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Abstract

In this paper, we perform a Bayesian analysis of a panel probit model with unob-
served individual heterogeneity and serially correlated errors. We augment the data with
latent variables and sample the unobserved heterogeneity component with one Gibbs
block per individual using a �exible piecewise log-linear approximation to the marginal
posterior density. The latent time e¤ects are simulated with one Gibbs block per time
period. For this purpose we develop a new user-friendly form of the E¢ cient Importance
Sampling proposal density for an Acceptance-Rejection Metropolis-Hastings step. We
apply our method to the analysis of product innovation activity of a panel of German
manufacturing �rms in response to imports, foreign direct investment and other control
variables. The dataset in our application was analyzed under more restrictive assump-
tions by Bertschek and Lechner (1998) and Greene (2004). Although our results di¤er
to a certain degree from these benchmark studies, we con�rm the positive e¤ect of im-
ports and FDI on �rms�innovation activity. Moreover, unobserved �rm heterogeneity
is shown to play a more signi�cant role in the application than the latent time e¤ects.
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1 Introduction

It has long been recognized that maximum likelihood analysis of limited dependent vari-

able (LDV) models with panel data is feasible only under relatively restrictive assumptions

(Butler and Mo¢ tt, 1982). The di¢ culty that such models pose in general lies in the eval-

uation of a likelihood function containing multivariate integrals that are often analytically

intractable.

Fuelled by advances in computation such as data augmentation (Tanner and Wong,

1987), the last two decades witnessed an explosion of interest in Bayesian models that

had previously been regarded as numerically unfeasible. Under this framework, the latent

variables within multivariate integrals are treated as model parameters and are sampled

along with them. The Bayesian Gibbs sampling scheme is naturally suited for such purpose:

high-dimensional multivariate integrals forming the likelihood function are factorized into

sequences of low-dimensional conditional densities each of which is sampled individually.

Embedding these low-dimensional subproblems within a Markov chain yields draws from

the joint posterior which are the used directly for inference.

Due to their �exibility and conceptual simplicity, Bayesian methods successfully com-

pete against simulation-based frequentist techniques, such as Simulated Maximum Like-

lihood (SML)1. The advantages of the former become more pronounced with increased

dimensionality of the underlying problem. For example, in our setup the SML approach

would require a large number of latent variable draws in order to accurately approximate

the integral likelihood function for each parameter value embedded within an optimization

algorithm. In contrast, Gibbs sampling takes one latent variable draw for each parameter

value until convergence. In many cases, this implies that Bayesian parameter estimation is

substantially faster than SML. Multiple local modes in the SML objective function for a

given dataset are another potential concern which is alleviated using the Bayesian setup.

Other advantages of Bayesian inference in latent variable models are discussed e.g. in Paap

(2002). Moreover, Bayesian hierarchical models can be readily extended to incorporate in-

ference on latent classes of similar individuals or mixtures of distributions for various objects

of interest (see e.g. Rossi et al., 2005).

In this paper, we perform a Bayesian analysis of a panel probit model with unobserved

individual heterogeneity and autocorrelated errors with unobserved random heterogeneity

along both dimensions. The unobserved time random e¤ect is assume to be serially corre-

lated and common to all individuals. Our approach, based on proposal densities partially

constructed with the E¢ cient Importance Sampling (EIS) procedure (Richard and Zhang,

2007), allows for inference within a rich high-dimensional economic model environment. We

augment the data with latent variables and sample the unobserved individual heterogeneity

1Gourieroux and Monfort (1996) provide the essential statistical background for the SML estimator.
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component with one Gibbs block per individual, drawing from a �exible piecewise log-linear

approximation to the marginal posterior density. The time e¤ects are simulated in a se-

ries of Gibbs blocks with a parametric EIS proposal density for an Acceptance-Rejection

Metropolis-Hastings step.

We apply our method to the product innovation activity of a panel of German manufac-

turing �rms in response to imports, foreign direct investment and other control variables.

The same dataset was analyzed by Bertschek and Lechner (1998) and Greene (2004) for

di¤erent types of frequentist estimators under more restrictive assumptions providing a

useful benchmark for comparison with our results.2 Speci�cally, Bertschek and Lechner

(1998) proposed several variants of a GMM estimator based on the period speci�c regres-

sion functions. Greene (2004) performed maximum likelihood analysis with GHK-SML and

the Hermite quadrature method (see Butler and Mo¢ tt, 1982). None of these authors

considered a model with unobserved individual heterogeneity and autocorrelated errors as

analyzed in this paper.

The remainder of the paper is organized as follows. Section 2 outlines the empirical

example and the GMM and ML estimators of the dynamic panel probit models considered

by Bertschek and Lechner (1998) and Greene (2004). In Section 3 we present our Bayesian

analysis. The results of our empirical application are discussed in Section 4. Section 5

concludes.

2 Empirical Example and Estimation Methods

The goal of our empirical application is to investigate �rms�innovative activity as a response

to imports and foreign direct investment (FDI). This problem was originally considered

in Bertschek (1995) who suggested that imports and inward FDI had a positive e¤ect

on the innovative activity of domestic �rms. The rationale behind this argument is that

imports and FDI represent a competitive threat to domestic �rms. Competition on the

domestic market is enhanced and the pro�tability of the domestic �rms might be reduced.

Consequently, these �rms have to produce more e¢ ciently. One possibility to react to this

competitive threat is to increase innovative activity.

The analyzed dataset contains N = 1270 cross-section units observed over T = 5 time

periods. The dependent variable yit in the data takes the value one if a product innovation

occurred within the last year and zero otherwise. The K�vector of control variables is
denoted by xit and the corresponding vector of parameters to be estimated by �. The

independent variables refer to the market structure, in particular the market size of the

industry (ln(sales)), the shares of imports and FDI in the supply on the domestic market

2Similar data set was used in an interesting paper by Inkmann (2000) but with some regressors di¤erent
from ours.
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(import share and FDI share), the productivity as a measure of the competitiveness of the

industry as well as two variables indicating whether a �rm belongs to the raw materials

or to the investment goods industry. Also, including the relative firm size accounts

for the innovation ��rm size relation often discussed in the literature. All variables with

exception of the �rm size are measured at the industry level. Descriptive statistics and

further discussion appear in Bertschek and Lechner (1998) and Greene (2004).

Companies may di¤er in their propensity to innovate. Two components can be distin-

guished with regard to this phenomenon. The �rst one relates to the existence of company-

speci�c attributes that are time-invariant. This component is typically called unobserved

heterogeneity and we account for it by including a time-invariant company-speci�c error

term � i: It may re�ect unobserved institutional factors such as managerial entrepreneurship

that cannot be directly included among the regressors. The second component takes into

account that economy-wide factors in�uencing all companies alike may be correlated over

time.

2.1 Alternative Panel Probit Model Speci�cations

The panel probit model has been analyzed extensively under various assumptions in the

literature. In this Section, in addition to the basic probit model, we brie�y review two

studies, Bertschek and Lechner (1998) and Greene (2004), which used the same dataset as

in this paper and are therefore of particular relevance as benchmarks for discussion of our

results. In doing so, we present only the least restrictive models analyzed by these authors.

2.1.1 Model 1: Pooled Probit

The simplest probit estimator treats the entire sample as if it were a large cross-section.

Speci�cally, it postulates the latent variable probit model speci�cation

y�it = �
0
0
xit + �it (1)

with the observation rule

yit = 1 (y
�
it � 0) ; i : 1; :::; N ; t : 1; :::T (2)

where 1 (�) denotes the indicator function. The error terms �it are normally distributed with
zero mean and unit variance.
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2.1.2 Model 2: Panel Probit with Autocorrelated Errors

Bertschek and Lechner (1998) assume the latent variable probit model speci�cation (1) with

the observation rule (2). However, their error terms �i = (�i1; :::; �iT )
0 are modeled as jointly

normally distributed with mean zero and covariance matrix �: Also, �i is independent of

the explanatory variables which implies strict exogeneity of the latter. The error terms

may be correlated over time for a given �rm, but uncorrelated across �rms. The diagonal

elements of � are set to unity for identi�cation of � and the o¤-diagonal elements are

considered nuisance parameters. On the basis of the model (1) Bertschek and Lechner

(1998) formulated the following set of moment conditions:

E[W (Z; �0)jX] = 0

W (Z; �) = [w1(Z1; �); :::; wT (ZT ; �)]
0

wt(Zt; �) = Yt � �(�0Xt) (3)

where � denotes the CDF of a univariate normal distribution, Z = (Z 01; : : : ; Z
0
T )
0; Zt =

(Yt; X
0
t): The main advantage of using these moments is that their evaluation does not

require multidimensional integration and that they do not depend on the T (T � 1)=2 o¤-
diagonal elements of �: In line with the GMM literature, (3) implies

E [A(X)W (Z; �0)] = 0

where A(X) is a P � T matrix of instrumental variables. An e¢ cient GMM estimator of

�0 is then de�ned as b�N = argmin
�
g0N (�)


�1gN (�) (4)

where

gN (�) =
1

N

NX
i=1

A(xi)W (Zi; �)

and 
 is a consistent estimator of the covariance matrix of A(X)W (Z; �0) �see Hansen

(1982). Bertschek and Lechner (1998) obtained a nonparametric estimate of the optimal

weighting matrix 
 using a k-nearest neighbor (k-NN) approach.

2.1.3 Model 3: Random Parameters Model

Greene (2004) noted that the dataset used by Bertschek and Lechner (1998) presents a

considerable amount of between group variation (97.6% of the FDI variation and 92.9%

of the imports share variation is accounted for by di¤erences in the group means). Thus,

it is likely to contain a signi�cant degree of unobserved individual heterogeneity which the
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model presented above ignores. Greene (2004) suggested two alternative formulations of the

panel probit model: the Random Parameters Model and the Latent Class Model (discussed

further below). The Random Parameters Model (�Hierarchical� or �Multilevel�Model) is

based on the latent variable probit model speci�cation

y�it = �
0
i
xit + �it

with the observation rule (2), �it � NID[0; 1]; and

�i = �+�zi + �wi

where � is K � 1 vector of location parameters, � is K � L matrix of unknown location
parameters, � is K�K lower triangular matrix of unknown variance parameters, zi is L�1
vector of individual characteristics, wi is K � 1 vector of random latent individual e¤ects

with E[wijXi; zi] = 0 and V ar[wijXi; zi] = V; a K�K diagonal matrix of known constants.

Hence E[�
i
jXi; zi] = � + �zi and V ar[�ijXi; zi] = �V �0: Conditional on wi; observations

of yit are independent across time; timewise correlation would arise through correlation of

elements of �
i
: The joint conditional density of yit is

f
�
yijXi; �i

�
=
YT

t=1
�[(2yit � 1)�0ixit] (5)

The contribution of this observation to the log-likelihood function for the observed data is

obtained by integrating the latent heterogeneity out of the distribution. Thus

logL =
NX
i=1

logLi =
NX
i=1

log

Z
�i

YT

t=1
�[(2yit � 1)�0ixit]g(�ij�;�;�; zi)d�i (6)

Estimates of �; � and � are obtained by maximizing the SML version of (6).

2.1.4 Model 4: Latent Class, Finite Mixture Model

The Latent Class model arises if we assume a discrete distribution for �i instead of the

continuous one postulated above. Alternatively, it can be viewed as arising from a discrete,

unobserved sorting of �rms into groups, each of which has its own set of characteristics. If

the distribution of �i has �nite, discrete support over J points (classes) with probabilities

p(�j j�;�;�; zi); j = 1; :::; J; then the resulting formulation of the analog of Li from (6) is

Li =
XJ

j=1
p(�j j�;�;�; zi)f

�
yijXi; �j

�
The model can then be estimated using the EM algorithm (see Greene, 2004, for details).
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3 Panel Probit with Unobserved Individual Heterogeneity
and Autocorrelated Errors

Our panel probit model di¤ers from the ones described above by an explicit inclusion of

latent variables for both individual heterogeneity and time e¤ects. Speci�cally, our stan-

dardized probit model speci�cation assumes a latent variable regression for individual i and

time period t

y�it = �
0xit + � i + �t + �it; i : 1; :::; N ; t : 1; :::; T (7)

under the observation rule (2), where xit is a vector of explanatory variables and �it �
N(0; 1) is a stochastic error component uncorrelated with any other regressor. � i � N(0; �2� )
represents individual unobserved heterogeneity. �t captures latent time e¤ects and is as-

sumed to follow a stationary autoregressive process

�t =
kX
j=1

�j�t�j + �t

where �t � N(0; �2�). It is assumed that �ti; � i and �t are mutually independent. The

vector of parameters to be estimated is � = (�0; �� ; �1; :::; �k; ��)
0: Denote � = (�1; :::; �T )0

and � = (�1; :::; �N )0:

The likelihood function associated with y = (y11; :::; yTN )0 can be written as

L(�; y) =

Z
g(� ; �; �; y)p(� ; �; �)d�d� (8)

with

g(� ; �; �; y) =
NY
i=1

TY
t=1

[�(vit)]
yit [1� �(vit)]1�yit

where

vit = �
0xit + � i + �t

and

p(� ; �; �) = ��N� (2�)�N=2 exp

"
� 1

2�2�

NX
i=1

�2i

#
(2�)�T=2 j��j�1=2 exp

�
�1
2
�0��1� �

�
(9)

and �� denotes the stationary variance-covariance matrix of �: See Richard (1977) for an

analytical expression for ��1� :

Bayesian MCMC simulation methods such as Gibbs sampling rely upon sampling from

conditional posterior distributions in order to construct a Markov chain whose equilibrium
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distribution is the joint posterior of the parameters given the data. For the panel probit

model, the joint posterior distribution of parameters can be augmented with the vectors

of latent variables � and �: The complete joint posterior f(�; � ; �jZ) can then be drawn
from using Gibbs sampling. The main di¢ culty with such an MCMC approach is that of

e¢ ciently sampling � i and � since the corresponding multivariate posterior distributions

are high-dimensional and have no closed-form solution.

To overcome this problem, Liesenfeld and Richard (2006) proposed combining the EIS

sampler with the Acceptance-Rejection Metropolis-Hastings (AR-MH) algorithm of Tier-

ney (1994) in simulating the autocorrelated error component in stochastic volatility models

along the time dimension. In this paper, we also take the general approach of combining

EIS with AR-MH but introduce a new user-friendly parametrization of the EIS proposal

density along the time dimension of �j�; Z. Speci�cally, we approximate with a �rst-stage
EIS kernel only the part of the likelihood that arises from the probit model speci�cation,

and then recombine this approximation analytically with the known AR likelihood assumed

for the latent time process in order to form the desired second-stage EIS proposal density.

This results in signi�cant simpli�cation in constructing the proposal density. The unob-

served individual heterogeneity components � ij�; Z are sampled as N Gibbs blocks drawing

from a piecewise log-linear approximation to the marginal posterior density constructed as

described in DeJong et al. (2007). The justi�cation for these procedures is that the resulting

proposal densities for � ij�; Z and �j�; Z provide very close approximations to f(� ij�; Z) and
f(�j�; Z); respectively. The piecewise log-linear approximation to f(� ij�; Z) freely adapts
to the shape of the posterior and can be made arbitrarily precise by increasing the size of

the simulation grid. For f(�j�; Z); given the model assumptions, one �nds that the EIS
parametric density provides an e¢ cient proposal density for the target posterior f(�j�; Z)
in the AR-MH step with acceptance rates close to 100% in our empirical application.

Actually, we shall apply Gibbs sampling to an augmented vector which includes not

only the parameters � but also the latent variables �, � and y�it. Therefore, let � =

(Y �; �; �; � ; �2�; �
2
� ; �) and let � without a generic subvector �j be denoted as �=�j : For a

given � the augmented likelihood L(�; y) is de�ned as the integrand in equation (8). For

each Gibbs block of �j the Bayesian optimal updating of prior beliefs, �(�j); with new

information (data Z) takes the form

f(�j j�=�j ; Z) / L(�; y)�(�j) (10)

The individual Gibbs blocks used are �; �� ; ��; �; �; and � ; given data and the remaining

augmented parameters. Throughout the analysis we make use of di¤use priors. Details of

sampling from the posterior distributions are described in Appendix 2.
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4 Empirical Results

In this section, we �rst reproduce the pooled probit estimates and the results obtained by

Bertschek and Lechner (1998) and Greene (2004) as a benchmark for comparison with our

results. Although these authors also report estimates of models other than shown below, we

only select the ones with the least restrictive assumptions on the underlying probit models.

Table 1 presents the basic case of Pooled Estimator of Model 1 (pooled probit) in (1)

estimated in Stata using the command �probit�. Table 1 also reports the Bertschek and

Lechner (1998) GMM parameter estimates of Model 2 (autocorrelated errors) with a k-NN

estimate of 
 in (4) and the Greene (2004) random parameter model prior means estimates

of Model 3 (random parameters). As discussed in Greene (2004), there are some substantial

di¤erences compared to the other two models. Especially noteworthy are the greater impacts

of the two central parameters of imports and FDI share on innovations as implied by the

random parameters model. Nonetheless, these e¤ects are positive in all cases as predicted.

Table 2 lists the Greene (2004) latent class estimates of Model 4 (�nite mixture). Ac-

cording to Greene (2004), working down from the number of classes J = 5 the estimates

stabilized at the reported J = 3: Despite a large amount of variation across the three classes,

the original conclusion that FDI and imports positively a¤ect the probability of product

innovation continued to be supported.

Table 3 presents our Bayesian posterior means and medians of parameters of our latent

panel probit model as de�ned by equation (7) with �rst order AR. Posterior marginal

densities, MCMC chains and autocorrelation functions of the parameter draws are presented

in Figures 2 to 6. The latter two results highlight the excellent mixing properties of our

Markov chains.

We excluded from estimation three distant outliers with relative �rm size larger than 0:1

and productivity larger than 0:8 (compare with the horizontal scales in Figure 1) as these

observations may potentially induce numerical instabilities. The three excluded observations

with large relative size have also disproportionately large values of import share and FDI

- our two key variables of interest. The means of the three outliers are 0:402 and 0:208

contrasting with means of the rest of the sample of 0:252 and 0:045 for import share and

FDI, respectively. The exclusion reduced our sample size to N = 1267 and T = 5:

We note that with few exceptions the point estimates reported in Tables 1 and 2 lie

within two standard deviations of our EIS-MCMC posterior means. The pattern of pa-

rameter signi�cance matches closely previous results with the exception of sector dummy

variables; these were previously found either both signi�cantly di¤erent from zero or the

converse. In our case, the raw materials dummy turned out not signi�cant while the in-

vestment good dummy was estimated as signi�cant. The posterior means of the two key

parameters of FDI and import share are positive and generally higher than the point esti-
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Table 1: Models 1-3

Model 1a Model 2b Model 3c

Variable Estimate Std.Err. Estimate Std.Err. Estimate Std.Err.
Constant -1.960�� 0.230 -1.74�� 0.37 -3.134�� 0.191
log sales 0.177�� 0.022 0.15�� 0.03 0.306 -
Rel size 1.072�� 0.142 0.95�� 0.20 3.735�� 0.184
Imports 1.133�� 0.151 1.14�� 0.24 1.582�� 0.126
FDI 2.853�� 0.402 2.59�� 0.59 3.111�� 0.320
Prod. -2.341�� 0.715 -1.91�� 0.82 -5.786�� 0.755
Raw Mtl -0.279�� 0.081 -0.28�� 0.12 -0.346�� 0.077
Inv good 0.188�� 0.039 0.21�� 0.06 0.238 0.453
a Pooled probit, estimated in Stata by the simple command �probit�.
b Probit with autocorrelated errors, Bertschek and Lechner (1998), WNP-joint uniform estimates
with k = 880, Table 9, standard errors from Table 10
c Random parameters, Greene (2004), �̂ in Table 5
� Indicates signi�cant at the 95% level�� Indicates signi�cant at the 99% level

Table 2: Model 4d

Class 1 Class 2 Class 3
Variable Estimate Std.Err. Estimate Std.Err. Estimate Std.Err.
Constant -2.32�� 0.76 -2.71�� 0.77 -8.97�� 2.50
log sales 0.32�� 0.07 0.23�� 0.07 0.57�� 0.20
Rel size 4.38�� 0.88 0.72�� 0.25 1.42� 0.62
Imports 0.93�� 0.49 2.26�� 0.50 3.12� 1.35
FDI 2.20 2.54 2.80�� 0.93 8.37�� 2.27
Prod. -5.86�� 1.69 -7.70�� 1.16 -0.91 1.26
Raw Mtl -0.11 0.17 -0.60�� 0.30 -0.86� 0.42
Inv good 0.13 0.14 0.41�� 0.13 0.50� 0.23
d Finite mixture (3 classes), Greene (2004), Table 7
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Table 3: EIS-MCMC

Variable Posterior mean Posterior median Std.Err.
Constant -2.484�� -2.479�� 0.433
log sales 0.248�� 0.247�� 0.044
Rel size 1.308�� 1.312�� 0.231
Imports 1.434�� 1.437�� 0.286
FDI 3.701�� 3.698�� 0.722
Prod. -6.127�� -6.086�� 2.459
Raw Mtl -0.144 -0.141 0.200
Inv good 0.266�� 0.267�� 0.073
�� 0.868�� 0.868�� 0.025
�� 0.477�� 0.443�� 0.167
� 0.006 0.008 0.499

Posterior moments are based on 20; 000 Gibbs cycles discarding the �rst 5; 000 cycles and keeping every �fth
draw thereafter resulting in 3000 MC draws for each parameter. One Gibbs iteration took approximately
3.5 seconds on a 2.2 GHz unix machine. The nonparametric EIS sampler was perfomed over a grid of size
200. On average, it took less than 6 EIS iterations for full convergence of the EIS parameters in sampling
from the posteriors of the latent variables � i and �. The AR and MH acceptance rates for � were 99:00%
and 99:85%, respectively.

mates in Tables 1 and 2, further validating the original economic hypothesis that imports

and inward FDI had a positive e¤ect on the innovative activity of domestic �rms.

The posterior mean of the unobserved heterogeneity parameter �� was estimated at

0:868 which somewhat smaller than the value 1:1707 of an analogous parameter reported

by Greene (2004, p.35) for the random e¤ects model. In addition, the posterior mean

standard deviation of the latent time e¤ects �� was estimated at 0:477 which is roughly half

the magnitude of its cross-sectional counterpart. The posterior mean of the autoregressive

parameter � is not statistically di¤erent from zero. Unobserved individual heterogeneity

thus appears to play a more important role than latent time e¤ects in this application.

5 Conclusion

In this paper, we performed a Bayesian analysis of a panel probit model with unobserved

individual heterogeneity and autocorrelated errors. We embedded EIS within a Gibbs sam-

pling method augmented with both the time and cross-sectional latent variables. The

posterior for the unobserved individual heterogeneity was sampled from univariate individ-

ual Gibbs blocks, using a piecewise log-linear approximation to the posterior as a proposal

density. The posterior for the vector of latent time e¤ects was treated as another Gibbs

block, using a new form of a parametric EIS approximation as the proposal density for

an AR-MH step. This approach represents a methodological contribution to the limited

dependent variable panel literature.
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We applied our method to the product innovation activity of a panel of German manu-

facturing �rms in response to imports, foreign direct investment and other control variables.

Our �ndings strengthen the positive e¤ect of imports and FDI on �rms�innovation activity

found in previous literature. Our posterior means for the key coe¢ cients lie on the high end

of the point estimates reported by Bertschek and Lechner (1998) and Greene (2004) who

analyzed the same dataset under more restrictive model assumptions.

6 Appendix 1: Details of Empirical Results

Figure 1: Descriptive Histograms for the Data
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Figure 2: Marginal Posterior Densities of �
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Figure 3: Left: MCMC chain for draws of �. Right: Autocorrelations of draws of �.
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Figure 4: Left: Posterior density of �� . Middle: MCMC chain for draws of �� . Right:
Autocorrelations of draws of �� .
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Figure 5: Left: Posterior density of ��. Middle: MCMC chain for draws of ��. Right:
Autocorrelations of draws of ��.
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Figure 6: Left: Posterior density of �. Middle: MCMC chain for draws of �. Right:
Autocorrelations of draws of �.

0
.2

.4
.6

.8
D

en
si

ty

 1  . 5 0 . 5 1
r h o

k e r n e l  =   e p a n e c h n ik o v ,   b a n d w id t h   =   . 0 9

0
.0

5
0.

00
0.

05

0 1 0 2 0 3 0 4 0
L a g

B a r t le t t ' s   f o r m u la   f o r   M A ( q )   9 5 %   c o n f id e n c e   b a n d s

13



Appendix 2: Sampling from Posterior Densities
Note that the variable y�it in equation (7) is not observed, only its sign. Whence, in order to facilitate
the Gibbs step for �; it proves convenient to include the T � N matrix Y � = (Y �1 ; : : : ; Y

�
N ) with Y

�
i =

(yi1; : : : ; yiT )
0 in the draw. Thus our Gibbs cycle operates on the variables � = (Y �; �; �; � ; �2�; �

2
� ; �):

Sampling Y � given (�=Y � ; Z)

It follows from equations (2) and (7) that the y�it�s given �=Y � ; Z are independently distributed from one
another with the truncated Normal densities

f
�
y�itj�=Y � ; Z

�
/ 1

�
y�it (2yit � 1) � 0

�
fN
�
y�itj��it; 1

�
where ��it = �

0xit + �t + � i (see e.g. Devroye (1986) for sampling from a truncated Normal density).

Sampling � given (�=�; Z)

Let Y �i=�;� i = Y �i � � � � i� and Y �=�;� i = (Y �01=�;�1 ; :::; Y
�0
N=�;�N

)0: It follows from equation (7) that under a
uniform prior for � its posterior density given (�=� ; Z) is the joint Normal density

f
�
�j�=� ; Z

�
/ fN (�jb�; b��)

with b� = �Z0Z��1 Z0Y �=�;� i and b�� = �Z0Z��1 :
Sampling � i given (�=� i ; Z)

It follows from equation (8) that the conditional posterior density of � i given (�=� i ; Z) is proportional to

'i(� ij�=� i ; Z) = �
�1
� exp

�
� 1

2�2�
�2i

� TY
t=1

[�(vit)]
yit [1� �(vit)]1�yit

This density can be quite skewed depending on the observation vector Yi: Whence 'i is approximated by a
piecewise log-linear density ki :

ln ki(�) / b�j + b�j� for � 2
�b� i;j�1;b� i;j� , j = 1! J

where fb� i;0; : : : ;b� i;Jg denotes an auxiliary grid (iteratively) constructed in such a way that its intervals are
equiprobable according to the corresponding empirical c.d.f. Ki; i.e. that

Ki(b� i;j) = j

J
; j : 0! J

within a selected �xed point tolerance level. See DeJong et al. (2007) for details.

Sampling �t given (�=�t ; Z)

Under a stationary AR(1) for �; the conditional posterior density of �t given (�=�t ; Z) obtains from equation
(9) and is given by

f(�tj�=�t ; Z) / p(�t+1j�t; �)p(�tj�t�1; �)g(�t)

14



where

g(�t) �
NY
i=1

[�(vit)]
yit [1� �(vit)]1�yit

p(�1j�0; �) � p(�1j�) = fN (0j�2�); �2� = �
2
�=(1� �2)

p(�tj�t�1; �) = fN (��t�1j�2�)
p(�T+1j�T ; �) = 1

The corresponding EIS sampler for �t is de�ned as the product

em(�tj�=�t ; Z) = ectp(�t+1j�t; �)p(�tj�t�1; �)h (�t; bt)
where ht(�t) denotes an auxiliary density kernel of the form

lnh (�t; bt) = bt;0 + bt;1�t + bt;2�2t
which obtains as a (�xed point) EIS-OLS approximation of ln gt(�t): Also, ec�1t denotes the integrating factor
for emt: See Richard and Zhang (2007) for details of the EIS algorithm. The moments and integrating factor
for emt obtain from standard Gaussian algebra and are given by

e�2�1 =

 
1

�2�
+
�2

�2�
� 2b1;2

!

e��1 = e�2�1 ���2�2� + b1;1�
ec1 =

1p
2�

e��1
����

exp

(
�1
2

 
�22
�2�

� 2b1;0 � e�2�1e�2�1
!)

e�2�t =

�
1 + �2

�2�
� 2bt;2��1

e��t = e�2�t �� (�t�1 + �t+1)�2�
+ bt;1�

ect =
1p
2�

e��t
�2�

exp

(
�1
2

 
1

�2�
(�2t+1 + �

2�2t�1)� 2bt;0 � e��te�2�t
!)

e�2�T =

�
1 + �2

�2�
� 2bT;2��1

e��T = e�2�T ���T�1�2�
+ bT;1�

ecT =
e��t
��

exp

(
�1
2

 
1

�2�
�2�2T�1 � 2bT;0 � e��Te�2�T

!)

The EIS samplers emt are then used to construct AR-MH draws of �: Let e�K = (e�1;K ; : : : ; e�T;K) denote
the K�th Gibbs (AR-MH) draw of � (which is included in the conditioning set e�

K
for draw K + 1). Draw

K + 1 of �t given
�e�
K=e�t;K ; Z

�
obtains from the following two steps.

� An AR step which consists of drawing candidates lt from emt until one is accepted with acceptance

15



probability

P (lt) = min

24 f
�
ltje�K=e�t;K ; Z�ect em�ltje�K=e�t;K ; Z� ; 1

35
Let elt denote the accepted candidate;

� An MH step, whereby

e�t;K+1 = elt; with probability �
�e�t;K ;elt� ;e�t;K+1 = e�t;K otherwise,

where

�
�e�t;K ;elt� = min

24 f
�
ltje�K=e�t;K ; Z�

f
�e�t;K je�K=e�t;K ; Z�

min
h
f
�e�t;K je�K=e�t;K ; Z� ;ect emt �e�t;K je�K=e�t;K ; Z�i

min
h
f
�
ltje�K=e�t;K ; Z� ;ect emt �ltje�K=e�t;K ; Z�i ; 1

35
See also Liesenfeld and Richard (2008) for a block version of this algorithm for high-dimensional �
vectors. However, with the present application with small T and generally low autocorrelation, we
have found that individual AR-MH draws of f�1g � i.e. blocks of size 1 � produce overall higher
acceptance rates for e�:

Sampling �2� given (�=�2� ; Z)
Under a non-informative prior density for � and following e.g. Zellner (1971), the posterior density �� is an

Inverted Gamma with degrees of freedom N and a scale parameter s =
�
1
N

PN
i=1 �

2
i

�1=2
:We use N instead

of N � 1 degrees of freedom because this posterior density is conditional on the mean of � i being set equal
to zero.

Sampling �2� given (�=�2� ; Z) and � given (�=�; Z)

We follow Zellner (1971) (Section 4.1) with minor adjustments for the assumptions that �1 follows the
stationary distribution of the AR(1) process and that our prior is p(��; �) / ��1: Whence,

f
�
��; �j�=(��;�); Z

�
/
p
1� �2��(T+1)� exp

(
�1
2

 
Ts2�

�2�

!)

with

s2� =
1

T

"�
1� �2

�
�21 +

TX
t=2

(�t � ��t�1)2
#

It immediately follows that:

� �2� given (�=�2� ; Z) has an Inverted Gamma density with degrees of freedom T and scale parameter
s�;

� f(�j�=�; Z) /
p
1� �2 exp

�
� 1
2

�
Ts2�
�2�

��
: Since this is a univariate density we follow the same pro-

cedure as for the individual � i and construct a piecewise log-linear approximation to f(�j�=�; Z):
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