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Abstract

In this paper, I revisit the classic question: how does inequality affect growth? I propose a new
channel - knowledge creation - through which the relationship between growth and inequality could be
affected. In the model, knowledge is created within firms through the interaction of agents with dif-
ferent abilities. An increase in inequality of the underlying distribution of abilities affects knowledge
creation by changing how agents match within firms. I uncover two effects that determine how aggre-
gate knowledge creation and consequently, the growth rate changes. A change in inequality increases
the average ability of agents creating knowledge - the distribution effect. At the same time, there are
fewer agents engaged in knowledge creation - the allocation effect. I examine the conditions under
which one effect dominates the other. Using the model, I provide one possible explanation for Barro’s
(1993) finding that inequality reduces growth rate for less developed countries but increases the rate for
developed countries.
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1 Introduction

“Your best opportunity to come up with ideas is not to lock yourself alone in a room but to be

out in the world, seeing what others are doing and use that in different ways.”

Andrew Hargadon 1

History credits James Watt with the invention of the steam engine, Thomas Alva Edison with the

invention of the electric light bulb and Henry Ford with the invention of the assembly line. But these great

inventors did not work alone; they had very able partners or teams assisting them in their endeavors. Watt

had Matthew Boulton, Edison had Charles W. Batchelor while Ford had C. Harold Wills among others.

Whether Watt or Edison or Ford would have been equally successful if they had worked on their own is

hard to conjecture. It is true, however, that the above mentioned partners and many other individuals made

significant contributions to the various innovations that have made Watt et al. household names.

In this paper, I develop a model to understand how the matching of agents within firms affects growth

through its impact on knowledge creation. Agents in the model live for two periods. In the first period,

they acquire ability which depends partly on government policy or institutions. In the second period,

agents choose a sector to work in. The economy has two sectors - final goods and intermediate goods -

that vary in three important respects. First, the intermediate goods sector is more ability-intensive. Second,

production in the intermediate goods sector takes place in teams and how agents match matters. And

finally, firms producing intermediate goods also create new knowledge every period; this knowledge spills

over to the final goods sector in the following period, thereby raising the total factor productivity in final

good production. Furthermore, agents choosing to work in the intermediate goods sector also choose their

occupation. They could either be innovators, developing blueprints for new products, or managers who use

the blueprints to create output. The final goods sector only requires workers.

An equilibrium of the model is characterized by two ability thresholds, where the agents with ability

below the lower threshold sort into the final goods sector, while those above the higher threshold become

innovators. The ones in between choose to be managers. The ability distribution not only determines the

thresholds, but by affecting how agents match, also determines how much knowledge is created by each

firm. I go on to study how an increase in inequality in the ability distribution affects the growth rate. A

change in the distribution, by changing how agents match, affects knowledge creation within each firm.

The effect on growth, however, depends on aggregate knowledge in the economy.

I define a very general aggregate knowledge function, which nests some of the more popular knowledge

spillover functions used in the literature. In the case of the canonical growth model, which I briefly review

in Section 2, an increase in inequality is accompanied by a decline in the growth rate. If the growth rate

is determined by the ability of the best agents as in Murphy et al. (1991), an increase in inequality could

lead to a higher growth rate. I show that whether an increase in inequality raises or lowers the growth rate
1“Andrew Hargadon talks about green initiatives during keynote address”, Design News, August 8, 2008.
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depends crucially on weights that capture the extent of overlap between knowledge created by individual

firms/innovators. A more unequal ability distribution has fewer innovators which means less knowledge

creation (allocation effect). But the innovators are, on average, more able which means more knowledge

creation (distribution effect). If the weights are a sufficiently convex function of ability, the latter effect

dominates, leading to a rise in the growth rate.

The mechanism proposed in the paper provides a justification for the finding in Barro (2000) that the

effect of inequality on economic growth depends on the level of economic development. Barro finds that

the effect of inequality on growth is negative for countries with low per capita GDP and positive for the

rest. The model generates the above prediction if the weights evolve systematically as a country develops.

In particular, if the knowledge created by the more able innovators becomes relatively more important as a

country grows, we should expect to see the relation between growth and inequality varying across countries

at different stages of development.2

The model is built on the presumption that knowledge generated by a firm depends on the ability of

the firm’s employees. In a related paper, Lucas (2009) develops a model where the aggregate knowledge

of an economy is simply a list of the knowledge of its members. Similar to my model, a fundamental

assumption of Lucas (2009) is that knowledge is embodied. Lucas does not, however, consider team

formation or the problem of allocating agents across sectors, as I do here. In my model, both allocation, as

well as, the composition of firms matters for growth. In that respect, this paper is similar to Murphy et al.

(1991), who look at how allocating individuals with different levels of ability across different activities can

affect growth. Murphy et al. consider two main activities, production and rent-seeking, and consider the

implications of allocating the most able agent in either of these two activities.3 They do not consider team

formation, however. Since growth in their model is driven by the ability of the best production worker,

inequality has no effect on growth as long as the most able agent in the economy is in the production

sector. I show that if knowledge creation depends on team formation, then a change in inequality can affect

the growth rate.

Economists have been studying the relation between inequality and growth for a long time. The clas-

sical view was that inequality is good for growth. This could be either because investment projects involve

large indivisibilities or, as pointed out by Kaldor (1955-56), because the rich have a higher propensity to

save compared to the poor (See Aghion et al., 1999, for a discussion of these and other causes). As evi-

dence suggesting a negative relation between inequality and growth was unearthed in the last two decades,
2The empirical literature has failed to reach a consensus on the relationship between inequality and growth. While studies

based on ordinary least squares analyses of cross-country data have typically found a negative relation between inequality and
growth (See, for example, Alesina and Rodrik, 1994; Perotti, 1996; Persson and Tabellini, 1994), studies based on fixed-effects
estimation yield a positive relation (See, for example, Benhabib and Spiegel, 1997; Forbes, 2000). As pointed out by Banerjee
and Duflo (2003), however, the above mentioned studies are not comparable; not only are the specifications quite different across
these studies, they also use different data sets. Banerjee and Duflo also point out out that these two opposite findings are not
necessarily inconsistent with each other.

3Murphy et al. (1991) do not have an explicit dynamic model where the production and rent-seeking sectors evolve endoge-
nously. Ehrlich and Lui (1999) develop an endogenous growth model where growth results from the interaction of two activities
- accumulating physical capital which promotes growth, and accumulating political capital, which promotes rent-seeking.
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theories have been forwarded that predict a negative causal link between inequality and growth. These the-

ories either emphasize the absence of well-functioning credit-markets (Banerjee and Newman, 1991; Galor

and Zeira, 1993; Aghion and Bolton, 1997) or introduce a political process through which agents choose

the level of re-distribution in the economy (Alesina and Rodrik, 1994; Persson and Tabellini, 1994).4 None

of these papers consider the effect of inequality on knowledge creation.

The remainder of the paper is organized as follows. In Section 2, I briefly review the canonical growth

model and its treatment of inequality. In Section 3, I introduce heterogeneity and matching. The equilib-

rium is characterized in Section 4. I examine the effect of inequality on growth in Section 5. Section 6

concludes.

2 A Canonical Growth Model

Let us consider a simple version of the endogenous growth model of Romer (1990). The analysis is based

on Jones (2005). Time is discreet and labor is the only factor of production. At time t, the economy

produces a final good Yt, let us call it GDP, according to the following technology :

Yt = Kσ
t LY,t

where Kt is the stock of knowledge in the economy while LY,t is the amount of labor employed in pro-

duction at time t. Labor can also be employed in research, leading to the creation of new knowledge.

Knowledge is produced according to the following linear production function :

Kt+1 = eδLK,tKt

where LK,t is the amount of labor employed in research at time t. In the absence of population growth, the

resource constraint of the economy is

LY,t + LK,t = L

where L is the size of the work force. Suppose a constant fraction χ of the labor force is allocated towards

research in each period, (such a choice can be derived from a micro-founded model where χ would depend

on preference and institutional parameters) i.e.,

LK,t = χL and LY,t = (1− χ)L

Define the growth rate of per capita income yt(= Yt/L) as g. Then it follows that,

4See Galor (2011) for a summary of these two main lines of work.
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g = log(yt+1)− log(yt)

= σ(log(Kt+1)− log(Kt))

= σδχL

The growth rate of per capita output is simply the growth rate of knowledge, augmented by σ which

measures the sensitivity of output to knowledge; how a country grows essentially depends on how knowl-

edge is created in the country. As shown above, g depends on the the total number of workers in the

economy. This is the standard scale effect in these class of models.5 A bigger population means more

researchers, which translates into greater knowledge creation and faster growth of output. A direct impli-

cation is that other things being the same, two countries with the same size of the labor force should grow

at the same rate.

It is clear that in the above model, inequality can affect growth rate only through χ; all the other

parameters are exogenous. A priori we do not have any idea of how, following an increase in inequality,

χ would change. We do know, however, that an increase in inequality can have a positive impact on the

growth rate only if there is an increase in the number of researchers; if an increase in inequality leads to

a decline in χ, growth rate of the economy would go down because of fewer researchers in the economy.6

Since in these models researchers are homogeneous in terms of their research productivity, only the mass

of researchers matters for growth. In the following section, I present a model in which knowledge creation

depends not only on the number of researchers in an economy, but also on how they match within firms.

3 A model with heterogeneous agents

In this section, I lay out the basic economic environment of the model with heterogeneous agents.

3.1 Preferences and Ability

Consider a two period overlapping generations model populated by a continuum of agents. Every agent has

a parent and a child; thus, population is constant. An agent also owns one unit of labor which he supplies

inelastically in the second period. Since the measure of agents does not play any role in my analysis, I

normalize it to 1.

For simplicity, I assume that agents consume only in the second period. They also leave bequests for

their children. The utility function is given by
5Apart from Romer (1990), other papers that predict this strong scale effect include Grossman and Helpman (1991) and Aghion

and Howitt (1992) among others. Failing to find evidence for strong scale effects in 20th century U.S., Jones (1999) proposes a
model with weak scale effects, where the growth rate of the economy depends on the growth rate of the population and not its
level.

6If there is a difference between the workforce L and the population and the participation of agents in economic activity
depends on the distribution of wealth, then a change in inequality might affect the growth rate by changing L.
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U = cρb1−ρ (1)

where c is consumption, b is bequest and 0 < ρ < 1 captures the preference of agents for their own, rather

than their children’s, well-being. The bequest is the only wealth which a newborn agent inherits.

In the first period, an agent acquires education that determines his ability in period two, a, where

a ∈ [a, a] with a > 0 and a ≤ 1. This ability depends on (i) his inherited wealth, b, and (ii) a parameter Γ

that captures policy, institutions or market frictions. For example, a change in Γ could be interpreted as an

expansion of primary education at the cost of tertiary education. Γ could also be the state of credit market

which, given the distribution of inherited wealth, determines how agents acquire education and hence their

ability. I assume that the determination of ability involves a stochastic component which allows me to write

the conditional distribution of abilities as G(a|b,Γ). I make the following assumptions about G :

(A1) G(a|b,Γ) has full support for all values of b.

(A2) For all b′ > b, G(a|b′,Γ) dominates G(a|b,Γ) in the sense of first-order stochastic dominance.

Assumption A1 implies that no matter how large (small) a wealth an agent inherits, he could end up

with very low (high) ability in period two. But at the same time, higher is the wealth, more likely it is that

the agent will have higher ability (Assumption A2). Denoting an agent’s income in the second period as

y(a), the preferences given by (1) imply that b = (1− ρ)y(a). This allows me to write,

G(at+1|bt+1,Γ) = G(at+1|(1− ρ)yt(at),Γ)

= G̃t(at+1|at,Γ) (2)

where the dependence of income y(a) on t is due to general equilibrium effects - an agent’s income depends

not only on his own ability but also on the ability of others. This will become clear in the next section. Let

the distribution of abilities at time t be denoted by Φt(a). Using (2), I can write

Φt+1(a) =

∫ a

a

∫ a

a
G̃t(s|at,Γ)dsdΦt(a) (3)

The above equation represents the law of transition of the ability distribution. The distribution of

abilities at t determines production in the economy and the income of every agent. Then, through the

bequests, the distribution of abilities at t+ 1 is determined. We turn to production next.

3.2 Production and Occupation

The economy consists of two sectors - a final goods (F) sector and an intermediated goods (M) sector. The

F sector produces Yt while the M sector produces differentiated intermediate inputs that are used in the
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production of the final good.7

3.2.1 Final goods sector

The final good Yt is produced competitively using the following technology :

Yt = KtL
1−α
Y,t

∫
Ωt

xt(ω)αdω, (4)

whereKt, as before, is the stock of knowledge at time t, LY,t is the labor employed in sector F, xt(ω) is the

amount of the differentiated input ω and Ωt is the set of inputs that are produced at time t. The set of inputs

that can be potentially produced is un-bounded. The inputs could be goods that get used up in production

or machines that depreciate fully. (See Acemoglu, 2008). Equation (4) can, alternatively, be written as

Yt = KtL
1−α
Y,t X

α
t ,

where

Xt = (

∫
Ωt

xt(ω)αdω)
1
α .

The alternative form shows that the production technology in sector F exhibits constant-returns-to-scale

in labor and Xt, which is a CES aggregator of the differentiated inputs xt(ω). Workers in sector F perform

routine tasks; what matters for production is the mass of workers rather than their ability. As a result, all

workers in this sector earn an uniform wage st.

Each differentiated goods firm is a monopolist and sets a price of pt(ω) for its inputs. Every period,

a typical sector F firm hires labor and purchases inputs in the spot market, carries out production and

makes payment to the factors which exhausts total output. Since the firm does not make any inter temporal

allocation decisions, it simply maximizes instantaneous profits. The problem of a F firm is

max
LY,t,xt(ω)

KtL
1−α
Y,t

∫
Ωt

xt(ω)αdω − stLY,t −
∫
Ωt

pt(ω)xt(ω)dω. (5)

The first-order condition with respect to labor gives rise to the following expression for st :

st = (1− α)KtL
−α
Y,t (

∫
Ωt

xt(ω)αdω). (6)

More inputs raises the marginal productivity of the sector F workers and thereby increases their wage.

The first-order condition with respect to input xt(ω) yields the following iso-elastic demand curves :

7Hence, we are following Romer (1990) in making the intermediate input a differentiated good. The alternative, following
Ethier (1982) and Grossman and Helpman (1991), is to assume that agents have a love-for-variety utility function and conse-
quently, the final good is differentiated.
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xt(ω) = (αKt/pt(ω))
1

1−αL1−α
Y,t .

The demand curve can be inverted to obtain an expression for the price of the intermediate inputs :

pt(ω) = αKtL
1−α
Y,t xt(ω)α−1. (7)

Note that the only dependence of input price pt(a) on the aggregate knowledge distribution is through

the allocation of labor across the two sectors. In particular, it does not depend on how much of the other

inputs are being produced.

3.2.2 Intermediated goods sector

Each M firm consists of a manager and an innovator, each of whom performs a separate task. The in-

novator develops a blueprint. The manager uses the knowledge embodied in a blueprint to build equip-

ments/machines that produce the intermediate good ω. Since the set of inputs is un-bounded, each firm

chooses to produce a different input. The innovator pays a wage to the manager and is the residual claimant

of output.

Creation of new knowledge (development of a blueprint) is not deterministic. The probability that an

innovator is successful depends on his ability. Let us assume that this probability is simply aI , the ability

of the innovator in question. Upon successful development, the manager tries to follow the instructions

in the blueprint to create a machine.8 The ability of the manager determines how well he can implement

the complex instructions contained in the blueprint. I assume that conditional on there being a blueprint, a

manager with ability aM builds a machine with productivity aβM , where β < 1. Therefore, I assume that

innovation is more sensitive to ability relative to implementation. Success in innovation is almost all about

ability or talent whereas implementation requires both ability as well as effort. Although effort is partly

endogenous, assuming that innovation is more ability-intensive seems reasonable.9

Given the above structure for knowledge creation and implementation, the expected output of a M firm

is given by

xt(aI , aM ) = aIa
β
M

The innovator is successful with probability aI , whereby aβE units of intermediate input is produced.

When the innovator fails to develop a blueprint, there is no production. Given xt and the price of interme-

diate inputs given by equation (7), the innovator chooses a manager to maximize his profits,10

8In a recent paper, Meisenzahl and Mokyr (2011) argue that the industrial revolution in Britain was the outcome of effort by
not only great innovators, but also workmen who carried out the instructions in the blueprints.

9Under these assumptions, output is more sensitive to the ability of the innovator. The property rights theory of Grossman and
Hart (1986) and Hart and Moore (1990) then suggests that residual rights to output should lie with the innovator.

10Since every firm chooses to produce a different intermediate input, we can represent xt as a function of aI and aM , rather
than ω.
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πt(aI) = pt(xt)xt(aI , aM )− wt(aM )

= αKtL
1−α
Y,t [xt(aI , aM )]α − wt(aM ) (8)

where wt(a) is the wage schedule for managers and we have replaced pt(xt) with its expression from

equation (7). The first-order condition for profit-maximization with respect to aM yields

w′t(aM ) = α2KtL
1−α
Y,t [xt(aI , aM )]α−1 ∂xt

∂aM
. (9)

At the margin, the change in revenue coming from hiring a slightly more able manager should be equal

to the change in cost due to the higher wage that has to be paid to the manager.11 The envelope condition

yields

π′t(aI) = α2KtL
1−α
Y,t [xt(aI , aM )]α−1 ∂xt

∂aI
. (10)

The above two equations suggest that the slope of the wage and the profit functions depend on the

sign of ∂xt
∂aI

and ∂xt
∂aM

, both of which, it can be easily checked, are positive. Hence, within an occupation,

the earning of an agent increases with his ability. Furthermore, ∂2xt
∂aI∂aM

> 0 - the production function for

intermediate inputs exhibits complementarity with respect to aM and aI . A direct implication of comple-

mentarity is that equilibrium is characterized by positive assortative matching or PAM as stated formally

in the following lemma.

Lemma 1. The equilibrium matching function in sector M, mt(aM ), is monotonic increasing in aM .

The above lemma allows us to write xt(aI , aM ) = xt(aI ,m
−1
t (aI)) = xt(aI). In equilibrium, produc-

tion of intermediate inputs is simply a function of the ability of the innovator producing that input. More

able innovators hire more able managers and also earn higher profits relative to less able innovators. Note

that this result arises out of the optimization behavior of innovators and does not, in any way, depend on

the shape of Φt(a), the ability distribution at time t.

3.2.3 Occupational choice

In each period, the agents face the following occupational choices : (1) Being a worker in sector F, (2) being

a manager in sector M, and (3) being an innovator in sector M. An agent chooses the occupation which

generates the highest income, i.e., the problem facing an agent with knowledge a ismax{st, wt(a), πt(a)}.
Labor market clearing in each period requires that

11Note that this condition is slightly different from the standard profit maximization condition that equates wage with marginal
product of labor. In this model, since every firm hires only one manager, marginal product of labor has no meaning; what matters
is the marginal returns to ability.
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LY,t +

∫
Mat

dΦt(a) +

∫
Int

dΦt(a) = 1. (11)

where Mat and Int denotes the set of managers and innovators respectively.

3.3 Evolution of Knowledge

Every firm in sector M creates new knowledge. I make two assumptions about knowledge creation. First,

knowledge created within a firm in period t spills over to the rest of the economy in period t + 1. A

firm developing a blueprint can use patents to exclude others from using it. I consider two scenarios. In

the first scenario, firms use patents but they are effective for only one period; in the period following the

development of a blueprint, the blueprint is publicly available. In the second scenario, firms do not use

patents for fear of disclosing their knowledge. In this case, the product of the firm “partially” reveals the

knowledge created by the firm. The non-rival nature of knowledge implies that this knowledge can be

costlessly used by sector F firms, thereby increasing TFP in final good production.

Second, new knowledge adds to the stock of existing knowledge; I rule out obsolescence of knowledge.

I continue to assume that the stock of aggregate knowledge evolves linearly with the difference being that

LK,t in equation (2) is now replaced by a function that depends on the entire knowledge distribution through

the matching of innovators with managers. As the distribution changes, the matches change too, thereby

affecting the amount of knowledge that is created and eventually spills over. This, in turn, affects growth.

I assume that Kt has the following law of motion

Kt+1 = eλtKt, (12)

where λt : Φt(k) → <+ is an aggregation of new knowledge that spills over. At this point, I do not make

any further assumptions about λt and defer my discussion of λt till Section 5.

4 Equilibrium

Now that the basic structure of the model has been laid out, an equilibrium can be defined.

Definition 1. An equilibrium in this economy consists of the following objects :

(i) allocation of agents to different occupations,

(ii) time paths of sector F wages and employment, {st, LY,t}∞t=0,

(iii) time paths of quantities and prices of differentiated inputs, {xt(a), pt(a)}∞t=0

∣∣
k∈Int ,

(iv) time paths of sector M wage schedule, {wt(a)}∞t=0

∣∣
a∈Mat and profit schedule, {πt(a)}∞t=0

∣∣
a∈Int ,

(v) time path of the matching function, {mt(a)}∞t=0

∣∣
a∈Mat ,

(vi) law of motion for knowledge {Kt}∞t=0,
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such that (a) agents maximize utility, (b) firms maximize profit, (c) labor market clears and (d) knowledge

evolves according to equation (12).

4.1 Characterization of equilibrium

In the previous section, I had established that the manufacturing sector exhibits PAM. The implication is

that if there is an interval [a1, a2] of managers, then the corresponding innovators will lie in the interval

[mt(a1),mt(a2)], where mt(a1) > a2. There are numerous allocations that are consistent with PAM.

Before proceeding any further, we impose the following restriction on the parameter space:

(A3) a > β
1
αa.

Given assumption (A3), not all allocations are consistent with equilibrium, as shown in the following

lemmas.

Lemma 2. In equilibrium, the sets of workers in sector F are connected and is of the form [a, a∗t ], where

a∗t is endogenous.

Lemma 3. In equilibrium, the sets of managers and innovators in sector M are connected.

Lemma 2 says that the least able agents select into F sector. The agents with low ability have a com-

parative advantage in sector F where ability is not rewarded. The intuition behind Lemma 3, on the other

hand, is a bit more subtle. There are two opposing forces that determine matching in sector M - comple-

mentarity, which encourages agents with similar abilities to match together and asymmetry, which goes in

the opposite direction (Kremer and Maskin, 1996). Given the functional forms and assumption (A3), the

latter effect dominates, whereby managers and workers with different abilities match.

Lemmas 2 and 3 together imply that the equilibrium allocation is characterized by two thresholds, a∗t
and a∗∗t , such that agents with ability ∈ [a, a∗t ] are in sector F, while those with ability ∈ [a∗t , a

∗∗
t ] and ability

∈ [a∗∗t , a] are managers and innovators in sector M respectively. Figure 1 shows a possible equilibrium

allocation.

The agent with knowledge a∗t must be indifferent between being a worker in sectors F and M, i.e., a∗t
must solve

st = wt(a
∗
t ). (13)

On the other hand, one-to-one matching in sector M implies that a∗∗t must solve the following :

1

1− Φt(a∗t )

a∗∗t∫
a∗t

φt(a)dk =
1

2
,

10
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Figure 1: An equilibrium allocation of agents

i.e., a∗∗t is the median of the truncated distribution lying between a∗t and a. Denote a∗∗t = η(a∗t ). Clearly,
∂η(a∗t )
∂a∗t

> 0. Henceforth, we drop the argument and write η(a∗t ) simply as ηt. Conditional on a∗t , the labor

market clearing condition in sector M is given by

a∫
a∗t

φt(s)ds =

mt(a)∫
ηt

φt(s)ds ∀a∗t ≤ a ≤ ηt. (14)

The left-hand side of the above equation denotes the supply of managers in the interval [a∗t , a] for some

a. The right-hand side denotes the demand for managers coming from innovators in the corresponding

interval [ηt,mt(a)]. PAM implies that these two measures must be equal for every a. It is not enough for

the above equation to be satisfied only for a = ηt, as would be the case in a standard Lucas span-of-control

model without matching. Differentiating the above equation with respect to a, we have

m′t(a) =
φ(a)

φ(mt(a))
. (15)

The above differential equation is intuitive. The numerator measures the density of the managers

with knowledge a, while the denominator measures the density of the corresponding innovators. Loosely

speaking, if the numerator is small relative to the denominator, the managers are more dispersed relative

to the innovators in terms of abilities. Then measure consistency would require that managers with very

different ability be matched with innovators with very similar ability. Consequently, mt(a) would increase

slowly, i.e., the slope of the matching function would be small.

For a given a∗t , the terminal conditions (i) mt(a
∗
t ) = ηt and (ii) mt(ηt) = a can be used to solve

equation (15) and obtain the matching functionmt(a). Replacing the equilibrium matching functionmt(a)

11
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in equation (9) and integrating, we have

wt(ηt)− wt(a∗t ) = α2KtL
1−α
Y,t

ηt∫
a∗t

[xt(mt(a))]α−1∂xt
∂a

da. (16)

Furthermore, the agent with knowledge ηt must be indifferent between being a worker or a manager in

the sector M, i.e., wt(ηt) = πt(ηt). Replacing πt(ηt) from equation (8) yields

wt(ηt) = αKtL
1−α
Y,t [xt(ηt)]

α − wt(a∗t ). (17)

Combining equations (16) and (17), we have

wt(a
∗
t ) =

αKt

2
L1−α
Y,t ([xt(ηt)]

α − α
ηt∫
a∗t

[xt(mt(a))]α−1∂xt
∂a

da). (18)

Solving for the equilibrium requires solving a fixed-point problem. For a particular value of Kt, the

equilibrium can be solved by carrying out the following iterations :

1. Guess a value for a∗t , which in turn determines LY,t (since LY,t = Φt(a
∗
t )).

2. Solve for mt(a). Sector M has a block recursive structure which allows me to solve for the matching

function without any information on prices and earnings. (See Dasgupta, 2010, for more on this).

3. Use equation (6) to solve for st.

4. Use equation (18) to solve for wt(a∗t ).

If st and wt(a∗t ) thus computed are equal, then we are done. Otherwise, we just guess a different value

for a∗t and repeat steps 2-4. The following proposition shows that such iterations necessarily converge.

Proposition 1. An equilibrium exists with a threshold a∗t such that st = wt(a
∗
t ).

Finally, the growth rate of the economy is given by

g = ln(Yt+1)− ln(Yt). (19)

This completes the characterization of the equilibrium.

4.2 Balanced Growth Path

Along a Balanced Growth Path (BGP), the growth rate of income is constant. As discussed in the previous

section, given Kt, a∗t is a sufficient statistic for the equilibrium. But a∗t solves equation (13). Notice that

Kt appears in the same form on both sides of this equation. Consequently, at any point in time, a∗t is

independent of the level of knowledge in the economy. Intuitively, a higher Kt not only raises sector F

12
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wages, but by raising the demand for intermediate inputs, also raises sector M wages. Since Kt enters the

production function of Yt multiplicatively, the increase in the two wages cancel each other out, keeping the

threshold unchanged. The threshold, a∗t , depends only on the distribution of abilities at time t, Φt(a).

Proposition 2. There exists a unique stationary distribution of abilities Φ(a) such that any initial distri-

bution Φt(a) converges to it.

Once the stationary distribution is reached, the threshold a∗t becomes equal to a constant a∗. Hence

all variables except the stock of knowledge Kt are also constant. In particular, λt, which captures the

knowledge spillover in equation (12) is also a constant λ. The growth rate is then given by equation (19),

g = ln(At+1)− ln(At)

= λ

Once the distribution of abilities converges to the stationary distribution, the economy move along a

BGP, growing at the rate λ. For the rest of the paper, we focus attention on the stationary distribution. A

change in the distribution changes λ. In the next section, we explore how a change in inequality affects the

growth rate.

5 Inequality and Growth

One of the fundamental parameters in this model is Γ which could capture government policy or the quality

of institutions. From equation (3) it follows that the distribution of abilities at time t and accordingly, the

stationary distribution depends on Γ. Without analyzing in detail how a change in Γ might affect Φ(a), I

simply assume that the government can change policy in such a way that Φ(a) displays greater inequality.

How does higher inequality affect growth? A change in Φ(a) affects the creation of knowledge by

changing how agents match. As knowledge spills over to the final goods sector, the incentives of the agents

change too. This, in turn, affects the matches. To analyze the effect of inequality on growth, I need to

precisely define a change in inequality.

Consider two distributions ΦA(a) and ΦB(a), which differ only in terms of the degree of inequality. I

shall assume that ΦB(a) is more unequal than ΦA(a) in the sense of second-order stochastic dominance.

Since I want to compare countries at the same level of development, a mean-preserving spread seems like

a more reasonable assumption rather than some arbitrary difference in the two distributions. The only

restriction I impose on the shape of ΦA(a) is that the distribution is downward-sloping, at least in the

upper tail. For illustrative purpose, I consider the simplest form of a mean-preserving spread. In particular,

I choose t1, t2, s1, s2 as shown in the following diagram.

As indicated in Figure (2), the knowledge distribution in country B, ΦB(k), is created by making the

following changes to ΦA(k) :

13
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Figure 2: Second-order stochastic dominance

φB(a) =



φA(a) + ε for a ∈ [a, t1]

φA(a)− ε for a ∈ [t1, t2]

φA(a)− ε for a ∈ [s1, s2]

φA(a) + ε for a ∈ [s2, a]

(20)

The effect of higher inequality is asymmetric across the two sectors. Since abilities do not matter for

production in sector F, there is no direct effect of a rise in inequality. Production in sector M, on the other

hand, depends on the abilities of the agents. A higher inequality, as defined above, implies that there are

relatively fewer low ability innovators under B. The relative scarcity of low ability innovators under B

implies that their earnings are high relative to the more able innovators and managers. When inequality

goes up, the managers are made relatively worse-off, forcing the least able among them to switch to sector

F. The following proposition, which lies at the heart of my analysis, shows the final effect of a rise in

inequality on labor allocation across the different occupations.

Proposition 3. A rise in inequality increases a∗, the threshold between sectors F and M.

A corollary of the above proposition is that η rises as inequality increases. An increase in inequality

raises the proportion of more able innovators. PAM implies an increase in demand for the more able

managers resulting in their wages going up. Therefore, the opportunity cost of the least able innovators

goes up, with some of them switching occupation.

Corollary 1. A rise in inequality increases the ability of the best sector M manager, η.

An increase in inequality not only changes the occupation of agents but by changing the underlying

ability distribution, also changes how agents match in sector M. This change in matches affects how much

knowledge is produced in each firm, and how much of this knowledge spills over. Recall from Section 4,

14
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that the steady-state growth rate is given by λ, which is a measure of aggregate knowledge. For distribution

i = {A,B}, I now define λi as follows :

λi =

∫ a

ηi

ωi(a)k(a,m−1
i (a))φi(a)da. (21)

where k(a,m−1
i (a)) is the knowledge created by each firm, with ∂k

∂a > 0, ∂k
∂m−1

i (a)
≥ 0. ωi(a) ≥ 0

is a weight attached to knowledge created by each firm. ωi(a) captures the potential “overlap” between

knowledge created by different firms as I elaborate below. Before analyzing the general case, I consider

two special cases that will help us better understand equation (21).

Example 1 (Canonical growth model) : Setting ωi(a) = 1
k(a,m−1

i (a))
in equation (21), the growth rate of

the economy becomes,

λi =

∫ a

ηi

φi(a)da

= (1− Φi(ηi))

The growth rate depends only on the fraction of innovator in the economy (or the mass of innovators

since we have set population to 1). According to equation (20), ΦA(ηA) = ΦB(ηA). Corollary (1) then

implies that ΦA(ηA) < ΦB(ηB). Therefore, the more unequal distribution has fewer innovators and

consequently, lower growth. This result is similar to the one obtained in Section 2, where growth rate

was a function of the size of the population.

How do we interpret the assumption that ωi(a) = 1
k(a,m−1

i (a))
? This assumption says that the knowl-

edge generated by firms owned by more able innovators do not contribute more to aggregate knowledge.

This could due to the “fishing in the pond” effect. If the set of knowledge is bounded and invention or in-

novation amounts to discovery of such knowledge, then knowledge creation independently by many firms

would involve lots of duplications. In this particular case, a firm that creates a (expected) knowledge of
1
2 has more duplications than a firm that creates knowledge of 1

3 in a way that both firms end up creating

the same amount of unique knowledge.12 This result might seem surprising, given that the average ability

of the innovator in the unequal distribution is higher. The ability of the innovators, however, does not

really matter for aggregate knowledge. Although a more unequal knowledge distribution has innovators

who are, on average, more able, the more able among them actually drive out the less able through general

equilibrium effects (in this model, the latter become managers) with the result that there are fewer agents

innovating in equilibrium.

Example 2 (Murphy, Shleifer, Vishny (1990) : Consider the following functional form for ωi(a) :

12Note that an additional unit of an intermediate good has a positive marginal product, even if this unit is identical to other
units. The same is not true for knowledge.
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ωi(a) =

0 ∀a < a

1
φ(a) if a = a

Given these weights, the growth rate of the economy is given by

λi = k(a, ηi).

Although every sector M firm creates knowledge, the knowledge created by only the best firm matters

for growth. This would be true if knowledge had only one dimension. For example, the knowledge em-

bodied in every blueprint could be used to lower the production cost of the final good. Then the knowledge

that leads to the greatest reduction in cost is adopted by sector F; the best practice in period t becomes the

standard in period t+ 1 and the knowledge created by the most able innovator becomes critical for growth.

This is similar to Murphy et al. (1991), where the growth rate is determined by the knowledge of the

most able entrepreneur in the economy. In their model, if the parameters are such that the best agents

become entrepreneurs, the growth rate would correspond to the knowledge of the most able agent in the

economy. In this model, as in Murphy et al., an increase in inequality does not change the identity of the

best innovator in the economy, because comparative advantage implies that the most able agents always

select into being innovators. But, unlike Murphy et al., an increase in inequality has an additional effect.

The most able innovator is matched with a better manager in the more unequal distribution (ηB > ηA).

Hence, given our assumptions about k, the best firm creates weakly more knowledge under ΦB(a).

The above examples suggest that the definition of λ is quite general and nests some of the more popular

endogenous growth models in the literature. The examples also suggest that the potential overlap of ideas,

captured by ωi(a), is critical for growth. These weights could determine whether an increase in inequality

causes the growth rate to fall (as in Example 1), or rise weakly (as in Example 2). The examples presented

above, however, make some extreme assumptions. Let us now proceed with the general case. We know

from Corollary (1) that ηB > ηA. This allows me to write,

λA =

∫ a

ηA

ωA(a)k(a,m−1
A (a))φA(a)da

=

∫ ηB

ηA

ωA(a)k(a,m−1
A (a))φA(a)da︸ ︷︷ ︸

P

+

∫ a

ηB

ωA(a)k(a,m−1
A (a))φA(a)da︸ ︷︷ ︸

Q

(22)

and

λB =

∫ a

ηB

ωB(a)k(a,m−1
B (a))φB(a)da︸ ︷︷ ︸

R

(23)
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The terms Q and R defined above capture the contribution of innovators with ability in [ηB, a]. These

are the innovators who operate under both distributions. λA has an additional component, denoted by P in

equation (22), which captures the contribution of innovators who operate under ΦA but switch occupation

under ΦB . An increase in inequality affects growth through two effects - (i) a distribution effect, captured

by Q − R and (ii) an allocation effect, captured by P . A more unequal distribution has fewer innovators

which has a dampening effect on the knowledge created. At the same time, the average ability of innovators

under the more unequal distribution is higher, which has a positive effect on knowledge creation. Naturally,

the final impact depends on which effect dominates. This would depend on the weights, the density and

the function k(a,m−1
A (a)).

In this paper, I consider two different scenarios for knowledge creation. In the first scenario, innovators

protect their blueprints using patents. Since patents are effective for a single period, the blueprint is freely

available in the following period. In this case, new knowledge is completely embodied in the blueprint

created by each firm. Hence, k(a,m−1
A (a)) = a. In the second scenario, innovators do not disclose

their blueprints. In this case, new knowledge is embodied in the products created by each firm. Hence,

k(a,m−1
A (a)) = x(a,m−1

A (a)) = a[m−1
A (a)]β . I consider both cases in turn. Henceforth, I also assume

that ωi(a) = ω(a) with ω′ ≥ 0.

5.1 Case I: Knowledge is created only by innovator

When k(a,m−1
A (a)) = a, a change in the ability distribution has no impact on knowledge created by

an innovator of ability a. The densities, on the other hand, change. In particular, conditional on being

truncated at ηB , ΦB first-order stochastic dominates ΦA. Therefore, with the weights being the same,

Q− R < 0; the distribution effect of an increase in inequality is positive.13 At the same time, since a rise

in inequality leads the least-able managers to switch occupations, some knowledge is lost. Therefore, the

allocation effect is always negative, provided that the weights attached to the knowledge generated by the

less able innovators are positive.

With ω(a) being non-decreasing in knowledge, the effect of ω(a) and a are not separately identifiable.

Then we can simply define k̂(a) = ω(a)a. Observe that the marginal increase in R−Q will be greater, the

more convex k̂(a) is for a ∈ [ηB, a]. At the same time, P will be small if k̂(a) is small over the relevant

range. Combining the two observations, we can infer that if â is sufficiently convex, the distribution effect

dominates and the growth rate rises following an increase in inequality. An extreme form of this convexity

is illustrated in Example 2. The above discussion can be summarized in the following proposition :

Proposition 4. When knowledge creation depends only on the ability of the innovator, an increase in

inequality leads to higher growth if the weights are increasing and sufficiently convex in ability.

A convex ω(a) function implies that knowledge created by more able innovators are more effective in

the sense that they have less overlaps. Therefore, although an increase in inequality reduces the mass of
13This follows from the definition of first-order stochastic dominance
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innovators, the corresponding loss of knowledge is small compared to the increase in knowledge coming

from innovators who are, on average, more able.

5.2 Case II: Knowledge creation exhibits complementarity

In this case, a change in the distribution not only affects φi(a) but also m−1
i (a). In order to analyze the

effect of a mean-preserving spread on matching, I need the following lemma.

Lemma 4. With an increase in inequality, the match of the manager with knowledge ηB worsens, i.e.,

k∗B ≤ m
−1
A (ηB).

Figure 3: The m−1(k) function under the two distributions

We know that m−1
A (a) < m−1

B (a). With an increase in inequality, the inverse matching function

becomes steeper for lower values of a but eventually flattens out. Combined with Lemma (4), this implies

that there is a set E ⊂ [ηB, k], such that m−1
A (a) > m−1

B (a) for a ∈ E and m−1
A (a) < m−1

B (a) for

a ∈ Ec. This is illustrated in Figure 3. The figure suggests that the distribution effect defined earlier is

no longer unambiguously positive. Following a rise in inequality, some of the incumbent innovators have

better matches, but there are some innovators who are matched with less able managers than before. Of

course, how this affects knowledge creation in each firm and consequently in the aggregate depends on β,

the elasticity of knowledge (and also output) with respect to the manager’s ability.

For a given increase in inequality, the sign of the distribution effect depends on how β compares with

the curvature of ω(a). Holding everything constant, a fall in β reduces the distribution effect. A lower β,

which makes [m−1
A (a)]β more concave, makes knowledge creation less sensitive to the manager’s ability

for high values of m−1
A (a), but more sensitive to the manager’s ability for low values of m−1

A (a). Since

under ΦB , the matches improve for those innovators who were matched with high ability managers but

worsen for those matched with low ability managers, a low β reduces aggregate knowledge. As far as
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ω(a) is concerned, the intuition is very similar to the one offered in the previous subsection. A sufficiently

convex ω(a) re-enforces the effect of a shift in the mass towards more able innovators. The increase in

knowledge coming from the improvement in matches of the most able innovators carries much more weight

compared to the decrease in knowledge arising from the worsening of some matches. This allows us to

state the following proposition.

Proposition 5. When knowledge creation is complementary, an increase in inequality will raise the growth

rate if, ceteris paribus, (i) β is sufficiently high or (ii) the weights are increasing and sufficiently convex in

ability.

5.3 Discussion

Propositions 4 and 5 underline the significance of the weights ω(a) in determining the relation between

inequality and growth. We have already seen that different functional forms for the weights generate very

different outcomes. But is it possible to discipline the weights in some ways so that we could make more

systematic statements about the inequality-growth relation?

The interpretation of ω(a) as capturing the potential overlap of knowledge is useful in this respect.

One could claim that the “uniqueness” of knowledge generated by each firm is a function of the level of

development of an economy. When a less-developed economy starts to innovate, each innovator discovers

something unique; there is a huge mass of knowledge to be discovered, and the probability of multiple

innovators discovering the same knowledge is small. But as an economy accumulates more and more

knowledge, i.e., as Kt increases, it becomes increasingly difficult to discover something unique. In such

a situation, it is the more able innovators who are more likely to create unique knowledge. Accordingly,

knowledge created by the more able innovators will carry more weight in aggregate knowledge. In terms

of our analysis, as an economy develops, the ω(a) function becomes more convex. The implication is the

following: for less-developed economies, the relation between inequality and growth could be negative,

while for developed economies, this relation could be positive. This is consistent with the findings of

Barro in his study of the relation between inequality and growth in a panel of countries. Barro finds that

the effect of inequality on growth is negative for GDP per capita below $2070 and positive for higher values,

where GDP is measured in 1985 U.S. dollars. One possible explanation for this finding, as pointed out by

Barro, is the reduction in credit market imperfections as a country develops. When the credit constraints

are severe, a rise in inequality reduces the growth rates. But with well-functioning credit markets, the

growth-enhancing effects of inequality dominate. This paper provides an alternative explanation of this

phenomenon.

It should be noted that the mechanism (through which inequality affects growth) that I have highlighted

in this paper has a fundamental difference with what has been proposed in the existing literature on growth

and inequality. In the existing literature, inequality affects growth primarily through its impact on the

lower tail of the income/wealth distribution. In contrast, in this model, growth depends primarily on what

is happening at the upper tail of the distribution. This is because growth is driven by knowledge which
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is created in the ability-intensive sector of the economy. The less able agents (usually the poor) in the

economy sort into the final goods sector which benefits from the spillover but does not generate any. A

change in the distribution of agents working in the sector F has no direct impact on growth, because it does

not affect the rate of knowledge creation.14

6 Conclusion

In this paper, although an increase in inequality keeps the mean of the ability distribution unchanged, the

mean ability of the innovators goes up. If the weights increase sufficiently quickly with ability, fatter

tails would lead to more knowledge creation by the surviving innovators. This is not only because more

innovators create more (expected) knowledge, but also because the better innovators are matched with

better managers which has a positive effect on knowledge creation, if the latter exhibits complementarity.

For an unchanged ability support for the innovators, this results in more knowledge on the aggregate.

But a change in inequality affects the allocation of agents across occupations, which in turn means fewer

innovators. The effect on the growth rate depends on whether having relatively more able innovators can

compensate for having fewer innovators.

Neo-Classical growth theory has come a long way since the seminal work of Robert Solow (Solow,

1956). Economists have studied the relation between the rate of growth of a country and a myriad phenom-

ena, including innovation, migration, corruption and pollution, to name just a few. Although it has received

considerable attention, the interaction between inequality and growth is far from being well-understood

(See Helpman, 2004, Chapter 6 for a summary of the relevant issues). For one, the direction of causality

is un-clear. In this paper, I take a position on causality and proceed to analyze the nature of this causality,

being fully aware of the fact that there could be reverse causality. I take the fundamental determinants of

the distribution of ability as given and go on to examine the implications of a mean-preserving spread of

this distribution on the the growth rate of the economy. Since the ability distribution of a country maps into

a wealth distribution, this model generates an indirect link between wealth distribution and the growth rate

of a country. Of course, the exogenous parameter that shapes the ability distribution, Γ, is itself determined

by the wealth distribution of a country. My focus on the ability distribution, rather than the wealth distri-

bution, stems from the belief that the pool of knowledge in an economy ultimately depends on the ability

of the agents engaged in the creation and implementation of knowledge.

14This prediction is consistent with Barro (2000)’s finding that growth is positively related to the average years of attainment at
the secondary and higher levels of education, but insignificantly related to primary attainment at the start of each period.
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Appendix

Proof of Lemma 1 : Replacing the value of xt(aI , aM ) in equation (9) and totally differentiating, we have

w′′t (aM )daM = α2KtL
1−α
Y,t [(αβ − 1)aαI a

αβ−2
M daM + αaα−1I aαβ−1M daI ].

This can be re-written as,

[w′′t (aM )daM − α2KtL
1−α
Y,t (αβ − 1)aαI a

αβ−2
M ] = α2KtL

1−α
Y,t αa

α−1
I aαβ−1M

daI
daM

.

If there is positive assortative matching, daI
daM

> 0, which implies that the right-hand side of the above equation is
positive. Then the left-hand side must be positive too. It can be easily checked that the left-hand side being positive
corresponds to the second-order condition for profit maximization being satisfied.

Proof of Lemma 2 : Suppose that, on the contrary, we have the following allocation: [a1, a2] ∈ F , [a2, a3] ∈ M ,
[a3, a4] ∈ F . Then both a2 and a3 must be earning st, since both of them are indifferent between being in sector F
and M. If a2 chooses to be a worker, then wt(a2) = st. Otherwise, πt(a2) = st. Either way, since w′t(a) > 0 and
π′t(a) > 0, a3 must be earning more than a2 and consequently, more than st. A contradiction.

To show that the least able agents are in sector F, suppose that, on the contrary, [a, a1] ∈ M , [a1, a2] ∈ F .
Without loss of generality, suppose that a1 is a manager. Consider the agent with ability a1 + ε, where ε→ 0. Since
he is in sector F, he must be earning st. However, if he moves to sector M as a manager, he can earn wt(a1 + ε) >
wt(a1) = st, since w′t(a1) > 0. Therefore, this allocation cannot be an equilibrium.

Proof of Lemma 3 : See Dasgupta (2010).

Proof of Proposition 1 : Define ζ(a∗t ) = wt(a
∗
t ) − st, where wt(a∗t ) is given by equation (18) and st is given by

equation (6). Differentiating wt(a∗t ) with respect to a∗t ,

∂wt(a
∗
t )

∂a∗t
=
α2Kt

2
L1−α
Y,t ([x(ηt)]

α−1η′t + [x(ηt)]
α−1 ∂x(mt(a))

∂a
|a=a∗t − [x(a)]α−1η′t

∂x(mt(a))

∂a
|a=ηt)

+
αAt

2

∂L1−α
Y,t

∂a∗t
([xt(ηt)]

α − α
ηt∫
a∗t

[xt(mt(a))]α−1
∂xt
∂a

da)

Now, LY,t = Φt(k
∗
t ). So,

∂L1−α
Y,t

∂a∗t
> 0 and hence the second term on the right-hand side is positive. Therefore,

the above expression will be positive if the first term is positive too. A sufficient condition for that is

[x(ηt)]
α−1 − [x(a)]α−1

∂x(mt(a))

∂a
|a=ηt > 0

Using the definition of xt,
∂x(mt(a))

∂a |a=ηt = βaηβ−1. Replacing in the above expression,

[x(ηt)]
α−1 − [x(a)]α−1

∂x(mt(a))

∂a
|a=ηt = (ηa∗βt )α−1 − (aηβ)α−1(βaηβ−1)

= (ηa∗βt )α−1 − βaαηαβ−1

Hence, for the left-hand side to be positive, we must have ηα(1−β)a∗β(α−1)t > βaα. Now, η, a∗t > a. Therefore,
a sufficient condition is aα(1−β)a∗β(α−1) > βaα, i.e., aα−β > βaα. Since a < 1, aα−β > aα. Therefore
the required condition is aα > βaα which is satisfied by Assumption1. It is also straightforward to show that
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∂st
∂a∗t

< 0. Therefore, ∂ζ(a∗t )
∂a∗t

> 0. Furthermore, when a∗t = 1, LY,t = 0 and ζ(a∗t )|a∗t=1 = −∞. And when

a∗t = a, ζ(a∗t )|a∗t=a = αAt
2 [x(a)]α > 0. Applying the intermediate value theorem, there exists a unique a∗t such that

ζ(a∗t ) = 0.

Proof of Proposition 2 : Let B be any Borel set of [a, a]. Then the transition function for the ability distribution
satisfies, for every a ∈ [a, a],

Pt(a,B) =

∫
B

dG̃t(s|a,Γ)

Suppose P is monotone, has the Feller property and satisfies a mixing condition. Then P has a unique, invariant
probability measure Φ(a) (Stokey, Lucas with Prescott, 1989, Theorem 12.12). Let us define the operator T as

(Tf)(a) =

∫
f(a′)P (a, da′), all a ∈ [a, a]

where f : [a, a]→ R is a bounded function. If f is non-decreasing, then the first-order stochastic dominance property
of G(a|b,Γ) implies that Tf is also non-decreasing (Monotone Property). It is straight-forward to verify that if f is
bounded and continuous, then the same holds for Tf, i.e., T : C(a)→ C(a) (Feller Property). The mixing condition
requires that ∃c ∈ [a, a], ε > 0 and N ≥ 1 such that PN (a, [c, a]) ≥ ε and PN ([a, c], a]) ≥ ε. The assumption
that G(a|b,Γ) has full support guarantees this. Therefore all the conditions for the existence and uniqueness of the
invariant distribution are satisfied.

Proof of Proposition 3 : Suppose, on the contrary, the threshold between sectors F and M remain unchanged
following an increase in inequality, i.e., a∗A = a∗B = a∗. Then, ΦA(k) = ΦB(k). Since the density between a∗A
and ηA is the same for the two distributions, we must also have ηA = ηB = η. From equation (15), we have
m′B(a∗) = φB(a∗)

φB(η) = φA(a∗)
φA(η) = m′A(a∗). In fact, this relation must hold for all k ∈ [k∗,m−1A (s1)], i.e.

m′B(a) = m′A(a) ∀k ∈ [a∗,m−1A (s1)]

It follows that,

mB(a) = mA(a) ∀a ∈ [a∗,m−1A (s1)] (i)

We also know that, φB(s1) < φA(s1). Therefore, at m−1B (s1) = m−1A (s1),

m′B(m−1B (s1)) =
φB(m−1B (s1))

φB(s1)
>
φA(m−1A (s1))

φA(s1)
= m′A(m−1A (s1))

In fact, ∀s such that mB(k) ∈ [s1, s2]

m′B(a) =
φB(a)

φB(mB(a))
>

φA(a)

φA(mB(a))
>

φA(a)

φA(mA(a))
= m′A(a)

where the first inequality follows from definition and the second inequality follows from the assumption that density
is decreasing in knowledge. It follows that

mB(k) > mA(k) ∀a ∈ [m−1B (s1),m−1B (s2)] (ii)

By assumption, mA(η) = mB(η) = a. Furthermore, m′B(η) = φB(η)
φB(a) <

φA(η)
φA(a) = m′A(η). Therefore, in an

ε− ball around η, mB(a) > mA(a). In fact, using a similar logic as above, it can be shown that

mB(a) > mA(a) ∀a ∈ [m−1B (s2), η] (iii)

Combining equations (i), (ii) and (iii), we see that ∃S ∈ [a∗, η], such that
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mB(a) > mA(a) ∀a ∈ S
mB(a) = mA(a) otherwise

Using the result that matches weakly improve with inequality in equation (18), we see that w(a∗) under ΦB is
less than that under ΦA. We also know that s = (1− α)AL−αY (

∫ a
η
x(a)αdΦ(a)). But,∫ a

η

x(a)αdΦ(a) =

∫ η

a∗
x(m(a))αdΦ(a)

i.e., output produced can be attributed either to the worker or the manager. Since the difference between ΦA and ΦB
occurs only in the tails, φA(a) = φB(a). Therefore,

∫ η

a∗
x(mA(a))αdΦA(a) =

∫ η

a∗
mA(a)αaαβdΦA(a)

=

∫ η

a∗
mA(a)αaαβdΦB(a)

=

∫ m−1
A (s1)

a∗
mA(a)αaαβdΦB(a) +

∫ η

m−1
A (s1)

mA(a)αaαβdΦB(a)

Now, ∫ m−1
A (s1)

a∗
mA(a)αaαβdΦB(a) =

∫ m−1
A (s1)

a∗
mB(a)αaαβdΦB(a)

while ∫ η

m−1
A (s1)

mA(a)αaαβdΦB(a) <

∫ η

m−1
A (s1)

mB(a)αaαβdΦB(a)

Hence,

∫ η

a∗
x(mA(a))αdΦA(a) <

∫ m−1
A (s1)

a∗
mB(a)αaαβdΦB(a) +

∫ η

m−1
A (s1)

mB(a)αaαβdΦB(a)

=

∫ η

a∗
x(mB(a))αdΦB(a)

It follows that s increases as inequality goes up. Thus, as we move from ΦA to ΦB , if we hold the threshold
a∗ constant, w(a∗) goes down while s goes up. Therefore, at a = a∗, w(a∗) < s. This can not be an equilibrium.
Hence, the thresholds must change. In particular, under ΦB , there is an excess demand for workers in the retail sector
if the threshold is at a∗A. Hence, workers move from sector M to F, resulting in a∗ moving to the right. The conditions
on the parameters ensure that s− w(a∗) falls as a∗ rises. In equilibrium, a∗B > a∗A.

Proof of Lemma 4 : From Proposition (3), we know that ηB > ηA. By definition, ΦA(ηB) − ΦA(ηA) =
ΦA(m−1A (ηB)) − ΦA(a∗A). Also, ΦA(m−1A (ηB)) − ΦA(a∗A) = ΦB(m−1A (ηB)) − ΦB(a∗A). Let us consider the fol-
lowing two scenarios. In scenario one, s1 in Figure (2) is greater than ηB . Then, we must have ΦB(ηB)−ΦB(ηA) =
ΦA(ηB) − ΦA(ηA). In scenario two, s1 is less than ηB . In this case, ΦB(ηB) − ΦB(ηA) < ΦA(ηB) − ΦA(ηA).
Combining the two, we have ΦB(ηB) − ΦB(ηA) ≤ ΦA(ηB) − ΦA(ηA). Therefore, ΦB(ηB) − ΦB(ηA) ≤
ΦB(m−1A (ηB))− ΦB(a∗A). It follows that m−1B (ηB) = a∗B ≤ m

−1
A (ηB).
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