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Chapter 1: Zermelo's Theorem

Game theory is a theory of rational behavior of people with.non-
identical interests. Its area of application extends considerably
beyond games in the usual sense-—it includes, for example, economics, -

politics, and war. By the term '

'game" we mean any such situation,
defined by some set of "rules." The term "play" refers to a particuliar
J i3y
occurrence of a game. Thus chess is a game, and several plays of chess
& & 5 play ]

took place in the summer of 1972 between Fisher and Spassky. .

We begin with Zermelo's theorem on chess.

) . - N - .A . -
1.1 Theorem (Zermelo [1912]): In chess either white can force a win,

or black can force a win, or both sides can force at least a draw.

Proof: We will prove the result-for a family of games that

includes chess. Fach game in this family is characterized by: (1) a

- position in chess, (2) an indication of 'who must move" (black or white),

and (3) a positive integer n (with the understanding that if the game
does not end in mate or draw within n single moves abt most, then it is

declared a draw). (Chess is a member of this family beacause the number

¥Based on lectures delivered at Stanford Lniversity in toe fall of 1679
and winter of 1976. lotes tahken by Haruo Imai, José Cdraova, and
Martin J. Osborne.
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of moves in chess is boundea (by the rule whereby a’play of
chess ends when the same position is repeated three times).)
We prove the result by induction on n. "The reason for using
the larger family is that it strengthens the inductive hypothesis and
so makes the inductive proof possible. This is typical of inductive
proofs.
Suppose n = 1. If black moves, black can either mate on that
move, 01 he cannot; in the first case black can force a ﬁin, and in the o

second case, both players force a draw. Similarly for white. Now

assume the theorem is correct for all n <m- 1. We wish to deduce

the theorem for n = m. Without loss of generality (henceforth abbre- ')
viated w.l.0.g.) suppose black moves first. By the induction hypothesis, }
after black has made the first move, either black éan force a win ox
white can force a win or both camn force at least a draw. In other words,

with each move by black, designated by p, there is associated a letter J
f(p) thét may be b, w, or a (b, v and 4 stand respectively for

' and "both can force at

"black can force a win," "white can force a win,'
least a draw"). Then there arise three mutually exclusive and exhaus-—

tive cases:

(1) If there is a move p of black such that f(p) = b, then

black can force a win in the original gamne. !

(2) If for all p, f(p) = w, then white can force a win in the

original game.
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(3) Otherwise, there is no p for which f(p) = L, bﬁt there is
a p for which f(p) = d. Hence black can force at least a draw, and

so can white.
This completes the proof of the theorem.

We now introduce a concept of fundamental importance in ganme
theory, that of strategy. DIy the term strategy, we mean a complete plan
for playing a game (for one player), taking all contingencies into
account, inclﬁding what all other players might do in the course of the
play.

For example, iﬁ Tic-Tac~Toe the first player has at most 5 moves,

and for each move there are at most 9 possibilities. INevertheless he

has far more than 45 strategies. For a strategy is a complete plan,

and the number of possibilities in a complele plan which covers only
the first two moves of the first player is already 504, This is because
for the first move there are 9 possibilities, and for each of the 8
possible responses of the second player, player 1 has T choices for his
second move.

In terms of strategies, Zermelo’s theorem is illustrated in the
three tables on page 4. The rows represent strategies of white, and the
columns strategies of black. The numbers 1,2,... index the strategies.
To each pair of strategies of whi%e and black, there corresponds one of
the letters w, b and d. If white can force a win then there exists a
strategy of white which, no matter which strategy black plays, assures

w. If black can force a win, then there exists a strategy of black




e S

Strate-
gies of
White

o
Strategies Strategies
of Black of Black
Strate-
gies of
1 2 3 ‘o hite 1 2 3 ..l k ]
1 wlb W .o 1 d d b P - T N
2 d | w da . e 2 w | Db d ..l b {..
3 wib da e 3wl w|w . .
k 7 4 W W ooeo W o b
. . . s Black can force a win if and only
. . , R there is a columnn k that is
filled with b's.
Wuite can force a win if and only if there
is a8 row k that is filled with w's.
Strategies
of Black
Strategies
of White
1 2 3 . k v
1 W d b N d e
2 dad} bbb SN b N
3 W W b - b .o
. . . . b
. . . . or
. . . d
w W
k' w d!| wi or d or
d d
B I b
. . . or
. . . . a
Both can force at least a draw if and only if there are
a column k that does not have a w and a row k' that

does not have a D.
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A-line connecting two sides in Hex.

which, no matter which strategy white plays, assures b. [If both can
force at least a draw, then there is no strategy which assures W
to white and no strategy which assures b to black, but there are

strategies of white and black which assure a? least d for both white

and black.

1.2 Example (Hex): The following rules define the gane of "Hex."

There are two players, vhite and black. The "board" consists of a
parallelogram of dots, as in the drawing above. The first move is made

by white, who circles a dot on one side of the parallelogram. Black

‘then circles a dot on an adjacent side., The players then take turns to

form a connected series of dots from their chosen starting points, each
aiming to reach the side of the parallelogram opposite his starting
point. A connecting line must coincide with the side of one of the
small equilateral triangles defined by the dots, and must not cross the
line formed Dby the othér player. It is clear that this game belongs to

the family of games for which Zermelo's theorem is applicable. Also,




8
&

Sairs

S S

B G

—6-

a‘little thought will show that a draw is impossible in this game.
Thus either white can force a win or black can force a win. We now
prove that in fact white can forcé a win. To this end, we show that
if black could force a win, then white could‘force a win.

Let us define Reversed Hex to be the same as Hex, except that

black moves first. If black could force a win in Hex, then white could

force a win in Reversed Hex. Consider now a ?lay of Hex. White can

play by meking an arbitrary move to begin with, subsequently ignoring
that move and playing to win as if he were in Reversed Hex. If at any
time his strategy dictates occupying the point he occupied on his first
move, then he can simply occupy another arbitrary point. This will
lead to a win for him, which is a contradiction. Thus it is impossible
for black to férce a win in Hex; hence white can force a win. "
Note that this is simply a proof of the existence of a winning

strategy for white; even for boards of moderate size (say 12 x 12 or

13 x 13) no winning strategy for white is actually known.

1.3 Example (Kriegsspiel): Consider the game known as "Kriegsspieél,"
whose rules are as follows. Black and white play chess separately
withoﬁt knowing each other's position; each is informed when a move he
proposes is 1llegal because of the positions of the pieces of the other
player. TFor this game, the proof of Zermelo's theorem given above can-
not be applied, and in fact the theorem itsélf probably does not hold.
The differeﬁce betﬁeen chess and Kriegsspiel lies in the fact that at
each stage in chess every move made up to that stage is known by both

players, while this is not true in Kriegsspiel. This makes the
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inductive step in the proof of Zermelo's theorem invalid, because the
player whose turn it is to move does not know to what position his

move will lead. Technically, chess is a-game of perfect information,

whereas Kriegsspiel is not.

Chapter. 2: Noncooperative Games

In the games we have discussed up to now there are 2 players
whose interests are completely opposed. it is clear that when there are
more than 2 players, they cannot have completely opposed interests.

This motivates the following definition.

2.1 Definition: A game is strictly competitive if it has two players

(1 and 2) and for any two possible outcomes x and y, if 1 prefers

Xx to y, then 2 prefers vy %o =x.

In & strictly competitive game, we can assign numbers to the out-
comes such that a higher number corresponds to an outcome that player 1
prefers.‘ If we do this in chess, then Zermelo's theorem asserts that
there is a number v such that white can guarantee that his payoff will

be at least v, and black can guarantee that white's payorf will be no

‘morée than v. This motivates the following definition.

2.2 Definition: A number v is said to be the minimax value of a

strictly competitive game if player 1 can guarantee that his payoff
will be at lesst v, and player 2 can guarantee that the payoff of

player 1 will be no more than V.
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Not 21l strictly competitive games have minimax values. For

example, the game "matching pennies," in which the payoffs to 1 are

those given in the following table has no minimax value.

Player 2
Strategy 1 Strategy 2
Strategy 1 1 -1
Player 1
Strategy 2 -1 1

We would now like to generalize our considerations to games that

are not necessarily sbrictly competitive and may have more than 2 players.

2.3 Definition: A game G (in strategic form) consists of:
(1) aset N (the players);
(2) for each player i, a set S* (the strategies of 1i); and

: i
(3) for each player i, a function h*: x S =+ R (the payoff
payoff

iE€N
function of 1i).
2.4 Remark: The term "strategic form" is used to indicate that we

have abstracted from individual moves and are looking only at strategies.

If s € xg8°' (i.e. ‘s is an n-tuple of strategies) and
i€N
t1 € 5% (i.e. t' is a strategy of i), write s|t® for the n~-tuple
of strategies which is the same as s except that t1 is substituted

for i's strategy st in s.

2.5 Definition: An equilibrium point of G is an n~tuple s of

strategies such that for any player i and for any strategy tt of i,

hi(slti) < hi(s).

e




A two-person zero-sum game is a game G with n = 2 such that

for all strategy pairs s, we have hl(s) + hg(s) = 0. Clearly, a two-

person O-sum game is strictly competitive. 1In such a game, a pair s

b oana 7, nl(s|tt) < n'(s) ana

h2(s|t2) < h2(s) = —hl(s); or, if for any t+ ana t2,

is an equilibrium point if for any %

nl(th,s%) < nh(sh,6®) < ni(st,?) .

This means that hl(sl,sz) is the minimax value of the game. Thus we

see that a two-person O-gum geme has a minimax vslue if and only if‘it

has an equilibrium point. We now wish to prove a proposition that
connects the existence of an equilibrimm point (or equivalently, of a
minimax value) in a two-person O-sum game to what is called the "minimax <

property.”

2.6 Definition: A subset of a Euclidean space is said to be compact

if it is bounded and closed.

2.7 Remarké A real-valued continuous function on a compact set

attains its maximum and its minimum (the proof is left to the reader).

2.8 Proposition: Let G be atwo-person zero-sum game. Assume that

the Sl are compact subsets of FEuclidean spaces and the h' are conti-

nuous. Then a necessary and sufficient condition for the existence of

an equilibriuwm point in G is that

max min hl(sl,sz) = min max hl(sl,sg)
1 2 2 1
sT g s” s
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2.9 Remark: The quantity ma¥ mlg h (sl,sz) represents the largest
¢ <
amount that player 1 can guarantee to himself by playing an appropriate
strategy. Similarly, min max hl(sl,sz) represents the émallest amount

such that player 2 can guarantee that player 1 will not obtain more

4

than that amount. In "matching pennies," which has no minimax value,

these amounts are different: we have max min = -1 and mnmin max = 1.

2.10 Remark: The compactness and. continuity of the payoff functions

hl are needed to assure that max min and min max exist.

2.11 Remark: The Cartesian product of compact sets is compact (the

proof is left to the reader).

1 2

2 and let S° and S

2,12 Remark: Let h be continuous on S:L X S

“be compacti Then min h(sl,éz) is o continuous function of s, (The
2
s

proof is left to the reader.)

Proof of Proposition: We first assert that always

“\i

rel
v pn e 1, v 2
(1) . mex min h™, < min max h™{ <, ¢
1 2 AT 2 1
s~ s s s

. 2 3 DI
R K <
EWH5V¥ZQ7S‘LS ﬁ &5

Indeed, for any sld—and~ws? we have

¢
£

L% 85
max h™ (s ,9‘2)3111(5" ,57) .
1
S

e

N

pd
o

Taking the minimum over 3? on both sides, we deduce

v
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min max hl(sl,s 2) > min h QSA s°)

2 1
5 s s

°

i e
-Since this holds for all g, it holds also for the ,s:L at which the

right hand side sttains its maximum; hence

min max hi (s .S ) > max min n* (s ,52)
2 1 1 2
s s s s

This completes the proof of (1).

2
{\g L, 5a0
Assume now that 84~ is an equilibrium point; i.e. for all st
and sg, ‘ o gququJJ
(/“’\s ‘1/1 3
- /,\\\V\" -
1 2 ‘ ) i Dyt

hl(sl,sg) E.hl(soaso) =vih (So,s ) 1ooAe Vs

4

.

Then for all sl and 52,

h'(s, s*)

max mlﬁ.ﬁ% > min nt (SO’S ) > Nt (so,s ) = v > max hl(sl,sg)
1 2 A 2 1
s s s _ s
> min max hl(sl,sg)
T2 1
s s

Together with (1), this yields

e B 0 R R A R e e b s e AR i T Dl L e il et T e

. .w'.,'."v' '
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Finally assume, conversely, that

max min hl = min max hl .
1 2 2 1
s s s s

Suppose the maximum on fhe left is achieved at sé; i.e.

max min hl(sl,sg) = min hl(sé,se)
1 2 2
57 s s
Similarly, let
min max hl(s;,sg) = max hl(sl,sg) .
2 1 1 .
s° s s
1 2 )
For all s~ and s~ , we therefore have
hl(sl,sg) > min hl(slgseﬁ = max hl(slasa) > hl(slgsg)
0 - ¢ 0" - 0
2 1
s s
Substituting s = 5, we get
hl(sé,sg) = max min hY = min max ht .
1 2 2 1
s s s s
and hence
1,1 2 1, 1 2 1, 1 2
h™ (s ,so) <h (so,so) <h (SO,S )
N
Thus 54 is an equilibrium point, and the proof of the proposition is

‘complete. -
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We introduce now the concept of the "mixed extension of a game."

~

' introduced above.

2.13 Example: Consider the game "matching pennies,'
The interpretstion is that each Player shows the other one side of a coin.
If both players show the same side then player 1 wins. If not, player
_2 vins. We have seen that this game has no minimax value, or, equiva-
lently, no equilibrium point. As a consequence, no piaying gystem can

be sustained by a playgr9 since the other player can outguess it and win.
So each pléyer ends up playing at random; i.e. each player goes to a
corner, tosses the coin and shows the side thué determined. Playing aﬁ
random in this way is equivalent to choosing strategies 1 and 2

each with probability 1/2. If a player plays at random, his expected

. payoff is O, nb'matter what theistrategy chosen by the other player is.
We notice that random play expands the possibilities for strategy choices.
Each player can now choose among a continuum of strategies—--a continuum

that we may represent by the unit interval [0,1]. We have a new game

defined by:

N = {1,2}

-1 -aq)p 1

it

i
L]
=
-
o]
=t

and Hl(p,q) pg * 1~ (1 -p)g 1+ (1

(L - 2p){1 - 2q)

This new game is called the mixed extension of "matching pennies."

M el
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2.14 Definition: A mixed strategy in a game G is a strategy in

the mixed extension of the game.

Sometimes, when we want to emphasize that we are dealing with

strétegies in G, rather than nmixed strategies, we call them pure

strategies.

2.15 Assertion: The mixed extension of "matching pennies" has a

unique equilibrium point. The equilibrium point is p = 1/2, g = 1/2.

Proof: The existence of an equilibrium point (e.p.) follows

directly from the fact that

H(p.3) = B (3 = K(ha) VpeS', qest

Since min Hl(p,q) is a function of p with a unique maximum, the e.p.
q
is unique.
The following is another example of a zero-sum game with no pure

strategy equilibria, but with an equilibriuvm point in the mixed extension.

5

2.16 Example: Consider a game with payoff matrix as below.

°) o

(q) (1~ q)
si (») 1 3
sy (1 -p) h 2




=1 5'...

We see that there is no pure strategy equilibrium in this game. Let p

aud g be the mixed strategies of players 1 "and 2. Then -

pa * L+ p(l - q)3+ (L -p)g+ b+ (1 -p)L-aq)

1t

Hl(PsQ)

]

—hpq_+p+2q+2

It

-(1 - 2p)'(% ~ 2q) +g— .

From this formula it can be seen that p = 1/2, ¢ = 1/k is an equili-
brium point. We can also compute it by a direct method: nemely by

computing p  such that win Hl(p,q) is maximum (end g such that

max Hl(p,q) is minimum) and verifying that max min Hl(p,q) = min max Hl(p,q).
P P g a P
We have
D+ 2 it p<= ‘
-2
min H'(p,q) = :
! ~3p + L if p > %‘
The graph of min Hl(ﬁ,q) looks as follows:
qQ
4‘.
min Hp,g) 1s
q 25

(1,1)
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From this it is apparent that max min Hl(p,q) = 5/2, Similarly,

Y qQ
. 1
-2g + 3 if q Sy
1 =
max H (p,q) = ;
P 2q + 2- if q;'l]f

the graph of max Hl(p;q) thus loocks as follows:
P L4
+

max Hl(PSCl) (l )-I')
D )

0 ) 1 q =+

Hence min max Hl(p,q) = 5/2. Since mex min is achieved when p = 1/2,
4 P ) b aq
and min max Hl(p,q) is achieved when q = 1/h, it follows that
q Y
(1/2,1/4) is an equilibrium point.

In the games we are going to discuss next, the interests of the

players are not completely divergent. They are called non-zero-sum gaumes.

2.17 Example: Consider the game with payoff matrix as below. 'This
).

NN

.8

no

game has two pure strategy equilibriwa points (sl,si) and (s

3

These points remain equilibrium points in the mixed extension of the game

they correspond to p =1, g =1 and p =0, g= 0, There is however’
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&2 2
1 “2
(a) (L~ a)
s (p) 1,1 0,0
1 .
. l v
s, (1 - p) 0,0 1,1

an additional equilibrium point, p = 1/2, q = 1/2, since

1, 1
Hl(p,g) =3 for all p .
and
2,1 y_ 1 o
i (Z,Q) =3 for all q .

The expected payoff associated with this equilibrium point is (1/2,1/2)
which is smalier than the payoff corresponding to the two other equi-
libria. This result provides a case for two possible interpretations

of an equilibrium point. First, an e.p. may be interpreted as a self-
enforecing agreement. Once such an agreement is written down, it is of
no advantage to either one of the two sides to violate it. TFor instance,
if the two players agree to choose the point (si,si), neither has any
advantage in moving away from it. An sgreement that is not an equili-
brium point will be violated because there is an incentive to do so

.and there is no enfdrqement mechanism. This interprétation is relevant

in situations like intermational treaties and illegal collusions on

constrained trade. Alternatively, an e.p. can be interpreted as a
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natural outcome when there is no possibility of communication between

the players, but somehow the e.p. in question is "prominent" or "natural;""
i.e. each player has reasbn to believe that the other one will play in
accordance with it. In the case above the e.p. (1/2,1/2) is such an

outcome since the players cannot agree on either (Si,si) or (sé{sg).

2.18 Example: Consider the game with payoff matrix as below.

2 ;2
51 2
(a) (1 - q)
et (p) 1,1 0,0
1 A
s; (1 - p) 0,0 2,2

The mixed extension of this game has three equilibria:

pure strategies
p = %— , Q= %- nixed strategies .

Note that the mixed strategy equilibrium yields a payoff that is worse
for both players than either of the pure strategy e;p.'s. So it seems
unlikely that this e.p. will be chosen even when communication is
impossible. However, in this case it éeems just as unlikely that the

pure e.p. (1,1) will be chosen, since the e.p. (2,2) is better for

both players than all other e.p.'s..
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2.19 Exemple: In the two above examples, we dealt with purely compe-

titive situations. Consider now a bargaining situation.

2 2
51 5o
(a) (1 - q)
l .
5] (p) : 2,1 0,0
1 ‘ : . '
55 (1 - »p) 0,0 1,2 -

This game is sometimes called the 1"Bz»:f;‘:;t;il.e of .the Sexes." (We méy imagiﬁé
that the husband prefers vacationing in the mountainé while the wife
prefers vacationing by the seaside94but both prefer & vacation to staying
at home.) There exist two pure strategy equilibria p =1, g =1 and

.p =0, g =0, and one mixed strategy equilibrium p = 1/3, q = 2/3. The
mixed strategies outcome (1/3,2/3) mskes %he two players equally well

" (or badly) off, but is not efficient. It is dominated by both of the
two other equilibria: both players are better off when moving to either
pure strategy equilibrium. Here, the main problem is one of bargaining.
Both players have an incentive to reach an agreemént through bargaining,
since it would ensure one of the two pure strategy equilibria. However,
if an égreement caunot be reached (either because the bargaining process
is unsuccessful or because commmication is impossible), then the mixed

strategy equilibriwm is the natural outcome.

2.20 Example (Prisoners' Dilemma): Two prisoners are arrested by the
police, but there is not'enough evidence to convict them. The police ask .

them to:give evidence against each other.




il

=20—

There are three possible cases (two out of the four situations are
symmetric). If one cooperates with the police and the other does not,
the outcome is best for the one who cooperates (he gets freedom plus
side advantages, such as 4 job and new identity)and worst for the
other (he stays in jail under hard conditions). If both turn state's
évidence, they will not be freed but will benefit from good treatment
in jail.  If both do not, both will be freed but cannot get side advan~

tages.

The situation is expressed by the following payoff matrix:

Prisoner 2
not cooperating | cooperating with
Prisoner 1 with the police the police
" not cooperating with the B 0
: i,k .5
police
cooperating wi th
P guwlth e 5,0 1,1
police

4

(1,1) is seen to be the only equilibrium in either pure or mixed stra-
tegies. Some questions arise here. Why is (h;h) not called an equili-
brium in game theory, since (k4,4) dominates (1,1)? According to the
logic of game theory, though (L4,4) may be a "good" outcome, it is not

self-enforeing and so in a sense not "stable.”
g
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2.21 Example: Consider the game with payoff matrix below.

(BY (1 - B)

si (a) © 1,0 0,1
1 11 .
52 (l - a) 233 1)0

Like matching pennies, this game has no pure strategy equilibrium; unlike
matching pennies it is not strictly competitive. Now, let mixed strate-

gies a, B be as in the table,

Assertion: If (a,8) is an equilibrium point, then 0 < a < 1,

0< 8 <1,

Proof: Suppose not; for example, let o = 0. Then B = 1;

but this is not an eqpilibrium point. Similarly for the other case.

If player 2 plays sf he will get (1/3)(1 - @), and if he

plays sg he will get o. So for an equilibrium (1/3)(1 - o) = o, given
the claim of the assertion. Thus o = 1/L4. A similar calculation for

1 yields B = 2/3. UNote that to calculafe o, only the payoff of 2 is
considered, and to get B, only the payoff of 1 is. This is because

for an equilibrium the strategy of 1 has to be such that there is no
incentive for 2 +to change his strategy, and vice versa.

Player 2's payoff at the equilibrium point is, then, 1/4, and

player 1l's is 2/3. An interesting aspect of the situation is that

T e
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player 1 can actually guarantee himself a payoff of 2/3 (by playing
the strategy o = 1/3), and player 2 can guarantee himself a payoff

of 1/4 (by playing the strategy B = 3/h). So at the equilibrium point,

.the two players get what they can guarantee themselves: when each

player looks onlyvat his own payoff and plays as if the‘game were strictly
competitive, each will receive his equilibrium payoff. But this beﬁavior
does not generate the equilibrium strategies: if player 1 chooses
(1/3,2/3) and player 2 chooses (3/4,1/4), by changing to the strategy
(0,1) player 2 can improve his outcome. Converseiy, use of the equi-
librium strategies does not guarantee that the players will receive the
equilibrium payoffs: each player depends on the behavior of the other

to do so. In this case, then, the equilibriuvm point seems wnconvincing

as a recommendation for a self-enforcing agreement, since each player

on his own can guarantee the exact amoumt yielded by this "agreement."

Exercise 1: Find the equilibrium points and equilibrium payoffs
of the two-person game defined in the table below (each player has three

strategies).

s ] 0,0 [ 4,5 | 5,k
s; 5,4 | 0,0 | 4,5
sé h,5 | 5,4 | 0,0
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Exercise 2: Find the equilibrium points and equilibrium payoffs
of the three-person game defined in the table below (each player has

two strategies; player 3's strategies are to choose either of the

metrices of payoffs).

52 82 52 S2
1 2 1 2
si 1,1,1 | 0,0,0 si 0,0,0 | 0,0,0
1 1
s, | 0,0,0 | 0,0,0 5, | 0,0,0 | 2,2,2 \
83 83
1 2

Exercise 3: Find the equilibrium points and equilibrium payoffs

of the two-person game deiined in the table below.

.2 2

1 8y
s:lL 0,0 | 1,0
s; 0,1 | 1,1

. 2,23 Theorem (Nash [1953]): The mixed extension of any game with

finitely many strafegies has an equilibrium point.

Proof: The proof requires the use of the following theorem.

"Theorem (Brouwer's fixed point theorem): ILet C Dbe a compact

convex subset of a Fuclidean space. Let f be a continuous function
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from C into C. Then f has a fixed point: i.,e., there is a point

x in C for which f(x) = x.

Let N = {1,2,...,n} be the set of players and for each i in

N let s'={1,2,,..,m} Dbe the set of pure strategies of player i.

k

Let the payoff function of player i be hl(jl,...,j oo d®) ER

where jk is the pure strategy chosen by player k (1 < jk < mk). The
corresponding mixed extension is defined by:
the player set N = {1,2,...,n} ,
. i
the strategy space of player i: Xt = {(xl,xz,...,x i) ST
: : m
i
oo
XJ >0 for all § , end ‘X xj =1} , and
J=1
the payoff function of player i:
) m; m2 mn
i, 1 k n g i -k n_ i,.1l k
CHT(X e 0X seeenX ) T ) Yoo ) [x LreeX X nhl(J AU L L & I
_ ,jl:‘l J2=l Jngl 3 J J

Xi is by definition the simplex of diﬁension mi -~ 13 we know that
a gimplex is convex and compact. We also know that the Cartesian product
of compact convex sets is compact and convex, so that the Cartesian pfo—
duct of the strategy spaces X = X; x X? X o.. X Xi X .{é;%p is compact

and convex. Define the following function on X:

gji<x) = mex (o,Hi(x[eg) ~H(x) (vxex)viewm(vjyest) |,
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J
i == \ . i . . . .
where ey = (0,0,...,0,1,0,...,0) (di.e. e 1is the j~th unit vector in

and ‘Hi(xlei) is the value of H® when the mixed strategy of 1 in
x (xi) is replaced by the pure strategy eg. Hi(xlez) - Hi(x) is,
then, the gain or loss accruing to player i as a consequence of his
move from xi to e§.

Define the function f: I -+ X by:

. x, + gy (x)
cly = ]
£(x) = -
J m"
i
1+ Z gJ(X)
J=1
We see that f£(x) € X and that r¢4) is continuous  (H'(x). is conti-
nuous since it is a polynomial in x and g@# is continuous since it
is the maximum of two continuous fuanctions). Hence, by Brouwer's theorem,

o

£ has a Tixed point; i.e. there is an x in X for which f(x) = x.

For this x,

(1) ) g?(X) = gi(x) .

Assertion: For all i in N, there is a J with 1 < j < m"

for which x. > O ‘and g?(x) = 0.

J
Proof:
mi '
' i _ i i iy _ ild i
(2) H (x) = lexJH (x]ej) 'iz XJH (x[ej) .

>0
xj A
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If the assertion were false, then g;(x) >0 for all Jj such that

i R -
X, > 0, in which case

J

H'(x|e]) > B (x) for ell J such that X, >0,
so that

(3) I bt xled) > lea (x) = B (x) ) Xy = H(x)

X%>0 ‘ x. x.>0
J ' J

(2) and (3) involve a contradiction, so that the assertion is proved.

i
Applying the assertion, (1) leads to Z g} (x) 0 for all i, and
J=1 :

since g? > 0, g;(x) = 0 for all i sand Jj. Hence Hl(xleg) ilHl(x),

and for every mixed strategy y € X*,

i ; 1

. . m N . . m .
. i ]
H (x|y") = } y;Hlxley) < X Y H () = H(x) ) v, = B (x)
3=1 =], J=1 "
since Z yJ = 1. We conclude that x is an equilibriﬁm point, which
J=1

establishes the theoremn.

Chapter 3: The Shapley Value

In this and subsequent chapters, we turn to the theory of "coopera-
tive games," where the focus of interest is the way in which the players
bargain together over the division of the available payoff, rather than

the way this payoff can be attained by the use of certain strategies.
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3.1 Definition: A game.in coalitional form consists of

1) a set N (the players), and

2) a function wv: 2N + R such that v(@) = 0. (2N = {s: 8 CnN}).

A subset of N is called a coalition; v(S) is called the worth of the

coalition 8. o : 3?
3.2 Agreement: If {ilsiegoagbij} is a set of players, we will some-

times write v(ill

‘é“"ij)’ rathev than v({il’12’°"’ij}) for the vorth

of {11,12,,5”15}°
3.3 Example (2-person bargaining game):

N={1,2} , w(w)=1 |, vkl) =v(2) =0

3.k Example (Market for a perfectly divisible good with one buyer and

two sellers):

it

N = {1;2,3} , v(N) = v(12) = v(13) =1 , wv(23) = v(1) = v(2) = v(3) =0

3.5 Example (Pure bargaining geme with n players, or unanimity game

with n players):
viN) =1 , wv(s)=0 for S # N .

3.6 Example (3-person majority game):

n
3,
&
hast
it
'._l
<
=
I
<
D
1
<
w
il
o

N ={1,2,3} , v(N) = v(12) = v(13)
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3.7 Example (Weighted majority game):

1 i J w3
i€s
N = {1,2,3,b} v(8) = T
0 if Jw <2
i€s

with wh=2 and w' =1 for i=2,3,4 .

(v= 4is the "weight" of player i.)

3.8 Definition: Let N be the set of players. An n-person weighted

majority game with weights {Wl}iEN and quota q is defined by

1 if Z Wi >.q

i€s
v(g8) = .
Ho  if Jw <gq
i€s
3.9 Definition: v is monotonic if & 2 T implies wv(s) > v(T).
(Note that this does not mean that |8[ > |T| implies v(8) > v(T)

(vhere |S| is the cardinality of §).) v is superadditive if

§NT=¢ implies v(SUT) > v(8) + v().

Unless specifically stated, it will not be assumed that v is

monotonic or superadditive.

3.10 Definition: A game is O-normalized if v(i) = 0 for all i in

N; it is 0-1 normalized if it is O-normalized and v(N) = 1.

3.11 Definition: i and Jj, elements of N, are substitutes in v

if for all S containing neither i nor  J, v(s8 U {i}) = v(s U {J}).




-39~

3.12 Definition: An element i of N 1is called a null player if

v(s U {i}) = v(8) for all s CN.

3.13 Definition: Let A and B be two sets. Then BA is the set
of all functions from A to B. B is the Euclidean space of dimen-
sion INI.

We now introduce the solution concept studied in this chapter.

N

3.1%  Definition: Let N = {1,2,...,n} and let G be the set of
W
all pames wvhose player set is N. A Shapley value or value on B is a

function ¢: G =+ EY sabisfying the following conditions:
1. (Symmetry condition): if i and j are substitues in v,

then (¢V)% = (¢v)j.

2. (Null player condition): if 1 is a null player, then

n
3. (Efficiency condition): ) (¢v); = v(m).
i=1

4. (Additivity condition): (¢(v + w))i = (qbv)i + (¢w)i.

3.15 Remark: (¢v)i, the i-th coordinate of the image vector ¢(v)
(sometimes denoted ¢v) is interpreted as the "power" of player i in
the geme v, or what it is worth to 1 +to participate in the game v

(in brief, v's "value" for i).

3.16 Remark: Conditions 1, 2, and 4 are weak restrictions which are
easy to accept as "reasonable," while 3 is much stronger (to require an

efficient outcome in game situations is as strong an assumption as requir-

ing it in a traditional economic problem).
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3.17 [Theorem (Shapley[1953a ]): There exists a unique value on G

for every N.

Proof: First we prove uniqueness. ILet ¢ be a value on G .
Define for each coalition T C N with T # @, a game Vo by
1 if W@s=2T
vT(S) = .
0 otherwise
Note that for any real o, members of MT &re null players in
avT, and members of T are substitutes for each other in avT. Hence
by the null player condition, ¢(avT)i = 0 when i % T, and by the

symmetry condition ¢(aVT)i = qb(cva)j vhen i,j € T. Hence, by the

.

. efficiency condition [ ¢(avT). = (av_)(N) = ov(N) = o, Thus
lEN 1 T T

o= ) ¢(avT). = |Tl¢(av,)), for any i € T. Hence,
=i i T°1

o
.. 4 C
: _ TEW“ for - 1 T
olavy), = .
0 for 1§ T
Now, GN is a Buclidean space of dimension ZJN’ - 1 and there are

QINI ~ 1 games v,. We know ¢(avT) for all o and T, so by additi-

k k
vity we know ¢( ) @,V ) for all linear combinations ) @ Vy of the
i i=1 i

ja1 2Ty

VT's. Hence if we prove that the VT's are linearly independent, we

will have shown uniqueness. Suppose they are not; then we may write
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where IT] < lTi{ for all i and all Ti's are different from each

other .and from T. Then

1=v,(T) = % B.v, (T) = % B, ~0=0 |,
1 =1 1Ty i=1. 7

a contfadiction. We therefore conclude that the VT}S‘ are indeed
linesrly independent, which complebes the uniqueness proof.

For the exisﬁence proof, suppose that the players in N are
ordered, and suppose ﬁhat according to this order, each plé&er gets his

marginal incrementel woxth to the coalition formed by bthe players pre-

ceding him. That is, the i-th plsyer gets
v(1,2,3,000,1 = 1,i) - v(2.2,3,...,1i - 1) ,

where l,...,i - 1 denotes the players before i in the order under

consideratioﬁ. The function on N thus obtained does not always satisfy
the conditions of the Shapley value. But if we take all possible orders
of the players and average the corresponding marginal contributions, this
avérage turns out to satisfy all the conditions of the Shapley value.
Thus, a null player has zero iﬁcremental worth in all orders, and the
symmetry of the ordering ensures that the symmetry condition is satisfied.
The efficiency condition is also trivially satisfied and the additivity

condition can be verified from the following:

(v + w)(2,2,...,0 = 1,i) = (v + w)(1,2,...,i = 1)
= [v(1,2,...,1 -~ 1,i) = v(1,2,...,1i - 1)) + [w(1,2,...,i = 1,i)

-w(1,2,.0.,i - 1)]
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for any two games v and w and any order. This establishes the
existence of a Shapley value, so that the proof of the theorem is now

complete. The above argument also estsblishes the following.

3.18 Theorem (Shapley [1953a]): (¢v)i = (1/lﬁ[!)E[v(si U {i}) = v(s,)]
‘ , R

where R runs over all INI! different orders on N, and S, 1is the set’

i

of ‘players preceding 1 in the order R.
We will now compute the Shapley value for some simple games.
'3.19 Example: 2-person bargaining game. One has

N=1{1,2} v(12)=1 , v(1)=w2) =0 ,

‘so‘the formula gives:

(), = (4v), = 5 -

_3;20 Example: 3-person majority game. One has

N=1{1,2,3} +v(1) =+v(2)=v(3) =0 ,

v(12) = v(23) = v(31) = v(123) =1 ,

so the formula gives:

C(gv)y = ev), = (ev) =S

In both these examples one can also deduce the value directly from the

symmetry end efficiency conditions.
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3.21.  Example: Market with two sellers and one buyer. Here

N = {1,2,3} , +v(123) = v(12) = v(13) =1 ,

and  v(8) = 0 for all other 8 CUN .

In order to éompute_the Shaplef value for this game, we first notice that
there are 3! = 6 orderings of the 3 players. Sihée this game'is a
simple geme (i.e. the worth of every coalition is either 0 or 1), the
fbllo%ing definifion is useful: player i 1is a key player with respect -
to the coalition 8§ if &(s) = 0 and v(8 VU{i}) = 1. The Shapley valﬁe~
for a player 1 1is his average incrémentél worth, so wé obtain it by
computing the proporiion of orderings in which playet i 'is a key player
with respect toAthe set of players which precedes him in the ordering; ’

The six orderings are:
{1,2,3}, {1,3,2}, {2,1,3}, {2,3,1}, {3,1,2}, and {3,2,1}.

Player 1 is key in {2,1,3}, {2,3,1}, {3,1,2}, and {3,2,1}. So
L 2
Since 2 and 3 are substitutes (¢v)2 = (¢v)3. The efficiency condi-
\ 3 . _
tion is ) (¢v); = v(123) = 1, s0
i=1

(ov), = (4v)5 = %

so that
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i

211
v (53'-6—9“6—) .

This example illustrates the fact that the Shapley value gives a measure
of the power of the players in a situation.free of any institutiong.
Thus, one might think that if the available payoff above were distributed
according to the players' strengths, the outcome would be (1/2,1/k,1/k4),
since the two sellers can form a cartel which will put ﬁhem on an equal
footing with the buyer. The Sha@ley value, however, reflects the fact
that fhe buyer is actually in a stronger position since each of the

- sellers will always be willing to deal with him separatély’

3.22  Examples: Weighted majority games. The Sﬁapley va@ué glves
interesting insights-into some multimpéréy é@liticél sitﬁationé? .For
in;tanée, the political arena in Israel is characterized by the exis-
tence of a larée farty (the Labor Party) which counts Ffor approximately
1/3 of the wotes; whereas until several years ago the vemaining votes
were split among many‘relativei& small parties. In spite of. the fact
that it coﬁtrolled Oniy l/é of thé votes, however, the Labor P&rti‘hasg
since the creation of the state, always held éll four major miniétries»"
(Prime Minister, Finance, Foreign, ]})eat“en,se).° |

To try to géin éome insighf iﬁto this situation, let us compute
the Shdpley value for a weighted majority game (ﬁ,v) with quota
a=1/2 and a vector of weights w = (1/3,2/9,2/9,'2/9)». We get
#v = (l/é,l/6,l/6,l/6). This result provides some‘understanding of the
situation in Israel: although it has only 1/3 of'thevvotes, the Labor

Party has half the "power" within psrliament.
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Consider next a situation in which there are 100 parties: one
large party has 1/3 of the votes, and ﬁhe remaining 99 parties share
the other 2/3 equally. The large mrty is a key player in all orderings
in which the1e are more th%n 1/h 1nd less than 3/h of the 99 players-

“before him, So he is key in half of the orderlngs, so that again 1/3
of the votes gives the large party 1/2 of the pover: (¢v) = 1/2,
Now con51der & situation im which there are two large parties,

each with 1/3 of the wvotes, and 3 small ones with 1/9 of the votes each;

pw (LA L
¥ A3R3Yg00g

We will compute the'Shabley value for the correépondimg weighted majo~ -
rity game with @ = 1/2. Let the twe large players be denoted by x
and y. For .each order iﬁ which the small- pleyers appear one can
cﬁaractefize the. order of all ths players by a pair (a,b), where - a
(resp. b) is the number of small players after which x (resp.. y)
appears. Corfespoﬁéing to s péir (a;a) there are two orders of_all
the players--one vhere x precedes y, and one vwhere the reverse is
true; corresponding to every other pair there is just one order. Hence
possible.prders are illustrated in the diagram below: for example,

the point A corresponds to ﬁﬁe order (pl,y,pg,x;p3) (where
(pl,pg,pS) is the ordering of the small players); each position on the
.diagonal corresponds to two possible orders of a1l players. BSo for
every ordering of the swall players there are 20 possible orderings

I3

of all the players, and x is a key player in the six positions which
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.f

b

3 . . .

o ©
2 . . . .
0}
1 . . A .
o

O . . -
® ©
0 1 2 3 a>

are circled. $So, since the order of the small players is irrelevant at
present, the value of x is 6/20 = 3/10. By symmetry the value of y

is also 3/10, and by symmetry and efficiency the value of the game is

So in this case, the Bhapley value imputes to each of the large blayers
a share of the power smaller than his shere of the votes. |
Let us consider now & more general. case in which there are two
large parties (each with 1/3 of the votes) and n ~ 2 small ones of
equal s&ze. We are interested in the‘Shapley value of this game for n
arbitrarily large. The characterization of orderings used above can be
modified by letting 'a and b. be the proportibns of the small players

.after which x and y respectively appear. The diagram below then

illustrates the situation, the shaded area corresponding to those order—

ings in which x 1is a key player. The value of each of the large parties

is, then, approximately 1/4 when n is large; for n = 5, it was 3/10.

If there is a large number of small parties it will, then, be better for
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themAgggltq‘get together in lJarger groups. The intuitive rationale is
as follows. Whatever the number of small parties, each large party
does not need all their votes to form a mejority, but if there are few
small parties ﬁhe Ilarge ones will have no choice but to bargain over
large blocks of votes. If there is a large number of small parties,
the large parties can bargain for just the number of votes they need,
and can conseqnentlr'offer more pey vote:1 the swall parties will then
actually be more powerful.

This result may account for another aspect of the political scene

in Israsel: +the fact that the relatively small religious parties have

not gotten together, but have remained independent.

Chapter L: The Core

4.1 Definition: A payoff vechor is a member of E' (the Buclidesn

lNlndimensional space whose coordinates are indexed by the members of N).

4.2 Definition: A payoff vector x is called individually rational

(In the game (N,v)) if x > v(i) for all players i € N.
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4.3 Definition: A payoff vector x is called group rational {or
efficient) if ) x* = v(N).
. iEN
L.k Remark: If 2x1<vm),ﬂmndlpkwascmﬂdh@mweﬂwﬂ
i€N

payoff by forming the coalition N; hence x 1is inefficient. If v

is superadditive, then for any partition {Sl,...,Sk} of the players

k
(i.e. U 5, =N and B, Ns, =¢ forall i # j), we have
i=1 o
k
v(n) > ) v(Si); therefore there is no way for the players to obtain a
i=1

total payoff greater than v(N). Hence under the assumption of super~
additivity, it is to be expected'that payoff vectors that actually occur
will be group rational. However, superadditivity will not be assumed

here unless specifically stated.

k.5 Definition: An imputation is a payoff veector that is indivi-

dually and group rational.

4.6 Definition: The core of the game (N,v) is the set of all imputa-

tions x such that v(8) < ) x° for all S CN.
i1€8

.7 Example: Two-person bargaining game. We have N = {1,2}, v(N) =1,.

and v(1) = v(2) = 0. Then (xl,xg) is in the core if and only if

xl >0 , x2 >0 , and xl + x2 =1 .

So the core is the set of all imputations, as shown in the diagram.

AR ST T eI
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1\2
bd
1 .
Core of two-person bargaining game
0 1 xl+

%.8 Example: Three-person bargaining game. In this game N = {1,2,3},

v(N) =1 end v(S) = 0 for gll other S CN. So (x19x29x3) is in the

core if and only if

x"4+x"+x” =v(l) =1 , x*>v(i)=0 forall 1i€EN , and

fx >v(s)=0 forall SCN , S#N .
ies

The core is therefore the set of all imputations once again; it is shown

in the disgram below.

4
X

Core of three-person bargaining game
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) Example: Market with 2 sellers and a buyer, In this game
N = {1,2,3}, v(123) = v(12) = v(13) = 1, and +v(S) = 0 for all other

SCN. So x is in the core if and only if

2
X +x"T+x =1 , x +x >1 , x +x >1 ,

x>0 , x >0 , and x* >0 .
Hence the core is {(1,0,0)}.

k.10 Remark: Note that the core in the example above ({(1,0,0)})

differs considerably from the Shapley value of the game considered there
(wvhich is (2/3,1/6,1/6)). One can interpret the zero payoff to players
2 and 3 in the core allocation as the result of cutthroat cémpetition

among them.

4,11  Example: 3-person majority game. Here N = {1,2,3},

v(123) = v(12) = v(13) = v(23) = 1, and v(i) = 0 for all i € N,

For x to be in the core, we need xl + x2 x3 =1, x" >0 for all

4.
i€n, xl + x2 > 1, xl + x3 > 1, and x2 + x5 > 1. There exists no -x

satisfying these conditions, so the core is empty.

We now wish to study conditions on v which will ensure that the
core of (N,v) be non-empty. Comsider first a 0-1 normalized 3-person

game. Let us suppose that the core is non-empty, i.e. there exists an

2 3)

imputation x = (x ,x",x such that

T+ %2> v(12) ,
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<L+ %3 > v(13)

2
X7+ x” 2 v(23) Y oSy a3 1

. - /

=

i;, + :f{/1>‘3.
In this case we have

2(x" + 52 + x5) > v(12) + v(13) + v(23)

v

ox

vy) = 1 s Lv2) x v(13) « v(23)]

2 s
and
v(z2) <1, v(3) <1 , wv(23) <1

So a necessary condition for a 0-1 normalized 3—person game to have a
non-empty core is that 1 > [v(12) + v(13) + v(23)]/2 and +v(ij) <1

for all {i,J} CN.

Exercise 4: Prove that the condition 1 g [v(12) + v(13) + v(23)]/2
and v(ij) <1 for all {i,J} €N is also a sufficient condition for the

0-1 normalized 3-person game (N,v) to have a non-empty core.

Let us now consider the conditions under which a general game

(N,v) has & non-empty core.
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4.12 Definition: Let 8 CN. The characteristic vector of § is

the element Xs of E' defined by

1 if 1€8

0 othervwise

4,13 Definition: A family S of coc’itions is called balanced if

there exists a sequence of non-negative numbers {GS} such that
S
Y 8.xs = X
S
s © N
{s_} are called balancing weights for S.
Sses |

A natural interpretation of this definition is the following.
Fach player is endowed with one unit of time that he allocates among the
coalitions S in S; GS is the fraction of his time that each member

of S8 allocates to the coalition S; the condition z SaXa © Xy 18 2
, g SIS N

feasibility condition (for every individual the sum of the amounts of
his time he spends with each coalition must equal exactly the amount of

time he is endowed with).

4.1%  Theorem (Bondarevas [1962], [1963], and Shapley [1967]): A necessary

and sufficient condition for the core of (N,v) to be non~empty is that for

all batanced families S and corresponding balancing weights4‘{68} R

S8

ve_have ) §ov(8) < v(N).
568 -

Proof: We will assume that v 1is 0-1 normalized; the extension

to the general case is left to the reader.
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1. The condition is necessary.

Let x be in the core. Then ) x' = v(N) and ) x* > v(s)
i€N i€s

for all S C N.. Let 8 be a balanced family with weights '{58}. Then

8 X xi > 6 v(s) ,

8 &g s

SO

ﬁés -éSGSXi > s;$GSV(S) .
£ A

Since we are dealing with s finite sum we can reverse the double summa-

tion sign: . B e om s

JoText= ] Toxt= TxJlo, = )=y . . o
oS i€s ° i€y sSg B 5 ‘ : f
i o1 :

Hence

v(N) > ] &SV(S)
SES

This establishes necesgsity.

2. The condition is sufficient.

Assune v(N) > } 8,v(S) for all balanced families S and
TS

corresponding weights. Define a 2-person O-sum game as follows. Player

I chooses a player i in the geme (N,v). Player II ‘chooses a



A

coalition S in the game (N,v), such that v(8) > 0. The payoff

to Player .1 1is:

. > E
+(8) if i 5
n(i,s) = .
0 otherwise
Assertion: In order to prove that the condition is suffi-
cient, it is enough to prove that the minimax value of this 2-person

game is greater than or equal to 1.

Proof: If the minimax value is greater than or equal to 1,
there is a mixed strategy x of Player I that yields at least 1,

no matter which pure strategy S 1is chosen by Player II. That is,

1< JxMn(ie) = =i Tk
" iEn v(8) s&q

for a11 8 €N with +v(8) > 0. Hence

v(s) < ¥ x'
T €8

for a1l 8 C N such that +v(S) > 0. When +v(S) = 0, the inequality

holds since x" > 0 for all i. Hence

‘V(S) < Z X

i€s

for all S C N. Together with the condition J x° = 1, this means
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that x is in the core of the game (N,v), so that that core is non-

empty. This establishes the assertion.

So we must néw prove that the 2-person 0O-sum game has a minimax
value greeter than or equal to 1. BSuppose~contrariwise thabt-the-mini-
max vatweisheasthanodp let it be 0 < & &l (notice that & > 0,
since if Player I chooses a strictly positive probabiiity for eYery
player, he will be guaranteed a positive payoff). There is then a mixed
strategy for Player II that guarcantees that the payoff to I will at
most be §. Let this mixed strabegy assign probability BS > 0 to each

coslition in a family S with v(8) > 0 for s8ll S€&€S. For each i,

we have
) 1oy
g > 0 h(i,S) = . ?
= g V(s
‘ ’ S3i
so

eS
A
i ’

Let us define g = GS/EV(S) for all S € S§. Then we have

1

v

SS .

%

§

)
5=8
=i

In order to construct a balanced family of coalitions, define
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Consider the collection T consisting of S and all singletons {i}.

Then for all i,

so T 1is a balanced family with balancing weights {68}. Hence by

assumption

Z 6SV(S) <v(N)
=T

so that, since v({i}) = 0 for all 1,

) 8qv(8) < v(u)

=S
So
6
Sg:s——g— <v(N) =1,
or
| =1 0 < &t

(we-have -supposed=-& < )i But-this-result.contradicts-the fact that

'W'Tﬁg? Tis a éﬁ;éﬁéé&:igiiﬁiéyer1;il;;%yg‘gggdwﬂﬁz:6§f= 1. Hence
3 " =S
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the minimax velue is greater than or equal to 1, which, using the

above assertion, establishes sufficiency.

The following leads up to an exercise in the use of the Bondareva-

Shapley theoren.

k.15 Definition: S 1is a winning coalition in a simple game if
v(S) = 1; a veto player in such a geme is a player who is a member of

every winning coalition.

Exercise 5: Prove that g 0.1 normalized welghted majority gsame

has a non-empty core if and only if there is al least one veto player.

Exercise 6: Find the core of a 0-1 normalized weighted majority

with p > 1 veto players.

We may sum up some basic features of the Shapley value and the
core as follows:

The Shapley value of a game is a single payoff vector. It
is always group rational; in superadditive games it 1s individually
rational, but this is not necessarily so in general.

The core is a set of payoff vectors. It is a subset of the set
of imputations. It may be empty, and even when it is not the Shapley
value may not be a member of it.

Intuitively the Shapley V&lﬁe represénts a "reasonable com-
promise", whereas the core represents a set of payoff vectors which

are in a certain sense 'stable". There is no general relationship

i
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between the two, though for certain classes of games (not considered

in these Lectures) a close relationship can be established,

Chapter 5: Market Games

Let us now consider an economic application of the concepts we
have developed. The situation we will describe is that of a "merket
game'". In a market game, there is one consumption good, £ production

goods and n players. Each player 1 has a production function

ui(xl,xg,...,xl), defined for all X, >0 and with values in R . The

quantity ul(xl,x ,...,xg) represents the amount of the single consump-

2
tion good that i can produce from inputs xl,x29,..,x£. Each player

i .also has an initial endowment (aigag,...,ai) of production goods.

Each coalition produces as much of the consumption good as possible so

that
(l) v(8) = max { } W (x) ) %' = ) al pad  x" >0 for all i}
i€s i€s i€s
i i i i i,
where x= = (Xl’XQ”"’Xz) and a  is similarly defined,
5.1 Remark: If the u''s are continuous, then the above maximum is
attained.
5.2 Definition: A function u is called concave if its domain is

convex and for x and y in the domein of uw and all o in [0,1],

ulax + (1 - a)y) > oulx) + (1 - o)uly) .
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5.3 Definition: Assume that the ul’s are concave and continuous.
Then the game (N,v) defined by (1) is called a market game.

5.4  Proposition (Shapley'andShubik:[196ﬂ)z Every market game has

8 non-empty core.

Proof: We will use the Bondareva-Shapley theorem. Let S be a

balanced collection of coalitions with corresponding weights {Gsl . ;

&S é

We must prove that :
b s v(s) < v(w) . ’

So S = 3

| i, i i . , |
Let v(8) = J} u'(xs) where x_ is the point of the set N e
& S 5 S

i€3 :

{y- € Ei: §yy- = ) a'} at vhich the function |} uw'(y*) attains ?
i€s €8 i€s ‘

its maximum. Define . - ) |

i i

X =} §.xn .
_sESSS

834

(One can think of player i spending a fraction 84 of his time in

coalition 8 x* is then his total input vector.) We can then prove

that (xl)iEN is a feasible allocation for N:

xi = ¥ ) xi = ) 8 xi = Z 8 z xi
iCZEN iél\T sc)-‘zs 55 52:*8 :sfzis' 58 5B g5 S
834
= Jog Ja=) Joepa =] Jea = Ja Je = Ja

&8s ° i £3 1&g ° iEN €S €N s<s Y
51 531
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(since ) 68 =1 for all i). Hence

b4

Fxt= Jat .
i€N i€N

Moreover, the xl's are non-negative since they are averages of non-
negative numbers with positive weights. So (xl)iEEN is a feasible allo-

cation for N. Hence by the definition of v(N)

v(N) > Z ui(xi) .
i€N

. i . ,
Since u is a concave function

i, i i, i
ut(xt) > ) sut(xn) .
“eg S5

831
Hence
v() > I F egut )
i€y s&8 ©
&
= V. Tulxd) = Tew(s) .

€8 S yeg 8 &g 8

- So

L 8gv(s) < v(n) .
58

So by the Bondareva-Shapley theorem the core is non-empty, which estab-

lishes the proposition.

o TO N
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The converse of Proposition 5.4 is false--not every game with a
non-empty core is a market game. For example, the four-person game
defined by v(123u) =2, v(s) =1 if |s| =2 or 3, and v(S)»= 0
if 8| =0 or 1, is not a market game, although (1/2,1/2,1/2,1/2)

is in the core. .-

5.5 Definition: ZLet (W,v) be a game, and T € N. The subgame
(T,vy) defined by T is the game whose player set is T and whose

worth function is defined by vy(8) = v(8) for a1l s CT.

Obviously every subgame of a market game is itself a market game,

and so from Proposition 5.4 we obtain

5.6 Corollary: ZEvery subgame of a market game has a non-empty core.

The h—person game defined above has a subgame (defined by
T = {1,2,3}, say) with an empty core. This raises the question whether
every game, all of whose subgames have non-empty cores, i a market

game, This is indeed the case; we have

5.7 Theorem (Shapley and Shubik [1969]): A necessary and sufficient

condition for a geme (N,v) 1o be a market game is that it and all of its

subgames have non-empty cores.

Proof: We have already proved that the condition is necessary.
To prove that the cbndition is sufficient, we consider a game (N,v)
such that it and all of its subgemes have nonwempty cores. We will con-

wolta
struct a market game such that its weime function is precisely v.

#i
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Define a market by £ = nj; good i is the labor time of player. 1.

The endowment of player 1 is defined by the i-th unit wvector of the

Fuclidean space E': a' = (o,o,o,e,.,oi}fos,w.,o) (i.e. each player

4

A
i
‘is endowed with one unit of his own labor time). The players have the

same production functions, defined by

ui(x) = u(x) = max { ) o v(T)ia, >0 and } o Xo = X} .
. {QT} N T T = TCN AT

Let

w(8) = max { z u(xi):kz xi = XS} .
i€s i€ES

(N,w) is, then, a market game; we will show that w(8) = v(S) for all

S C N. By the definition of w(8),

w(s) » ulxg)
=max { ) o,v(T): a, > 0 and ) o = Xl
{ag} a0 © T wy L LS
> v(s)
(taking @g =1, and o, = 0 for all T # 8). So we have proved that

w(s) > v(S). In order to prove the reverse inequality, we are going
to use the hypothesis that every subgame has a non-empty core, We
want to prove that w(S) < v(8). We will first prove that w(8) < u(XS)’

and then that u(xg) < v(s).
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Let the maximum in the definition of w by attained at XS’

so that

w(g) = } u(xé) .
i€8

We will show that ) u(x;) <u( ] x;) for a1l S CN, i.e. that u

i€s i€s

is superadditive.

Asgertion: wu 1is homogeneous of degree 1, i.e. for all

a > 0, ulex) = au(x).
ves

Proof':
u(ox) = max { } o v(T):.a, > 0 and ) o X ox}
{og) o T T y TT
T O
= max {a ) — v(T): % > 0 and ) & Xp = X}
{aT} <y * - Ty ¥
=omax { ] B.v(T): B, >0 and ) B x, = x}
{8} 0 7 T- Ty LS

au(x)

il

(with By = aT/a).

Assertion: u is a Concave function, i.e. for all 1 > a > 0

ulox + (1 ~ a)y] > ou(x) + (1 - aluly).
Proof: Let C

u(x) = Jov(T) with ZaTxT = x
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and
u(y) = JByv(T) with 1B.Xp = ¥
By definition
ulox + (1 - o)yl > X[auT + (1 - a)BT]V(T) s

since

Z[auT + (1 - a)Bplxp = GZGTXT + (1 - a)ZBTxT

[t}

ax + (1 « a)y

Hence

ulox + (1 - a)y]

1v

uZaTv(T) + (1 - a)ZBTv(T)

= au(x) + (1 - o)uly)

1
1

Exercise 7: Prove that the following is true for every con-

cave function f: En +TR and for all m 1:

HAY

m m
Va€E Ja, =1=2(]

m
w.x,) > ) a.f(x)
121 i 121 it - L2y i i

We deduce the superadditivity of u from the two assertions

above:

Fuid) = n ] B cnewf b
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Hence

or
W(S) i u(XS) )

by the definitions of w(S8) and U(XS). Let us now prove that
u(xg) g v(8). We have
u(XS) =max { ) a V(T):aT >0 ) aTXf = XS} .

3, if}
(o} < iy

Let the maximum be TV(T), and consider the subgeme corresponding.

7 a
e
to S. Since XQTXT = Xg» all the members-of T of every feasible

collection are subsets of S. Therefore if we consider each T as a

coalition for the subgame,
Leqxy = 7{?'

Thus the collection of T's is balanced in the subgame, with balancing
weights {aT}. So by the Bondareva-Shapley theorem applied to the sub-

gamé
Jagv(e) < v(s)
or

B u(xg) < v(s8) .
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Avove it was established that w(S) < u(xs), so we have

w(8s)

na

v(8). This, together with the conclusion above that w(8S) > v(8)

yields
v(8) = w(s8) for all S CN .
The initial game (N,v) is then a market game (since (N,w) is) and

this completes the proof of the theorem.

Chapter 6: The von Neumann-Morgenstern Solution

The "von Neumann-Morgenstern solution' was the first solution
concept to be studied (see von Neumann [1928]). It was later extensively
examined by von Neumann and Morgenstern [1944], and by subsequent workers.
The ideas on which it is founded are closely related to those on which
the core is founded, and it will be introdvced here on the basis of

these ideas. Throughovt we will use x(8) +to denote z xl,
168

6.1 Definition: Let x and y be payolf vectors, and let S be a

coalition. =x dominates y wvia 8§ (written x yy) if
S

x>y for all i in S
and

x(8) < v(s) .
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x dominates y (written x »y) if there is an S such that x »vy.
8

6.2 Lemma: An imputation y is in the core if and only if it is

not dominated by any payoff vector.

Proof: Let y be in the core. If x by, then v(8) > x(8) > y(8).
S

But y(8) > v(8) since y is in the core. Thus we have a contradiction,
and there is no x vwhich dominabes y.

Conversely, suppose y 1is an imputation not in the core. Then
there is an § such that y(8) < v(8). Define a payoff Vecto‘r~ x by

Lex(8) =w®) © yp seg

;7 ISI_ ’

0 otherwise .

B

Then x~ >y~ for all i €S and

x(8) = y(S) + |8| w(s) = y(8) v(8)

EEme

n

So x b y. This proves the Lemma.
S

6.3 Lemmsg: Assume that v is sugeradditive.' Then an imputation ¥

is in the core if and only if it is not dominated by any imputation.

Propf: The necessity of the condition follows immediately from
Lemma 6.2 above:
For the sufficiency of the condition, iet y and S Dbe as in

the sufficieney proof of Lemma 6.2. Define a payoff vector x by
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.

i fS) ~ v(8) . .
v+ L 5] ( : ift 1i€8

v(N) - [v(s) +,'Z v(i)]
' ifs it i€8 .

Lv(i) +

5]

Because of superadditivity, v(N) - [v(8) + % v(i)] > 0, so x is
i%s

individually rational; also ) x" = v(§), so x is an imputation.
. EN
i

Finally, x(8) = v(8) and x » ¥y, so the Lemma is proved.
S

Fxercise 8: Show that without the assumption of superadditivity

Lemma 6.3 is false.

The stability concept underlying the definition of the core could
be criticized as being too strong. It does not seem natural to exclude
as'unstable a dominated payoff vector when the dominating payoff vector
'is itself not stable. This suggests that we shoﬁld focus our attention

on domination by stable imputations.

6.4 Definition: A set K of impubtations is called a von Neumann-

Morgenstern (N-M) solution (or simply a solution) of v if X is the

set of all imputations not dominated by any member of XK.

6.5 Remark: K in the definition sbove may not be unique and may

not exist (even as the empty set).

6.6 Proposition: K is a solution of v if and only if for all

imputations x and y:
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1. If x,y €K, then x does not dominate y. (Internal

consistency.)

2. If y &K, there is an x € K that dominates y. (External

domination.)

The following notation allows the proposition to be stated more
conmpactly:
| Dom x = the set of all payoff vectors dominated by x;
Dom K = the set of all imputations dominated by a member of X
= LQEK Dom x; |
X = the set of all imputations.

Conditions 1 and 2 then become

1. X C (X\pom K)

2. KD (X\Dom K)
What the proposition says, then, is that

K 1s a solution if and only if K = N\Dom K .

The proof of the proposition is immediate, using Definition 6.L4.
6.7 Remark: The core is a subset of every N-M solution.
Let us determine the N-M solution for some simple games.

6.8 Example: 2-person bargaining geme. We have N = {1,2}, v(N) = 1,
and v(1) = v(2) = 0. We recall that the core (see 4.7) is the set of

all imputations




Since the core is a subset of every N-M solution, if a solution exists
it can only be X. To prove that X is indeed & solution, we prove

that Dom X = @, so that X = X\Dom X.

Assertion: In any game, no imputation dominates another one

via a one~person coalition.

Proof: Consider a 0-1 normalized game (we can do so w.l.o.g.).
Suppose x » y. Since 0 < x*

{i}

both x =0 and x- > yl, which is a contradiction.

<v(i) = 0 and y > 0, we must have

So a one-person coalition can never dominate. Hence in the 2-
person bargaining game the only possible domination is via the coalition

{12}.

Assertion: In any game, no imputation dominates another one

via the coalition N of all players.

Proof: Let x and ¥y Dbe two imputations. Then x(N) = V(K)

and y(N) = v(N). But xp»y = x(N) > y(N), so we have a contradiction.
. N

Hence in the two-person bargaining game no imputation is domi-
nated, so that there is one and only one solution, namely the set of all

imputations.

6.9 Exemple: 3-person majority game. In this game

N = {1,2,3}, v(N) = v(12) = v(13) = v(23) =1, and v(i) = 0 for all i € N.
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Two-dimensional
sinmplex

(0,0,1)

We recall that the set of imputations is the two-dimensional simplex,

shown in the diagrams above. First consider which imputations are domi-

nated by x. By the two assertions above, domination can only be via

the coalitions {12}, {23}, and {13}. Assume y is dominated by x

via {12}. Then

B
v
«
M

>y° , ana x(12) <v(12) =1 .

i
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Henge any point in the area A of the diagram is dominated in this
way (the "outside" sides of A are included, but the "inside" sides
afe excluded). Using a symmetrical argument points in areas B and
C are dominated by x via the coalitions {13} and {23}. From
this it can be seen that no single point can dominate all others,.so that
no singleton can constitute a N—M solution.

It can also be seen that if X 1is a solution, then if x and
y are in K, the line joining x and vy must be parallel to one of
the sides of the triangle of imputations (otherwise one point dominates
the other). It appears, then, that either a line, or the vertices of
an appropriate triangle qualify 8s possible solutions.

Consider first the vertices of a friangle. Let them be a, b

and c¢ in the diagram below. The shaded area consists of points

y a—
/C:

X/ /
/ \ \/b c
AA/\'/\[\I\L%

(0,1,0) (1,0,0)
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dominated by a, b, or ¢. TFrom this it is clear that no such three
points can constitute a solution: there will always be points not
dominated by any of them.

Consider now the situsbion if the vertices a, b, and c¢ of the
triangle are oriented as in the diagram below. Points in the shaded:
ares are dominated. So if a, b, and ¢ are as in the next diagram,

they will dominate all of X\{a,b,c}. Hence a solution is

K= (00,3,5),(3,0,3),(5,3,0} .

2°2°

(0,0,1)
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Now consider the possibility that a line segment parallel to
one of the sides of the triangle is a solution. An example is the

line joining d and e in the diagram below. It can be seen that

(0,0,1)

=\

(0,1,0) (1,0,0)

for points on the line to dominate all other iumputations the set E
must be empty: +the line must be at least half way dowvn the triangle.
Hence any set

Kl = {(x,1l - x ~ c,ck 0 <x<l-el for O

WA
0
A
o jH

is an N-M solution. By symmetry, the same is true of the sebs

K, = {(c,x,l. - x - c):- 0<x<1l-clh
and
K3 = {(1 -x~-c,c,x): O Sx <1~ c}

for 0 g e < 1/2.
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To sum up, there are two different types of solutions.
(1) The symmetric solution K = {(0,1/2,1/2),(1/2,0,1/2),(1/2,1/2,0@
Here two out of the three players get together in a coalition and divide
the payoff equally between themselves; the three players are symmetric.
(2) Discriminatory solutions. Two players get together, give
an amount up to a half to the third player, and bargain over the remaining
payoff. Here one individual is ostracized; i.e. exclﬁded from the bar~
gaining process.
Two features of ihesé sélutions are noteworthy:
(1) An N-M solution can be interpreted as a stable form of
organiéation for sociely. Here, two forms of organization in which the
same people are treated differently are equally stable. - 4
(2) The behaﬁior of the people involved in bargaining is quali-
tatively different.in the two forms of organization. When the three
people are in symmetric positioné-and fwo get together, neither one will
settle fér less than 1/2 since each can say: "If I don't get my due
share, I will go along with the third player and get it from him." In
the discriminatory case, the bargaining process is different: by common

consent the third player is ostracized.

Let us now examine the N~M solution for s more general class of

majority games.

6.10 Definition: A weighted majority game with weights {Wl}ﬂEN and
quota q is called strong if for all S, either S or Ms is winning,'

but not both.
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6.11 Definition: A minimal winning coalition is a coalition S such

that no strict subset of S 1is winning.

6.12 Remsrk: Note that a given weighted majority game (N,v) does

not determine unique weights and quota. For instance, [q3 wl,wz,w3]
= [5; 2,3,4] generates the same game as [2; 1,1,1] (namely the 3-

person majority game).

6.13 Definition: A representation of a weighted majority game (N,v)

is a set of non-negative numbers [q; wl,we,...,wn such that v(8) =1

if and only if ] w > q.
i€s

.

6.14  Definition: A weighted majority game is called homogeneous if it
has a representation in which z W o= g for all minimal winning coali-

i€s
tions 8.

6.15 Remark: A strong weighted majority gawe may not be homogeneous.

Exercise 9: Consider the weighted mgjority game determined by the
representation [5; 2,2,2,1,1,1]. {1,2,3} is & minimal winning coali-
tion, but its total weight 6 exceeds the quota 5. Prove that there is

no representation which makes this game homogeneous.

6.16 Theorem (von Neumann and Morgenstern [1944]): Consider a strong homo-

geneous weighted majority game with a homogeneous representation [as Wl,...,wn]

Let q = 1. For each minimal winning coalition S, define
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, W if 1€8
i AL

0 otherwise .

Let K = {yS: S is a minimal winning coalition}. Then K is a

solution.

Proof: We first prove the internal consistency of XK. Let S
and T be minimal winning coalitions. Assume that
Yo & Vg -
S U T
U will have to be a subset of 8 since yé =0 for i S, If U

is a proper subset of & then it is a losing coalition, so v(U) = 0

and hence Wwe condd wot hare 2 \j:; = \/LD')) So

Lew
—widrir—case Yg could not dominate Yip via U, Hence U = S.

Suppose now that T NS # #. Let JE T NS, Then

in which case once again Vg could not dominate Yepe "Hence T NS = @.
But since the game is strong, two disjoint winning coalitions cannot
wist. Hence there is vo U .such thatl Yg ~ yT, and the set X is

U
internally consistent.

»i
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We now prove that the external domination condition is satisfied,
Let =z be any imputation. Let T be the set of all i such that
o> 2", If T dis winning, then T has a minimal winhing subset S

and yS > 2, with yé;e K. If T 4is losing, then MT is winning
S
(M7 = {i: w < z'}). Let S be a minimal winning subset of MNT.

Then

: wi < Z 7o < z z. + Z 7o = Z z. = 1
€5 T HEMNT T iE€ENT T iE€MNT iET iE€N

(using the fact that the game is homogeneous). So Z zt =0 and

€T
i W for 1€ 8
Z, =
0 for 1€ S .
We conclude that gz = Yge Hence either 2z € K or there exists Vg € K
such that Vg » Z. Hence the condition of external domination is satisfied,

]
This completes the proof of the theorem.

The solution in this case can be interpreted in the following way:
a minimal winning coalition forms and its members divide the payoff
according to the homogeneous weights.
6.17 Example: Market with one buyer and two sellers. In this game

N = {152:3} s V(N) = V(l?) = V(l3) =1 ,

and
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(1,0,0) (1,0,0)
core of game

points dominate points dominated s
by x via by x wvia {1,2}
{1,3} x X X
G
/// NN | {/
/ \ N/
\ N
(03051) (09130) (angl) i :(0,1,0)
Disgram 1 : Diagrem 2

(0,0,1) ' (0,1.,0)

Diagram 3

v(23) = v(1) = v(2) = v(3) =0 .

1

Since v(23) = 0, and because of the assetrtions made in Example 6.8, domi-
nation can only be via the coalitions {1,2} and {1,3}. Also, we know

that the core of this game is {(1,0,0)} (see Example L4.9), and that this
is contained in every‘solution, Once again the set of imputations is |

represented by the triangle shovn iun Disgram 1 (it has been re-oriented
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(1,0,0)
(0,0,1) ' (0,1,0) (0,0,1) 11 (0,1,0)
. (05532)
Diagram U
(0,0,1) (0,1.,0)

Diagram 6

for elegaﬁce in presentation). The set of imputations dominated by the
imputation x is shaded. In Diagram 2 the set of imputations dominated

by the imputations x and y 1is shaded. From this it can be seen that

in ofder to satisfy the condition of externsl domination one needs every
point on some curve from the point (1,0,0) +o the bottom of the triangle. -
At the same time, in order to satisfy the condition of internal consis-
tency, it must be the case that all poinbts on the curve below any given

point lie between the two straight lines through =2z parallel to the
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sloping sides of the triangle. Thus the curve in Diagram 3 is a solu~
tion, while the curve in Diagram 4 is not.

It is possible to give an interpretation to these solutions.
First consider the case given in Diagram 5. Here one can argue that
the two sellers form a cartel, bgrgaining as a single unit with the
buyers, and splitting the payoff they extract from himAegually. Cases
in which the solution is curvilinear can be interpreted as a situa-
tion where the sellers form a carﬁels but split their payoff according
to some nonlinear -scheme. For exémple,.the solution in Diagram 6
represents a situation where players 2 aad 3 sgplit the payoff to
thelr cartel equally if it is less thon some nuaber, with all of any
excess above this quantity going bto player 2. The restriction on
the shape of a curve vwhich is a solution means, in this interpretation,
that the payoffs to players 2 and 3 nust each be nondecreasing in
the payoff to the cartel.

In this example, then, one can interpret the solutions as pre~
dicting the formation of a cartel. We will now consider a whole class
of games for which some sort of cartelization is predicted. First,

some definitions which.will be used are presented.

6.18 Definition: A permutation of the players is & one-one mapping

w from N to N.

6.19 Definition: A set X of payoff vectors is symmetric if for each
% € K and each permutation w of the players, mx € K where

(wx)t = xﬁ(l) for all i € N.

N
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6.20 Definition: An imputation x € E° is monotonic if x > X

for all i =1,...,n ~ 1,

6.21 Example: (n,k) gemes. These gemes are defined by |N| =n and

{1 if |s| 2 k-

0 otherwise |,

with k > (n + 1)/2. (It can be seen that an (n,k) game is a non-
strong weighted majority game.) We will, for simplicity, concentrate
on the game for which n = 10 and k = 8; our considerations generalize

without difficulty to the general case (see Bott [1953]).
Assertion: A solution of the (10,8) game is given by

11 31 2 2 2 3 3 3 )

K= {x: mx = (a,a ,a ,8",a7,2",a,a",a”,0) for some m,

ai € [0,1] for i:=1,2,3, and 3 § ai = 1} .
' i=1

Proof: Since K is symmetric, it contains a monotonic impu-
tation and we can confine our attention to such imputations. Let x
and y be monotonic imputations. Then it is clear that in this case
x dominates y if and only if there exists a minimal winning coalition
S such that xi > yi for all i € 8. Hence there is some permutation
of x which dominates y if and only if the first eight members of X

are larger respectively than the last eight members of y.
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4 .
i1 X: yl's
¥y sX x .
x & x s
o O g
b'd
: X
e o @
& @ @
X

T2 3% 5 6 7 8 9 A0 i

(a) External Domination: TLet y be a monotonic imputation not

in X5 such & y is shown in the diagram sbove. By the remark above,

we have to find an x in K such that

i i+2 X
x >y for 1

i

1,004,508

in order to show that y is dominated by an imputation in K. Let

2 , 5 . 8 .
e= J(y -y + T (- y6) Y G- eyl
i=1 i=h i=T

Since y & K, e > 0. Let

Then' Ix = 3y3 + 3y6 + 3y9 + e = Zyl = 1, so x i1s an imputstion; it is
clearly contained in K, and x= > yl+2 for i =1,...,8. Hence the

condition of external dominstion is satisfied.
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(b) Internal Consistency: Suppose X and y are monotonic

imputations in X and some permutation of x dominates y. Then

) .
But then xl > y3, xL > y6 and x7 > y9,

T

. .
x* > y1 2 for 1 =1,...,8

so that xl > yl, xl‘L > yu, and x> yT, in which case Ix- > Zyl.
Hence x cannot be an imputation, and this contradiction establishes

internal consistency.

The proof of the assertion is now complete.

It can in fact be shown that X is the unique symmetric solution

of the (10,8) game (see Bott [1953]).
6.22 Definition: In a simple game 8 is blocking if M8 is losing.

In the above example an interpretation is that the players get
together in winimal blocking conditions. In strong weighted majority
games it was found above (Theorem 6.16) that the solution predicted the
formation of minimal winning_coalitionsn Howeyer, in such games a
coalition is minimal winning if and only if it is blocking, so that
Example 6.2l indicates that the significant aspect of these coalitions

is, in fact, that they are minimal blocking.

Chapter 7: Bargaining Sets

7.1 Example: Consider the game (N,v) where

N ={1,2,3} , v(i) =0 for all i ,

v(12) = v(13) = v(123) =1 , snd v(23) = %u



 =T5=

While 2 and 3 are in symmetvic positiong in this game, it appears

that 1 1is in a stronger position, Two problems can be considered: what
coalitions ﬁill form?; and how will the members of the coalitions so formed
divide their worth among themselves? There is no uniquely "correct" way

of dealing with these problems, but the "Bargaining Set" represents one
approach to the second problem, taking the coalitions which form as given.
Consider the case where 1 and 2 get together in a coalition. Suppose
that they are considering the payoff vectbr (2/3,1/3,0). Player 1 can

58y that this is not satisfactory since he could get together with player 3
and establish the pay§ff vector (5/6,0,1/6), which would benefit both

himself and player 3. But player 2 can reply that he could also offer 1/6

to player 3, establishing the payoff vector (0,1/3,1/6), where he is as well =-

off as he was before, and 3 is.as well off as he would be in player 1's
proposed deviating payoff vector. However, player 1 could propose establishing
(0.8,0,0.2) together with player 3, so that if player 2 were to give 3

as much as he gets in this payoff vector he would have to get less himself
than he did in the original payoff vector which was being considered:

v(23) = 1/2, so the most 2 could get if he gave 0.2 +to player 3,

would be 0.3, while originally he got .1/3. In this way the superior
"strength" of player 1 is revealed, end he might suggest that (0.7,0.3,0)
represents a reasonable split of the proceeds between himself and player 2.
But exactly as above, 1 could threaten with (0.74,0,0.26), for example,
which 2 could not ﬁatch. So.it appears that player 1 will receive an
even larger pajoff. Considera then, the payoff vector (0.8,0.2,0) as

a candidate for agreement between 1 and 2. In this.case it is possible
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for player 2 to threaten with (0,1/4,1/4), a threat which player 1 is
unable to match, since if he gives 3 at least 1/h, at most 3/b

(< 0.8) will be left for himself. Consider, however, the payoff vector
(3/4,1/4,0); if player 1 threatens to join with 3, at the same time
increasing his payoff from 3/4, he will have to give 3 at most l/%,
ﬁhiie pléyer 2 can always couhter suéh é move by threatening to jdin with
3, giving him 1/4 while maintaining his own payoff. Similarly, if player
2 threatens to join with 3, and at the same time increaéeS‘his payoff,
then he can give 3 at most 1/4, while player 1 can always counter such

a move by threatening to join with 3, giving him 1/4, and maintaining

his own payoff at 3/4. In this way néither 1 nor 2 can object in a
convincing way to the payoff vector (3/4,1/k,0), and the arguments ébove
indicate that this is the only payoff vector for which this is so (for the
grouping of players under consideration): it is, in fact, the wnique
member of the "Bargaining Set" in the case where pleyers 1 and 2 get ﬁogether

in a coalition.

The arguments used above are similsr to those used when the question
of whether a payoff vector is in the core is being considered; but there,
only the original tﬁreats to deviate are considered; the reasoning behind
the "Bargaining Set" goes beneath the surface of this sort of argument and
considers the possibility that threats by some players are 'counterbalanced"
by thre;ts from other players. Thus, the core is the set of payoff vectors
to which there is no objection, while the "Bargaining Set" is the set of
payoff vectors to which there is no Justified objection. We can now

define these notions precisely.
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7.2 Definition: A coalition structure is a partition B = {B

k
of the set N of players (i.e. Bi N BJ =f for i#J and Y Bi = N).
=

7.3 Definition: Xp = {x € EN:x(Bi) = v(Bi) for i=1,...,k and

xi > v({i}) for all i € N}.

T.h Remark: The condition X(Bi) = V(Bi) for i =1,...,k means that
the total worth of each coalition Bi is completely divided up bhetween
the members of the coalition, and x* > v({i}) is the individual ratio-
nality condition.' In the example abbve, B E'{12,3}; another example

is B = {N}, in which case XB = X[ = {x € EN:x(N) = v(N) and

n}
< > v({i}) for i €N}. Thus Xgy} coincides with the set of imputations.

7.5 Definition: Given a game (N,v), a coalition structure .B, a payoff
vector x € X,, a set Bk € B and two members i and j of Bk’ an
objection of i against Jj consists of a set 8 containing 1 but not

J, and a point y € ES such that yi > xi, yz > xz for all £ &8, and

y(8) < v(s8).

7.6 Remark: The interpretation is that 1 gets together with a group
of players not including Jj and realizes a payoff vector in which he
obtains more than he is getting at present, while the other members of

the group gét st least as much as they aré'at presehﬁ;getting;J

—. . P

T.7 Definition: A counterobjection to "y by J consists of a set
T containing J§ DdDut not i, a point =z & ET such that zJ 2 XJ,
2 % 2

z x forall 2 ET, z ;y" for a1l 2 €8 NT ard z(T) g v(T).

nv

.
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An objection is Justified if there is wo counterobjection to it. The payoff

vector x is in the Bargaining Set M = M(v,B) if there is no justified

objection to it.

Thus, in the example above, M(v, {12,3}) = {(3/4,1/4,0)}. An
important question is whether the Bargaining Set is nonempfy for any B
when Xp # 9. Pelég [1963] and [1967] solved the problem originally, using
a fixed point argument. Maschler and Peleg [1966] later found a completely
different algebraic existence ?roof, and lafer still Schmeidler [1969]
devised a still simpler proof, which is followed here. Before that is

presented, consider another example.

7.8 Example: Consider the weighted mejority game [33 2,1,1,1] (i.e.

v(g) =¢* it w(s) > 3

1.2 3 b _
0 othervise where (w ,w ,w ,w ) = (2,1,1,1)). Suppose the

coalition structure is B = {12,3,4}. It is clear that every point in
the Bargaining Set will be of the form (0,1 ~ @,0,0), Objeétiqns of

1 are of the form (g + €,0,1 = o - €,0), and the smaller e, the better
they are (i.e. the wore difficult to counterobject to). For player 2 to
be ablé to counterobject he must join with 3 and U4, give himself

1 - a, and have at least 1 - o - & left over to give to player 3

(he need give player 4 nothing, since that is what he is getting at

present). I.e. it must be the case that
v(e34) - (1 -a) 21 -a-¢ forall e>0 ,

or

nv
N

1-1+a>1-a-c¢ for all € >0 , or o >
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Now consider an objection by 2. If he objects with (O,l-a-;e,a-e,0>
player 1 can easily counterobject by getting together with U; a "good" objec—
tion by 2 is (0,1 - a - e,{a - €)/2,(a -~ €)/2). Then player 1 can
counterobject if v(13) -~ @ > (¢ - €)/2 for all e > 0 (he only has to
get together with one player to obtain a worth of 1), or, if l—a;(a~eﬂ&
for all e.> 0, or if a < 2/3. This exhausts the possibilities for objection

so there are no justified objections to (a,l - @,0,0) if o € [1/2,2/3].

Hence the Bargaining Set is M(v,{12,3,4}) = {(a,1 - oa,O,O)}l/géagg/3°

Exercise 10: Find M(v, {1234}) for the weighted majority game

[33'2513131]-
Exercise 11: Find M(v, {123}) for the game defined in Example T7.1. *

Now, instead of considering the details of the procedure involved
in establishing whether or not a payoff vector is in the Bargaining Set,
one could deal with a "rough" measure of the "strength' of a player as

follows:

7.9 Definition: v(8) - x(8) is the excess of the coalition 8.
Given v, B, B €B,i ‘and j in By s VBV Adp A B,
Sij(x)‘E max {v(S) - x(8): 8§41 and S P j} is the

maximum excess of i against j.

7.10 Definition: The Kernel, %§~£given v and B) is the set of all

payoff vectors x € Xz such thaﬁ‘fg;/;ll B

iEB,and i and J in B

X k?

4 .
either Si}f: sj£79g£_ = v({j}).
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7.11  Remark: x will be in the Kernel if for all i and J either
it is not the case that Sij > sji -~ i.e. 1 has no convincing objection
against J =-- or such an objection does exist, but J d1s at his personal

minimum in any case, so that 1 cannot convinecingly suggest that j's

payoff be reduced.

7.12 Theorem (Davis and Maschler [1965]): The Kernel is a subset of the

Bargaining Set.

Proof: Let x & Kernel. Let i, J €& Bk & B and let y, S be
an objection of i against j. Then y(8) < v(8), and from the definition
of 850 v(8) - x(8) g 54 So:

(a) 1f ¥ = v({j}), then J can counterobject by himself--~
i.e. (0,...,0,v({3}),0,...,0),{j} is a counterobjection to y by J.

(b) Otherwise NI v({j}) ana Séiqg S§§); v(8) ~ x(8); but

Sgg\E max {v(8) ~ x(8):8 2 j, S D i}, so there exists T with j €T,

i € T, such that v(T) - x(T) > v(8) -~ x(8). Also, v(8) - x(8) 2 y(8) - x(8)
from the above. So there exists T such that v(T) - x(T) > y(8) - x(s),

or v(T) > y(8) + x(T) - x(8) = y(8) - x(8) + x(T\8) + x(7 N g).

But y(8) - x(8) >y(s NT) ~ x(8 NT) since y(S).;~x(S). So

v(T) 2 y{snmT) + x(T\S). Hence § can give to everyone in T NS

at least as much as they get in ¥, and to those in T™\S at least as

much as they get in x. Hence J can counterobject.

Hence in all cases J can counterobject to any objection of 1 --
so any point in the Kernel is certainly in the Bargaining Set. So the

theorem is proved.
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T.13 Example: Let us compute the Kernel for the coalition structure
B = {12,3,4} in the case of the weighted majority game considered sbove
([3; 2,1,1,1]). We know that the Bargaining Set M(v,{12,3,k}) =

{(a,l - «,0,0)} The Kernel K is a subset of M. When does

l/2§a§2/3'

an imputation x = (a,1 - «,0,0) belong to the Kernel? We have to

compute (x) and (x). We know +v(1) - x(1) = -a, v(13) -x(13) =

512 521 |
1 -a, v(1k) - x(14) =1 - o, and v(134) - x(134) =1 - . Hence
(x)

SZl(X) = 0, Hence one possible point in the Kernel is an x such that

max {v(S8) - x(s8):d 2%, s P2}~ 1 - 0. In the same way,

te

510

(x) = ng(x), which leads to o = 1/2. It is the only point since the

£

S
12
condition x9 = v({j}) leads to two imputations (0,1,0,0) and (1,0,0,0)

outside the Bargaining Set, and a fortiori outside the Kernel. So

X = {(1/2,1/2,0,0)}. HNote that this point is in no sense the "center" of
the Bargaining Set, and that, in particular, the advantage of player 1
over player 2, which is reflected in the ﬁargaining Set, does not show

up in the Kernel.

The concept of excess was implicit in the definition of the .
Bargaining Set, and explicit in the aefinition of the Kernel. In both
definitions, however, there is the idea of an underlying specific bar-
gaining process between agents 1 and j. We are going to introduce a
new solution concept, the NHucleolus, which abandoﬁs the idea of dialogue
between i and J and for which the concept of excess, as a measure
of objecting power, is central. ‘Let us consider a game (N,v) with a
coalition st?ucture‘ B. For a given x € X, ‘there éxist 2% excesses

B
{v(s) - X(S)}SCN. Given x, let us index the coalitions S C N so that

<o
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v(8y) = x(8)) 2 v(8,) - x(8,) 2 ooz v(s ) - x(s ) 3

17 = 2 5 o

and let us define 6(x)==(v(Sl)—-x(Sl), v(sg)—ax(sgk.--,v(s n)--x(S n))e E

Let 6, be the i-th coordinate of @.

7.14  Definition: Let E' be a Euclidean space, and x and y two

r

points in E'. We define the lexicographic order 3 on E  in the

following way: X Y if there exists 1 'such that xj = yj for all

J <i and X, > 95 x is then said to be lexicographically greater than

7.15 Definition: For a geme (N,v) and for a given coalition structure
B, the Nucleolus Nu(N,v,B) is the set of all x in X such that there
isno y in % with 6(x) 3 6(y). Hence a point in the Nucleolus is

[

a lexicographic minimum of & over XBP

7.16 Remark: The Nucleolus may be interpreted in the following way:
the excess measurés the "dissatisfaction" of a coalition S with the
proposed accomodation> x; v(8) - x(S) is the difference between what
the coalition could get alone and what it would get if the accommodation
were actually implemented. B represents a given structure of society;
any payoff veetor x in Xp fully "satisfies" any coalition in B. If
we think of the loudness of S's complaint against x as proportional
to its dissatisfaction, the Nucleolus may be considered as the resulﬁ
of the following process: the "judge" (or the "government") minimizes

the loudest complaint; subject to achieving this, he minimizes the
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second loudest complaint; and so forth. Then the Nucleolus is the set
of points at which the overall loudness of complaints is & minimum (in
the lexicographic sense), given the structure of éociety. The idea of
individual bargaining, essential in the‘concepts of the Kernel and the

Bargaining Set, is not present here.

Now, we want to prove the nonemptiness of the Bargaining Set. We
will prove that the Nucleolus is noneuwpty and that the Nucleolus is a

subset of the Bargaining Set.

7.17  Theorem (Schmeidler [19691): The Nucleolus Nu(N,v,B) is nonempty

(if XB is nonempty).
‘Proof: First we establish the following.

Lemma (Schmeidler [19691): Let. fl f2, .. fr be r continuous

functions on some space. For a given x, define ik(x) for k=1,...,r

such that fil(x)(x) > fig(x)(x) > ... (X)(x) > ee. 2 fir(x)(x)'
Then fi (X)(x) is a continuous function of x for all k = 1,...,r.
k

‘Proof: fi](x)(x) = max [fl(x),fg(x),...,fr(x)]. Hence fil(x)(x)
is continuous, being the maximum of a finite number of continuous functions.

fie(x)(x)==min {max:[f2bd,f3(x),;.ﬂ,fr(x)],max [fl(x),f (x),...,fr(x)],...,

3

max [fl(x),fa(x),...,f

80 fi (x)(x) is the minimum of » functions which are continuous, each
5 .
being the maximum of r - 1 continuous functipng thence it is continuous.
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Similarly, fi

(x) is continuous for k = 1,...,n.
k(x)

This proves tpe
lerma.,

Now we have the following.

(a) Gl(x) is continuous and Xz is a compact set (since it

is defined by a finite number of weak inequalities). Let

¢, = min {el(x):x € XB} cand X = x € XBzel(X) = Cl} .

Then Xl is nonewmpty.

(p) 82(x) is continuous by the Lemma above, X

1 is closed, being

the inverse image of a closed set {%} under a continuous function; it

is compact, being a closed subset of a compact set. ©So, letting

L, = min {62(x):x S XB} and X, = {x € xi:eg(x) = cg} R

X2 is seen to be nonempty.

(¢) Similarly for i = 3,...,2n, 6. (x)

5 is continuous. Let

= i . E = : = .
¢, = min {Gi(x).x XB} and Xi {x € Xi_l.ei(x) Ci}

Then, as above, if X 4 0, X5 # @. So by induction, X, # ¢ for all

i=1,...,2% so Nu=X

0 is nonempty, and the theorem is true.
2

7.18  Theorem (Schmeidler [1969]):

The Nucleolus Nu is a subset of

the Kernel K.
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Proof: het—x—&Mu, Suppose x € K. Then. there exist i

and J in B_EB such that sij(x) > Sji(x) and  x9 > v({3}). i

Let p and q be the smallest indices for which . . H‘

- s, .(x) = v(8 ) - x(s8.) and Sji(i) = v(Sq) - x(Sq) . i

Then V(Sp) - x(SP) > V(Sq) - X(Sq) (and i€ 8>

jE Sq). Since x > v({j}) there exists e > 0 such that y is in u

JE8,s 1S, i

I
XB where §§

1 J
Y= (X X X R E,XT e ,XY 30 - oe,xY L L LX

i-1 i 141 j-1 41 ny | !

.

For r < p, X(Sr) = y(S_) because either both i and j are in

b}

S, or neither i nor J is in S.- (If not, the condition sij(x) = : il

V(Sp) - x(Sp) would be contradicted.) Hence Gr(x) = Gr(y),

= . = - (8 - g,
For r = p, v(Sp) y(Sp). v(Sp) A(VP) €. Hence for e

sufficiently small Gp(x) > Gp(y)° So, finally, there exists y in g

;ML |
such that 6(x) > 6(y). Thils cenbtradicts—tire—fact—tirat x&’is%%m !

¥ueleolus., and the proof of the theorem is complete.

7.19 Remark: Theorems 7.12, 7.17, and 7.18 imply that the Bargaining

|

|

. . |

Set is nonempty forany coalition structure B (so long as XB # 0). ' i

The Nucleolus has many other interesting properties, among which

are the following, which will not be proved here.

7.20  Theorem (Schmeidler [1969]): The Nucleolus contains only one point.

————

~7 7.2l Theorem (Kohlberg [1971] and Schmeidler [1969]): The Nucleolus is

. Hisn-
& continuous function of wv.
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7.22 Remark: Neither the Kernel nor the Bargaining Set is necessarily

a continuous function of v (see Stearns [1968]).

7.23 Theorem (Peleg [1968]): For B = {N}, the Nucleolus of a homo-

geneous strong weiphted majority geme consists of the normalized homoge-

neous weights.

The Kernel has the following interesting property:

T.2h Theorem (Maschler and Peleg [19661): For B = {W}, if the Kernel

and the core are nonempty, then the intersection of the Kernel and the core

is nonempty.

Moreover, a point in the Kernel represents an exact compromise within
the core between a pair of players. More precisely, let x = (xl,.:.,xn)
be in the core. The set {y: fk==xk for k # i, k # 5 and y(IN)=x(N)}
is a line. The intersection of this set with the core is a segment., A

point belongs to the intersection of the Kernel and the core if and only

) segments, for some x in the core.

if it is the midpoint of all such (g

Chapter 8: Repeated Gemes

When a game is repeated many times, it seems that some sort of
"cooperative" behavior might be induced: if a player deviates from a par-—
ticular strategy at some point in order to increase his own payoff, the
other players may'be able to act in such a way that he is penslized in.

‘every subsequent play of the game. To formalize these ideas, let G be

a game in strategic form (see Definition 2.3). 'The supergame G¥ of @

.

T
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is then the game each play of which consists of an infinite sequence of

plays of G. One might then expect that the oubcomes in (% generated

by noncooperative solution concepts (i.e. ones in which it is assumed that

contracts cannot be enforced) are related to the outcomes in G generated

by cooperative solution concepts (where it is assumed that contracts can

be enforced). To examine this question define G as follows:

(1) ¥ ={1,...,n} is the set of players,

(2) % is the (finite) set of strategies of player i; o is an

- 2

element of I~ and o = (ol,o seesdl) € x gt oz I, and

ien
(3) n: =z +-EN is the vector of players' payoff functions.
The player set for G¥ is also N = {1,...,n}; the strategy sets

and payoff functions are defined below.

o e R Wi

8.1 Definition: A pure strategy in G* (or a pure sugermstraﬁegy) for

s sl ) . i 3 SR i I §
plsyer 1 is a sequence of functions flgigg.,t where fk. & X§>i.i,§L,,Z .
8.2 Remark: An assumption implicit in the definition is that at the

k-th play each player knows the strategies which were used by the other
players in the k -~ 1 previous plays. This is information which is not

necessarily revealed by the outcome at each play of the game, and so the

assumption is a strong one. However, it is made merely for convenience
here, and weaker assumptions are sufficient to demonstrate many of the

results.

Now, one might consider defining mixed strategies in G¥* as before.

However, a difficulty arises. Consider those pure strategies of player i

-

in” G* which are sequences of constanf funbtions f;. For each k, the
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set of fi had the cardinality of Zi, so that the set of all such pure
strategies, being the Carﬁesian product of denumerably many copies of Zi,

has the cardinality of the continuum. Hence defining mixed strategies as
probability distributions as before would not be straightforward. For this
reason we will think of a mixed strategy as a random device for choosing a
pure strategy: it will be a random variable from a specified sample space
into the space of pure strategies. Thus, for each S C N let QS be a
sample space. (This space has to alloy sufficient randomization poésibilities,
which is the case if it is a copy of ([0,1],8,A), where B is the set of
Borel subsets of [0,1] and A is Lebesgue measure; each coalition can

then vandomize independently of every other coalition.) QS is the lottery

which the coalition S can observe, on which it can base its randomization.

Define

f = x 0% ang 0= xo°
S=3i SCN

S . . 3 i S
Iet w €92 and let w° be the projection of w onto Q7. Then w = (v )SEﬁ
is the information available to player 1.
8.3 Definition: A randomized super-strategy of 1 1s a sequence FUoof
functions f. with f£: (I X I X ... x I,x Q" » o,

k k -y

8.4 Remark: Note that the sample space Qi is not indexed by the serial
number k of the play. This means that the randomization is based only on
the.realization wi, in Qi; this allows independent randomization at each
play k of the game since ([0,1],B,A) is isomorphic to the Cartesian

product of denumerably many copies of itself.

St
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Now let an n~tuple ¥ = (Fl,...,Fn) of randomized super-strategies
be given. Define a sequénce 01,62,.., of n=tuples of randomized strategies
in G as follows:

oy () = ({01, 22w, .., ™)

and

I 1 n n
?:k(w) = (fk °1 ,‘..’gk—l(w)’w )’...,fk(gl(m)"'"gk-—l(m)’w ))

for k =2,3,... .

Define a sequence of random.payoffs;by

]

n(o (0))

()

and let

n

E(IF) (where B 4is the expectation operator) .
Ek .

K (F)
. . m
One might then consider taking the expected average payoff lim z HI(F)/m
moe k=1
as the payoff in the supergame. However, this limit does not always exist.

In fact, there is no need to define a payoff function for G*: we can merely

define equilibrium points in the following ways.

8.5 Definition: An n-tuple F, of randomized super-strategies is an

upper equilibrium point in G¥ if:

m .
F
1. ) hk*(w)/m converges to a constant L(F;) with probability

k=1" '
one (L(F,) 1is referred to as the payoff to-the upper e.p.), and
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2. for each .i and each randomized super-strategy Fl of 1

there is no e > 0 such that for infinitely many m

10 R P, i . .
oL (m* (w))” > L(F,) + ¢ with positive probability .
k=1l ~
8.6 Definition: #An n-tuple F, of randomized super-strategies is a

lower equilibrium point in G¥* if:
m .
iy hi*(m)/m converges to a constant L(F,) with probability
k=1 .
one (L(Fy) is referred to as the payoff to the lower e.p.), and

2. for each i and each randomized super-strategy Y oof i

there is no € 5> 0 such that for all but finitely many mn

1T r ), i i
= z (1 *l (w))”™ > L°(F,) + € with probability one .
m ek *
k=1
8.7 Remark: An upper e.p. is clearly a lower e.p., bubt the reverse is

not necessarily true. However, we will establish below (Theorem 8.1L) that

the set of payoffs to upper e.p.'s coincides with the set of payoffs to

lower e.p.'s.

8.8 Remark: An upper e.p. corresponds to an "optimistic' outlook by each

player: F will not be an upper e.p. if player 1 has a strategy Fg for
: i

m F[FO 5

I (1, %o)i/m

. k=1

> Ll(F*) + ¢ with positive probability, yet such a deviation might benefit

which there is an € > (0 such that for infinitely many n,

player 1 only very infrequently. Similarly, a lower e.p. corresponds to

a "pessimistic" outlook by each player.

SRS

o

S g e e Rty

R

T

QT

TS e T R B D T T T e

AT




91

We will now formalize two notions of eguilibrium which consider devi-

ations by sets of players.

8.9 Definition: An n-tuple F, of randomized super-strategies is an

upper strong equilibrium point in G* if:

m
1. ¥ hi*(w)/m converges to a constant L(F,) with probability one,
k=1

and 2, +there is no coalition S, no |S|—tuple of randomized super-

strategies FS of S8, and no € > 0 such that for infinitely many m for

all i in 8

S R
(hi%lF > Ll(F%) + ¢ with positive probability

E[H
HMB

8.10 Definition: Ann~tuple F, of randomized super-strategies is a

lower strong eqpilibriumlpoint in G¥ if:

1. ) hi%(w)/m converges to a constent L(F,) with probability one,
k=17 : .
and 2. there is no coalition S, no |S!ntuple of randomized super-

strategies FS of S, and no € > 0, such that for all but finitely many

m for all i in S

S

1 % F 77t > o
m (hk* > L' (F,) + ¢ with probability one

Before examining the equilibrium payoffs in G¥, we will examine the
set of feasible payoff vectors in G. Let o € X; then h(o) € EY is the

vector of payoffs to players in G. ILet

= {h(o): o €1} and D = convex hull of P .

Any pajoff in D can Be attained by the players using jointly mixed strategies.

E T R R ST




8.11 Example: Consider the game G defined in the table below. We have
1 2 1 2

P = {(1,0),(0,1),(0,0)} and D= {x € B x' o+ x 1, x 20 eand x" >0},

as shown in the diagram. Those points attainable by indepéndent randomiza-~
X . 2
tion comprise the set A = {(xl,xe): xl

and B € [0,11}; in order to attain all points in D the two players will

L R

Ti{1,0 | 0,0

Blo,0 | 0,1

have to correlate their strategies. For example, to attain the payoff vector

(1/2,1,2) +they will have to play T and L together with probability 1/2,

and B and R together with probability 1/2.

8.12 Definition: The minimax payoff to player i in G is

P v

R
a" = min max E[hl(O,T)] R

3y b

where (resp.  t) runs over the randomized strategies of i (resp.

a.
T\ {1}) };ﬁ G. E&x . N

a payoff which player i can'guarantee

[¥:]

One can interpret it a
himself: even if the players in N\{i} get together and act so as to mske

his payoff as small as possible, he will be able to obtain dl.

8.13 Example: Consider a three-person game G vwhere player 3's payoffs

are as in the tables below. Then in order to minimize player 3's payoff,

= a8, x* = (1 - o)(1-8), « € [0,1]
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players 1 and 2 have to randomize between the strategy pairs

(B,R); they cannot do so by randomizing independently.

L R
T} -1 0
B 0 0

‘3's first strategy

8.1k Theorem: The set of payoffs to upper e.p.'s coincides with the set

B

L R

| f
0 0
o | -

3's second strategy

(7

,L)

D

and

" of payoffs to lower e.p.'s and is egual to

D'

{x €en:

To prove the theorem we need the following.

+ 8,15 Temma: Consider a two-person zero-sum game

i
X

i
> d

G with minimax value v.

for all i €N}

let ¢ be an optimal strategy for player 1 in G, and suppose that in the

supergame G¥* player 1 uses the randomized super-strategy Fl

involves the use of an independent copy of ¢

at each stage.

a

any randomized super-strategy of player 2 in &% (in particular, the stra-

which
Let ¥ be

tegies 2 uses in successive plays of G may not be independent).

Then

. m
with probability one lim inf } (hi(w))l/m > v.

k=1 ~ .

Proof: Let the strategy which player 2 uses at stage

Then we know that

F\1 » '
By ) loysmyoee oy 1omey) 2

Define

x(0) = ()t + v - B((8) o, (0],

1

) > v for all k

(w),..

k

be

T
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_ F, o1 . S :
< LI ] =

Then ‘%k(w) < (%k(w)) for all kX and E(fklgl’fl’ ’gk~l’fk~l) v

for a1l k. Also, Xk and x, are uncorrelated for any k and £ (with

k # %): for k > %
Blxxy) = BBy [x)) = B0 [x)

But E(%k[xz) = v since x, is a function of o,

Oy 5Ty aeresTy 39T 9+ S0

L2 .
E(fkfﬁ) - VE(fﬂ) svoE E(fk)E(fl) :
So we can apply the Strong Law of Large Numbers to deduce that

lim

%

kel

it B

= v with probability one ,

so that, with xk(uﬁ ;(hi(m))l for all k,

| (n" (w))*
lim inf § %kmé >v .
' k=1 B

This establishes the lemms.

Proof of Theorem: The theorem is equivalent to the following three

statements:
(1) {upper e.p.'s} C {lower e.p.'s},
(2) {payoffs to lower e.p.'s} € D', and

(3) D' C {payoffs to upper e.p.'s}.

(1) is immediate.

(2) is the result of the following.

u L e

e
]
&
&

A3
21
-]

AT

T A i A O G




D e o

_95..

Assertion: {payoffs to lower e.p.'s} C D.

Proof: Let F, be a lower e.p. We have hi*(m) €D for all k,
o = -

'so Z hi*(w)/m €D for m= 1,2,.... Hence the closedness of D ensures
k=1" - |
that L(F,) € D. This proves the assertion.

Assertion: If x idis a payoff to a lower e.p. then x > g for

all i1 e€N.

Proof: Let F, be a lower e.p. with payoff x. By the definition

X . A\ T
of dl, i has a strategy o such that for gll strategies TE\{I} at stage

. ~\ . - .
k of the supergame, E[hl(Tg {l},ol)J 2 d". So if at each stage player i

~

uses an independent copy of 01, Lemma 8.15 gvarantees that Ll(F%) = x > a*

v

which establishes the assertion.

R S

These two assertions together entail the truth of (2).

(3) can be proved as follows. Let x €D'. Then there exist non-

negative real numbers o summing to one end members &, of ¥ such that
dJd

J
, i i . ' N, N .
Zajh(ij) =X '‘and x >d for all i €N, ILet o (&) be the mixed
j - . Lo~

strategy in G which involves the players using the pure strategy Ej with

probability aj, for all j, so that E[h(cN(wN))] = X. Define F; by

(NP ar oy = W) oran 4 gx-n
T (0,,0 540440 wi) =4 - - )
1 A0 6L B i, M{i'}
e Ti,(w )

otherwise

where the cﬁ(&m) are independent copies of ON(my), i' is the first player

to deviate from the strategy GN(wN) in the previous plays (first in time;
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if there are more than one such, first in serial number), and Ti' is &

. . g S . . g ~ .
correlated strategy of M {i'l with max E[n" (U,Ti')] = a" (o running
' g o~ ~ o
over randomized strategies of i' in G). Suppose i deviates‘frOML Feo

Al t .y x
at stage &, and uses the strategies d; for k = £,8+1,...; let Fr \
: ) '
denote his super-strategy. Then L
.
{loai o
gt (64 ¢ ;\L-‘);‘ )] < d for all k> L+1 T
h™. (jk ) 'Eil Xk _ or a S ’ ) JJ\_,Q/«;“";{\(‘\* " Yy
’l) L . ),“ !»Y
where the (Tiv)k are indepéndenﬁ copies of Ty So by Lemma 8.15 oad & :
: m ) il m 5,4,»'4‘«’/"
. 10 b i . o
lim sup 2 (hkﬁ (w))” /(m - 2) < 4 with probability one. Hence
k=041 ~ o =

for 'i' condition 2 of Definition 8.5 is met. IHence no player can gain
by deviating from the strategy GN(wN), and so F, is an upper e.p. with

payoff x. This establishes (3).
This completes‘the proof of the theoren.

8.16 Example: Consider the Prisoners' Dilemma game, with payoff matrix
as below (see Example 2.20). The set D is the parallelogram with vertices

consisting of the four payoff vectors in the table; D' ig the subset of D

1 2)

with X ,X (1,1), since 1 1is the minimax payoff of both players.

v

7A=D

1o,y
o'l L,h 0,5 \\ =D
a5 | 5,0 | 1,1

??
g
|
|

it

T

A
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Theorem B.Ih states that the seﬁ of payoffs to e.p.'s in the supergame
consisting of an infinite string of repetitions of the Prisoners’ Dilemma
game consists precisely of D!'. This contrasts with the equilipriumrpayw
off vector in the Prisoners' Dilemma game When it is played once, which

is just (1,1).

Now let

Va(S) =>{xs €5, there exists a randomized strategy o> of 8

Ms

in G such that for all randomized strategies o of

MS in G and for all i in S,xl__fE[hl(ds,O’N\b)]}.

This is just the set of all payoff vectors which 8§ can guarantee for itself.

e oow

8.17 Definition: The a~core of G 1is the core of v, (i.e. o-core of

C={x&D: (VSCM(FyEv(s) s.t. vor oxt ¥ i €8))).

Next, let
vakes
.8 S . §¢ N\égj .
VB(S) = {x” €E’: for each randomizedy © of M8 in G, there
exists a randomized strategy GS of 8 in G such that
i S NWs

d

for all i in S, x < E[h (0%,0" ") ]},

This is the set of all payoff vectors that N\S cannot prevent 8 from

getting.

8.18 Definition: The g-core of G is the core of v, (i.e. B-core of

B
i

(8) s.t. y > X ¥i€E S)}).

G=‘{x€D: (VSCN)(}ayEVB |
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8.19 Remark : va(S) C‘VB(S), so (B-core of v) C (o-core of v).

It would seem that vy is a more natural construct than v

e but in
connection with repeated gameé;;E& is v6 that turns out to be more signi-
gi wing.

ficant. 'Thus, we have the fo

8.20  Theorem (Aumann [1959]): The set of payoffs to upper strong e.p.'s

in G¥

coincides with the set of payoffs to lower strong e.p.'s in G¥,

and with the B-core of G.

Proof: From the definitions we can immediately deduce that

{upper strong equilibrium payoffs} C {lower strong equilibrium payoffs}

The theovem is then equivalent to the following two statements:
(1) {lower strong equilibrium payoffs} C B-core, and

(2) B-core C {upper strong equilibriim payoffs}.
To establish (1), suppose that F, 1is a lower strong e.p. with payoff
x, and x & B-core. To say that x & B-core means that there exists a

coalition S and y € v (8) with y* > x

8 for all i €8; y € vB(S)

- _ means that

for each randomized strategy rN\S of M\S in G there exists a

-~

randomized strategy oS of 8§ in G with E[hl(GS,TN\S)] > vt

for all 1 €8

Y
i =
(e i

A\ ‘
So for each sequence of n-tuples of strategies KQl,...;Qk 1° there exists a
» ~ty =

randomized strategy OS: QS » ZS for 8 in play k of the game such that

for gl1 i1 €8

s
SRt

L o e e e

A,
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v
>

Bln (o8(0%), 80 5o, o 0))] 2 v

Now define supergame strategies Fr for 1 €8 as follows:
(a) £1(0) = o (u®);
i, 8
(v) f (0 3055 - ..,gk_l,w) = ok(m ) for k =2,3,....

I

Then E[(hk*,F ] > y for all i € S and for all stages k. But

y' > x* for all i€ S, so Lemma 8.15 ensures that for all but finitely

many mn, for some ¢ > O

7y | 7°

LB

' > xt + e with probability one

Ellf'-‘
!lrv1B

establishes (1).
In order to prove (2), we will use the following.

Assertion: For each x € B-core and each S C N, there exists s

randomized strategy TN\S of N\8 in G such that for each randomized

strategy GS of 8 dn G there exists an i €S such that

5. M8y L,

E[h (

~

Proof: Since x € B-core, there is no y € VB(S) such that
i i Ms

Yy o> xl for all 1 € 8. So for all € > 0, there is a strategy Te of

NM\S such that for each strategy cs of S +there is an 1 € 8 with
5 _Ms .

~

E[h ( )] < x* + ¢. The i for which this is true will depend on ¢
but as ¢ tends to zero through a denumersble sequence there will be an

such that the statement isltrue for infinitely many terms of the sequence,

contradicting the fact that F, is a lower strong equilidbrium payoff. This

b

i

e

T
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and for this i we will have inequality in the 1limit, establishing the

assertion.

Now we can prove (2). ILet x € B-core. Ilet GN(mN) be a straﬁegy

of N in G for which E[h(oN(mN))] = x. By the assertion, for each

S C N there exists a randomized strategy ‘TN\S of N\S in G such that

~

for each randomized strategy cs of 8 in G there is an 1 €85 such

that E[hl(os,TN\S)] g'xl. We will uge the strategies o and TN\S to

-~ ~ ~

define a randomized super-strategy ¥, as follows:

(a) f%l(w) = GN(mN), a copy of ON(wN);M

(b) 1let Sk be the set of players who have used a strategy other

than their éomponent of GN in one or more of the plays 1,...,k—=1. Then

~

m\s Ms, m\s
P .. k k . o
i (‘fl""’fk-l"”) = T (w ) if 8y %P
, L ™~ ,
N\Sk Ms m\s,
(where T is a copy of T , independent of T o ofor <k-1),

and

fgk(il"

o

- N My =

(where the 0§ are independent copies of ON). Suppose that after play

-~

2 <« 1 no new players deviate from gN; let S2 =5, and let FS be the

randomi zed super-strategy of S, pi being the strategy S uses at play

"k for k 2 2.

Let C be the set of ]Sl—tuples of expected payoffs to members of

\
S in G which S can attain when N\S uses the strategy TN S.

~

C is a

e

n

R R T

RS e
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convex subset of ES

, eand x is not in the interior of C (if it were,
there would exist a strategy GS of . 8 such that E[hl(GS,TN\S)] > x'  for
all i €8). So by the Supporting Hyperpleme Theorem there exists P E ES

p # 0, such that

Z Plyl < z plxl for all y €cCc .
165 - ies
Since there is no 2z € C such that 2z >> X, we can deduce that there is a
supporting p with p > 0; i.e. there exists P > 0 such that
) D E[h (pS N\S < )op i for all strategies ps of §
Pk Tk = -k
i€s EB
for all k 2%
Hence Ey Lemma 8.15,
q
1 h (pS N\ ) s
i ~x’ k 1.1
lim sup Z Z D 7 hy X Px .
- k=g 168 - 163
So there exists no € > 0 such that for infinitelymany m for éll i€S8
P, 1
n (11T (o))
> x + e with positive probability .
m
k=1
Hence F, 1is an upper strong equilibrium poiﬁf with payoff x.

In this argument we have assumed that S is a constant. In fact it
may be a random variable (whether a player deviates or not may depend on

the strategies the other players have used in previous stages), so that the
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p sabove will be random, and the expectations will all be conditional. The
line of argument needs no modification, however, and we leave it to the
reader to make the necessary notational changes.

This completes the proof of (2), so that the theorem is established.

8.21 Example: Consider the Prisoners' Dilemma game once again, with pay-
off metrix as given in Example 8.16. We find that the B-core of this game

consists of the line segments ab and be shown in the diagram, so by

o 25 1

Theorem 8.20 the points on these lines are the strong equilibrium payoffs in
the supergame, an outcome which contrasts once again with the noncooperative

outcomes in the game when it is played once.

Appendix to Chapter 8: Annotated Bibliography on Repested Games

(a) Repeated CGames and Cooperation:
Three basic papers in this area afe Aumann [1959], [1961], and [1967].
The first introduceé the materisl examined shove, but analyzes mixed stra-
tegies in the supergame as probability distributions rather than random

varigbles, and is consequently difficult to read. The second analyzes the

VTS
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o~core and the B-core in the caée where side payments are not allowed; the
worth of a coalition is then the set.of payoff vectors to-its members
which it can attain, rather than a single amount which can be distributed
within the coalition in any way. The third paper surveys many of the
topics discuséed in these lectures for games ﬁithout side payments. An
application of the idea that repetition leads to outcomes reflecting coop-

eration is contained in Kurz [1975].

(b) Stochastic CGames:

Stochastic games were the first sort of repeated games to be analyzed.

A stochastic game is a finite set of 2-person zero-sum games, each play of

the game leading to a payoff and the assignment of some game in the set, the

wew o ¥latter being played at the next stage. 8o each player can maneuver for pay-

offs and for subseqguent games. Shapley [1053b] analyzes the case where the

payoffs are discounted, and Gillette [1957] exsmines the case where they are
not. Since then a great deal of work has been devoted to stochastic games;

it is 50 voluminous that it cannot possibly all be reviewed here,. Dramatic

progress has recently been made by Bewley and Kohlberg [1976a] and [1976b]

in studying the undiscounted case.

(¢) Repeated Games with Incomplete Information:

In these games one game out of a known Set is played repeatedly, each
player having oﬁly limited information about which game is being played.
Each player will then be interested not only in obtaining a high payoff in
the short term, but in ensuring that he can do so over a long period by

playing so as to conceal any information he has which the other players-do

=y

o T R ook o R
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not have (if players' interests are opposed) or by playing so as to reveal
information (if his interests coincide with those of others).

As an example of a situatiqn where interests are opposed, assume
the set of games consists of two zero-sum two-person gemes with payoffs to

player 1 as shown in the tables below. Player 1 (the row player) knows

1 0 0 0
0 0 0 1
Game 1 Game 2

which game is being pla‘yéd9 but player 2 does not (we assume that player 2
does not know the payoff he receives at the eﬁd of any play; this payoffbis
Jjust deposited into his bank accomnt). If player 1 always plays his top
strategy, it will be clear to player 2 tha% game 1 is being played, so the
best strategy for player 1 will involve his playing his bottom strategy some
of the time, in order to avoid revealing his information to player 2.

Now consider a situation where players! interests coincide. AThe
games in the set are tﬁe two whose payoff matrices are shown below, Playér
1 (the row player) has one strategy, and pléyer 2 has two. Assume that

player 1 knows which game is being played, but player 2 does not. Even

though players' interests coincide, the outcome will not be efficient in

Game 1 Game 2

e
I

7

e R e R

==
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this case since the fact that player 1 has only one strategy means that he
cannot signal to player 2 the information he hss about thg game being played;
there is no way for the players to coordinate their actions. If, hovever,
player 1 has two strategies, the two games being Game 3 and Game 4, vwhose
payoff matrices are shown below, then there is some possibility for coordi-
nation: whenever the true game is Game 3 (resp. 14) player 1 can play his
top (resp. bottom) strategy, and if he does so, player 2 can play his left

(resp. right) hand strategy. The resulting equilibrium point will be efficient.

1,1 | 0,0 ,_ 0,0 | 1,1
1.1 0,0 0.0 1,1
Game 3 Game 4

The same oubteome would vresult if player 1 could signal to player 2 in
some other way. But if the payoffs are modified slightly & mew problem arises.

Thus consider the case where the games are Games 5 and 6. A situation where

—

$,1 | 0,0 1.1,0 | 1,1

1,1 0,0 1.1.,0 1.1
Game 5 Game 6

player 2 plays his left hand strategy if .pleyer 1 signals that game 5 is being

played will not be sustainable as an equilibrium point in this case because
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there will then always be an incentive for player 1 to signal that game 5
is being played when in fact‘éame 6 is béing played. In this case;.then,

there is no efficient equilibrium point even though there is the possibility

of signalling.

Some papers which analyze repeated games with incomplete information
are Aumann and Maschler [1966], [1967], and [1968], Stearns [1967], Kohlberg
[1975a] and [1975b], Mertens and Zamir [1971/72], and Zamir [1971/72] and

[1973]. Again, the literature is toc voluminous to revieﬁ completely here.

Chapter 9: Some Final Remarks

A topic which we have nobt covered is utility theory. When we intro-

duced the payoff matrix in two-person games the numbers we assigned were only

intended to represent players' orderings over the possible outcomes. How-
ever, subsequently it was necessary to interpret the payoffs as representing
preference intensities. Thus, when considering the mixed extension of a

game we dealt with expected payoffs, which are sums of payoffs weighted by

probabilities, and when we analyzed cooperative games we assumed there existed

numbers representing the "worth" of each coalition. We can justify such
procedures by assuming that payoffs are in money units and that each player
has a utility function which is linear in terms of money. For a detailed

treatment of the problem see Luce and Raiffa [195T].

We have also not studied some other interesting topics. Zermelo's

theorem involves a game in extensive form, where the sequential structure of

the players' moves is considered in detaill., Games in coalitional form

TRt
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without side payments are also of interest, as are games with a continuum

of players; the latter can be used to formallze economic situations of pure

competition.

1/

Solutions to Exercises—

1. Consider the game defined in the table below. Let o (resp. Bi)

be the probability that player 1 (resp. 2) uses strategy i. Then the only

e.p. of the game is (o 0,055 B,,8,,85) = (1/3,1/3,1/3; 1/3,1/3,1/3), the

equilibrium payoff being (3,3).

S2 82 g2

1 2 3

= . ¥ Sl 0 90 )“!‘95 Ss-ll'
1

s; 5.4 | 0,0 | b,5

sé b5 | 5,4 0,0

Proof: By inspection there is no pure strategy e.p. Let

/j;;VmNbA/ (al,aé,a3;61,82,83) be a mixed strategy e.p. Then givep (al,ag,a3) .it
m”“”q' must be the case that the expected payoff to Player 2 if he uses any of
X/V‘ L§ his pure strategies is the same (otherwisc he would choose a pure strategy,
Q\Aikb'(> . in which case it would a&lso be best for piayer 1 to choose & pure strategy,
gt4\13 so that we would not have a mixed strategy e.p.). Hence we need

ha2 + 5a3 = 5q

l+ha3=hal+5a2 s

1/ supplied by Martin J. Osborne.
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: 4 + + = = - = ,
or, remembering that o o, ooy 1, 4 = o, = Ay 1/3. By symmetry

we can thén deduce that Bl 5-82 $'63f= 1/3.  The payoff to player l‘ét

this e.p. is U(1/3) + 5(1/3) = 3, as is the payoff to player 2. Hence

the only e.p. of the game is (1/3,1/3,1/33 1/3,1/3,1/3), the equilibrium

payoff being (3,3).

2. Consider the game defined in the tables below. ILet o (resp. B8, y)
be the probability the player 1 (resp. 2, 3) uses his first strategy. Then

the e.p.'s of this game are (a,B8,v) = (1,1,1), (a,8,y) = (0,0,0), and

(a,B8,y) = (2-V2,2-V2,2-./2).

(23292)9 and (‘/59‘/é—5‘/§)a

Proof: (a,B,y) = (1,1,1) and (a,B,y) = (0,0,0)
strategy e.p.'s, with payoffs (1,1,1) and (2,2,2). To find mixed strategy
e.p.'s, let players 1 and 2 choose probabilities o and B. Then in a

‘mixed strategy e.p. player 3 must get the same payoff when he uses either

of his pure strategies (otherwise he would choose a pure strategy, which

S2 82
1 2
s | 1,1,1 | 0,0,0 0,0,0 | 0,0,0
1
s, | 0,0,0 | 0,0,0 0,0,0 | 2,2,2
3¢ v > 3
Sl. 82

would inelude players 1 and 2 to do the same, and we would have a pure stra-

tegy e.p.). Hence we want

The corresponding equilibrium payoffs are (1,1,1),

are clearly pure DA
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3
i
\

o = 2(1 - a)(1 - B)

By symmetry the corresponding conditions when the other players are cocansidered

are
oy = 2(1 - y)(1 - o) and By = 2(1 - B)(1 - vy) .

The unique solution (o,B,Y) E'[O,l]3 of these three estimates is (a,B,Y)
= (2-v2,2-/2,2-v2), and the corresponding equilibrium payoff is (v2,V2,v2).

Thus the e.p.'s and equilibrium payoffs are precisely those stated above.

3. Consider the game defined in the table below. Iet « (resp. B) be
the probability that player 1 (resp. 2) plays his first strategy. Then
every (a,8) in [0,1]2 is an e.p.; the equilibrium payoff corresponding

to b(a,B) is (L -8B, 1 - d).

Proof: Using the arguments of xercises 1 and 2 it is immediabe that

- the above assertion is correct.

S2 s2
1 2
1
5 0,0 | 1,0

s 0,1 | 1,1

L. If 1 2 [v(12) + v(13) + v(23)]/2 and v(ij) £ 1 for all pairs
'{i,j} C {1,2,3}, then the 0-1 normalized 3-person game ({1,2,3},v)

has a nonempty core,
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Proof: (a) Suppose that +v(12) + v(13) > 1. Then

x = (v(12) + v(13) = 1, 1 - v(13),1 - ¥(12))

is a member of the core: x; > 0, x2 o, x3 0 and xl + x2 + x3 = 13 and

v

>
x4 xF = v(12), o+ %0 = v(13), and % 4+ x5 = 2 - v(12) - v(13) > v(23).

(b) sSuppose that v(12) + v(13) < 1. Then

x = (0,1 ~ v(13),v(13))

is a menber of the core: xl > O,,xz 0, x3 >.0 and xl + x2 + x3 = 13 and

ftv

K r =1 v(13) > v(12), * xS v(13) and % 4 x3.= 1 > v(23).

]

v

Hence in all cases the core is nonempty.

.

5. A O-1 normalized welghted majority game has a nonempty core if

and only if it has at least one veto player.

Proof: A 0-1 normalized weighted majority game (N,v) is defined

by
1 if z W >q
ies
v(s8) =
0o if Ywi<aq ,
i&s

with q such that v(i) =0 for all 1 €N and v(N) = 1,

: 2
(a) Sufficiency: Number the players in such a way that W > w2

2 w . Then if there is at least one veto player, player 1 is such a player
(i.e. v(8) =0 if 1 ¢ 8). Hence x = (1,0,0,...,0) 1is in the core:

x =1, x >0 for all i, and

9 e
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A
[

= 1 if 1 €8 , in which case v(8) %
x = :

i€8 0 if 1 ¢s8 , in which case v(8S)

I
<

This establishes sufficiency.
(b) DNecessity: Suppose there are no vete players. Consider the
collection of coalitions S = {M {1}, M{2},...,M\{n}} with balancing

weights 8., =1/{n - 1) for all S €S. We have

S
n -1
n - 1
1 . 1 .
] Sgxg = =g §xg = =y s
SES,S S n - 1 = S n -~ 1 . ; N N

so S 1is a balanced collection. Since there are no veto players +v(S8) =1

for all S €S, so ) 5SV(S) =n/(n-1) > 1 = v(N). Hence by the Bondareva-
‘ ) ISy ‘
Shapley theorem the core of (N,v) is empty. This establishes necessity.

6. The core of a 0-1 normalized weighted majority game with wveto

1

players 1,...,p is C = {x: x = (a ,ag,...,ap,o,o,‘.,,o) with a* >0

for all i ‘and g a” = 1},
_i'.:l

Proof: If x € C, then it is clearly an imputation. ILet S be such .

that +v(8) = 1; then {1,2,...,p} €8, so Y x' =1 =+v(8). Iet S be such
1 168 1 2 p
that v(S) = 0. Then ) x >0 = v(S). Hence any x = (& ,a",...,8",0,0,...,0)
. i€ -
with a" >0 for all 1 and % &~ = 1 1is in the core of the game, and the

. i=1
core consists. of solely such points.

1. For every concave, function f: E® + B and for all m > 1,

T4 D44 g
£} ax) > ) af(x) if o€ ET and .Zla = 1.

i=1 i=1
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Proof: We proceed by induction on m.
(a) Tor m= 1 the result is immediate.
(b) Assume the result is true for s8ll m < r - 1, and take o € Ei

r . .
with ) o = 1. Then

i=1
ros r-1 5
£ Z ax ) = f( Z orxt + o'x )
i=1 i=1
o i r
= {1 - « ) Z ( —)x" + of K
r
=3 P R\ 4
r aixi ' T r
> (1 -« yel z (=21 + o £(x")
i=1 1 - o
(by the concavity of f)
ral gy r i oy
But ) a /(L -a')=1,8nd o/(l~a )20 for i=1,...,0~1, so that
i=1

the truth of the result for m = r - 1 ensures that

i i r-1 i

-1 f‘( )
£ ) (=222 [ (5

§=1 1 - o’ T i=1 1 - o

r-1 . . r-1

Hence f{ Z atx) } o f(x ) + oaff(x") = z a f(x ). Hence the result is
i=1 i=1 i=1

true for m = r.

v

(a) and (b) together entail the verity of the result for all m > 1.

Lemma 6,3 is false without the assumption of superadditivity.
Proof: Consider the following game (N,v):

= {1,2,3} , (1)

i

2 , v(2)=v(3)=0 ,

v(12)

4

v(13) = v(23) = 3 , end v(123) =

RN
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If x is to be in the core of (N,v) then X > v(1) = 2,

2 3 1 2 X3

x +x >v(23) =3, and x + x° + = l; hence the core is empty. But

the imputation (2,1,1) 1is not dominated by any imputation: the only
coalition which can dominate it is {2,3}, but in any imputation < > 2,

so it is not dominated by any imputation, This establishes the claim.

9. There is no homogeneous representation of the weighted majqrity game

(55 2,2,2,1,1,1].

Proof: We want to find a representation [q; Wl,...,wﬁ] such that
Z o= Q@ for all minimal winning coalitions S. That is, we want
iss :
_ (1) Wl + w2 +»w3 = q
and
(2) w1 + WJ + Wk = g

where (i,3) E'{(lg2),(2,3),(3,l)} and k € {4,5,6}. Adding the equations

in (2) we obtéin 2(w1 + oW+ w3) s 3q for k = L4,5,6. Using (1)

this gives 3wk =q for k = 4,5,6, so that W = a/3 for k = 4,5,6. But
L 5 6 {4,5,6}

then w + w +w = g, so that is winning, which is not the case

in the original game. This establishes that no homogeneous representation
of the game exists. ,

10. M(v,{1234}) for the weighted majority game (3, 2,1,1,1] is
N

{(a,(1 - a)/3, (2 - a)/3, (1 - /5 <o 2 W/T
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Proof: Let x = {(0,B,Y,8) be a payoff vector, There are three sorts
of objeetions to consiaer:- (a) those among players 2, 3.and 4; (b) those.
between pla&érs 2, 3 and 4 and player 13 and (c) those between player 1 and
one of the players 2, 3 and k. |

(a) Lef an objection of 2 against 3 be of the form (1-B-¢e,B8+¢€,0,0),
Such an objection exists if 1 -~8 ¢ 2 dr for some € > 0, or if o+B < 1.
Player 3 can counterobject with (1-v,0,v,0) if 1-y > 1-B-¢ for all

€ >0, or if B > v. So there lz no Justified cbjection of 2 against 3 if

(1) either aw+8=21 , or B >y

The consideration of objectiouns of 2 against 4, 3 against 2, 3 against U4,

4 against 2, and 4 against 3 leads to the conditions

(2) either a+pB=1 , or B2>6 ,
(3) either a+vy =1 , or Yy>B8 and y>6 , and
(L) either a+8& =1 , or § >B and §zvy ,

for there to be no Justified objection.

(b) Consider an objection of 2 against 1 of the fbrm (0,8 +¢e,(1~B~€)/2,
(L-B~-€)/2); such an objection exists if 1-B-¢ > 2y for some e > 0 and
1-B~¢e > 2§ for some € ; 0, or if 2y < 1 -8 and .28 <1-~B. Player 1
can counterobject with (0,0,1-0,0) if 1-a > (1-B-€)/2 for all e > O,

or if 20 < 1+B. Hence there is no Jjustified objection to x if

(5) 1-B<2y or L-f <28 or 2a

A

1“"6 .

Consigderation of objections of 3 and U4 against 1 leads to the conditions

IR
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(6) 1 -«

(7) -6 < 28 or 1 -6 <2 or 2¢ <1 - § .

ITA

2B or 1 -y <28 or 20<1l-y , and

Next let x = (1,0,0,0). Then (5) is vidlated, so x is not in the
Bargaining Set. Also, if x = (a¢,1-0,0,0) with o<1, (2) is violated. Hence
o+B <1, and by symmetry we cen deduce that a+y <1 and o+d < lﬁ So
from conditions (1)-(h) we conclude that B =y = 8. So any point in the
Bargaining Set is of the form (a,(l1-a)/3,(1~a)/3,(1-a)/3) with o < 1.

(c) Consider an objection of 1 against 2 of the form (a-+e,0,1-0-£,0);
such an objection always exists since B8 = (1-a)/3. Player 2 can counter-
object with (0,(1-a)/3,1-a~¢g, (L~ o)/3) if 5(L-a)/3-¢ <1 for all
e > b, or if «a 2 2/5. 'The consideration of objections of 1 against 3 and b by

wasymmetry yields the same conclusion.

' Hénce B = (1-0a)/3 £1/5, so the first two conditions in.(S) are not
satisfied; for the last one to be satisfied we need 20 < 1+ (L ~-a)/3 or
a < L/7, and conditioné_(6) and (7) lead to the same result.

This exhausts all possibilities for objections, so the Bargaining Set

is(zzh,(l - a)/3, (L ~0a)/3, (1L - a)/ég/

L &
/5 < o < 4/7° as was to be sghown.

1. M(v,{123}) for the game defined in Example 7.1 is {(2/3,1/6,1/6)}.

- Proof: Consider a payoff vector x = (a,B,Y). There are three sorts
of objections to examine: (a) 2 against 3, and 3 against 2; (b) 2 and 3 ngagb :
. against 1; and (c)‘l against 2 and 3. S ‘ / bj
(a) Consider an objection of 2 against 3 of the form (1-—B-ne,8-+e}%);' ’
jue

such an objection exists unless a+B8 = 1, Player 3 can counterobject with '
v
N
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(1-v,8,y) if 1-y >1-B-e,0or if Yy < B. So there is no Justified
objection of 2 against 3 if
(1) either a+B =1 or y<B

By symmetry there is no Justified objection of 3 against 2 if

(2) either a+B =1 or B <

A
<

(b) Consider an objection of 2 against 1 of the form - (0,8 + sa-el—mB -€)

such an obJjection exisgts it 5 Be-g

v

Y, or if @+y < 1/2. 8o no objection:

exists if B+ vy 1/2. Player 1 can couwnterobject with (o0,0,1 -0) if

i

1 .
Lo 2 Su B-e, ov if o <8 53 Hence there is no justified. objection of 2

against 1 if

i

(3) either g+ vy > 1, or o< B+ %, o

hel

By symmetry there is no justified objection of 3 against 1 if

(4) either 8+y__>;‘%: or o

A
o=

.y +

(¢c) Finally, consider an objection of 1 against 2 of the form
(e +e£,0,1 ~a-¢). Such an objection exists if l-d-¢ >y, so there can
be no objection only if vy +q = 1. Player 2 can counterobject with
1 .
(098 :E = B) if

. 1 .
l-a=¢g, or if o > B+%. Hence there is no

- B > 5

NS
v

Justified objection of 1 against 2 if

(5) either o +y =1 or oz B+

N

‘
L)

¥
LK
:
i
H

1
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By symmetry there is no justified objection of 1 against 3 if

(6) either o+ B =1 or o>y + %- .

Now suppose x = (1,0,0). Then (3) is violated; hence o < 1. Con-

sider x = (a,1-0,0) with a<1; then (2) is violated. Hence a+B < 1, and
by-symmetry a+y < 1. So conditioﬁs (1) and (2) ensure that B'= y. So
any point in the Bafgaining Set is of the form (a,(l-—a)/é,'(l-a)/Q);
Conditions (5) and (6) then imply that o > 2/3. Hence B*y < 1/3, so
that conditions (3) and (4) imply that o : 2/3. Hence the Bargaining Set

consists of the single point . (2/3,1/6,1/6), as claimed.
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