
Recurrent Neural Network GO-GARCH Model

for Portfolio Selection

Martin Burda∗ab Adrian K. Schroederac

June 25, 2024

Abstract

We develop a hybrid model of multivariate volatility that uses Recurrent Neural Networks to capture the

conditional variances of latent orthogonal factors in a GO-GARCH framework. Our approach seeks to

balance model flexibility with ease of estimation and can be used to model conditional covariances of a

large number of assets. The model performs favourably in comparison with relevant benchmark models in a

Minimum Variance Portfolio (MVP) scenario.

JEL: C32, C45, G11, G12

Keywords: LSTM, machine learning, nonlinear time series, multivariate volatility forecasting

∗Corresponding author.
aDepartment of Economics, University of Toronto, 150 St. George St., Toronto, ON, M5S 3G7, Canada
bE-mail: martin.burda@utoronto.ca
cE-mail: adrian.schroeder@mail.utoronto.ca

This project is supported in part by funding from the Social Sciences and Humanities Research Council (SSHRC).

Computations were performed on the Mist supercomputer at the SciNet HPC Consortium. SciNet is funded by: the

Canada Foundation for Innovation; the Government of Ontario; Ontario Research Fund - Research Excellence; and

the University of Toronto.

1 Introduction

Modelling multivariate financial asset returns volatility plays a key role in financial portfolio man-

agement. Analysis of the dynamic evolution of variances and covariances of asset portfolios is used

for a number of purposes, such as forecasting value-at-risk (VaR) thresholds to determine com-

pliance with the Basel Accords, tracking spillover effects in studies of contagion, or determining

optimal asset pricing and hedging positions.

Many different types of multivariate volatility models have been proposed in the literature (for a

recent survey, see Boudt et al., 2019). Popular specifications include the BEKK GARCH model

(Engle and Kroner, 1995) and the dynamic conditional correlation (DCC) model (Engle, 2002;

Aielli, 2013). BEKK is typically used to forecast conditional covariances, although it may also

be used to forecast conditional correlations indirectly. DCC is primarily intended for forecasting

conditional correlations, although it can be applied to forecast conditional covariances (Caporin

and McAleer, 2012).

It is well known that many fully parametrized multivariate volatility models suffer from the so-

called curse of dimensionality, whereby the number of parameters increases at an order greater

than the number of assets m. Specifically, in both the commonly used implementation of BEKK

and in the DCC model the number of parameters increases at order O(m2) (Caporin and McAleer,

2012). Practical implementation of the DCC model is aided by estimating univariate models of

variance separately from the correlation matrix, although the latter still represents a challenging

multivariate object for optimization when the number of assets is large.

Parameter parsimony can be achieved by imposition of parametric restrictions, resulting in diag-

onal or scalar model versions (Silvennoinen and Teräsvirta, 2009). However, enforcement of such

restrictions is traded off with model flexibility. For example in the BEKK case the diagonal and

scalar versions are substantially dominated in terms of model fit by the unrestricted model with

targeting (Burda and Maheu, 2012). Indeed, the types of restrictions needed to achieve parameter

parsimony generally operate on the parameters driving the model dynamics.

Factor (Engle et al., 1990) and generalized orthogonal (GO-) (van der Weide, 2002) multivariate

1

volatility models achieve a degree of pasimony by imposing a common dynamic structure on all

the elements of the covariance matrix (Bauwens et al., 2006). The key assumption of these models

is that an observed vector of returns can be expressed as a non-singular linear transformation

of uncorrelated latent factors. The time-varying variance dynamics of these factors can then be

modelled and estimated individually, typically by a univariate GARCH model. In a restricted

version only a subset of the latent factors has a time-varying conditional variance (Lanne and

Saikkonen, 2007).

Despite the rich covariance and correlation structure exhibited by BEKK and DCC, their dynamics

are specified as linear functions of past information. Aided by recent advances in machine learning

(ML) methods, a growing stream of literature has been exploring the use of nonlinear ML-based

volatility models and time series dynamics in general. In particular, Recurrent Neural Networks

(RNNs) have shown remarkable ability in detecting both short-term and long-term dependencies

in time series applications in various fields, such as natural language processing, speech and hand-

writing recognition, genotype sequencing, and drug response prediction (Abraham and Kumar,

2023). The demonstrated success of RNNs at capturing dynamic dependence patterns along with

feasibility of implementation in accessible software libraries (Chollet, 2015; Gulli and Pal, 2017)

have fuelled the influx of ML approaches to time series and volatility modelling (Hewamalage et al.,

2021). RNN models have been shown to generate predictions that outperform mainstream variants

of the univariate GARCH family in stock price volatility (Luo et al., 2018) or commodity price

volatility (Vidal and Kristjanpoller, 2020). In particular, the RNN variant Long Short Term Mem-

ory neural networks (LSTMs) that alleviate the vanishing gradient problem in RNN optimization

have shown remarkable ability in detecting both short-term and long-term dependencies. LSTMs

have also been shown to be more accurate for predicting volatility than feedforward neural networks

that are not well-suited for time series analysis (Kim and Won, 2018).

However, unlike the univariate volatility literature, analysis of nonlinear dynamics in conditional

covariance matrices of multivariate models has been relatively sparse. A recent survey paper of

neural network–based financial volatility forecasting by Ge et al. (2022) found only one study

among the predominantly univariate field, Bucci (2020), that predicted a volatility covariance

matrix with RNNs. Its application to daily returns on three assets shows an improvement in out-

2

of-sample forecasting accuracy over benchmark models in terms of mean absolute error and root

mean square error. Subsequently, Liu et al. (2022) followed a similar approach and in an application

to five technology stocks found that RNN-based models generated higher mean portfolio returns

than those from the DCC model. Both papers apply RNNs to the lower-triangular matrix of the

Cholesky decomposition of the covariance matrix, which limits the number of potential assets due

to the curse of dimensionality.

Boulet (2021) notes that rather than trying to predict the whole conditional covariance matrix

with a neural network model, it seems more promising to follow a “hybrid” aproach that combines

neural nets with a multivariate GARCH volatility decomposition such as the CCC or the DCC. He

proposes several variants of a hybrid model with a DCC conditional covariance decomposition and

LSTM dynamics of individual volatilities. The hybrid models are shown to improve on the DCC

in terms of several Minimum Variance Portfolio performance metrics on a large sample of several

hundred assets. In the univariate volatility literature hybrid models have also been outperforming

pure neural network specifications (Kim and Won, 2018; Ge et al., 2022). Notably, a hybrid

Exponential Smoothing – LSTM model became the winner of a recent M4 forecasting competition

(Smyl, 2020).

In this paper we develop the hybrid multivariate GARCH – RNN approach by modeling latent

factors in a multivariate GO-GARCH model with LSTM dynamics. Specifically, we adopt the

Boswijk and van der Weide (2011) GO-GARCH framework that was designed to balance gener-

ality against ease of estimation. The model uses a three-step estimation method that is easy to

implement and is numerically attractive relative to DCC-based hybrid models. The first two steps

consist of a method of moments estimator for the linear transformation that only involves iterated

matrix rotations free of numerical convergence problems regardless of the dimension. The third

step involves estimation of univariate LSTM models for each of the factors instead of parametric

GARCH-type models used in the original GO-GARCH model. As a parsimonious special case we

also consider a model variant where where all factors share a common LSTM cell.

Instead of attempting to capture the full complexity of a high-dimensional Cholesky decomposition

used in the aforementioned studies, the factor decomposition of the GO-GARCH framework enables

3

us to focus the flexible nonlinear RNN models directly on the low-dimensional univariate dynamics

of the latent factors. As a result, we can greatly expand the overall portfolio size from a handful

to potentially hundreds of assets.

A potential drawback of GO-GARCH framework is that the latent factors do not have a direct eco-

nomic interpretation, just like the RNNs that we use to model the factors. Lack of interpretability

is a typical feature of the machine learning literature which is generally focused on reduced-form

predictive performance rather than structural outcomes, with the former being our perspective as

well.

We apply our model to a portfolio of 100 assets and compare its performance with relevant bench-

mark models in a Minimum Variance Portfolio (MVP) scenario. Our model variant with an indi-

vidual LSTM for each factor achieves the best outcome by minimizing a key standard deviation

metric, while the variant with a common LSTM for all factors is shown to perform favourably in

terms of complementary metrics.

The paper is organized as follows. In Section 2 we review the GO-GARCH model, the RNN

framework, and based on these formulate the new hybrid model. In Section 3 we lay out the

details of the MVP scenario, discuss our application, and perform model comparison with relevant

benchmark models. Section 4 concludes.

2 Model

2.1 GO-GARCH Model

Consider an m-vector time series {xt}t≥1 that represents a vector of returns on m different assets.

We assume that a conditional mean has been subtracted from xt so that E(xt|Ft−1) = 0 where

{Ft−1}t≥0 denotes the filtration generated by {xt}t≥1. The GO-GARCH model imposes a structure

on the conditional variance matrix Σt = var(xt|Ft−1) = E(xtx
′
t|Ft−1) implied by

xt = Zyt = ZH
1/2
t εt (1)

4

with Ht = diag(h1t, . . . , hmt) where Z is an m×m non-singular matrix, {{hit}t≥1, i = 1, . . . ,m} are

positive, {Ft−1}-adapted processes with E(hit) = 1, and {εt}t≥1 is a vector martingale difference

sequence with E(εt|Ft−1) = 0 and var(εt|Ft−1) = Im.

The model implies that the observed vector of returns xt can be written as a non-singular trans-

formation of a latent vector process yt with dim(xt) = dim(yt) = m, whose components yit are

conditionally uncorrelated, satisfying E(yit|Ft−1) = 0, var(yit|Ft−1) = hit, cov(yit, yjt|Ft−1) = 0

for i ̸= j = 1, . . . ,m. Another model implication is covariance stationarity of yt and hence xt, with

Σt = var(xt|Ft−1) = ZHtZ
′

Σ = var(xt) = ZZ ′.

In the original GO-GARCH model of van der Weide (2002) the conditional variances hit were

assumed to follow the GARCH(1,1) process

hit = (1− αi − βi) + αiy
2
i,t−1 + βihi,t−1, αi, βi ≥ 0, αi + βi < 1. (2)

Fan et al. (2008) and Boswijk and van der Weide (2011) considered a more flexible structure, where

hit may depend on yj,t−k, j ̸= i, k ≥ 1, specified as

hit =

1−
m∑
j=1

αij − βi

+
m∑
j=1

αijy
2
j,t−1 + βihi,t−1, αij , βi ≥ 0,

m∑
j=1

αij + βi < 1. (3)

Boswijk and van der Weide (2011) emphasize that the model structure (1) along with their esti-

mation method allows for various other specifications of the conditional variance process. Instead

of (2) or (3) we propose to leverage the dynamic properties of an LSTM RNN cell detailed in the

next Section in modeling the conditional variances.

2.2 Recurrent Neural Network Model of Volatility

RNNs are mathematical models structured in layers of connected functional units called cells. The

connections between nodes can create a cycle, allowing output from some nodes to affect subsequent

input to the same nodes. This feature allows RNNs to exhibit temporal dynamic behavior and

5

capture dependencies in sequential data. Although the theoretical foundations have been developed

much earlier (Amari, 1972; Hopfield, 1982; Elman, 1990), real-time practical implementation of

RNNs in wide-scale applications was only enabled in the mid-2000s by advances in machine learning

methodology. Since then, RNNs have been widely applied in areas such as language modelling,

machine translation, speech recognition, and time series analysis (Yu et al., 2019).

An standard RNN cell takes the form

at = s(wfat−1 + wzzt + b) (4)

qt = at

where zt, at, and qt denote the input, a recurrent latent state, and the output of the cell at time t,

respectively, wf , wz are the model parameters (so-called weights), b is the intercept (so-called bias),

and s(·) denotes the so-called activation function that renders the model nonlinear. Popular forms

of σ(·) include the sigmoid function

s(x) = σ(x) ≡ 1

1 + e−x

and the tanh function

s(x) = tanh(x) ≡ ex − e−x

ex + e−x
.

A dynamic linear model with a recurrent hidden state results from (4) as a special case when

s(x) = x.

RNNs that only contain the standard cells are not capable of handling long-term dependencies;

as the time distance between the related input grows it is difficult for the standard cell to retain

the connecting information. The Long Short Term Memory (LSTM) version of RNN (Hochreiter

and Schmidhuber, 1997) feature an enhanced memory retention capacity by introducing “gate”

6

functions into the standard cell. The LSTM cell can be expressed as follows:

ft = σ(wfaat−1 + wfzzt + bf) (5)

nt = σ(wnaat−1 + wnzzt + bn) (6)

ct = tanh(wcaat−1 + wczzt + bc) (7)

dt = ft · dt−1 + nt · ct (8)

ot = σ(wohat−1 + wozzt + bo) (9)

at = ot · tanh(ct) (10)

qt = at (11)

where the functions ft, nt and ot denote the forget, input, and output gates, respectively. The forget

gate function determines what information will be retained or discarded from the latent recurrent

cell state (Yu et al., 2019).

We propose to model the conditional variances ht of the GO-GARCH model of Section 2.1 with the

LSTM cell (5)-(11), using ht = at from (10) as the latent recurrent state with sequence of inputs

zt = y2t−1. We consider two versions of the hybrid model. First, a ”GO-LSTM” version where each

latent factor i is assigned its own LSTM cell, and second, a ”GO-LSTM-Common” version where all

factors share a common LSTM cell. The former features greater flexibility at the expense of more

parameters to be estimated while the latter imposes a common restriction on the factor dynamics

with computationally cheaper relative parsimony. The model nests the traditional GO-GARCH

with GARCH(1,1) conditional variances (2) as a special case in the absence of gate functions and

with a linear activation function s(x) = x.

2.3 Estimation and Statistical Properties

Boswijk and van der Weide (2011) note that likelihood-based estimation of the GO-GARCH model

family would require numerical maximization of a criterion function over a high-dimensional pa-

rameter space. As an alternative, they propose a method of moments estimator that only requires

the calculation of common eigenvectors of a sequence of sample moment matrices and ”can be

applied to arbitrary dimensions m”. We adopt the same modelling framework and estimation ap-

7

proach except that in the last step we extend their estimation of univariate GARCH models to

more flexible but still parametric univariate RNN models.

Boswijk and van der Weide (2011) established consistency of their estimator under the following

Assumptions.

Assumption 1 The process xtt≥1 satisfies the representation

xt =Zyt = ZH
1/2
t εt,

Ht = diag(h1t, . . . , hmt)

where Z is an m×m non-singular matrix, where hitt≥1, i = 1, . . . ,m are positive, Ft−1-adapted pro-

cesses with E(hit) = 1 and where εt≥1 is a vector martingale difference sequence, with E(εt|Ft−1) =

0 and V ar(εt|Ft−1) = Im.

Assumption 2 The process xtt≥1 is strictly stationary and ergodic, and has finite fourth moments

κi = E(y4it) < ∞, i = 1, . . . ,m. Furthermore, the autocorrelations ρik = corr(y2it, y
2
i,t−k) and cross-

covariances τijk = cov(y2it, yi,t−kyj,t−k) satisfy, for some integer p,

min
1≥i≥m

max
1≥k≥p

|ρik| > 0, max
1≥k≥p,1≥i≥j≥m

|τijk| = 0.

Assumption 3 In the model defined by Assumptions 1 and 2,

max
1≥k≥p,1≥i≥j≥m

|ρik − ρjk| > 0.

Assumption 1 defines a representation of the observed vector of returns xt in terms of a non-singular

transformation of a latent vector process yt of the same dimension in the Generalized Orthogonal

framework that we use here as well. Assumption 2 ensures the existence of kurtosis and non-zero

autocorrelation of the latent processes yt while excluding dependence in hit on whether yi,t−k and

yj,t−k have the same sign. Similarly to the Boswijk and van der Weide (2011) GARCH case, we

verify the finiteness of kurtosis empirically in our application for our LSTM model, as detailed in

8

the Appendix. Boswijk and van der Weide (2011) note that ”it would be hard to think of processes”

that display volatility clustering but violate the non-zero autocorrelation condition of Assumption

2. Finally, Assumption 3 excludes the possibility that two squared components y2it and y2jt have

the same autocorrelation function for k = 1, . . . , p. As the probability of squares of components of

yt exhibiting exactly the same dynamic behaviour is deemed vanishingly small in applications, we

maintain Assumption 3 as well, and can thus invoke the consistency result of Boswijk and van der

Weide (2011).

An asymptotic distribution of the method of moments estimator under the GO framework can be

obtained by a numerical bootstrap procedure (Hahn, 1996). It is not required for our application

within the Minimum Variance Portfolio (MVP) framework that seeks to find the weights minimizing

the conditional variance of a portfolio based on covariance predictions, and therefore not undertaken

here.

3 Empirical Application and Model Comparison

In this Section, we apply our model to a portfolio of 100 assets and compare its performance

with several relevant benchmark models using the Minimum Variance Portfolio (MVP) framework.

The application framework relies on finding the weights wt = (w1,t, . . . , wm,t) which minimize

the conditional variance of the portfolio σ2
p,t ≡ var(xp,t) for a sample of daily portfolio returns

xp,t = w′
txt. The MVP without short selling solves the following minimization problem:

min
wt

σ2
p,t = w′

tΣtwt s.t. w
′
tιm = 1, wi,t ≥ 0, i = 1, . . . ,m (12)

where ιm is a vector of ones. The problem has the analytical solution

wt =
Σ−1
t ιm

ι′mΣ−1
t ιm

. (13)

The MVP framework has the advantage of being entirely based on covariance predictions and is

a common choice in the literature on the subject (Engle et al., 2019; Boulet, 2021). In practical

implementations the unknown Σt is replaced with an estimator. We consider the following models

for Σt:

9

• Equally weighted portfolio;

• DCC with Σt = DtRtDt where Dt is a diagonal matrix of univariate conditional variances,

here modeled by GARCH(1, 1), and Rt is a matrix of conditional correlations;

• GO-GARCH (Boswijk and van der Weide, 2011);

• G-LSTM-DCC-OH where the forecast of Dt is obtained using an LSTM taking past con-

ditional volatilities and GARCH(1, 1) features as inputs, best performing model of Boulet

(2021);

• GO-LSTM-Common where each ht in the GO-GARCH model (1) is modelled by the same

LSTM process;

• GO-LSTM where each ht in the GO-GARCH model (1) is modelled by a separate LSTM

process.

We have not included the BEKK model among the benchmark models due to its severe curse of

dimensionality that renders its implementation infeasible for the large number of assets in our

application.

3.1 Data and Portfolio Construction

For our application we chose the top 100 assets from Yahoo finance as ranked by their market

capitalization as of the end of the year 2022. We sought to preclude well-known biases arising from

including smaller firms’ assets (Roll, 1983). The data comprise the daily adjusted closing price,

spanning the time period from January 2004 to December 2022. Log returns were calculated and

normalized to the interval [0, 1] as is common in empirical implementation of neural networks to

prevent gradient scaling problems.

The construction of our portfolios was inspired by the empirical exercise in Boulet (2021). The

initial 85% of our data was used as a training sample and the remaining data, about 32 months

comprised of 672 observations, were used to evaluate the models in a monthly rolling window

fashion. We obtained forecasts of the conditional correlation and covariance matrices using the

10

standard definition of a month covering 21 trading days. Subsequently, we constructed MVPs

along with metrics of their performance. This approach mimics evaluating the results from the

stakeholder perspective. We re-evaluated each model on a monthly basis in contrast to the yearly

frequency of Boulet (2021). Further technical details of the implementation are provided in the

Appendix.

3.2 Results

The performance of the portfolios is compared using three different out-of-sample metrics: the

annualized average return (AV), annualized standard deviation (SD), and the information ratio

(IR) obtained as IR=AV/SD. Within the minimum variance portfolio framework, SD is the main

metric of interest. The MVP weights (13) are designed to minimize the variance (and equivalently

the standard deviation) rather than to maximize the expected return or the information ratio.

Therefore, evaluation of the MVP implementation focuses on SD minimization. A high out-of-

sample average return (AV) and a high out-of-sample information ratio (IR) are also desirable,

but are considered of secondary importance from the perspective of evaluating the quality of a

covariance matrix estimator (Engle et al., 2019).

The results for the performance metrics for our application data are reported in Table 1, with best

outcomes for each metric highlighted in bold. The Equal Weights and DCC baseline models are

dominated by the factor-based models in terms of the SD metric. Importantly, the GO-LSTM

model displays the lowest portfolio SD while the GO-LSTM-Common model achieves the highest

AV and IR.

Model AV SD IR

Equal Weights 0.236 0.245 0.964
DCC 0.247 0.245 1.011
GO-GARCH 0.216 0.224 0.966
G-LSTM-DCC-OH 0.189 0.237 0.800
GO-LSTM-Common 0.268 0.233 1.148
GO-LSTM 0.227 0.222 1.024

Table 1: Portfolio measures

Further insights into the relative model performance can be gleaned by examining the portfolio

11

weights assigned to each asset. Figure 1 shows the extent of heterogeneity in the portfolio asset

SD (left) and the asset AV (right). The asset SD and AV exhibit small but significant positive

correlation, reflecting a trade-off between SD minimization and AV maximization.

The assets in Figure 1 are indexed by the rank of the their market capitalization (Apple 1, Microsoft

2, etc.) and the reordering of their indices reflects their relative position in terms of SD. Using

this SD-based index on the x-axis, Figure 2 presents the weights that the factor-based models

allocate to each asset. The best-performing GO-LSTM model that minimizes the overall portfolio

SD allocates more weight to low SD assets than other models. The GO-LSTM-Common model

appears to achieve its AV and IR maximization due to a more even distribution of weights over

the SD ranking. The trailing DCC and G-LSTM-DCC-OH models allocate weight to clusters of

observations with higher SD without capitalizing on assets with higher AV.

Figure 1: Standard Deviation (SD) and Average Returns (AV)

12

Figure 2: Portfolio Weights Allocation

4 Conclusion

In this paper we developed a hybrid model of multivariate volatility that employs the LSTM variant

of Recurrent Neural Networks for fitting the conditional variances of latent orthogonal factors in a

GO-GARCH framework. Relative to hybrid RNN approaches based on Cholesky factorization of

the conditional covariance matrix or the DCC decomposition our approach is easy to implement and

can be used to model conditional covariances of a large number of assets. Our model is shown to

perform favourably in comparison to relevant benchmark models in a Minimum Variance Portfolio

(MVP) scenario on a portfolio of 100 assets.

13

5 Appendix

5.1 Implementation Details

The GO-LSTM and GO-LSTM-Common models were implemented as in Boswijk and van der Weide

(2011, Summary 1) except instead of their last the GARCH-type models were replaced with the

LSTM cell (5)-(11). LSTM layers and hyperparameters were tuned using a Bayesian optimization

algorithm as described in (Snoek et al., 2012) in contrast to Boulet (2021) who uses values given

by previous literature. The algorithm has the advantage of searching across the most promising

parameter space, and does not require a full evaluation of the neural network, which speeds up cross-

validation significantly. For the factor decomposition we used the method of moments estimator

of the Flurry-Gautschi algorithm. The neural network parameters were estimated using the back-

propagation algorithm, which is a popular modern machine learning method (Nielsen, 2015, chapter

2). This procedure calculates the derivative of the loss function of the neural network model with

respect to each parameter. Since neural nets can be seen as the composition of as many functions

as layers, this derivative is ”propagated” by use of the chain rule (Hastie et al., 2009, Chapter

11). The derivative value is then used to update the network parameters in each layer over many

iterations until the model loss function is minimized the at the output layer.

As is typical in the machine learning literature, the back-propagation algorithm was implemented

with early stopping and an adaptive learning rate adjustment to preclude model overfitting and a

vanishing gradient vector. These monitor the loss function across training iterations and are known

in the literature to boost performance significantly. We used the common 85%/15% training to

test set ratio.

The model was compiled with an ADAM optimizer that takes information from the first two

moments of the gradient into account. The activation function, the compiler, and the architecture

itself were all tuned using Bayesian optimization, which seeks to attain optimal precision. The

parameters are as follows: patience = 6, maximum epochs = 32, batch size = 40. The best

performing architecture was an LSTM layer with 249 neurons using a tanh activation function,

with a 0.25 dynamic drop-out. This was followed by 4 fully connected layers with 446, 314, 367,

14

26 neurons, followed by the output layer. All fully connected layers employed the RELU activation

function. After each layer, a dropout stage with p = 0.6 proved most efficient. The learning rate

starting at 0.006 was adjusted at a rate of 0.001 across iterations, with the MSE used as loss

function. The implementation was run with a Python code on a 40-core 2.4 GHz Linux cluster

(Loken et al., 2010; Ponce et al., 2019).

5.2 Verification of the GO-LSTM Assumption

Before implementing the model, we tested Assumption 2 of Boswijk and van der Weide (2011) by

empirically verifying the sufficient condition of a finite kurtosis for independent GARCH processes

(He and Teräsvirta, 1999) when translated into the LSTM stochastic evolution. Due to computa-

tional constraints, this test was performed on a random subset of 10 assets. An LSTM model was

fit on the individual assets and the fitted model was then used to simulate the evolution of the

stochastic process for further 10,000 time periods. The kurtosis values were then calculated for this

simulated time series, confirming the validity of the assumptions necessary for GO-LSTM (Boswijk

and van der Weide, 2011; He and Teräsvirta, 1999).

References

Abraham, A. and T. A. Kumar (2023). Recurrent neural networks : concepts and applications. CRC

Press.

Aielli, G. P. (2013). Dynamic conditional correlation: On properties and estimation. Journal of Business

& Economic Statistics 31 (3), 282–299.

Amari, S. I. (1972). Learning patterns and pattern sequences by self-organizing nets of threshold elements.

IEEE Transactions on Computers 21 (11), 1197–1206.

Bauwens, L., S. Laurent, and J. V. K. Rombouts (2006). Multivariate GARCH models: a survey. Journal

of Applied Econometrics 21 (1), 79–109.

Boswijk, H. P. and R. van der Weide (2011). Method of moments estimation of go-garch models. Journal

of Econometrics 163 (1), 118–126. Factor Structures in Panel and Multivariate Time Series Data.

Boudt, K., A. Galanos, S. Payseur, and E. Zivot (2019). Chapter 7 - multivariate GARCH models for

large-scale applications: A survey. In H. D. Vinod and C. Rao (Eds.), Conceptual Econometrics Using R,

Volume 41 of Handbook of Statistics, pp. 193–242. Elsevier.

Boulet, L. (2021). Forecasting high-dimensional covariance matrices of asset returns with hybrid garch-

15

lstms.

Bucci, A. (2020). Cholesky-ann models for predicting multivariate realized volatility. Journal of Forecast-

ing 39 (6), 865–876.

Burda, M. and J. M. Maheu (2012). Bayesian adaptively updated Hamiltonian Monte Carlo with an

application to high-dimensional BEKK GARCH models. Studies in Nonlinear Dynamics & Economet-

rics 17 (4), 345–372.

Caporin, M. and M. McAleer (2012). Do we really need both BEKK and DCC? a tale of two multivariate

GARCH models. Journal of Economic Surveys 26 (4), 736–751.

Chollet, F. (2015). Keras. https://github.com/fchollet/keras.

Elman, J. L. (1990). Finding structure in time. Cognitive Science 14 (2), 179–211.

Engle, R. F. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autore-

gressive conditional heteroskedasticity models. Journal of Business and Economic Statistics 20, 339–350.

Engle, R. F. and K. F. Kroner (1995). Multivariate simultaneous generalized ARCH. Econometric

Theory 11 (1), 122–150.

Engle, R. F., O. Ledoit, and M. Wolf (2019). Large dynamic covariance matrices. Journal of Business &

Economic Statistics 37 (2), 363–375.

Engle, R. F., V. K. Ng, and M. Rothschild (1990). Asset pricing with a factor-arch covariance structure:

Empirical estimates for treasury bills. Journal of Econometrics 45 (1), 213–237.

Fan, J., M. Wang, and Q. Yao (2008, 02). Modelling multivariate volatilies via conditionally uncorrelated

components. Journal of the Royal Statistical Society Series B 70, 679–702.

Ge, W., P. Lalbakhsh, L. Isai, A. Lenskiy, and H. Suominen (2022, jan). Neural network-based financial

volatility forecasting: A systematic review. ACM Comput. Surv. 55 (1), 1–30.

Gulli, A. and S. Pal (2017). Deep learning with Keras. Packt Publishing Ltd.

Hahn, J. (1996). A note on bootstrapping generalized method of moments estimators. Econometric

Theory 12 (1), 187–197.

Hastie, T., R. Tibshirani, J. H. Friedman, and J. H. Friedman (2009). The elements of statistical learning:

data mining, inference, and prediction, Volume 2. Springer.

He, C. and T. Teräsvirta (1999). Properties of moments of a family of garch processes. Journal of

Econometrics 92 (1), 173–192.

Hewamalage, H., C. Bergmeir, and K. Bandara (2021). Recurrent neural networks for time series fore-

casting: Current status and future directions. International Journal of Forecasting 37 (1), 388–427.

Hochreiter, S. and J. Schmidhuber (1997). Long short-term memory. Neural Computation 9 (8), 1735–

1780.

16

https://github.com/fchollet/keras

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational

abilities. Proceedings of the National Academy of Sciences of the United States of America 79 (8), 2554–

2558.

Kim, H. and C. Won (2018, August). Forecasting the volatility of stock price index: A hybrid model

integrating lstm with multiple garch-type models. Expert Systems with Applications 103, 25–37.

Lanne, M. and P. Saikkonen (2007). A multivariate generalized orthogonal factor garch model. Journal

of Business & Economic Statistics 25 (1), 61–75.

Liu, W. K., M. K. So, and A. M. Chu (2022). Dynamic covariance modeling with artificial neural networks.

Communications in Statistics: Case Studies, Data Analysis and Applications 8 (1), 15–42.

Loken, C., D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig, T. Henriques, J. Dempsey, C.-H. Yu,

J. Chen, L. J. Dursi, J. Chong, S. Northrup, J. Pinto, N. Knecht, and R. V. Zon (2010). Scinet: Lessons

learned from building a power-efficient top-20 system and data centre. Journal of Physics: Conference

Series 256 (1), 012026.

Luo, R., W. Zhang, X. Xu, and J. Wang (2018, February). A neural stochastic volatility model. In

Proceedings of the AAAI Conference on Artificial Intelligence, Volume 32, Palo Alto, CA, pp. 123–130.

AAAI: AAAI Press.

Nielsen, M. A. (2015). Neural Networks and Deep Learning. Determination Press.

Ponce, M., R. van Zon, S. Northrup, D. Gruner, J. Chen, F. Ertinaz, A. Fedoseev, L. Groer, F. Mao,

B. C. Mundim, M. Nolta, J. Pinto, M. Saldarriaga, V. Slavnic, E. Spence, C.-H. Yu, and W. R. Peltier

(2019). Deploying a top-100 supercomputer for large parallel workloads: The niagara supercomputer. In

Proceedings of the Practice and Experience in Advanced Research Computing on Rise of the Machines

(Learning), PEARC ’19, New York, NY, USA. Association for Computing Machinery.

Roll, R. (1983). On computing mean returns and the small firm premium. Journal of Financial Eco-

nomics 12 (3), 371–386.

Silvennoinen, A. and T. Teräsvirta (2009). Multivariate GARCH models. In T. Mikosch, J.-P. Kreiß,

R. A. Davis, and T. G. Andersen (Eds.), Handbook of Financial Time Series, pp. 201–229. Springer

Berlin Heidelberg.

Smyl, S. (2020). A hybrid method of exponential smoothing and recurrent neural networks for time series

forecasting. International Journal of Forecasting 36 (1), 75–85. M4 Competition.

Snoek, J., H. Larochelle, and R. P. Adams (2012). Practical bayesian optimization of machine learning

algorithms. Advances in Neural Information Processing Systems 25, 2951–2959.

van der Weide, R. (2002). GO-GARCH: A multivariate generalized orthogonal GARCH model. Journal

of Applied Econometrics 17 (5), 549–564.

Vidal, A. and W. Kristjanpoller (2020). Gold volatility prediction using a cnn-lstm approach. Expert

Systems with Applications 157, 113481.

17

Yu, Y., X. Si, C. Hu, and J. Zhang (2019, 07). A Review of Recurrent Neural Networks: LSTM Cells and

Network Architectures. Neural Computation 31 (7), 1235–1270.

18

