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March 2, 2018, 9:10 – 11:00 am 

(1) (a) At the University of Waterloo and among employees making at least $100,000, male professors have 2016 
salaries that are on average $12,748 higher than female professors. 

 
(b) salary-hat = 162.485 – 12.748*Female 

 
(c) On average, the salaries of male professors are approximately 8.4% higher than female professors. 

 
(2) (a) 𝐻଴: ሺ𝜇ெ − 𝜇ிሻ = 0 versus 𝐻ଵ: ሺ𝜇ெ − 𝜇ிሻ ≠ 0. (Note: given the negative test statistic, it must be male minus 
female.) Given 𝑡 = −1.38 and 𝜈 = 826, we consult the Student t table, which for either 750 or 1,000 degrees of 
freedom indicates that that test statistic is between −𝑡଴.ଵ଴ and −𝑡଴.଴ହ. Given that the reported P-value is 0.17, the 
authors must be using a two-tailed test, which implies a P-value between 0.10 and 0.20 from the table. 

 
(b) Given the reported P-value of 0.02, the difference in marriage rates is statistically significant a 5% significance level, 
but not a 1% sig. level. The difference of 6 percentage points – 81% of male lawyers are married whereas only 75% of 
female lawyers are – is big enough to be economically significant. Hence, the difference is significant overall. 

 
(c) Given the reported P-value of 0.59, the difference in tenure is not statistically significant at even a 10% significance 
level. The difference of 0.08 years – 5.18 years for male lawyers versus 5.26 for female lawyers – is too small to be 
economically significant.  
 

(d) ሺ𝑋തଵ − 𝑋തଶሻ ± 𝑡ఈ ଶ⁄ ට௦భమ௡భ + ௦మమ௡మ   w/ 𝜈 = ቆೞభమ೙భାೞమమ೙మቇమభ೙భషభ൬ೞభమ೙భ൰మା భ೙మషభቆೞమమ೙మቇమ = ൬భ.మరమలఴర ାబ.వభమరరభ ൰మభలఴరషభ൬భ.మరమలఴర ൰మା భరరభషభ൬బ.వభమరరభ ൰మ = ଴.଴଴଴଴ଵ଻଴ଶଶ଴.଴଴଴଴଴଴଴ଵହ = 1104.4  

ሺ1.22 − 0.82ሻ ± 1.962ටଵ.ଶସమ଺଼ସ + ଴.ଽଵమସସଵ   0.40 ± 1.962√0.004125731  0.40 ± 1.962 ∗ 0.064   0.40 ± 0.126   

LCL = 0.274 and UCL = 0.526 

We are 95% confident that male lawyers on average have from 0.3 to 0.5 more children than female lawyers.   

 
(e) 𝐻଴: 𝑝 = 0.2 versus 𝐻ଵ: 𝑝 > 0.2. Must use a rejection region approach. We can choose any reasonable significance 

level. For 𝛼 = 0.05, we will need 𝑧 > 1.645, where 𝑧 = ௉෠ି௣బට೛బሺభష೛బሻ೙ . Plugging in and solving for the critical value 

yields: 1.645 = ௉෠೎.ೡ.ି଴.ଶටబ.మሺభషబ.మሻరరభ  where 𝑃෠௖.௩. = 0.231. Hence, we need a sample proportion of at least 23.1% to prove that more 

than 20% have the highest aspirations at a 5% significance level. 



 

(3) (𝑃෠ଶ − 𝑃෠ଵ) ± 𝑧ఈ ଶ⁄  ට௉෠మ(ଵି௉෠మ)௡మ + ௉෠భ(ଵି௉෠భ)௡భ = (0.74 − 0.66) ± 1.645ට଴.଻ସ(ଵି଴.଻ସ)ଽ଴ + ଴.଺଺(ଵି଴.଺଺)ଽ଴  0.08 ± 1.645 ∗ 0.06805  0.08 ± 0.112  

LCL = -0.03 and UCL = 0.19 

We are 90% confident that the percent of people agreeing that autonomous vehicles (AVs) should sacrifice the life of the 
driver to save 20 lives is somewhere between 3 percentage points lower to 19 percentage points higher compared to 
the percent agreeing that AVs should sacrifice the driver to save only 5 lives. This is an exceptionally broad interval: we 
are not even confident that more people would agree to the sacrifice to save 20 lives than 5 lives. Despite the positive 
point estimate of the difference – the proportion agreeing is 8 percentage points higher – the margin of error is huge at 
11 percentage points. [Note: It would also be correct to give a causal interpretation here. The number of lives saved was 
randomly assigned and, hence, any difference in the proportion agreeing would be caused by that. However, this is a bit 
of grey area because the CI spans both a positive and negative range. Hence, we are not sure if there is any effect at all 
or it is just sampling error. This is why the suggested interpretation is not stronger on causality.] 

 
(4) (a) 𝐻଴: 𝜇 = 50 versus 𝐻ଵ: 𝜇 > 50. The relevant test statistic is 𝑡 = ௑തିఓబೞ√೙ = ହଵ.ଶଶିହ଴మర.మభ√యవర,భభభ = ଵ.ଶଶ଴.଴ଷ଼ହ଺ସଷ଴ହ = 31.6 with 𝜈 =𝑛 − 1 = 394,111 − 1 = 394,110. The P-value is 0. Hence, we definitely have sufficient evidence to reject the notion 
that people pay no attention to interest rates when deciding how to allocate money across repayment of credit cards 
with varying APRs. However, many pay little attention to interest rates. The only reason our result is statistically 
significant is because the sample size is so huge, which makes being even a tiny bit above 50% statistically higher than 
50%: the standard error of the sample mean is tiny. This is an example where a result is not economically significant (the 
difference between 51% and 50% is negligible) but it is statistically significant because of the huge sample size. 
 

(b) The formula and approach given in the question are wrong because they apply to independent samples and this case 
is clearly about paired data. Each person has their own credit card situation with respect to APRs, minimum payments 
due, balances owed, etc. Each person’s actual payment will not be independent of the optimal payment for her/him to 
allocate to the high APR card that month. At a minimum, people in substantial debt will have both higher actual and 
optimal payments. In fact, the standard deviation of the difference is much smaller than the standard deviation of either 
the actual or optimal payments, which means there is a strong positive correlation. Instead, we should use a paired data 
approach: 𝑋തௗ ± 𝑡ఈ ଶ⁄ ௦೏√௡  with 𝜈 = 𝑛 − 1, which plugging in values will be 117.54 ± 1.960 ସଶଶ.ଵସ√ଷଽସ,ଵଵଵ for a 95% confidence 

interval estimate of the difference (noting that the very large number of degrees of freedom allows us to use 1.960). 
 

(5) 𝐻଴: (𝑝் − 𝑝஼) = 0 versus 𝐻ଵ: (𝑝் − 𝑝஼) > 0, where 𝑇 stands for treatment group (got the policy intervention of a 
notification letter) and 𝐶 stands for control group (did not get the policy intervention). A Type I error would be 
concluding that the notification letters are effective in increasing the fraction of people taking vitamin D supplements 
when, in fact, the letters are useless (a waste of taxpayer money and paper).  A Type II error would be not having 
sufficient evidence to prove that the letters are effective even though they really are boosting the rate at which people 
take vitamin D supplements. 
 

(6) For each of the 160 countries we need to compute the growth rates for two decades (from 1996 – 2006 and from 
2006 – 16), which means 320 (=160*2) regressions must be run on the raw data. The y variable is the natural logarithm 
of annual real GDP per capita, the x variable is the year, and the sample size is 11 (as it includes both endpoints for each 
decade: e.g. 1996 and 2006), which gives ln(GDP per capita) = a + b*year for n = 11. We need the OLS slope coefficient, 
b, which is a measure of the average annual growth rate of GDP per capita for that country in that decade, which will 



populate the variables in the data on which the regressions reported in Table 1 are run. (It makes no difference whether 
we take b or b*100, where the latter corresponds to the percentage growth rate.) 


