a.greement. 11 

Exercise 1: Find the equill.brium :points and equilibrium payoffs 

of the two-person game defined in the table below· (each pl~.yer has three 

strategies). 

0,0 4,5 5,4 

5,4 o,o 4,5 
--· 

4,5 5,4 0,0 



-23-

Exercise 2: Find the equilibrium points and equilibrium payoffs 

of the three-person game defined in the table below (each player has 

two strategies; player 3's strategies are to choose either of the 

·matrices of payoffs) . 

2 2 2 2 
sl s2 sl s2 

1 
1-

1 
sl l,l~l 0,0~0 s 0,0,0 0,0~0 1 

1 
0,0,0 0,0,0 l 

0,0~0 2~2,2 s2 s2 

3 3 
sl s2 

Exercise 3: Find the equilibrium points and equilibrium payoffs •· .. ''l'. 

of the two-person game defined in the table below. 

2 2 
sl s2 

.1 0,0 1,0 sl 

1 
0,1 1,1 82 

2.23 Theorem (Nash [1..9.5..J.-t/-.: .Tbe mixed extension of any game vrith 

fipitely many strategies has an eguilibrium point. 

Proof: The proof requires the use of the following theorem. 

Theorem (Brouwer's fixed point theorem): Let C be a compact 

convex subset of a Euclidean s:eace. Let f be a continuous function 

.. -
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from C into C. Then f has a fixed point; i.e. there is a point 

x in C for which f(x) ~ x. 

Let N = {l ,2, ... ,n} be the set of players and for each i in 

N let Si = {l ,2,, •. ,mi} be the set of pure strategies of player i. 

Let the payoff function of player i be hi( jl, •.• ,jk, ..• ,jn) E JR 

where jk is the pure strategy chosen by player k (1 < jk < mk). The 

corresponding mixed extension is defined by: 

the player set N = {l,2, .•. ,n} , 

i 
the strategy space of player i: xi= {(x1 ,x2 , .•. ,x i) E ~: 

for all j 

the payoff function of player_ i: 

n 

. m 

and 

i 
m 
I x. == 1} 

j=l J 
and 

Hi( 1 k n) 
X , • • ~ ,X j o o o ,X 

2 
m ))1 

L .. I [ 1 k n i( .1 k n)] x J ••• x k •.• x h J ~ ••• ,j , ... ,j 
j . j ~ .n 

.2 1 J = jn~l J 

is by definition the simplex of dimension i m - 1; we know that 

a simplex is convex and compact. We also know that the Cartesian product 

of compact convex sets is compact and convex, so that the Cartesian pro­

duct of the strategy spaces X=~ x x2 x x xi x .~ is compact 

and convex. Define the following function on X: 

(V x E X)(V i E N)(V j E Si) 

------~--------------------~------
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j 
i ~~ i 

where ej = (O,O, ... ~O,l,O, ... ,o) (i.e. ej is the j-th unit ve.ctor in 

and .Ri(xle~) is the value of Hi when the mixed strategy of i in 
J 

x (xi) is replaced by the pure strategy e~. Hi(xle~)- Hi(x) is, 
J J 

then, the gain or loss accruing to player i as a conse~uence of his 

from i to i move X e:. 
J 

Define the function f: X+X by: 

i 
+ g~(x) 

fi(x) 
X 

:::: J 
j i 

m 
1 + L g~ (x) 

j=l 

We see that f(x) E X and that f~ is continuous (Hi(x). is conti- . 

nuous since it is a polynomial in x and g~ is continuous since it 

is the· maximum of t\.w continuous :functions) • Hence, by Brou-.;.rer 1 s theorem, 

f has a fixed point; i.e. there :Ls an x in X for which f(x) == x. 

For this x, 

(1) 

i 

x~ I g~(x) = gji(x) 
J j=l J 

Assertion: For all i 

for which x~ > 0 and g~(x) = 0. 

(2) 

in N, there is a j with 1 < j i 
< m 
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If the assertion were false, then 

x~ > 0, in which case 

so that 

(3) 

for all 

I x~Hi(x) 
i J 

x.>O 
J 

for all j such that. 

j such tha.t 

(2) and (3) involve a contradiction, so tha;c the assertion is proved. 

since 

i 
m . 

Applying the assertion, (1) leads to I g~(x) 
j=l L 

g~ > 0, g~(x) = 0 for all i and j. Hence 
J - J 

and for every mixed strategy yi E xi 

i ,m 

= 0 for all i , and 

since IY. =1. 
j=l J 

We conclude that x is an equilibrium point, which 

establishes the theorem. 

Chapter 3: The Shapley Value 

In this and subsequent chapters, we turn to the theory of "coopera-

tive games,11 where the focus of interest is the way in which the players 

bargain together over the division of the available payoff, rather than 

the way this payoff can be attained by the use of certain strategies. 
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3.1 Definit..:i2Q_: A game in ~lJtional form consists of 

l) a set N (the players), and 

2) a function v: 2N + JR such that v(¢) = 0. (2N = {S: S C N}). 

A subset of N is called a coalition; v(S) is called the worth of the 

coalitiop. S. 

A ree t I " {. . • } 
bg~ men: r l1 ~:t2 ~ ••• ,)J.j is a set of pJ.ayers ~ we wili some-

times Y.>rite v(i1 i2· .. ij), rather than 

3. 3 Example. ( 2~person bargaining game): 

N = {1,2} v(N) = 1 v(l) = v(2) = 0 

3.4 Exam12le (Market for a perfectly divisible good with one buyer and 

two sellers) : 

N = {1,2,3} v(N) = v(l2) = v(l3) = 1 v(23) = v(l) = v(2) = v(3) = 0 

3.5 Example (Pure bargaining game with n players, or unanimity game 

with n players): 

v(N) = 1 v( S) = 0 for S ':f N 

3.6 Example (3-person majority game): 

N = {1,2,3} , v(N) = v(l2) = v(l3) = v(23) = 1 v(l) = v(2) = v(3) - 0 

.,: 
' 
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3.7 Example (Heighted majority game): 

v(S) • t if l w 
i 

> 3 
iEs 

N = {1,2,3,4} 

if X ,./ < 2 
iEs 

with 1 
w = 2 and 

i 
w = 1 for i ::: 2,3,4 

( wi Js the "weight 11 of player i. ) 

3.8 Definition: Let N be the set of players. Ann-person weighted 

~jority game with weights {wi}i~N and quota q is defined by 

··~ 
v(S) = ~~ 

if }: vr i ::.CJ. 
iES 

if I w 
i 

< CJ. 
iES 

3.9 Definition: v is monotonic if s=>T implies v(S) := v(T). 

(Note that this does _not mean that lsi > IT! implies v(S) ;::, v(T) 

(where, lsi is the cardinality of s).) v is ~eradditive if 

snT= ~ implies v(S U T) > v(S) + v(T). 

Unless specifically stated, it will not be assumed that v is 

monotonic or superadditive. 

3.1a Pefinition: A game is a-normalized if v(i) = a for all i in 

W; it is a-1 normalized if it is a-normalized and v(N) = 1. 

3.11 Definition: i and j, elements of N, are substitutes in v 

if for all S containing neither i nor j, v(S U {i}) = v(S U {j}) . 

. --. ---------·- ......_, ----~- ~ 
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3.12 Definition: An element i of N is called a null player if 

v(S U {i}) = v(S) for all S C N. 

3.13 Definition: Let A and B be two sets. Then BA is the set 

of all functions from A to B. ~ is the Euclidean space of dimen-

sion jNj. 

He now introduce the solution concept studied in this chapter. 

3.14 Definition: Let N:::: {1 9 2~ ••• ,n} and let GN be the set of 

all games whose player set is N. A Shapley value 
t;N 

or yalue on :.i- is a 

function 4>: GN + En; satisfying the following conditions: 

3.15 

l. (Symmetry condition): if i and j are substitues in v, 

then (~v). = (~v) .• 
l J 

2. (Null player condition): if i is a null player, then 

(<j>v). = 0. 
1. 

n 
3. (Efficiency condition): I (~v). = v(N). 

i=l 1. 

(~(v + w)). = (¢v). + (~w) .• 
1. 1. 1. 

4. (Additivity condition): 

Remark: (~v)., the i-th coordinate of the image vector ~(v) 
l. 

(sometimes denoted ~v) is interpreted as the "power 11 of player i · in 

the game v, or what it is worth to i to participate in the game v 

(in brief, v's "value" for i). 

3.16 Remark: Conditions 1, 2, and 4 are weak restrictions which are 

easy to accept as "reasonable," while 3 is much stronger (to require an 

efficient outcome in game situations is as strong an assumption as requir-

ing it in a traditional economic problem). 

·~·' 



-30-

3 .17 Ths;_orem (Shapley [ 19 53 a ] ) : There_ e]Ci st s a uni@e value on GN 

for every N. 

Proof: First we prove uniqueness. Let cj> be a value on GN. 

Define for each coalition T C N w·ith T =i ¢, a game v T by 

if ~~f s 2T 

otherwise 

Note that for any real a, members of N\ T are null players in 

avT' and members of T are substitutes for each other in Hence 

by the nUll player condition, cj>(avT)i ~ 0 when i ~ T, and by the 

symmetry condition cj>(avT)i = cj>(o:vT)j -.:-rhen i,j E T. Hence, by the 

efficiency condition I cj>{avT). = (avT)(N) = avT(N) ;:;: a. Thus 
iEN 1 

o: = I cj>(o:vT). = jTj~(avT). for any i E To Hence) 
iET 1 1 

r~ 
for · i E T 

<j>(avT)i ~ 
for i5C T 

Now, GN is a Euclidean space of dimension 21NI - 1 

21NI - 1 games vT. He knov cj>(o:vT) for all o: and 

k 
vi'ty we know cj>(i~lo:ivTi) for all linear combinations 

and there are 

T, so by additi­

k 
I a.vT of the 

i=l J. i 

Hence if we prove that the v 's 
T 

are linearly independent, we 

will have shown uniqueness. Suppose they are not; then we may write 

J 
I (3.VT 

i=l J. i 
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where IT1 < IT.j - ~-
for all i and all T. 's are different from each 

~ 

other and from T. Then 

~ B. • o = o 
i=l-~ 

a contradiction. Vle therefore conclude that the v 's 
T 

are indeed 

linearl;y· independent~ 1rhich completes the uniqueness proof. 

For the existence proof, su.r;:pose that the players in N are 

ordered~ and suppose that acco:cdine; to this orde'i·, each player gets his 

ma:t:ginal incrementaJ. vorth to t11e coalition formed by the players pre~ 

ceding him. That is) the i-th ple.yer gets 

where l, •.• ,i- 1 denotes the players before i in the order under 

consideration. The function on N thus obtained does not always satisfy 

the conditions of the Shapley value. But if we take all possible orders 

of the players and average the corresponding marginal contributions, this 

ave~age turns out to satisfy all the conditions of the Shapley value. 

Thus, a null player has zero incremental worth in all orders, and the 

symmetry of the ordering ensures that the symmetry condition is satisfied. 

The efficiency condition is also trivially satisfied and the additivity 

condition can be verified from the folloving: 

(v + w)(l,2, ... ,i- l,i) - (v + w)(l,2, ... ,i ..... l) 

= [v(l,2, ... ,i -l,i)- v(l,2, ... ,i- l)] + [w(l,2, ... ,i -l,i) 

w( l, 2, ... , i - l) ] 

~ ' ',. 
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for any two games v and w and any order. This establishes the 

existence of a Shapley value, so that the proof of the theorem is .nmr 

complete. The above. argument also estr~J)lishes the follm-ring. 

(cfnr). ""(1/IN/!)L(v(s. U {i}) ""'v(s.)] · 
J. R J. J. 

3.18 Theorem (Shapley [1953a]): 

where R runs over all jN I! different orders on N, and s
1 

is the set · 

of players preceding i in the order R. 

We will now compute the Shapley value for some simple games. 

3.19 ~ample: 2~person bargaining gameo One has 

N = {1,2} v(12) ·- 1 v(l) ::;, v{2) ""' 0 

so the formula gives: 

3.20 Example: 3-person majority game. On.e has 

N = {1,2,3} v(l) = v(2) = v(3) = 0 

v(l2) = v(23) B v(31) = v(l23) = 1 

so the formula gives: 

1 =-
3 

In both these examples one can also deduce the value directly from the 

symmetry and efficiency conditions. 

-~- ---- -~- --·------~---~.----·--------~- ---·--
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3.21 Example: Market with two sellers and one buyer. B:ere 

N = {1,2,3} v(l23) = v(l2) = v(l3) c 1 

and v(S) ·- 0 for all other 

In order to compute. the Shapley value for this game,. we first notice that 

there are 3! = 6 orderings of the 3 players. Since this game is a 

simple game (i.e. the worth of every coaJ_ition is either 0 or 1), the 

:follmring definition is useful: :p1a,yer i is a key _player. >vi th respect 

to the coalition S if v(S) ;;;< 0 and v(S U'{i}) = 1. The Shapley value· 

:for a player i is his average inm:•ementaJ. worth, so we obtain it by 

computing the proportion of ox·de:dD.gs in which player j_ is a key player 

with respect to the set of players which precedes him in the ordering; 

The six orderings are: 

Player 1 is key in {2,1,3}, {2,3,1}, {3,1,2}, and {3,2,1}. So 

4 2 
(¢v)l = 6 = 3 

Since 2 and 3 are substitutes (¢v)
2 

= (<Pv)
3

. The efficiency condi-

3 
tion is I (<Pv). = v(123) = 1, so 

i=1 
1 

so that 

... ,. 
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This example illustrates the fact that the Shapley value gives a measm·e 

of the power of the players in a situation free of any institutionp. 

Thus, one might think that if the available payoff above were distributed 

according to the players' strengths, the outcome would be (l/2,1/4,1/4), 

since the two sellers can form a cartel which will put them on an equal 

footing with the buyer. The Shapley value~ however, reflects the fact 

that the buyer is actually in a stronger position since each of the 

sellers will always be. ·willing to deal with him separately. 

3.22 Examples: Weighted majority games. The Shapley value gives 

interesting insights into some multi=:party political situations. .For 

' · ...... , .. ' ·: ·~ 
instance, the politica~ arena in IsraBl is characterized by the exiso~ 

tence of a large party (the Labor Paxty) which counts for app:t'oxi.mately 

1/3 of the votes~ vrhereas until severaJ. yeaTs ago the J;'em.ainiug votes 

were split among many relatively Srtl£!,11 pa.rt;ies. In spite of the fact 

that it controUecl. only 1/3 of the votes~ bow·ever ~ t.he La.bo:r.· Party ha.s ~ 

since the creation of the state, always held a;u four major ministries 

(Prime Minister, Finance, Foreign, Defense). 

To try to gain some insight into this situation, let us compute 

the Shapley value for a weighted majority game (N,v) with quota 

q = 1/2 and a vector of weights w = (l/3,2/9,2/9,2/9). We get 

~v = (l/2,1/6,1/6,1/6). This result provides some understanding of the 

situation in Israel: although it has only l/3 of the votes, the Labor 

Party has half the "power" within parliament. 
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Consider next a situation in which there are 100 parties: one 

large party has 1/3 of the votes, and the remaining 99 parties share 

the other 2/3 eq_ually. The large party is a key player in all orderings· 

in 1¥hich there are more than l/lf n.nd. less than 3/4 of the 99. players 

before him. So he is key in half of the orderings~ so that again 1/3 

of the votes gives the large party 1/2 of the power: (~v)l = 1/2. 

Now consider a situation in which there are two large parties, 

each \nth 1/3 of' the votes 9 and ~3 <>mail 011-es with 1/9 of the votes· each; 

i.e. 

·He vdll compute the· Shapley valur::J fm.~ the corresponding w·eighted majo-

rity game with q_ "' 1/2. Let the t1w large players be denoted by .x 

and y. For each order in which the small- players appear one can 
. •. I 

characterize the order of all the players by a. pair (a, b), where- a 

( resp. b) is the number of smRll players after vThich x ( resp. y) 

appearso Corresponding to a, pair (a,oi) there are two orders of all 

the players--one where x precedes y, and one where the reverse is 

true; corresponding to every other pair there is just one order. Hence 

possible orders are illustrated in the diagram below: for example, 

the :point A con-es};londs to the order (p
1 

,y ,p
2 

,x,p
3

) (where 

(p1 ,p
2

,p
3

) is the ordering of the small players); each position on the 

. diagonal corresponds to t·vro possible orders of a.ll players. So for 

every ordering of the small players there are 20 possible orderings 

o:f all the players, and x is a key pla,yer in the six positions which 
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t 
b 

3 G . 
0 

2 
0 

1 .A 
0 

0 . 0 
0 

0 1 2 3 a->-

are circled. So, since the order of the small players is irrelevant at 

present, the value of x is 6/20 = 3/10. By symmetry the value of y 

is also 3/10, and by symmetry and efficiency the value of· the game is 

So in this case, the Shapley value ·hnpuJ:.e~; to each o:f the large players 

a share of the power smaller than his slmre of the votes. 

Let us consider now a more generaJ. case in wl\ich there are two 

large parties (each l·rith 1/3 of the votes) a.nd n ~ 2 smehll ones of 

equal size. We are interested in the Shapley value of this game for n 

arbitrarily large. The characterization of orderings used above can be 

modified by letting a and b be the proportions of the small players 

after which x and y respectively appear. The diagram belovr then 

illustrates the situati6n, the shaded area corresponding to those order-

ings in which x is a key player. The value of each of the large parties 

is, then, approximately 1/1~ when n is large; for n === 5, it was 3/10. 

If there is a large number of small parties it will, then, be better for 
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a+ 

them E2i to get toget.her in larger groups. The intuitive rationale is 

as follows. Hhatever the number o:f small parties~ each large party 

does not need all thoeir votes to form a ma,jority ~ but if there are few 

small parties the large ones 1vill have no choice but to bargain over 

large blocks of votes. If there is a large number of small parties, 

the large parties can bargain for just the number of votes they need, 

and can consequently· offer more per vote: the small parties will then 

actually be more powerful. 

This result may account for another aspect of the political scene 

in Israel: the fact that the relatively small religious parties have 

not gotten together, but have remained independent. 

Ch~ter 4: Tbe Core 

4.1 A ·payof(_.¥22~2£. is a member of 
N 

E (the Euclidean 

jNj-dimensional space whose coordinates are indexed by the members of N). 

4.2 Definition: A payoff vector x is called individually rational 

(I t ( · ) ) ~f xi > v(J.·) 1 1 · E N n he game N,v ..... for al p ayers l. • 

". .. 
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l~. 3 Definition: A payoff vector x is called group rational (or 

efficient) if I xi= v(N). 
iEN 

4.4 Remark: If I xi< v(N), then all players cotlid improve their 
iEN 

payoff by forming the coalition N; hence x is inefficient. If v 

is superadditive, then for any partition {S1 , ... ,Sk} of the players 

(i.e. 

v(N) > 

k 
US. = N and S. n S, = ¢ for all i 1 j), we have 

. l 2 2 J 2= 

k 
I v(S. ); therefore there is no way for the players to obtain a 

. l 2 2= 

total payoff greater than v(N). Hence tmder the assumption of super-

additivity, it is to be expected that payoff vectors that actually occ"\U' 

will be group rational. However, superadditivity -vrill not be assumed 

here unless specifically stated. 

4. 5 ~nition: An imputation is a payoff vector that is indivi~ 

dually and group rational. 

4.6 Definition: The ~of the game (N,v) is the set of all imputa~ 

tions x such that v(S) < I xi for all S C N. 
iES 

4.7 Example: Two-person bargaining game. We have N = {1,2}, v(N) = l~. 

and v(l) = v(2) = 0. Then l 2 (x ,x ) is in the core if and only if 

So the core is the set of all imputations, as shown in the diagram. 
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1 Core of two-person bargaining game 

0 l 

4.8 Example: Three~person bargaining game.· In this game N = {1,2,3}, 

v(N) === l ancl v(S) == 0 for all other S C JIL So (::l ,:i ~x3 ) is in the 

core if and onl;}r i:f 

xi > v(i) = 0 for all i EN 

I xi > v(S) = 0 for all S C N 
iEs 

S ::f N 

The core is therefore the set of all imputations once again; it is shown 

in the diagram below. 

Core of three-person bargaining game 

an.d 

.. ~ ... ~. 



-40-

4.9 Exam:J2le: Market with 2 sellers and a btzy-er. In this game 

N= {1,2,3}, v(l23) = v(l2) = v(l3) = 1~ and v(S) == 0 for all other 

S C N. So X is in the core if and only if 

1 2 + x3 = 1 xl + 2 
> 1 2 + x3 > 1 X + X X X 

1 > 0 2 
> 0 and 3 > 0 X X X 

Hence the core is {(1,0,0)}. 

4.10 Re~k: Note that the core in the example above ({(1,0,0)}) 

differs considerably from the Shapley value of the game considered there 

(which is (2/3,1/6,1/6)). One can interpret the zero payoff to players 

2 and 3 in the core allocation as the result of cutthroat competition 

among them. 

4.11 Example: 3-person :majority gmne o Here N "' {1 ,2 ~3} ~ 

v(l23) = v(l2) = v(l3) = v(23) = 1, and v(i) = 0 for all i EN. 

For x to be in the core, we need 1 2 3 i 
X + X + X = 1, X ~ 0 for e.ll 

J.• E N 1 2 1 1 3 1 d 2 3 1 , X + X > , X + X ~ , an X + X > • There exists no x 

satisfying these conditions, so the core is empty. 

We now wish to study conditions on v which will ensure that the 

core of (N,v) be non-empty. Consider first a 0-1 normalized 3-person 

game. Let us suppose that the core is non-empty, i.e. there exists an 

imputation 1 2 3 x = (x ,x ,x ) such that 
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J 

In this case we have 

2(:l + x2 + x3 ) > v(l2) + v(l3) + v(23) 

or 

v(N) 

and 

v(l2) < 1 v(l3) < 1 v(23) < 1 

So a necessary condition for a 0-1 normalized 3-person game to have a 

non-empty core is that 1 > [v(l2) + v(l3) + v(23)]/2 and v(ij) < 1 

Exercise 4: Prove that the condition 1 ~ [v(l2) + v(l3) + v(23)]/2 

and v(ij) ~ 1 for all {i,j} C N is also a sufficient condition for the 

0-1 normalized 3-person game (N~v) to have a non-empty core. 

Let us no1v consider the conditions under which a general game 

(N,v) has a non-empty core. 

.. ~.:. 
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4.12 Definition: Let S C N. The characteristic vector of S is 

the element of Ef defined by 

if i E S 

othen:ise 

4.13 Definition: A family S of coc"itions is called balanced if 

there exists a sequence of non-negative numbers {o 8} such that 
sES 

{ os} are called "balancing w·eights for s. 
~s 

A natural interpretation of this definition is the follow·ing. 

Each player is endowed with one unit of time that he allocates among the 

coalitions S in S; o
8 

is the fraction of his time tbat each member 

of S allocates.to the coalition S; the condition L o8x8 ~ XN is a 
sES 

feasibility condition (for every individual the sum of the amounts of 

his time he spends w·i th each coalition must equal exactly the amolmt of 

time he is endowed witb). 

4.14 Theorem, (Bondareva· [1962], [1063], and Shapley [1967]): A necessary 

and sufficient condition for the core of (N,v) to be ~on-empty is that for 

all balanced families S and corresponding balancing weights · { o
8

} , 
SES 

we have I osv(S) 2 v(N). 
SES 

Proof: We ~>rill assume that v is 0-1 normalized; the extension 

to the general case is left to the reader. 



-43-

1. ,The condition is necessary. 

L t b · th Then \ xi -- v(N) e x e 1n e core. l 
iEN 

and L xi > v(S) 
iES 

for all S C N •. Let S be a balanced family with weights · {6
8
}. Then 

so 

OS L xi > osv(S) 
iES 

Since 1ve are dealing I<Tith a finit~:; sum 1ve can reverse the double summa-

tion sign: 

Hence 

L L osxi = 
iEN EJES 

v ( N ) > I a·
8

v ( s ) 
SES 

83i 

I xi I o 
iEN · &ES S 

83i 

This establishes necessity. 

2. The condition is sufficient. 

Assume v(N) > I osv(S) for all balanced families s and 
sES 

corresponding weights. Define a 2=person 0-sum gBllle as follows. Player 

I chooses a player i in the game (N>v). Player II chooses a 
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coalition S in tpe grune ( N, v) , such that v( S) > 0. The payoff 

to Player .I is: 

1 
__ } v

0

(s) 
h(i,S) l 

if i E 8 

otherwise 

Assertion: In order to prove that the condition is suffi-

cient, it is enough to prove that the minimax value of this 2-person 

game is greater than or equal to 1. 

Proof: If the minimax value is greater than or equal to 1, 

there is a mixed strategy x of Player I that yields at least 1, 

no matter which ptrre strategy S is chosen by Player II. ~1at is, 

1 < L xih(i,S) 
iEN 

1 i 
=- Ix 

v(S) iES . 

for all S C N with v(S) > 0. Hence 

v( S) < I xi 
iES 

for all S C N such that v( S) > 0. \fuen v( S) = 0, the inequality 

holds since )- > 0 for all i. Hence 

v( S) < I xi 
iES 

for all S C N. Together with the condition I xi = 1, this means 
iEN 
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that x is in the core of the game ( N, v) , so that that core is non-

empty. This establishes the assertion. 

So we must novr prove that the 2-person 0-swn game has a minimax 

since if Player I chooses a st:cictly positive probability for every 

player~ he 1-1ill l1e g12a:ranteed a Jl(:'lsitive payoff). 'rhere is then a mixed 

Btrategy for Player II that gun:c-antees that the payoff to I will at 

roost be l;. Let this mixed stnd_;c;gy assign probability e
8 

> 0 to each 

coalition in a family S with v( S) > 0 for a~l S E S • For each i, 

we have 

l; > 

so 

Let us define o
8 

::: e
8

/.;v(S) for all S E S. Then we have 

In order to construct a balanced family of coalitions, define 



0. = 1-
l 

Consider the collection T consisting of S and all singletons {i}. 

Then for all i , 

LOS+ o. = 1 sES l 

S3i 

so T is a balanced family with balancing weights ~S}. Hence by 

assumption 

L osv(s) <v(N) 
ff=T 

so_ that, since v({i}) = 0 for all i, 

So 

or 

es 
L - < v(N) = 1 

s==s s -

(we-have ~supposedo-:. ~ < l:h -But-this-.res'\J),t~~contradicts- the :ta.c·:cth~t 

-{(f'] ____ J.s a st;~t~gy~f;i:'::f'iay~r·--Tl~ we n~ed· -··L e
8
- = 1·. Hence 

s Ef2:> ~------ s=s 
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the minimax value is greater than or e~ual to 1, which, using the 

above assertion, establishes sufficiency. 

The following leads up to-an exercise in the use of the·Bondareva­

Shapley theorem. 

4.15 Definition: S is a winning_ coalition in a simple game if 

v(S) "" l; a veto_ pla,yc"r in such a ge .. me is a player w·ho is a member of 

every winning coalition. 

Exercise 5: Prove that a 0-·l normalize(]_ veighted majority game 

has a non~empty core if and only if there is at least one veto player. 

Exercise 6: Find the core of a 0-l normalized weighted majority 

with p > l veto players. 

We may sum up some basic features of the Shapley value and the 

core as follows: 

The Shapley value of a ga~e is a single payoff vector. It 

is always group rational; in superadditive games it is individually 

rational, but this is not necessarily so in general. 

The core is a set of payoff vectors. It is a subset of the set 

of imputations. It may be empty, and even when it is not the Shapley 

value may not be a member of it. 

Intuitively the Shapley value represents a "reasonable com­

promise", whereas the core represents a set of payoff vectors which 

are in a certain sense 11 stable". There is no general relationship 

:~;. , . ..._ ........ ·-:.;. 
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between the two, though for certain classes of games (not considered 

in these Lectures) a close relationship can be established. 

Chapter 5: Market Games 

Let us now consider an economic application of the concepts we 

have developed. The situation we will describe is that of a "market 

game". In a ma,rket game, there is one consumption good, t prbduction 

goods and n players. Each player i has a 2roduction function 

ui (x1 ,x2
, •.. ,xt), defined for all xj ;: 0 and with values in JR • The 

quantity ui (x
1 

,x
2

, ... ,xt) represents the amount of the single consump­

tion good that i can produce from inputs x
1 

,x
2 9 ••• ,xt. Each player 

' i i i) i .also has an initial endowment la19a2 , ..• ,at of production goods. 

Each coalition produces as much of the consumption good as possible so 

that 

(l) 

where i 
X 

( ) { ~ ui(xi): v S = max L 
iES 

( i i i) = x1 ,x2
, ••• ,x~ and i 

a 

v.ud i > 0 X 

is similarly defined. 

for all 

Remark: If the i u 1 s are continuous, then the above maximum is 

attained. 

5.2 Definition: A function u is called concave if its domain is 

convex and for x and y in the domain of u and all a in [0,1], 

u(ax + (1 - a)y) > au(x) + (1 - a)u(y) 

i} 
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5.3 Definition: Assume that the i u 's are concave and continuous. 

Then the game (N,v) defined by (l) is called a market game. 

5.4 Propositl.Qll (Shapley an~·Shubik [1969] ): Every market game has 

a non-empty core. 

Proof: He w·ill use the Bonc1areva-Shapley theorem. Let S be a 

balanced collection of coalitions with corresponding weights { os}· . 
f)ES 

He must prove that 

• 9.. 
{yl E E : 

+ 

its maximum. Define 

vrhere is the point of the set 

at vrh:!.ch the i'unction attains 

(One can think of player i spending a fraction os of his time in 

coalition i S; X is then his total input vector.) He can then prove 

that (xi)iEN is a feasible allocation for N: 

I X 
i l. [ osx~ z: I osx~ :::: I OS I xi ::: ::: 

iEN iEN sES sE8 :i.ES &t:S iES S 
S3i 

I 0s L a 
i L 2: o a 

i I I osa 
i I ai I o ::: = = :::: 

sES iES sES iES S iEN sES iEN ScS S 
S3i S3i 

I a 
i = 

iC:N 
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(since l oS = 1 for all i). Hence 
f:,E,S 
s3i 

Moreover, the i 
x 's are non-negative since they are averages of non-

negative numbers with positive weights. So (xi)iEN is a feasible allo­

cation for N. Hence by the definition of v(N) 

Since 

Hence 

So 

i u 

v ( N) > l u i (xi) 
iEN 

is a concave function 

So by the Bondareva-Shapley theorem the core is non-empty, which estab-

lishes the proposition. 



-51-

The converse of Proposition 5.4 is false--not every game with a 

non-empty core is a market game. For exrunple, the four-person game 

defined by v(l234) = 2, v(S) = 1 if lsi = 2 or 3, and v(S) = 0 

if lsi = 0 or 1, is not a market game, although (1/2,1/2,1/2,1/2) 

is in the core. 

5.5 Definition: Let (N,v) be a game, and T C N. The subg~ 

(T,vT) defined b;[ T is the game w·hose pla,yer set is T and whose 

w·orth function is defined by vT(S) = v(S) for all S CT. 

Obviously every subgalllc:J of B, market game is it self a market game~ 

a .. '1d so from Proposition 5. 4 we obtain 

5.6 Coroll~: Every subgame of' a market game has a non-em~core. 

The 4-person game defined above has a sU:bgame (defined by 

T = {1,2,3}~ say) with an empty core. This raises the question whether 

every game, all of whose subganies have non-empty cores, is a market 

game. This is indeed the case; we have 

5.7 Theorem (Shapley and Shubik [1969]): A necessary and sufficient 

condition for a game (N,v) to be a market game is that it and all of its 

subgames have non-empty cores. 

Proof: We have already proved that the condition is necessary. 

To prove that the condition is sufficient, we consider a game (N,v) 

such that it and all of its subgmnes have non~empty cores. We will con­
L-,Joflit. 

struct a market game such that its ~ function is precisely v. 

-·} 
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Define a market by 9- - n; good i is the labor time of player i. 

The endowment of player i is defined by the i~th \Uli t yector of the 

Euclidean space n i 
E : a = ( 0, 0, 0, ••. , 0 ,1, 0, , .. , 0) 

l , J 
(i.e, each player 

i 

is endowed with one unit of his own labor time). The players have the 

same production functions, defined by 

w(S) =max { I u(xi): 'r xi= Xs} 
iE..S iES 

(N,w) is, then, a market game; we will show that w(S) ""v(S) for all 

S C N. By the definition of w(S), 

=meA { L aTv(T): aT~ 0 
{o.T} TCN 

> v(S) 

(taking a.8 = l, and o.T = 0 for all T # 8). So we have proved that 

w(S) > v(S). In order to prove the reverse ine~uality) we are going 

to use the hypothesis that every subgame has a non-empty core. We 

want to prove that w(S) 2 v(S). We will first prove that w(S) < u(x8 ), 

and then that u(x8 ):: v(S). 
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Let the maximmn in the definition of w by attained at x S, 

so that 

w(S) = I u(x
8
i) 

iEs 

We will show that L u(x~) < u( I x~) for all S C N, i.e. that u 
iES iES 

is superadditive. 

Assertion: u is homogeneous of degree l~ i.e. for all 

a~. 0, u{ax) = au(x). 
<t''i' 

Proof: 

aT 
= max {a I - v ( T) : aT :: 0 

{aT} ~N a 

=a max { I STv(T): ST > 0 
{ST} ~N 

= au(x) 

and 

ax} 

aT I- X = x} 
'ICN a T 

Assertion: u is a concave funct :ton, i.e. for all l > a > 0 , 

u[ax + (l- a)y] > au(x) + (l- a)u(y). 

Proof: Let 
~---
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and 

By definition 

since 

= ax + (1 - a)y 

Hence 

- au(x) + (l - a)u(y) 

ExiO!rcise 7: Prove that the follo1dng is true for every con-

n 
cave function f: E ->- JR and. for all 111 ;; l : 

above: 

V a E Efl + 

n m m 
I a.= 1 ~ f( I a.x.) > L a.f(xi) 

i=1 1 i=1 l l i=1 
1 

We deduce the superadditivity of u from the t1w assertions 

~ u(xis) = 
iE::S 

1 . 1 i 
n I - u(x1

8
) < n • u( L - x-) = n • 

iES n iES n S 

1 . 
- u( I xls) 
n iEs 
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Hence 

or 

' 

by the definitions of' w{S) and u(x8 ). Let us now prove that 

u(x
8

) ~ Y(S), He have 

Let the maximum be .k~Tv(T) ~ anct consider the subgame corresponding 

to S. Since L~TXT = x
8

, all the members-of T of every feasible 

collection are subsets of S. Therefore if we consider each T as a 

coalition for the subgame, 

Thus the collection of T's is balanced in the subgame, with balancing 

" 1-reights {aT}. So by the Bondareva-Shapley theorem applied to the sub-

game 

or 



'. ·'-····.·.: ... .1). 

Above it 'liaS established that w( s) ,;; u ( x
8

) , so we have 

-vr(S) ,;; v(S). This, together with the conclusion above that w(S) > v(S) 

yields 

v(S) = w(S) for all SCN 

The initial game (N,v) is then a market game (since (N,w) is) and 

this completes the proof of the theorem. 

Chapter 6: The von· Neumann-Morgens~ern Solution 

The "von Neumann-Morgenstern so1ution11 was the first solution 

concept to be studied (see von Neumann [1928]). It was later extensively 

examined by von Neumann and Morgenstern [1944]~ and by subsequent workers. 

The ideas on which it is founded are closely related to those on which 

the core is founded~ and it vrill be int:roo:o.cec1 heTe on the basis of 

these ideas. Throughout we will use .x(fj) to denote L xi. 
iES 

6.1 Definition: Let x andy bepayoffvectors?andlet S bea 

coalition. X dominates y via 8 (\.r:cttten X r y) if 
s 

for all i in S 

and 

x(S) < v(S) 
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x dominates y (written x >-- y) if there is an S such that x )-- y. 
s 

6.2 Lemma: An imputation y is in the core if and only if it is 

not dominated by any payoff ve~tor. 

Proof: Let y be in the core. If x }- y, then v(S) :::_ x(S) > y(S). 
s 

But y(S) ~ v(S) since y is in the core. Thus i<Te have a contradiction, 

a.11d there is no x which doruh:mtes y. 

Conversely, suppose y is an imputation not in the core. Then 

there is an S such that y(S) < v(S). Define a payoff vector x by 

i 
X 

v(s) - ;y-(s) 
lsi 

Then xi > yi for all i E S and 

if i E S 

otherwise 

x(S) = y(S) + 1~1 v(S) ~ y(S} = v(s) 
jsj 

So x ).. y. This proves the Lemma. 
s 

6.3 LeromR: Assume that v is superadditive. Then an imputation y 

Proof: The necessity of the condition follows immediately from 

Lel!JJJJ.a 6 . 2 above, 

For the sufficiency of the condition, let y and S be as in 

the sufficiency proof of Lemma 6.2. Define a payoff vector x by 

,"\../ ." 
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i 

i + v(S) - y(S) 
y 18 1 

if 

X = 
[ v( S) + . L v( i)] 

:i.)ts 
v( i) + ---~I....,N\r-s-'--7· ~~=----

v(N) -

if 

Because of superadditivity, v(N) [v(S) + Y v(i)] > 0, so 
ifs 

i E S 

i f:/. s 

x is 

individually rational; also L xi= v(N), so x is an imputation. 
iEN 

Finally, x(S) = v(S) and x ~ y, so the Lemma is proved. 
s 

Exercise 8: Show that w-ithout the assumption of superadditivity 

Lewna 6.3 is false. 

The stability concept underlying the definition of the core could 

be criticized as being too strong. It does not seem natl.U'al to excl.nde 

as lmstable a dominated payoff vector when the dmdnating payoff vecto:r 

is itself not stable. This suggests that 11e shouJ_d focus our attention 

on domination by stable imputations. 

6.4 Definition: A set K of imputations is ca..lled a von Neunu:mn~ 

Morgenstern (N-M) solution (or simply a _13olution) of v if K is the 

set of all imputations not dominated by any member of K. 

6. 5 Remark: K in the definition above may not be rmique and may 

not exist (even as the empty set). 

6.6 ~sition: K is a solution of v if and onl~ if for all 

imputations x and y: 
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1. If x,y E K, then x does not dominate y. (Internal 

consistency. ) 

2. If y tf; K, there is an x E K that dominates y. (External 

domination. ) 

The following notation allows the proposition to be stated more 

compactly: 

Dom x "" the set of all payoff vectors dominated by x· 
' 

Dom K = the set of all imputations dominated by a member of K 

= UxEI<: Dom x; 

X "" the set of all imputations. 

Conditions l and 2 then become 

1. K C ( x\ Dom K) 

2. K ::J ( x\ Dom K) 

vlliat the proposition says, then, is that 

K is a solution if and only if K = x\Dom K 

The proof of the proposition is immediate, using Definition 6.4. 

6.7 Remark: The core is a subset of every N-M solution. 

Let us determine the N-M solution for some simple games. 

6.8 Example: 2-person bargaining game. We have N = {1,2}, v(N) = l, 

and v(l) = v(2) = 0. We recall that the core (see 4.7) is the set of 

all imputations 
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Since the core is a subset of every N-M solution, if a solution exists 

it can only be X. To prove that X is indeed a solution, we prove 

that Dom X = 0, so that X ::: x\Dom X. 

Assertion: In any game, no imputation dominates another one 

via a one-person coalition. 

Suppose 

Proof: Consider a 0-l normalized game (we can do so w.l.o.g.). 

X }- y. 
{i} 

Since 0 < xi < v(i) = 0 and 
i 

y > 0, we must have 

both i 
X = 0 and xi> yi, which is a contradiction. 

So a one-person coalition can never dominate. Hence in the 2-

person bargaining game the only possible domination is via the coalition 

{12}. 

Assertion: In any game, no imputation dominates another one 

via the coalition N of all players. 

Proof: Let x and y be two imputations. Then x(N) = v(~r) 

and y(N) = v(N). But x ~ y ==> x(N) > y(N), so we have a contradiction. 
N 

Hence in the two-person bargaining game no imputation is domi-

nated, so that there is one and only one solution, namely the set of all 

imputations. 

6 · 9 E..""<ample : 3-per son majority game . In this game 

N = {1,2,3}~ v(N) = v(l2) = v(l3) = v(23) = 1, and v(i) = 0 for all i EN. 
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t x. 
l 

T1w~dimensional 

simplex 

(0,1,0) 

l l----7 
X 

(1.,0,0) 

We recall that the set of imputations is the two-dimensional simplex, 

shown in the diagrams above. First consider which imputations are domi-

nated by x. By the two assertions above, domination can only be via 

the coalitions {12}, {23}, and {13}. Assume y is dominated by x 

via {12}. Then 

and x(l2) < v(l2) = l 

.~.~ .·· .~. 
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Hen~e any point in the area A of the diagram is dominated in this 

way (the "outside" sides of A are included, but the "inside" sides 

are excluded). Using a symmetrical argument points in areas B and 

C are dominated by x via the co~litions {13} ru1d {23}. From 

this it can be seen that no single point can dominate all others, so that 

no singleton can constitute a N-M solution. 

It can also be seen that if K is a solution, then if x and 

y are in K, the line joining x and y must be parallel to one of 

the sides of the triangle of imputations (otherwise one point dominates 

the other). It appears, then, that either a line, or the vertices of 

an appropriate triangle q_ualify as possible solutions. 

Consider first the vertices of a triangle. Let them be a, b 

and c in the diagram below-. The shaded area consists of points 

(0,0,1) 

(0,1,0) 
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dominated by a, b, or c. From this it is clear that no such three 

points can constitute a solution: there will always be points not 

dominated by any of them. 

Consider now the situation if the vertices a, b, and c of the 

triangle are oriented as in the diagram belqw. Points in the shaded 

area are dominated. So if a, b, and c a..re as in the next diagram, 

they idll dominate all of x\ {a~b,c}. Renee a solution is 

(0,0,1) 

(0,1,0) (1,0,0) 

(0,0,1) 
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Nov consider the possibility that a line segment paralle.l to 

one of the sides of the triangle is e, solution. An example is the 

line joining d and e in the diagram belov. It can be seen that 

(0,0,1) 

for points on the line to dominate all other imputations the set E 

must be empty: the line must be at least half vray down the triangle. 

Hence any set 

Kl { (x,l c,c): 0 l c} for 0 
l 

::: - X- < X < - < c < 
~~ 0:: 2 

is an N-M solution. By symmetry, the same is true o:f the sets 

K2 ·- { ( c ,x ,1. - X - c): 0 < X < 1 - c} 

and 

K3 ::: {(1 - X- c 'c ,x) : 0 < X < 
::: 

1 - c} 

for 0 < c < l/2. 
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To sum up, there are two different types of solutions. 

(1) The symmetric solution K = { ( 0,1/2,1/2) , ( 1/2,0,1/2) , ( 1/2,1/2,0 0 
Here two out of the three players get together in a coalition and divide 

the payoff equally between themselves; the three players are symmetric. 

(2) Discriminatory solutions. Two players get together,_ give 

an amount up to a half to the third player, and bargain over the remaining 

payoff. Here one individual is ostracized; i.e. exclucted from the bar-

gaining process. 

Two features of these solutions are noteworthy: 

(1) An N~M solution can be interpreted as a stable form of 

organization for society, Here, t-vm forms of organization in vrhich the 

same people are treated differently are equally stable, ~--

(2) The behavior of the people involved in bargaining is quali-

tatively different in the two forms of organization. When the t.hree 

people are in s~ryrunetric positions and two get together, neither one will 

settle for l·ess than 1/2 since each can say: "If I don't get my due 

share, I will go along with. the third player and get it from him." In 

the discriminatory case, the bargaining process is different: by common 

consent the third player is ostracized. 

Let us now examine the N-M solution for a more general class of 

majority games. 

6.10 Definition: A weighted majority game with weights 
i 

{w }iEN and 

quota q is called strong if for ell S, either S or N\ S is winning, 

but not both. 



.:.,•·.· 

-66-

6.11 Definition: A minimal winning coalition is a coalition S such 

that no strict subset of S is 1vinning. 

6.12 Remark: Note that a given weighted majority game (N,v) does 

not determine unique weights and quota. For instance, [q; w
1

,w2 ,w3] 

= [5; 2,3,4] generates the same game as [2; 1,1,1] (namely the 3-

person majority game). 

6.13 Definition: A reuresentation of a weighted majority game (N,v) 

is a set of non-negative numbers 

if and only if I wi > q. 
iES 

[ 1 2 n q;w,w, ... ,w] such that v(S) = 1 

6.14 Definition: A weighted majority game is called homogeneous if it 

has a representation in which I wi = q for all minimal winning coali­
iES 

:·.~).· ~ tions S. 

6.15 Remark: A strong weighted majority game may not be homogeneous. 

Exercise 2: Consider the weighted majority game determined by the 

representation [ 5; 2,2 ,2 ~l ~1 ,1]. {1 ,2 ,3} is a minimal vrinning coali-

tion, but its total weight 6 exceeds the quota 5. Prove that there is 

no representation which makes this game homogeneous. 

6.16 Theorem (von Neumann and Morgenstern [1944]): Consider a strong homo-

geneous weighted ma,jority game with a homogeneous representation [q_; w1
, ... ,wn]. 

Let q = 1. For each minimal winning coalition S, define 
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if i E S 

otherwise 

Let K = {y
8

: S is a minimal >-Tinning coalition}. Then K is a 

solution. 

Proof: 1'le first prove the internal consistency of K. Let S 

and T be minimal 'winning coalit].ons. Assume that 

U 1vill have to be a subset of S since for i ~ s. If U 

is a proper subset of S then it is a losing coalition, so v(U) = 0 

and hence V-le.. ~J ~A-ot- h~I'-L 

could not dominate via u. Hence u :::: s. 

Suppose now ~hat T n S # ~. Let j E T n S. Then 

in vrhich case once again y 8 
couJ.d not dominate Hence T n s = ~. 

But since the game is strong, two disjoint winning coalitions cannot 

exist. Hence there i.s no U .such ·bhat y8 >- yT, and the set K is 
u 

internally consistent. 
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We now prove that the external domi:o.e"tion condition is satisfied. 

Let z be any imputation. Let T be the set of all i such that 

W
i > i z . If T is winning, then T has a minimal winning subset S 

and y 
8 

>- z, with y 
8 

E K. If T is losing, then N\ T is winning 
s 

(:N\ T = { i: wi < zi}). Let S be a minimal winning subset of :N\ T. 

Then 

(using the fact that the game is homogeneous). So L zi = 0 and 
iET 

for i E S 

f0r i fl. S 

vTe conclude that z = Ys· Hence either z E K or there exists Y• E K s 
such that y 

8 
1- z. Hence the condition of external domination is satisfied. 
s 

This completes the proof of the theorem. 

The solution in this case can be interpre·bed in the following way: 

a minimal winning coalition forms and its members divide the payoff 

accorcling to the homogeneous weights. 

6.17 ~: Market with one buyer and two sellers. In this game 

N = {1,2,3} v(N) = v(l2) = v(l3) = 1 

and 

.L. 
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(1,0,0} 
of game 

(0,0,1) 

dominated 
Vi8. {1,2} 

(1~0,0) 

Diagram 3 

v(23) = v(l) = v(2) = v(3) - 0 

(1,0,0) 

Diagram 2 

Since v(23) = 0, and because of the assertions made in Example 6.8, domi-

nation can OQly be via the coalitions {1,2} and {1,3}. Also, we know 

that the core of this game is {(L,O~O)} (see Example 4.9), and that this 

is contained in every solution. Once again the set of imputations is 

represented by the triangle sho1m :i.n Diagram l (it has been re-oriented 

t. ... 
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(1,0,0) (1,0,0) 

(0,0,1) (0,1,0) 

(1,0~0) 

I 
(0,0,1) 

for elegance in presentation). The set of imputations dominated by the 

imputation x is shaded. In Diagram 2 the set of imputations dominated 

by the imputations x and y is shaded. From this it can be seen that 

in order to satisfy the condition of externe~ domination one needs every 

point on some curve from the point (1,0,0) to the bottom of the triangle. 

At the same time, in order to satisfy the condition of internal consis-

tency, it must be the case that all points on the curve below any given 

point lie between the two straight lines through z parallel to the 
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sloping sides of the triangle. Thus the curve in Diagram 3 is a solu-

tion, while the curve in Diagram 4 is not. 

It is possible to give an interpretation to these solutions. 

First consider the case given in Diagram 5. Here one can argue that 

the two sellers form a cartel, bargaining as a single unit with the 

buyers~ and splitting the payoff '!::,hey extract from him equally. Cases 

in which the solution is curvilinear can be interpreted as a situa-

tion vhere the sellers form a cartel~ but split their payoff according 

to some nonlinear ·scheme. For example,.the soiution in Diagram 6 

represents a situation vhere players 2 a:nd 3 split the payoff to 

their cartel equally· if it is J.ess than some number, vrith all of any 

excess above this quantity going to :player 2. The restriction on 

the shape of a curve which is a solution means, in this interpretation, 

that the payoffs to players 2 and 3 must each be nondecreasing in 

the payoff to the cartel. 

In this example, then, one can interpret the sol.utions as pre-

dieting the formation of a, cartel. He will now consider a whole class 

of games for which some sort of cartelization is predicted. First, 

some definitions which will be used are presented. 

6.18 Definition: A ~mutatio1,1 of the players is a one-one mapping 

1r from N to N. 

6.19 Definition: A set K of pgyoff vectors is s;yp1p1etric if for each 

x E K an.d each permutation 1r of the players, 1TX E K vhere 

( ) i - 1T(i) 
1TX = X for all i EN. 
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6.20 Definition: An imputation x E Ef is monotonic if 
i i+l 

X > X = 
for all i = l ~ ... ,n - l. 

6.21 ~am:2le: (ri,k) games. These games are defined by INI = n and 

v(S) " e if lsi > k 

otherw·ise 

with k ~ (n + l)/2. (It can be seen that an (n,k) game is a non-

strong weighted majority game.) We will~ for simplicity, concentrate 

on the game for which n = 10 and k ~ 8; our considerations generalize 

without difficulty to ,the general case (see Bott [1953]). 

Assertion: A solution of the (10,8) game is given by 

ai E [0,1] 
3 i 

3 L a, "" 1} 
i=l 

Proof: Since K is symmetric, it contains a monotonic impu~ 

tation and we can confine our attention to such imputations. Let x 

and y be monotonic imputations. Then it is clear that in this case 

x dominates y if and only if there exists a minimal winning coalition 

s Xi > yi such that for all i E S. Hence there is some permutation 

of x which dominates y if and only if the first eight members of x 

are larger respectively than the last eight members of y. 
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t 
i 

i 'i x: Y 's y ,x 
X 

i 
X C): x 's 

0 0 €;? 
X 

X 
0 t!:> ~ 

(!} '2 ~ 
X 

.l 2 3 4 5 6 7 8 

(a) Externa~ Domination: Let y be a monotonic imputation not 

in K; such a y is shmm in the diagram above. By the remark. above, 

we have to find an x in K such that 

i i+2 
X > y for i = 1, ... ,8 

in order to show that y is dominate.d by an imputation in K. Let 

e = 
2 . 3 I (yJ. - y ) + 

8 . 9 10 I (yJ. - y ) + y 
5 . 6 I (yJ. ~ y ) + 

i=l i=4 i=7 

Since y ~ K, e > 0. Let 

3 e ·3 e 3 e 6 e 6 e 6 e 9 e 9 e 9 e ) 
x - (y + ~,y + ~,y + ~,y + ~,y + ~,y + ~,y + ~,y + ~,y + ~,0 

i . 3 6 9 i 
Then Ex = 3y + 3y + 3y + e = Ey = 1, so x is an imputation; it is 

clearly contained in K, Emd 
i i+2 

X > y for 

condition of external domj~1ation is satisfied. 

i = 1, ... ,8. Hence the 
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(b) Int~nal Consistency: Suppose X and y are monotonic 

imputations in K and some permutation of X dominates y. Then 

i i+2 
for i =1, ... ,8. But then l 3 l~ 6 and x7 > y9, X > y X > y ' X > y 

that 1 > yl 4 4 and· x7 > y7, in which ~X 
i r,y i so X ' X > y ' case > . 

Hence x cannot be an imputation, and this contradiction establishes 

internal consistency.· 

The proof of the assertion is :novr complete. 

It can in fact be shown that K is the unique symmetric solution 

of the (10,8) game (~ee Batt [1953]). 

6.22 Definition: In a simple game S is Elocking if N\s is losing. 

In the above example an interpretation is that the players get 
•• ,t_. .... • ., 

together in minimal blocking conditions, In strong -vreighced majority 

games it was found above (Theorem 6 .16) tbat the solut:i.on predicted the 

formation of minimal winning_ coalitions. Hmvever, in such games a 

coalition is minimal winning if and only if it is blocking~ so that 

Example 6.21 indicates that the significant aspect of these coalitions 

is, in fact, that they are minimal blocking. 

Chapter 7: Bargain,ing Sets 

7.1 Example: Consider the game (N,v) where 

N = {1,2,3} v(i) = 0 for all i 

v(l2) = v(l3) = v(l23) = 1 and v(23) 
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While 2 and 3 are in symmetric positions in this game, it appears 

that 1 is in ~ stronger position. Two problems can be considered: what 

coalitions will form?; and how will the members of the coalitions so formed 

divide their worth among themselves? There is no uniquely "correct" way 

of dealing with these problems, but the "Bargaining Set" represents one 

approach to the second problem, taking the coalitions which form as given. 

Consider the case i-lhere 1 and 2 get together in a coalition. Suppose 

tbat they are considering the p~woff vector (2/3,1/3,0). Player 1 can 

say that this is not satisfactory since he couJ.d get together w·ith player 3 

and establish the payoff vector (5/6,0,1/6)) Hhich vrou.1d benefit both 

himself and player 3. But playe:r.' 2 can reply that he could also offer 1/6 

to player 3, establishing the pRy-off vector ( 0,1/3,1/6), where he is as well ~'­

off as he w-as be fore, and 3 is . as well ·off as he would be in player 1 1 s 

proposed deviating payoff vector. However, player l could propose establishing 

( 0. 8, 0, 0. 2) together ivi th player 3, so that if player 2 were to give 3 

as much as he gets in this payoff vector he -vrould have to get less himse1f 

than he did in the original payoff vector which was being considered: 

v(23) = 1/2, so the most 2 could get if he gave 0.2 to player 3, 

would be 0.3, while originally he got l/3. In this -v1ay the superior 

"strength" of player 1 is revealed, and he might suggest that (0.7,0.3,0) 

represents a reasonable split of the proceeds bet-v1een himself and player 2. 

But exactly as above, 1 could tbreaten with (0.74,0,0.26), for example, 

whi~h 2 could not match. So it appears that player 1 will receive an 

even larger payoff. Consider" thea,. the payoff' vector ( 0. 8, 0. 2, 0) as 

a candidate for agreement between 1 and 2. In this.case it is possible 
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for player £ to threaten with ( 0 ~ 1/4 ,1/4) , a threat which player 1:. is 

unable to match, since if he gives 3 a.t least 1/4 ~ at most 3/4 

( < 0. 8) will be left for himself. Consider, however, the payoff vector 

(3/4,1/4,0); if player 1 threatens to join I>Tith 3, at the same time 

increasing his payoff from 3/4, he will have to give 3 at most 1/4, 

while player 2 can always counter such a move by threatening to join with 

3, giving· him 1/4 while maintaining his o1m payoff. Similarly, if player 

2 threatens to join with 3, and at the same time increases his payoff, 

then he can give 3 at flost 1/4, while player 1 can always counter such 

a move by threatening to join w·ith 3, giving him 1/tf, and maintaining 

his own payoff at 3/4. In this way neither 1 nor 2 can object in a 

convincing way to the payoff vector (3/!f,l/4,0), and the arguments above 

indicate that this is the only payoff vector for which this is so (for the 

grouping of players under consideration) : it is , in fact, the unique 

member of the "Bargaining Set 11 in the case where pla,ye:rs l and 2 get together 

in a coalition. 

The arguments used above are sinLi.la.r to those used when the question 

of whether a payoff vector is in the core :Ls being considered; but there, 

only the original threats to deviate are considered; the reasoning behind 

the "Bargaining Set" goes beneath the surface of this sort of argument and 

considers the possibility that threats by some players are "counterbalancedn 

by threats from other players. Thus, the core is the set of payoff vectors 

to which there is no objection, while the "Bargaining Set" is the set of 

payoff vectors to which there is no justified objection. We can now 

define these notions precisely. 
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7.2 Definition: A coaliti£~~stFucture is a partition B = {B
1

,B
2

, ... ,Bk} 

k 
of the set N of players (i.e. B. n B = ¢ for i ~ j 

l. j 
and UB. = N). 

i,;,l l. 

7.3 Definition: v(B.) 
l 

for i = 1, ... ,k and 

xi > v( {i}) for all i EN}. 

7.4 Remark: 'l'he condition x(B.) = v(B.) for i = 1, •.• ,k means that 
l. l. 

the total worth of each coalition B. is completely divided up between 
l 

the members of the eoalition, an<l xi,; v({i}) is the individual ratio-

nality condition. In the example above, B '"'. {12,3}; another example 

is B ""' {N} ~ in l·rhich case XB "" X [N} = {x E EN: x(N) = v(N) and 

i 
x > v( {i}) for i E N}. Thus X{N} coincides with the set of imputations. 

7.5 Definition: Given a game (N,v), a coalition structure. B, a payoff 

vector x E x8 , a set Bk E B and two members i and j of Bk, an 

objection of i against . j consists of a set S containing i but not 

j, ,and a point such that 

y(S) < v(S). 

Q_ 
> X 
::: 

for all Q, E S, and 

7.6 Remark: The interpretation is that i gets together with a group 

of players not including j and realizes a payoff vector in which he 

obtains more than he is getting at present, while the _other members of 

t.he group get at least as much as they ar~, at presentf getting;:.' 

7.7 Definition: A counterobjeetion to y_ by j consists of a set 

T containing j lmt not i) e, point - T such that zj > Xj z E E 
= ' 

Q, 9.. 
for all 9.. E T, 

Q, Q, 
Q,ESnT z(T) v(T). z > X z > y for all and < = = 

~~-
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An objection is B~sti_:fied if there is no counterobjection to it. The payoff 

vector x is in th0. Bargaining Set M :co: M(v,B) if there is no justified 

objection to it. 

Thus, in the example above, M(v, {12,3}) = {(3/4,1/4,0)}. An 

important question is whether the Bargaining Set is nonempty for any B 

when x8 f ¢. Peleg [1963] and [1967] solved the problem originally, using 

a fixed point argument. Maschler and Peleg [1966] later found a completely 

different algebraic existence proof, and later still Schmeidler [1969] 

devised a still simpler proof, which is followed here. Before that is 

presented, consider another example" 

7.8 Example: Consider the weighted lllajority game [3~ 2,1,1,1] (i.e. 

V(s) ={1 if w(S) :;:: 3 ( 1 2 3 l~) ( )) 
0 otherwise- where w ;v.r ,vr ~w· ::: 2,1,1,1 . Suppose the 

coalition structure is B = {12~3,ld" It is clear that every point in 

the Bargaining Set will be of the form (o~,l "- o:,O,O), Objections of 

1 are of the form (a+ e:,O,l ~a~ e:,O), ancl the smaller e:, the better 

they are (i.e. the more difficult to counte:cobject to). For player 2 to 

be able to counterobject he must join with 3 and 4, giye himself 

1 - a, and have at least 1 - a ~ £ left over to give to player 3 

(he need give player 4 nothing, since that is w-hat he is getting at 

present). I.e. it must be the case that 

'v(234) - (1 - a) > 1 - a - £ for all £ > 0 

or 

l - l + a > 1 - a - £ for all £ > 0 
l 

or a ; 2 
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'l 
+· 

Now consider an objection by 2. If he objects with ( 0,1- a..:.. E ,a-£, 0) 

player 1 can easily counterobject by getting together with 4; a "good" objec-

tion by 2 is (0,1- a- £,(a- s)/2,(a- d/2). Then player 1 can 

counterobject if v(l3) - a~ (a- e)/2 for all £ > 0 (he only has to 

get together with one player to obtain a worth of 1), or, if 1- a; (a-£) /2-

for all e: > 0, or, if a ;?, 2/3. This exhausts the possibilities for objection 

so there are no justified objections to (a,l- a,O~O) if a E [1/2,2/3]. 

Hence the Bargaining Set is .M(v:>{l2~3~~}) = {(a,l- 0'.,0,0)}1;2~/);~2 ; 3 · 

Exercise 10: Find M( v ~ {J234}) for the -vreighted majority game 

Exercise 11: Find M(v~ {123}) for the game defined in Example 7.1. ~ .. 

Now, instead of considering the details of the procedure involved 

in establishing whether or not a payoff vector is in the Bargaining Set, 

one could deal with a "rough" measure of the "strength" of a player as 

follows: 

7.9 Definition: v(S) - x(S) is the excess of the coalition s. 

Given v, B, 1\ EB, i and j in Bk' ~~<i:\1.~ 

sij {x) = max {v(S) - x( s): s 3 i and s ~ j} is the 

maximum excess of i against ,j • 

7.10 Definition: 
. u 

B) is of all The !~~'C~~ven v and the set 

payoff vectors Bk E B, and i and j in Bk' x E Xz3 such that or all 

either 
1)-) 

si} ~ s. u~ or 
J~ -

xj=v({j}). 
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7.11 Remark: x will be in the Kernel if for all i and j either 

it is not the case that s .. > sj. 
lJ l 

i has no conv-incing objection 

against j or such an objection does exist, but j is at his personal 

minimum in any case, so that i cannot convincingly suggest that j 1 s 

payoff be reduced. 

7.12 Theorem (Davis and Maschler [1965]): The Kernel is a subset of the 

Bargaining Set. 

Proof: Let x E Kernel. Let i, j E Bk E B and let y, S be 

an objection of i against j. Then y(S) < v(S), and from the definition 

of s . . , v ( S ) - x ( S ) < s . . . So : 
lJ = lJ 

(a) If xj = v({j}), then j can counterobject by himself--

i.e. (0, ... ,O,v({j}),O, ... ,O),{j} is a counterobjection to y by j. 

(b) Otherwise ) > v({J'}) and s !~~\)> sPJ> v(S)- x(S); but 
Jl = lJ :=: 

s\:F1= max {v(S)- x(S):S :3 j, S :£; i}, so there exists T with jET, ji -

i $ T, such that v(T) - x(T) > v(S) - x(S). Also, v(S) - x(S) ~·y(S) - x(S) 

from the above. So there exists T such that v(T) -- x(T) ~ y(S) - x(S), 

or v(T) ; y(S) + x(T) - x(S) = y(S) - x(S) + x(T\S) + x(T n S). 

But y(S) - x(S) ~ y(S n T) - x(S n T) since y(S) .::. x(S). So 

v(T) ~ ~(s fiT)+ x(T\s). Hence j can give to everyone in T ns 

at least as much as they get in y, and to those in T\S at least as 

much as they get in x. Hence j can counterobject. 

Hence in all cases j can counterobject to any objection of i 

so any point in the Kernel is certainly in the Bargaining Set. So the 

theorem is proved. 
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7.13 Example: Let us compute the Kernel for the coalition structure 

B = {12,3,4} in the case of the weighted majority game considered above 

([3; 2,1,1,1]). vle know that the Bargaining Set M(v,{l2,3,4}) = 

{(a,l- a,0,0)}1 / 2;a;;2/
3

. The Kernel K is a subset of M. vlhen does 

an imputation x = (a,l - o:,O,O) belong to the Kernel? 1-Je have to 

compute s
12

(x) and s
21

(x). We know v(l)- x(l) =-a, v(l3) -x(l3) = 

1 - a, v(l4) - x(l4) = 1 - a, and v(l34) - x(l34) = 1 - o:. Hence 

x(S): 1 - a. In the same way; 

s
21

(x) =a. Hence one possible point in the Kernel is .an x such that 

s
12

(x) = s
21 

(x), lvhich leads to a :::; 1/2. It is the only point since the 

condition xj = v({j}) leads to twu imputations (0,1,0,0) and (1,0,0,0) 

outside the Bargaining Set, and a fortiori outside the-Kernel. So 

K"" {(1/2,1/2,0,0)}. Note that this point is in no sense the "center" of 

the Bargaining Set, and that, in particular, the advantage of player 1 

over player 2, vhich is reflected in the Bargaining Set, does not show 

up in the Kernel. 

The concept of excess was implicit in the definition of the 

Bargaining Set, and explicit in the definition of the Kernel. In both 

definitions, however, there is the idea of an underlying specific bar-

gaining process between agents i and j. Vle are going to introduce a 

new solution concept, the Nucleolus, which abandons the idea of dialogue 

between i and j and for which the concept of excess, as a measure 

of objecting povrer, is central. Let us consider a game (N,v) with a 

coalition structure B. For a given X E XB there exist 2n excesses 

{v(s) - x(S)} SOf' Given x, let us index the coalitions S C N so that 

-~· . ~ .. : . . 
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and let us define 

Let e1 be the i-th coordinate of e. 

Definition: Let 
r 

E be a Euclidean space, and x and y two 

points in 
r 

We define the lexicographic Er in the E . order > on 
l. 

following way: X tY if there exists i ·such that x. = y, for all 
J J 

j < i and X. > yi. X is then said to be lexicographically greater than 
l 

7.15 Definition: For a game (N,v) and for a given coalition structure 

B, the Nucleolus Nu..(N ,v,B) is the set of all x in ~ such that there 

is no y in J\s with 8(x) t e(y). Hence a point in the Nucleolus is 

a lexicographic minimum of e over x8. 

7.16 Remark: The Nucleolus may be interpreted in the following way: 

the excess measures the "dissatisfaction" of' a coalition S with the 

proposed accomodation x; v(S) -· x(S) is the difference.between Hhat 

the coalition could get alone and what it vrould get if the accommodation 

were actually implemented. B represents a given structure of society; 

any payoff vector x in X B fully "satisfies" any coalition in B. If 

we think of the loudness of S's complaint against x as proportional 

to its dissatisfaction, the Nucleolus may be considered as the result 

of the following process: the "judge" (or the "government") minimizes 

the loudest complaint; subject to achieving this, he minimizes the 

y. 
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second loudest complaint; and so forth. Then the Nucleolus is the set 

of points at which the overall loudness of complaints is a minimum (in 

the lexicographic sense), given the structure of society. The idea of 

individual bargaining~ essential in the concepts of the Kernel and the 

Bargaining Set, is not present here. 

Nov, we want to prove the nonemptiness of the Bargaining Set. We 

vill prove that the Nucleolus is nonempty and that the Nucleolus is a 

subset of the Bargaining Set. 

'7.17 Theorem (Schmeidler [1969]): The~eolus Nu(N,v,B) is nonempy 

(if x8 is nonempty). 

Proof: First we establish the following. 

Lemma (Schmeidler [1969]'): Let f
1

,f
2 , ... ,fr be r ~ontinuol!-E_ 

functionsonsomespace, Fora.given x,define ik(x) for k=l, ... ,r 

such that f. ( )(x) ~f. ( )(x); ... ; fi (x)(x); 
ll X - l 2 X k 

Then f. ( )(x) is a continuous function of x for all 
lk X 

;f. r )(x). 
l ,X 

r 
k = 1, ... ,r. 

Proof: fi
1

(x)(x) =max [f1 (x),f2 (x), ... ,fr(x)]. Hence fi
1

(x)(x) 

is continuous, being the maximum of a finite nurrilier of continuous functions. 

f i
2 

(x) ( x) = min {max [ f 2 (x), f 
3 

( x.) , ; .. , f r ( x )], max [ f 
1 

( x) , f 
3 

( x) ~ ... , fr ( x )], ... , 

max [f1 (x),f2 (x), ... ,fr_1 (x)]} 

so f_, ( )(x) is the 
.J..2 X 

being the maximum of 

minimum of r functions which are continuous, each 

r- 1 continuous £unctiehence it is continuous. 

~-~ ..•. ' 
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Similarly, f. ( )(x) is continuous for k == 1, ... ,n. This prove:; tb~, 
lk X 

lemma. 

Nov we have the following. 

(a) e1 (x) is continuous and x8 is a compact set (since it 

is defined by a finite number of weak inequalities). Let 

and 

Then x
1 

is nonempty. 

(b) e
2

(x) is continuous by the Lemma above, x
1 

is closed, beinE 

the inverse image of a closed set {s,l 1.mder a continuous function; it 

is compact, being a closed subset of a compact set, So, letting 

x2 is seen to be nonempty. 

(c) Similarly for 

and X = {x EX :e (x) = 
2 1 2 

i = 3 , . . . , 2n , e . ( x ) 
l 

is continuous. 

and X. = {x EX. 1:e.(x) = ~.} 
l l- l l 

Let 

Then, as above, if Xi-l ~ 0, Xi~¢. So by induction, X. ~ ¢ for all 
l 

i = 1, ... ,2n. So Nu = X is nonenwty, and the theorem is true. 
2n 

7.18 Theorem (Schrneidler [1969]): The Nucleolus Nu is a subset of 

the Kernel K. 

~--
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Proof: ~ Suppose x ~ K. Then there exist i 

and j in Bk E B such that s .. (x) > sji (x) and xj > v({j}). 
~J 

Let p and q be the smallest indices for which 

s .. ( x) = v( S ) - x( S ) 
lJ p p 

and s .. (x) ~ v(S)- x(S ) 
Jl q q 

Then v(S ) - x(S ) 
p p > v(S ) - x(S ) (and i E S , j fl. S ; i fl. S , 

q q p p q 

j E S ). Since xj 
q 

> v({j}) there exists £ > 0 such that y is in 

where 

( 1 i-1 i i+l j-1 j 
y = X , ••• ,x ,x + E: ,x , ... ,x ,X j+l n) 

- £ ,x ' ... ,x 

For r < p, x( S ) = y( S ) because either both i and j are in r r 

.. ,. Sr or neither i nor j is in S . 
r (If not, the condition sij(x) = 

v(S)- x(S) would be contradicted,) Hence 0 (x) = 8 (y), 
p p r r 

For r = p, v(S ) ·~ y(S ) "~ v(S ) ~· x(S ) ~ E:, Hence for .£ 
p p . p p 

sufficiently small e ( x) > e (y). So, finally, there exists y in XE 
p p ~~ 

such that 8(x) ~ 8(y)o TMls ee-l'J:t..:l:'-~tlre-fuci,-·that x'~-:bn-i-B--th-e-

~J:.us.., and the proof of the theorem is complete. 

7.19 Remark: Theorems 7.12, 7.17, and 7.18 imply that the Bargaining 

Set is nonempty for any coalition structure B (so long as XB -f ¢) • 

The Nucleolus has many other interesting properties, among which 

are the following, which idll not be proved here. 

7.20 Theorem (Schmeidler [1969]): The Nucleolus contains only one point. 

7.21 · Theorem (Kohlberg [19'(1] and· Schmeidler [1969]): · The Nucleolus is 

a continuous function of v. 
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7.22 Remark: Neither the Kernel nor the Bargaining Set is necessarily 

a continuous function of v (see Stearns [1968]), 

7.23 Theorem (Peleg [1968]): For B = {N}, the Nucleolus Of a homo~ 

geneous strong 1veighted ma,jori~;y_game consists of the normalized homo~-

neous weights. 

The Kernel has the :following interesting property: 

7. 24 ~~ (Maschler a .. nc1 Peleg [1966]): I•'o:c B "' {N}, if the Kernel 

and the core are nonempffi_then the intersection of the Kernel and the core 

Moreover, a point in the Kernel represents an exact compromise within 

the core between a pair of players. More precisely, let X = ( 1 .. n) 
X , , •• ,X 

be in the core. The set 
k k 

{y: y =x for k f:: i, k :f j and y(N) =x(N)} 

is a line. The intersection of this set with the core is a segment. A 

point belongs to the intersection of the Kernel and the core if and only 

if it is the midpoint of all such segments, for some X in the core. 

Chapter 8: Repeated Games 

vfuen a game is repeated many times, it seems that some sort of 

11 cooperative" behavior might be induced: if a player deviates from a par-

ticular strategy at some point :ln order to increase his own payoff, the 

other players may be able to .act in such a way that he is penalized in. 

every subsequent play of the g::nne. To formalize these ideas, let G be 

a game in strategic form (see Definition 2.3). TI1e suEergame G* of G 
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is then the game each play of which consists of an infinite sequence of 

plays of G. One m.i.ght then expect that the~ outcomes in Glf generated 

by noncooperative solution concepts (i.e. ones in which it is assumed that 

contracts cannot be enforced) are related to the outcomes in G generated 

by cooperative solution concepts (where it is assumed that contracts can 

be enforced). To examine this question define G as follows: 

(l) N = {l, ... ,n} i·s the set of players, 

(2) Ei is the .(finite) set of strategies of player i; i is a an 

Ei l 2 
' ... 'an) X Li element of and a - (a ,a E - E, and 

~EN 
iEN 

( 3) h: E is the vector of players' payoff functions. 

The player set for G* is also N = {l, ... ,n}; the strategy sets 

and payoff functions are defined below. 

player i is a sequence of functions f i f}. 
15' 2~ t (· C• 

w·here J: X '5' X , , , >< [ + l;i . 
~---y-:~ 

k - l 

8. 2 Remark: An ass~tion implicit in the~ definition is that at the 

k-th play each player lmm·rs the strategies whieh vrere used by the other 

players in the k - l previous plays. This is information which is not 

necessarily revealed by the outcome at each p1ay of the game, and so the 

assumption is a strong one. However, it is made merely for convenience 

here, and weaker assumptions are sufficient to demonstrate many of the 

results. 

Now, one might consider defining mixed strateg:i.es in G* as before. 

However, a difficulty arises. Consider those pure strategies of player i 

in G* which are sequences of constant functions For each k, the 
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set of f~ had the cardinality of Ei, so that the set of all such pure 

strategies, being the Cartesian product of denumerably many copies of 

has the cardinality of the continuum. Hence defining mixed strategies as 

probability distributions as before would not be straightforward. For this 

reason we will think of a mixed strategy as a random device for choosing a 

pure strategy: it will be a rru1dom variable from a specified sample space 

into the space of pure strategies. Thus, for each 8 C N let n8 
be a 

sallij)le spa.ce, (This space has to allov sufficient randomization possibilities, 

which is the case if it is a copy of ( [O,lLB,A), where B is the set of 

Borel subsets of [0~1] and A. is Lebesgue measure; each coalition cs,n 

then randomize independently of every other coalition.) 0.
8 is the lottery 

which the coalition 8 can observe, on which it can base its randomization. 

Define 

sl - x n8 and n _ x ··n 8 

83i SCN 

Let wE Q and let w 8 be the projection of w onto 

is the information available to player i. 

8.3 Definition: 

functions fi with 
k 

A randomized super-strategy of i 

i ~i i 
fk : ' 2: X E X • ~ >< ~G + E • 

k !. 1 

8 
0, • Then 

i s 
w ::: ( w ) S3.L 

. Fi lS a sequence of 

8. 4 Remark: Note that the sample space Qi is not indexed by the serial 

number k of the play. This means that the randomization is based only on 

the realization i 
w in Qi; this allows independent randomization at each 

play k. of the game since ([O,l],B,!..) is isomorphic to the Cartesian 

product of denumerably many c9pies of itself. 

"(,-.. 
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Now let an n-tuple F = (F
1

, ... ,~) of randomized super-strategies 

be given. Define a seq_uence ~l ,~2 ,. . . of n~tuples of randomized strategies 

in G as follows: 

( 1( 1) 2 2) n n) ~i ( w) = f 1 w ' f 1 ( w ' ••• 'f 1 ( w ) 

and 

Sc(w) 

for k = 2,3, ... 

Define a sequence of random payoffs by 

and let 

(where E is the expentation operator) 

m 
One might then consider taking the e:{{Ilected average payoff lim I ~\:(F)/m 

m-7<>:> lc=l 
as the payoff in the super game. However, this limit does not alw·ays exist. 

In fact, there is no need to define a payoff function for G·*: w-e can merely 

define equilibrium points in the following 1mys. 

8. 5 Definition: An n-tuple F * of randomized super-strategies is an 

upper equilibrium point in G* if: 

m F 
l. k~l~*(uJ)/m converges to a constant L(F*) "1-rith probability 

one (L(F*) is referred to as the payoff to the upper e.p.), and 

.I 
I 
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for each . i and each randomized super-strategy 
i 

F of 

£ > 0 such that for infinitely many m 

+ £ with positive probability 

i 

8.6 Definition: Ann-tuple F* of randomized super-strategies is a 

lower equilibrium point in G* if: 

m Fu 
L I ~ "'(w)/m converges to a constant L(F*) with probability 

k==l ~ ~ 

one (L(F*) is referred to as the £.?:YOff to the lower e .p.), and 

2. for each i and each randomized super-strategy F1 of i 

there is no £ > 0 such that for all but finitely many m 

+ E: with probability one 

8.7 Remark: An upper e.p. is clearly a lower e.p., but the reverse is 

not necessarily true. However~ we will establish below (Theorem 8.14) that 

the set of payoffs to upper e.p.'s coincides with the set of payoffs to 

lower e.p. 's. 

8.8 Remark: An upper e.p. corresponds to an "optimistic" outlook by each 

player: F will not be an upper e.p. if player i has 

which there is an E: > 0 such that for infinitely many 

i 
a strategy ~O for 

m F IF
1 

. 

m, L (l}k 
0

(w) )
1 /m 

k=l 
with positive probability, yet such a deviation might benefit 

player i only very infrequently. Similarly, a lower e.p. corresponds to 

a 11 pessimistic" outlook by each player. 

'\',;. 
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We 'fill now formalize hro notions of eqllilibrium vrhich consider devi-

ations by sets of players. 

8.9 Definition: An n-tuple F* of randomized super-strategies is an 

upper strong equilibrium point in G* if: 
m 

1. k~l~*(w)/m converges to a constant L(F*) with probability one, 

and 2. there is no coalition S, no IS 1-tuple of randomized super­

strategies ~ of S, and no E > 0 such that for infinitely many m for 

all i in S 

+ E with positive probability 

8.10 Definition: Ann-tuple F* of randomized super-strategies is a 

lower strong eguilibrium point in G* if: 
m F 

1. L hk*(w)/m converges to a constant L(F;:_) with probability one~ 
k=l-

and 2. there is no coalition S, no lsl~tuple of randomized super-

strategies F8 of S, and no E > 0, such that for all but finitely many 

m for all i in S 

Before examining the equilibriun1 payoffs in G*, we will examine the 

set of feasible payoff vectors in G. Let a E l:; then h(cr) E EN is the 

vector of payoffs to players in G. Let 

P = {h (a) : a E l:} and D = convex hull of P 

Any payoff in D can be attained by the players using jointly mixed strategies. 

i 
I: 
II 
; ' 
I 
'' 
I 

!' 



-92-

8.11 Example: Consider the game G defined in the table below. He have 

P == {(l,O),(O,l),(O,O)} and 2 
D = {x E E : 1 2 1 

X + X ~ 1, X > 0 and 2 
X ~ 0}, 

as shown in the diagram. Those points attainable by independent randomiza-

tion comprise the set 1 2 
A= {(x ,x ): 1 2 

x =aS, x = (1- a)(l- S), a E [0,1] 

and S E [0,1]}; in order to attain all points in D the two players will 

1 R 

B 0,0 0,1 

have to correlate their strategies. For example, to attain the payoff vector 

(1/2,1,2) they will have to play T and 1 together with probability· 1/2, 

and B and R together with probability 1/2. 

8.12 Definition: ~'I'b.J:::minimax payoff to player i in G is 

where a_ ( resp. runs over the randomized strategies of i (resp. .,_, 
N\ {i}) in G. 

------~~---

One can interpret di as a payoff which player i can guarantee 

himself: even if the players in N\{i} get together and act so as to make 

his payoff as small as possible, he vrill be able to obtain di. 

8.13 Example: Consider a three-person game G where player 3' s payoffs 

are as in the tables below. Then in order to minimize player 3's payoff, 
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players l and 2 have to randora:i..ze between the strategy pairs (T,L) and 

(B ~R): they cannot do so by randomizing independently. 

L R L R 

T -1 0 T 0 0 

B 0 0 B 0 -1 
.__ _ __. ____ _ 

3 1 s first strategy 3's second strategy 

8.14 Theorem: ~set of payoffs to upper e.p. 's coincides with the set 

of payoffs to lower e .p. 1 s and i_s _egual to D' , {x E D: i > eli for all i EN} 

To prove the theorem we need the following . 

. . "·' '!- 8.15 Lemma: Consider a t1-ro-person zero~sum gam~ G with minimax value v. 

tet a be an optimal st~ate~a~in G~ !1-Jld SYJ2_12Q_Se that in the 

supergam~ a·r. player 1 uses the randomized,_super-strate&_ F
1 which 

involves the use of an independent copy of a at ~ach st~g~. Let F2 be 

any randomized super-strategy_ of pla_;y:er 2 in G* (J-nJ~rticnlar, the stra·-

tegies 2 uses in successive plays of G may not be ~29-~endent). Then 

· m F l 
with probability one lim inf L (~(w)) /m ~ v. 

k==l -

Proof: Let the strategy which player 2 uses at stage k be :k· 
Then we know that 

> v for all k 

Define 

I I 
I 
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Then . 3r(w) ; (l::_(w))
1 for all k and E(3<l~1$:1''" .,~k-l':k-1) = v 

uncorrelated for any k and 5/, (with for all k. Also, 3< and :51, are 

k#.P,): for k > 9., 

So we cru1 apply the Strong Law of Large Numbers to deduce that 

so that s with 

with probability one 

for all k, 

m (~(w)) 1 

lim inf I ~ > v 
k=l m 

This establishes the lemma. 

Proof of Theorem:. The theorem is eQuivalent ~o the following three 

statements: 

{1) {upper e.p. 's} C {lower e.p. 's}, 

{2) {payoffs to lower e.p. 's} CD', and 

(3) D' C {payoffs to upper e.p.'s}. 

(1) is immediate. 

(2) is the result of the following. 
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Assertion: . {payoffs to lmver e.p. 's} CD. 

F Proof: Let F* be a lower e.p. We have ~ *(w) ED for all k, 
m F . 

so ~ ~*{w)/m ED for m = 1,2, .... Hence the closedness of D ensures 
k=l~ 

that L(F*) ED. This proves the assertion. 

Assertion: If x is a payoff to a lower e.p. then xi > di for 

all iEN. 

Proof: --- Let F * be a lower e • p . \ri th payoff x. 

of i has a strategy a such that for all strategies 

By the definition 

N\ {i} 
~k at stage 

k of the i N' {i} i . i supergame, E[h (~k ,~ )] ~ d . So if at each stage player i 

us~s an independent copy of i 
a , Lemma 8 .1 ;5 guarantees that 

which establishes the assertion, 
'\'}... 

These two assertions together entail the truth of (2). 

( 3) can be proved as follows. Let x E D1 o Then there eY.ist non-

negative real numbers ·aj 

Iajh(~.) = x 'and 
j J = 

summing to one nnd members E;j 

J'l( }IT) for all i EN. Let a {JJ 

of r such that 

be the mixed 

strategy in G which involves the players using the pure strategy ~j \-rith 

probability 

where the 

a., for all 
J 

j, so that 

are independent copies of 

Define 

if' N N an = (J (w ) _, _Q, for all R. < k - 1 

otherwise 

N ·, N 
(J ( (!), ) ) i I is the first player 

(JN("'N) to deviate from the strategy w in the previous plays (first in time; 

II 
I 
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if there are more than one such, first in serial number), and T • I _l 
is a 

correlated strategy of 1~ {i 1 } with max E[hi
1

(cr,~. :·)] = i' (cr running 
0' -i, -l 

over randomized strategies of i 1 in G). Suppose i 1 deviates from_ F* 

at stage ~' and uses the strategies for k = .Q, , Q, + 1, ... ; let 

denote his super-strategy. Then 

for all k>Q.+l 
= 

, ~-" r 
/1'-

l<he:ee the (~iv \: a::r:e tndependent copies of ~i'' So by Lemma 8.15 
. ' m F jFl . I ., I (~i~ (w)) 1 /(m ~· !Z.) ~ d

1 
l·rith probability one. Hence 

k:=:Ji.+l -
lim sup 

for i' condition 2 of Definition 8 .. 5 is met. Hence no :player ca11 gain 

by deviating from the strategy N N cr(tll),andso 

payoff x. This establishes (3). 

This completes the proof of the theorem. 

is an upper e .p. with 

8.16 Example: Consider the Prisoners' Dilemma game, vdth payoff matrix 

as below (see ExampJ.e 2. 20) • The set D is the parallelogram 1d th vertices 

consisting of the four payoff vectors in the table; D' is the subset of D 

with (x1 ,x2 ) > (l 1) · , , sJ.nce l is the minimax payoff of both players. 

0'2 0'2 
+2 

~ X 
D l 2 = 

l (0~5) 

0'1 
.. 4,4 0~5 ~ D' = 

1 
0'2· 5,0 1,1 2 d ::::1 --

'(1,1 
0 d1 

=1 (5,0) xl+ 

.·~· 

I 

i 
;I 

1 
~ 
~-
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'l.'heorem 8.14 states that the set of payoffs to e.p. 's in the supergame 

consisting of an infinite string of re-petitions of the Prisoners 1 Dilellll1la 

game consists precisely of' D'. This contrasts with the equilibrium pay-

off vector in the Prisoners' Dileunna game when it is played once, which 

is just (1 ,1). 

Now let 

v (S) 
a 

-- {x
8 

E E
8 

·. h · d 8 t ere ex2sts a randomize strategy a of' S 

in G such that for all randomized strategies of 
N 

in G and for all i in i 
s~ x < E[hi(crs,aN\s)]}. 

This is just the set of all payoff vectors vrhich S can gua:rantee for itself. 

8.17 Definition: The a-core of G is the core of v (i.e. a-core of 
a 

G = {x E D: (V S CN)(iBy Ev (S) s.t. 
i i 

y >x ViES)}). 

Next, let 

. (Y, 

~lft'L I::.Z:"} '1 
~" N\~S" 

for each randomized/\ ~ · of 1>1\S in G, there 

exists a randomized strategy cr8 of S in G such that ... 
i i S N\S) :for all i in S, x < E [h (a .. ,a ] }. 

This is the set of all payoff vectors tha;b .N\S cannot prevent S from 

getting. 

8.18 Definition: The S-core of G is the core of vS (i.e. S-core of 

G ={xED: (V S C N)(~ y E vS(S) s.t. yi >xi ViES)}). 
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8.19 Remark: v~(S) C v
8
(s), so (S-core of v) C (a-core of v). 

It would seem that v is a more natural construct than v
8

, but in 

connection with repeated gam~~ is vS that turns out to be more signi­

ficant. Thus, we have the fo':t."i~ing. 
.8.20 Theorem (Aumann [1959]): The set of payoffs to upper strong e~~ 

in G* coincides with the set of J?azg_ffs to lower strong e .p. 's in G*, 

and with ~he S-core of G. 

Proof: From the definitions 1ve can immediately deduce that 

{uppelN strong equilibrium payoffs} C {lower s.trong equilibrium payoffs} 

The theorem is then equivalent to the following t1w statements: 

(1) {lower strong equilibrium payoffs} C S-core, and 

(2) S-core c· {upper strong equilibriUm payoffs}. 

To establish (1), suppose that F* is a lower strong e.p. with payoff 

x, and X~ S-core. To say that X~ S-core means that there exists a 

coalition s 

means that 

with 
i i 

y > X for all 

for each randomized strategy TN\S of N\S in G there exists a 

randomized strategy 

for all i E 8 

s 
(J of S in 

i-\ / 

'·:'\ 
So for each sequence of n-tuples of strategies \~1 ,, .. ;~k-l, there exists a 

randomized strategy for s in play k of the game such that 

for all i E S 

.1'... . ., 
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i s(s) N\s i 
E[h (~k w ,:r:;,k ( ~1' • '· '~k-1 ,w))] > y 

Now define supergame strategies Fi for i ES as follows: 

(a) fi(w) i( s) ::: ~1 (tl ; 

(b) f!(~l'~2'' ·· '~k-l'w) 
. s 

::: ~~(w ) for k = 2 ,3' .... 

s" ~· ,.-~ 
'···J 

Then E[(~*IF (w))i] i for all i ES and for all stages k. But > y 

i i y > X for all i E S, so Lemma 8.15 ensures that for all but finitely 

many m, for some £ > 0 

1 I (~·x·IFS ( w)) i > xi + e with probability one 
m k=l -

contradicting the fact that F* is a lower strong equilibrium payoff. This 

establishes (1). 

In order to prove ( 2) , we 'Vrill use the following. 

Assertion: For each xES-core and each S C N, there exists a 

randomized strategy N\S 
T of N\ S in G such that for each randomized 

strategy s 
(J - of S in 

E [hi ( 0 S , TN\ S ) J i 
< X • 

Proof: Since 

i i for all i E S. y > X 

G there exists an i E S such that 

xE 13-core, there is no y E vS(S) such that 

So for all 0, there is a strategy N\S 
£ > '[ 

-e: 

N\s such that for each strategy s of s there is i E S with (J an 

E(hi(aS ,TN\S) J < X 
i + £, The i for which this is true will depend on 

_E: 

but as E: tends to zero through a denumerable sequence there will be a..r1 

of 

E: ' 

i 

such that the statement is true for infinitely many terms of the sequence, 



-100-

and for this i we will have inequeJ.i ty in the limit, establishing the 

assertion. 

of N 

SCN 

N ( ) a I 0 N ( ,,,N) ow we can prove 2 • Let x E ~-'-core. et w be a strategy 

in G for which E[h(crN(wN))] = x. 

there exists a randomized strategy 

By the assertion, for each 

,N\S of N\S in G such that 

for each randomized strategy r:P of S in G there is an i E S such 

We -vrill use the strategies 
N\S 

T to 

define a randomized super-strategy 1'\~. · as follows: 

(a) 

(b) let 

N N · a (w ); 

S be the set o:f };>layers who have used a strategy other 
k 

than their component of N 
0 in one or more of the.plays l, ... ,k-1. Then 

(vrhere 

and 

N\sk 
f*k (~1···· '~k-l'w) ~ 

N\81 N\Sk 
T c( w ) 
,;.k 

if 

"--

N\Sk 
T is a copy of 
_k 

N\sk 
T independent of 

r!k( 0 1''' '' 0 k-l'w) = 
1" -

N N 
~k(w ) if s = ¢ 

I 
-~'~--

s # ¢ 
k 

N\S. 
J T. 

~J 
for j <k-1), 

(where the N 
~k are independent copies of N 

(J ) • Suppose that after play 

t - 1 no new players deviate from 

randomized super-strategy of 

k for k; L 

s 
s, ~k 

N 
;I ; let S 9- = S , and let be the 

being the strategy s uses at play 

Let C be the set of lsi-tuples of expected payoffs to members of 

s in G lvhich s can attain when N\S uses the strategy c is a 

_,_._,_ 

l 
l 
I 
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convex subset of ES~ and X is not in the interior of C (if it were, 

there would exist a strategy as of. S such that E[hi(crs ,l\ 8 )] >xi for 

all i E s). So by the Supporting Hyperplane Theorem. there exists 

p f 0, such that 

\ i i 
l. p y 

iES 

\ i i 
~ . l. p X 

iEB 
for all yEC 

s 
pEE , 

Since there is no z E C such that z >> X 9 we can deduce that there is a 

supporting p with p > 0; i.e. there exists p > 0 such that 

\ · iE[hi( S N\s) J < 
l p Pk ;rk 

\ i i {. p X 
iEs - - iES 

Hence by Lemma 8.15, 

m 
lim sup L 

k::!~ 

hi( S N\S) 
• pk 'Tk \ l - -

L P -----< 
iEB- m - 9., "' 

for all strategies 

for all k > J!. 

\' i i 
/. p X 

iEB 

= 

s 
~k of s 

So there exists no E: > 0 such that for inf:i.ni tely many m for all i E S 

i 
> X + E: with positive probability 

Hence F* is an upper strong equilibrium point with payoff x. 

In this argument we have assumed that S is a constant. In fact it 

may be a random· variable· ( ~orhether a player deviates or not may depend on 

the strategies the other players have used in previous stages), so that the 
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p above will be r~~dom, and the expectations will all be conditional. The 

line of argument needs no modification, however, and we leave it to the 

reader to make the necessary notational changes. 

This completes the proof of (2), so that the theorem is established. 

8.21 Example: Consider the Prisoners 1 Dilemma game once again, ;.rith pay-

off matrix as given in Example 8.16. We find that the 8-core of this game 

consists of the line segments ab and be shown in the diagram, so by 

Theorem 8.20 the points on these lines are the strong equilibrium payoffs in 

the su:pergame, an outcome which contrasts once again with the noncooperative 

outcomes in the game when it is played once. 

Appendix to G1apter 8: Annotated Bibliography on Repeated Games 

(a) Repeated Games and Cooperation: 

Three basic papers in this area are Aumann [1959], [1961], and [1967]. 

The f'irst introduces the material examined above, but analyzes mixed stra-

tegies in the supergame as probability distributions rather than random 

variables, and is consequently difficult to read. The second analyzes the 
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a-core and the 13-core in the case where side payments are not allowed; the 

worth of a coalition is then the set of payoff vectors to its members 

which it can attain, rather than a single amount which can be distributed 

within the coalition in any way. The third paper surveys many of the 

topics discussed in these lectures for games without side payments. An 

application of the idea that repetition leads to outcomes reflecting coop-

eration is contained in Kurz [1975]. 

(b) Stochastic Games: 

Stochastic ga~es were the first sort of repeated games to be analyzed. 

A stochastic game is a finite set of 2-person zero-sum games, each play of 

.l 
'r 

the game leading to a payoff and the assignment of some game in the set, the 

.···c.· '''!latter being played at the next stage. So each player can maneuver for pay-

1 offs and for subsequent games. Shapley [19531J J analyzes the case where the 

payoffs are discounted, and Gillette [1957] examines the case where they are 

not. Since then a great deal of work has been devoted to stochastic games; 

it is so voluminous that it cannot possibly all be rev-le1-red here .. Dramatic 

progress has recently been made by Bewley and Kohlberg [l976a] and [l976b] 

in studying the lli!discounted case. 

(c) Repeated Games with Incomplete Information: 

In these games one game out of a kno;m set is played repeatedly, each 

player having only li~ited information about which game is being played. 

Each J?layer will then be. interested not only in obtaining a high payoff in 

the short term, but in ensuring that he can do so over a long period by 

playing so as to conceal any information he has which the other players do 
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not have (if players' interests are opposed) or by playing so as to reveal 

information (if his interests coincide with those of others}. 

As an example of a situation where interests are opposed, assume 

the set of games consists of two zero-sum two-person games with payoffs to 

player 1 as shown in the tables below. Player 1 (the row player) knows 

1 0 0 0 

0 0 0 1 

Game l Game 2 

which game is being played~ but player 2 does not (~e assume that player 2 

does not knmr the payoff he receives at the end of any pley; this payoff is 

just deposited into his bank account). If player 1 always plays his top 

strategy, it vrill be clear to player 2 that game 1 is being played, so the 

best strategy for player 1 will involve his playing his bottom strategy some 

of the time, in order to avoid revealing his information to player 2. 

Now consider a situation where players 1 interests coincide. The 

games in the set are the two whose payoff matrices are shown below, Player 

1 (the row player) has one strategy, and player 2 has two, Assume that 

player 1 knows '-rhich game is being played, but player 2 does not. Even 

though players• interests coincide, the outcome will not be efficient in 

EB ± 
Game 1 Game 2 
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this case since the fact that player 1 has only one strategy means that he 

cannot s.ignal to player 2 the information he ha.n about the game being played; 

there is no way for the players to coordinate their actions. If, however, 

player 1 has two strategies, the two games bc:Lng Game 3 and Game 4, whose 

payoff matrices are shown below, then there is some possibility for coordi-

nation: whenever the true game is Game 3 (resp. 4) player 1 can play his 

top (resp. bottom) strategy, and if he does so, player 2 can play his left 

(resp. right) hand strategy. The resulting equilibrium point will be efficient. 

1,1 0,0 

1,1 0,0 

L.----~-~~-

Game 3 Game 4 

The sa:me outcome l·rould :result if player 1 cmJJ.ct s:Lgnal to player 2 in 

some other way. But if' the payoffs are ll10dif:ted sl:i.ghtly a new problem arises. 

Thus consider the case w·here the games are Gmnes 5 and 6. A situation. where 

-- ~~--~-

j.,l 0,0 l.lsO 1,1 

1,1 o,o Ll~O 1~1 

Game 5 Game 6 

.player 2 plays his left hand strategy if .ple.yer 1 signals that .game 5 is being 

played will not be sustainable as an equilibrium point in this case because 
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there will then always be an incentive for player 1 to signal that game 5 

is being played when in fact game 6· is being played, In this case, then, 

there is no efficient e~uilibrium point even though there is the possibility 

of signalling. 

Some papers which analyze repeated games with incomplete information 

are Aumann and Maschler [1966], [1967], and [1968], Stearns [1967], Kohlberg 

[1975a] and [1975b], Mertens and Zamir [1971/72] ~ and Zamir [1971/72] and 

[1973]. Again, the literature is too voluminous to review completely here. 

Some Final Remarks '==---

A topic which 'de have not covered is .utilit;y~ theocy_. vlhen we intra-

duced the payoff matrix in two-pe:cson games the numbers we assigned w·ere only 

intended to represent :players 1 o:cderings over the possible outcomes. How-

ever, subse~uently it was necessary to interpret the payoffs as representing 

preference intensities. IJ'hus, when considering the mixed extension of a 

game we dealt id th expected :payoffs, which are sums of payoffs weighted by 

:probabilities, and when i·Te analyzed cooperative games we assumed there existed 

numbers representing the "worth" of each coalition. 1>J'e can justify such 
l 

procedures by assuming that payoffs are in money units and that each player 

has a utility function which is linear in terms of money. For a detailed 

treatment of the problem see Luce and Raiffa [1957]. 

lie have also not studied some other interesting topics. Zermelo 1 s 

theorem involves a game in extensive form, where the se~uential structure of 

the players 1 moves is considered in detail. Games in coalitional form 

. I 
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without side payments are also of interest, as are _g_ames vri th a continuum 

of players; the latter can be used to fo;:malize econom:tc situations of puJ.'e 

competition. 

Solutions to Exercises!/ 

1. Consider the game defined in the table below. Let a., ( resp. 
l 

be the probability that player 1 (resp. 2) uses strategy i. Then the only 

e.p. of the game is (a.1 ,a.2 ,a.
3

; S1 ,B2 ,s
3

) ~ (l/3,1/3,1/3; 1/3,1/3,1/3), the 

equilibrium payoff being (3,3). 

1 
s· 

3 

0,0 

5~4 

'--

415 
-·. 

4,5 5,1 
~~ 

0~0 4, 

5,4 0 ~ ( 

Proof: By inspection there is no pure strategy e .p. Let 

(a.
1

,a.2,a.
3

; B
1

,B2 ,s
3

) be a mixed strategy e.p. Then given (a.1 ,a.
2

,a.
3

) it 

must be the case that the expected payoff to player 2 if he uses any of 

his pure strategies is the same ( other~visc he 1-rould choose a pure strategy, 

in which case it would also be best for player 1 to choose a pure strategy, 

so that we would not have a mixed strategy e.p.). Hence we need 

lfsupplied by Martip J. Osborne. 
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or, remembering that By symmetry 

i-Te can then deduce that' 81:::: 82"' s3·== 1/3. 'i'h'e payoff to ·player 1 at 

this e.p. is 4{1/3) + 5(1/3) = 3, as is the payoff to player 2. Hence 

the only e.p. of the game is (1/3,1/3,1/3; 1/3,1/3,1/3), the equilibrium 

payoff being (3,3). 

2. Consider the game defined in the tables below. Let a (resp. 8, y) 

be the probability the player 1 (res:p·. 2, 3) uses his first strategy. Then 

the e.p. 1's of this gRille are {a,B;y)::: (1,1,1), (a,(3,y) = (0,0;0), and 

(.:x~B,y) ~ (2-~12~2-/2,2·-1'2). The corresponding equilibrium payoffs are (1,1,1), 

(2~2~2)~ and (/2,/2-,12), 

Proof: (a,S,y) == (1~1,1) and (a,S,y) = (0,0;0) are clearly pure .. , 

strategy e.p. 's, vith payoffs (1,1,1) and (2,2,2). rro find mixed strategy 

e.p. 's, let plqrers 1 and 2 choose :probabilities a and B. Then in a 

mixed strategy e.p. player 3 must get the same payoff when he uses either 

of his pure strategies (otherwise he would choose a pure strategy, which 

2 2 
sl s2 

1 
1,1,1 0,0,0 0,0,0 0,0,0 sl 

1 
0,0,0 o,o,o 0,0,0 2,2,2 s2 

3 ~----v-= 3 
sl. s2 

would include players 1 and 2 to do the same, and we 1-rould have a pure stra-

tegy e .p.). Hence we wa.nt 
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aS = 2(1 - a)(l - S) 

By symmetry the corresponding conditions when the other players are considered 

are 

ay = 2(1 - y)(l - a) and Sy = 2(1 - S)(l - y) 

The unique solution (a,S,y) E [0,1] 3 of these three estimates is (a,B,y) 

= (2-1:2,2-1:2,2-12), and the corresponding equilibrium payoff is (/:2,1:2,1:2). 

Thus the e.p.'s and equilibrium payoffs are precisely those stated above. 

3. Consider the game defined in the table below. Let a (resp. 8) be 

the probability that player 1 (resp. 2) plays his first strategy. Then 

every (a,S) in [0,1] 2 is an e.p.; the equilibrium payoff corresponding 

to (a,S) is(l-8,1-(:t). 

Proof: Using the arguments of g,~ercises 1 and 2 it is immediate that 

the above assertion is correct. 

2 2 
sl s2 

1 
0,0 l,O I sl 

1 
0~1 1,1 s2 

4. If 1 ~ [ v(l2) + v(l3) + v(23) ]/2 and v(ij) ~ 1 for all pairs 

{i,j} C {1,2,3}, then the 0-1 normalized 3-person game ({1,2,3},v) 

has a nonempty core, 
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Proof: (a) ·Suppose that v(l2) + v(l3) > 1. Then 

X ::: (v(l2) + v(l3) - l~ 1 - v( 13) ,1 - v( 12) ) 

l 2 is a member of the core: X ; 0~ x2 > o, x3 > 0 and xl + X + X 
3 = 1; and 

l 2 l 3 
X +X :::: V(l2), X +X :::: v(l3), and 

2 3 v(l2) - v(l3) v( 23). X +X :::: 2 - > 

(b) Suppose that v(l2) + v(l3) < 1. Then 

is a member of the 1 
~ 09 

2 
> o, 3 

~.0 a..rtd l 2 + x3 == l; and core: X X X X +X 
"" 

1 + x2 = 1 v(l3) > v(l2) 9 

1 3 v(l3) and 
2 3 1 v(23). X - X + X = X + X = > 

"" 
Hence in all cases the core is nonempty. 

5. A 0-1 normalized weighted majority game has a nonempty core if 

and only if it has at least one veto player. 

Proof: A 0-1 normalized weighted majority game (N,v) is defined 

by 

"~~ 
if l: w 

i 
> q 
:::: 

i83 
v(S) 

i if l: ,., < q 
iES 

with q such that v(i) = 0 for all i E N and v(N) = 1, 

n 
> w • 

( :i .e. 

(a) Sufficiency: Num·bel' the players in such a way that 
l 2 

w > w > ,., = = 
Then if there is at least one veto player, player 1 is such a player 

v(S) = 0 if 1 E S). Hence x = (l,O,O, ...• o) is in the core~ 

i 1, X > 0 for all i, and 

.~. 
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if 1 E S in which case v(S) < 1 
= 

if 1 rt: s in which case v(S) = 0 

This establishes sufficiency. 

(b) Necessity: Suppose there are no veto players. Consider the 

collection of coalitions S = {N\ {1}, N\ {2}, ... ,N\ {n}} ;;dth balancing 

weights 8S = 1/(n - 1) for all S E S. \-Te have 

so s is 

= n = 1 I Xs = 
sES 

a balanced collection. Since there are no veto players v(S) = 1 

for all S E S, so I osv(s) = n/(n- 1) > 1 = v(N). Hence by the Bondareva-
SES 

Shapley theorem the core of (N,v) is empty. This establishes necessity. 

6. The core of a 0-1 normalized \ve:i.ghted majority game with veto 

i 
players 1, ... ,p is C = {x: 

:g ai 

1 2 p ) x = (a ,a ~···~a ,0,0, ... ,0 with a > 0 

for all i 'and L = 1}. 
i~:::l 

Proof: If x E C, then it is clearly an imputation. Let S be such 

that v(S) = 1; then {1,2, ... ,p} C S, so 

v(S) Then I i 
; 0 = v(S). that = o. X 

i 
iES I ai with a > 0 for all i and = 1 

= i=l 
c. ore consists. of solely such points. 

1· For every concave. function f: En 

ill 
i i) 

ill 
aif(xi) f( I a x > I if a. E r and 

+ 
i=l i=l 

I xi = 1 = v(S). LBt S be such 
i83 

( 1 2 p 
Hence any x = a ,a, ... ,a ,0,0, ... ,0) 

is in the core of the game, and the 

+JR and for all ill > 1, 
ill i I a = 1. 

i=l 
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Proof: We proceed by induction on m. 

(a) For m-= 1 tpe result is immediate. 

(b) 
r . 

Assume the result is true for all m < r - 1, and take a E Er 
+ 

\' ,.,1 with L .... = 1. Then 
i=l 

r 
f( L aixi) 

i=-=1 

r-1 .. 
= f( I alxl + arxr) 

i=l 

r-·1 i . 
= f[ (1 - c/) L (-a--)x1 + arxr] 

;to::], 1 -· c{ 

r·~l 

> (1 - ar)f[ l., 
i=l 

(by the conce.vity of f) 

r-1 . 
But L cl/(1 - ar) ""1, and ai/(1- ar) ~ 0 for i = 1, .•. ,r- 1, so that 

i=l 
the truth of the result for m :-:<. :r - 1 ensures that 

r-1 
i i) 

r-1 r 
aif(xi). Hence f( I a x > L aif(xi) + arf(xr) = I = 

Hence the result is 
i=1 i=1 i=l 

true for m = r. 

(a) and (b) together entail the verity of the result for all m ~ 1. 

-a. Lemma 6. 3 is false without the assumption of superadditi vi ty. 

Pr_oof: Consider the follm'fing game (N, v): 

N = {1,2 ,3} v(l) = 2 v(2) = v(3) = 0 

v(l2) = v(l3) = v(23) = 3 and v(l23) = 4 

. I 

~. 
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If is to be in the core of (N,v) then 1 
> v(l) = 2, X X 

2 + x3 ~ v(23) = 3, and xl + 2 
+ x3 :::: 4; hence the core is X X empty. But 

the imputation (2,1,1) is not dominated by any imputation: the only 

coalition which can dominate it is {2 ,3}. but in any imputation 1 
X > 2, 

so it is not dominated by any imputation, This establishes the claim. 

9. There is no homogeneous representation of the weighted majority game 

one of whose representations is [5; 2,2,2,1,1,1]. 

Proof: We want to find a representa:bion 1 6 [q;w, .•. >w] suchthat 

'\' wi L = q 
i6S 

for all minimal winning coalitions s. That is, we want 

(1) 
:.· ,, \.,' ~~. 

and 

(2) 

in {2) we obtain 1 2 3 k 2(w + w + w ) + 3w ~ 3q for k = 4,5,6. Using (1) 

k 4 k 4 this gives 3w = q for k = ,5,6, so that w = q/3 for k = ,5,6. But 

then w
4 

+ w
5 

+ w
6 = q, so that {4,5,6} is winning, which is not the case 

in the original game. This establishes that no homogeneous representation 

of the game exists. 

10. M( v, {1234}) for the weighted majority game [ 3; 2 ,1 ,1 ,1 J is 

{(a,(1 - a)/3, (1 - n)/3, (1 - a8/5 ;; n ;; 4/7' 
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Proof: Let x = (a,S~y,o) be a payoff vector, There are three sorts 

of objections to consider:. (a} those among players- 2, 3. and· 4; (b) tho.se .. 

between players 2, 3 and 4 and player 1 ~ and (c)_ those between player 1 and 

one of the players 2, 3 and 4. 

(a) Let an objection of 2 against 3 be of the form (1-13-E, S+E,O,O). 

Such an objection exists if 1- 13 - e: ;, a for some E > 0, or if a+ B < 1. 

Player 3 can counterobject with (l-y,0 9 y,O) if 1-y;, 1-S·-£ for all 

£ > 0, or if 8 > y. 
:::: 

So there .lu no ,justified cl)jection of 2 a.gi:Linst 3 if 

(l) either a + 8 ~ 1 or S > y 

The consideration of obj ectionl3 of 2 against L, ~ 3 against 2 9 3 against l.J., 

4 against 2. and 4 against 3 1eads to the conditions 

(2) either a + i3 -· 1 or (3 > 0 
= 

( 3) either a + Y = 1 ~ or y > s and y > 0 and = = 
(4) either a + 0 = 1 or 0 > 

= B and 0 > y 

for there to be no justified objection. 

(b) Consider an objection of 2 against l of the form (0,(3+E:~(l,..f3.-E:}/2, 

( 1- 13 -E) /2); such an objection exists if 1- 13 - £ ~ 2y for some E > 0 and 

l - 13 - E ;, 2o for some £ > 0, or if 2y < l - (3 and 2o < 1 - S, Player 1 

can counterobject with (o.~O~l-a.,O) if 1-a > (1- S ~ d/2 for all £ > 0, 

or if 2a < l + (3. Hence there is no justified objection to x if 

(5) l - B ~ 2y or 1 - B < 2o or 2a < 1 - B 

Consideration of objections of 3 and 4 against 1 leads to the conditions 
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(6) 1 - y < 213 or 1 - y < 28 or 2a < 1 - y and 

(7) 1 - 8 < 213 or 1 - 8 < 2y or 2a < 1 - 8 

Next let x = (1,0,0,0). 'l'hen (5) is violated, so x is not in the 

Bargaining Set. Also, if x = (a,l'-a,O,O) with a <1, (2) is violated. Hence 

a+ a < 1, and by symmetry we can deduce that a+ y < 1 and a+ o < 1. So 

from conditions (1 )-(4) we conclude that a == y = 8. So any point in the 

Bargaining Set is of the form (a,(l-a)/3, (l~a)/3, (1-a)/3) with a< 1. 

(c) Consider an objection of 1 against 2 of the form (a+e:,O,l-a-E:)O); 

such an objection always exists since a = ( 1- a) /3. Player 2 can counter-

object with (0,(1-a)/3,1- o:-e, (1- a)/3) i:f' 5(l~a)/3~e ~ 1 for all 

£ > 0, or if o: > 2/5. The consideration of objections of 1 against 3 and !~ by 

Sj!nmetry yields the same conclusion . 
. . ~ .... · ., ". . "~: 

Hence 13 = (1- a)/3 ~ 1/5, so the first two conditions in (5) are not 

satisf:.i.ecl; for the last one to be satisfied l'ifc need 2a 2 l + (1 ~a) /3 or 

a < 4/7, and conditions ( 6) a.nd ( 7) lead to the same result. . 

This exhausts 

is@-,(1 - a)/3, (1 

objections~ so the Bargaining Set 

,; o: < ~.;7 ~ as vas to be shmm, 

11. M(v,{l23}) for the game defined in Example 7.1 is . {(2/3,1/6,1/6)}. 

Proof: Consider a payoff vector x ~ (a,S,y). There are three sorts 

of objections to examine: (a) 2 against 3) and 3 against 2; (b) 2 and 3 ~r"''7 

/ ~ against 1; and (c) 1 against 2 and 3. ~~ 
. ·- . J4r 

(a) Consider an objection of 2 against 3 of the form (l - 13- e ,a+ e; ,11); 

such an objection exists unless a+l3 = 1. Player 3 can counterobject with .&1· 
\,J s . e.. 

~~ 
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(1-y,p,y) if 1-Y ~ 1-13-~::, or if y < {3. So there is no justified 

objection of 2 against 3 if 

(1) either a + S = 1 or y < S 

By symmetry there is no justified objection of 3 against 2 if 

(2) ei~per a + 13 = 1 or {3 < y 

(b) Consideran ob;Ject:i.o:a of 2 against 1 of the form · (O~S + e: ,}- 13- d; 

such au objection exists ii' 
1 . 2 ~, f} - E > y ~ or if i3 + y < 1/2.. So no qbjection · 

exists if B + y > 1/2. Playc.j'f.' 1 r~an counterobjec:t with (a, ,0 ,1 =a.) :i.f 

1 ~a ;;, ~~B-E.:) or if c1, :~ 13 ·~"~u Hence there is no justified. objection of 2 

against 1 if 

(3) either 
1 

t3 + y > 2 o:c 

By synrruetry there is no justif:l.ed objection of 3 against 1 if 

(4) either 1 
t3 + y > 2 or 

1 
a~y+2 

(c) Finally, consider an objection of 1 agqinst 2 of the form 

(a+e:,0,1-a-e). Such an objection exists if 1-d-£ > y, so there can 

be no objection only if y -l'·c~ "" 1. Player 2 can counterobject 1dth 

1 
(O,B,-2- B) if ~-t3>l~a"'£~ori:f 

justified objection of 1 against 2 if 

(5) either a + y = 1 or a ~ B + ~ 

Hence there is no 

:t .. :. ._•.-:._.•' 

i' 

·' 

) 
f 
,1 
I 

i 
I 
i 

l 
I 
i 
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By symmetry there is no justified objection of 1 against 3 if' 

(6) either a. + S = 1 or 
1 a > Y + -= 2 

Now suppose x = (1,0,0). Then (3) is violated; hence a. < 1. Con-

sider x = (a,l-a,O) with a<l; then (2) is violated. Hence a+S < 1, and 

by symmetry a+ y < 1. So conditions (1) and (2) ensure that (3 = y. So 

any point in the Bargaining Set is of the form (a, (1 -a) /2, ( 1 -a) /2). 

Conditions ( 5) and ( 6) then imply that a ~ 2/3. Hence 8 + y ~ 1/3, so 

that conditions (3) and (4) imply that a ; 2/3. Hence the Bargaining Set 

consists of the single point (2/3,1/6,1/6) ~·as claimed. 

-:-·""7' 
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