
ECO220Y, Term Test #3: SOLUTIONS 
February 10, 2017, 9:10 – 11:00 am 

 
(1) (a) Given that the question asks for the size of an effect, we should us a confidence interval estimation approach 
for inference, not a hypothesis testing approach. Further, we must recognize that these are paired data. തܺௗ ± ఈݐ ଶ⁄ ௦೏√௡   with degrees of freedom ߥ = ݊ − ௗݏ 1 = ଶܺ]ܦܵ − ଵܺ] = ඥܸ[ܺଶ] + ܸ[ ଵܺ] − 2 ∗ ݎ ∗ ]ܦܵ ଵܺ] ∗ =[ଶܺ]ܦܵ ඥ17.72117ଶ + 15.29706ଶ − 2 ∗ 0.6387 ∗ 17.72117 ∗ 15.29706 = 14.2 (60.8 −  53.04) ± 2.064 ଵସ.ଶ଴ସ√ଶହ    with degrees of freedom ߥ = 25 − 1 = 24 7.76 ± 2.064 ∗ 2.84  7.76 ± ܮܥܮ  5.86 = 1.9; ܮܥܷ = 13.6  We are 95% confident that marks on the test, which are out of 100 points, are between 1.9 
points and 13.6 points higher after the one-day course. [Note this is quite wide: we’re talking about getting anywhere 
between less than one additional multiple-choice question right to getting almost 7 additional questions right.] 

(b) You should expect this suggestion to result in an unacceptably wide confidence interval. Even with paired data in 
part (a), which controls for differences in pre-existing financial literacy across people, the CI is wide. With 
independent samples the standard error would be much bigger, which can be explained conceptually or 
mathematically. Conceptually: with independent samples we do not control for variation in pre-existing financial 
literacy, which adds noise to the analysis. Mathematically: with independent samples the numerator would be much 
larger: ܵܦ[ܺଶ − ଵܺ] = ඥܸ[ܺଶ] + ܸ[ ଵܺ] if the correlation is zero (we do not subtract the last term). 

 

(2) (a) The OLS intercept of -$74,486 has no interpretation because year equal to 0 is far outside the range of the 
data and negative real GDP per capita is not possible. The OLS slope means that in the 1990’s in Bangladesh, real GDP 
on average rose by about $38.10 per capita, in 2011 USDs, per year. [NOTE: An interpretation requires clearly 
specifying the units: failing to specify that the number 38.10 is measured in dollars per capita is a serious omission.] 

(b) The R-squared measures how well the OLS line fits the data: the closer it is to 1 the better the fit and the closer it 
is to 0 the worse. The very high R-squared value for Bangladesh of 0.977, means that GDP growth measured in levels 
is very STEADY: about 98 percent of the variation in the annual level GDP per capita during that decade is simply 
explained by the year. In contrast, in Kenya, GDP growth is much less STEADY: year is not as strong of a predictor of 
GDP and the R-squared value is much lower, 0.556.  [Looking at all eight graphs: The very high R-squared values for 
Bangladesh, which are all greater than 0.97, means that GDP growth, whether measured in levels or as an annual 
rate, is very steady. In contrast, in Kenya, GDP growth is much more variable: year is not as strong of a predictor of 
GDP and the R-squared values are much lower, ranging from 0.56 to 0.88.] 

(c) Neither shows substantial violations of the linearity assumption. While one applies the natural log to the y-
variable (GDP per capita) and the other does not, and we usually associate using logs with straightening scatter plots, 
they are both fairly straight. At least for Kenya in the 2000’s, the logs simply offer the convenience of the 
interpretation of the OLS coefficient as an estimate of the average annual growth rate, which allows easy comparison 
across countries with very different GDP per capita levels (i.e. poor versus rich countries). [In fact, none of the eight 
show substantial violations of the linearity assumption. Hence for these decades and countries, logs are just a 
convenience.] 



(d) Given that two points determine a line, the OLS line is just the same as an algebraic line. We need to use the OLS 
results in Graphs #3, #4, #7 and #8. For Bangladesh the estimated average annual growth rate from 1990 to 2000 is 
2.5% and from 2000 to 2010 is 4.3%. For Kenya the estimated average annual growth rate from 1990 to 2000 is -0.7% 
and from 2000 to 2010 is 1.7%. Hence, the slope ݉ = ୼௬୼௫ = (ସ.ଷିଵ.଻)(ଶ.ହିି଴.଻) = ଶ.଺ଷ.ଶ ≈ 0.8 and the line can be obtained from 

the point-slope formula (ݕ − (ଵݕ = ݔ)݉ − ݕ) ଵ) to beݔ − 4.3) = ݔ)0.8 − 2.5), which we can now write as ݕො =2.3 +  is the growth rate (%) for 1990 to 2000. (Note: If ݔ is the growth rate (%) for 2000 to 2010 and ݕ where ,ݔ0.8
one measures growth in terms of rates, instead of as percentages, then the line would be ݕො = 0.023 +  (.ݔ0.8

 

(3) ܲ − ݁ݑ݈ܽݒ = ܲ(ܼ < −3.59) + ܲ(ܼ > 3.59) ≈ 0 There is a large difference in the percent called back, with 9.1% 
of females being called back compared to 7.2% of males: a huge 1.9 percentage point difference. Alternatively, we 
can say that the callback rate for females is 26 percent higher (100*(9.1-7.2)/7.2). These results are clearly 
economically significant: a big difference that policy makers (and applicants!) would care about. These results are 
also statistically significant: the P-value is essentially 0, which means we can decisively reject the null hypothesis that 
there is no difference at even the most stringent significance levels: there is overwhelming evidence in favor of the 
conclusion that there is a difference in the callback rates for male and female applicants. Finally, we can infer that the 
candidate’s sex alone, and not other factors, is causing a higher callback rate for female candidates. As clearly stated 
in the excerpt of the paper, sex (along with all other applicants’ characteristics) was randomly assigned and hence is 
exogenous. Hence there can be no lurking/confounding/omitted/unobserved variables. [NOTE: Assessing economic 
significance requires looking at the point estimate. Some thought that the solution I provided was inappropriate for 
the questions asked and also computed a CI. That is not only unnecessary – the answer guide clearly indicates that 
you were only supposed to compute the P-value and then interpret the results with words – but also, including a CI 
weakens the answer by distracting your interpretation with tangential analysis that does not directly address any of 
the questions asked. CI estimates get at the precision of the estimates whereas economic significance is about the 
size of the estimate. How precisely it is estimated is a separate question that goes towards statistical significance.] 

 

:଴ܪ  (4) ݌ = :ଵܪ 0.20 ݌ < 0.20 

Find the rejection region: ܲ(ܼ < (ఈݖ− = ܼ)ܲ  ;ߙ < −1.645) = 0.05 

ܼ = ෠ܲ − ଴(1݌଴ට݌ − ݊(଴݌ ⇒ −1.645 = ෠ܲ − 0.20ට0.20(1 − 0.20)100 = ෠ܲ − 0.200.04 ⇒ ܿ. .ݒ
= 0.1342 

The unstandardized rejection region is (−∞, 0.1342) or (0, 0.1342). 
In a random sample of 100 borrowers, we need less than 13.42% in 
default to prove that fewer than 1/5 of the population would default at 
a 5% sig. level. Power is the probability of being in the rejection region 
(i.e. correctly rejecting the false null and proving the true research 
hypothesis). ܲݎ݁ݓ݋ = ܲ൫ ෠ܲ < 0.1342 ห ݌ = 0.15, ݊ = 100) =? 

ܲ൫ ෠ܲ < 0.1342൯ = ܲ ܼۇۉ < 0.1342 − 0.15ට0.15(1 − 0.15)100 ۊی = ܲ ൬ܼ < −0.01580.0357 ൰
= ܲ(ܼ < −0.44) = 0.5 − 0.17 = 0.33 
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[NOTE: The question did not ask for an interpretation. Given that it could have, a full interpretation is provided next.] 
Hence, the chance that the researcher proves the true research hypothesis that default rates are below 20% is only 
about one-third with the planned sample size of 100 borrowers. This is low power (i.e. a pretty high chance of a Type 
II error). [Note: Some students may find and graph the probability of making a Type II error (failing to reject the false 
null hypothesis): ߚ = 0.67. Power is the complement of making a Type II error: ݎ݁ݓ݋݌ =  1 –  Most likely the [.ߚ 
researcher would end up with an inconclusive result: insufficient proof for the research hypothesis. (The obvious 
remedy for this problem is to use a larger sample size: e.g. track 300 such loans instead of only 100.) 

 

(5) (a) We should not expect anything in particular to happen to “(2.632)” because that is the standard deviation 
 of the variable recording the number of visits for each person in the control group (ܺ஼) after the lottery: there is (௑಴ݏ)
no reason to expect that a larger sample would have more or less variability (i.e. if we imagine the histogram, there 
would be thinner bins, but the spread and shape should be about the same). In contrast, we should expect that 
“(0.116)” becomes much smaller because that is a standard error (ݏ௑ത಴ି௑ത೅) of the difference in the sample means 
( തܺ஼ − ത்ܺ) and as the sample sizes go up, sampling error goes down. 

(b) ෠்ܲ௥௘௔௧௠௘௡௧(௡௢ ௩௜௦௜௧௦) = 0.292 (= 0.225 + 0.067) 

(c) ത்ܺ௥௘௔௧௠௘௡௧(௧௪௢ା) = 3.864 (= 3.484 + 0.380) 

(d)  ܪ଴: ்ߤ) − (஼ߤ = :ଵܪ 0 ்ߤ) − (஼ߤ ≠ ݐ 0 = (ഥܺܶ−ഥܺܥ)−Δ0ܵܧ(ഥܺܶ−ഥܺܥ) = ଴.ଷ଼଴଴.଺ସ଼ = 0.59  ܲ − ݁ݑ݈ܽݒ = ݐ)ܲ < −0.59) + ݐ)ܲ > 0.59) = 2 ∗ (0.5 − 0.2224) ≈ 0.56 (Note: We can use the Normal table 
because the degrees of freedom will be very large.)      

This result is not statistically significant at any of the conventional significance levels: it is not even close to meeting 
the low burden of proof of a 10% significance level. 


