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Abstract

Bayesian nonparametric density estimation procedures are typically based on single-scale priors, such as

Dirichlet process mixtures. Alternative multiscale density priors built on deep decision trees have a number of

well-known advantages, including the ability to characterize abrupt local changes and to provide an estimate

with a desired level of resolution. Despite their theoretical appeal, multiscale methods have typically been

developed in the literature as univariate. Their multivariate versions are generally very costly to implement in

practical applications, rendering such methods infeasible in many empirical cases of interest. One of the key

reasons is the rapidly increasing number of multiscale mixture components required to represent dependence

structures in higher dimensions. In this paper, we propose a random Bernstein polynomial prior on the unit

hypercube of arbitrary dimension with a spike-and-slab shrinkage structure. The polynomial components

with near-zero posterior weights are shrunk towards zero and thus omitted from posterior sampling. This

results in posterior sparsity of the multiscale decision tree, alleviating the curse of dimensionality. We

embed the proposed model in the form of a copula link function along with nonparametric marginals in a

composite prior over general spaces of densities. We provide conditions for posterior consistency under the

weak topology. We further illustrate the practical use of the model in an application to forecasting the Value

at Risk and Expected Shortfall of a financial portfolio in a scenario where sampling from the non-sparse

posterior would be infeasible.
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1 Introduction

Nonparametric Bayesian estimation of multivariate densities has become a popular modeling tool in the

literature due to its versatility of usage and relatively weak assumptions on the underlying model structure.

Models based on infinite mixtures express a distribution as a composite object made of simpler distributions

without a-priori restricting the number of data-driven mixture components. In many contexts, a countably

infinite mixture is also a more realistic model than a mixture with a small fixed number of components.

Areas of application include treatment effect estimation (Chib and Hamilton, 2002), autoregressive panel data

models (Hirano, 2002), financial econometrics (Jensen and Maheu, 2010), latent heterogeneity in discrete

choice models (Kim et al., 2004; Burda et al., 2008), contingent valuation models (Fiebig et al., 2009),

and instrumental variables models (Conley et al., 2008). The bulk of the available Bayesian nonparametric

density estimation methods, including the popular Dirichlet Process mixtures, are single-scale approaches.

Yet, alternative multiscale models, such as deep decision tree structures, feature many advantages. These

include adaptability to abrupt local variation and the ability to adjust the estimate locally to the desired

degree of resolution.

In a seminal paper for multiscale density estimation, Canale and Dunson (2016), henceforth CD, proposed

a univariate multiscale Bernstein polynomial (msBP) prior on the unit interval based on infinite binary

trees. However, a direct multivariate generalization of msBP (Burda and Prokhorov, 2024) is very costly to

implement in practical applications, rendering such approach infeasible in many empirical cases of interest.

Indeed, we show that in as few as three dimensions, the number of polynomial components to be evaluated

in the non-sparse posterior is higher than several billion in tree scales higher than 10, exceeding the memory

capacity of a typical high-end workstation.

In this paper, we propose a multivariate multiscale shrinkage Bernstein polynomial (SBP) prior on the unit

hypercube, based on a spike-and-slab structure. The prior induces posterior tree sparsity as polynomial

components with near-zero posterior weights are shrunk towards zero. We embed the SBP as a copula link

function with Dirichlet Process mixtures for marginals, inducing a prior over general density spaces. We

illustrate the empirical use of the SBP prior in an application to forecasting the Value at Risk and Expected

Shortfall of a financial portfolio.
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The practical appeal of our approach is that the number of shrunk polynomial components is very large

relative to the number of terms retained in the tree. The sparse posterior thus requires only a fraction of

the run time and memory size relative to its non-sparse counterpart. This makes our approach suitable for

multivariate applications with more than a few dimensions, and usage within wider structural models.

We further provide conditions for posterior consistency under the weak topology, based on the feature of the

SBP that it becomes asymptotically dense in the multivariate msBP. This result is valuable, since Bayesian

nonparametric models can be inconsistent even with seemingly natural priors (Ghosal and van der Vaart,

2017). If the prior is not correctly specified or is too diffuse (e.g. allowing for too many components) then

the corresponding posterior may not concentrate on the true data-generating process as the sample size

increases. In practical terms, this result allows our approach to be used by analysts who are not Bayesian,

as it provides a frequentist justification of its asymptotic validity.

In related literature, Burda and Prokhorov (2014) analyze a single-scale multivariate random Bernstein

polynomial for the copula link function, resulting in a flexible but non-sparse model. The current contribution

generalizes this approach to a multiscale tree-based structure with posterior sparsity. The motivation comes

in part from the feature of the copula density function that concentrates the bulk of the probability mass

in specific regions of the unit hypercube corresponding to the dependence structure of the data, typically

around the diagonals and in corners. Such intrinsic sparsity with a high degree of local detail on the unit

cube is directly amenable to representation with the SBP prior.

The remainder of the paper is organized as follows. In Section 2 we first directly extend the univariate msBP

model of CD into higher dimensions, and then propose a sparse alternative based on a spike-and-slab prior

structure. We compare the full and sparse tree size, showing the obstacles to practical use of the former.

In Section 3 we link the latter with a nonparametric marginal density model for general sparse adaptive

multivariate density estimation. Section 4 discusses the conditions for posterior consistency. An empirical

application to forecasting the Value at Risk and the Expected Shortfall in Section 5 demonstrates practical

relevance of the approach. The application code is freely available in the GitHub repository SBP. Section 6

concludes.
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2 Shrinkage Bernstein Polynomial Prior

2.1 Multiscale Bernstein Mixture

In this Section we describe the Multiscale Bernstein Mixture of CD, following their notation. Let Y be a

random variable defined over a unit interval [0, 1] with density f , which is assumed to follow a multiscale

mixture of Bernstein polynomials (msBP) process:

f(y) =

∞∑
s=0

2s∑
h=1

πs,hBe(y;h, 2
s − h+ 1) (1)

where Be(a, b) denotes the beta density with mean a/(a+b), and {πs,h} are random weights. The framework

can be represented as a binary tree in which each layer is indexed by a scale s = 0, . . . ,∞, and a node index

h = 1, . . . , 2s within the scale. Thus, each h is implicitly indexed by s, though we omit this indexing for

notational convenience where possible. Each node (s, h) in the tree corresponds to a Be(y;h, 2s − h + 1)

density in (1), weighted by πs,h. Thus, the multiscale mixture in (1) includes 2s Bernstein polynomial basis

densities at each scale s. A scheme of the binary tree with nodes (s, h) is presented in Figure 1.

Figure 1: Binary Tree Representation a Multiscale Mixture of Bernstein Polynomials

At each node (s, h), the independent random variables

Ss,h ∼ Be(1, a) (2)

Rs,h ∼ Be(b, b) (3)

denote the probability of stopping at (s, h) conditionally on reaching (s, h), and taking the path to the right
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conditionally on not stopping at (s, h), respectively. The tree node prior weights are then specified as

πs,h = Ss,h

∏
r<s

(1− Sr,gshr
)Tshr (4)

where gshr = ⌈h/2s−r⌉ is the node traveled through at scale r on the way to node h at scale s with ⌈·⌉

denoting the ceiling function, Tshr = Rr,gshr
if (r + 1, gshr+1) is the right daughter of node (r, gshr), and

Tshr = 1−Rr,gshr
if (r+1, gshr+1) is the left daughter of node (r, gshr). The infinite tree of probability weights

follows the stick-breaking process representation of the Dirichlet process (Sethuraman, 1994). Starting from

a “stick” of length one, each time the stick is broken, it is consequently randomly divided in two parts: one

for the probability of going right, the remainder for the probability of going left, before the next break. The

individual pieces thus add up back to one.

In applications, the msBP process in (1) is approximated by fixing an upper bound smax for the depth of

the tree, yielding the scale smax approximation

fsmax
(y) =

smax∑
s=0

2s∑
h=1

π̃s,hBe(y;h, 2
s − h+ 1). (5)

π̃s,h is identical to πs,h except that all the stopping probabilities at scale smax are set to equal to one so that

the weights π̃s,h in (5) sum to one.

Conditionally on a data sample y = {yi}ni=1, the posterior draws iterate over two Gibbs blocks:

(a) Conditionally on the current values of the probabilities {π|y}, allocate each yi to a node (s, h).

(b) Conditionally on the node allocations, update the probabilities {π|y} with

πs,h|y = Ss,h|y
∏
r<s

(1− Sr,gshr
|y)Tshr|y (6)

using posterior draws of Ss,h|y and Rs,h|y.

The Beta density in (5) serves as a conjugate prior for the binomial conditional likelihood of data allocation

to node (s, h). Consequently, the posterior draws of Ss,h and Rs,h in (b) are taken from

Ss,h|y ∼ Be(1 + ns,h, a+ vs,h − ns,h) (7)

Rs,h|y ∼ Be(b+ rs,h, b+ vs,h − ns,h − rs,h) (8)
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where ns,h is the number of data points allocated to node (s, h), vs,h is the number of data points that ”pass

through” node (s, h) (i.e. are allocated to (s, h) or a node that overlaps (s, h) at a higher scale), and rs,h is

the number of data points that proceed down to the right at node (s, h) (i.e. are allocated to a node that

overlaps the right daughter node of (s, h) at a higher scale). vs,h has the interpretation of the total number

of binomial trials for the node (s, h). In the posterior (7) if we take ns,h as the number of “success” outcomes

then vs,h − ns,h is the number of “failure” outcomes. Similarly, in the posterior (8) if we take rs,h as the

number of “success” outcomes then vs,h−ns,h−rs,h is the number of “failure” outcomes. The parameters of

both posteriors reflect the standard beta-binomial conjugate updating of prior beliefs about the probability

of “success”.

2.2 Tree Sparsity with Spike and Slab Prior

In this Section, we extend the univariate CD setup by introducing a shrinkage spike-and-slab prior (SSP)

for sparsity on the posterior tree weights {π|y}. This will serve as a stepping stone for the multivariate case

that will be used in the subsequent copula dependence analysis.

The SSP is a hierarchical model in which a parameter κ either attains some fixed value κ0 with non-zero

probability, called “the spike”, or is drawn from some other prior p(κ) called “the slab”. When κ0 = 0 the

SSP can induce posterior sparsity, offering a principled probabilistic alternative to penalty-based regularizers

(Bai et al., 2022). The SSP was originally proposed as a tool for selection of subsets of predictor variables

in a linear regression model (Lempers, 1971; Mitchell and Beauchamp, 1988; Ishwaran and Rao, 2005).

Since its inception, the SSP has been extended to a variety of contexts, including generalized linear models,

factor analysis, graphical models, non-parametric regression, and function selection in Structured Additive

Regression (Scheipl et al., 2012).

An SSP prior for a parameter κ is constructed by introducing a latent variable γ such that

γ ∼ Bernoulli(ψ) (9)

κ|γ = 0 ∼ δ{κ0} (10)

κ|γ = 1 ∼ p(κ) (11)

where δ{0} is the Dirac measure of unit mass concentrated at κ0, and ψ is a parameter. Marginalizing over
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the distribution of γ, the SSP takes the form of a mixture model

κ ∼ ψp(κ) + (1− ψ)δ{κ0}. (12)

We change the prior for Ss,h in (2) to

Ss,h ∼ Be(κ, a) (13)

and for the parameter κ we specify the SSP hierarchical structure (9)-(12) with κ0 = 0. This reflects the

belief of the analyst that conditional on reaching the node (s, h) the probability of stopping there is κ, drawn

from (12). Thus, Ss,h, Rs,h, and by extension πs,h are endowed with a proper prior with full support over

the decision tree. The posterior draws of Ss,h, instead of (7), are now taken according to

Ss,h|y ∼ Be(κ+ ns,h, a+ vs,h − ns,h) (14)

The degree of approximation smoothness can be controlled by the parameter smax in (5) and by a further

optional hyperprior p(s) on s supported over the set of integers 1, . . . , smax.

Let us introduce the following definition.

Definition 1 For a binary decision tree node (s, h), let
[
hs−1
2s , hs

2s

)
denote its grid cell obtained by partitioning

of the unit interval at level s and node index h. Then, a posteriori, the node is called dormant if yi /∈[
hs−1
2s , hs

2s

)
for all i = 1, . . . , n, that is, if it does not contain any data point within its grid cell. Conversely,

the node is called active if yi ∈
[
hs−1
2s , hs

2s

)
for some i = 1, . . . , n, that is, if it contains at least one data point

within its grid cell.

In order to achieve posterior tree sparsity, our goal is to obtain posterior tree node weights with the property

πs,h|y < ε for dormant nodes (s, h). Here ε denotes a “machine epsilon” which is a very small number

indistinguishable from zero by computer floating-point arithmetic1. Such nodes can then be omitted from

posterior sampling in the implementation, yielding posterior tree sparsity.

In the SSP specification (9)-(11), if we let ψ → 0 then Pr(γ = 0) → 1 and therefore there exists a value ψ∗

close to 0 for which the property above will be satisfied. In the SSP (9) we set ψ to equal such value ψ∗.

1In the commonly used double precision real number representation in our application (64-bit IEEE 754 standard), the

machine epsilon is approximately 1× 10−16.
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Due to the SSP structure, the hyperparameter ψ can be interpreted in the prior for κ (12) as the weight the

analyst assigns to p(κ) as opposed to δ{κ0}. In the posterior for Ss,h (14), ψ reflects the influence of p(κ)

as opposed to the data information contained in vs,h and ns,h. Thus, our SSP specification minimizes the

influence of the prior p(κ) and places heavy emphasis on data information. The exact functional form of

p(κ) is immaterial.

The posterior sparsity scheme is illustrated in Figure 2 for n = 1, with active nodes marked in red, while

the remainder of the tree is dormant.

Figure 2: Posterior Tree Sparsity in One Dimension

For medium to large sample sizes, we expect most parts of the univariate tree to be active for nodes at

the lower levels of approximation. However, sparsity becomes progressively more pronounced in higher

dimensions, as we detail below. A key feature of a sparse tree that brings significant savings in posterior

computation time is that evaluations of π̃s,h only need to be performed along tree paths that contain at least

one data point in their grid cell, up to s = smax, i.e. the red nodes in the example in Figure (2).

2.3 Multivariate Multiscale Bernstein Mixture

We first restate the generalization the univariate msBP process of CD to higher dimensions d, as in Burda and

Prokhorov (2024), and then introduce a sparse alternative based on a multivariate version of the shrinkage

SSP prior. All intuition from the univariate case carries over to the multivariate scenario; instead of Beta

densities on [0, 1] we will use the Dirichlet density on the d-dimensional probability simplex with the SSP
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hierarchical prior on its concentration parameter.

Let Y be a random vector defined over a unit hypercube [0, 1]d with density f(y), which is assumed to follow

a multivariate multiscale mixture of Bernstein polynomials process

f(y) =

∞∑
s=0

(2s,...,2s)∑
h=(1,...1)

πs,h

d∏
j=1

Be(yj ;hj , 2
s − hj + 1) (15)

where yj is the jth coordinate of y ∈ [0, 1]d and hj is the node index within each scale s along the dimension

j, with h = (h1, . . . , hd). Similarly to the univariate case, h is implicitly indexed by its corresponding s

though we omit this indexing for notational convenience. A scheme of a tree for d = 2 is presented in Figure

3 up to s = 2.

Figure 3: Two-dimensional Tree Representation of a Bivariate
Multiscale Mixture of Bernstein Polynomials

Conditionally on reaching node (s,h), the random variable

Ss,h ∼ Be(1, a) (16)

denotes the probability of stopping at (s,h). Let (s,H) = {(s + 1,h1), . . . , (s + 1,h2d)} denote all the

daughter nodes of (s,h). Conditionally on not stopping at (s,h), the 2d−dimensional random vector

Qs,H ∼ Dir(b) (17)
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where Qs,H = (Qs+1,h1
, . . . , Qs,h

2d
) then denotes the probabilities of advancing at level s+ 1 to any one of

the 2d daughter nodes of the node (s,h). Dir(b) stands for the Dirichlet distribution with b = (b1, . . . , b2d).

The tree node prior weights are given by

πs,h = Ss,h

s−1∏
r=0

(
1− Sr,gshr

)
Qr,gshr

(18)

where gshr = (gsh1r, . . . , gshdr), with gshjr = ⌈hj/2s−r⌉, is the node traveled through at scale r on the way

to node h at scale s. The prior (16)-(18) is the multivariate counterpart of (2)-(4).

The scale smax approximation of (15) is then

fsmax(y) =

smax∑
s=0

(2s,...,2s)∑
h=(1,...1)

π̃s,h

d∏
j=1

Be(yj ;hj , 2
s − hj + 1) (19)

where π̃s,h is identical to πs,h except that all the stopping probabilities at scale smax are set to equal to one so

that the weights π̃s,h in (19) sum to one. The univariate msBP process (1) and its scale smax approximation

(5) are special cases of (15) and (19), respectively, for d = 1.

Similarly to the univariate case, conditionally on a data sample y = {yi}ni=1, the posterior draws iterate

over two Gibbs blocks:

(a) Conditionally on the current values of the probabilities {π|y}, allocate each yi to a node (s,h).

(b) Conditionally on the node allocations, update the probabilities {π|y} with

πs,h|y = Ss,h|y
s−1∏
r=0

(
1− Sr,gshr

|y
)
Qr,gshr

|y (20)

using posterior draws of Ss,h|y and Qs,H|y.

The Dirichlet distribution in (17) serves as a conjugate prior for the multinomial conditional likelihood of

data allocation to node (s,h). Consequently, the posterior draws of in (b) are taken from

Ss,h|y ∼ Be(1 + ns,h, a+ vs,h − ns,h) (21)

Qs,H|y ∼ Dir(b+ qs,H,b+ vs,h − ns,h − qs,H) (22)

where ns,h is a number of data points allocated to node (s,h), vs,h is a number of data points that pass

through node (s,h), and qs,H is a vector of the numbers of data points that proceed down to the respective
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daughter nodes (s,H). The Dirichlet-multinomial conjugate updating in (21) and (22) generalizes to d

dimensions the intuition detailed above for (7) and (8).

2.4 Multivariate Posterior Tree Sparsity

We now change the prior for Ss,h in (3) to

Ss,h ∼ Be(κ, a) (23)

and for the parameter κ we specify the SSP hierarchical structure (9)-(12) with κ0 = 0 and ψ = ψ∗. The

posterior draws of Ss,h, instead of (21), are now taken according to

Ss,h|y ∼ Be(κ+ ns,h, a+ vs,h − ns,h) (24)

This approach induces posterior tree sparsity by the same principle as detailed for the univariate case. A

node (s,h) is active if the event{
yi ∈

[
h− 1/2

2s
,
h

2s

)
for some i = 1, . . . , n

}
is true, and dormant otherwise. The sparsity scheme is illustrated in Figure 4 for one data point, n = 1,

with active nodes shaded while the remainder of the tree is dormant.

Figure 4: Tree Sparsity in 2 Dimensions

2.5 Comparison

In the univariate case of CD, and its non-sparse multivariate extension, in the node allocation step (a) a new

Markov Chain (MC) update si is drawn for each i from the multinomial with probabilities proportional to
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the total posterior probability mass associated with the given s,

Pr(si = s|yi) =

(2s,...,2s)∑
h=(1,...,1)

π̄s,h

d∏
j=1

Be(yij ;hj , 2
s − hj + 1)

where π̄s,h = πs,h/πs with

πs =

(2s,...,2s)∑
h=(1,...1)

πs,h

if πs exceeds a threshold ui ∼ U(0, πsi) from the previous MC draw.

Next, a new MC update of h, for each i and the corresponding si, requires a draw from a multinomial over

the support h = (1, . . . , 1), . . . , (2si , . . . , 2si) with posterior probability

Pr(hi = h|yi, si) = π̄si,h

d∏
j=1

Be(yij ;hj , 2
si − hj + 1)

The size of the support of this multinomial grows exponentially in d and rapidly increases with s. For

example, for d = 3 and smax = 10 the tree size exceeds 1 billion nodes, with as many weights πs,h required

for evaluation of fsmax
(y) in (19). These updates and approximation evaluations are feasible to implement

in real time only in very few dimensions for relatively shallow trees (CD used smax = 4 in their univariate

application with d = 1).

Nonetheless, for the non-sparse tree, even for moderate s the vast majority of the posterior sampling prob-

abilities for h will be very close to zero, since the product of the unimodal Be(yi;hj , 2
si − h+ 1) functions

peaks over the node (s,h) that contains yi and drops sharply to zero over nodes that cover the support of

[0, 1]d for values that move away from yi. This reflects the inherent sparsity property of the copula functions

mentioned in the Introduction. These negligible posterior mass nodes are very unlikely to be allocated with

an h update and hence the prior over them will only rarely be updated by the data in forming the posterior.

Our SBP approach shrinks such weights below computer zero and eliminates them from evaluation for the

MC updates of the posterior.

The ramifications of the curse of dimensionality in higher dimensions are similar in the tree weights update

step (b), which requires
∑smax

s=0 2d×s evaluations of ns,h, vs,h, and draws from (21) and (22), which quickly

reach billions of operations in just a handful of dimensions for moderate tree depths. Our SBP approach

allows us to perform the required updates only along the active paths through sparse trees, rendering their

implementation feasible in real time. In the sparse tree there can be at most smaxN active nodes which is
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substantially less than 2d×smax in the non-sparse tree. For example, for d = 3 and smax = 10 the sparse tree

will have around 10, 000 active nodes while the size of the non-sparse tree exceeds 1 billion nodes.

Which nodes are active in the posterior and hence the exact size of the sparse tree depends on the sample

{y}ni=1. For illustration, we compare the sizes of the sparse versus the non-sparse tree in Table 1 below,

based on a random sample drawn from U [0, 1]d. In just a few dimensions for a relatively small scale s the size

of the non-sparse tree exceeded the size of the sparse tree by orders of magnitude. In three dimensions for

s > 10 the non-sparse tree was not feasible to store in the memory of our Dell Precision T7960 workstation.

d = 1 d = 2 d = 3
smax Non-sparse Sparse Non-sparse Sparse Non-sparse Sparse

1 3 2 5 2 9 2
2 7 6 21 10 73 18
3 15 10 85 18 585 34
4 31 14 341 26 4,681 50
5 63 22 1,365 57 37,449 119
6 127 37 5,461 119 299,593 212
7 255 63 21,845 212 2,396,745 312
8 511 108 87,381 311 19,173,961 412
9 1,023 175 349,525 411 153,391,689 512
10 2,047 253 1,398,101 511 1,227,133,513 612
11 4,095 346 5,592,405 611 - 712
12 8,191 443 22,369,621 711 - 812
13 16,383 543 89,478,485 811 - 912
14 32,767 643 357,913,941 911 - 1,012
15 65,535 743 1,431,655,765 1,011 - 1,112
16 131,071 843 - 1,111 - 1,212
17 262,143 943 - 1,211 - 1,312
18 524,287 1,043 - 1,311 - 1,412
19 1,048,575 1,143 - 1,411 - 1,512
20 2,097,151 1,243 - 1,511 - 1,612

Table 1: Summary of Estimated Coefficients

Figure 5 shows the location of active nodes in a tree for a simulated sample of 100 observations shaded in

black while dormant nodes remain white.

3 Copula Link with Marginal Distributions

Due to its support on a d−dimensional hypercube, the mixture of Bernstein polynomials process (15) can

be used to represent a non-parametric copula density model. We will link it with marginal distributions

supported on the real line to obtain a general joint dependence structure for a real-valued vector of random

variables. This approach extends Burda and Prokhorov (2014) who considered a random Bernstein poly-

nomial prior without multiscale adaptivity and sparsity. Where applicable, we will use the notation and
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Figure 5: Active Nodes

terminology of Wu and Ghosal (2008), henceforth WG, whose results we use to establish the conditions for

posterior consistency.

Let X ⊆ Rd be a sample space with elements x, Θ the space of a mixing parameter θ, and Φ the space of

a hyper parameter ϕ. Let D(X ) denote the space of probability measures F on X . Denote by M(Θ) the

space of probability measures on Θ and let P be the mixing distribution on Θ with density p and a prior Π

on M(Θ) with weak support supp(Π). Denote the prior for ϕ by µ, and the support of µ by supp(µ), with

µ independent of P . Let K(x; θ, ϕ) be a kernel on X × Θ × Φ, such that K(x; θ, ϕ) is a jointly measurable

function with the property that for all θ ∈ Θ and ϕ ∈ Φ, K(·; θ, ϕ) is a probability density on X . Π, µ and

K(x; θ, ϕ) induce a prior on D(X ) via the map

(ϕ, P ) 7→ fP,ϕ(x) ≡
∫
K(x; θ, ϕ)dP (θ) (25)

Denote such composite prior by Π∗.

Let

y = F (x; θm, ϕm)

=

∫ x

−∞
Km(t; θm, ϕm)dt

(26)

where F is a vector of marginal cdfs of x obtained by integrating a vector of marginal density kernels Km,

θm is a marginal mixing parameter, and ϕm is a marginal hyperparameter. Denote the copula kernel in (15)
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by

Kc(y; θc, ϕc) = f(y) (27)

where θc is a copula mixing parameter and ϕm is a copula hyperparameter. The joint kernel in (25) can now

be expressed as

K(x; θ, ϕ) = Kc(F (x; θm, ϕm); θc, ϕc)Km(x; θm, ϕm) (28)

where

Km(x; θm, ϕm) =

d∏
j=1

Kmj(xj ; θmj , ϕmj). (29)

With the view to our financial application, we specify the prior structure on the marginal kernel as in Auśın

et al. (2014), with a dynamic Dirichlet Process mixture model:

xt = γ + h
1/2
t εt

ht = ω + αxt−1 + βht−1

εt|λt ∼ N(0, λ−1
t )

λt|G ∼ G

G|ν,G0 ∼ DP (ν,G0)

where DP (ν,G0) is the Dirichlet process with concentration parameter ν and base measure G0.

4 Posterior Consistency

In this Section we will establish the conditions for posterior consistency of the SBP. Schwartz (1965) proved

a seminal result on Bayesian consistency showing that posterior consistency at a “true density” f0 holds

if the prior assigns positive probabilities to a specific type of neighborhoods of f0 defined by Kullback-

Leibler divergence measure (the so-called Kullback-Leibler property) and the size of the model is restricted

in an appropriate sense. For the weak topology, the size condition holds automatically (Ghosal, Ghosh,

and Ramamoorthi, 1999, Theorem 4.4.2) and hence proving the Kullback-Leibler (K-L) property also proves

weak posterior consistency.
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Denote by F the set of all possible joint densities with respect to probability measures in D. Define a K-L

neighborhood of a density f ∈ F of size ε by

Kε(f) ≡ {g ∈ F : K(f ; g) < ε}

where

K(f ; g) =

∫
f log(f/g)

is the K-L divergence between f and g. By convention, we say that the K-L property holds at f0 ∈ F or f0

is in the K-L support of Π∗, and write f0 ∈ KL(Π∗) if Π∗ (Kε(f0)) > 0 for every ε > 0.

WG specified high-level conditions under which the K-L property holds for a mixture density fP,ϕ(x) of the

form (25) for a general kernel K(x; θ, ϕ) with priors µ and Π for ϕ and P , respectively, and the prior Π∗

induced by µ and Π on D(X ). Specifically, if for any ε > 0, there exists Pε, ϕε, A ⊂ Φ with µ(A) > 0 and

W ⊂ M(Θ) with Π(W) > 0, such that:

A1.
∫
f0 log

(
f0(x)

fPε,ϕε (x)

)
< ε ;

A2.
∫
f0 log

(
fPε,ϕε (x)
fPε,ϕ(x)

)
< ε for every ϕ ∈ A,

A3.
∫
f0 log

(
fPε,ϕ(x)
fP,ϕ(x)

)
< ε for every P ∈ W, ϕ ∈ A,

then f0 ∈ KL(Π∗) (WG, Theorem 1).

WG further showed that these Conditions A1–A3 were satisfied under specific low-level conditions for certain

kernel types, such as the location-scale kernel, gamma kernel, random histogram, and the Bernstein polyno-

mial kernel. Using a toolkit similar to WG, we provide the low-level conditions under which Conditions A1

and A3 and hence weak posterior consistency holds for our sparse multiscale Bernstein copula kernel (28).

Since we do not specify hyperparameter priors in the copula or marginal kernels, ϕc and ϕm are vacuous in

our case and we can drop them from further notation, rendering Condition A2 redundant.

Condition A1 was established to hold for a variant of (28) with a non-sparse single-level copula kernel Kc(·)

in Theorem 1 of Burda and Prokhorov (2014) under the following Conditions:

B1. For some 0 < f <∞, 0 < f0(x) ≤ f for all x;

B2. For some 0 < p <∞, 0 < p(θ) < p for all θ, where p(θ) is the density with respect to P ;

B3. Km(x; θm) is continuous in x, positive, bounded and bounded away from zero everywhere;

B4. Kc(·), Km(·), log fPε(x), logKc(·)Km(·), and infθ∈DKc(·)Km(·) are f0-integrable, the latter for some
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closed D ⊃ supp(Pε);

B5. For some 0 < K <∞,
∫
Kc

(∫ x

−∞Km(t; θm)dt; θc)
)
Km(x; θm)dθ = K for all x;

B6. The weak support of Π is M(Θ).

Conditions B1 and B2 require the true density and mixing prior density to be bounded and bounded away

from zero. Condition B3 specifies regularity and boundedness conditions on the marginal kernel. Conditions

B4 and B5 provide regularity and f0-integrability conditions for both the copula and marginal kernels and

their integrals. Condition B6 is relatively weak and does not make any specific assumptions on Π other

than requiring that it has large weak support. Thus, Π accommodates a wide class of priors including the

Dirichlet process.

Our SBP copula kernel Kc(·) that appears in Conditions B4 and B5 differs from Burda and Prokhorov (2014)

while the other objects in B1–B6 are the same. Condition B4 is an assumption on f0 that we maintain as

being satisfied. What remains to be verified here is that B5 holds in our case under low-level assumptions.

For any multiscale tree node (s,h) the Beta density is continuous over the compact unit interval and so is

their product over the unit hypercube, which is then bounded by the Extreme Value Theorem. Its weighted

average Kc

(∫ x

−∞Km(t; θm)dt; θc)
)
in (27) is then also bounded and merely rescales a Gaussian marginal

density kernel by a finite number. The Gaussian mixture in Condition B5 therefore remains bounded.

Condition A3 was assumed to hold in Burda and Prokhorov (2014) by assuming that the sufficient conditions

hold in WG Lemma 3 (updated in Wu and Ghosal, 2009). While its first two boundedness Assumptions A7

and A8 are directly satisfied by Conditions B3 and B4, here we newly show that the uniform equicontinuity

Assumption A9 is also satisfied for our SBP copula kernel. Assumption A9 absent of hyperparameters

stipulates that for a compact C ⊂ X , there exists E containing D in its interior such that the family of maps

{θ 7→ K(x; θ),x ∈ C} is uniformly equicontinuous on D. In our case, from (26)–(29),

K(x; θ) = (2π)−1/2
∞∑
s=0

(2s,...,2s)∑
h=(1,...,1)

πs,h

d∏
j=1

Be(yj(xj);hj , 2
s − hj + 1)σ−1

j exp
(
−(xj − γj)

2/(2σ2
j )
)

(30)

with θc = {πs,h}, θm = {γj , σ2
j }dj=1, and θ = {θm, θc}. By the definition of uniform equicontinuity, we need

to show that for any ε > 0, there exists δ > 0 such that for all x ∈ C and all θ, θ′ ∈ D with ∥θ − θ′∥ < δ

we have |K(x; θ) − K(x; θ′)| < ε. The product of beta densities over the unit cube is bounded, and so is

its product with the Gaussian kernel for ∥θm∥ < ∞. By the stick-breaking construction of (18), the tree

weights πs,h sum up to one with
∑

h πs,h
s→∞−−−→ 0 and therefore c ≡ supθ∈DK(x; θ) <∞. Let δ = ε/c, then
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for ∥θ − θ′∥ < δ we have |K(x; θ)−K(x; θ′)| < ε which satisfied the definition of uniform equicontinuity for

K(x; θ) on D.

5 Application to Value at Risk and Expected Shortfall

We apply our approach to one-day-ahead Value at Risk (VaR) and Expected Shortfall (ES) prediction for a

portfolio consisting of several assets. We chose the AOR iShares Portfolio that has been named by Forbes

Advisor as the best core balanced Exchange-Traded Fund (ETF) of April 2024 (Friedberg and Adams, 2024).

The portfolio is composed of seven assets as detailed in Table 2. We omitted cash holdings with less than

0.5% portfolio weight.

Ticker Name Sector Asset Class Weight (%)

IVV iShares core S&P 500 ETF Corporates Equity 34.5

IUSB iShares core total USD bond market Corporates Fixed Income 33.1

IDEV iShares core MSCI int devel ETF Corporates Equity 17.0

IEMG iShares core MSCI emerging markets Corporates Equity 6.0

IAGG iShares core Intl Aggregate Bnd ETF Corporates Fixed Income 5.8

IJH iShares core S&P mid-cap ETF Corporates Equity 2.0

IJR iShares core S&P small-cap ETF Corporates Equity 0.9

Table 2: AOR iShares Portfolio

Our data contains daily log returns of these assets from January 3, 2022 to May 31, 2024, obtained from

Yahoo Finance (https://finance.yahoo.com), with total sample size T = 606 observations. The data series

are plotted in Figure 9 in the Appendix, along with the numerical implementation algorithm for our SBP

copula.

For sampling of the marginal distributions we follow Auśın et al. (2014). With 7 assets in our portfolio there

are 21 pairwise combinations for visual inspection of the nonparametric copula dependence structure so we

chose the mid-cap and small-cap equities, IJH and IJR, that are closely correlated, for illustration. For these

two assets, Figure 6 shows the copula density, a heatmap overlaid with marginal cdfs evaluated at individual

data points (left), and a 3D surface plot (right).
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Figure 6: Copula Density

Starting from about 60% of the data set as a training sample spanning June 3, 2022 to May 31, 2023, we ran2

the implementation algorithm detailed in the Appendix for 1, 000 iterations following a 100 burn-in section

for each trading day of the following year, June 1, 2023 to May 31, 2024. At each day and iteration, we drew

a simulated value from the one-day-ahead predictive copula density for the next trading day. The algorithm

was initialized at the modal parameter values for the marginals and a random draw from the prior for the

copula. A dot plot of the copula predictive density draws (blue) overlaid with the marginal cdfs evaluated

at individual data points (red) is visualized in Figure 7.

Figure 7: Simulated Draws from Copula Density

2Computations were performed in Modern Fortran on a Dell 7960 workstation with Windows Subsystem for Linux (WSL2)

using the freely available Nvidia High Performance Computing (HPC) Software Development Kit (SDK). The marginal param-

eter sampling was implemented in parallel via Message Passing Interface (MPI), with root sampling of the copula structure.

The full simulation run took about 1 hour to complete.
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We inverted each simulated draw through the corresponding marginal densities, and calculated the resulting

simulated portfolio value. From the 1, 000 draws for each day we obtained the corresponding quantile and

average to obtain the prediction of VaR and ES, respectively. The daily predictions are shown in Figure 8.

We observe that the predicted VaR and ES adapt to changes in volatility. We note that such computations

for a portfolio of this dimension would be infeasible using standard nonparametric methods.

Figure 8: Value-at-Risk and Expected Shortfall

6 Conclusion

In this paper we propose a multivariate multiscale Bernstein polynomial (SBP) model based on a shrinkage

spike-and-slab prior structure. Bernstein polynomial functional approximation components with relatively

high posterior probability mass are retained in the multivariate tree while components with small weights are

dropped. We use the resulting model in a nonparametric copula dependence structure on a unit hypercube

and further combine it with nonparametric marginals for general density estimation, establishing conditions

for posterior consistency. The sparse posterior requires only a fraction of the run time and memory size

relative to its non-sparse counterpart, which makes it suitable for implementation in higher dimensions. We

illustrate its practical usefulness in an application forecasting the Value at Risk and Expected Shortfall of a

financial portfolio in a scenario where implementation of the non-sparse counterpart would be infeasible.
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Appendix

Implementation Algorithm

1. Initialize, for s = 1, ..., smax:

(a) Obtain the indices of active nodes (s,h)

(b) Draw π̃s,h from the SBP prior

(c) Evaluate
∏d

j=1Be(yij ;hj , 2
s − hj + 1)

2. For each i = 1, ..., N, using values from 1(c) and 1(d), update the latent allocation variable s∗i by

drawing from a multinomial over si = 1, ..., smax, where

P (si = s|·) ∝ π̃s,h

d∏
j=1

Be(yij ;hj , 2
s − hj + 1)

for active nodes (s,h) only

3. For all active nodes (s,h) update:

(a) ns,h, vs,h

(b) Ss,h ∼ Be(1 + ns,h, a+ vs,h − ns,h), Ssmax,· = 1

(c) hs,h ∼ Dir(b+ vs+1,h1
, . . . , b+ vs+1,hK

) for the K active nodes at level s+ 1

(d) π̃s,h = Ss,h

∏s−1
r=0

(
1− Sr,gshr

)
Hr,gshr

4. Loop over 2 and 3.

5. If applicable, output new density estimate over a grid, only including non-zero π̃s,h terms for active

nodes (s,h) in the summation (19).

20



Data Series Plots

Figure 9: Data Series
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