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Abstract

The Copula Multivariate GARCH (CMGARCH) model is based on a dynamic copula func-
tion with time-varying parameters. It is particularly suited for modelling dynamic depen-
dence of non-elliptically distributed �nancial returns series. The model allows for capturing
more �exible dependence patterns than a multivariate GARCH model and also generalizes
static copula dependence models. Nonetheless, the model is subject to a number of parame-
ter constraints that ensure positivity of variances and covariance stationarity of the modeled
stochastic processes. As such, the resulting distribution of parameters of interest is highly
irregular, characterized by skewness, asymmetry, and truncation, hindering the applicability
and accuracy of asymptotic inference. In this paper, we propose Bayesian analysis of the CM-
GARCH model based on Constrained Hamiltonian Monte Carlo (CHMC), which has been
shown in other contexts to yield e¢ cient inference on complicated constrained dependence
structures. In the CMGARCH context, we contrast CHMC with traditional random-walk
sampling used in the previous literature and highlight the bene�ts of CHMC for applied
researchers. We estimate the posterior mean, median and Bayesian con�dence intervals for
the coe¢ cients of tail dependence. The analysis is performed in an application to a recent
portfolio of S&P500 �nancial asset returns.
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1 Introduction

Modeling, predicting, and understanding the volatility of �nancial time series lies in the core
of �nancial econometrics. Volatility prediction has a very wide range of applications, such
as in portfolio optimization, risk management, asset allocation, and asset pricing. Since the
seminal papers of Engle (1982) and Bollerslev (1987) introducing the Generalized Autore-
gressive Conditional Heteroskedasticity (GARCH) modeling framework, voluminous research
has been conducted on the topic, encompassing various model extensions and generalizations.
The usual assumption in multivariate GARCH (MGARCH) models is that the conditional
joint distribution of the returns follows a multivariate normal or multivariate t-distribution
(see e.g. the Bauwens et al. (2006) survey). However, these elliptical distribution models
require a very strong symmetry of the data and may not be appropriate in many circum-
stances.

Researchers have been addressing two key aspects of volatility analysis: looking for the most
appropriate model speci�cation and selecting the most e¢ cient approach for inference and
prediction. In this paper, for the modeling aspect we adopt the copula multivariate GARCH
(CMGARCH) model (Lee and Long, 2009), featuring very appealing dynamic dependence
structure for �nancial time series. We then focus on the latter aspect of inference and predic-
tion by proposing Bayesian inference via Constrained Hamiltonian Monte Carlo (CHMC),
which we show is particularly suited for practical inference relative to traditional random-
walk based Markov Chain Monte Carlo (RW-MCMC) methods utilized for the CMGARCH
in the previous literature (Ausín and Lopes, 2010). In addition to parameter inference,
we show that CHMC facilitates computationally e¢ cient estimation of the posterior mean,
median and Bayesian con�dence intervals for the coe¢ cients of tail dependence.

Traditional approaches measure dependence by linear correlation, quanti�ed by the Pearson�s
correlation coe¢ cient. However, linear correlation expresses a symmetric linear notion of
dependence. Modern asset returns present nonlinear, non-Gaussian, and dynamic features.
Copula functions, a powerful tool originating from mathematical analysis, can capture the
dependence structures among �nancial time series without the standard linear dependence
and multivariate i.i.d return distribution restrictions. Since the 1990s, copula-based analysis
have entered the core of dependence modeling in �nance (Nelsen, 1999; Embrechts et al.,
2001).

A recent stream of literature joins the dynamic MGARCHmodeling framework with the cop-
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ula dependence structure. The key advantage of this approach is that the individual marginal
densities of the returns can be de�ned separately from their dependence structure. Using this
approach, many non-elliptical and �exible multivariate distributions can be obtained, captur-
ing the corresponding features of �nancial portfolio series. In this context, most researchers
have speci�ed the marginal series following univariate GARCH processes and captured the
dependence structure between them by a copula function to form the CMGARCH model
(Dias and Embrechts, 2004; Rodríguez, 2007; Hu, 2006; Jondeau and Rockinger, 2006; Liu
and Luger, 2009). However, the CMGARCH model requires a set of parameter constraints
maintaining positivity of variances and covariance stationarity of the modeled stochastic
processes. The model likelihood is then highly irregular, skewed, asymmetric, and truncated
in regions of relatively high posterior density, hindering the applicability and accuracy of
asymptotic inference (Liu and Luger, 2009; Jondeau and Rockinger, 2006). Perhaps for this
reason the number of application of CMGARCH has so far remained relatively limited. We
contribute to this stream of literature by focusing on the practical aspects of computationally
e¢ cient model implementation.

The remainder of the paper is organized as follows. In Section 2 we lay out the CMGARCH
model, including background on GARCH modeling and copula functions. In Section 3 we
detail Constrained Hamiltonian Monte Carlo. In Section 4 we contrast CHMC with tradi-
tional RW-MCMC in the context of CMGARCH in an empirical application to a portfolio of
S&P500 equity returns, quantifying the coe¢ cients of tail dependence. Section 5 concludes.

2 Copula MGARCH

We will �rst lay out the background of dynamic GARCH modeling and copula functions,
and then describe the copula multivariate GARCH model considered in this paper. Bayesian
analysis of the model with CHMC will follow next.
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2.1 GARCH Framework

Denote by yit the marginal �nancial series for asset i = 1; :::; N and time t = 1; :::; T in an
N -dimensional portfolio. Then yit follows a GARCH(1,1) model if

yit=�i +
p
hit"it (1)

hit=!i + �i(yi;t�1 � �i)2 + �ihi;t�1 (2)

where hit is the conditional variance of yit given the information set Ii;t�1 = fyi;t�1; yi;t�2; :::g;
and "it are independent and identically distributed random variables with zero mean. The
parameter constraints

!i; �i; �i> 0 (3)

�i + �i< 1 (4)

are required to ensure positivity of hit and covariance stationarity of yit, respectively.

We assume that "it follow the Student t-distribution, "it � t�i ; with �i degrees of freedom,
zero mean and variance �i=(�i � 2): The density of "it; f("it) is thus given by

f("it) =
� ((�i + 1)=2)

� (�i=2) (�i�)1=2
�
1 + "2it=�i

��(�i+1)=2
This distributional assumption is typical for modelling fat tails in univariate time series
(Bollerslev, 1987). The conditional distribution function of each marginal series is then

Fi(yitj�i; hit) = t�i
�
(yit � �i)h

�1=2
it

�
for i = 1; :::; N:

2.2 Copulas

A N -dimensional copula C(u1; :::; uN) is a multivariate distribution function in the unit
hypercube [0; 1]N , with uniform U(0; 1) marginal distributions. By the Sklar�s Theorem,
every joint distribution F (x1; :::; xN); whose marginals are given by F1(x1); :::; FN(xN); can
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be written as
F (x1; :::; xN) = C (F1(x1); :::; FN(xN)) : (5)

Furthermore, if the marginal distributions are continuous, then there is a unique copula
associated to the joint distribution, F , that can be obtained from

C(u1; :::; uN) = F
�
F�11 (x1); :::; F

�1
N (xN)

�
: (6)

Conversely, given an N -dimensional copula, C(u1; :::; uN); and N univariate distributions,
F1(x1); :::; FN(xN); the function (5) is an N -variate distribution function with margins

F1(x1); :::; FN(xN)

whose corresponding density function is given by

f(x1; :::; xN) = c (F1(x1); :::; FN(xN))
NY
i=1

fi(xi) (7)

where fi denotes the marginal density functions and c is the copula density function derived
from (6) as

c(u1; :::; uN) =
f
�
F�11 (x1); :::; F

�1
N (xN)

�
NY
i=1

fi(F
�1
i (xi))

:

The principal characteristic of a copula function is its ability to decompose the joint distribu-
tion into two parts: marginal distributions and dependence structure. Di¤erent dependence
structures can combine the same marginal distributions into di¤erent joint distributions.
Similarly, di¤erent marginal distributions under the same dependence structure can also lead
to di¤erent joint distributions. Many parsimonious parametric families of copula functions
have been proposed in the literature (Nelsen, 2006). A fundamental case is the Gaussian
copula, obtained from the multivariate normal distribution with correlation matrix R; given
by

CGR (u1; :::; uN) =

Z ��1(u1)

�1
� � �
Z ��1(uN )

�1
(2�)�N=2jRj�1=2 exp

�
�uR�1u=2

�
du

where u = (u1; :::; uN)
0 and ��1 is the inverse of the cumulative distribution function of
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the univariate standard normal distribution. The Gaussian copula assumes that there is no
dependence in the tails of the distribution. Tail dependence re�ects the limiting proportion
of one variable reaching extreme values given that the other related variable has reached an
extreme as well. Formally, it is de�ned by Salvadori et al. (2007) as follows.

De�nition 1 (Tail dependence (2-dimensional case)) Let Z = (X;Y ). The random
vector Z is upper tail dependent if

�U = lim
t!1�

P
�
X > F�1X (t)jY > F�1Y (t)

	
> 0;

provided that the limit exist. If �U = 0, the Z is upper tail independent. �U is called the
upper tail dependence coe¢ cient.

Similarly, the lower tail dependence coe¢ cient �L is de�ned as

�L = lim
t!0+

P
�
X � F�1X (t)jY � F�1Y (t)

	
;

provided that the limit exist. If �L = 0, the Z is lower tail independent, and is lower tail
dependent if �L > 0.

Such dependencies are of interest in �nancial economics since �nancial markets exhibit higher
correlation in times of distress (Embrechts et al., 1997), hence using the Gaussian copula
would not be appropriate since it assumes this tail dependency to be null. It is therefore often
more useful to consider the t-copula, which is obtained from the multivariate t-distribution
with � degrees of freedom and correlation matrix, R, given by

Ct�;R(u1; :::; uN) =

Z t�1� (u1)

�1
� � �
Z t�1� (uN )

�1

� ((� +N)=2)

� (�=2)
(��)�N=2jRj�1=2

�
1 + uR�1u=�

��(�+N)=2
du

(8)
where t�1� denotes the inverse of the cumulative distribution function of the standard uni-
variate Student-t distribution with � degrees of freedom. The Gaussian copula results as
a special case of the t-copula when � goes to in�nity. As the t-copula is of an elliptically
symmetric distribution, the two measures �U and �L coincide and can be denoted simply by
�. While the Gaussian copula is characterized by zero tail dependence, � = 0, Embrechts
et al. (2001) provide the following simple formula to represent the tail dependence coe¢ cient
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� of the t-copula:

� = 2t�+1

�
�(� + 1)1=2(1� �)1=2

(1 + �)1=2

�
(9)

for a pair of random variables with correlation coe¢ cient �:

2.3 Copula Multivariate GARCH Model

We consider the CMGARCH model setup of Ausín and Lopes (2010). The dependence
structure between the marginal series is described by a time-varying t-copula1 function with
� degrees of freedom, as de�ned in (8), with density at each time t given by

ct�;Rt(u1t; :::; uNt) =
f t�;Rt

�
t�1� (u1t); :::; t

�1
� (uNt)

�
NY
i=1

f t�(t
�1
� (uit))

where uit = Fi(yitj�i; hit) for i = 1; :::; N; f t�;Rt is the joint density of the standard multivariate
Student-t distribution with � degrees of freedom and correlation matrix Rt and f t� is the
density of the standard univariate t-distribution with � degrees of freedom. The parameter
matrix Rt of the t-copula varies through time according to

Rt = (1� a� b)R + a	t�1 + bRt�1 (10)

where a and b are nonnegative parameters, R is a time-invariant N � N positive de�nite
parameter matrix with unit diagonal elements and 	t�1 is an N �N matrix whose (i; j)-th
element is given by

	ij;t�1 =

Pm
h=1 xi;t�hxj;t�h�Pm

h=1 x
2
i;t�h

Pm
h=1 x

2
j;t�h

�1=2
which gives the sample correlation of the copula-transformed error term "it from equation
(1), fxt�1; :::;xt�mg; with m � 2; where

xt=(x1t; :::; xNt)

= (t�1� (t�1("1t)); :::; t
�1
� (t�N ("Nt))):

1The superscript t indicates that the distribution is a Student-t distribution, while the subscript t
corresponds to the time index.
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The dynamics in (10) is based on the correlation matrix evolution proposed by Tse and
Tsui (2002) in a multivariate GARCH model. The advantage of this speci�cation is that the
parameter matrix Rt is a well-de�ned positive de�nite correlation matrix with unit diagonal
elements, without the need to use any transformation such as the logistic function considered
e.g. in Patton (2006) and Dias and Embrechts (2004).

In order to maintain stationarity, the model is constrained with

0� a; b � 1 (11)

a+ b� 1 (12)

�1� rij � 1 (13)

where rij is the (i; j)-th element of the parameter matrix R:

Using (7), the log-likelihood function of the CMGARCH model is given by

lnL('jY)=
TX
t=1

ln f(ytj�;ht)

=
TX
t=1

(ln � ((� +N)=2) + (N � 1) ln � (�=2)�N ln �((� + 1)=2))

�1
2

TX
t=1

�
(� +N) ln

�
1 + xtR

�1
t xt=�

�
� ln(jRtj)

�
+ (� + 1)

TX
t=1

NX
i=1

ln
�
1 + x2it=�

�
+
1

2

TX
t=1

NX
i=1

(2 ln � ((�i + 1)=2)� 2 ln � (�i=2)� ln(��ihit))

�1
2

TX
t=1

NX
i=1

(�i + 1) ln(1 + (yit � �i)2=(�ihit))

where ' = ff�i; !i; �i; �i; �igNi=1; a; b; R; �g and xt = (x1t; :::; xNt):

Figure 1 shows the model likelihood for (�1; �1) with the constraint (4), �1 + �1 < 1;

evidenced by the lack of likelihood contours in the upper right hand section of the graph.
Such constraint would result in redundancies for traditional MCMCmethods as any proposal
falling into the region where the constraint is violated would be rejected. In contrast, CHMC
proposals are re�ected o¤ the constraint barrier and the proposal is made every time in the
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region where the constraint is not violated, as detailed below.

Figure 1: Constrained likelihood

As in Ausín and Lopes (2010), for the parameters �i; !i; �i; �i we assume a uniform prior
over their respective domains of stationarity given by the constraints (3)-(4). For the copula
parameters a; b; R we also assume a uniform prior distribution restricted to satisfy the con-
straints (11)-(13). For the degrees of freedom of the t-distribution �i we assume a half-right
side Cauchy prior

f(�i) � (1 + �2i )�1

for �i > 0; and we assume the same prior for the degrees of freedom parameter �: All
parameters are sampled jointly in each iteration.

3 Constrained Hamiltonian Monte Carlo

The purpose of traditional Markov Chain Monte Carlo (MCMC) methods is to formulate
a Markov chain on the parameter space � for which, under certain conditions, �(�) 2 P�
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is the invariant (also called �equilibrium�or �long-run�) distribution. The Markov chain of
draws of � can be used to construct simulation-based estimates of the required integrals, and
functionals Q(�) of � that are expressed as integrals. These functionals include objects of
interest for inference on � such as quantiles of �(�):

In a generic MCMC scheme, the Markov chain sampling mechanism speci�es a method for
generating a sequence of random variables f�kgKk=1; starting from an initial point �0; in
the form of conditional distributions for the draws �k+1j�k � G(�k): Under relatively weak
regularity conditions (Robert and Casella, 2004), the average of the Markov chain converges
to the expectation under the stationary distribution:

lim
K!1

1

K

KX
k=1

Q(�k) = E�[Q(�)]

AMarkov chain with this property is called ergodic. As a means of approximation the analyst
relies on large but �nite number of draws K 2 N which the analyst selects in applications.

G(�k) can be obtained from a given model and its corresponding likelihood �(�). Typically,
�(�) has a complicated form which precludes direct sampling in which case the Metropolis-
Hastings (M-H) principle is usually used for �k+1j�k from G(�k); see Chib and Greenberg
(1995) for a detailed overview. The M-H algorithm proceeds according to the following
steps. Suppose we have a proposal-generating density q(��k+1j�k) where ��k+1 is a proposed
state given the current state �k of the Markov chain. The M-H principle stipulates that �

�
k+1

be accepted as the next state �k+1 with the acceptance probability

�(�k; �
�
k+1) = min

�
�(��k+1)q(�kj��k+1)
�(�k)q(�

�
k+1j�k)

; 1

�
(14)

otherwise �k+1 = �k: Then, the Markov chain satis�es the so-called detailed balance condition

�(�k)q(�
�
k+1j�k)�(�k; ��k+1) = �(��k+1)q(�kj��k+1)�(��k+1; �k)

which is su¢ cient for ergodicity. �(��k+1; �k) is the probability of the move �kj��k+1 if the
dynamics of the proposal generating mechanism are reversed. The proposal-generating den-
sity q(��k+1j�k) can be chosen to be sampled conveniently even though it may be di¢ cult or
expensive to sample from �(�). The popular Gibbs sampler arises as a special case when
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the M-H sampler is factored into conditional densities. The proposal draws ��k+1j�k from
q(��k+1j�k) in (14) are generated in one step. We will refer to this procedure as random walk
MCMC (RW-MCMC).

3.1 CHMC Principle

Hamiltonian (or Hybrid) Monte Carlo (HMC) originates in the physics literature where it
was introduced as a fast method for molecular dynamics simulations (Duane et al., 1987).
It has since become an important tool for Bayesian statistical inference (Neal, 1993, 2011;
Ishwaran, 1999; Liu, 2004; Beskos et al., 2013) with applications in a number of diverse �elds
including statistical physics (Akhmatskaya et al., 2009; Gupta et al., 1988) and computational
chemistry (Tuckerman et al., 1993). Detailed description of the CHMC mechanism from the
statistics perspective is provided in Neal (2011). Nonetheless, its usage in economics and
�nance has so far been relatively scarce. HMC and its constrained version, CHMC, applies
to a general class of models that is parametrized by a Euclidean vector � 2 � for which all
information in the sample is contained in the model likelihood �(�) assumed known up to
an integrating constant. Formally, this class of models is characterized by a family P� of
probability measures on a measurable space (�;B) where B is the Borel �-algebra.

In contrast to a traditional MCMC scheme utilizing one-step proposal draws, Hamiltonian
Monte Carlo (HMC) uses a sequence of many proposal steps whereby the last step in the
sequence is designated as the proposal draw. The proposal is thus drawn in a relatively
distant location from the current draw, which facilitates e¢ cient exploration of the para-
meter space with the resulting Markov chain. The proposal sequence is constructed using
di¤erence equations of the law of motion that result in high acceptance probability even for
distant proposals. The parameter space � is augmented with a set of independent auxiliary
stochastic parameters 
 2 � that ful�ll a supplementary role in the proposal algorithm, facil-
itating the directional guidance of the proposal mechanism. The proposal sequence takes the
form f�`k; 
`kgL`=1 starting from the current state (�k; 
k) = (�

0
k; 


0
k) and yielding a proposal

(�k; 
k) = (�
L
k ; 


L
k ): The detailed balance is then satis�ed using the acceptance probability

�(�k; 
k; �
�
k+1; 


�
k+1) = min

�
�(��k+1; 


�
k+1)q(�k; 
kj��k+1; 
�k+1)

�(�k; 
k)q(�
�
k+1; 


�
k+1j�k; 
k)

; 1

�
(15)
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In constrained HMC (CHMC), constraints are embedded in the HMC proposal mechanism
via "hard walls" representing a barrier against which the proposal sequence, simulating a
particle movement, bounces o¤ elastically. Thus, violating a constraint along the proposal
sequence does not result in proposal rejection but rather an altered course of the proposal
path, eliminating any associated redundancies. Heuristically, the constraint is checked at
each step of the proposal sequence and if it is violated then the trajectory of the sequence
is re�ected o¤ the hard wall posed by the constraint. This facilitates e¢ cient exploration of
the parameter space even in the presence of highly complex parameter constraints.

Let 
 � �(
; 0;M) where � denotes the Gaussian distribution with mean vector 0 and
covariance matrix M . Denote the constraint on the parameter space by a density kernel
exp (Ck(�)) where

Ck(�) =

8<:0 if the constraint is satis�edCk > 0 s.t. limk!1Ck =1 if the constraint is violated

Denote the joint density of (�; 
) by �(�; 
): The negative of the logarithm of the joint density
of (�; 
) is given by the constrained Hamiltonian equation

H(�; 
) = �Ck(�)� ln �(�) +
1

2
ln
�
(2�)d jM j

�
+
1

2

0M�1
 (16)

where d = dim(�) = dim(
): In the physics literature, the Hamiltonian H(�; 
) represents
the total energy of the (�; 
)-system where � denotes the position (or state) variable and
� ln �(�) describes its potential energy. 
 is the momentum variable with kinetic energy

0M�1
=2 where M is a constant, symmetric, positive-de�nite "mass" matrix, typically set
to the identity matrix.

A canonical iteration of Constrained Hamiltonian Monte Carlo (CHMC) is performed in the
following steps:

1. Draw an initial auxiliary parameter vector 
0k � �(
; 0;M);

2. Transition from (�k; 
k) to (�
L
k ; 


L
k ) = (�

�
k+1; 


�
k+1) according to the constrained Hamil-

tonian dynamics;
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3. Accept (��k+1; 

�
k+1) with probability

�(�k; 
k; �
�
k+1; 


�
k+1) = min

�
exp

�
�H(��k+1; 
�k+1) +H(�0k; 
0k)

�
; 1
�
; (17)

otherwise keep (�k; 
k) as the next MC draw.

The constraints on the parameter space � are re�ected in Step 2. We will now describe each
step in detail.

Step 1 updates the system akin to a RW draw in order to make the resulting Markov chain
f(�k; 
k)g

R
k=1 irreducible and aperiodic (Ishwaran, 1999).

Step 2 constructs a sequence f�`k; 
`kgL`=1 according to the Hamiltonian dynamics starting
from the current state (�0k; 


0
k); with the newly drawn 


0
k; and setting the last member of

the sequence as the CHMC new state proposal (��k+1; 

�
k+1) = (�

L
k ; 


L
k ): The transition from

(�0k; 

0
k) to (�

L
k ; 


L
k ) via the proposal sequence f�`k; 
`kgL`=1 taken according to the discretized

Hamiltonian dynamics described below is fully deterministic, placing a Dirac delta proba-
bility mass �(�`k; 


`
k) = 1 on each (�`k; 


`
k) conditional on (�

0
k; 


0
k): The CHMC acceptance

probability in (17) is speci�ed in terms of the di¤erence between the Hamiltonian (16) eval-
uated at the initial (�0k; 


0
k) and at the proposal (�

�
k+1; 


�
k+1): The role of the Hamiltonian

dynamics is to ensure that the acceptance probability (17) for (��k+1; 

�
k+1) is kept close to

1. This is achieved by maintaining the di¤erence �H(��k+1; 
�k+1) + H(�0k; 
0k) close to zero
throughout the sequence f�`k; 
`kgL`=1. This property can be achieved by conceptualizing �
and 
 as functions of continuous time t and specifying their evolution using the Hamiltonian
dynamics equations

d�i
dt
=
@H(�; 
)

@
i
=
�
M�1


�
i

(18)

d
i
dt
=�@H(�; 
)

@�i
= r�i ln �(�) (19)

for i = 1; : : : ; d: For any discrete time interval of duration s; (18)�(19) de�ne a mapping Ts
from the state of the system at time t to the state at time t+s: The di¤erential equations (18)�
(19) are generally solved by numerical methods, typically the Stormer-Verlet (or leapfrog)
numerical integrator (Leimkuhler and Reich, 2004). For each step of f�`k; 
`kgL`=1; CHMC
discretizes the Hamiltonian dynamics (18)�(19) as follows: for some small " 2 R �rst take a
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half-" step in 


(t+ "=2) = 
(t) + ("=2)r� ln �(�(t)); (20)

then take a full " step in �

�(t+ ") = �(t) + "M�1
(t+ "=2); (21)

and check the constraint at �(t+ ") for each dimension i of �: If the constraint is violated for
any i then set 
i(t+ "=2) = �
i(t+ "=2) reversing the proposal dynamics and take further
steps in �i until the constraint is satis�ed, then �nish with another half-" step in 



(t+ ") = 
(t+ "=2) + ("=2)r� ln �(�(t+ ")): (22)

Intuitively, the proposal trajectory bounces o¤ the "walls" given by the constraint. Since
a move in 
 only occurs conditional on � for which the constraint is satis�ed in which case
Ck(�) = 0, and the move in � only depends on @H(�; 
)=@
i which does not involve Ck(�);
the exact functional form of Ck(�) is inconsequential as long as it is di¤erentiable in � to
de�ne valid Hamiltonian dynamics.

Even though ln �(�`k) can deviate substantially from ln �(�0k); the additional Hamiltonian
terms parametrized by 
 in (16) compensate for this deviation maintaining the overall level
of H(�`k; 


`
k) close to constant over ` = 1; : : : ; L when used in accordance with (20)�(22),

since @H(�;
)
@
i

and @H(�;
)
@�i

enter with the opposite signs in (18)�(19). In contrast, without the
additional parametrization with 
; if only ln �(�`k) were to be used in the proposal mechanism
as is the case in RW style samplers, the M-H acceptance probability would often drop to
zero relatively quickly.

Step 3 applies a Metropolis correction to the proposal (��k+1; 

�
k+1): In continuous time,

or for " ! 0, (18)�(19) would keep �H(��k+1; 
�k+1) + H(�k; 
k) = 0 exactly resulting in
�(�k; �

�
k+1) = 1 but for discrete " > 0, in general, �H(��; 
�)+H(�; 
) 6= 0 necessitating the

Metropolis step.

The system (20)�(22) is time reversible and symmetric in (�; 
), which implies that the
forward and reverse transition probabilities q(�Lk ; 


L
k j�0k; 
0k) and q(�0k; 
0kj�Lk ; 
Lk ) are equal:

this simpli�es the Metropolis-Hastings acceptance ratio in (15) to the Metropolis form
�(��k+1; 


�
k+1)=�(�

0
k; 


0
k): From the de�nition of the Hamiltonian H(�; 
) in (16) as the nega-

13



tive of the log-joint densities, the joint density of (�; �) is given by

�(�; 
) = exp [�H(�; 
)] = �(�)
�
(2�)d jM j

��1=2
exp

�
�1
2

0M�1


�
(23)

Hence, the Metropolis acceptance probability takes the form

�(�r; 
r; �
�
r+1; 


�
r+1)=min

�
�(��r+1; 


�
r+1)

�(�0r; 

0
r)

; 1

�
=min

�
exp

�
�H(��r+1; 
�r+1) +H(�0r; 
0r)

�
; 1
�

The expression for �(�k; 
k; �
�
k+1; 


�
k+1) shows, as noted above, that the CHMC acceptance

probability is given in terms of the di¤erence of the Hamiltonian equations H(�0k; 

0
k) �

H(��k+1; 

�
k+1): As this Hamiltonian di¤erence approaches zero, the acceptance probability

approaches one. A key feature of the Hamiltonian dynamics (18)�(19) in Step 2 is that
they maintain H(�; 
) constant over the parameter space in continuous time conditional
on H(�0k; 


0
k) obtained in Step 1, while their discretization (20)�(22) closely approximates

this property for discrete time steps " > 0 with a global error of order "2 corrected by the
Metropolis update in Step 3.

In the next Section we apply CHMC to the CMGARCH model of Section 2.

4 Application

We apply CHMC and RW-MCMC to the daily closing prices of S&P500 equities for the
period 02/Jan/2015 to 29/Jun/2018, with T = 880; obtained from the Compustat database.
We chose two companies with the highest overall transaction volumes: Citigroup (C) and
Bank of America (BAC). The log return series are plotted in Figure 2 and summary statistics
are presented in Table 1.

Mean St.Dev. Skewness Kurtosis
C 0.241�10�3 0.015 -0.39 6.90
BAC 0.516�10�3 0.016 -0.29 5.32

Table 1: Summary Statistics
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Figure 2: Daily equity log returns

In theory, the dimensionality of the portfolio is only limited by the sample size. Nonethe-
less, in practice the portfolio size for feasible implementation will also be restricted by the
computing power available. Our implementation was run with a Coarray Fortran 2008 code
using Intel 2016 compiler on 3.1 GHz desktop computer2. We set m = 2 and �i = 2 for
i = 1; :::; N: In RW-MCMC we tuned the step sizes for each parameter to achieve transition
acceptance rate of about 30% (Roberts et al., 1997). In CHMC tuned the step sizes to
achieve transition acceptance rate of about 60%. Theoretical analysis of optimal step sizes
and acceptance rates for HMC is provided in Beskos et al. (2013).

We used L = 20 as the length of the proposal sequence in CHMC. Even though each
iteration takes longer to complete for CHMC than for RW-MCMC, the resulting parameter
draws exhibit superior mixing properties for the former, even when normalized per unit of
time. In order to make both methods comparable from the user�s perspective, we ran both
procedures for 10 minutes of wallclock time and discarded one extra initial minute of runtime

2Intel Xeon E5-2687w v3, Windows 10 operating system
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as a burn-in part of the chain. CHMC completed just over 1,100 iterations while RW-MCMC
completed just over 31,000 iterations. In order to minimize autocorrelation of the chain and
render the output comparable to CHMC in terms of size per unit of time, we thinned the
RW-MCMC chain by retaining every 30-th iteration. Table 2 reports comparison of the
resulting chains in terms of e¤ective sample size (ESS), evaluated by the R package coda
(Plummer et al., 2006). ESS of a Bayesian Markov chain parameter draw is the number
of e¤ectively independent draws from the posterior distribution to which the Markov chain
draw is equivalent Kass et al. (1998). The ESS has been commonly used as a standard
measure for the quality of the posterior approximation for individual chains.

parameter CHMC RW-MCMC
� 91.69 8.74
a 43.94 1.77
b 31.54 2.63
�1 52.43 4.23
!1 109.74 10.32
�1 32.88 26.29
�1 60.20 5.02
�2 48.01 3.21
!2 85.23 8.90
�2 16.83 7.75
�2 51.33 2.79
r1;2 66.99 2.26

Table 2: Normalized E¤ective Sample Size

Markov chain convergence diagnostics, obtained using the R package coda, for both methods
are reported in Table 3. Speci�cally, we evaluated the z-scores of the Geweke (1992) conver-
gence test standardized z-score and p-values of the Heidelberger and Welch (1983) stationary
distribution test. As evidenced by the z-scores, while for CHMC all chains have converged
within the burn-in section, for RW-MCMC half of the parameter chains have failed to reach
convergence. The p-values output con�rms that both methods drew chains from a stationary
distribution.

We further visually illustrate the CHMC versus RW-MCMC comparison in Figures 3-5 in
the Appendix, showing the trace plots of the Markov chains. The CHMC trace (left column)
mixes very well, exploring the tails of the posterior, while the RW-MCMC trace (right
column) su¤ers from relatively poorer mixing with scant tail exploration. This is consistent
with the outcomes of the convergence diagnostics reported above. Overall, our results favor
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the use of the CHMC as an e¤ective method of inference for the complex posterior of the
CMGARCH model.

CHMC RW-MCMC
parameter z-score HW p-value z-score HW p-value
� 0.342 0.848 -1.323 0.850
a 0.345 0.263 -13.412 0.265
b -0.472 0.587 -16.012 0.169
�1 1.580 0.007 -3.936 0.057
!1 1.647 0.671 -0.765 0.133
�1 1.005 0.844 1.304 0.053
�1 -1.630 0.858 -1.455 0.506
�2 1.433 0.008 -3.122 0.447
!2 -1.213 0.276 1.613 0.022
�2 -1.111 0.502 3.021 0.075
�2 1.038 0.283 -1.543 0.189
r1;2 0.144 0.555 -2.199 0.597

Table 3: Geweke z-score and Heidelberger and Welch (HW) diagnostics p-value

We used the CHMC output to evaluate the posterior mean value of the tail dependence
index (9) as

b� = 1

KT

KX
k=1

TX
t=1

2t�(k)+1

 
�(�(k) + 1)1=2(1� �(k)t )1=2

(1 + �
(k)
t )

1=2

!
where the superscript (k) indicated the k-th draw. We then used the posterior distribution
of the tail dependence index to quantify its 95% Bayesian Credible Set (BCS): The posterior
mean was thus 0.176, and the 95% BCS (0.157, 0.194).

5 Conclusions

In this paper we build on a recent stream of literature merging the dynamic MGARCH
modeling framework with the copula dependence structure, yielding a family of �exible yet
parsimonious non-elliptical multivariate distributions for modeling the features of �nancial
portfolio series. The main advantage of this approach is that the individual marginal den-
sities of the series can be de�ned separately from their dependence structure. However, the
resulting CMGARCH model requires a set of parameter constraints maintaining positivity
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of variances and covariance stationarity of the modeled stochastic processes. The model like-
lihood is then highly irregular, skewed, asymmetric, and truncated in regions of relatively
high posterior density, hindering the applicability and accuracy of asymptotic inference. In
this paper, we show that the Constrained Hamiltonian Monte Carlo exhibits a number of
advantages over traditional random-walk based Markov Chain Monte Carlo methods utilized
for the CMGARCH in the previous literature. Our analysis is performed in the context of
an application to modelling a portfolio of S&P500 equity returns, quantifying the coe¢ cient
of tail dependence.
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6 Appendix

Figure 3: Chains of parameter draws for �, a, b, and r1;2; CHMC (left) and RW-MCMC
(right)
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Figure 4: Chains of parameter draws for �1, !1, �1, and �1; CHMC (left) and RW-MCMC
(right)
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Figure 5: Chains of parameter draws for �2, !2, �2, and �2; CHMC (left) and RW-MCMC
(right)
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