VIII. Macro-economic changes in the early-modern European economy

C. Price Movements during the Price Revolution and 'General Crisis' eras revised 26 January 2012

Week no., Wednesday Dates, and Suggested Readings	Lect- ure No.	LECTURE TOPICS to be covered
15. 25 January 2012 Brady, ch. 5 (Munro); ch. 4 (Yun); Davis, chs. 6, 9, 12; Cipolla, ch. 10 (pp. 234-59); de Vries, ch. 1; Musgrave, chs. 1-3; ET 6, 7	16	 THE COURSE OF PRICES AND ECONOMIC TRENDS: The Debates About the 16th Century 'Price Revolution' era (1520 - 1640) and the 17th-Century 'General Crisis' era (1640 - 1740). Hamilton's 'Profit Inflation' Thesis; and changes in factor costs with inflation and deflation.

Price Revolution: Introduction

- (1) Historical significance:
- while inflationary & deflationary cycles are a constant theme of European economic history, from the 12th century to present day, the Price Revolution era is unique:
- longest sustained period of inflation ever recorded,
- importance: changes in both the price level (CPI) and changes in relative prices often had very major impacts on economic changes and economic growth:
- especially in the agricultural and industrial sectors: in early modern Europe (from ca. 1500 to 1750: eve of Industrial Revolution)
- I will later contend that most technological innovations were in response to changes in relative factor costs

Price Revolution in England

The Movement of Prices in England and the Low Countries, 1400 - 1700 annual indexes and moving averages (13 years): mean of 1471-75 = 100

Weighted price index of a basket of essential household goods in West Brabant (Antwerp-Lier region) and southern England, 1400 - 1700: annual indexes and 13-year moving averages (inter-quartile medians), on a semi-logarithmic scale.

Price Indexes: England, Brabant, Spain 1451 - 1650: 5 yr means (1501-10 =100)

Peter Lindert, 'English Population, Wages, and Prices: 1541 - 1913', Journal of Interdisciplinary History, 15 (Spring 1985), 614.

Price Revolution: Introduction (2)

- (2) Debate about causes of the Price Revolution
- (a) The Real School: that demographic factors (population growth) provided the primary (or even sole) cause – as suggested in the Lindert graph
- - in my view, this thesis is badly mistaken:
- confuses micro-economics with macroeconomics; and
- confuses changes in relative prices with changes in the price level (CPI)

Price Revolution: Introduction (3)

- (2) Debate about causes of the Price Revolution
- (b) The Monetary School: that inflation & deflation are essentially monetary phenomena
- What is the more important: changes in stocks (money supplies) or in flows (income velocity)?
- - not, however, purely a monetary phenomenom: -
- demographic factors probably played some role in income-velocity changes: to be demonstrated later
- changes in aggregate output (NNI) = 'y': endogenous or exogenous to population growth?
- (c) how and why are modern inflations different: in nature & form, from World War I?

Price Levels and Price Trends in England, 1450-1749 Mean Price Indices* and Mean Annual Rates of Price Changes, for 25-Year Periods.

Mean of Price Indices for 1451-1475 = 100 (Base)*

Quarter Century	Mean Price Index:* 1451-75=100	Mean Annual Percentage Change in Price Index	Standard Deviation (s.d.)	Coefficient of Variation (s.d./Mean)
1450-74	101.4	+0.08%	7.68	7.6
1475-99	104.6	+0.06%	18.52	17.7
1500-24	115.5	+1.47%	19.21	16.6
1525-49	168.8	+1.56%	29.57	17.5
1550-74	287.2	+0.20%	41.45	14.4
1575-99	401.6	+2.26%	94.71	23.6
1600-24	505.3	+0.69%	47.94	9.5
1625-49	595.6	+0.95%	81.48	13.7
1650-74	631.6	-0.42%	72.26	11.4
1675-99	616.7	+0.48%	74.01	12.0
1700-24	617.8	-0.09%	81.03	13.1
1725-49	587.6	-0.17%	51.00	8.7

* The Phelps Brown and Hopkins Price Index.

- (1) Fisher Identity: Equation of Exchange: M.V. = P.T
 - based on the transactions velocity of money
 - fault: impossibility of measuring transactions
- (2) Friedman Version: M.V = P.y
 - based on the **income velocity** of money
 - **y** = Net National Income deflated by CPI
- in both: distinguish between monetary stocks (M) and monetary flows (V)

- (3) Cambridge Cash Balances (modernized)
- - M = k.P.y
- in which 'k' measures that proportion of NNI (P.y) that the public chooses to hold in active cash balances (with no investment yield):
- so that M = the quantity of money necessary to satisfy that equation
- Cambridge 'k': also seen as the propensity to hoard (without earning investment income)

- (4) Keynes: Liquidity Preference:
- the component factors explaining 'k': to hold active cash balances (instead of spending or investing)
- transactions motive
- - **precautionary motive** (for a 'rainy day')
- investment + speculative motive
- opportunity cost of 'k': forgoing income earned from investing those same funds
- Cambridge 'k' = reciprocal of Friedman 'V': i.e, the Income Velocity of Money
- → k = 1/V; V = 1/k

- (5) Basic Assumptions involved in both Quantity Theories:
- a) Classical Quantity Theories → Fisher Identity:
- i) That economies always operate at Full
 Employment ('the norm') → so that T (i.e, Y) is at its maximum, while V is fixed (short term)
- ii) Thus, an increase in M must lead to a proportional increase in P (inflation): if T and V are fixed

- b) Keynes' Liquidity Preference Theory:
- an increase in M will lead to a fall in Fisher's V (velocity) = a rise in Cambridge k, for two reasons:
- i) Both V and k (V = 1/k) reflect society's ability to economize on its use of money: if M is more plentiful, more money will be kept as cash balances (Δ k) = decline in V
- ii) An increase in M, with LP constant, will result in a fall in interest rates → increase in 'k' (i.e., reduction in opportunity cost) and also in 'y'
- iii) The economy was/is rarely, if ever, at Full Employment

Fig. 43.1 The Keynesian model. (i) The consumption function (ii) The transactions demand for money (T) varies with the level of income (Υ) (iii) The speculative and precautionary demand for money (LP) varies with the rate of interest (r) (iv) Investment (MEI) varies with the rate of interest (r)

and the second sec

Keynes: Liquidity Preference & interest rates

- (6) My views on anticipated changes from Δ M
- a) some possible decrease in V → a rise in 'k'
- b) some increased investment from a fall in interest rates → an increase in Friedman 'y'
- N.B.: Y = NNI = NNP: is a 'real' variable (not monetary)
- -c) some increase in P (CPI: price level): but never proportionate to the increase in M

- -d) possible exception: coinage debasements, increasing M, may also increase V (= fall in k): as a 'flight from money' into real assets
- but not during Henry VIII's 'Great Debasement' (1542-51)
- - also not so during 15th century Flemish debasements
- (7) Changes in Friedman's 'y' (NNI = NNP): 'real' variable
- - an endogenous or exogenous variable?
- what was the impact of population growth and technological changes on 'y'?

Debasements and Inflation in Medieval and Early Modern Europe

Relationships between the debasements of the Flemish

silver penny groot and changes in the Consumer Price Index in Flanders, 1409 - 1484

Consumer Price Index: base 1451-75 = 100

Years	Silver Content of the Flemish silver penny in grams	percentage change from previous coinage	Value of 1 kg fine silver in £ groot Flemish	percentage change from previous coinage	Year 1	Year 3]	Price Index in Year 1	Price Index in Year 3	Percentage Change 2 years
1409	1.18	2	3.524							
1416	0.95	8 -18.959	% 4.349	23.39%	6	1416	1418	118.91	6 92.23	9 -22.43%
1418	0.85	0 -11.309	% 4.903	12.75%	6	1418	1420	92.23	9 98.11	8 6.37%
1428	0.74	9 -11.919	% 5.566	13.539	6	1428	1430	112.31	7 125.84	9 12.05%
1433	0.81	4 8.809	% 5.116	-8.09%	6	1433	1435	139.21	0 108.04	6 -22.39%
1466	0.70	3 -13.679	% 5.926	15.839	6	1466	1468	95.93	0 96.15	3 0.23%
1467	0.67	7 -3.779	% 6.158	3.92%	6	1467	1469	102.14	6 96.00	0 -6.02%
1474	0.59	7 -11.799	% 6.981	13.37%	6	1474	1476	108.20	8 92.37	0 -14.64%
1477	0.52	2 -12.509	% 7.979	14.29%	6	1477	1479	98.77	5 149.32	7 51.18%
1482	0.46	6 -10.719	% 8.936	12.00%	6	1482	1484	193.93	2 120.30	7 -37.96%

Relationships between the debasements of the English

sterling silver penny and changes in the Consumer Price Index in England, 1346 - 1544

Consumer Price Index: base 1451-75 = 100

Years	Silver Content of the English silver penny in grams	percentage change from previous coinage	Value of 1 kg fine silver in £ sterling English	percentage change from previous coinage	Year 1	Year 3	Price Index in Year 1	Price Index in Year 3	Percentage Change 2 years
1346	1.199		3.476						
1351	1.079	-10.00%	3.862	11.11%	1351	1353	128.695	132.567	3.01%
1412	0.899	-16.67%	4.634	20.00%	1412	1414	103.557	107.673	3.97%
1464	0.719	-19.99%	5.793	25.00%	1464	1466	88.062	105.511	19.81%
1526	0.639	-11.11%	6.517	12.50%	1526	1528	137.120	184.364	34.45%
1542	0.491	-23.14%	8.479	30.11%	1542	1544	174.939	180.847	3.38%

Formula to relate the percentage change in the silver content of the coin (reduction by debasement) and the increase in the money-of-account value of fine silver: i.e., the expected rate of increase in the money supply and of inflation:

 $\Delta T = [1/(1 - x)] - 1$

 Δ T = % change in the money-of-account value of the silver traite: per pound or kg of fine silver

x = % change (reduction) in the silver content of the penny (as a decimal)

- (8) Monetarists and Keynesian views on V and k (V = 1/k):
- Monetarists: believe that V (1/k) is fixed or relatively stable, at least in the short-run
- - Keynesians: believe the opposite:
- that V is very flexible in the short run
- Keynesians also believe that k = 1/V is very responsive to changes in interest rates: that it will rise when interest rates fall

Recent Canadian Monetary Experience - 1

- (1) Behaviour of V = 1/k: 1975 to 2011
- - V (based on M as M1+ Gross):
- has ranged from a low of 2.843 in 2011 (k = 0.342) to the previous high of 7.228 in 1981 (k = 0.138)
- V had risen from 1975 (and earlier) to this 1981 peak:
- Note the considerable expansion in the money supply (M1+) -- and Keynes proposition: that V will fall ('k'with a rise in M: also seen in Mayhew's table).

Money Supply, GD	P, Interest Rates,	and Prices in Ca	unada, 1975 - 1	2011: Annual M	leans of monthly data

	М	V = VM	k =1/V	Р	= V/CPI	GDP = V	Population	Inflation:	Bank Rate	Real GDP
		- 1/11	-1/1		- 1/011	Gross				p.c.
Year	M1 +	Income	Cambridge	CPI	Real GDP:	Domestic	Canadian	Percent	Bank	Real GDP
	Gross	Velocity	cash	2002=100	\$ billions	Product in	population	Change	Rate	per
		of Ml+	balances		in 2002	\$ billions at	in millions	in CPI	(percent)	capita
	\$ billions	Gross			dollars	current				in 2002
						market				dollars
						prices				
1975	34.913	4.973	0.20109	28.96	599.591	173.6210	23,102,980	10.68%	8.500	25,952.96
1976	35.719	5.599	0.17860	31.14	642.211	199.9940	23,414,365	7.55%	9.292	27,428.10
1977	39.682	5.569	0.17958	33.63	656.984	220.9730	23,694,035	8.01%	7.708	27,727.83
1978	42.886	5.710	0.17513	36.65	668.229	244.8770	23,935,651	8.95%	8.979	27,917.74
1979	44.782	6.243	0.16018	39.99	699.065	279.5770	24,170,445	9.13%	12.104	28,922.30
1980	51.033	6.161	0.16232	44.05	713.637	314.3900	24,471,129	10.16%	12.891	29,162.40
1981	49.873	7.228	0.13836	49.53	727.771	360.4710	24,785,059	12.43%	17.931	29,363.30
1982	55.175	6.885	0.14525	54.88	692.151	379.8590	25,083,479	10.80%	13.958	27,593.90
1983	62.592	6.573	0.15215	58.10	708.123	411.3860	25,336,505	5.86%	9.553	27,948.74
1984	70.527	6.375	0.15687	60.60	741.943	449.5820	25,577,353	4.30%	11.312	29,007.80
1985	89.427	5.431	0.18411	63.00	771.009	485.7140	25,813,854	3.96%	9.647	29,868.03
1986	102.767	4.987	0.20050	65.63	780.952	512.5410	26,068,353	4.18%	9.214	29,957.87
1987	108.522	5.151	0.19415	68.48	816.218	558.9490	26,399,956	4.34%	8.403	30,917.38
1988	116.428	5.266	0.18990	71.25	860.441	613.0940	26,754,940	4.05%	9.686	32,160.06
1989	125.911	5.224	0.19143	74.81	879.187	657.7280	27,219,748	4.99%	12.293	32,299.60
1990	128.499	5.291	0.18899	78.40	867.246	679.9210	27,638,583	4.76%	13.045	31,378.10
1991	134.510	5.095	0.19626	82.80	827.738	685.3670	27,987,829	5.62%	9.034	29,574.92
1992	139.841	5.009	0.19964	84.00	833.905	700.4800	28,319,473	1.49%	6.783	29,446.34
1993	151.501	4.800	0.20834	85.60	849.514	727.1840	28,648,235	1.86%	5.088	29,653.28
1994	156.280	4.933	0.20273	85.70	899.502	770.8730	28,958,270	0.16%	5.766	31,062.00
1995	160.398	5.053	0.19792	87.60	925.144	810.4260	29,262,649	2.17%	7.308	31,615.18
1996	179.464	4.663	0.21445	88.90	941.354	836.8640	29,570,577	1.58%	4.531	31,834.15
1997	197.601	4.467	0.22385	90.40	976.475	882.7330	29,868,726	1.62%	3.521	32,692.21
1998	205.509	4.452	0.22461	91.30	1,002.161	914.9730	30,125,715	0.99%	5.104	33,265.97
1999	221.764	4.430	0.22573	92.90	1,057.525	982.4410	30,369,575	1.73%	4.917	34,821.87

Year	M M1+ Gross \$ billions	V = Y/M Income Velocity of M1+ Gross	k =1/V Cambridge cash balances	P CPI 2002=100	y = Y/CPI Real GDP: \$ billions in 2002 dollars	GDP = Y Gross Domestic Product in \$ billions at current market prices	Population Canadian population in millions	Inflation: Percent Change in CPI	Bank Rate Bank Rate (percent)	Real GDP p.c. Real GDP per capita in 2002 dollars
2000	231.436	4.652	0.21497	95.38	1,128.783	1,076.577	32,352,977	2.70%	5.771	34,889.62
2001	254.823	4.348	0.22997	97.78	1,133.170	1,108.048	31,129,298	2.52%	4.313	36,402.05
2002	282.192	4.086	0.24477	100.00	1,152.905	1,152.905	31,446,719	2.27%	2.708	36,662.17
2003	296.506	4.092	0.24440	102.75	1,180.706	1,213.175	31,734,093	2.75%	3.188	37,206.22
2004	322.897	3.998	0.25013	104.66	1,233.452	1,290.906	32,038,401	1.86%	2.500	38,499.17
2005	344.243	3.991	0.25057	106.98	1,284.267	1,373.845	32,352,977	2.21%	2.917	39,695.49
2006	371.124	3.908	0.25588	109.12	1,329.220	1,450.405	32,690,242	2.00%	4.313	40,661.06
2007	402.631	3.799	0.26323	111.45	1,372.444	1,529.589	33,048,782	2.14%	4.604	41,527.83
2008 2009 2010 2011	436.712 491.771 551.750 599.765	3.672 3.109 2.944 2.843	0.27236 0.32163 0.33962 0.35173	114.09 114.43 116.47 119.86	1,405.373 1,336.140 1,394.908 1,422.668	1,603.418 1,528.985 1,624.608 1,705.181	33,448,916 33,856,945 34,254,344 34,605,346	2.37% 0.30% 1.78% 2.91%	3.208 0.650 0.850 1.250	42,015.50 39,464.28 40,722.09 41,111.22

Recent Canadian Monetary Experience - 2

- 2) Cambridge 'k' and the Bank Rate:
- Keynes also predicted that 'k' will vary inversely with the bank rate:
- Why? Because holding cash balances has an opportunity cost: foregoing investment income
- in 1981, Bank Rate was at its high 17.931% and Cambridge 'k' was at that low of 0.138
- in 2010: Bank Rate = 0.850% and k = 0.340 (but 0.352 in 2011, when Bank Rate rose to 1.250%)

Date	1300	1470	1526	1546	1561	1600	1643	1670
Money Supply in millions of £ sterling	0.900	0.900	1.400	1.450	1.450	3.500	10.000	12.000
Velocity (Income V)	5.178	3.889	3.571	5.517	9.310	6.286	3.500	3.407
Price Level: PBH Index	104.800	104.600	135.100	172.300	289.300	478.300	597.800	635.700
National Income Y in millions £ st.	4.660	3.500	5.000	8.000	13.500	22.000	35.000	40.880
Population in millions	6.000	2.300	2.300	2.900	3.000	4.100	5.100	5.000

Mayhew's Estimates of Money Supplies, Velocity, Prices, and National Income in England, 1300 - 1670

Source: Nicholas J. Mayhew, 'Population, Money Supply, and the Velocity of Circulation in England, 1300-1700', *Economic History Review*, 2nd ser. 48:2 (May 1995), p. 244.

Recent Canadian Experience - 3

- (3) Relationship between M and Price level
- a) Money supply (M1+): grown from \$34.913 billion in 1975 to \$599.765 billion in 2011: a 17.178 fold increase (= 1617.88%)
- b) The CPI (2002=100): has increased from 28.96 in 1975 to 119.86 in 2011: only a 4.138 fold increase (= 313.88%)
- c) Real GDP (2002 dollars): has grown from \$599.591 billion in 1975 to \$1,422.668 billion in 2011 (+137.27%)
- d) Population: grown from 23.102 million in 1975 to 34.605 million in 2011 (1.498 fold increase = 49.79%)

Recent Canadian Experience - 3

- 4) Conclusions on the Quantity Theory:
- a) the expansion in M was offset by:
- a fall in V (= rise in 'k')
- an expansion in y = NNP (here: real GDP
- b) importance of population growth: contributed to growth in GDP, thus offsetting inflationary force of Δ M
- c) Growth in Real GDP per capita (\$2002): from \$25,953 in 1975 to \$41,111 in 2011 (1.584 fold increase = 58.40% increase)

The Role of Population in the Price Revolution era (1520 – 1650) - 1

- (1) Basic premise of the Real School is a fallacy: that population growth itself 'caused' the Price Revolution:
- a) Note: inflation began before the demographic recovery:
- - inflation: from about 1515 (in England & Low Countries)
- - demographic growth: from the 1520s (in same regions)
- b) this Real model confuses micro- and macro-economics:
- i) Yes: population growth can produce an increase in individual, relative prices -- for grains, lumber, fuels, etc.,
- ii) But: population growth by itself cannot cause a rise in the general price level: in the CPI

The Role of Population in the Price Revolution era (1520 – 1650) - 2

- c) micro-economics: rise in prices of necessities (whose production subject to diminishing returns) would lead, in context of family budget constraints, to reduced demand and → relative fall (real fall) in prices of other commodities
- d) key factor: differences in supply & demand elasticities, in the longer run (see graphs)

Relative price changes with population growth

The Role of Population in the Price Revolution (3)

- (2) Keynesian Aggregate Demand: Population growth and inflation:
- a) If we shift the aggregate demand curve upwards, on basis of population growth, and we see a rise in the price level, what are we missing in this model?
- b) the fact that prices in the model are measured in terms of a silver-based money-of-account
- i) note that with a rise in price level from P(1) to P(2), the value of PQ(1) rises from £17,220 to £122,960 for the value of PQ(2):
- ii) where does all that extra money come from: an increase in M or an increase in V, or both??

AGGREGATE SUPPLY AND AGGREGATE DEMAND:

POPULATION, MONEY, AND PRICES

A. Price Level 1: $D_1 S_1 = 42 * 410 = \pounds 17,220 (P_1 Q_1)$

B. Price Level 2: $D_4 S_4 = 106 * 1160 = \pounds 122,960 (P_2 Q_2)$

The Role of Population in the Price Revolution (4)

- (3) The Phillips Curve (1958 article): demonstrating a negative correlation between changes in unemployment rates and the price level, 1861 - 1913
- the closer an economy reached full employment, the higher rose the price level
- conversely: the higher the unemployment, the more stable was the price level-
- note difference from the Keynesian L-shaped national income diagram: Y = C+I+G+(X-M)

The Phillips Curve: relating unemployment and money wage rates

1

KEYNES AND PHILLIPS

Inflation with Full Employment: the Keynes L-Shaped Relation (Inverted)

The Inverted Phillips Curve:

degrees of inflation with unemployed and then fully employed resources

percentage resources employed

Keynes: the General Theory (1936)

- It is probable that the general level of prices will not rise very much as output increases, so long as there are available efficient unemployed resources of every type.
- But as soon as output has increased sufficiently to begin to reach the 'bottle necks', there is likely to be a sharp rise in the prices of certain commodities.

The Role of Population in the Price Revolution (5)

- (1) The potential effects on population growth on money, output, and prices:
- a) On Supply Side:
- i) fuller employment of existing resources
- ii) → diminishing returns and rising marginal costs in agriculture and natural-resource (extraction) industries

The Role of Population in the Price Revolution (6)

- (1) The potential effects on population growth on money, output, and prices: cont'd
- b) On the Demand Side:
- i) increased demand for money (increased 'k') → reduce inflationary impact from Δ M
- ii) changes in structure of demand with more urbanization (Goldstone effect)
- iii) changes in population's age pyramid → larger families with more children per adult → further changes in aggregate demand (Lindert effect)

The Role of Population in the Price Revolution (7)

- (2) The Goldstone Velocity Theory of Inflation:
- -a) the case of England: rapid population growth produced disproportionate urbanization, with far more complex, more fully monetized market structures (agriculture + industry)-
- accompanied by growth of commercial + financial institutions: → much more credit used
- "in occupationally specialized linked networks, the potential velocity of circulation of coins grows as the square of the size of the network"

The Role of Population in the Price Revolution (8): Velocity A

- b) Major Problems with the Goldstone thesis:
- i) in both England and Low Countries, Price Revolution began before 1520 (ca. 1515) – before any signs of significant population growth (as stressed earlier)
- ii) Note the similarity of the degree of inflation in both countries:
- but Low Countries had become far more urbanized, commercialized, and more advanced in these more complex networks a century before England

The Role of Population in the Price Revolution (9): Velocity A

- b) Major Problems with the Goldstone thesis:
- iv) pretends that velocity is a demographic variable:
- it is of course a **monetary** variable -V = 1/k.
- iii) ignores all the evidence on vast increases in the money supply in both countries: as presented in last lecture, for England & Low Countries

The Movement of Prices in England and the Low Countries, 1400 - 1700 annual indexes and moving averages (13 years): mean of 1471-75 = 100

Weighted price index of a basket of essential household goods in West Brabant (Antwerp-Lier region) and southern England, 1400 - 1700: annual indexes and 13-year moving averages (inter-quartile medians), on a semi-logarithmic scale.

The Role of Population in the Price Revolution (10): Velocity B

- (3) The Lindert Velocity Model:
- How population growth may have led to an increase in the income velocity of money:
- a) by raising the cost of living: especially in food prices + fuel → reduction in demand for idle balances, inducing dishoarding
- b) by increasing family size and thus ratio of dependent children (non-earners) to adults → similarly reducing cash balances, inducing dishoarding
- c) but how long could this have been sustained?

200403111

The Role of Population in the Price Revolution (11): Velocity C

- (4) Nicholas Mayhew on Income Velocity of Money in England:
- a) agrees with Lindert, Goldstone, Miskimin: that the income velocity of money (V) rose during the Price Revolution era (1520 – 1650)
- b) But, before and after, he agrees with Keynes: that increases in the money supply → fall in income velocity of money = rise in 'k': primarily because of a fall in real interest rates (Keynes LP schedule)
- c) Changed composition of the coinage supply:
- shift from gold to silver, with a far higher transactions & income velocity for silver coins:

Mayhew's Estimates of Money Supplies, Velocity, Prices, and National Income in England, 1300 - 1670

Date	1300	1470	1526	1546	1561	1600	1643	1670
Money Supply in millions of £ sterling	0.900	0.900	1.400	1.450	1.450	3.500	10.000	12.000
Velocity (Income V)	5.178	3.889	3.571	5.517	9.310	6.286	3.500	3.407
Price Level: PBH Index	104.800	104.600	135.100	172.300	289.300	478.300	597.800	635.700
National Income Y in millions £ st.	4.660	3.500	5.000	8.000	13.500	22.000	35.000	40.880
Population in millions	6.000	2.300	2.300	2.900	3.000	4.100	5.100	5.000

ENGLAND: SILVER AND GOLD COINAGE OUTPUTS:

in kg. fine metal and in £ sterling values in quinquennial means: 1501-05 to 1596-1600

	SILVER	SILVER	GOLD	GOLD	TOTAL	Percent	Percent
Year	Total	Value	Total	Value	VALUES	Silver	Gold
	kilograms	£ sterling	kilograms	£ sterling	in £ sterling		
1501-05	4,313.544	24,988.026	516.604	33,392.271	58,380.297	42.80%	57.20%
1506-10	3,633.212	21,046.916	1,523.115	98,451.267	119,498.183	17.61%	82.39%
1511-15	1,089.012	6,308.562	694.599	44,897.564	51,206.126	12.32%	87.68%
1516-20	79.145	458.481	743.656	48,068.530	48,527.011	0.94%	99.06%
1521-25	3,148.207	18,237.317	442.136	28,578.780	46,816.096	38.96%	61.04%
1526-30	9,244.701	60,248.025	736.422	54,079.255	114,327.280	52.70%	47.30%
1531-35	4,616.832	30,088.071	189.160	13,890.972	43,979.043	68.41%	31.59%
1536-40	5,684.094	37,043.459	406.719	29,826.052	66,869.511	55.40%	44.60%
1541-45	5,707.032	100,776.324	963.792	79,997.508	180,773.832	55.75%	44.25%
1546-50	22,029.731	402,892.436	1,992.083	188,860.922	591,753.358	68.08%	31.92%
1551-55	9,428.855	121,874.569	136.583	16,023.336	137,897.905	88.38%	11.62%
1556-60	4,152.477	36,023.662	137.533	23,955.867	59,979.529	60.06%	39.94%
1561-65	24,263.303	210,873.247	255.828	24,682.712	235,555.960	89.52%	10.48%
1566-70	11,097.432	96,429.852	236.160	22,790.897	119,220.749	80.88%	19.12%
1571-75	8,806.166	76,520.164	102.633	9,934.572	86,454.736	88.51%	11.49%
1576-80	8,071.535	70,489.334	76.197	7,416.226	77,905.560	90.48%	9.52%
1581-85	16,056.314	139,852.039	337.318	32,770.995	172,623.034	81.02%	18.98%
1586-90	6,405.349	55,658.544	185.206	17,957.031	73,615.575	75.61%	24.39%
1591-95	18,653.363	162,086.240	178.498	17,306.684	179,392.924	90.35%	9.65%
1596-00	7,461.690	64,837.491	131.637	12,736.568	77,574.058	83.58%	16.42%

Monetary, Demographic, and Price Trends, 1348 - 1750

- (1) 1348 1370s: Era of the Black Death
- - severe demographic crises & rapid population decline (40%)
- - but also severe inflation
- (2) 1370s 1490s: late-medieval 'Great Depression': second phase
- - continued demographic decline & stagnation
- two 'bullion famines' → severe deflation (except during major wars + debasement)
- (3) **1490s 1520s: monetary expansion,** commercial-economic recovery, but no inflation
- (4) **1520s 1640s: era of Price Revolution:** monetary, economic, then demographic expansion, with sustained inflation
- (5) 1640s 1740s: era of the 'General Crisis' with:
- - **monetary contraction** → deflation (except during wartime)
- - demographic decline or stagnation

England & Flanders: Price Indexes CPI in quinquennial means, 1346-1500

Money, Population, Prices: before and during the Price Revolution era

- (1) the South German-Central European mining boom:
 c. 1460 c. 1540:
- -a) ended late-medieval 'bullion famines' -- with a five-fold expansion in European silver + copper supplies
- b) rise of the Antwerp Market, from 1460s: based on tripod of English woollens, German metals (& banking), Portuguese Asian spices
- c) note that this monetary and economic expansion well preceded the demographic recovery & expansion (from 1520s
- in both England and Low Countries (not before 1520)
- if somewhat earlier in Italy and South Germany

Money, Population, Prices: before and during the Price Revolution era (2)

- (2) Why was there no Price Revolution from 1460s to ca. 1520?
- a) Major expansion in Central European mining came after 1516: opening of Joachimsthal silver mines (Bohemia)
- b) Venetian wars with Turks from 1490s: curbed trade with & silver exports to Levant
- 1517: Ottoman conquest of Mamluk Egypt and Syria + the new Portuguese trade with Asia: severe drop in Venetian silver + copper exports → more German silver and copper going to Antwerp market
- - but somewhat offset by Portuguese silver exports to Asia
- c) changes in aggregate supplies: elastic before 1510?

German-Central European Silver Mining silver outputs in kg: 1471/5 - 1546/50

Central European Copper Production and Exports: in Kilograms of Fine Copper with exports to Venice and Antwerp, in quinquennial means: 1491-95 to 1536-40						
	Total Ouputs	Exports: Total	To Venice	To Venice	To Antwerp	To Antwerp
	Estimated in kg	kg	kg	Percent	kg	Percent
1491-95	1,980,746					
1496-00	2,704,948	1,390,392.3	446,742.2	32.13%	72,545.1	5.22%
1501-05	3,041,820	1,403,347.5	409,357.8	29.17%	453,686.4	32.33%
1506-10	4,770,333	1,627,847.0	184,642.0	11.34%	819,753.4	50.36%
1511-15	5,654,047	1,659,584.9	60,358.6	3.64%	968,521.4	58.36%
1516-20	5,203,097	1,388,953.7	29,544.6	2.13%	606,520.0	43.67%
1521-25	5,341,702	1,434,963.1	66,809.2	4.66%	488,633.1	34.05%
1526-30	5,275,248	1,062,740.6	54,876.6	5.16%	625,457.9	58.85%
1531-35	4,628,886	1,008,644.5	111,652.6	11.07%	543,443.9	53.88%
1536-40	4,336,708	1,207,783.7	150,544.0	12.46%	593,242.8	49.12%

Money, Population, Prices: before and during the Price Revolution era (3)

- c) Lessons from the Philips curve:
- there were so many unemployed resources (land, labour, capital) from the late-phase of the 'Great Depression' era, that economic recovery & growth took place with elastic supplies of inputs, without rising MC → so no price increases
- that 'bottlenecks' and rising marginal costs not encountered before ca. 1515-1520: still much 'slack' in the economy
- problem: no significant population growth in NW Europe before the 1520s

Money & Population during the Price Revolution era, c. 1520 – 1640 (4)

- (3) Money supplies: more rapid expansion
- a) height of the Central European mining boom: ca.
 1520 ca. 1540
- b) influx of gold, then silver from Spanish America, especially from 1550s
- coinage debasements: England + Low Countries: but not in Spain
- (2) Credit: financial revolution in negotiable credit instruments + negotiable public debts: from 1520s
- (3) Population growth: from the 1520s: effects of Δ urbanization on income velocity of money?

Monetary Approach to Balance of Payments (1)

- 1) Read lectures: for today and last week
- 2) Problem 1: suppositions of Classical School on international trade and inflation
- a) favourable balance of trade (export revenues > imports)
 → bullion influx → ΔM → inflation
- b) unfavourable trade balance → bullion outflow → fall in M → deflation
- 3) Problem 2: Inflation was European-wide, but
- a) Not all countries could have had a continuous favourable trade balances
- b) especially with Δ bullion outflows in trade with Levant, southern Asia, Baltic zone

Monetary Approach to Balance of Payments (2)

- (4) Solution: Monetary Approach to Balance of Payments: Prof. Harry Johnson
- a) world bullion stocks determine overall world price level (in terms of silver)
- b) 'law of one price' in international trade (arbitrage): will establish same commensurate price level in each country
- c) each country's money supply adjusts to accommodate that increased price level

POPULATION: ENGLAND & WALES 1541-1741

in millions, by decades

Consequences of Inflation: Impact on Factor Costs of Production - 1

- (1) Hamilton's Thesis of 'Profit Inflation': on lagging real wages and 16th century industrialization
- a) his most famous role: Quantity Theory of money in explaining Price Revolution
- b) also important for his thesis on the origins of modern industrial capitalism
- contended that during the Price Revolution, wages lagged behind consumer prices, providing entrepreneurs with growing profits
- argued that industrial entrepreneurs invested those extra profits in more capital-intensive, larger scale forms of industry

Consequences of Inflation: Impact on Factor Costs of Production - 2

- -c) that this was much more true of England than of Spain or France: → hence a major reason why England became homeland of the Industrial Revolution
- -d) his 'profit inflation' thesis was warmly endorsed by J. M. Keynes (who actually coined the phrase).
- e) Note: historically, during periods of inflation, wages do indeed lag behind consumer prices (irrespective of demographic changes): so that real wages necessarily fall [RWI = NWI/CPI]

Consequences of Inflation: Impact on Factor Costs of Production - 3

- f) problems with Hamilton's 'profit inflation' thesis:
- i) what prices? Hamilton never clear on this crucial issue: the CPI, agricultural or industrial prices?
- if the CPI, heavily weighted with food prices, rose, how would falling real wages benefit entrepreneurs?
 [RWI = NWI/CPI]
- rising food + fuel prices would, with budget constraints, curb much of the market demand for industrial goods from wage earners
- though impact would have been somewhat offset by rising real incomes for agricultural producers

Consequences of Inflation: Impact on Factor Costs of Production - 4

- f) problems with Hamilton's 'profit inflation' thesis:
- ii) the true issue must be: did industrial wages lag behind the wholesale prices for the same industrial products?
- iii) even if wages did lag, did entrepreneurs encounter other rising input or factor costs during Price Revolution era?
- iv) Even if industrial entrepreneurs did earn increased profits, why would they choose to invest them in more capital intensive forms of larger scale industry, if labour was becoming relatively cheaper?

English Prices and Wages, 1401-1750 Price & Wage Indices: 1451=75=100

Money Wages and Industrial Prices

England, 1451 - 1750

Consequences of Inflation: Impact on Factor Costs of Production (5)

- (2) Land Rents: did they rise with agricultural prices?
- English agriculture: customary (servile) rents did not rise: fixed by custom, in money-of-account terms
- - Agriculture & Enclosures:
- incentives for landlords to evict customary tenants, to recapture 'economic rent' on land, with rising grain prices
- leasehold lands:
- - **rents were fixed** for the period of contractual leases,
- so that those renting such lands (farmers, industrial entrepreneurs) benefited from rising prices of products produced on those leasehold lands

Consequences of Inflation: Impact on Factor Costs of Production (6)

- (3) Other land-based factor costs: rising costs of wood-based fuels in particular → led John Nef (Hamilton's Chicago colleague) to offer his alternative thesis on origins of modern industrial capitalism in Price Revolution era, in Tudor-Stuart England
- we will deal with the Nef thesis in the final lecture on Tudor Stuart 'Industrial Revolution'
- (4) Capital and Interest: did inflation cheapen capital costs? YES: it did cheapen the costs of previously borrowed capital

Investment in a Blast Furnace During Inflation

Hypothetical Example, with 5% annual inflation (compounded)

Loan Contract: £1,000 principal to be repaid in full in ten years, with annual interest payments of 10% (£100) paid each year for ten years.

YEAR	INTEREST	VALUE OF OUTPUT
1	£100	£500.00
2	£100	£525.00
3	£100	£551.25
4	£100	£578.81
5	£100	£607.75
б	£100	£638.14
7	£100	£670.05
8	£100	£703.55
9	£100	£738.73
10	£100	£775.66

Deflation during the 'General Crisis' era, c. 1650 – c. 1740: 1

- (1) Deflation from the 1650s to the 1740s: except for the war-torn 1690s
- (2) Possible Causes? last day's lecture:
- a) monetary contraction: as outflows of silver to Baltic, Levant, East Asia exceeded the declining influx from the Americas
- b) demographic contractions or slumps
- c) declines in the income velocity of money?

Deflation during the 'General Crisis' era, c. 1650 – c. 1740: 2

- 3) Problems: with and from deflation:
- a) raised the real and relative factor costs of production:
- i) wage stickiness: nominal wages remain flat → real wages rise with deflation
- ii) land rent contracts: fixed by leases for many years (up to 99 years): fixed nominal rents thus
 → rising real burden of rent with deflation
- iii) interest rates by longer-term contracts: similar situation with nominal rents → rising real rates

Deflation during the 'General Crisis' era, c. 1650 – c. 1740: 3

- b) deflation hurts credit and curbs investment
- i) fear of non-repayment: paper credit generally contracts more than the coined money supplies
- ii) reluctance to borrow: with anticipated rises in real interest rates
- iii) economic pessimism: reduces incentives to produce and invest