ECO410H: Practice Questions 5

1. This question helps refresh some of your simple regression analysis skills (i.e. a single explanatory, right-hand-side variable). Practice reading this STATA regression output for the data from Collins and Preston (1966) "Concentration and price-cost margins in food manufacturing industries." An Excel spreadsheet with the original data is posted on the course site next to this document. You may use statistical software that you are more familiar with to run the same regression as below and in class.

Source	I	SS	df		MS		Number of obs	=	32
	+-						F(1, 30)	=	20.16
Model	Ι	1391.98951	1	1391	.98951		Prob > F	=	0.0001
Residual	Ι	2071.26427	30	69.0	421424		R-squared	=	0.4019
	+-						Adj R-squared	=	0.3820
Total	Ι	3463.25378	31	111.	717864		Root MSE	=	8.3092
lerner_index		Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
cr4		.3104375	.0691	375	4.49	0.000	. 16924		4516351
_cons	Ι	6.048936	3.192	605	1.89	0.068	4712335		12.5691

regress lerner_index cr4

- 2. This question helps refresh some of your multiple regression analysis skills (i.e. more than one explanatory, right-hand-side variables). Because it presents an analysis of hypothetical cross-sectional data, it gives no information about the units of measurement or variable definitions. In all cases, the linearity assumptions underlying the analysis of these data are reasonable.
 - (a) The table below summarizes these data:

```
summarize y x1-x3
```

Variable	l Obs	Mean	Std. Dev.	Min	Max
у	100	79.81715	5.91038	64.78792	93.73011
x1	100	7.913418	1.177951	4.315967	10.97175
x2	100	7.881578	1.145646	4.396366	10.39832
x3	100	4.119784	1.01848	1.724855	6.396665

- i. How many cross-sectional units have been observed (number of rows)?
- ii. How many variables are observed (number of columns)?
- iii. Which of variables exhibits the greatest variation?
- iv. Can we tell whether these variables are correlated with each other by inspection of this table?
- (b) The matrix below summarizes the correlations among the variables:

correlate y x1 - x3 (obs=100)

	l y	x1	x2	x3
у х1	1.0000 -0.5150	1.0000		
x2	-0.7225	0.8704	1.0000	
x3	0.1726	0.0736	0.0137	1.0000

- i. Which of the variables are positively correlated with each other? Of these, which are strong correlations, moderately strong correlations, or weak correlations?
- ii. Which of the variables are negatively correlated with each other? Of these, which are strong correlations, moderately strong correlations, or weak correlations?
- (c) Suppose y is affected by x1, x2, and x3 and that a linear regression model is appropriate. Assume that all of the underlying assumptions of the linear regression model hold.

	Source	SS	df	MS		Number of o	bs =	100
-	+-					F(3, 9	6) =	47.88
	Model	2072.86204	3	690.954014		Prob > F	=	0.0000
	Residual	1385.46437	96	14.4319206		R-squared	=	0.5994
-	+-					Adj R-squar	ed =	0.5869
	Total	3458.32642	99	34.9325901		Root MSE	=	3.7989
-								
	y	Coef.	Std. H	Err. t	P> t	[95% Con:	f. I	nterval]
-	y +-	Coef.	Std. H	Err. t	P> t	[95% Con:	f. In	nterval]
-	y +- x1	Coef. 2.158004	Std. H	Err. t 	P> t 5 0.002	[95% Con: .8406867	f. Iı 	nterval] 3.475321
-	y 	Coef. 2.158004 -5.669571	Std. H .6636 .68056	Err. t 541 3.2 554 -8.3	P> t 5 0.002 3 0.000	[95% Con: .8406867 -7.020483	f. I: ; 	nterval] 3.475321 4.318659
-	y x1 x2 x3	Coef. 2.158004 -5.669571 .9049954	Std. H .6636 .68056 .37789	Err. t 641 3.2 654 -8.3 971 2.3	P> t 5 0.002 3 0.000 9 0.019	[95% Con: .8406867 -7.020483 .1548755	f. I1 	nterval] 3.475321 4.318659 1.655115
-	y x1 x2 x3 cons	Coef. 2.158004 -5.669571 .9049954 103.6967	Std. F .6636 .68056 .37789 3.0763	Err. t 541 3.2 554 -8.3 971 2.3 337 33.7	P> t 5 0.002 3 0.000 9 0.019 1 0.000	[95% Con: .8406867 -7.020483 .1548755 97.59026	f. In 	nterval] 3.475321 4.318659 1.655115 109.8032

regress y x1 x2 x3

- i. Write down the formal regression model behind the regression output above. Include the parameters to be estimated and an appropriate observation index.
- ii. What is k? (To refresh your memory, recall that the degrees of freedom (df) of a multiple regression are n k 1).
- iii. What is the R-squared of this regression? What is the interpretation?
- iv. Is the overall model statistically significant?
- v. What is the meaning of "Root MSE," which stands for root mean squared error? What does 3.7989 measure? Why is it relevant to the regression analysis?
- vi. Which of the slope estimates are "statistically significant"?
- vii. Can we reject the hypothesis that the parameter on x1 is 3?
- viii. How is it possible that the slope coefficient on x1 is positive while the coefficient of correlation between x1 and y is negative? Is there a bias?
- ix. Given that none of the underlying assumptions of the linear regression model are violated, what is the interpretation of each of the estimated slope coefficients?

- x. What is the relationship between y and x1 if the average values of the other variables are plugged into the estimated equation?
- xi. Describe what will happen to the relationship between y and x1 if the maximum values of the other variables are plugged into the estimated equation instead?
- (d) The regression below is estimated with the same data as above:

regress	у	x1	x2	
---------	---	----	----	--

Source	SS	df	MS		Number of obs	=	100
+-					F(2, 97)	=	65.74
Model	1990.09267	2 99	5.046334		Prob > F	=	0.0000
Residual	1468.23375	97 15	.1364304		R-squared	=	0.5754
+-					Adj R-squared	=	0.5667
Total	3458.32642	99 34	.9325901		Root MSE	=	3.8906
y	Coef.	Std. Err	. t	P> t	[95% Conf.	In	terval]
x1	2.357277	.6742826	3.50	0.001	1.019012	3	.695541
x2	-5.836894	.6932961	-8.42	0.000	-7.212895	-4	.460894
_cons	107.167	2.779132	38.56	0.000	101.6512	1	12.6828

- i. Write down the formal regression model behind the regression output above. Include the parameters to be estimated and an appropriate observation index.
- ii. Suppose that x3 does have an effect on y but is not observed in the available data. Where is x3 in the formal regression model you wrote in the previous part?
- iii. Do we see evidence of "endogeneity bias"/"omitted variable bias"? Why or why not?
- (e) The regression below is estimated with the same data as above:

regress y x1 x3

Source	SS	df	MS		Number of obs	=	100
+-					F(2, 97)	=	21.77
Model	1071.284	2	535.642		Prob > F	=	0.0000
Residual	2387.04242	97 24.	6086847		R-squared	=	0.3098
+-					Adj R-squared	=	0.2955
Total	3458.32642	99 34.9	9325901		Root MSE	=	4.9607
y	Coef.	Std. Err.	t	P> t	[95% Conf.	In	terval]
x1	-2.662194	.4244046	-6.27	0.000	-3.504519	-1	.819868
x3	1.228192	.4908569	2.50	0.014	.2539773	2	.202407
_cons	95.82432	3.822908	25.07	0.000	88.2369	10	03.4117

i. Write down the formal regression model behind the regression output above. Include the parameters to be estimated and an appropriate observation index.

- ii. Suppose that x2 does have an effect on y but is not observed in the available data. Where is x2 in the formal regression model you wrote in the previous part?
- iii. Do we see evidence of "endogeneity bias"/"omitted variable bias"? Why or why not?
- iv. Explain the direction of any observed biases.
- v. How would you expect the regression results to change if x1 and x2 were less strongly positively correlated?
- vi. How would you expect the regression results to change if x1 and x2 were not correlated?
- 3. Consider panel (longitudinal) data for 8 firms (Firms A, B, C, D, E, F, G and H) for 10 years (1990 1999). It includes three quantitative variables. For example these could measure capital, employment, profits, mark-ups, advertising, sales, prices, investment, etc.

Max	Min	Std. Dev.	Mean	Obs	Variable
2745.814	2108.965	116.8473	2437.859	80	 у
109.8849	80.58432	6.467301	96.39869	80	var1
242.0598	173.2735	14.06065	203.7253	80	var2
1	0	.3328055	.125	80	firm_A
1	0	.3328055	.125	80	firm_B
1	0	. 3328055	.125	80	firm_C
1	0	.3328055	.125	80	firm_D
1	0	.3328055	.125	80	firm_E
1	0	.3328055	.125	80	firm_F
1	0	.3328055	.125	80	firm_G
1	0	. 3328055	.125	80	+ firm_H
1	0	.3018928	.1	80	yr_1990
1	0	.3018928	.1	80	yr_1991
1	0	.3018928	.1	80	yr_1992
1	0	.3018928	.1	80	yr_1993
1	0	.3018928	.1	 80	yr_1994
1	0	.3018928	.1	80	yr_1995
1	0	.3018928	.1	80	yr_1996
1	0	.3018928	.1	80	yr_1997
1	0	.3018928	.1	80	yr_1998
1	0	.3018928	.1	80	+ vr_1999

(a) summarize y var1 var2 firm_A - firm_H yr_1990 - yr_1999

- i. Which are dummy variables?
- ii. What values can the variable firm_A take? How many observations in the data will there be of each value?
- iii. If you created a new variable new_var = firm_A + firm_B + firm_C + firm_D + firm_E + firm_F + firm_G + firm_H what values would it take? How many observations in the data will there be of each value?

- iv. What values can the variable yr_1993 take? How many observations in the data will there be of each value?
- (b) The regression below includes a full set of firm and year dummies.

regress y var1 var2 firm_B - firm_H yr_1991 - yr_1999

Source	Ι	SS	df		MS		Number of obs	s =	80
	+-						F(18, 61)) =	43.32
Model	Ι	1000346.55	18	5557	4.8082		Prob > F	=	0.0000
Residual	I	78262.584	61	1282	.99318		R-squared	=	0.9274
	+-						Adj R-square	d =	0.9060
Total	Ι	1078609.13	79	1365	3.2801		Root MSE	=	35.819
у		Coef.	Std.	Err.	t 	P> t	[95% Conf	. In	terval]
var1	I	1.831333	.8765	363	2.09	0.041	.0785905	3	.584076
var2	Ι	10.33615	.4141	192	24.96	0.000	9.508065	1	1.16423
firm_B	Ι	79.5159	16.78	651	4.74	0.000	45.94919	1	13.0826
firm_C	Ι	-159.9315	18.30	179	-8.74	0.000	-196.5282	-1	23.3348
firm_D	Ι	-25.38237	16.03	622	-1.58	0.119	-57.44876	6	.684027
firm_E	Ι	144.0202	19.1	368	7.53	0.000	105.7538	1	82.2866
firm_F	Ι	95.71041	16.70	022	5.73	0.000	62.31625	1	29.1046
firm_G	Ι	28.27754	16.33	934	1.73	0.089	-4.394986	6	0.95006
firm_H	Ι	62.22079	16.57	106	3.75	0.000	29.08491	9	5.35667
yr_1991	Ι	12.76498	18.05	589	0.71	0.482	-23.34	4	8.86996
yr_1992	Ι	.8356397	18.2	818	0.05	0.964	-35.72107	3	7.39235
yr_1993	Ι	10.11642	18.46	658	0.55	0.586	-26.80978	4	7.04262
yr_1994	Ι	-6.959535	18.76	467	-0.37	0.712	-44.48181	3	0.56274
yr_1995	Ι	9.810427	18.35	784	0.53	0.595	-26.89833	4	6.51919
yr_1996	Ι	11.45358	18.06	902	0.63	0.529	-24.67766	4	7.58482
yr_1997	Ι	23.44013	17.95	578	1.31	0.197	-12.46468	5	9.34494
yr_1998	Ι	13.14311	18.09	421	0.73	0.470	-23.03849	4	9.32471
yr_1999	Ι	15.98167	18.09	208	0.88	0.381	-20.19568	5	2.15902
_cons	Ι	118.4732	114.8	936	1.03	0.307	-111.2707	3	48.2171

- i. Write down the formal regression model behind the regression output above. Include the parameters to be estimated and an appropriate observation index.
- ii. Write down an alternate formal regression model that shows the inclusion of a simple time trend. Compare and contrast this with the previous specification.
- iii. What is the omitted category for the firm dummies?
- iv. What is the interpretation of the coefficient on the firm_B variable?
- v. What is the interpretation of the coefficient on the firm_C variable?
- vi. What is the relationship for Firm A in 1990 according to this regression?
- vii. What is the relationship for Firm A in 1996 according to this regression?
- viii. What is the relationship for Firm B in 1996 according to this regression?
- ix. Does it look like it is important to control for differences across firms? Across years?

x. What does the statistically insignificance of the firm_G fixed effect mean?

(c) The regression below includes firm fixed effects, but excludes year fixed effects.

Source | SS df MS Number of obs = 80 _____ F(9, 70) = 92.72 Prob > F 0.0000 Model | 995133.62 9 110570.402 = Residual | 83475.512 70 1192.50731 R-squared = 0.9226 Adj R-squared = 0.9127 79 13653.2801 Total | 1078609.13 Root MSE 34.533 _____ Coef. Std. Err. t P>|t| [95% Conf. Interval] уl _____ ----+ -----1.458586 .7582898 0.058 -.053775 2.970947 var1 | 1.92 10.25862 .3677995 27.89 0.000 9.525072 var2 | 10.99218 firm_B | 80.6616 16.09547 5.01 0.000 48.5602 112.763 firm_C | -160.5668 17.41796 -9.22 0.000 -195.3058 -125.8278 firm_D | -25.03298 15.45627 -1.62 -55.85955 5.793584 0.110 firm_E | 145.8896 18.13192 8.05 0.000 109.7267 182.0526 firm_F | 0.000 97.04291 16.01392 6.06 65.10416 128.9817 firm_G | 29.58329 15.69643 1.88 0.064 -1.7222560.88882 firm_H | 63.28781 15.90963 3.98 0.000 31.55706 95.01856 cons 178.4531 97.79112 1.82 0.072 -16.58509373.4914 _____

regress y var1 var2 firm_B - firm_H

i. Given these results, is it reasonable to drop the year fixed effects?

- ii. Can you compare the R-squared statistic across these two specifications?
- iii. How would you modify the specification if you thought that the impact of var1 on y depends on the level of var2? Write down the formal regression model. What would be the interpretation of the coefficient on var1 if you implemented this?
- iv. If instead, you thought that the impact of var1 and var2 on y depend on the firm, how would you modify the specification? Write down the formal regression model.
- (d) The regression below excludes both the firm fixed effects and the year fixed effects.

```
regress y var1 var2
```

Source	SS	df	MS		Number of obs	=	80
+-					F(2, 77)	=	82.16
Model	734442.056	2	367221.028		Prob > F	=	0.0000
Residual	344167.076	77	4469.70229		R-squared	=	0.6809
+-					Adj R-squared	=	0.6726
Total	1078609.13	79	13653.2801		Root MSE	=	66.856
уl	Coef.	Std. I	Err. t	P> t	[95% Conf.	Int	cerval
+-	7 /1/275	1 2210		0 000	4 001051		947400
Vall	1.414375	1.2213	905 0.07	0.000	4.901201	9.	.041499
var2	7.086002	.56202	243 12.61	0.000	5.966869	8.	205136

- i. Why is it a terrible idea to drop the firm fixed effects?
- ii. Explain the biases apparent in the remaining parameter estimates.
- 4. TRUE/FALSE/EXPLAIN Consider data measuring the HHI and the Lerner Index for a cross section of 30 different industries characterized by oligopoly and consider the following STATA summary of that data and OLS regression. Antitrust enforcers should interpret these results to mean that a merger between two firms that increases the HHI from 0.5 to 0.8 will on average lead to an increase in the Lerner Index from 0.56 to 0.75.

Variable	Obs	Mea	n Std.	Dev.	Min	Ma	ax
HHI Lerner_index	30 30	.473551 .547041	2 .2386 4 .2289	6455 .10 9869 .03)53862 370163	.886214 .968414	 45 48
regress Lerner	_index HHI						
Source	SS	df	MS		Number	of obs	= 30
Model	.654329277	1.	654329277		Prob >	28) F	= 21.15 = 0.0001
Residual	.866285143	28 .	030938755		R-squa:	red	= 0.4303
Total	1.52061442	29	.05243498		Adj R- Root M	squared SE	= 0.4100 = .17589
Lerner_index	Coef.	Std. Er	r. t	P> t	[95]	% Conf.	Interval]
HHI _cons	.6294278 .2489751	. 136867	1 4.60 2 3.44	0 0.000 4 0.002	.349	90682 08073	.9097874 .397143

summarize HHI Lerner_index

5. TRUE/FALSE/EXPLAIN Consider two unrelated goods: Good 1 and Good 2. For each good suppose you collect cross sectional data (different geographic areas) on price and quantity that is summarized in the following scatter diagrams and OLS regression lines. We *cannot* infer that the demand for Good 2 is less elastic than the demand for Good 1.

6. Suppose you attempted to estimate demand for satellite TV using 200 observations of different local areas (cross-sectional data). You specified the following linear functional form:

$$Q_i = \alpha + \beta p_sat_i + \delta pop_i + \phi p_cab_i + \gamma ave_inc_i + \lambda urban_i + \varepsilon_i$$

where Q is the number of households in local area subscribed to satellite TV in 100's, *pop* is the population of local area in 1,000's of households, p_cab is the average monthly price of cable in local area in dollars, p_sat is the average monthly price of satellite TV in local area in dollars, ave_inc is the average income in the local area in 1,000's of dollars, and urban is a dummy variable = 1 if local area is urban and = 0 otherwise. Here are descriptive statistics and the regression results (from STATA software):

Source	Ι	SS	df		MS		Number of obs	=	200
	+-						F(5, 194)	=	54.93
Model	Ι	104613.999	5	209	22.7999		Prob > F	=	0.0000
Residual	Ι	73896.7253	194	380	.910955		R-squared	=	0.5860
	+-						Adj R-squared	=	0.5754
Total	Ι	178510.725	199	897	.038817		Root MSE	=	19.517
Q	Ι	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
	+-								
p_sat	Ι	-1.964699	.4947	7822	-3.97	0.000	-2.940542		9888566
p_cab	Ι	.9463366	.3392	2216	2.79	0.006	.2773008	1	.615372
pop	Ι	.3653705	.0249	9318	14.65	0.000	.3161984	•	4145426
ave_inc	Ι	1.150198	.4675	5301	2.46	0.015	.2281035	2	.072292
urban	Ι	22.34265	3.094	1 329	7.22	0.000	16.23981		28.4455
_cons	Ι	190.472	35.88	3504	5.31	0.000	119.6971	2	61.2469

regress Q p_sat p_cab pop ave_inc urban

summarize Q p_sat p_cab pop ave_inc urban

Variable	Obs	Mean	Std. Dev.	Min	Max
Ω Q p sat	200 200	253.7439 40.04437	29.95061 2.830241	150.584 32.44048	323.4377 47.93978
p_cab	200	50.22235	4.177157	39.61116	61.76898
pop ave_inc	200 200	98.84983 45.25052	56.10408 2.982745	.5190096 37.4399	199.8317 54.58408
urban	200	.28	.4501256	0	1

- (a) For a particular local area, determine the price and quantity for satellite TV if competition were perfect and cost of an additional satellite subscriber were \$10 per month. This particular local area has a population of 100,000 households, an average cable price of \$50 per month, an average income of \$40,000, and is not an urban area. Make your calculation based on the estimation results rounding the parameter estimates to the nearest tenth (0.1). Indicate the units of price and quantity with your answer.
- (b) Calculate the loss of consumer surplus per month (in \$) in the local area described in part (a) if the price of satellite TV were set at \$40 per month rather than the perfectly

competitive price.

- (c) Calculate the elasticity of demand at a price of \$60 and indicate whether demand is elastic or inelastic.
- (d) When estimating the demand parameters with OLS, which variables are endogenous in the above specification of demand? For each variable you identify as endogenous, explain why it will be endogenous.
- 7. Consider a peer-reviewed academic journal article "Selling a cheaper mousetrap: Wal-Mart's effect on retail prices" published in the *Journal of Urban Economics* in 2005 by Emek Basker. Here is the abstract from Basker (2005):

I quantify the price effect of a low-cost entrant on retail prices using a casestudy approach. I consider the effect of Wal-Mart entry on average city-level prices of various consumer goods by exploiting variation in the timing of store entry. The analysis combines two unique data sets, one containing opening dates of all US Wal-Mart stores and the other containing average quarterly retail prices of several narrowly-defined commonly-purchased goods over the period 1982-2002. I focus on 10 specific items likely to be sold at Wal-Mart stores and analyze their price dynamics in 165 US cities before and after Wal-Mart entry. An instrumental-variables specification corrects for measurement error in Wal-Mart entry dates. I find robust price effects for several products, including shampoo, toothpaste, and laundry detergent; magnitudes vary by product and specification, but generally range from 1.5-3% in the short run to four times as much in the long run.

As indicated by the abstract, Basker (2005) seeks to estimate how much retail prices change in local markets (cites) after Wal-Mart enters (i.e. opens a store). For each quarter from 1982 - 2002 the data tracks prices of 10 specific products such as 11oz bottle of Johnson's Baby shampoo and 100-tablet bottle of Bayer brand aspirin for 165 different cities in the U.S. During the sample period, Wal-Mart entered many of those cities (25 already had a Wal-Mart at the start of the sample period).

- (a) To address the research question in a simplistic way, describe the most basic OLS (Ordinary Least Squares) estimation approach and explain why it would suffer from an endogeneity bias. Make sure your answer includes equations showing the key parts of your empirical model (including observation indices and parameters) with any variables that you have defined. Some, but not all, of the variables you will need are: AVE_P1_{it} the average price of product 1 in market *i* in quarter *t*, AVE_P2_{it} the average price of product 2 in market *i* in quarter *t*, ... AVE_P1_{it} .
- (b) What kind of data is described: time series, cross-sectional or panel data? Could fixed effects for each city and fixed effects for each quarter be added to your empirical specification in part (a)? Explain.
- (c) The OLS regression model Basker (2005) presents on page 211 is a version of the solution to part (a) – please review the solution to part (a) before going on – but instead of just one RHS (right-hand side) variable, the regression also includes city dummies and quarter

dummies. Should the inclusion of these variables *help* address the endogeneity issue with the Wal-Mart dummy variable?

8. Write an empirical model of demand for a homogeneous good that would capture the following.

A. It has a constant elasticity functional form.B. It will be estimated using panel data with variation over time and across markets that contain quantities, prices and some demand shifters.C. National advertising is an important demand shifter but it is unobserved.However, you know that it only varies over time and not across markets.D. The elasticity of demand may depend on the age of the head of household.

Explain how your specification addresses each requirement: A, B, C and D.

9. Consider a peer-reviewed academic journal article "The Effect of File Sharing on Record Sales: An Empirical Analysis" published in the *Journal of Political Economy* in 2007 by Felix Oberholzer-Gee and Koleman Strumpf. Here is the abstract from Oberholzer-Gee and Strumpf (2007):

> For industries ranging from software to pharmaceuticals and entertainment, there is an intense debate about the appropriate level of protection for intellectual property. The Internet provides a natural crucible to assess the implications of reduced protection because it drastically lowers the cost of copying information. In this paper, we analyze whether file sharing has reduced the legal sales of music. While this question is receiving considerable attention in academia, industry, and Congress, we are the first to study the phenomenon employing data on actual downloads of music files. We match an extensive sample of downloads to U.S. sales data for a large number of albums. To establish causality, we instrument for downloads using data on international school holidays. Downloads have an effect on sales that is statistically indistinguishable from zero. Our estimates are inconsistent with claims that file sharing is the primary reason for the decline in music sales during our study period.

Further, consider this excerpt from page 12 of Oberholzer-Gee and Strumpf (2007):

We observe sales and downloads at the album-week level for 17 weeks. These panel data allow us to estimate a model with album fixed effects,

$$S_{it} = X_{it}\beta + \gamma D_{it} + \omega_s t^s + \nu_i + \mu_{it}$$

where *i* indicates the album, *t* denotes the time in weeks, S_{it} is observed sales, X_{it} is a vector of time-varying album characteristics that includes a measure of the title's popularity in the United States. D_{it} is the number of downloads for all songs on an album, and ω_s controls for time trends (a flexible polynomial or week fixed effects).

(a) What is the primary question the paper seeks to answer? Which parameter in the above equation is directly relevant answering the question?

- (b) What is ν_i ? Why is it included in the equation?
- (c) Oberholzer-Gee and Strumpf (2007) address the previous question on pages 12 14: The key concern in our empirical work is that the number of downloads is likely to be correlated with unobserved album-level heterogeneity. As the descriptive statistics suggest, the popularity of an album is likely to drive both file sharing and sales, implying that the parameter of interest γ will be estimated with a positive bias. The album fixed effects ν_i control for some aspects of popularity, but only imperfectly so because the popularity of many releases in our sample changes quite dramatically during the study period.

Hence, do they think that the inclusion of fixed effects will be a sufficient solution to the endogeneity problem?