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Micro-foundation for the learning technology : Suppose workers have to exert effort in order
to learn. If a worker, working for a manager with knowledge y, exerts e, his knowledge next
period is l(e, y). For simplicity, I assume that l(e, y) has the following functional form - �(y)e,
with �′ > 0. So all workers, working for a particular manager, can potentially learn the same.
Effort, however, is costly. Let us denote this cost by qx(e) with q′x > 0. Note that the cost of
effort depends on the knowledge of the worker. I assume that q′x(e) is decreasing in x. Let the
continuation value of a worker with knowledge l(e, y) in the next period be C(l(e, y)). If the
Separation Theorem holds, the worker will choose e to maximize C(l(e, y))− qx(e). The first-
order condition for utility maximization yields dC

dl
dl
de

= dC
dl
�(y) = dqx

de
. The left-hand side of this

equation is constant. Given the assumption about qx, it then follows that more knowledgeable
workers will choose higher e and accordingly have higher knowledge next period.

Proof of Proposition 1 : We prove this proposition in a number of steps. In this economy, every
agent with knowledge y, in the role of a manager, offers a “gross” wage schedule w̃t(x, y) such
that y is indifferent between hiring any x. w̃t(x, y) is the wage offered by y if there were no
learning and captures the worker’s pay-off from production. The following lemma establishes
some properties of w̃t(x, y).

Lemma 1. w̃t(x, y) is increasing in x for all y, and ∂2w̃
∂x∂y

> 0.

Proof. Since y is indifferent along w̃t(x, y), for any x1 and x2 we must have f(y)n(x1) −
w̃t(x1, y)n(x1) = f(y)n(x2)− w̃t(x2, y)n(x2). Letting x2 = x1 + ℎ and re-arranging, we have
w̃t(x1 + ℎ, y)n(x1 + ℎ)− w̃t(x1)n(x1) = f(y)n(x1 + ℎ)− f(y)n(x1). Using Taylor series ap-
proximation of n(x1+ℎ) around ℎ (small), we have n(x1+ℎ) = n(x1)+n

′(x1)ℎ+o2. Replacing
this in the above equation, we have [w̃t(x1 + ℎ, y)− w̃t(x1, y)]n(x1) + w̃t(x1 + ℎ, y)n′(x1)ℎ =

f(y)n(x1+ℎ)−f(y)n(x1). Dividing by ℎ and taking the limit as ℎ→ 0, we get ∂w̃t(x1,y)
∂x

n(x1)+

w̃t(x1, y)n′(x1) = f(y)n′(x1). Re-arranging, we have ∂w̃t(x1,y)
∂x

= n′(x1)(f(y)−w̃t(x1,y))
n(x1)

. Since
f(y) − w̃t(x1, y) > 0 (in equilibrium, profits must be positive) and n′(x1) > 0, it follows that
∂w̃t(x1,y)

∂x
> 0. Since x1 was chosen randomly, the result follows. Furthermore, in equilibrium,

∂w̃t(x,y)
∂x

= n′(x)(f(y)−w̃t(x))
n(x)

. Differentiating with respect to y, ∂
2w̃t(x,y)
∂x∂y

= n′(x)f ′(y)
n(x)

> 0.
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At the same time, each agent, in the role of a worker, offers a rent schedule r̃t(x, y) such
that he is indifferent across managers; r̃t(x, y) captures the value of learning. Unlike w̃t(x, y),
which is the solution to a static problem, workers compute r̃t(x, y) by taking into account the
entire expected earnings profile. The following lemma establishes a key property of the rent
function.

Lemma 2. ∂2r̃
∂x∂y
≥ 0.

Proof. The worker’s optimization problem is given by

VW (x) = max
y

[w̃t(x, y)− r̃t(x, y) +

∫
VW (x′)dL(x′∣x, y)].

The first-order condition is given by ∂r̃t(x,y)
∂y

= ∂w̃t(x,y)
∂y

+ � ∂
∂y

∫
VW (x′)dL(x′∣x, y). Differenti-

ating with respect to x, ∂
2r̃t(x,y)
∂x∂y

= ∂2w̃t(x,y)
∂x∂y

+ � ∂2

∂x∂y

∫
VW (x′)dL(x′∣x, y). The first term on the

left-hand side is positive (Lemma 1). The second term is also positive because of Assumption
2c and Vw(x′) being increasing in x′.

Lemmas 1 and 2 allow as to prove that the equilibrium exhibits positive assortative match-
ing, as shown in the following lemma.

Lemma 3. mt(x) is invertible and strictly increasing in x.

Proof. I shall prove this lemma by contradiction. The subscript t is dropped for simplicity.
To prove that m(x) is not a correspondence (which would rule out invertibility), first note that
measure consistency implies that m(x) is not an interval. So, we could have a x2, y1 and y3
(y1 < y3) such that m(x2) = y1 and m(x2) = y3. But then, we can always find a y ∈ [y1, y3]

such that m(x2) ∕= y. Let us denote this by y1. Let us also assume, without loss of generality,
that m(x2) = y1 where x1 < x2. To summarize, there must be x1 < x2 and y1 < y2 such that
m(x1) = y2 andm(x2) = y1. Note that this also implies that we do not have positive assortative
matching. For this allocation to be an equilibrium, we must have

�(y2) = [f(y2)− w̃(x1, y2) + r̃(x1, y2)]n(x1)

≥ [f(y2)− w̃(x2, y2) + r̃(x2, y2)]n(x2)

Similarly, we must have

�(y1) = [f(y1)− w̃(x2, y1) + r̃(x2, y1)]n(x2)

≥ [f(y1)− w̃(x1, y1) + r̃(x1, y1)]n(x1)
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Combining the above two inequalities and using the fact that n(x1) < n(x2), we can write

[w̃(x2, y2)− w̃(x1, y2)]− [w̃(x2, y1)− w̃(x1, y1)]

> [r̃(x2, y2)− r̃(x1, y1)]− [w̃(x1, y2)− w̃(x1, y1)]

Defining x2 = x1 + Δ and y2 = y1 + Δ and taking the limit as Δ → 0, we have ∂2w̃(w,y)
∂x∂y

>
∂2r̃(w,y)
∂x∂y

. But from Lemma 2, we know that ∂2w̃(w,y)
∂x∂y

< ∂2r̃(w,y)
∂x∂y

. Hence, we get a contradiction.

To prove that an allocation where agents with k < k∗t are workers and those with k > k∗t

are managers, we first need to show that such a k∗t , for which the labor market clears, actually
exists. This is shown in the next lemma.

Lemma 4. For a given Ψt(k), k∗t exists and is unique.

Proof. Equilibrium in the labor market implies that

∫ k∗t

k

 (s)ds =

∫ k

k∗t

n(m−1t (s)) (s)ds

where the LHS is the supply of workers while the RHS is the demand for workers. Define

ℒ(k∗t ) =

∫ k∗t

k

 (s)ds−
∫ k

k∗t

n(m−1t (s)) (s)ds

Now, ℒ(k) = −
∫ k
k
n(m−1t (s)) (s)ds < 0, while ℒ(k) =

∫ k
k
 (s)ds > 0. Moreover, ∂L(k

∗
t )

∂k∗t
=

[1 + n(m−1t (k∗t )] (k∗t ) > 0. Hence, by the Intermediate Value Theorem, ∃ a unique k∗t such
that ℒ(k∗t ) = 0.

The last step, before we prove the existence of the equilibrium, is to derive some useful
properties of the value functions, VW (k) and VM(k).

Lemma 5. VW (k) and VM(k) exist, are continuous and increasing in k.

Proof. The value function for the manager is given by

VM(k, wt) = max
x
{f(k)n(x)− wt(x)n(x)}+ (1− �) max[VW (k, wt+1), VM(k, wt+1)]
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The value function for the worker is given by

VW (k, wt) = wt(k) + (1− �)
∫ mt(k)

k

max[VW (k′, wt+1), VM(k′, wt+1)]dL(k′∣k,mt(k))

Define the vector function V = [VM(k, wt) VW (k, wt)]
′. Then max{VW , VM} = max{[1 0]V, [0 1]V }.

Also, define � = [max
x
{f(k)n(x)−wt(x)n(x)} wt(k)]′. Then we have the following equation:

V = � + (1− �)

⎡⎢⎣ max{[1 0]V, [0 1]V }
mt(k)∫
k

max{[1 0]V, [0 1]V }dL

⎤⎥⎦
= T (V )

It can be established, using Blackwell’s Sufficiency Conditions, that the operator T is a con-
traction in the space of continuous vector functions with normmax[supk ∣VM(k)∣, supk ∣VW (k)∣].
Therefore, a fixed point of V exists and is unique.

To prove that VW (k) is increasing in k, note that if V ′W (k) < 0, a worker will choose not
to learn because learning reduces his continuation value. If workers do not learn, they do not
pay rent. Consequently, the only payment that is made is wage and we are back to the static
framework. But then more knowledgeable agents earn more and V ′W (k) > 0 trivially. Thus, we
get a contradiction. It can be proved in a similar fashion that V ′M(k) > 0.

Given the above lemmas, let us derive the equilibrium conditions for a threshold equilib-
rium. Since k∗t is indifferent between being a worker and a manager, we must have VW (k∗t , wt) =

VM(k∗t , wt). Furthermore, for k∗t to be the threshold, it must be the case that k cannot hire k∗t +�

and be strictly better-off. If k∗t + � is a manager, he earns VM(k∗t + �). In order to hire k∗t + �, the
manager has to pay him a wage such that he is just indifferent between being a manager and a
worker. Let this wage be !. ! should satisfy

! + (1− �)
∫
VM(k)dL(k∣, k∗t + �, k) = VM(k∗t + �)

Therefore, period profit of k if he hires k∗t + � is given by

�k∗t+�(k) = (f(k)− !)n(k∗t + �)

= f(k)n(k∗t + �)− n(k∗t + �)(VM(k∗t + �)− (1− �)
∫
VM(k)dL(k∣, k∗t + �, k))
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For k∗t to be a threshold equilibrium, it must be the case that lim
�→0

∂�k∗t+�
(k)

∂�
≤ 0 Now,

lim
�→0

∂�k∗t+�(k)

∂�
= f(k)n′(k∗t )− n(k∗t )(V

′
M(k∗t )− (1− �) ∂

∂k∗t

∫
VM(k)dL(k∣, k∗t , k))

− n′(k∗t )VM(k∗t )− (1− �)
∫
VM(k)dL(k∣, k∗, k)

From the manager’s profit-maximizing problem, we have

f(k)n′(k∗t ) = w′t(k
∗
t )n(k∗t ) + wt(k

∗
t )n
′(k∗t )

Also, for a worker with knowledge k∗t ,

VW (k∗t ) = wt(k
∗
t ) + (1− �)

∫
VM(k)dL(k∣k∗t , k)

Since k∗t is the threshold, max[VW (k), VM(k)] = VM(k) ∀k ≥ k∗t . Differentiating w.r.t. k∗t ,

V ′W (k∗t ) = w′t(k
∗
t ) + (1− �) ∂

∂k∗t

∫
VM(k)dL(k∣k∗t , k)

Replacing in the expression for lim
�→0

∂�k∗t+�
(k)

∂�
and using the fact that VW (k∗t ) = VM(k∗t ), we have

lim
�→0

∂�k∗t+�(k)

∂�
= [w′t(k

∗
t )− V ′M(k∗t )− V ′W (k∗t ) + w′t(k

∗
t )]n(k∗t )

= V ′W (k∗t )− V ′M(k∗t )

where we use the fact that VW (kt∗, wt) = VM(k∗t , wt). Hence, lim
�→0

∂�k∗t+�
(k)

∂�
< 0 implies that

V ′W (k∗t ) < V ′M(k∗t )

The above condition needs to be satisfied for k∗t to be the equilibrium threshold. We shall prove
this proposition in a slightly different way. First, we shall prove the existence of the threshold
equilibrium, assuming that the equilibrium is unique. Then we shall show that the sufficient
condition for existence is also sufficient for uniqueness.

By assuming uniqueness, we are basically assuming that the set of workers and managers
has to be connected in equilibrium. Given that there exists a unique market-clearing threshold
k∗t , we check whether the threshold satisfies the equilibrium condition V ′W (k∗t ) < V ′M(k∗t ).
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Dropping the time subscript, we have

VM(k∗) =
1

�
(f(k∗)− w(k))n(k)

Using the Envelope Theorem,

V ′M(k∗) =
1

�
f ′(k∗)n(k)

Also,

V ′W (k∗) = w′(k∗) + (1− �) ∂

∂k∗
(

∫
VM(k)dL(k∣k∗, k))

=
(f(k)− w(k∗))n′(k∗)

n(k∗)
+ (1− �) ∂

∂k∗
(

∫
VM(k)dL(k∣k∗, k))

where the second line follows from the manager’s profit-maximization condition. Therefore,
for k∗ to be an equilibrium, it must be the case that

(f(k)− w(k∗))n′(k∗)

n(k∗)
+ (1− �) ∂

∂k∗
(

∫
VM(k)dL(k∣k∗, k)) ≤ 1

�
f ′(k∗)n(k)

If � = 1, this condition reduces to

(f(k)− w(k∗))n′(k∗)

n(k∗)
≤ f ′(k∗)n(k)

Since w(k∗) > 0, for the above inequality to hold, we need to find the conditions under which
f(k)n′(k∗)
n(k∗)

≤ f ′(k∗)n(k), or f(k)n′(k∗) ≤ f ′(k∗)n(k), since n(k∗) ≥ 1.
But f(k)n′(k∗) ≤ f(k)n′(k) (∵ n′′(.) ≤ 0) and f ′(k∗)n(k) ≥ f ′(k)n(k) (because n′′(.) ≥

0). Hence, it follows that

f(k)n′(k∗) ≤ f(k)n′(k) ≤ f ′(k)n(k) ≤ f ′(k∗)n(k)

where the inequality in the middle follows from Assumption 1b. Thus for � = 1, the condition
on technology is sufficient for an equilibrium. But when � ∕= 1, we need to determine the mag-
nitude of ∂

∂k∗
(
∫
VM(k)dL(k∣k∗, k)), since this term is positive by assumption on the learning

technology. This term is endogenous and it depends on the invariant distribution, which in turn
is determined by the learning distribution. This term is bounded above, since the domain is
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compact. Hence by the Least Upper Bound Property, the supremum exists. Let

� = sup { ∂

∂k∗
(

∫
VM(k)dL(k∣k∗, k))}

Define �∗ as the value of � that satisfies

f(k)n′(k) + (1− �∗)� = f ′(k)n(k)

This can be re-written as

n′(k)

n(k)
+ (1− �∗) �

f(k)n(k)
=
f ′(k)

f(k)

The fact that n
′(k)
n(k)

< f ′(k)

f(k)
implies that �∗ < 1. Hence ∀� ∈ [�∗, 1], we have

f(k)n′(k) + (1− �)� ≤ f ′(k)n(k)

Thus,

f(k)n′(k∗) + (1− �) ∂

∂k∗
(

∫
VM(k)dL(k∣k∗, k)) ≤ f(k)n′(k) + (1− �)�

≤ f ′(k)n(k)

≤ f ′(k∗)n(k)

� ≤ 1 implies that f ′(k∗)n(k) ≤ 1
�
f ′(k∗)n(k). Therefore,

f(k)n′(k∗) + (1− �) ∂

∂k∗
(

∫
VM(k)dL(k∣k∗, k)) ≤ 1

�
f ′(k∗)n(k)

This completes our proof about the existence of equilibrium. As mentioned before, show-
ing uniqueness entails showing that the set of workers and managers is connected. Suppose
not. In particular, let us assume that the knowledge distribution has the following partition -
([k, k1], [k1, k2], [k2, k3], [k3, k4]). Workers in [k, k1] work for managers in [k1, k2] while work-
ers in [k2, k3] work for managers in [k3, k4]. For this to be an equilibrium, it must be the case
that k2 must be indifferent between being a worker and a manager. In other words, a deviation
involving k3 hiring k2 − � should not make both k3 and k2 − � better off. Using a similar logic
as developed above, one can show that that the condition for equilibrium is V ′W (k2) > V ′M(k2).
One can then show that if n′(k)

n(k)
< f ′(k)

f(k)
, then for � high enough, this condition will always be
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violated. Therefore, an allocation with disconnected sets of workers and managers can never
be sustained as an equilibrium implying that the only equilibrium is the threshold equilibrium.

To prove the uniqueness and existence of the invariant distribution Φ(k), note there is an
alternative way of looking at the evolution of knowledge. Let A be any Borel set of [k, k]. Then
the transition function for the knowledge distribution satisfies, for every k ∈ [k, k],

Pt(k,A) =

⎧⎨⎩
(1− �)

∫
A

dL(s∣k,mt(k)) + �
∫
A

dΦ(s) if k ∈ W

�
∫
A

dΦ(s) if k ∈M

Suppose P is monotone, has the Feller property and satisfies a mixing condition. Then P has
a unique, invariant probability measure Ψ∗ (Stokey, Lucas with Prescott, 1989). Define the
operator T as

(Tf)(k) =

∫
f(k′)P (k, dk′), all k ∈ [k, k]

where f : [k, k]→ ℝ is a bounded function. If f is non-decreasing, then the first-order stochas-
tic dominance property of the learning distribution implies that Tf is also non-decreasing.
(Monotone Property) It is straight-forward to verify that if f is bounded and continuous, then
the same holds for Tf, i.e., T : C(k)→ C(k) (Feller Property). The mixing condition requires
that ∃c ∈ [k, k], � > 0 and N ≥ 1 such that PN(k, [c, k]) ≥ � and PN([k, c], k]) ≥ �. Choose
k′ ∈ [k, k]. Define �1 =

∫
[k′,k]

dΨN(s) and �2 =
∫
[k,k′]

dΨN(s). By the assumption on ΨN(.),
we know that both these objects are greater than 0. Choose � = �min{�1, �2} and N = 1.
Then P (k, [k′, k]) ≥ � and P ([k, k′], k]) ≥ �. Therefore all the conditions for the existence and
uniqueness of the invariant distribution are satisfied.
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