The pages of this supplement will *not* be graded: write your answers on the test papers. **Supplement: Page 1 of 10**

This *Supplement* contains the aid sheets (formula sheets and Normal, t and F tables) as well as graphs, tables, and other information needed to answer some of the test questions. For each question directing you to this *Supplement*, make sure to carefully review all relevant materials. Remember, <u>only</u> your answers written on the test papers (in the designated space immediately after each question) will be graded. Any writing on this *Supplement* will *not* be graded.

THE FORMULA SHEETS AND NORMAL, *t* AND *F* TABLES ARE ON PAGES 5 THROUGH 10 OF THIS SUPPLEMENT.

Supplement for Question (1): Recall that on February 14, 2014, February 6, 2015, and on February 12, 2016 students in ECO220Y engaged in an experiment like the original participants from Andreoni and Vesterlund's "Which is the Fair Sex: Gender Differences in Altruism" published in 2001 and hereafter abbreviated as A&V (2001).

Each participant divided tokens between her/himself and another randomly selected participant in the room (whose identity would never be revealed). Each person made eight allocation decisions – budgets 1 through 8 shown below – where the number of tokens and the point values to each person (self and other) varied. Both A&V (2001) and ECO220Y (2014, 2015, 2016) *randomized* the order the eight budgets appeared to each participant on the decision sheet. Each point is worth \$0.10 to all participants in all cases.

- 1. Divide 40 tokens: *Hold* ______ @ 1 point each, and *Pass* ______ @ 3 points each.
- 2. Divide 60 tokens: Hold ______ @ 1 point each, and Pass ______ @ 2 points each.
- 3. Divide 75 tokens: *Hold* ______ @ 1 point each, and *Pass* ______ @ 2 points each.
- 4. Divide 60 tokens: *Hold* ______ @ 1 point each, and *Pass* ______ @ 1 point each.
- 5. Divide 100 tokens: Hold _____ @ 1 point each, and Pass _____ @ 1 point each.
 6. Divide 60 tokens: Hold _____ @ 2 points each and Pass _____ @ 1 point each.
- 6. Divide 60 tokens: *Hold* _____ @ 2 points each, and *Pass* _____ @ 1 point each.
 7. Divide 75 tokens: *Hold* _____ @ 2 points each, and *Pass* _____ @ 1 point each.
- 8. Divide 40 tokens: *Hold* ______ @ 3 points each, and *Pass* ______ @ 1 point each.

We attempted to replicate the original study. One difference is that rather than pay everyone for one randomly selected budget as A&V (2001) did using a research grant, ECO220Y (2014, 2015, 2016) paid randomly selected participants using money students donated right before the session and \$20.00 per session (total of \$220.00) donated by Prof. Murdock. Nearly all students voluntarily donated \$2.00 to a collection jar as suggested by Prof. Murdock. ECO220Y (2014, 2015, 2016) used data from eleven sessions spread over February 14, 2014 (three sessions), February 6, 2015 (five sessions), and on February 12, 2016 (three sessions): 868 participated (334 males and 534 females). Because each participant made eight allocation decisions, 6,944 allocation decisions are observed. Consider the *total* money (CAN dollars) passed to the (anonymous) partner across all eight decisions: tot_mon_pass. Also, male is a dummy variable equal to one if the participant is male.

Summary of total money passed, by sex:

\rightarrow male = 0					
Variable	Obs	Mean	Std. Dev.	Min	Max
tot_mon_pass	534	26.18446	12.23994	0	60.5
-> male = 1					
Variable	Obs	Mean	Std. Dev.	Min	Max
tot_mon_pass	334	26.97126	16.44741	0	72.5

Supplement for Question (1) continues on next page >>>>

Supplement for Question (1), cont'd:

<pre>Regression #1: . regress tot</pre>	_mon_pass mal	e, robust;				
Linear regres:	sion				Number of obs F(1, 866) Prob > F R-squared Root MSE	= 868 = 0.57 = 0.4513 = 0.0007 = 14.008
tot_mon_pass	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
male cons	.7868006 26.18446	1.044054 .5297886	0.75 49.42	0.451 0.000	-1.262371 25.14464	2.835972 27.22428

Regression #2:

. regress tot_money_passed male;

Source		SS	df		MS		Number of obs	=	868
	-+-						F(1, 866)	=	0.65
Model		127.202988	1	127.	.202988		Prob > F	=	0.4210
Residual		169934.285	866	196.	.228967		R-squared	=	0.0007
	-+-						Adj R-squared	=	-0.0004
Total		170061.488	867	196.	149352		Root MSE	=	14.008
tot mon pass		Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
	-+-								
male		.7868006	.9772	317	0.81	0.421	-1.131219		2.70482
cons		26.18446	.606	193	43.19	0.000	24.99468	2	7.37424
_									

Summary of total money passed, by year:

-> data_source = ECO220Y, Feb. 14, 2014

Variable	Obs	Mean	Std. Dev.	Min	Max
tot_mon_pass	200	27.691	13.44333	0	72.5

 \rightarrow data_source = ECO220Y, Feb. 6, 2015

Variable	Obs	Mean	Std. Dev.	. Min	Max
tot_mon_pass	461	26.52842	14.61084	0	72.5

-> data source = EC0220Y, Feb. 12, 2016

Variable	Obs	Mean	Std. Dev.	Min	Max
tot_mon_pass	207	25.23237	13.08705	0	53

The pages of this supplement will *not* be graded: write your answers on the test papers. Supplement: Page 3 of 10

Supplement for Question (2): Recall the 2014 NBER working paper "Asiaphoria Meets Regression to the Mean" (http://www.nber.org/papers/w20573.pdf). Test #1, Nov. 2016 provided a table "Table 1: Little persistence in crossnational growth rates across decades" and a scatter diagram. Recall the dot labeled "KOR," which is South Korea. South Korea is an outlier and the table below shows three possibilities: (1) keep it, (2) drop it, or (3) put a dummy in for it.

(Dependent variable: Growth rate (%), 1980 – 1990)							
	(1)	(2)	(3)				
Growth rate (%), 1970 – 1980	0.4326 (0.1772)	-0.1025 (0.1744)	-0.1025 (0.1744)				
KOR	-	-	6.7889 (1.4287)				
Intercept	1.1511 (0.5479)	2.3803 (0.4863)	2.3803 (0.4863)				
Number of observations	30	29	30				
R-squared	0.1755	0.0126	0.5510				
SST	69.1815	31.4610	69.1815				
SSR	12.1397	0.3975	38.1179				
SSE	57.0418	31.0635	31.0635				

Note: Coefficient estimates with standard errors in parentheses.

Supplement for Question (4): Recall the May 26, 2016 "Salary Anomaly Working Group: Analysis & Findings" report and appendix. It analyzes 1,171 Waterloo faculty members who completed an annual performance review on May 1, 2015. This includes 344 females and 827 males. The next page reproduces the regression results – Specifications (1) and (2) – with clarifications in places. The bullet list below describes some of the variables, with others described with the regression results. Categorical (nominal) information is included with dummy variables: the names clearly indicate when the value is 1. The omitted (aka reference) category for each set of dummies is specified in the bullet list. Also, the figure named "Actual vs Fitted Salaries" is reproduced from the original report and it corresponds to Specification (1).

- Annual salary: Annual base salary as of May 1, 2015 excluding stipends (CAN dollars)
- Mean annual merit score: Average annual merit score for all available years for the faculty member from 2009 through 2014. Each year faculty members receive a merit score on a two-point scale (2.0 is the highest score) that scores overall productivity in research, teaching, and service. A typical score is 1.6.
- *Highest degree earned:* The omitted category • is Bachelor Degree (BA).
- *Current academic rank:* The omitted category is Assistant Professor.
- UNIT: Academic unit of faculty member: The omitted category is Applied Health Sciences.
- RANK@HIRE: Academic rank when hired at Waterloo: The omitted category is Assistant Professor.
- PROFS RANKS: Is a dummy variable equal to 1 for those with a rank of Assistant Professor, Associate Professor or Professor. The omitted category is Lecturers and Clinical Lecturers.

wullple Regression Estimation Results for the Waterioo Case 3	study (Depende		annuur sulury)	
	Specific	ation (1)	Specific	ation (2)
	Estimate	Std. Error	Estimate	Std. Error
Male	-	-	2904.59	700.82
Mean annual merit score, 2009 through 2014	26097.98	1791.94	25821.67	1699.22
Number of previous Outstanding Performance Awards	3664.14	685.64	3587.37	651.23
Years since hire until 2015 (i.e. 2015 minus the year hired)	2226.66	140.71	2252.47	133.39
Years since hire until 2015 squared	-15.84	3.47	-16.60	3.29
LAG: Lag of years between earning highest degree and hire at Waterloo	829.88	147.10	858.08	138.79
Highest degree earned:				
Doctoral (PhD)	10084.27	3378.91	8564.38	3251.73
Master's or equivalent	1616.14	3519.85	146.71	3386.44
Professional	7339.61	4825.99	3533.10	4448.90
Graduate Licence	-7700.33	7201.54	-10290.55	6873.11
Current academic rank:				
Professor	15811.02	1598.82	15141.57	1525.42
Associate Professor	7666.75	1171.28	7325.93	1118.28
Clinical Lecturer	9038.29	11059.44	9675.22	10520.73
lecturer	-7349.55	4462.49	-6553.49	4262.62
LINIT Academic unit of faculty member	/010100	1102115	0000110	1202102
School of Accounting & Finance	15244 60	5091 68	14049 27	4838 09
Economics	5084 50	5922.80	4167.66	5631 41
Psychology	-15/13 75	6812.83	-16971 //8	6/68 86
Chemical Engineering	-7227 35	7/05 35	-1803.26	7035 98
Electrical & Computer Engineering	12516.92	6769 19	10620.20	5096 52
School of Computer Science	7520.51	5182 75	511/ 02	1018 56
School of Ontomatry	10702 42	12602 56	J114.52	4948.30
School of Dharmacy	210/92.42	2011 67	11/30.34	12002.70
School of Filumiday	21045.65	2011.07	12716.05	2000.07
Faculty of Environment	-12225.70	8590.71	-13/16.05	8109.50
Aris (excluding units direddy listed dbove)	-10388.70	4/35.48	-11520.09	4515.81
Engineering (excluding units already listed above)	14752.95	4097.43	14007.87	4502.53
Mathematics (excluding units direday listed above)	6532.34	4439.02	5383.34	4239.10
Science (excluding units direday listed above)	-1135.99	5025.57	-1950.10	4779.45
RANK@HIRE: Academic rank when hired at Waterioo:	10070 10		10007.00	
Professor	100/9.46	3681.30	10097.90	3495.13
Associate Professor	5319.26	2096.70	4952.56	1996.99
Clinical Lecturer	4242.50	11932.31	5743.84	11349.63
Lecturer	-2210.70	1641.43	-2101.91	1630.66
Interaction terms between UNIT and PROFS_RANKS:				
UNIT=School of Accounting & Finance * PROFS_RANKS	18910.82	5572.08	19887.39	5284.41
UNIT=Economics * PROFS_RANKS	7780.52	6408.68	7679.05	6089.70
UNIT=Psychology * PROFS_RANKS	16166.87	7150.68	17518.53	6793.48
UNIT=Chemical Engineering * PROFS_RANKS	19640.16	7753.66	15814.88	7365.46
UNIT=Electrical & Computer Engineering * PROFS_RANKS	3970.11	6512.00	5431.13	6200.93
UNIT=School of Computer Science * PROFS_RANKS	16368.08	5508.11	17615.55	5244.71
UNIT=School of Optometry * PROFS_RANKS	4233.38	12696.43	4146.50	12024.74
UNIT=Faculty of Environment * PROFS_RANKS	9908.77	8779.14	10683.69	8341.98
UNIT=Arts * PROFS_RANKS	5092.17	4996.96	5963.93	4769.95
UNIT=Engineering * PROFS_RANKS	779.42	4960.85	679.95	4740.64
UNIT=Mathematics * PROFS_RANKS	5397.36	4733.94	5372.86	4506.28
UNIT=Science * PROFS_RANKS	2055.99	5280.47	1765.49	5016.45
Interaction terms between LAG and RANK@HIRE:				
LAG * RANK@HIRE=Professor	889.20	228.67	889.46	216.39
LAG * RANK@HIRE=Associate Professor	410.74	237.82	444.89	225.81
LAG * RANK@HIRE=Lecturer	-335.24	181.71	-383.49	172.40
ntercept	46748.06	4592.89	47757.05	4401.09

Number of observations

1,171

1,171

Multiple Regression Estimation Results for the Waterloo Case Study (Depen	dent variable: A	(Annual salary
---	------------------	----------------

Supplement: Page 5 of 10

Sample mean: $\bar{X} = \frac{\sum_{i=1}^{n} x_i}{n}$ Sample variance: $s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{X})^2}{n-1} = \frac{\sum_{i=1}^{n} x_i^2}{n-1} - \frac{(\sum_{i=1}^{n} x_i)^2}{n(n-1)}$ Sample s.d.: $s = \sqrt{s^2}$ Sample coefficient of variation: $CV = \frac{s}{\bar{x}}$ Sample covariance: $s_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{X})(y_i - \bar{Y})}{n-1} = \frac{\sum_{i=1}^{n} x_i y_i}{n-1} - \frac{(\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} y_i)}{n(n-1)}$ Sample interquartile range: IQR = Q3 - Q1 Sample coefficient of correlation: $r = \frac{s_{xy}}{s_x s_y} = \frac{\sum_{i=1}^{n} z_{x_i} z_{y_i}}{n-1}$

Addition rule: P(A or B) = P(A) + P(B) - P(A and B) Conditional probability: $P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$ Complement rules: $P(A^{C}) = P(A') = 1 - P(A)$ $P(A^{C}|B) = P(A'|B) = 1 - P(A|B)$ Multiplication rule: P(A and B) = P(A|B)P(B) = P(B|A)P(A)

Expected value: $E[X] = \mu = \sum_{all \ x} xp(x)$ Variance: $V[X] = E[(X - \mu)^2] = \sigma^2 = \sum_{all \ x} (x - \mu)^2 p(x)$ Covariance: $COV[X, Y] = E[(X - \mu_X)(Y - \mu_Y)] = \sigma_{XY} = \sum_{all \ x} \sum_{all \ y} (x - \mu_X)(y - \mu_Y)p(x, y)$

Laws of expected value:	Laws of variance:	Laws of covariance:
E[c] = c	V[c] = 0	COV[X, c] = 0
E[X+c] = E[X] + c	V[X+c] = V[X]	COV[a + bX, c + dY] = bd * COV[X, Y]
E[cX] = cE[X]	$V[cX] = c^2 V[X]$	
E[a + bX + cY] = a + bE[X] + cE[Y]	$V[a + bX + cY] = b^2 V[$	$[X] + c^2 V[Y] + 2bc * COV[X, Y]$
	$V[a + bX + cY] = b^2 V[$	$X] + c^2 V[Y] + 2bc * SD(X) * SD(Y) * \rho$
	where $ ho = CORRELATIOR$	N[X,Y]

Combinatorial formula: $C_x^n = \frac{n!}{x!(n-x)!}$ Binomial probability: $p(x) = \frac{n!}{x!(n-x)!}p^x(1-p)^{n-x}$ for x = 0,1,2,...,nIf X is Binomial $(X \sim B(n,p))$ then E[X] = np and V[X] = np(1-p)

If X is Uniform $(X \sim U[a, b])$ then $f(x) = \frac{1}{b-a}$ and $E[X] = \frac{a+b}{2}$ and $V[X] = \frac{(b-a)^2}{12}$

Sampling distribution of \overline{X} :	Sampling distribution of \widehat{P} :
$\mu_{\bar{X}} = E[\bar{X}] = \mu$	$\mu_{\widehat{P}} = E[\widehat{P}] = p$
$\sigma_{\bar{X}}^2 = V[\bar{X}] = \frac{\sigma^2}{n}$	$\sigma_{\hat{P}}^2 = V[\hat{P}] = \frac{p(1-p)}{n}$
$\sigma_{\bar{X}} = SD[\bar{X}] = \frac{\sigma}{\sqrt{n}}$	$\sigma_{\hat{P}} = SD[\hat{P}] = \sqrt{\frac{p(1-p)}{n}}$

Sampling distribution of $(\bar{X}_1 - \bar{X}_2)$, independent samples: $\mu_{\bar{X}_1 - \bar{X}_2} = E[\bar{X}_1 - \bar{X}_2] = \mu_1 - \mu_2$ $\sigma_{\bar{X}_1 - \bar{X}_2}^2 = V[\bar{X}_1 - \bar{X}_2] = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$ $\sigma_{\bar{X}_1 - \bar{X}_2} = SD[\bar{X}_1 - \bar{X}_2] = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$

Sampling distribution of
$$(\hat{P}_2 - \hat{P}_1)$$
:

$$\mu_{\hat{P}_2 - \hat{P}_1} = E[\hat{P}_2 - \hat{P}_1] = p_2 - p_1$$

$$\sigma_{\hat{P}_2 - \hat{P}_1}^2 = V[\hat{P}_2 - \hat{P}_1] = \frac{p_2(1 - p_2)}{n_2} + \frac{p_1(1 - p_1)}{n_1}$$

$$\sigma_{\hat{P}_2 - \hat{P}_1} = SD[\hat{P}_2 - \hat{P}_1] = \sqrt{\frac{p_2(1 - p_2)}{n_2} + \frac{p_1(1 - p_1)}{n_1}}$$

Sampling distribution of (\overline{X}_d) , paired $(d = X_1 - X_2)$: $\mu_{\overline{X}_d} = E[\overline{X}_d] = \mu_1 - \mu_2$ $\sigma_{\overline{X}_d}^2 = V[\overline{X}_d] = \frac{\sigma_d^2}{n} = \frac{\sigma_1^2 + \sigma_2^2 - 2*\rho*\sigma_1*\sigma_2}{n}$ $\sigma_{\overline{X}_d} = SD[\overline{X}_d] = \frac{\sigma_d}{\sqrt{n}} = \sqrt{\frac{\sigma_1^2 + \sigma_2^2 - 2*\rho*\sigma_1*\sigma_2}{n}}$ Inference about a population proportion:

z test statistic:
$$z = \frac{\hat{P} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$$
 CI estimator: $\hat{P} \pm z_{\alpha/2} \sqrt{\frac{\hat{P}(1-\hat{P})}{n}}$

Inference about comparing two population proportions:

z test statistic under Null hypothesis of no difference: $z = \frac{\hat{P}_2 - \hat{P}_1}{\sqrt{\frac{\bar{P}(1-\bar{P})}{n_1} + \frac{\bar{P}(1-\bar{P})}{n_2}}}$ Pooled proportion: $\bar{P} = \frac{X_1 + X_2}{n_1 + n_2}$ Cl estimator: $(\hat{P}_2 - \hat{P}_1) \pm z_{\alpha/2} \sqrt{\frac{\hat{P}_2(1-\hat{P}_2)}{n_2} + \frac{\hat{P}_1(1-\hat{P}_1)}{n_1}}$

Inference about the population mean:

t test statistic: $t = \frac{\bar{X} - \mu_0}{s/\sqrt{n}}$ CI estimator: $\bar{X} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$ Degrees of freedom: $\nu = n - 1$

Inference about a comparing two population means, independent samples, unequal variances:

$$t \text{ test statistic: } t = \frac{(\bar{X}_1 - \bar{X}_2) - \Delta_0}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \quad \text{Cl estimator: } (\bar{X}_1 - \bar{X}_2) \pm t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

Degrees of freedom: $v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1}\left(\frac{s_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1}\left(\frac{s_2^2}{n_2}\right)^2}$

Inference about a comparing two population means, independent samples, assuming equal variances:

 $t \text{ test statistic: } t = \frac{(\bar{x}_1 - \bar{x}_2) - \Delta_0}{\sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}} \quad \text{Cl estimator: } (\bar{X}_1 - \bar{X}_2) \pm t_{\alpha/2} \sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}} \quad \text{Degrees of freedom: } \nu = n_1 + n_2 - 2$ Pooled variance: $s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$

Inference about a comparing two population means, paired data: (*n* is number of pairs and $d = X_1 - X_2$) *t* test statistic: $t = \frac{\bar{d} - \Delta_0}{s_d / \sqrt{n}}$ CI estimator: $\bar{X}_d \pm t_{\alpha/2} \frac{s_d}{\sqrt{n}}$ Degrees of freedom: $\nu = n - 1$

SIMPLE REGRESSION:

Model: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ OLS line: $\hat{y}_i = b_0 + b_1 x_i$ $b_1 = \frac{s_{xy}}{s_x^2} = r \frac{s_y}{s_x}$ $b_0 = \bar{Y} - b_1 \bar{X}$ Coefficient of determination: $R^2 = (r)^2$ Residuals: $e_i = y_i - \hat{y}_i$

Standard deviation of residuals: $s_e = \sqrt{\frac{SSE}{n-2}} = \sqrt{\frac{\sum_{i=1}^{n}(e_i-0)^2}{n-2}}$ Standard error of slope: $s.e.(b_1) = s_{b_1} = \frac{s_e}{\sqrt{(n-1)s_x^2}}$

Inference about the population slope:

t test statistic: $t = \frac{b_1 - \beta_{10}}{s.e.(b_1)}$ Cl estimator: $b_1 \pm t_{\alpha/2}s.e.(b_1)$ Degrees of freedom: $\nu = n - 2$ Standard error of slope: $s.e.(b_1) = s_{b_1} = \frac{s_e}{\sqrt{(n-1)s_x^2}}$

<u>Prediction interval for y at given value of $x(x_g)$:</u>

$$\hat{y}_{x_g} \pm t_{\alpha/2} s_e \sqrt{1 + \frac{1}{n} + \frac{(x_g - \bar{X})^2}{(n-1)s_x^2}} \quad \text{or} \quad \hat{y}_{x_g} \pm t_{\alpha/2} \sqrt{\left(s. e. (b_1)\right)^2 \left(x_g - \bar{X}\right)^2 + \frac{s_e^2}{n} + s_e^2}$$

Degrees of freedom: $\nu = n - 2$

Confidence interval for predicted mean at given value of $x(x_q)$:

$$\hat{y}_{x_g} \pm t_{\alpha/2} s_e \sqrt{\frac{1}{n} + \frac{(x_g - \bar{X})^2}{(n-1)s_x^2}} \quad \text{or} \quad \hat{y}_{x_g} \pm t_{\alpha/2} \sqrt{\left(s.\,e.\,(b_1)\right)^2 \left(x_g - \bar{X}\right)^2 + \frac{s_e^2}{n}} \quad \text{Degrees of freedom: } \nu = n-2$$

SIMPLE & MULTIPLE REGRESSION:

$$\begin{aligned} \text{Model: } y_i &= \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_k x_{ki} + \varepsilon_i \\ SST &= \sum_{i=1}^n (y_i - \bar{Y})^2 = SSR + SSE \quad SSR = \sum_{i=1}^n (\hat{y}_i - \bar{Y})^2 \quad SSE = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2 \\ s_y^2 &= \frac{SST}{n-1} \quad MSE = \frac{SSE}{n-k-1} \quad Root \ MSE = \sqrt{\frac{SSE}{n-k-1}} \quad MSR = \frac{SSR}{k} \\ R^2 &= \frac{SSR}{SST} = 1 - \frac{SSE}{SST} \quad Adj. \ R^2 = 1 - \frac{SSE/(n-k-1)}{SST/(n-1)} = \left(R^2 - \frac{k}{n-1}\right) \left(\frac{n-1}{n-k-1}\right) \\ \text{Residuals: } e_i &= y_i - \hat{y}_i \quad \text{Standard deviation of residuals: } s_e = \sqrt{\frac{SSE}{n-k-1}} = \sqrt{\frac{\sum_{i=1}^n (e_i - 0)^2}{n-k-1}} \end{aligned}$$

Inference about the overall statistical significance of the regression model:

$$F = \frac{R^2/k}{(1-R^2)/(n-k-1)} = \frac{(SST-SSE)/k}{SSE/(n-k-1)} = \frac{SSR/k}{SSE/(n-k-1)} = \frac{MSR}{MSE}$$

Numerator degrees of freedom: $v_1 = k$ Denominator degrees of freedom: $v_2 = n - k - 1$

Inference about the population slope for explanatory variable j:

t test statistic:
$$t = \frac{b_j - \beta_{j_0}}{s_{b_j}}$$
 Cl estimator: $b_j \pm t_{\alpha/2} s_{b_j}$ Degrees of freedom: $\nu = n - k - 1$

Standard error of slope: $s.e.(b_j) = s_{b_j}$ (for multiple regression, must be obtained from technology)

Norr	nal Prol	babilitie	s:					_	0	Z
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990
3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993
3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995
3.3	0.4995	0.4995	0.4995	0.4996	0.4996	0.4996	0.4996	0.4996	0.4996	0.4997
3.4	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4997	0.4998
3.5	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998	0.4998
3.6	0.4998	0.4998	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999	0.4999

The pages of this supplement will *not* be graded: write your answers on the test papers.

Supplement: Page 9 of 10

Crit	ical Va	lues of	t:							0 t	A
ν	t _{0.10}	$t_{0.05}$	$t_{0.025}$	$t_{0.01}$	$t_{0.005}$	ν	$t_{0.10}$	$t_{0.05}$	$t_{0.025}$	$t_{0.01}$	$t_{0.005}$
1	3.078	6.314	12.706	31.821	63.657	38	1.304	1.686	2.024	2.429	2.712
2	1.886	2.920	4.303	6.965	9.925	39	1.304	1.685	2.023	2.426	2.708
3	1.638	2.353	3.182	4.541	5.841	40	1.303	1.684	2.021	2.423	2.704
4	1.533	2.132	2.776	3.747	4.604	41	1.303	1.683	2.020	2.421	2.701
5	1.476	2.015	2.571	3.365	4.032	42	1.302	1.682	2.018	2.418	2.698
6	1.440	1.943	2.447	3.143	3.707	43	1.302	1.681	2.017	2.416	2.695
7	1.415	1.895	2.365	2.998	3.499	44	1.301	1.680	2.015	2.414	2.692
8	1.397	1.860	2.306	2.896	3.355	45	1.301	1.679	2.014	2.412	2.690
9	1.383	1.833	2.262	2.821	3.250	46	1.300	1.679	2.013	2.410	2.687
10	1.372	1.812	2.228	2.764	3.169	47	1.300	1.678	2.012	2.408	2.685
11	1.363	1.796	2.201	2.718	3.106	48	1.299	1.677	2.011	2.407	2.682
12	1.356	1.782	2.179	2.681	3.055	49	1.299	1.677	2.010	2.405	2.680
13	1.350	1.771	2.160	2.650	3.012	50	1.299	1.676	2.009	2.403	2.678
14	1.345	1.761	2.145	2.624	2.977	51	1.298	1.675	2.008	2.402	2.676
15	1.341	1.753	2.131	2.602	2.947	52	1.298	1.675	2.007	2.400	2.674
16	1.337	1.746	2.120	2.583	2.921	53	1.298	1.674	2.006	2.399	2.672
17	1.333	1.740	2.110	2.567	2.898	54	1.297	1.674	2.005	2.397	2.670
18	1.330	1.734	2.101	2.552	2.878	55	1.297	1.673	2.004	2.396	2.668
19	1.328	1.729	2.093	2.539	2.861	60	1.296	1.671	2.000	2.390	2.660
20	1.325	1.725	2.086	2.528	2.845	65	1.295	1.669	1.997	2.385	2.654
21	1.323	1.721	2.080	2.518	2.831	70	1.294	1.667	1.994	2.381	2.648
22	1.321	1.717	2.074	2.508	2.819	75	1.293	1.665	1.992	2.377	2.643
23	1.319	1.714	2.069	2.500	2.807	80	1.292	1.664	1.990	2.374	2.639
24	1.318	1.711	2.064	2.492	2.797	90	1.291	1.662	1.987	2.368	2.632
25	1.316	1.708	2.060	2.485	2.787	100	1.290	1.660	1.984	2.364	2.626
26	1.315	1.706	2.056	2.479	2.779	120	1.289	1.658	1.980	2.358	2.617
27	1.314	1.703	2.052	2.473	2.771	140	1.288	1.656	1.977	2.353	2.611
28	1.313	1.701	2.048	2.467	2.763	160	1.287	1.654	1.975	2.350	2.607
29	1.311	1.699	2.045	2.462	2.756	180	1.286	1.653	1.973	2.347	2.603
30	1.310	1.697	2.042	2.457	2.750	200	1.286	1.653	1.972	2.345	2.601
31	1.309	1.696	2.040	2.453	2.744	250	1.285	1.651	1.969	2.341	2.596
32	1.309	1.694	2.037	2.449	2.738	300	1.284	1.650	1.968	2.339	2.592
33	1.308	1.692	2.035	2.445	2.733	400	1.284	1.649	1.966	2.336	2.588
34	1.307	1.691	2.032	2.441	2.728	500	1.283	1.648	1.965	2.334	2.586
35	1.306	1.690	2.030	2.438	2.724	750	1.283	1.647	1.963	2.331	2.582
36	1.306	1.688	2.028	2.434	2.719	1000	1.282	1.646	1.962	2.330	2.581
37	1.305	1.687	2.026	2.431	2.715	∞	1.282	1.645	1.960	2.326	2.576

Degrees of freedom: ν

	ν_1											
ν_2	1	2	3	4	5	6	7	8	9	10	11	12
5	4.06	3.78	3.62	3.52	3.45	3.40	3.37	3.34	3.32	3.30	3.28	3.27
10	3.29	2.92	2.73	2.61	2.52	2.46	2.41	2.38	2.35	2.32	2.30	2.28
15	3.07	2.70	2.49	2.36	2.27	2.21	2.16	2.12	2.09	2.06	2.04	2.02
20	2.97	2.59	2.38	2.25	2.16	2.09	2.04	2.00	1.96	1.94	1.91	1.89
30	2.88	2.49	2.28	2.14	2.05	1.98	1.93	1.88	1.85	1.82	1.79	1.77
40	2.84	2.44	2.23	2.09	2.00	1.93	1.87	1.83	1.79	1.76	1.74	1.71
60	2.79	2.39	2.18	2.04	1.95	1.87	1.82	1.77	1.74	1.71	1.68	1.66
120	2.75	2.35	2.13	1.99	1.90	1.82	1.77	1.72	1.68	1.65	1.63	1.60
∞	2.71	2.30	2.08	1.94	1.85	1.77	1.72	1.67	1.63	1.60	1.57	1.55

Critical Values of F: A = 0.10

Critical Values of F: A = 0.05

	$ u_1$											
ν_2	1	2	3	4	5	6	7	8	9	10	11	12
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.70	4.68
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.94	2.91
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.51	2.48
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.31	2.28
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.13	2.09
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.04	2.00
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.95	1.92
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.91	1.87	1.83
∞	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.79	1.75

Critical Values of F: A = 0.01

	ν_1											
ν_2	1	2	3	4	5	6	7	8	9	10	11	12
5	16.26	13.27	12.06	11.39	10.97	10.67	10.46	10.29	10.16	10.05	9.96	9.89
10	10.04	7.56	6.55	5.99	5.64	5.39	5.20	5.06	4.94	4.85	4.77	4.71
15	8.68	6.36	5.42	4.89	4.56	4.32	4.14	4.00	3.89	3.80	3.73	3.67
20	8.10	5.85	4.94	4.43	4.10	3.87	3.70	3.56	3.46	3.37	3.29	3.23
30	7.56	5.39	4.51	4.02	3.70	3.47	3.30	3.17	3.07	2.98	2.91	2.84
40	7.31	5.18	4.31	3.83	3.51	3.29	3.12	2.99	2.89	2.80	2.73	2.66
60	7.08	4.98	4.13	3.65	3.34	3.12	2.95	2.82	2.72	2.63	2.56	2.50
120	6.85	4.79	3.95	3.48	3.17	2.96	2.79	2.66	2.56	2.47	2.40	2.34
∞	6.64	4.61	3.78	3.32	3.02	2.80	2.64	2.51	2.41	2.32	2.25	2.18

Numerator degrees of freedom: $\nu_1;$ Denominator degrees of freedom: ν_2