Corrections for Version 1.0 of Solution Manual for Osborne and Rubinstein's "A Course in Game Theory" (MIT Press, 1994)

2005/1/17

We thank James Dow, Juan Dubra, Robert Golanski, and Al Roth for pointing out errors.

Page, Line Correction

iv, 4	Replace "Szynter" with "Sznyter".
xi	The errors are now available as Postscript and PCL files at
	http://www.socsci.mcmaster.ca/~econ/faculty/osborne/cgt/
2	In the second line of footnote 1, "positive" should be "position".
4, -5	Replace \leq (at the end of the line) with \geq .
8	In the fourth line of the second paragraph of the solution to 35.2, $F(v-\epsilon)$
	near the end of the line should be $F_i(v - \epsilon)$ and in the following line
	" $F_i(v) - F_i(v - \epsilon) > 0$ for all $\epsilon > 0$ " should be " $F_i(v) > \lim_{\epsilon \downarrow 0} F_i(v - \epsilon)$ ".
9	Replace "player i " on line 5 of the solution to 36.1 with "player 1", and
	replace the second p_{ℓ}^* on line 7 with p_k^* .
12	Replace " $x < z$ " on the second line below the strategic game with " $z <$
	x".
14	The solution to 63.1 is correct, but (i) only one round of elimination is
	needed (every action other than $\frac{1}{2}$ is weakly dominated by the action $\frac{1}{2}$),
	and (<i>ii</i>) in fact $\frac{1}{2}$ is the only action that survives iterated elimination of
	strictly dominated actions (on the first round Out is strictly dominated
	by $\frac{1}{2}$, and in every subsequent round each of the remaining most extreme
	actions is strictly dominated by $\frac{1}{2}$).
18	In the next-to-last line of the solution of 76.1, replace " $\rho(X F)$ " by " $\rho(X \cap$
	F)".
24	The set of histories in the solution to 103.1 should include \emptyset .
25, 5	Replace "is in either $Y(y)$ or $N(y)$ " with "is either $Y(y)$ or is in $N(y)$ ".
25, 9	Replace "is in either $Y(y)$ or $N(y)$ " with "is either $Y(y)$ or is in $N(y)$ ".
25	The set of histories in the solutions to 103.2 and 103.3 should include \emptyset .
25	Replace the last line of the solution of 103.2 with "perfect equilibrium in
	which player 1 chooses <i>Continue</i> and each player names M , with payoff
	profile (M^2, M^2) ."
25	In the solution to 103.3 , H denotes both the set of histories and an action
	in <i>Matching Pennies</i> ; one or other piece of notation should be changed.
29, 8	c_2 near the end of the line should be c_1 .

- 36 In the solution to 145.1 change the conditions defining the output function from "if $q = S_{\ell}$ " to "if $q = S_{\ell}$ or P_i " and from "if $q = P_j$ " to "if $q = P_j$ for $j \neq i$ ".
- 38, 6 Replace $u_i(a^T)$ with $(1 \delta)u_i(a^T)$.
- 43 In the next-to-last line of the solution of 182.1, replace " $(a'_1, a^*_2, ..., a^*_n)$ " by " $g(a'_1, a^*_2, ..., a^*_n)$ ".
- 44 The following proof that f is not Nash-implementable is more direct than the one in the manual. Suppose that a game form G with outcome function g Nash-implements f. Then (G, \succeq) has a Nash equilibrium, say (s_1, s_2) , for which $g(s_1, s_2) = a$. Since (s_1, s_2) is a Nash equilibrium, $g(s_1, s'_2) \preceq a$ for all actions s'_2 of player 2, so that $g(s_1, s'_2) = a$ for all actions s'_2 of player 2. That is, by choosing s_1 , player 1 guarantees that the outcome is a. Since $a \succeq'_1 b$, it follows that (G, \succeq') has no Nash equilibrium (t_1, t_2) for which $g(t_1, t_2) = b$. We conclude that f is not Nash-implementable.
- 50 In the last display, replace " \hat{a} " on the left-hand side by "a".
- 51 In the first line of the solution of 229.1, replace "two" by "three". Add the following equilibrium to the list of equilibria:
 - Strategies $\beta_1(c) = 1, \ \beta_2(r) = 1, \ \beta_3(e) = 1.$ Beliefs $\mu_1(a) = 1, \ \mu_2(a, c) = \mu_2(b, e) = \frac{1}{2}, \ \mu_3(b) = 1.$
- 59 On line 4, replace "(w |S|)" by "(w + 1 |S|)".
- 60 In the first line of the solution of 261.1b, insert "nonnegative" before "feasible". In the fourth line add, after the period: "Now, if x is in the core then $x_i \ge 0$ for all $i \in N$, since $v(S) \ge 0$ for all S." Delete the "Now" at the beginning of the next sentence.
- 69 The solution to Exercise 289.2 is not correct: the coalition T that is constructed is not *minimal* winning. Currently we do not have a correct proof. (The result is taken from Peleg (1968), who provides a proof based on the standard definition of the nucleolus.)
- 69, -3 After "and w by" replace each "v" by "w".
- 75 Modify the start of the Note at the beginning of the solution to 312.2 to read "In the first and second printings...".