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Abstract

This paper introduces a discrete choice model with a flexible utility function in the form of a

Bayesian Neural Network with consumer preference heterogeneity. Adapting Sequential Monte

Carlo with Hamiltonian transitions to the model structure allows us to enforce a qualitative prior

constraint on the shape of the utility function stipulating that it be non-increasing in price. We

further account for model uncertainty with Bayesian Model Averaging. The predictive distribution

of our model is thus obtained as a weighted average of predictive distributions of admissible neural

network structures weighted by the posterior probability of each model. We apply our approach

to a panel of IRI coffee purchase data that combines marketing, product attributes, and consumer

demographics information. We obtain model-averaged predictive densities for own and cross price

elasticity and corresponding revenue change predictions of the most popular products in a counter-

factual experiment, simulating several levels of price promotion. Our framework allows managers

to utilize a flexible data-driven method for understanding both the form of consumer utility and

individual preference variations, as a valuable tool for making strategic pricing decisions.
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1 Introduction

Price promotions are commonly used by managers to generate brand awareness, capture mar-

ket share, or advertise their products. However, accurately predicting the financial impact of

a promotion before it is run can be challenging. Consumers may respond to price changes in

various ways. Understanding how they do so is necessary for effective product marketing and

managerial decision-making. For example, when selecting price discounts, managers often

seek to determine the number of additional units they will sell given a particular reduction

in price.

A well-established tool for analyzing consumer decisions is explicitly modeling consumer

utility as a function of observable product attributes, including price (Guadagni and Little,

1983) and observable demographic characteristics of consumers (see e.g. Allenby and Rossi,

2006). In practice, however, the estimation of such models can be complicated, particularly

in scenarios where the analyst aims to depart from the linear functional form of utility and

homogeneity of preferences across consumers.

Previous literature has found empirical evidence of non-linear preferences, due to comple-

mentarities across observable choices and the outside good (Lee et al., 2013; Kim et al., 2023)

or consumer perception of the value of the outside good relative to observable products (Lee

and Allenby, 2014; Kim et al., 2023). The conjoint analysis literature emphasizes that a

consumer’s response to changes in price depends on the levels of other attributes (Toubia,

2018; Marshall and Bradlow, 2002; McCoy et al., 2022). Consumer price sensitivity seems

to interact with both observed product attributes and consumer demographics. It is also

well documented in the marketing literature that consumers from different demographic cat-

egories have heterogeneous preferences over product attributes (Bradlow and Rao, 2000).

Thus, preferences in many practical scenarios may be non-linear with respect to product

attributes and heterogeneous across consumers.
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This paper develops a novel discrete choice model to analyze the relationship between the

price of a product and the probability of its purchase. In contrast to most of the existing

discrete choice literature, we do not place linearity restrictions on consumer utility. Instead,

we model utility via a flexible neural network, and impose a qualitative constraint that the

utility function be non-increasing in price, as stipulated by economic theory (Assuncao and

Meyer, 1993). Due to the Bayesian methodology underpinning our analysis, we characterize

the full distribution of consumer preferences and thus allow price sensitivity to vary across

consumers. The resulting non-linear qualitatively constrained model environment with con-

sumer preference heterogeneity presents significant practical challenges for implementation.

Using Sequential Monte Carlo with Hamiltonian particle transitions (Burda and Daviet,

2023), we obtain the predictive distributions of price elasticities on a test data set.

Moreover, we account for uncertainty inherent in the neural network structure via Bayesian

Model Averaging (BMA), whereby the data determines the posterior weights of candidate

networks with a varying number of hidden nodes that characterize different degrees of non-

linearity, under the qualitative shape constraint. We apply our model to a panel of IRI

coffee purchase data, combining marketing, product attributes, and consumer demographics

information. We obtain model-averaged predictive densities for own and cross price elasticity

and corresponding revenue change predictions in a counterfactual experiment of several levels

of price promotion for the most popular products.

Many flexible methods of function approximation have been explored in statistics and the

machine learning literature. However, for a function to represent a preference relation and

thus be an admissible utility function, it must be continuous (Mas-Colell et al., 1995), ruling

out piece-wise constant functions such as tree-based approximations. Two popular machine

learning methodologies that satisfy continuity and act as nonlinear functional approximators

are Bayesian Neural Networks (BNNs)4 and nonparametric Gaussian processes (GPs).

4Feed-forward neural networks with one hidden layer have been shown to approximate any Borel mea-
surable function to an arbitrary degree of accuracy (Hornik et al., 1989).
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Levy (2024, ch.2) specified a GP prior on the sub-utility associated with the outside good,

while modeling the utility function in a log-linear form. (Dew, 2024) formulated a GP

prior on utility over low-dimensional item embeddings as opposed to the original attributes.

Indeed, GPs do not scale well with input dimensions and can quickly become computationally

intractable without sparse approximations (Liu et al., 2020).

Neural networks thus present an attractive flexible parametrization of consumer utility with

continuous derivatives. In fact, a BNN can be thought of as a user-friendly flexible parametric

representation of the nonparametric GP. In a foundational result in the study of BNNs, Neal

(1996) showed that a BNN with one hidden layer converges to a GP as the number of hidden

nodes grows to infinity. More recently, this result has been extended to deep architectures

by showing that a BNN converges to a GP as the widths of many hidden layers are sent to

infinity even if some remain finite (Agrawal et al., 2020).

Farrell et al. (2020) adopted deep neural networks for modeling parameter heterogeneity in

a broad class of economic models. They focus on frequentist asymptotic inference proper-

ties of the estimated parameter functions, while our aim is Bayesian finite-sample analysis

with flexible utility functions. Gabel and Timoshenko (2022) developed a neural network

model for predicting customer-specific purchase probabilities in response to marketing ac-

tions. Their neural network provides a flexible functional form to approximate customer

purchase behavior by linking purchase histories, frequencies, and discount coupons with

purchasing probabilities. Nonetheless, the product choice within a category follows a multi-

nomial logit model with linear utility. Moreover, unlike in our case, their model only captures

purchase decisions based on loyalty card transaction data, excluding product attributes and

consumer characteristics.

Current BNN implementations, such as in PyTorch and Tensorflow/Keras, typically em-

ploy Variational Inference (VI) benefiting from direct use of optimized numerical libraries

developed for deterministic minimization. However, variational posteriors are only approxi-
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mations to actual posteriors; the former may not accurately reflect the latter even with the

number of its draws approaching infinity. Approximate optimization-based schemes such as

VI can thus deliver inaccurate predictive quantities (Goan and Fookes, 2020). Benefiting

from the particle scalability of a Sequential Monte Carlo sampler (Dai et al., 2022), we im-

plement our model in real time in a substantive application with close to 3 million combined

product-consumer data vectors for exact Bayesian inference avoiding VI approximations.

In the marketing literature, research on price promotions (Drechsler et al., 2017; Dawes,

2018) has analyzed the effect of different framings5 of price promotions on consumer-level

purchase probabilities. In general, a price reduction increases the probability that a con-

sumer purchases a product, with variations in effectiveness based on framing specifics or

past purchase history. The strength of this response is found to be heterogeneous across

consumers. Price promotions can also influence customer retention in heterogeneous ways,

with certain types of promotions being more effective in retaining new customers (Kim, 2019;

Shaddy and Lee, 2020). Dubé and Misra (2023) study the welfare implications of personal-

ized pricing with a binary logit probability model on the demand side. Nonetheless, these

papers impose a linear form of consumer utility, the latter in their empirical application.

When consumers make purchasing decisions, it may often be the case that they only consider

a small number of products out of the total number available for sale. This phenomenon,

referred to as consideration set formation, has been studied by both marketers and economists

(Roberts and Lattin, 1991; Eliaz and Spiegler, 2011). However, branded coffee, the product

in our application, can be arguably thought of as a low-involvement product for consumers

(Radder and Huang, 2008). Consumers may not exercise a high level of cognitive effort

when making purchasing decisions related to it and thus the need for a more sophisticated

consideration set formation framework is not present in our setting. We therefore opted out

of consideration set formation in our framework.

5A “framing” refers to a particular way of describing a price promotion to consumers. A price promotion
may be referred to a discount, price-reduction, deal, etc.
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The consumer choice literature has recently expanded into the multi-product category envi-

ronment. Ruiz et al. (2020) develop a discrete choice model incorporating substitutability

and complementarity of various goods for consumers across different product categories.

Donnelly et al. (2021) consider a scenario wherein consumers make purchasing decisions in

several distinct product categories in parallel. Extending our approach to the multi-product

environment presents a promising avenue for future research.

The remainder of the paper is organized as follows. In Section 2 we develop a Bayesian

model-averaged neural network utility model of discrete choice with qualitative constraints.

In Section 3 we apply our model to a panel data set of coffee purchases and obtain predic-

tive densities of price elasticities. We further conduct counterfactual simulations of a price

reduction and present the corresponding revenue change predictions. Section 4 concludes.

2 Model

2.1 Bayesian Neural Network Utility

Formally, our model of consumer choice is set up as follows. Consumer i chooses among j =

1, . . . , J mutually exclusive choice alternatives and one outside good (j = 0) at each choice

occasion t = 1, . . . , T . The set of alternatives is allowed to vary over time, though we omit

the dependence of J on t for ease of notation. The observable attributes for each alternative

j observed at the choice occasion t are collected in the K× 1 vector xijt = (xijt1, . . . , xijtK)
′,

where xijt can include attributes of the alternatives such as price or brand, characteristics

of consumer i such as age or income, and their interactions. Let xi = (x′
i11, . . . ,x

′
iJT ).

At each choice occasion t, the consumer chooses the alternative yit that maximizes their

utility uijt. For panel data indexed by t, the vector of the chosen alternatives is denoted
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yi = (yi1, . . . , yiT )
′. Consumer i’s utility of alternative j is given by

uijt = V (xijt) + εijt

where εijt is an idiosyncratic residual distributed extreme value type I, with the utility of

the outside option normalized to zero.

We model V (xijt) with a constrained BNN with P hidden neurons as follows:

V (xijt,θi, P ) = θ
(2)
0,i +

P∑
p=1

θ
(2)
p,i s(zp(xijt,θ

(1)
i )) (1)

s(zp(xijt,θ
(1)
i )) = tan−1(zp(xijt,θ

(1)
i )) (2)

zp(xijt,θ
(1)
i ) = θ

(1)
p0,i +

K∑
k=1

θ
(1)
pk,ixijtk (3)

θi ∼ q(θ) (4)

q(θ) ∝ f(θ)1(θ ∈ S) + 0× 1(θ ∈ V) (5)

f(θ) ≡ MVN(0, σ2
0I) (6)

P ∼ discrete uniform {1, . . . ,P} ⊂ N (7)

where S is the subset of the parameter space Θ ∋ θi over which the constraint is satisfied,

and V is the subset of Θ over which the constraint is violated, with S∪V = Θ and S∩V = ∅.

Model complexity penalty is imposed through the specification of f(θ) in (5) that assigns

a smaller joint probability to higher dimensional parameter vectors θi that arise in more

complex neural network models. We describe individual model components in further detail

below.

The model for V (xijt,θi, P ) in (1) is a special case of a feed-forward neural network structure6

(Jospin et al., 2022), built using a succession of an input layer composed by the predictors

6Feed-forward networks are also referred to as Multilayer Perceptrons (MLPs) in the computer science
literature.
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xijt, M hidden layers, and an output layer. After the initial input layer l0, each subsequent

hidden layer lm is represented as a linear transformation followed by a nonlinear “activation”

function sm(·). We motivate the choice of our activation function (2) in section 5.3 the

Appendix. The output layer is then formed by the output of the last hidden layer:

(input layer)

(hidden layer)

(output layer)

l0 = xijt (8)

lm = sm
(
θm,0,i + θ′

m,ilm−1

)
, ∀m ∈ [1,M) (9)

h(xijt,θi) = lM (10)

For each lm the network parameters are represented by the vector θm,i and the inter-

cept7 θm,0,i. The complete set of the network parameters is formed by the vector θi =

(θ1,0,i,θ
′
1,i, . . . , θM,0,i,θ

′
M,i)

′. A schematic diagram of a neural network model with a four-

dimensional vector of inputs and two nodes in one hidden layer is presented in Figure 1.

Each set of arrows represents a linear combinations of vectors of the input nodes resulting

in a value of the target node.

Figure 1: A Schematic Neural Network Model

We chose to vary the model complexity by changing the number of hidden neurons P which

changes the dimensionality of θi while keeping one hidden layer with M = 1. Feed-forward

neural networks with one hidden layer have been shown to approximate any Borel measurable

function to an arbitrary degree of accuracy (Hornik et al., 1989).

7The intercept is also known as the “bias” in the ML terminology.
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2.2 Shape Constraints

The model for V (xijt,θi, P ) in (1) is parametrized8 by the vector θi = (θ
′(1)
i ,θ

′(2)
i )′ where

θ
(1)
i = {θ(1)pki, p = 1, . . . , P, k = 0, . . . , K} and θ

(2)
i = {θ(2)0i , θ

(2)
p,i , p = 1, . . . , P}. The constraints

are imposed on the functional form of the neural network, which is enforced by a prior on

the network parameters θi specified in (5). The prior formulation accommodates a wide

range of constraints on the BNN functional form, imposing zero posterior probability on the

subset of the parameter space where the constraint is violated, V enforced by a “hard wall”

separating V from its complement in the parameter space where the constraint is satisfied,

S.

In our application, we specify the constraint in terms of an inequality restriction on the first

derivative of the representative utility function in (1). Thus, utility modeled by a BNN is

constrained to be decreasing in price of own choice alternative, that is

∂V (xijt,θi, P )

∂xijtk

< 0 where k corresponds to the price variable, for each i, j, t. (11)

The constraint is checked at each proposal step during our implementation algorithm. We

evaluate a closed-form expression of the derivative detailed in the Appendix. If the constraint

is violated at any xijtk in our data set, implying that the proposal step crosses over from S to

V , the proposal path is adjusted by a reflection from the constraint wall. The proposal path

bounces off into S in a mirror image of the originally proposed move into V , advancing the

same distance as the original proposal but in the direction of the reflection. This mechanism

avoids rejecting proposals because of constraint violation, leading to high numerical efficiency

of the sampler.

8Neural network parameters are often called network “weights” in the ML literature; the term is used in
the unnormalized sense as the “weights” generally do not add up to one over the network structure.
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2.3 Choice Probability

Our modeling approach includes a layer of prior hierarchy over the model space that is used

in the Bayesian Model Averaging (BMA) procedure for integrating out the random number

of hidden neurons P , with prior given in (7). Denote the BNN utility model (1)-(6) by the

short-hand notation MP ∈ M, characterizing the neural network in terms of the number

of hidden nodes P = 1, . . . ,P , where M is the space of admissible models. Let ΘP denote

the parameter space associated with MP . For notational convenience we do not include the

subscript P on θi, though the dimension of θi changes with P .

Conditional on MP and θi, the probability of consumer i choosing at t the alternative yit is

given by

q(yi|xi,θi,MP ) =
T∏
t=1

exp (V (xiyitt,θi, P ))

1 +
∑J

j=1 exp (V (xijt,θi, P ))
. (12)

When the uncertainty regarding the network parameters θi is taken into account by marginal-

izing out θi, the probability (12) conditional on MP but not conditional on θi is

q(yi|xi,MP ) =

∫ T∏
t=1

exp (V (xiyitt,θi, P ))

1 +
∑J

j=1 exp (V (xijt,θi, P ))
q(θi)dθi. (13)

The functional form of the posterior is given in section 5.5 of the Appendix. The model (13)

nests a traditional multinomial logit model with linear utility (McFadden and Train, 2000)

as a special case for M = 1 and P = 0, with no hidden layers or nodes in the network,

and activation function equal to identity. Many extensions of the multinomial logit have

been proposed in the literature, with features such as nesting, latent class heterogeneity, or

uncertainty regarding the choice set (for a recent literature review see e.g. Haghani et al.

(2021)). Such features can also be included in our model, though the focus of the current

paper is on the constrained non-linearity of the utility function. For comparability purposes,

we use the special case described above as a direct benchmark of comparison in our empirical
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application and refer to it as the ”linear utility” model (for its mathematical description see

section 5.2). In this way, we seek to assess the role that the specific feature of non-linearity

of the utility function plays in the model.

2.4 Model Averaging and Prediction

The predictive distribution for a new “test” data set yN+1,xN+1 that has not been used in

the model training is given by

q(yN+1|x,y,MP ) =

∫
q(yN+1|xN+1,θi,MP )q(θi|y,x,MP )dθi. (14)

Forming the predictive distribution requires that we marginalize θi out of q(yN+1|xN+1,θi,MP )

by integrating with respect to the posterior distribution of θi. In this way, the predictive

distribution (14) accounts for the uncertainty inherent in the model parameters θi.

However, the predictive distribution (14) is conditional on the neural network model with P

hidden neurons and does not take into account the uncertainty about the model structure,

such as the number of hidden neurons, which under the Bayesian paradigm is unknown and

therefore random. Yet, as pointed out by Steel (2020), “it is hard to overstate the importance

of model uncertainty for economic modeling”. Empirical work is typically subject to a large

amount of uncertainty about model specification. There are two broad strategies that have

been employed in the Bayesian literature in taking model uncertainty into account: 1) Model

selection that seeks to choose the “best” model out of the model space consisting of candidate

models, and 2) Model averaging that uses a weighted average over the model space for

inference. Model selection methods condition their inference on the chosen model and do not

include the evidence contained in the alternative models, often leading to underestimation of

the overall uncertainty. In contrast, model averaging accounts for a possible variation across

alternative models. In the Bayesian sense, model averaging provides a natural reflection of

model uncertainty.
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From (14), the unconditional predictive distribution incorporating the uncertainty inherent

in both the network parameters θi and admissible models MP ∈ M is given by

q(yN+1|x,y) =
P∑

P=1

q(yN+1|x,y,MP )q(MP |x,y) (15)

where q(MP |x,y) is obtained as

q(MP |x,y) =
q(y|x,MP )q(MP )∑P
P=1 q(y|x,MP )q(MP )

using the marginal likelihood q(y|x,MP ) defined in (A-18) in the Appendix. The predictive

distribution (15) is thus a weighted average of predictive distributions of each admissible

neural network model with weights given by the relative posterior probability of each model.

In the application, we first obtain posterior draws for eachMP separately and then construct

the non-linear utility model using the BMA equation (15). This allows us to avoid using birth

and death moves associated with changing parameter space dimensionality. The subsequent

numerical analysis on price elasticity and counterfactual simulation of the impact of sale

prices on demand are then performed using the BMA neural network model, reflecting both

parameter and model uncertainty. For details on the implementation algorithm used in the

application, see section 5.4 of the Appendix.

3 Application

3.1 Data Description

Our empirical analysis is based on the IRI Academic Dataset (Bronnenberg et al., 2008),

containing panel data of grocery store purchases in a U.S. city from June to October 2012.

We chose to focus on the purchases of packaged coffee as this product category is durable,
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with observed modal purchases of one package per store visit, and is generally regarded

by marketers as a low-involvement good for consumers (Radder and Huang, 2008; Ahmed

et al., 2004). The data set used in our analysis was created by combining IRI data files of

three different types (with their respective variables): product marketing variables (price, on

sale, display), product attributes (package volume, indicators for whole bean, decaffeinated,

flavored, brand, store), and household demographic characteristics (income, age, education,

children, married). In the empirical analysis, we use the store-consumer-product information

for which the three types of data intersect. Thus, our data set contains marketing and

attribute information on 408 product choice alternatives, demographic characteristics of

unique 1,413 households, observed for 22 weeks for two stores on 15,413 choice occasions,

totaling 2,806,226 combined product-consumer data vectors.

The IRI data set contains observations on household visits to stores in the city with purchases

of a wide range of consumer products9. Household visits to the stores with a purchase of any

of these products but not coffee then constitute the outside option, normalized to have zero

utility for identification purposes. The observed set of choice alternatives varies by week and

store. Figure (2) shows the variation in the choice set size in our data.

Figure 2: Packaged Coffee Choice Set Size

We do not observe the exact timing of the purchase. Our data set provides information only

9These include carbonated beverages, cold cereals, deodorants, diapers, facial tissues, frozen dinners,
frozen pizza, household cleaning products, laundry detergents, margarine and butter, mayonnaise, milk,
mustard and ketchup, paper towels, peanut butter, razors, salty snacks, shampoo, soup, spaghetti sauce,
sugar substitutes, tissues, toothpaste, and yogurt.
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about the week in which the purchase took place. However, the vast majority of consumers

(81%) purchased only one unit of coffee packaging during any given week, with 14% of

consumers buying two units and less than 5% of consumers getting three or more units.

Hence we believe that our setup of a binary choice model with weekly choice occasions is

appropriate in this context, with the data not providing sufficient variation for a count-

based model or a time-of-purchase duration-based model. The relative proportions or coffee

packaging units purchased by households per week are shown in Figure 3a. The variation in

the amount of coffee consumed appears to be determined by the package volume as opposed

to the number of packages purchased. Figure 3b presents the proportions of various package

volumes (in ounces) for individual purchases in our sample.

Figure 3: Packaged Coffee Purchase Characteristics

(a) Units Purchased (b) Unit Volume

Table A1 in the Appendix provides summary statistics for the marketing variables, product

attributes, and household demographic characteristics. Table A2 details the ordinal coding

for the income ranges and Table A3 for the age ranges in our dataset. We include all observed

product and household demographic characteristics given in tables A1, A2, and A3 in the

vector of product and demographic attributes xijt. Note that we also model the utility of a

specific consumer i for a specific product j as functions of observable attributes specific to

product j and demographics specific to consumer i.
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3.2 Implementation and Model Averaging

We implemented10 the constrained HSMC procedure described in section 5.4 of the Appendix

with 100 particles for 10,000 Monte Carlo iterations retaining output from every 10th itera-

tion, with an additional 1,000 initial iterations for burn-in. We used a relatively diffuse prior,

independent Normal with mean zero and variance 100, for each model parameter. The prior

embeds a penalty on model complexity with smaller implied joint distribution for higher

parameter dimensions, favoring the linear utility model. The posterior parameter draws are

stable and mix well.

Using the posterior draws, we tested whether a linear utility specification (see section 5.2)

was supported by the data in the application against the alternative of a nonlinear utility

function modeled by a neural network subject to the constraint (11) of being non-increasing

in price of own choice alternative. The linear utility specification was strongly rejected with

a Bayes factor of over 100, supporting the need for a flexible nonlinear utility model. Figure

4 shows the log posterior mean for the linear utility model (0 hidden neurons) and for neural

network model specifications ranging from 1 to 5 hidden neurons. Figure 5 shows the trace

plot of the log posterior mean for these models, displaying good mixing properties with stable

means.

The neural network models with 2 and 3 hidden neurons feature overlapping posterior densi-

ties with the highest mean and in the Bayesian Model-averaged Neural Network (BMANN)

(15) they carry the weights 31% and 69%, respectively, with close to zero weight assigned to

the remaining neural network specifications.

Next, we compared the predictive performance of the linear utility model with the BMANN

on a test data set for purchases in the four weeks of November 2012 that was not used in

10The implementation was run on the Unix cluster Mist at redacted (Ponce et al., 2019; Loken et al.,
2010), which is comparable to many readily available commercial cloud computing services such as AWS or
IBM Cloud. The full run, including output, took less than one day.
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obtaining the posterior parameter draws. The log predictive densities for each model on the

test set is presented in Figure 6. The BMANN model clearly dominates the linear utility

model in predicting the future outcomes on the test set.

Figure 4: Log Posterior Mean

Figure 5: Log Posterior Trace Plot
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Figure 6: Log Predictive Density on a Test Set

3.3 Price Elasticity

Based on the posterior draws of the parameters, we have calculated own and cross price

elasticity for the most popular package in the test set in terms of number of purchases, the

Folgers 34oz can of Classic Roast ground coffee, and for its key brand competitor in the

same product category, the Maxwell House 31oz can of Original Roast ground coffee. The

predictive densities of the price elasticities are presented in Figures 7 and 8, respectively. For

both packages, the price elasticity predicted by the BMANN model is substantially higher

than the one predicted by the linear utility model. This is also the case for cross-price

elasticity, albeit to a smaller extent. Since the BMANN model dominates the linear utility

model both in terms of model fit and predictive accuracy, we believe that a managerial deci-

sion based on the linear utility model would significantly underestimate the actual consumer

purchase reaction to the product price change. We validate this notion in the next section

in a counterfactual simulation of a price sale.
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Figure 7: Folgers 34oz Can, Classic Roast

(a) Own Price Elasticity (b) Cross Price Elasticity

Figure 8: Maxwell House 31oz Can, Original Roast

(a) Own Price Elasticity (b) Cross Price Elasticity

3.4 Counterfactual Simulations

Changing the price of a product in a multinomial choice scenario influences sales not only by

impacting the demand for the product but also by consumer behavior substituting to or from

other choice alternatives. To assess the total change in coffee revenue following an ”on-sale”

event we ran two counterfactual simulation scenarios by lowering the price, in turn, of each

of the two packages analyzed in the elasticity section above. We first checked the mean price
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change of all items in our data set corresponding to the dummy variable ”on sale” equal to

one as compared to its zero value: on average such change amounted to close to 15% of the

original price. Consequently, in our simulations we used three simulated price changes, 10%,

15%, and 20%, around the average sale value, and also set the ”on sale” dummy variable

equal to one.

Table 1 shows the resulting change in revenue for the Folgers large can and Table 2 for

the Maxwell House large can, using summary statistics of the predictive distribution on

the test set. For both the Maxwell House large can and Folgers, the BNN model yielded

substantially larger revenue increases than what was predicted by the linear utility model

which is consistent with the price elasticities presented in Figures 7 and 8. The simulation

was run for the test set data of one month and two grocery stores, averaging about $44 per

store for a 15% reduction in price11. According to Statista.com, there are approximately 62

thousand stores in the USA. Naturally, these vary in size and location, but assuming that

the stores in our sample are on average representative of a typical store, the BMANN model

predicts a change in revenue resulting from a 15% price reduction of either package to be in

the ballpark of $2.7 million12, with the linear utility model predicting only $140 thousand13

for Folgers and $20 thousand14 for Maxwell House given a 15% reduction in price.

11For a 15% reduction, the BMANN reports a predicted change in revenue of approximately $88 per
Tables 1 and 2. The approximate average change per-store is thus given by 44 = 88

2 .
12Computed as $88.00

2 × 62, 000 ≈ $2.7 million.
13 $4.49

2 × 62, 000 =≈ $140, 000.
14 $0.63

2 × 62, 000 ≈ $20, 000.
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Table 1: Expected total revenue change in $USD of Folgers 34oz can, Classic Roast

Model
Price

Reduction
$ Mean $ St.Dev. % Mean % St.Dev.

linear
utility

10% $4.32 0.50 0.282 0.033
15% $4.49 0.54 0.294 0.036
20% $4.57 0.59 0.299 0.039

BMANN
10% $53.27 4.95 2.759 0.224
15% $88.04 9.35 4.558 0.428
20% $141.78 16.68 7.339 0.772

Table 2: Expected total revenue change in $USD of Maxwell House 31oz can, Original Roast

Model
Price

Reduction
Mean St.Dev. % Mean % St.Dev.

linear
utility

10% $0.49 0.13 0.033 0.009
15% $0.63 0.19 0.042 0.013
20% $0.67 0.25 0.044 0.017

BMANN
10% $48.42 6.43 2.511 0.287
15% $88.60 11.60 4.594 0.518
20% $143.15 18.21 7.423 0.810

4 Conclusion

In this paper, we develop a flexible consumer choice model for predicting consumer responses

to price promotions. Inference via Sequential Monte Carlo with Hamiltonian particle tran-

sitions enables us to incorporate known insights from economics and marketing by imposing

qualitative shape constraints on consumer preferences. We account for model uncertainty

with Bayesian Model Averaging and obtain the predictive distribution of our model as a

weighted average of predictive distributions of admissible neural network structures with the

weights determined by the posterior probability of each model. We apply our approach to

a panel of IRI coffee purchase data with information on marketing activities, product at-

tributes, and consumer demographics. Counterfactual experiments quantify model-averaged

predicted revenue change resulting from simulating several levels of price promotion. Our

model enables managers to take a data-driven approach to learning the functional form of
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consumer utility and heterogeneity, informing promotion pricing decisions. The implemen-

tation of our method reveals a substantially larger response from consumers to a given price

promotion. We find that linear utility models underestimate the impact of a 15% price

reduction by approximately $2.5 million.

Our work has some limitations that contain opportunities for future research. First, our

approach requires a large amount of highly granular data on consumer-level purchases for

effective neural network training and inference. Learning consumer preferences in the pres-

ence of sparse data is an area of active research within marketing (Dew, 2024). Second,

interpreting the links between consumer demographic characteristics and price sensitivity

within the neural network is beyond the scope of this paper but would be an interesting

topic for future study. Finally, while we do not model consumers as forward-looking, which

is arguably justifiable for grocery product categories including coffee, price promotions might

make consumers more impatient relative to normal pricing scenarios (Shaddy and Lee, 2020).

It would be interesting to empirically investigate to what extent such an effect holds for var-

ious products within our modeling framework.
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Table A1: Data Summary Statistics

Mean SD Min Max

Price 9.29 3.39 3.07 28.62
Display 0.026 0.202 0 2
On sale 0.238 0.426 0 1
Income 7.475 3.103 1 12
Age 5.081 1.145 2 7
Education 3.987 1.535 0 8
Children 0.222 0.527 0 2
Married 0.096 0.295 0 1
Volume 0.867 0.581 0.094 2.250
Whole Bean 0.257 0.438 0 1
Decaf 0.088 0.284 0 1
Flavoured 0.110 0.314 0 1
Brand MaxHs 0.059 0.236 0 1
Brand Folg 0.074 0.261 0 1
Brand EightOC 0.044 0.206 0 1
Brand Strbks 0.049 0.216 0 1
Store 0.600 0.490 0 1
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5 Appendix

5.1 Summary Statistics

Table A2: Income Categories

Code Household Income per Year

1 below $ 9,999

2 $10,000 to $11,999

3 $12,000 to $14,999

4 $15,000 to $19,999

5 $20,000 to $24,999

6 $25,000 to $34,999

7 $35,000 to $44,999

8 $45,000 to $54,999

9 $55,000 to $64,999

10 $65,000 to $74,999

11 $75,000 to $99,999

12 above $99,999
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Table A3: Age Categories

Code Age Range

1 18 – 24

2 25 – 34

3 35 – 44

4 45 – 54

5 55 – 64

6 65+
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5.2 Baseline Model

As a benchmark model, we define a linear utility model based largely on the logit model

presented in chapter 3 of McFadden and Train (2000). Consumer i chooses among j =

1, . . . , J mutually exclusive choice alternatives and one outside good (j = 0) at each choice

occasion t = 1, . . . , T . The set of alternatives is allowed to vary over time, as is the case in

the BNN model, but we omit the dependence of J on t for ease of notation. The observable

attributes for each alternative j observed at the choice occasion t are defined as a K × 1

vector xijt = (xijt1, . . . , xijtK)
′, where xijt includes all observed product and demographic

attributes given in tables A1, A2, and A3. At each choice occasion t, the consumer chooses

alternative yit that maximizes their utility uijt. For panel data indexed by t, the observed

vector of choice alternatives for consumer i over each choice occasion t = 1, . . . , T is denoted

yi = (yi1, . . . , yiT )
′. In our benchmark linear utility model, consumer i’s utility of alternative

j is given by

uijt = βixijt + ϵijt

where ϵijt is a type I extreme value distributed residual, with utility of the outside option

normalized to 0. We impose a minimally informative prior distribution for the vector of

parameters βi denotes as βi ∼ p(β) where p(β) = MVN(0, σ2
0I). For our purposes, we

set σ2
0 = 100 to ensure the prior has a minimal impact on the estimation of our benchmark

model. Under these given assumptions, we can obtain a closed-form expression for the choice

probabilities and associated likelihood function (McFadden and Train, 2000).

Given this linear-utility specification, the conditional choice probabilities of alternative j on
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choice occasion t for consumer i are given by

Pijt =
eβixijt∑J

j′=0 e
βixij′t

which, given the observed choice alternatives yt = (y′
1, . . . ,y

′
N)

′ and observed product and

demographic attributes xt = (x′
11t,x

′
12t, . . . ,x

′
NJt)

′ of choice alternative j = 1, . . . , J for all

consumers i = 1, . . . , N yields the likelihood function

p(yt|βi,xt) =
T∏
t=1

N∏
i=1

J∏
j=1

P
yijt
ijt (1− Pijt)

1−yijt .

Thus, the posterior distribution of our benchmark model is defined as

p(βi|yt,xt) ∝ p(yt|βi,xijt)p(βi). (A-16)

5.3 Neural Network Activation Function

In (2) we use the arctan activation function

s(z) = tan−1(z)

for two reasons. First, the function has polynomial derivatives

∂s(z)

∂z
= (1 + z2)−1
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that are numerically stable even for large values of z and avoids the need for parameter

normalization. In contrast, the alternative typical sigmoid activation function

ssig(z) = (1 + exp(−z))−1

features exponential derivatives

∂ssig(z)

∂z
=

1− (1 + exp(−z))−1

(1 + exp(−z))
,

similar to the hyperbolic tangent activation function

stanh(z) =
exp(z)− exp(−z)

exp(z) + exp(−z)

with

∂stanh(z)

∂z
= 1−

[
exp(z)− exp(−z)

exp(z) + exp(−z)

]2
.

In our experience, the exponential function in the denominator can exhibit explosive behav-

ior and quickly lead to numerical instability for plausible argument ranges without careful

normalization of the network parameters.

Second, in our application we start the Markov chains of parameter draws from a vector close

to the modal value of the posterior, obtained by numerical maximization of the posterior

(the maximum a-posteriori or MAP estimate). For neural network models the optimization

process can take a long time without a good starting value. The general s-shape of the

arctan function is similar to the sigmoid and tanh functions, but unlike in the latter two,

the intercept of the arctan function at the y-axis passes through zero, tan−1(z = 0) = 0.
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This allows us to obtain an excellent starting value for optimization of a more complex model

with P hidden nodes from the MAP estimate of a simpler model with P − 1 hidden nodes

by initializing all parameters associated with the added node P at zero, resulting in starting

with zP = 0 and hence s(zP ) = tan−1(zP ) = 0, which ensures that the initial likelihood

value for the optimization procedure will be at least as good as for the simpler model. In our

experience, starting anywhere else typically results in a drastic reduction of the likelihood

value and corresponding increase in optimization time.

5.4 Sequential Monte Carlo Implementation

There are two broad categories of implementation algorithms for BNNs: Variational Inference

(VI) and Monte Carlo (MC)-based methods. VI is an approximate inference method that

assumes the form of the posterior distribution, typically from a parametric family, and

minimizes the Kullback-Leibler distance from the actual posterior via optimization methods

used in frequentist ANNs.

The VI parametric approximation assumptions are not imposed in MC-based methods that

sample from the actual posterior, though these are typically more difficult to implement. A

popular numerical algorithm for BNNs in this category is Hamiltonian Monte Carlo (HMC)

(Neal, 1996) that uses gradient information in posterior sampling. HMC has been shown

to yield samples far more efficient than obtained by the random walk Metropolis-Hastings

(RWMH) mechanism (Neal, 2011). However, HMC is inherently serial by construction,

whereby a new draw of the desired parameter chain can only be taken conditional on com-

pleting the preceding draw. This imposes limitations on the numerical efficiency and scala-

bility.
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Parallel, scalable posterior sampling is enabled by Sequential Monte Carlo (SMC), also known

as a particle filter (Doucet et al., 2001). SMC uses a genetic mutation-selection sampling

approach with a set of particles representing the posterior distribution of a stochastic process.

SMC is highly parallelizable as the core computational load involving the model likelihood

is performed by individual particles independently of one another.

In this paper we use an efficient version of SMC with Hamiltonian particle transitions (Burda

and Daviet, 2023). Particle values are initialized from high posterior value vectors over the

subset of the parameter space where the constraint is satisfied, with θ ∈ S. The constraint is

then enforced in the HSMC mutation phase for each particle. During this phase, at iteration

r of the algorithm, HSMC constructs a sequence {θℓ
r}Lℓ=1 according to the Hamiltonian

dynamics starting from the current state θ0
r and setting the last member of the sequence

as the new state proposal θ∗
r+1 = θL

r . The proposal sequence is generated using difference

equations of the law of motion yielding high acceptance probability even for proposals that

are relatively distant from the current draw in the parameter space. This facilitates efficient

exploration of the parameter space with the resulting Markov chain (Leimkuhler and Reich,

2004).

Constraints are incorporated into the HSMC proposal mechanism via ”hard walls” represent-

ing a barrier against which the proposal sequence, simulating a particle movement, bounces

off elastically. Heuristically, the constraint is checked at each step of the proposal sequence

and if it is violated then the trajectory of the sequence is reflected off the hard wall posed

by the constraint. This facilitates efficient exploration of the parameter space even in the

presence of highly complex parameter constraints (Neal, 2011). We state the functional form

of the derivative of utility with respect to price in (A-21). As a sufficient condition that is

fast to evaluate numerically, in our implementation the constraint is violated if θpiθp1i > 0

28



for any p = 1, . . . , P .

Throughout the proposal path construction the Hamiltonian dynamics use posterior gradient

information. In the next section we provide a closed-form expression of the gradient of our

neural network model.

5.5 The Posterior and its Gradient

Let x = (x′
1, . . . ,x

′
N)

′ and y = (y′
1, . . . ,y

′
N)

′. Due to the independence assumption on i, the

conditional likelihood over the sample can be expressed as

q(y|x,θi,MP ) =
N∏
i=1

q(yi|xi,θi,MP ) (A-17)

with log-likelihood

ln q(y|x,θi,MP ) =
N∑
i=1

T∑
t=1

V (xiyit ,θi, P )−
N∑
i=1

T∑
t=1

ln

[
1 +

J∑
j=1

exp (V (xijt,θi, P ))

]
.

The posterior is formed as

q(θ|x,y,MP ) =
q(y|x,θi,MP )q(θi)∫

ΘP
q(y|x,θi,MP )q(θ)dθi

=
q(y|x,θi,MP )q(θ)

q(y|x,MP )
(A-18)

with the second equality defining q(y|x,MP ), the marginal likelihood of MP evaluated in

the Sequential Monte Carlo algorithm.

For a large sample of R draws {θ(1), . . . ,θ(R)} from the posterior (A-18), (14) can be numer-
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ically approximated by

q(yN+1|x,y,MP ) ≈
1

R

R∑
r=1

q(yN+1|xN+1,θ
(r)
i ,MP ).

Let θ represent a generic element of the parameter vector θ. Using (A-17) in (A-18) we

obtain

∂ln [q(y|x,θi,MP )q(θi)]

∂θi
=

∂ln
[∏N

i=1 q(yi|xi,θi,MP )q(θi)
]

∂θi

=
∂
[∑N

i=1 ln [q(yi|xi,θi,MP )] + ln [q(θi)]
]

∂θ

=
N∑
i=1

∂ln [q(yi|xi,θi,MP )]

∂θi
+

∂ln [q(θi)]

∂θi
(A-19)

Using (12) in (A-19) yields

∂ln [q(yi|xi,θi,MP )]

∂θ
=

T∑
t=1

∂ln

[
exp(V (xiyitt

,θi,P ))
1+

∑J
j=1 exp(V (xijt,θi,P ))

]
∂θ

=
T∑
t=1

∂V (xiyitt,θi, P )

∂θ
−

T∑
t=1

∂ln
[
1 +

∑J
j=1 exp (V (xijt,θi, P ))

]
∂θ

=
T∑
t=1

∂V (xiyitt,θi, P )

∂θi
−

T∑
t=1

[
1 +

J∑
j=1

exp (V (xijt,θi, P ))

]−1

× exp (V (xijt,θi, P ))
∂V (xijt,θi, P )

∂θ
(A-20)

We can now evaluate (A-20) using functional form specifications for the network, V (·), the
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prior, q(θ), and for specific elements of the parameter vector θ. Using (3) in (2),

V (xijt,θi, P ) = θ0,i +
P∑

p=1

θpis

(
θp0i +

K∑
k=1

θpkixijtk

)

The derivative in the first and second RHS term of (A-20) then become

∂V (xijt,θi, P )

∂θp0i
= θpi

∂s(zp(xijt))

∂θp0i
= θpi

(
1 + zp(xijt)

2
)−1

∂V (xijt,θi, P )

∂θpki
= θpi

∂s(zp(xijt))

∂θpki
= θp,i

(
1 + zp(xijt)

2
)−1

xijtk

∂V (xijt,θi, P )

∂θ0
= 1

∂V (xijt,θi, P )

∂θp,i
= s(zp(xijt))

For enforcing the constraints in our application, the derivative takes the form

∂V (xijt,θi, P )

∂xijt1

=
P∑

p=1

θpi
∂s(zp(xijt))

∂zp(xijt)

∂zp(xijt)

∂xijt1

=
P∑

p=1

θpi
(
1 + zp(xijt)

2
)−1

θp1i (A-21)

where

zp(xijt) = θp0i +
K∑
k=1

θpkixijtk.
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