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Abstract

In this paper, we introduce a Bayesian panel probit model with two flexible latent effects: first, unobserved

individual heterogeneity that is allowed to vary in the population according to a nonparametric distribution,

and second, a latent serially correlated common error component. In doing so, we extend the approach

developed in Albert and Chib (1993, 1996), and Chib and Carlin (1999) by releasing restrictive parametric

assumptions on the latent individual effect and eliminating potential spurious state dependence with latent

time effects. The model is found to outperform more traditional approaches in an extensive series of Monte

Carlo simulations. We then apply the model to the estimation of a patent equation using firm level data on

research and development (R&D). We find a strong effect of technology spillovers on R&D but little evidence

of product market spillovers, consistent with economic theory. The distribution of latent firm effects is found

to have a multimodal structure featuring within-industry firm clustering.

JEL: C11, C13, C15, C23, C25

Keywords: Dynamic latent variables, Markov Chain Monte Carlo, Dirichlet Process prior, R&D, Spillover

effects

∗We are grateful to Nick Bloom for sharing the data for the empirical application with us. We also thank Siddhartha

Chib, David Dahl, Christian Gourieroux, Jerry Hausman, Ivan Jeliazkov, Andriy Norets, seminar participants at UC

Berkeley and UC Irvine, and conference audiences at the North American Summer Meetings of the Econometric

Society in Boston 2009, and the Canadian Econometics Study Group 2009 Ottawa meetings for useful comments.

This work was made possible by the facilities of the Shared Hierarchical Academic Research Computing Network

(SHARCNET: www.sharcnet.ca).
†Department of Economics, University of Toronto, 150 St. George St., Toronto, ON M5S 3G7, Canada; Phone:

(416) 978-4479; Email: martin.burda@utoronto.ca
‡Corresponding author. Department of Economics, Stanford University, 579 Serra Mall, Stanford, CA 94305;

Phone: (650) 723-4116; Fax: (650) 725-5702; Email: mch@stanford.edu



1. Introduction

There is broad agreement that individual heterogeneity plays a crucial role in many economic models. In

linear models, panel data can be used to identify the effects of interest while at the same time controlling

for unobserved individual heterogeneity (Hausman and Taylor, 1981). Nonlinear models with unobserved

heterogeneity pose substantial theoretical and computational challenges (Arellano and Hahn, 2006). In

particular, in the case of nonlinear panel data models it is in general not possible to remove the unobserved

effects by differencing as is commonly done in linear models. Convenient solutions can be obtained in

some cases when a specific parametric form is assumed for the distribution of heterogeneity, such as in the

negative binomial regression. Nonetheless, relaxing parametric assumptions on the distribution of unobserved

heterogeneity in nonlinear models is important as often such restrictions cannot be justified by economic

theory.

One possibility is to treat the unobserved effects as nuisance parameters to be estimated along with the

parameters of interest. This approach requires large amounts of data though, as consistency is guaranteed

only in the large N and large T limit. In most microeconomic applications, the econometrician only has

a small number of repeated cross-sections to work with and the estimation of the individual fixed effects

as incidental parameters induces bias. In the logit case Abrevaya (1999) shows that the model with fixed

effects and only two time periods leads to severe bias and the estimated coefficients can reach twice their true

value. In the parametric setting it is possible in some cases to circumnavigate this problem by redefining

the quantity of interest. Fernandez-Val (2007) shows that under certain assumptions the inclusion of fixed

effects does not affect the consistency of the marginal effects. More recently, Arellano and Bonhomme (2009)

show that well chosen weights in average or integrated likelihood settings can produce estimators that are

first-order unbiased.

Removing the parametric assumptions on the distribution of unobserved heterogeneity is also beneficial since

economic models are usually silent on how to formally describe individual heterogeneity. At the same time,

recent attempts at estimating nonlinear models nonparametrically are often rather difficult to implement

(Berry and Haile, 2009).

Fuelled by advances in computation, as well as their flexibility and conceptual simplicity, Bayesian methods

provide a powerful alternative to the more traditional approaches to solving these problems. In particular,

Bayesian hierarchical models can be readily extended to incorporate inference on latent classes of similar
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individuals or mixtures of distributions for various objects of interest. This makes Bayesian modeling an

extremely flexible tool and a promising avenue to explore relaxing the assumptions discussed.

In some special cases such as the probit model, Bayesian data augmentation completely avoids the need

to specify the likelihood in the form of a multivariate integral. This feature was introduced for the probit

model in a seminal paper by Albert and Chib (1993). Instead of formulating the likelihood by integrating

out the latent utility, the estimation problem is re-cast in the form of an iterative scheme of linear regressions

where the latent utility is explicitly sampled along with other model parameters. Thus, the estimation is

free from the curse of dimensionality that plagues inference with integral-based likelihoods. The approach

was further developed for limited dependent variable (LDV) models to include parametric random latent

effects in Albert and Chib (1996), Chib and Carlin (1999), and Gu, Fiebig, Cripps, and Kohn (2009).

In this paper, we further extend this line of research by introducing a model with two latent variables:

first, we introduce unobserved individual heterogeneity that is allowed to vary in the population according

to a nonparametric distribution, and second a latent error component that is serially correlated over time.

The unobserved individual effects are allowed to be correlated with the observed regressors, in the spirit of

Chamberlain (1982, 1984). Our model thus extends beyond the class of traditional random effects models

(for a discussion on this issue, see e.g. Wooldridge, 2001). We model the distribution of the unobserved

heterogeneity component with a nonparametric Dirichlet Process (DP) mixture model. The prior for the

latent time component is specified as a parametric autoregressive process but its influence decreases linearly

with the amount of data available. Due to its structure we label the proposed model as the ”flexible latent

effects probit” (FLEP). We note that individual building blocks of our model have been used in separate

settings, such as modeling autoregressive processes in discrete choice models (Allenby and Lenk, 1994) and

implementing the Dirichlet Process prior for studying heterogeneity in choice models (Li and Zheng, 2008;

Rossi, 2010). However, the combined model with panel latent effects considered here has not yet been applied

in the literature. Our aim in this paper is to show how to account for both flexible forms of unobserved

heterogeneity and common latent time effects within the same framework.

We conduct an extensive empirical analysis of the decision to innovate where we suspect that unobserved

heterogeneity plays an important role at the firm level. At the same time patenting activity may also be

driven by a common time trend reflecting the macroeconomic environment or the overall stock of scientific

knowledge. Without properly accounting for these latent effects it is not possible to correctly identify effects
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of interest or test hypotheses based on economic theory. We use data from a recent study of firm level

research and development (R&D) by Bloom, Schankerman, and Van Reenen (2010) (henceforth BSV) to

estimate a patent equation and test theoretical predictions on R&D spillovers. The dataset captures the

majority of the patents granted between 1980 and 2001 in the US.

We explore the possibility that R&D leads to two major externalities. One the one hand, R&D may increase

the productivity of firms using similar technology whereby a firm can benefit from the R&D conducted by

another firm in the same technology area. On the other hand, R&D can have a product market rivalry

effect with a number of firms striving to develop essentially the same product, which is detrimental to social

welfare. Economic theory predicts that the marginal effect of technology spillovers on patenting activity is

positive while the marginal effect of product market spillovers on patenting activity is zero. Our econometric

approach allows us to additionally account for the two important types of latent effects in the analysis

of R&D spillovers mentioned above: firm level heterogeneity and common time factors. We document

the presence of both statistically significant technology spillover effects and firm level heterogeneity. The

estimated distribution of firm level heterogeneity shows many interesting features and its multimodality

suggests the clustering of heterogeneity across different firms. One important advantage of our approach is

that it estimates firm level clustering without having to rely on a priori guesses of the form of heterogeneity.

As we shall see industry classifications, a common proxy for heterogeneity, does a poor job at capturing the

measured variation in latent firm level heterogeneity.

Our paper also introduces a series of computational innovations for the Bayesian estimation of this class of

models. An core component in our implementation strategy is the efficient computation of the posteriors

using a recent Sequentially Allocated Merge-Split (SAMS) algorithm (Dahl, 2005) that is substantially more

efficient than samplers used previously in similar contexts. The SAMS sampler can update in one move large

blocks of elements involved in implementation of the Dirichlet Process sampling scheme. It thus avoids a

shortcoming of sequential samplers, such as the Polya urn scheme, that can get stuck in particular clustering

configurations due to the one-at-a-time nature of their updates. Moreover, the SAMS algorithm is applicable

to both conjugate and non-conjugate DP mixture models.

Our approach builds on the stream of literature aiming to relax restrictive assumptions of existing limited

dependent variable models. A recent state-of-the-art Bayesian nonparametric analysis was introduced in

Chib and Jeliazkov (2006) who study a binary dependent variable model with AR(p) errors and normally
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distributed unobserved individual heterogeneity. These authors focus on a non-parametric estimation of

an unknown function of the model covariates, while we model nonparametrically the distribution of the

unobserved individual heterogeneity. Burda, Harding, and Hausman (2008) analyze a flexible model for

multinomial discrete choice with a flexible distribution of several parameters on the observable regressors.

Their unobserved error component was fully parametric with an extreme-value type 1 distribution. As a

result, their model was based on the logit closed-form solution facilitated by such assumption. Moreover,

their model did not incorporate any dynamic element. In contrast, the error component in our model

contains both flexible unobserved individual heterogeneity and common latent time effects which makes our

estimation method suitable for panel data with a dynamic latent factor structure. The Normal distribution

of the transitory idiosyncratic component stipulates a probit structure here, precluding the closed-form

logit likelihood derivation utilized in Burda, Harding, and Hausman (2008). Instead, here we rely on data

augmentation due to Albert and Chib (1993) using an iterative scheme of linear regressions in sampling the

latent utility along with other model parameters.

Random error components that induce correlation over alternatives and time can also be accommodated by

frequentist procedures. Such approach would assume a model for the distribution of the latent components

and then specify the model likelihood in the form of an integral whose dimensions are formed by the indi-

vidual unobserved components. Typically, such integral is analytically intractable and hence is estimated by

numerical simulation methods, such as the GHK simulator developed by Geweke (1991), Hajivassiliou (1990),

and Keane (1990). The resulting simulated likelihood (SML) is then maximized with respect to the model

parameters. The GHK procedure thus numerically approximates the likelihood integral until convergence

at every iteration of the model parameters within the optimization procedure. In contrast, Bayesian Gibbs

sampling factorizes the high-dimensional multivariate integral into a sequence of low-dimensional conditional

density kernels, drawing one dimension at a time until until a single convergence state of the resulting Markov

chain is attained. In many cases, this implies that Bayesian parameter estimation is substantially faster than

SML. For example, in an empirical comparison study for a parametric multinomial probit model Bolduc,

Fortin, and Gordon (1997) found the Bayesian approach about twice as fast and much simpler to implement,

both conceptually and computationally, than the GHK method.

Moreover, the Bayesian Markov chain of parameter draws can be directly used for inference in analogy to

a bootstrap sample. In contrast, frequentist SML procedures including GHK require additional estimation

of the shape of the simulated likelihood around the argmax parameter value; this process is fraught with
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peril as integral likelihoods often suffer from multiple local modes or saddles (Knittel and Metaxoglou,

2008). Dealing with such features is avoided using the Bayesian approach. In a comparison study between

a Bayesian approach and the frequentist SML approach for a class of parametric mixed logit models, Train

(2001) finds the Bayesian approach to possess theoretical advantages from both a classical and Bayesian

perspective. Additional benefits of Bayesian inference in latent variable models are discussed e.g. in Paap

(2002).

The advantages of Bayesian methods become even more pronounced with increased dimensionality of the

underlying problem. A nonparametric model for the distribution of unobserved heterogeneity, as considered

in this paper, if estimated using the GHK approach, would necessitate maximization of a flexible functional

form such as a series or kernel estimator involving a large number of parameter iterations. The high-

dimensional likelihood integral would need to be numerically approximated to a sufficient degree of precision

at each of these iterations, which may become computationally prohibitive for larger sample sizes. In contrast,

the Bayesian conditional Gibbs sampling can be performed very accurately along each latent dimension

whereby higher dimensionality of the problem does not diminish the precision of inference.

The remainder of the paper is organized as follows. Section 2 introduces our model and discusses the

assumptions and sampling procedures. Section 3 presents a series of Monte-Carlo studies comparing the

performance of our method with other existing approaches. Section 4 presents an application of the method

to the estimation of the effect of technological spillovers and product market competition on innovation.

Section 5 concludes.

2. Model

Consider a sample of binary responses yit, for N individuals indexed by i, and T time periods indexed by t.

We assume that the data are drawn from the following error-components model:

ỹit = xitβ + uit(2.1)

uit = τi + λt + εit

yit = 1 (ỹit ≥ 0)(2.2)

where xit is a (1 × K) vector of explanatory variables, τi represents unobserved individual heterogeneity,

λt captures latent time effects, and 1 (C) denotes the indicator function which takes the value one if the

condition C is satisfied and zero otherwise. The term ỹit can be thought of as a latent utility of individual
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i at time t. In this error-components model the unobserved error uit is decomposed into three parts: an

individual specific error τi, a time specific component λt and an idiosyncratic and transitory shock εit. This

structure of uit allows for both the presence of individual heterogeneity and serial correlation in the residual

while these components can still be separately identified. In this model we observe the covariates xit, but not

τi, λt or εit. The model is specified in terms of the latent variable ỹit, not observed by the econometrician,

who only observes the binary outcome variable yit.

Let ỹi = (ỹi1, . . . , ỹiT )
′, ỹ = (ỹ′1, . . . , ỹ

′
N )
′, Xi = (x

′
i1, . . . ,x

′
iT )
′, and X = (X′1, . . . ,X

′
N )
′, λ = (λ1, . . . , λT )

′,

τ = (τ1ι
′, . . . , τN ι

′)′, εi = (εi1, . . . , εiT )
′, ε = (ε′1, . . . , ε

′
T )
′ and let ι denote a (T × 1) vector of ones. Model

(2.1) can thus be re-written more compactly as ỹi = Xiβ + τiι + λ + εi for i = 1, . . . , N or simply ỹ =

Xβ + τ + λ + ε. Following the notation in Geweke (2005), let the set-valued function Cit = cit(ỹit) with

Cit = (−∞, 0] if yit = 0 and Cit = (0,∞) if yit = 1. Denote the collection C = {Cit : i = 1, . . . , N ;

t = 1, . . . , T}.

The hierarchical structure of our model allows us to distinguish four different layers of parameters. The

first layer corresponds to the structure of the error components τi, λtand εit. Its properties are given by the

following Assumption:

ASSUMPTION 1. The error components τi, λt, and εti, for i = 1, . . . , N and t = 1, . . . , T , are mutually

independent conditionally on the X.

The second parameter layer characterizes the distributional properties of the first-layer parameters in As-

sumptions 2-4.

ASSUMPTION 2. The variables τ1, . . . , τN are independent, identically distributed

τi ∼ F 0τ

where F 0τ is a continuous unknown distribution, conditionally on Xi and the other model parameters of

primary economic interest.

Instead of imposing a parametric family model, F 0τ will be estimated as an infinite mixture of distributions

using a Bayesian Dirichlet Process Mixture (DPM) model which we shall introduce below. Moreover, our

sampling mechanism allows for joint posterior correlation of τi with other regressors. We do not impose any

prior assumptions on this feature explicitly due to the absence of any initial information on this property.
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Since τi is sampled conditional onXi, such potential relationship is entirely data-driven. The next assumption

specifies the prior distribution for the latent time effects:

ASSUMPTION 3. λt is assumed to follow a stationary Gaussian autoregressive process

λt = ρ1λt−1 + . . .+ ρsλt−s + ηt,

with ηt ∼ N(0, σ2η). Furthermore, ηt is independent of εti for each t = 1, . . . , T .

Failure to account for serial correlation of the error term has potential negative consequences. In the Bayesian

framework, the posterior distribution is a weighted average of the prior distribution and the parameter update

learned from the data via the likelihood function. The latter is implied by the probit model specification (2.1).

In our sampling scheme detailed below, the prior has weight 1/(T+1) while the likelihood information weights

T/(T +1). In samples with very small T this autoregressive specification for the prior impacts inference but

the prior influence declines linearly with T . The autoregressive prior specification also facilitates learning

about the posterior distribution of the latent time process hyperparameters ρ and ση that provide information

about the nature of the persistence and volatility in the latent time error component.

The parametric nature of Assumption 3 renders the dynamic model specification potentially quite restric-

tive, especially in cases where the data-generating process follows some other form of dynamics. Nonetheless,

panels of data in micro-econometric applications are typically characterized by large N and small T dimen-

sions and hence a parametric model appears as a suitable way to capture the relatively limited amount of

information conveyed by the time dimension. Conversely, the relatively rich informational content of the

cross-sectional dimension lends itself to non-parametric modeling which we undertake in this paper.

Assumption 3 is stated conditional on a given lag order s. Model selection criteria can be further employed

to determine the optimal lag order for a given dataset. A method of lag selection for the autoregressive

model is discussed in Troughton and Godsill (1997).

The following assumption defines the probit structure of the model:

ASSUMPTION 4. εit ∼ N(0, 1) is a stochastic error component uncorrelated with any other regressor.

Our proposed model builds on the traditional error-components framework due to its popularity in applied

work. The random error to an observation, uit = τi+λt+ εit is given by the sum of an individual effect τi, a
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time effect λt and an idiosyncratic shock εit. Variations on this framework can be readily incorporated into

our model.

The third parameter layer in our model is formed by parameters of primary economic interest captured in

the vector θ = (β′, ση, ρ
′)′. The assumptions on the prior distributions for this layer are specified as follows:

ASSUMPTION 5.

β ∼ N(β,Σβ)(2.3)

σ2η ∼ IG(v0, s0)(2.4)

ρ ∼ Uniform(Ω)(2.5)

where Ω ⊆ Rs is the stationarity region of the autoregressive process.

The fourth parameter layer is comprised of the remaining hyperparameters introduced in Assumptions 2-5.

In order to fully characterize this layer, we will elaborate on the model specified for the distribution of the

unobserved heterogeneity component. Assumption 2 implies the following model based on Neal (2000):

τi|ψi ∼ Fτ (ψi)(2.6)

ψi|G ∼ G(2.7)

G ∼ DP (α,G0)(2.8)

Thus, Fτ is specified as an infinite mixture of distributions Fτ (ψ) with the mixing distribution over ψ being

G. Here, ψi are hyperparameters of the distribution Fτ (ψi) of τi drawn from a random probability measure

G which itself is distributed according to a Dirichlet Process (DP) prior. The DP prior for G is indexed by

two hyperparameters: a distribution G0 that defines the ”location” of the DP prior, and a positive scalar

precision parameter α. The distribution G0 may be viewed as a baseline prior that would be used in a

typical parametric analysis. The flexibility of the DP prior model environment stems from allowing G to

stochastically deviate from G0. The precision parameter α determines the concentration of the prior for G

around the DP prior location G0 and thus measures the strength of belief in G0. For large values of α, a

sampled G is very likely to be close to G0, and vice versa. Early important applications of the DP prior to

economics were made in Chib and Hamilton (2002) and Hirano (2002).

By Assumption 2 the distribution Fτ is sampled conditional on the primary parameters of economic interest

θ and on the regressors X. This sampling framework gives us the flexibility to treat τi as nuisance parameters
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while at the same time allowing for the possibility of the individual effects being correlated with other right

hand side variables. Following Arellano and Bonhomme (2009) we implicitly assume that the support of Fτ

contains an open neighborhood of the true parameters θ.

The fourth parameter layer is thus formed by the hyperparameters {ψi}Ni=1, G, α, G0, β, Σβ , v0, and s0. In

our implementation, G0, β, Σβ , v0, and s0 are fixed, {ψi}
N
i=1, and α are sampled, while bypassing explicit

sampling of G.

Let τ = {τi}Ni=1, μit = xitβ+ τi+λt, and denote by Φ(μit) and φ(μit) the cdf and pdf of the Normal random

variable with unity variance, respectively. Denote generically by p(∙) a probability density or mass function

and by k(∙) a prior density function. The posterior of our model can then be expressed as

p(ỹ, τ, β, λ, σ2η, ρ|y) ∝ p(y|ỹ, τ , β, λ, σ2η, ρ, ψ, α)p(ỹ|τ , β, λ, σ
2
η, ρ, ψ, α)(2.9)

×k(ψ|α)k(α)k(β)k(λ)k(σ2η)k(ρ)

with k(ρ), k(β), and k(σ2η) given in Assumption 5, k(λ) in Section 5.5 in the Appendix, k(α) specified as

in Escobar and West (1995), and k(ψ|α) given by (2.7-2.8). The remainder of the model is formulated

similarly to Albert and Chib (1993) with the single index given by μit. Specifically, p(ỹ|τ , β, λ, σ2η, ρ, ψ, α) =
∏
i

∏
t φ(μit) and p(y|ỹ, τ , β, λ, σ

2
η, ρ, ψ, α) assigns probability mass one to yit = 1 if ỹit > 0 and to yit = 0 if

ỹit ≤ 0. Thus, yit are independent Bernoulli random variables with pit = Φ(μit).

2.1. Average Partial Effects

In nonlinear models the estimated coefficients are only of limited interest by themselves. Instead, the

average partial effects (APEs) are particularly useful for computing economic counterfactuals and widely

used in applied work. In this section we describe how they are computed within the setup of our model. We

utilize the classical concept of the APEs augmented with the latent variables. Let

mitk =
∂E[yit|xitβ, τi, λt]

∂xitk

= φ (xitβ + τi + λt)βk

denote the marginal effect of a change in xk, where φ(∙) denotes the standard normal density function. Define

(2.10) γ̃ =
1

NT

N∑

i=1

T∑

t=1

φ (xitβ + τi + λt)
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The APE of xk on y is then given by

(2.11)
1

NT

N∑

i=1

T∑

t=1

mitk = γ̃βk

We sample explicitly τi and λt throughout the MC iterations and hence can compute the APEs directly from

the definition of γ̃, as

(2.12) γ =
1

NTS

N∑

i=1

T∑

t=1

S∑

s=1

φ (xitβs + τis + λts)

where s is the index over MC steps.

In both the application and the simulation study, we report the mean bias and means squared error of the

estimated “APE scale” coefficient γ defined in (2.12). To obtain the APEs, γ is simply multiplied by each

respective βk.

3. Monte-Carlo Simulation

In order to highlight the potential advantages of our approach, we test the performance of our approach on

a series of Monte Carlo studies based on simulated datasets. Our goal is to evaluate the robustness of our

approach to relaxing the three main assumptions which are the main focus of our study. As our benchmark

comparison models we chose the closest parametric alternatives, namely the fixed effects panel probit model

with a full set of time dummies, and the random effects panel probit model augmented with the Chamberlain

(1982) device incorporating the explanatory variables in all time periods, also with with a full set of time

dummies. Both of these model are estimated in Stata.

All simulation results are reported in Tables 8-11. Keeping the same simulation design we vary the amount

of data available at each run by varying N and T . We consider simulations where N ∈ {100, 300, 700, 1000}

and T ∈ {10, 20, 50}, each in one hundred replications. We then report the mean bias and root mean square

error for each coefficient βk in our simulation design.
4 Additionally, for our model we also report these

statistics for the latent time process parameters ρ and ση.

We have found our approach to be computationally very efficient. All chains mix very well and appear to

have converged within the burn-in section. The autocorrelation of βk become statistically insignificant after

4In an earlier version of the paper we also ran simulations for a base-case pooled probit and a random coefficient

panel probit augmented with the Mundlak version of the Chamberlain device. The results were substantially biased:

the mean absolute deviation on the APE scale parameter was 0.295 in the former case and 0.209 in the latter case

for the largest sample size.
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10-15 lags while the ones of ση and ρ after 1-2 lags. In Tables 1-2 we present the mean absolute deviation

and mean square errors for a simple classical data generating process where τi is uncorrelated with any of

the included right hand side variables xk. We generate the data as follows. All xk observations are drawn as

N(0, 1/9). The true parameter values are β0 = {0, 1, 1,−1}, ση0 = 0.5, ρ0 = 0.5. We draw the unobserved

heterogeneity as an equal mixture between two Normal components, with means -2 and 2 and variance 1/5.

The length of the MCMC chain is 5000 and we discard the first 4000 steps as the burn-in period. We

initialize the algorithm by letting all observations be part of the same latent class, and allow the sampler to

do further splits as required.

The fixed effects probit model with time dummies performs badly in terms of mean bias independently of

the sample size. Typically we find mean bias in excess of 50%. The bias in the APE scale is also very

large. Recall that the APE scale is bounded between 0 and approximately 0.4, thus a mean bias of 0.04

constitutes exceeds 10% deviation from the true value. The random effects probit with time effects improves

somewhat in its performance regarding the β coefficients, albeit marginally, but performs worse in estimating

the APEs, averaging some 40% bias. In contrast our nonparametric approach to modeling the distribution

of unobserved heterogeneity adapts to any such distribution present in the data. As a result, the proposed

FLEP model performs very well. Even in samples as small as N = 100 and T = 10 the bias in the coefficients

is less than 5%. The bias in the APE scale is very small throughout.

In Tables 3-4 we report results for the simulation design where the individual effects are correlated with the

right hand side variables. In this case we augment the random effects probit with the Chamberlain (1982)

device which alleviates potential biases associated with such correlation. We employ the following simple

classical simulation design. The variables x2 and x3 are drawn uniformly on [−1, 1]. We generate x1 to be

correlated with τi using the following stylized approach to induce correlations. For a draw ui ∼ U [0, 1], we

generate τi and x1 as:

• 1st quarter of individuals: τi = 3 + ui and x1i = −4− 0.2ui

• 2nd quarter of individuals: τi = −3− ui and x1i = −1− 0.2ui

• 3rd quarter of individuals: τi = 3 + ui and x1i = 1− 0.2ui

• 4th quarter of individuals: τi = −3− ui and x1i = 4− 0.2ui

This yields a correlation coefficient between τi and x1i close to −0.5 in each case. The true parameter values

are β0 = {0, 0.5, 0.5, 0.5}, ση0 = 0.75, ρ0 = 0.5. The length of the MCMC chain is 5000 and we discard the
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first 4000 steps as the burn-in period. We initialize the algorithm by letting all observations be part of the

same latent class, and allow the sampler to do further splits as required.

The coefficients estimates derived from running the fixed effects probit model with time dummies are severely

biased. The bias appears to be very similar at different sample sizes. In fact the magnitudes of parameter

biases with a sample of N = 1000, T = 50 are comparable to those estimated with N = 100, T = 10

observations. The estimate of the APE scale is also biased, in excess of 10%. The parameter estimates of

the random effects probit with time dummies and the Chamberlain (1982) device are biased commensurately

and some coefficients are estimated with a large mean square error. The the APE scale bias does not appear

to diminish with increasing N . For sample sizes with T = 50 Stata on our 3 GHz PC could not deliver the

necessary MC replication estimates in real time (days) and hence these results are not reported.

By contrast, our FLEP model proposed in this paper performs very well both in terms of bias and mean

square error. The bias in the APE scale is also very small, indicating that the marginal effects will be nearly

unbiased in almost all samples considered in this exercise. As anticipated, the nonparametric model for

the unobserved heterogeneity component adapts to the multiple modes of its distribution dispersed in all

quadrants of x1i. The standard errors in all cases are of comparable magnitude.

We further consider the case where the unobserved heterogeneity component is exactly Normally distributed

with τi ∼ N(0, σ2τ ), and hence the random effects probit should be asymptotically efficient. All other model

attributes are kept as in the uncorrelated case. The comparison of the RE and FLEP output is reported in

Table 10. The APE scale parameter and the intercept β0 have smaller bias and RMSE under the FLEP. The

partial effects β1 to β3 feature mixed results, with bias and RMSE smaller under the RE for some data sizes

and under the FLEP for others. The standard errors, however, are smaller under the RE, except for β0.

Our last simulation design investigates the effects of misspecification of the parametric models assumed for

the time effects and the idiosyncratic component on the FLEP estimator. Two cases are considered in turn:

(a) highly autocorrelated case with λt drawn from an AR(2) model with ρ1 = 0.5 and ρ2 = 0.4, and (b)

one-lag autocorrelation case with λt drawn from an MA(1) model with ρ = 0.5. The output of these cases

(Table 11) is of comparable magnitude relative to the well specified model.

To summarize our simulation results, we have found that estimating a large number of incidental parame-

ters or restricting the model distribution of unobserved heterogeneity leads to extremely biased results in

our parametric benchmark models. Moreover, the estimation of a large number of incidental parameters
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poses computational challenges, and can indeed lead to inconsistent estimates. The flexible latent effects

probit model introduced in this paper performs very well and leads to nearly unbiased results for both the

model parameters and the estimated average partial effects. These results hold well under specific types of

misspecification.

4. Innovation and R&D Spillovers

4.1. The Role of Latent Effects in R&D Analysis

An ongoing puzzle in the economic literature on R&D concerns the relationship between innovation as

measured by the patenting activity of firms and the spillover effects resulting from the strategic interactions

between firms. Firms often interact in geographically delimited markets which leads to a localization of the

spillover effects in terms of geographic distance (Griffith and Van Reenen, 2011). At the same time firms

interact in more abstract spaces such as the technology space defined by the extent to which two firms are

close to each other in terms of the underlying technology and the product market space defined by the extent

to which two firms compete for the same product market (Bloom, Schankerman, and Van Reenen, 2010).

Such spillover effects often have contradictory impacts on firm performance. While technological spillover

effects may benefit a firm by enhancing the overall stock of knowledge to the firm, product market spillovers

can lead to business stealing due to overlapping product offerings to consumers. These issues have been

explored in the theoretical literature but have been very difficult to estimate empirically due to the presence

of confounding latent effects which are particularly problematic in this setting.

On the one hand, innovation and the patenting activity of firms is likely to be influenced by unobserved firm

level heterogeneity. Firm-specific differences in corporate culture, investment strategies, know-how, or brand

name will arguably shape the different degrees of intensity of the innovation activity in firms. Griffith, Lee,

and Van Reenen (2011) show that ignoring unobserved heterogeneity can have a large quantitative impact

on our understanding of innovative activity. On the other hand, the econometric analysis of spillover effects

is confounded by the presence of systematic common time effects reflecting the macroeconomic environment,

technological trends, or global political events that also affect the resource allocation in firms R&D funding.

When such common time effects dominate it is easy to falsely attribute the observed correlation in innovative

activity to spillover effects.
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The econometric analysis of innovation thus presents the econometrician with an important challenge in

terms of consistently estimating the effect of spillover effects between firms while accounting for the presence

of unobserved individual and time effects. The Bayesian model introduced in this paper presents a useful

approach to the consistent estimation of spillover effects while accounting for the presence of latent individual

and time effects. As we will show, our proposed model is not only computationally feasible to implement

on large datasets but it is also superior to more traditional frequentist approaches in terms of its ability to

correctly predict the incidence of innovative activity in firms.

In particular, we apply the method developed in this paper to the estimation of a patent equation on firm

level data and test theoretical predictions on R&D spillovers. Since no economic theory is available that

would recommend a particular distributional form for the unobserved heterogeneity we can take advantage of

an important feature of our model, namely the ability to specify the distribution of the unobserved individual

heterogeneity component non-parametrically. As we will show this expands the applicability of the analysis

substantially since it allows us to investigate the presence of clustering in the unobserved effects and derive

new economic insights into the innovative activities of firms in different industries. At the same time our

model is flexible enough to account for the presence of potentially confounding time factors which if not

properly accounted will induce spurious correlations in innovative activity not attributable to the spillover

effects under consideration.

4.2. Data

We employ data from a recent study of firm level R&D by Bloom, Schankerman, and Van Reenen (2010)

(denoted by BSV for the rest of this section). BSV collected firm level accounting data, such as sales, from

the US Compustat database. This data were then matched to the NBER US Patent and Trademark Office

data containing detailed information on granted US patents, yielding an unbalanced panel of 729 firms with

observations recorded between 1980 and 2001.

BSV investigate two major spillover effects of R&D, technological and product market spillovers. One the

one hand, R&D may increase the productivity of firms using similar technology. A firm can benefit from

the R&D conducted by another firm in the same technology area. On the other hand, it can have a product

market rivalry effect, which is detrimental to social welfare. Using the firm level information available,

BSV attempt to map the location of each firm in both the technology and product space, by comparing

information on patents and information on sales across firms.
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Following BSV we measure the technological closeness between firms using information on patents for each

firm. All available patents are allocated into κ = 1, . . . , 425 different technological classes. If we then let

Ti = (Tiκ) denote a vector where each element represents the average share of patents of firm i in technological

class κ over the period 1980 to 2001, we can define technological closeness (Tech) between two firms i and

j by the uncentered correlation between the allocations for the two firms:

(4.1) Techi,j =
TiT

′
j

(TiT ′i
′)1/2(TjT ′j)

1/2
.

The degree of technology spillover SpillTech is then measured as the technology distance weighted average

of the R&D stock of all other firms at each point in time:

(4.2) SpillTechi,t =
∑

j,i 6=j

Techi,jRj,t,

where Rj,t is the stock of R&D of firm j at time t computed from the expenditure on R&D data available

in the accounting statements recorded by U.S. Compustat.

Similarly, the distance between firms in the product market can be computed by decomposing each firm’s

sales by the respective four digit industry code. Most firms are multi-product firms with reported sales in

an average of 5.2 different industry codes. The sample of firms spans a total of 762 different industries. The

distance between firms in the product market is then measured as the uncentered correlation between the

allocation of sales activity of firms into industries. The degree of product market spillovers (SpillSIC) is

computed as the product market distance weighted average of the R&D stock of all other firms.

The above definition of technology and product market spillovers are based on the Jaffe (1986) distance

measure. BSV note as its drawback the implicit assumption of technology spillovers only occurring within the

same product technology class. Patent class categorizations however are extremely narrow. As BSV illustrate

the Patent Office distinguishes between ”arithmetic processing and calculating” and ”processing architectures

and instruction processing” when they both may refer to very similar computer technology. Moreover,

categorization into patent classes may well be subject to measurement error. As such it is worthwhile to

investigate additional distance measures which take into account the fact that technological spillovers may

occur across patent classes. One such option is the Mahalanobis distance which allows spillovers to occur

across multiple patent classes but weighs their importance by the extent to which a firm is active across

different patent classes. A Mahalanobis measure of the product market spillovers is constructed similarly.

We enrich our analysis by adding a Mahalanobis version of the SpillTech and SpillTech variables, which
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will serve as a subsequent robustness check on our baseline specifications and guard against measurement

errors resulting from the more narrow Jaffe variable construction.

The dataset contains two additional variables of interest. The first is the R&D stock which has already been

mentioned above. The second is a firm specific measure of industry sales (Sales). This variable uses the

same SIC weighting technique as SpillSIC but applied to rival firm sales.

The dependent variable of interest Patenting is a binary variable denoting whether or not firm i filed at

least one patent in year t. The data summary statistics are given in Table 1. All independent variables are

expressed in logarithms and have been lagged by one period to remove simultaneity concerns.

Variable Mean S.D. Min Max

SpillTech (Jaffe) 9.554 1.142 4.838 11.707

SpillSIC (Jaffe) 7.272 2.323 -4.602 11.154

SpillTech (Mah.) 11.314 0.847 8.235 13.156

SpillSIC (Mah.) 8.513 1.660 -0.356 11.559

R&D Stock 3.030 3.026 -2.513 10.765

Sales 6.230 1.962 0 12.103

Patenting 0.540 0.498 0 1

Firms 729

Total Obs 12928

Table 1. Summary statistics. All variables are in logarithms and lagged by one period.

4.3. Econometric Implementation

We implement the model developed in Section 2 to the estimation of R&D spillover effects on patenting

activity using the data described above. We use a Bayesian Gibbs sampling scheme (the precise implemen-

tation details of drawing from individual Gibbs blocks are given in the Appendix). Under the Model (2.1)

and Assumptions 1-5, the joint posterior density can be decomposed into the following Gibbs blocks:

(1) β|τ, λ, ψ, θ/β , ỹ,y,X

(2) ỹ|τ, λ, ψ, θ,y,X

(3) Update the assignments of τi to latent classes by alternating between the SAMS (Dahl, 2005) and

Algorithm 7 (Neal, 2000), which includes sampling {ψi}Ni=1

(4) τi|ψ, θ, λ, ỹ,y,X for each i

(5) λ|τ, ψ, θ, ỹ,y,X
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(6) σ2η|τ, λ, ψ, θ/σ2η , ỹ,y,X

(7) ρ|τ, λ, ψ, θ/ρ, ỹ,y,X

The Bayesian model described above contains a non-parametric specification of the individual effects and

we will denote it as FLEP (flexible latent effects probit). It is possible to estimate a restricted parametric

version of the same model by imposing the condition that in the unobserved individual effects are Normally

distributed. We shall label this version of the model as PLEP (parametric latent effects probit). By com-

paring the results of different specifications of the unrestricted non-parametric version with the restricted

parametric version of the same model we can gain additional insights into the importance and advantages

of using a flexible non-parametric specification over more traditional parametric approaches. Posterior mens

are reported for these two techniques, obtained from chains of total length of 10,000 MC steps with a 5,000

burn-in section.

Additionally we implement two frequentist approaches to the estimation of spillover effects. First, we im-

plement the fixed effects probit model with time dummies (denoted by FE). As we shall see this approach

suffers from serious computational limitations in large data. Second, we implement the random effects probit

model with time dummies and the Chamberlain (1982) device (which we denote by RE).

Each estimation technique was applied to the two different specifications of the econometric model: one

using the Jaffe distance measure and one using the Mahalanobis distance measure. Below we shall discuss

the empirical results in detail and perform additional econometric robustness checks .

4.4. Empirical Results

In a simple model of R&D BSV show that it is possible to derive a number of theoretical implications of

these two spillover effects. If we assume that the production of knowledge is exogenous then we would not

expect to find an effect of market rivalry on patent counts. Empirically, this means that the coefficient on

SpillSIC should be close to zero. The presence of positive market spillover effects may however indicate

endogenous patenting activity. Thus, we can investigate the extent to which strategic patenting activity is

consistent with the evidence in the data.

At the same time we expect the marginal effect of technology spillovers on patent counts to be positive. The

production of knowledge benefits from the innovation activity in a firm conditional on its own R&D stock.

Empirically this implies that we should expect the coefficient on SpillTech to positive and significant.
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We will test these predictions using our model and several alternative benchmark models that are commonly

applied in the empirical literature. Recall that we define the dependent variable to be one if the given firm

registered a patent during the particular year or not. We can think of this case as an indicator of innovation

for a given firm-year dyad. We then regress this indicator on the measures of technological and product

market spillovers discussed above, SpillTech and SpillSIC. In order to control control for observed firm

level heterogeneity, we include two additional variables. One corresponds to firm sales Ln(Sales), while the

other corresponds to the pre-existing stock of R&D available within the firm Ln(R&D stock). Furthermore,

we lag all right hand side variables by one period so as to remove the possibility of contemporaneous effects.

4.4.1. Partial Effects

Estimation results on the partial effects and the latent common time component are reported in Table 2.

Jaffe Distance Mahalanobis Distance

FE probit RE probit PLEP FLEP FE probit RE probit PLEP FLEP

Ln(SpillTech) -0.247 0.251* 0.389* 0.364* -0.125 0.660* 0.548* 0.641*

(0.233) (0.072) (0.047) (0.046) (0.332) (0.104) (0.029) (0.061)

Ln(SpillSIC) 0.073 0.011 0.021 0.037 -0.179 -0.200 -0.035* -0.024

(0.074) (0.059) (0.021) (0.019) (0.134) (0.102) (0.013) (0.031)

Ln(R&D Stock) 0.091* 0.144* 0.304* 0.313* 0.095* 0.143* 0.267* 0.304*

(0.044) (0.037) (0.028) (0.027) (0.044) (0.037) (0.016) (0.031)

Ln(Sales) 0.377* 0.288* 0.204* 0.204* 0.383* 0.292* 0.100* 0.177*

(0.050) (0.044) (0.027) (0.022) (0.050) (0.043) (0.013) (0.023)

APE scale 0.203 0.187 0.169 0.170 0.203 0.184 0.220 0.169

ρ 0.654* 0.645* 0.670* 0.552*

(0.142) (0.145) (0.146) (0.164)

Table 2. Estimation of Patent Equation

Notes: Standard errors are reported in brackets. Coefficients significant at 5% confidence level are marked with an asterisk. All

independent variables are lagged by one period. All regressions include a constant and a dummy for observations where lagged R&D

stock is zero.

In the absence of endogenous patenting activity we should see the marginal effect of technology spillovers

SpillTech on patenting activity to be positive while the marginal effect of product market spillovers SpillSIC

to be zero.

Across the various model specifications we find the effect of market rivalry to be small and statistically

insignificant, with the exception of PLEP for the Mahalanobis distance. Moreover, the effect changes sign

depending on which distance measure is used. The evidence presented therefore does not reject the hypothesis
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of exogenous knowledge production. Moreover, across all specifications we observe positive and significant

effects of the lagged R&D stock and the lagged sales, which is consistent with basic economic intuition.

If we use the FE probit model the estimated coefficient on SpillTech is not statistically significant. Moreover,

the estimate appears to indicate a negative effect of technology spillovers, which contradicts economic theory.

RE, PLEP and FLEP predict a positive and statistically significant effect of technology spillovers. The

estimated magnitude differs however for each method. Note that while the results are qualitatively very

similar for both the Jaffe distance measure and the Mahalanobis distance, they are quantitatively different.

It is noteworthy that both RE and FLEP produce results consistent with economic theory. Thus, it is

worth investigating further which model performs better on other fronts. The quantitative difference in

the estimated coefficients indicates that these models may in fact produce very different predictions. From

a policy perspective we would like to know which model to use for more accurate predictions. To verify

this point we contrasted the outcomes predicted by each method in both models with the actual outcomes

observed in the data (Table 3).5 In the Jaffe distance model, the FLEP predicted correctly 86% of outcomes

and incorrectly 14% of outcomes, while the RE predicted correctly 79% of outcomes and incorrectly 21% of

outcomes. In the Mahalanobis distance model, the FLEP predicted correctly 86% of outcomes and incorrectly

14% of outcomes, while the RE predicted correctly 81% of outcomes and incorrectly 19% of outcomes. On

average, the RE has thus 48% higher prediction error rate than the FLEP.

RE FLEP

Predicted 0 1 0 1

Actual

Jaffe Distance
0 4473 1470 5026 917

1 1190 5795 911 6074

Mahalanobis Distance
0 4591 1352 5020 923

1 1148 5837 911 6074

Table 3. Actual vs predicted outcomes for RE and FLEP in the Jaffe distance

model and Mahalanobis distance model.

5This tabulation is often termed a ‘misclassification’ (or ‘confusion’) matrix. The diagonal elements contain

correctly predicted outcomes while the off-diagonal ones contain incorrectly predicted (confused) outcomes (Kohavi

and Provost, 1998).
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The latent effects models also indicate the existence of a time factor, measured as having moderate persistence

over time with an autocorrelation coefficient of approximately 0.5. Recall that equation (2.10) implies that

the APE scale depends not only on the estimated β coefficients but also on the estimates of the latent

individual and time variables. A more precise estimate of the distribution of unobserved heterogeneity

should improve the estimates of the APEs. The results in Table 2 show that the flexible latent effects probit

model estimates a marginal effect for technology spillovers that is substantially larger than the marginal

effect estimated by the random effects probit model. Such differences in the estimated quantities of interest

may lead to very different policy implications.

4.4.2. Unobserved Firm Heterogeneity

We have noted above that both FLEP and PLEP produce quantitatively similar results for both distance

measures.6 A key advantage of FLEP is that does not impose the normality constraint on the unobserved

heterogeneity. Furthermore, FLEP is the only model that allows us to uncover a non-parametric estimate of

the distribution of firm heterogeneity. There is no sound economic reason to assume that this distribution

is normal and in fact we would expect that different types of production processes have very different

forms of unobserved heterogeneity which impacts patenting activity. In our application, the distribution

of heterogeneity is shown to have a multimodal clustering structure as plotted in Figure 1. These clusters

may reflect the presence of missing variables important for characterizing innovation, such as firm culture or

investment strategy. In Figure 1 we can easily discern several major clustering structures in each distance

model, labeled by numbers in square boxes, corresponding to the major modes of the distribution. In the

Appendix we show that this clustering is robust to the choice of the DPM prior hyperparameter.

In the FLEP output in Figure 1, each clustering structure is composed of draws of the firm-specific unobserved

heterogeneity component τi which we can use to further analyze the composition of each cluster. Table 4 lists

the SIC code names for 20 firms whose τi was most frequently drawn within each given clustering structure.

Thus, for the Jaffe distance model, the lowest unobserved heterogeneity component group (Clustering 1) is

composed e.g. of ’meat packing plants’, ’blowers and fans’, or ’department stores’; the medium unobserved

heterogeneity component group (Clustering 2) includes ’food and kindred products’, ’footwear’, and ’electrical

industrial apparatus’; while the high unobserved heterogeneity component group (Clustering 3) features

’semiconductors and related devices’, ’electronic components’, or ’commercial physical research’. The cluster

6Nonetheless, PLEP estimated statistically significant product market spillovers, which was not confirmed by any

other model specification.

20



1 2 3

0
.2

.4
.6

.8
D

en
si

ty

-5 0 5
tau

 

1 2 3

0
.2

.4
.6

.8
D

en
si

ty

-5 0 5
tau

 

Figure 1. Flexible latent effects probit (FLEP) distribution of unobserved hetero-

geneity for the Jaffe distance model (left) and Mahalanobis distance model (right).

composition is very similar in the Mahalanobis distance model and hence not reported here. Uncovering

such cluster structures of firms that behave similarly in terms of their unobserved characteristics can provide

important insights for industry analysts and policy makers analyzing firms’ R&D behavior. Below we shall

further investigate the extent to which our theoretical predictions are satisfied for each cluster.

Clustering 1 Clustering 2 Clustering 3

4923 Gas Transmission and Distribution 3841 Surgical and Medical Instruments 2835 Diagnostic Substances

2851 Paints and allied products 3661 Telephone and Telegraph Apparatus 2840 Cosmetics

3060 Fabricated rubber products 3825 Instruments To Measure Electricity 3714 Motor Vehicle Parts and Accessories

3440 Fabricated Structural Metal 3577 Computer Peripheral Equipment 2761 Manifold Business Forms

2011 Meat Packing Plants 4011 Railroads, Line-haul Operating 2390 Misc Fabricated Textile

2731 Book Publishing 3590 Misc industrial machinery 3823 Process Control Instruments

3561 Pumps and Pumping Equipment 3537 Industrial Trucks and Tractors 3572 Computer Storage Devices

3640 Electric lighting and wiring equipment 6324 Hospital and Medical Service Plans 3674 Semiconductors and Related Devices

2030 Canned, frozen, and preserved fruit 2000 Food and Kindered Products 3679 Electronic Components

3533 Oil and Gas Field Machinery 3669 Communications Equipment 3420 Handtools

3663 Radio and T.v. Communications Eqpt 3310 Steel Works, Blast Furnaces 2842 Sanitation Goods

3944 Games, Toys, and Children’s Vehicles 3140 Footwear, Except Rubber 3990 Misc Manufacturing Industries

3621 Motors and Generators 3620 Electrical Industrial Apparatus 8731 Commercial Physical Research

2253 Knit Outerwear Mills 2834 Pharmaceutical Preparations 3613 Switchgear and Switchboard Apparatus

3579 Office Machines 3711 Motor Vehicles and Car Bodies 3670 Electronic Components and Accessories

3743 Railroad Equipment 4931 Electric and Other Services Combined 3530 Material Handling Equipment

3490 Miscellaneous fabricated metal products 3021 Rubber and Plastics Footwear 3829 Measuring and Controlling Devices

3564 Blowers and Fans 2911 Petroleum Refining 8731 Commercial Physical Research

2522 Office Furniture, Except Wood 3569 General Industrial Machinery 2821 Plastics Materials and Resins

5311 Department Stores 3690 Misc Electrical Machinery 3861 Photographic Equipment and Supplies

Table 4. Most frequent members of clustering structures for the Jaffe distance model.

Using the FLEP output we can also explore the evolution of the draws of the unobserved heterogeneity

parameters τi for specific individual companies in order to investigate if the draws are concentrated or show
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large variances as the Markov Chain progresses. Overall, we have found the draws to be remarkably stable

indicating a clear tendency of the model to associate each firm with a narrow range of draws of τi. If a

draw of τi jumps to a different cluster, it does not stay there long and returns shortly back to its long term

average. This is an important indicator that the clustering of τi values observed in the estimated distribution

of unobserved heterogeneity may contain relevant information since it establishes a fairly tight link between

firms and different modes of the distribution of heterogeneity. To exemplify we plot the draws of τi for the

first five firms for the model of positive patents model in Figure 2.
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Figure 2. Draws of τi for the first five companies. Jaffe distance model (left) and

Mahalanobis distance model (right).

The estimated distribution of the unobserved heterogeneity provides valuable economic information which

can be used to analyze the data further and test additional economic hypotheses of interest. One such

hypothesis is that there are unobserved industry level factors driving innovation. In order to investigate this

hypothesis, we plot the average sampled value of the unobserved heterogeneity component τi by each SIC

code for the two estimated models of innovation in Figure 3. The absence of any discernible pattern in the

graphs suggests that the unobserved heterogeneity component is not driven by industry factors but is rather

firm-specific at the individual level. Indeed, further examination of individual τi revealed large differences

in company types even within SIC categories. It appears that associating the unobserved heterogeneity

with industry categories and attempting to capture it for example by industry indicator variables may

obscure important differences among firms regarding their innovation activity. When we re-estimated the

models using industry dummies in addition to the variables introduced above, the resulting changes were

negligible. The nonparametric density estimates of the unobserved heterogeneity were almost identical to
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the ones previously discussed. This further highlights the benefit of the FLEP model in tracking unobserved

heterogeneity at the individual level.
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Figure 3. Average τi of companies for each SIC. Jaffe distance model (left) and

Mahalanobis distance model (right).

4.4.3. Cluster-based Partial Effects

Given that we have established the presence of three major clusters in the distribution of firm heterogeneity,

we can revisit our original model and re-estimate it separately for each cluster. This allows us to investigate

the extent to which the strength of the spillover effects varies across groups of firms. As BSV emphasize an

important robustness check for the economic model is to verify the extent to which the results hold across

groups of firms. If they do not, this may indicate that the estimated spillover effects are spuriously generated

by pooling across different types of firms.

The summary statistics for the firms in each cluster are given in Table 5. It is interesting to notice that

the extent of patenting activity varies substantially across clusters. The first cluster corresponding to neg-

ative values for the firm level heterogeneity has a low degree of patenting activity, while the third cluster

corresponding to positive values of the firm level heterogeneity has a high degree of patenting activity. The

summary statistics for the observable variables are however fairly similar across clusters which indicates that

the unobserved heterogeneity has an important role to play.

The results of the patent equation estimation with FLEP are given in Table 6 for each cluster, respectively.

The presence of technology spillover effects is confirmed for each cluster individually. The effect of product
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Jaffe Distance Mahalanobis Distance

Variable Mean S.D. Min Max Mean S.D. Min Max
C
lu
st
er
1

SpillTech 9.516 1.029 4.838 11.707 11.252 0.801 8.519 13.156

SpillSIC 7.157 2.420 -4.602 11.154 8.417 1.685 1.220 11.559

R&D Stock 4.112 1.996 -0.888 10.231 2.378 2.909 -1.482 10.231

Sales 6.143 1.922 1.098 11.760 6.144 1.946 1.098 11.760

Patenting 0.262 0.440 0 1 0.291 0.454 0 1

Firms 219 260

Total Obs 3916 4593

C
lu
st
er
2

SpillTech 9.621 1.181 4.935 11.531 11.377 0.868 8.252 13.110

SpillSIC 7.388 2.283 -4.321 11.053 8.585 1.656 -0.356 11.355

R&D Stock 4.694 2.219 -2.513 10.765 3.511 3.082 -2.513 10.765

Sales 6.286 2.023 0.693 12.103 6.320 2.000 0 12.103

Patenting 0.622 0.484 0 1 0.649 0.477 0 1

Firms 415 402

Total Obs 7361 7155

C
lu
st
er
3

SpillTech 9.346 1.195 5.017 11.411 11.172 0.860 8.235 12.840

SpillSIC 7.032 2.233 -2.700 10.981 8.4523 1.565 2.631 11.268

R&D Stock 4.318 1.698 0.085 8.306 4.0012 1.530 0.085 8.161

Sales 6.187 1.764 0 10.430 6.0130 1.752 1.386 10.430

Patenting 0.832 0.373 0 1 0.8457 0.361 0 1

Firms 95 67

Total Obs 1651 1180

Table 5. Summary statistics for individual clusters. All variables are in logarithms

and lagged by one period.

market rivalry continues to be statistically negligible in for each cluster. These results show that the economic

model is thus robust to unobserved heterogeneity.

We can also perform one additional robustness check. If the FLEP model has correctly identified each cluster

we should be able to estimate the model reasonably well using RE by sub-setting the data for each cluster.

If heterogeneity is driving the results of the model once we condition on a cluster RE should perform similar

to FLEP.7 The robustness check results are reported in Table 7, using subsets of data corresponding to each

cluster. RE and FLEP perform similarly in terms of predictions. It is important to remember however that

this exercise can only be performed in post-estimation, conditional on the given cluster. A-priori we can

7Note that FLEP also controls for the presence of time factors which are ignored by the RE model. If however

firm specific heterogeneity dominates in the data, then we would expect both models to have a similar performance.
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never be sure about the structure of the distribution of the unobserved heterogeneity, which emphasizes the

importance of using a flexible model when addressing unobserved heterogeneity.

Jaffe Distance Mahalanobis Distance

Cluster 1 Cluster 2 Cluster 3 Cluster 1 Cluster 2 Cluster 3

Ln(SpillTech) 0.681* 0.529* 0.720* 0.852* 0.610* 0.897*

(0.077) (0.043) (0.097) (0.069) (0.040) (0.124)

Ln(SpillSIC) 0.026 0.035 0.016 -0.031 -0.008 -0.066

(0.026) (0.019) (0.054) (0.027) (0.017) (0.069)

Ln(R&D Stock) 0.219* 0.345* 0.290* 0.198* 0.332* 0.385*

(0.035) (0.022) (0.088) (0.033) (0.024) (0.117)

Ln(Sales) 0.157* 0.182* 0.347* 0.169* 0.177* 0.205*

(0.028) (0.019) (0.068) (0.024) (0.017) (0.086)

APE scale 0.192 0.170 0.067 0.191 0.167 0.054

ρ 0.671* 0.620* 0.274* 0.468* 0.689* 0.514*

(0.147) (0.150) (0.214) (0.197) (0.130) (0.196)

Table 6. Estimation of Patent Equation by Cluster with FLEP.

Notes: Standard errors are reported in brackets. Coefficients significant at 5% confidence level are marked with an asterisk. All

independent variables are lagged by one period. All regressions include a constant and a dummy for observations where lagged R&D

stock is zero.

RE FLEP

Predicted 0 1 0 1

Actual

Jaffe Distance

Cluster 1
0 2668 219 2674 213

1 412 617 426 603

Cluster 2
0 2212 567 2195 584

1 480 4102 497 4085

Cluster 3
0 213 64 214 63

1 26 1348 26 1348

Mahalanobis Distance

Cluster 1
0 2987 269 2987 270

1 481 856 471 866

Cluster 2
0 1959 546 1922 583

1 463 4187 443 4206

Cluster 3
0 145 37 147 35

1 20 978 19 979

Table 7. Actual vs predicted outcomes for RE and FLEP in the Jaffe distance

model and Mahalanobis distance model for each cluster.
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5. Conclusion

This paper introduced a new Bayesian semi-parametric approach to the estimation of the probit model in

panel data with unobserved heterogeneity. The proposed model substantially improved on current benchmark

methods by relaxing three assumptions that are often either ignored or treated in an ad-hoc fashion in

empirical work. First, we modeled unobserved individual effects using a flexible nonparametric form with

desirable local adaptability properties. Second, we allowed for the unobserved heterogeneity to be correlated

with the observables. Finally, our model incorporated common latent time effects.

We employed a combination of recent powerful sampling algorithms in order to draw from a Dirichlet Process

Mixture model specified for the unobserved heterogeneity component. We evaluated the proposed model

in a number of Monte Carlo simulations along with existing fixed and random effects model alternatives.

The underlying parameters are shown to be estimated with high precision in the proposed model, unlike for

the benchmark cases. The simulations highlight the benefit of using the flexible proposed model when the

underlying heterogeneity is not well approximated by a parametric distributional form.

We applied the proposed method to the estimation of a patent equation in the presence of both technological

and product market spillover effects. We showed that technological innovation is subject to substantial firm-

level heterogeneity which persists within individual industries. We have showed that innovation depends in

an important way on technology spillovers but that there is little evidence in favor of product market spillover

effects. On the basis of the estimated firm-level heterogeneity we also showed that unobserved heterogeneity

is heavily clustered and that the clustering matters when making in-sample predictions of patenting activity.
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6. Appendix

6.1. Sampling β

In this block we apply the method of Albert and Chib (1993) to the recentered latent variable ỹ∗it = ỹit−τi−λt.

The joint conditional density of (β, ỹ∗) is given by

p(β, ỹ∗|τ, λ, ψ, θ/β , ỹ,y,X) ∝ exp

[

−
1

2
(β − β′)Σ−1β (β − β)

]

exp

[

−
1

2
(ỹ∗ −Xβ)′(ỹ∗ −Xβ)

]

yielding a closed form of the conditional posterior for β which facilitates direct sampling from β|∙ ∼ N
(
β,Σ

)

where

β = Σ
(
Σ−1β +X′ỹ∗

)

Σ =
(
Σ−1 + (X′X)

)−1

In the application, we specify the hyperparameter values β = 0 and Σβ = 10I where I is the identity matrix.

This specification is aimed at rendering the prior for β sufficiently diffuse.

6.2. Sampling ỹit

Here we benefit from the second step of the Albert and Chib (1993) procedure, augmented by τi and λt.

Thus, sample directly

ỹit|∙ ∼ N(vit, 1)

vit = xitβ + τi + λt

truncated by 0 from the left if yit = 1 and from the right if yit = 0.

6.3. Updating Latent Class Assignments

For this block we utilize a hybrid sampler that alternates between the non-conjugate version of the Sequen-

tially Allocated Split-Merge (SAMS) sampler of Dahl (2005), and Algorithm 7 of Neal (2000). This approach

is suggested by Dahl (2005) as optimally combining the virtues of each method: the ability to move large

blocks of elements among latent classes in one step for the former, and one-at-a-time allocations of individual

elements among latent classes for the latter.

The SAMS sampler is based on an alternative expression of the model (2.6)-(2.8) in terms of a set partition

π = {S1, . . . , Sq} for S0 = {1, . . . , n} in addition to the latent class parameters φ = {φS1, . . . , φSq} where
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φS is associated with component S. The set partition π for S0 is a set of subsets S1, . . . , Sq such that (1)

∪S∈πS = S0, (2) S
i ∩ Sj = ∅ for all Si 6= Sj , and (3) S 6= ∅ for all S ∈ π. Using this notation, the model

(2.6)-(2.8) can be recast as (Dahl, 2005):

τi|π, φ ∼ Fτ (φ
i
S)(6.1)

ψ|π ∼
∏

S∈π

G0(φS)(6.2)

π ∼ b
∏

S∈π

η0Γ(|S|)(6.3)

where |S| is the number of elements of the component S. The sampling scheme works as follows: In each

MC iteration, uniformly select a pair of distinct indices i and j. If i and j belong to the same component in

π, say S, propose π∗ by splitting S. Otherwise, i and j belong to different components in π, say Si and Sj .

Propose π∗ by merging Si and Sj . In each case, compute the Metropolis-Hastings (MH) ratio a(π∗, φ∗|π, φ)

and accept the new latent class configuration π∗ with probability given by this ratio. We derive the MH

ratio for our model in the following Section.

Algorithm 7 of Neal (2000), which we utilize in every alternate MC step, is based on limiting probabilities of

a latent class finite mixture model with the number of classes tending to infinity. The sampling procedure

itself is built around drawing with a stochastic number of mixture components or classes whose number

and size varies at each MC iteration. Denote by c a label of a generic latent class with membership count

Nc. Given the current state of the system, τi are first re-assigned into latent classes with labels ci whereby

new classes can be created and old ones may vanish. The probabilities of class assignment for the τi are

proportional to the likelihood of τi conditional on the current draw of the class parameters ψc. Second, the

class parameters ψc are updated in a standard way for each class separately. If we specify Fτ as an infinite

mixture of Normals, then ψc = (μτc, σ
2
τc) are the moments of the Normal density.

For updating ψ in the Algorithm 7 scan, we specify Fτ as a mixture of Normals with ψ = (μτ , σ
2
τ ). Since for

all τi that fall into one latent class it holds that τi ∼ N(μτc, σ
2
τc) we can apply result B (p. 300) of Train

(2003) to each latent class separately: for an IG(s0, v0) prior, the posterior of σ
2
τc is given by IG(s1, v1) with

v1 = v0 + Nc and s1 = (v0s0 + Ncsci)/(v0 + Nc) where sc = N−1c
∑Nc
i=1 τ

2
i . We utilize a diffuse IG prior.

Analogously, to sample μτc we use result A of Train (2003) applied to each latent class. The hyperparameter

of the DP prior α is sampled according to the scheme of Escobar and West (1995).
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The iteration between the samplers of Dahl (2005) and Neal (2000) alleviates the influence of particular

starting values. The SAMS sampler is capable of re-allocating large blocks of data to one of the latent

classes while the Neal algorithm addresses the individual by individual allocation to latent classes. This

allows us to initialize the procedure with a unique parametric component. This is then rapidly split into

classes by the SAMS sampler before the Neal procedure continues to fine-tune the posterior draws.

6.4. Sampling τi

Let ỹ∗∗i = ỹi −Xiβ − λ. Then

ỹ∗∗i = τiι+ εi

Consider for the moment the case τi ∼ N(τ , σ2τ ); it will be used as a building block in the DP prior sampling.

In this case, for every i we have one latent regression with one parameter τi and a (T × 1) vector of ones

as explanatory variables in place of a hypothetical Xi. Using standard latent regression results (see e.g.

Lancaster, 2004),

p(τi|∙) = φ
(
τ i, σ

2
τi

)
(6.4)

τ i = σ2τi

(

σ−2τ τ +

T∑

i=1

ỹ∗∗i

)

σ2τi =
(
σ−2τ + T

)−1

Since τi ∼ N(μτc, σ
2
τc) given a previous assignment to the latent class c, let τ = μτc, σ

2
τ = σ2τc and sample

τi directly from (6.4).

6.5. Sampling λ

Let

ỹiλ = ỹi −Xiβ − τiι

Then the joint density implied for ỹλ = (ỹ1λ, . . . , ỹNλ) by the recentered probit model conditional on λ is

f(ỹλ|λ, ∙) = (2π)
−NT/2

det(IT )
−N/2 exp

{

−
1

2

N∑

i=1

[
ỹiλ

′I−1T ỹiλ − 2λ
′I−1T ỹλi + λ

′I−1T λ
]
}

while the prior density specified by Assumption 3 takes the form

f(λ) = (2π)
−T/2

det(IT )
−1/2 exp

{

−
1

2
λ′Ω−1λ λ− 2λ′Ω−1λ Λρ+ ρ

′Λ′Ω−1λ Λρ

}
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where Λt = (λt−1, . . . , λt−s), Λ = (Λ
′
1, . . . ,Λ

′
T )
′, ρ = ( ρ1, . . . , ρs) and Ωλ is the covariance matrix associated

with the autoregressive process. Hence we can sample λ directly from N(λ,Σλ) where

λ = Σλ

(

Ω−1λ λ+

N∑

i=1

ỹλi

)

Σλ =
(
Ω−1λ +N × IT

)−1

For ease of implementation we restrict ourselves to the AR(1) specification with a single autoregressive

parameter ρ in the application. In this case,

Ωλ = γ0











ρ0 ρ1 ρ2 ∙ ∙ ∙ ρT−1

ρ1 ρ0 ρ1 ∙ ∙ ∙ ρT−2

ρ2 ρ1 ρ0 ρT−3

...
...

. . .
...

ρT−1 ρT−2 ρT−3 ∙ ∙ ∙ ρ0











γ0 =
σ2η

1− ρ2

6.6. Sampling ρ

Note that for the AR(1) process,

p(λt|λt−1, ∙) ∝






exp
(
− (1−ρ

2)
2σ2η

λ21

)
, t = 1

exp
(
− 1
2σ2η
(λt − ρλt−1)2

)
, t = 2, ..., T

and hence

p(ρ|λ) = exp

(

−
1

2σ2η

[

(1− ρ2)λ21 +
T∑

t=2

(λt − ρλt−1)
2

])

= exp

(
1

2σ2η

[

ρ2

(
T∑

t=2

λ2t−1 − λ
2
1

)

− 2ρ
T∑

t=2

λtλt−1 +

T∑

t=1

λ2t )

])

Matching this expression with a Gaussian kernel exp
(
− 1
2σ2

[
ρ2 − 2ρμ+ μ2

])
yields

σ2ρ = σ2η

(
T−1∑

t=2

λ2t

)−1

μρ =
σ2ρ

σ2η

T∑

t=2

λtλt−1

=

(
T−1∑

t=2

λ2t

)−1 T∑

t=2

λtλt−1
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We can therefore sample ρ directly from N(μρ, σ
2
ρ) truncated at −1 and 1 to preserve stationarity. Extension

to AR(p) will amend the likelihood function p(λt|λt−1, ∙) but the derivation would be similar. The approach

for sampling the AR(p) parameters conditional on the initial observations is presented in Chib (1993).

6.7. Sampling σ2η

For this block we use the result derived in Burda, Liesenfeld, and Richard (2011) which adapts the standard

result on sampling univariate variances (given e.g. by result B, p. 300, of Train, 2003) to the likelihood of

the variance of the AR process. Conditional on λ and ρ, the likelihood function of σ2η takes the form

L(σ2η|λ, θ/σ2η ) ∝

√
1− ρ2

ση
√
2π
exp

[

−
1− ρ2

2σ2η
λ21

] T∏

t=2

1

ση
√
2π
exp

[

−
1

2σ2η
(λt − ρλt−1)

2

]

An IG(v0, s0) prior has density

k(σ2η) =
1

m0σ
(v0+1)/2
η

exp

[

−
v0s0

2ση

]

where m0 is a normalizing constant. We can then sample directly from the posterior

L(σ2η|λ, θ/σ2η ) ∝ L(σ2η|λ, θ/σ2η )k(σ
2
η)

∝
1

σ
(T+v0+1)/2
η

exp

[

−

(
1− ρ2

)
λ21 +

∑T
t=2 (λt − ρλt−1)

2
+ v0s0

2σ2η

]

= IG(v1, s1)

where

v1 = v0 + T

s1 =
v0s0 +

(
1− ρ2

)
λ21 +

∑T
t=2 (λt − ρλt−1)

2

v0 + T

In the application, the prior for σ2η will be specified as diffuse with s0 → 0 and v0 = 0.

6.8. The SAMS sampler

In this Section, we explicitly derive the form of the MH ratio for our case. For a general description, see

Dahl (2005). Let k be the successive values in random permutations of the indices in S. In our model, the

MH ratio is given by

a(π∗, φ∗|π, φ) = min

[

1,
p(π∗, φ∗|y)
p(π, φ|y)

q(π, φ|π∗, φ∗)
q(π∗, φ∗|π, φ)

]

If the proposal involves a split, q(π∗, φ∗|π, φ) is the split probability and q(π, φ|π∗, φ∗) = 1 is the merge

probability. If the proposal involves a merge, the roles of q(π∗, φ∗|π, φ) and q(π, φ|π∗, φ∗) are reversed.
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Consider e.g. proposal for a split:

q(π∗, φ∗|π, φ) =
N∏

k=1

P
(
k ∈ Si|Si, Sj , φ, y

)
P (φSi)

The first term is given in equation (13) in Dahl (2005). The second term P (φSi) is the proposal density of

the new φSi . The merge probability is

q(π, φ|π∗, φ∗) = 1

By Bayes theorem,

(6.5) p(π, φ|y) ∝ p(y|π, φ)p(π, φ)

where p(y|π, φ) is the likelihood

p(y|π, φ) =
n∏

i=1

p(yi|φSi)

and p(π, φ) is the prior

(6.6) p(π, φ) = p(φ|π)p(π)

where

p(φ|π) = S∈πF0(φS)

p(π) = bS∈πη0Γ(|S|)

b−1 =

n∏

i=1

Γ (η0 + i− 1)

Note that for a split of a class Ss into Si and Sj ,

p(y|π∗, φ∗)
p(y|π, φ)

=

∏|Si|
t=1 p(yt|φSi)

∏|Sj |
t=1 p(yt|φSj )∏|Ss|

t=1 p(yt|φSs)
(6.7)

where the index t in p(yt|φSi) refers to elements of the class Si. Similarly, for a merge of classes Si and Sj

into Ss,

p(y|π∗, φ∗)
p(y|π, φ)

=

∏|Ss|
t=1 p(yt|φSs)

∏|Si|
t=1 p(yt|φSi)

∏|Sj |
t=1 p(yt|φSj )

i.e. the inverse of the ratio of split probabilities. Note that for a split we can use the stored values of

the likelihood evaluations from the allocation of k into Si and Sj . Hence only two additional likelihood

evaluations p(yi|φSi) and p(yj |φSj ) that initiated the split need to be performed for obtaining the ratio

p(y|π,φ)
p(y|π∗,φ∗) . For a merge, only 2|S

i|+ |Sj | likelihood evaluations need to be performed, which for small classes

can be substantially less than the sample size n. In the same spirit, for computing prior components for a

split

p(φ∗|π∗)
p(φ|π)

=
F0(φSi)F0(φSj )

F0(φSs)
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and

p(π∗)

p(π)
=
Γ(|Si|)Γ(|Sj |)
Γ(|Ss|)

while for a merge

p(φ∗|π∗)
p(φ|π)

=
F0(φSs)

F0(φSi)F0(φSj )

and

p(π∗)

p(π)
=

Γ(|Ss|)
Γ(|Si|)Γ(|Sj |)

Thus, using (6.5), the ratio of the p-terms for a split becomes

(6.8)
p(π∗, φ∗|y)
p(π, φ|y)

=

∏|Si|
t=1 p(yt|φSi)

∏|Sj |
t=1 p(yt|φSj )∏|Ss|

t=1 p(yt|φSs)

F0(φSi)F0(φSj )

F0(φSs)

Γ(|Si|)Γ(|Sj |)
Γ(|Ss|)

while for a merge this ratio is given by the inverse of the expression in (6.8).

6.9. DPM Prior Hyperparameter

In order to explore the distribution of unobserved heterogeneity, τi, in our patent models we need to make

sure that its behavior is not implicitly restricted by the estimation procedure or some other deep model

parameters. One parameter that is of concern to us is the smoothing parameter α that controls the extent to

which the Dirichlet Process draws mixture distributions that are more or less ”similar” to the Normal baseline

parametric distribution G0. In the limiting case of α → ∞ the mixture distribution becomes equivalent to

G0, while in the other extreme α → 0 the mixture distribution limits to a convolution of density kernels

centered at each data point without any influence of the DP prior. The posterior distribution estimate for

both models is plotted in Figure 4. The distributions are concentrated around a mode of 2 indicating a

strong influence of data relative to the baseline prior distribution.
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Figure 4. Density of draws of α, Jaffe distance model (left) and Mahalanobis

distance model (right).
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