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Answers to Final Examination

The pure Nash equilibria are (M, m) and (B, m).

Suppose that the payoff of consumer i to W exceeds her payoff to U,
given the other consumers’ choices. Then iN, > (6 — )N, — ¢ and
hence (i + 1)N,, > (6 — (¢ + 1)) N, — ¢. Thus in any Nash equilibrium
in which ¢ chooses W, all consumers j > ¢ also choose W. That is, in
every equilibrium either all consumers chooses U, all consumers choose
W, or there is a number ¢ such that consumers 1, ..., ¢ choose U and
consumers ¢ + 1, ..., 5 choose W.

All consumers choose U: if consumer 5 switches to W her payoff changes
from 5 — ¢ to 5. Thus this action profile is not a Nash equilibrium.

All consumers choose W: if any consumer ¢ switches to U her payoff
changes from 5i to (6 — i) — ¢. Thus this action profile is a Nash equi-
librium.

Consumers 1, ..., ¢ choose U and consumers ¢ + 1, ..., 5 choose W:
if consumer i switches to W her payoff changes from (6 — i)i — ¢ to
(5—(¢—1))i = (6—1)i. Thus no such action profile is a Nash equilibrium.

We conclude that the game has a unique Nash equilibrium, in which all
consumers choose WW.

(a) The game is given in Figure 1.

Cop
A B

A —2, 2 VA, —VA
? )
Robber

VB, —Up mug — (1 —m)z, —mvp + (1 —7m)z

Figure 1. The game in Question 3.

(b) The game has no pure strategy Nash equilibrium. Consider an
equilibrium in mixed strategies. Denote the probability the robber
assigns to A by p and the probability the cop assigns to A by q.
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For an equilibrium we need the robber’s expected payoffs to A and
B to be the same, or

(1 —q)va = qup + (1 — q)vp,

which means that ¢ = 1 — vg/[va + (1 — m)vp]. Denote this prob-
ability by ¢*. We need also the cop’s expected payoffs to A and B
to be the same, or

—(1 =plvp = —pva — (1 = p)mvg,

which means that p = 1 — va/[va + (1 — m)vg]. Denote this
probability by p*. Thus the game has a unique Nash equilibrium
((p",1=p") (¢, 1 —q7)).

The robber’s expected payoff in the equilibrium of the game in
part b is (1 — ¢)va, where ¢ is the equilibrium probability that the
cop chooses A, and is thus equal to vavp/[va + (1 — 7)vg].

Thus if h < vavp/[va + (1 —m)vp|, a Nash equilibrium of the game
is the mixed strategy equilibrium ((p*, 1 — p*,0), (¢*, 1 — ¢*)).

If h > vqvg/[va + (1 —m)vg], one Nash equilibrium is the strategy
pair ((0,0,1), (¢*,1—¢*)). (If h > vp then ((0,0,1),(1,0)) is also a
Nash equilibrium, and if h > v,4 then ((0,0,1), (0, 1)) is also a Nash
equilibrium.)

(a) The game is shown in Figure 2.

1 ¢ 2 ¢ 1 ¢ 2 Cc 1 C 2 C 1 C 2
S S S S S S S S
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Figure 2. The game in Question 4.

(b) Using backward induction we find that player 1’s subgame perfect

equilibrium strategy takes a step on her first two turns and shoots
thereafter, and player 2’s strategy takes a step on her first turn and
shoots thereafter. That is, the game has a unique subgame perfect
equilibrium in which player 1’s strategy is C'C'S'S and player 2’s
strategy is C'SSS. The outcome of the equilibrium is that each
player’s payoff is %



(¢) No, the game has no such Nash equilibrium. For a strategy pair in
which player 1 shoots on her first move to be a Nash equilibrium,
player 2 must shoot at her first move, otherwise player 1 can increase
her payoff by taking a step on her first move and shooting on her
second move. But if player 2 shoots on her first move, player 1 is
better off taking a step on her first move.

(a) Not a subgame perfect equilibrium. Player 2’s rejection of the offer
(51,49) is not optimal: acceptance yields her 49, while rejection
leads her to get at most 50 with at least one period of delay.

(b) A subgame perfect equilibrium:
e [f player 1 demands less, player 2 accepts her offer and player 1
is worse off.
e If player 1 rejects an offer of 99 or more she gets at most 100
with one period of delay, for a net payoff of 99.

o If player 2 offers player 1 more than 99, player 1 accepts her
offer and she is worse off. If she offers player 1 less than 99,
player 1 rejects her offer, and player 2 gets either 0 at some
future date (if she subsequently accepts an offer of player 1), or
at most 1 at some future date (if player 1 subsequently accepts
an offer of hers).

o [f player 2 rejects any offer then she gets at most 1 at some
future date, by the same argument.

(¢) Not a subgame perfect equilibrium. Player 1’s acceptance of the
offer (50, 50) is not optimal: if she rejects it, she gets 52 with one
period of delay, which is worth 51 to her.

(a) (N,N) and (B, B).
(b) i. A Bayesian game that models the situation is defined as follows.
Players The two players in the original game.
States The set of states is the set of pairs (¢, cz) with 0 <
ci<lforiv=1,2.
Actions The set of actions of each player is {NV, B}.

Signals The set of signals that each player may receive is [0, 1].
The signal function of player i is given by 7;(c1, ) = ¢;.
(Each player ¢ observes only c¢;.)

Beliefs Each player i believes that c¢; is at most any given
number ¢ with probability c.
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Payoffs The payofts are derived from the basic game.
The strategy of the other player and the distribution of the
other player’s value of ¢ generate probabilities for N and B,
say ¢ and 1 — q. If the best response of a player of type cis B
then

q(b—c) = (1 —q)c=—(1-q)d,
or

c<qgb+ (1—q)d.

Thus the best response of a player of type ¢ with ¢ < ¢ is also
B.
Consider a strategy pair (s, ss) in which s; takes the form
given, with ¢f = ¢*, i = 1, 2. For this strategy pair to be a
Nash equilibrium of the Bayesian game we need B to be optimal
for every type c of each player with ¢ < ¢* and N to be optimal
for every type c of each player with ¢ > ¢*.
If type ¢ of player ¢ chooses B she obtains the payoff b — ¢
if player 7 chooses N and —c if player j chooses B. Now, if
player j uses the strategy specified, she chooses N if ¢; > ¢* and
B if ¢; < c¢*. Player ¢ believes that ¢; is uniformly distributed
between 0 and 1, so that she believes the probability that c¢; >
c* is 1 — ¢* and the probability that ¢; < ¢* is ¢*. Thus the
expected payoff of type c of player ¢ if she chooses B is

(b—c)(1—=c") —cc".

Similarly, her expected payoff if she chooses N is —dc*.

We conclude that if 0 < ¢* < 1, then for B to be optimal for
every type c of each player with ¢ < ¢* and N to be optimal
for every type c of each player with ¢ > ¢* we need

b—c)(1—=c")—cc* > —dc"if c< ¢
—dc* > (b—c)(1—=c")—cc"if ¢ > .

Thus we need (b—c*)(1—c*)—c*c¢* = —dc*, or b = ¢*(1+b—d).
Given d > 1, no value of ¢* satisfies this equation.

The strategy pair for ¢* = 0 is an equilibrium if 0 > b — ¢ for
all ¢. Given b < 1, this inequality is not satisfied for ¢ = 1.
The strategy pair for ¢* = 1 is an equilibrium if —c¢ > —d for
all ¢. Given d > 1, this inequality is satisfied.

We conclude that the game has a unique Nash equilibrium of
the type given, in which ¢* = 1.



