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1 Introduction

This expositional paper lays out the mechanics of running and interpreting
vector autoregressions. It proves no theorems. Rather, it sets out the basics
of how VAR’s ‘work’ and outlines some fundamentals regarding interpreta-
tion. For the theoretical details, see Walter Enders, Applied Econometric
Time Series, John Wiley & Sons, 1995, pp. 291–353 and earlier material as
required, Helmut Lütkepohl, Introduction to Multiple Time Series Analysis,
Springer-Verlag, 1991, pp. 9–27, 43–58, and 97–117, and James D. Hamil-
ton, Time Series Analysis, Princeton University Press, 1994, pp. 257–372
and earlier material as required.

2 The Underlying Economic Model

Consider the following economic model with two variables y1 and y2, each
of which depends on itself lagged, on the current and lagged values of the
other variable and on a iid error term:

y1(t) = v10 + v12 y2(t) + a11 y1(t−1) + a12 y2(t−2) + e1(t) (1)

y2(t) = v20 + v21 y1(t) + a21 y1(t−1) + a22 y2(t−2) + e2(t) (2)

∗This is written to help students understand how to run VARs. It is not a substitute
for reading the literature cited. I would like to thank John Maheu for coments.
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This system can be written in matrix notation as
[

y1(t)

y2(t)

]
=

[
v10

v20

]
+

[
0 v12

v21 0

] [
y1(t)

y2(t)

]

+

[
a11 a12

a21 a22

] [
y1(t−1)

y2(t−1)

]
+

[
e1(t)

e2(t)

]
(3)

or, in general matrix notation with m variables and p lags,

yt = v + A0 yt + A1 yt−1 + A2 yt−2 + A3 yt−3 + · · ·+ Ap yt−p + et (4)

where yt, v and et are m × 1 column vectors and A0, A1, A2, · · · Ap are
m×m matrices of coefficients. The vector et is a m-element vector of white
noise residuals that satisfies E{etet

′} = D, where D is a diagonal matrix. An
appropriate scaling of the elements of y would make D an identity matrix.

3 VAR estimation

Equations (1) and (2), which are called a structural VAR or a primitive
system can be solved simultaneously to yield the reduced form or standard
form of the VAR:

y1(t) = b10 + b11 y1(t−1) + b12 y2(t−2) + u1(t) (5)
y2(t) = b20 + b21 y1(t−1) + b22 y2(t−2) + u2(t) (6)

or
[

y1(t)

y2(t)

]
=

[
b10

b20

]
+

[
b11 b12

b21 b22

] [
y1(t−1)

y2(t−1)

]
+

[
u1(t)

u2(t)

]
(7)

where

b10 =
v10 + v12 v20

1− v12 v21

b11 =
v12 a11 + a21

1− v12 v21

b12 =
a12 + v12 a22

1− v12 v21

b20 =
v20 + v21 v10

1− v12 v21

b21 =
a21 + v21 a11

1− v12 v21

b22 =
v21 a12 + a22

1− v12 v21
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and

u1(t) =
1

1− v12 v21

[
e1(t) + v12 e2(t)

]

u2(t) =
1

1− v12 v21

[
v21 e1(t) + e2(t)

]
.

In the general m variable case with p lags we have

(I−A0)yt = v + A1 yt−1 + A2 yt−2 + A3 yt−3 + · · ·+ AP yt−p + et (8)

which reduces to

yt = (I−A0)−1v + (I−A0)−1A1 yt−1 + (I−A0)−1A2 yt−2

+(I−A0)−1A3 yt−3 + · · ·+ (I−A0)−1AP yt−p + (I−A0)−1et. (9)

Letting b = (I − A0)−1v, B1 = (I − A0)−1A1, B2 = (I − A0)−1A2, · · ·
etc., and ut = (I−A0)−1 et we can write the VAR in standard form in the
general case as

yt = b + B1 yt−1 + B2 yt−2 + B3 yt−3 + · · ·+ BP yt−p + ut. (10)

All this assumes, of course, that the matrix (I−A0) has an inverse. Given
that E{etet

′} = D, the variance-covariance matrix of the vector of residuals
ut equals

Ω = E{utut
′}

= E{[(I−A0)−1et][(I−A0)−1et]′}
= E{[(I−A0)−1]etet

′[(I−A0)−1]′}
= [(I−A0)−1]E{etet

′}[(I−A0)−1]′

= [(I−A0)−1]D [(I−A0)−1]′

The equations in (10) can be estimated by ordinary least squares—
because the independent variables in all equations are the same, there is
no efficiency gain by estimating these equations as a system using the seem-
ingly unrelated regression technique.

At this point it is appropriate to perform a number of tests to deter-
mine what variables should be in the VAR, the appropriate number of lags,
whether seasonal dummies should be included and, indeed, whether a VAR
is even appropriate for the research problem at hand. To focus strictly on the
mechanics at this point, however, these model-selection issues are postponed
to a later section.
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4 The Moving Average Representation

The standard form system given by (10) can be manipulated to express the
current value of each variable as a function solely of the vector of residuals
ut. This is called its moving average representation—yt is a moving average
of the current and past values of ut.

yt = C0 ut + C1 ut−1 + C2 ut−2 + · · · · · ·+ Cs ut−s + y0. (11)

where y0 is some initial value of yt.
To see how we can do this, suppose for the moment that we have only

one lag of each variable in the VAR (i.e., a VAR(1) process). Under this
assumption, (10) reduces to

yt = b + Byt−1 + ut. (12)

Lagging (12) n times, we obtain

yt−1 = b + Byt−2 + ut−1

yt−2 = b + Byt−3 + ut−2

yt−3 = b + Byt−4 + ut−3

· · ·
· · ·
· · ·
· · ·

yt−s = b + Byt−s + ut−s−1

Successive substitution into (12) yields

yt = [1 + B + B2 + B3 + B4 + · · ·+ Bs]b
+ ut + But−1 + B2 ut−2 + B3 ut−3 + · · · · · ·+ Bs ut−s

= (1−B)−1 b + ut + But−1 + B2 ut−2

+B3 ut−3 + · · · · · ·+ Bs ut−s. (13)

In terms of (11) this yields y0 = (1−B)−1 b and Ck = Bk, k = 0 · · · s.
When there are p > 1 lags, we first convert the VAR(p) system into a

VAR(1) system of the form
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


yt

yt−1

yt−2

yt−3
...
...
...

yt−p+1




=




b
0
0
0
...
...
...
0




+




B1 B2 B3 · · · BP−1 BP

Im 0 0 · · · 0 0
0 Im 0 · · · 0 0
0 0 Im · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
0 0 0 · · · Im 0







yt−1

yt−2

yt−3

yt−4
...
...
...

yt−p




+




ut

0
0
0
...
...
...
0




which can be expressed more simply as

Yt = Υ + BYt−1 + Ψt. (14)

Here, Yt, Υ, and Ψt are mp×1 column vectors and B is an mp×mp matrix.
This system is formed by taking the expression (10) as the first equation
(more correctly, set of equations) and adding the p − 1 equations (sets of
equations)

yt−1 = yt−1

yt−2 = yt−2

yt−3 = yt−3

· · ·
· · ·
· · ·

yt−p+2 = yt−p+2

yt−p+1 = yt−p+1

sequentially below.
By analogy with equation (13), the moving average representation of

(14) is seen to be

Yt = [Imp − B]−1 Υ + Ψt + BΨt−1 + B 2 Ψt−2

+B 3 Ψt−3 + · · · · · ·+ B n Ψt−s (15)

where Imp is an mp×mp identity matrix.
It turns out that the moving average representation of our original VAR(p)

system is represented by selected parts of the top m equations of the system
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(15). We can strip off these terms by operating on (15) with the m ×mp
matrix

J = [Im 0 0 0 · · · 0].

We thereby obtain (11), reproduced below,

yt = C0 ut + C1 ut−1 + C2 ut−2 + · · · · · ·+ Cs ut−s + y0. (11)

where

y0 = J Υ
C0 = JB 0J ′ = J Imp J ′

C1 = JB 1J ′ = JBJ ′

C2 = JB 2J ′

C3 = JB 3J ′

· · ·
· · ·
· · ·
Cs = JB sJ ′

To fully understand how the above procedures work it is necessary to
apply them. Consider the age-old problem of modelling the behaviour of
monetary and other aggregates over the business cycle. We focus the analysis
on conditions in the United States because that is one of the few economies
that one might treat, at considerable risk, as if it were a closed economy.
This is probably defensible because the U.S. authorities pay little attention
to the effects of their policies on the rest of the world and the country is
large enough that changes in the domestic money supply and output can
have a significant effect on world levels of these variables. Moreover, to the
extent that other countries are concerned about the effects of U.S. monetary
shocks on their exchange rates with respect to the U.S. dollar, and adjust
their monetary policies to offset these effects, their monetary conditions will
mimic those in the U.S., whose authorities will then effectively control world
monetary policy.

For reasons that will be outlined later when issues regarding the inter-
pretation of VARs are discussed, we select four variables—the detrended
logarithms of base money and real GDP, the year over year rate of inflation
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of the implicit GDP deflator, and the level of the market interest rate on 90-
day commercial paper.1 Quarterly data are used with no seasonal dummy
variables. The base money and real GDP variables are detrended to keep
our analysis of the interactions between the variables uncontaminated by the
relationships between their trends. The purpose at this point is to demon-
strate the calculations—model selection criteria will be considered later.

Perhaps the best statistical package to use for VAR analysis is RATS.2

Unfortunately, RATS is expensive and one can, with some inconvenience,
program VARs using a free platform for statistical computing called Xlisp-
Stat, which was written by Luke Tierney at the University of Minnesota.3

The VAR presented immediately below is programmed in detail in the Xlisp-
stat code file vardemcd.lsp, available from my web-site location noted in
footnote 3. While VARs can also be programmed in raw fashion in RATS, it
is quicker to use the canned RATS procedures for making these calculations.
These are contained in the file vardemcd.prg.4

1Seasonally adjusted U.S. real and nominal gross domestic product figures were ob-
tained from the International Monetary Fund publication International Financial Statis-
tics (111/99b.cvs is the mnemonic for nominal GDP and 111/99b.rzf is the mnemonic for
real GDP), and the implicit GDP deflator was obtained by dividing the nominal series by
the real series. A seasonally unadjusted base money series was obtained from DRI-Citibase
(mnemonic FZMFB) and seasonally adjusted using the SAS X11 procedure. The 90-day
commercial paper rate was obtained from the CANSIM data base (mnemonic B54412).

2For details about RATS and how to obtain it, see http://www.estima.com.
3Versions for all major operating systems can be obtained from Tierney’s web-

site at http://stat.umn.ca/̃ luke/xls/xlsinfo/node1.html. The MS-Windows ver-
sion zipfile wxls32zp.exe can also be downloaded from my web-site by anonymous
ftp at carmel.economics.utoronto.ca/pub/var along with some official documenta-
tion (xlispstatdoc.ps), a short manual that I have put together (minmanls.ps or

minmanls.pdf) and some additional functions that will be helpful for time-series anal-
ysis (newfuncs.lsp). A complete discussion of how to use the program is contained in
Luke Tierney, Lisp-Stat: An Object Oriented Environment for Statistical Computing and
Dynamic Graphics, Wiley Series in Probability and Mathematical Statistics, John Wi-
ley & Sons, 1990. LINUX versions of XlispStat are bundled with most of the popular
distributions.

4This RATS program file vardemcd.prg, along with the two data files it requires
(usm.rat, usq.rat) and other RATS program files subsequently referred to in this pa-
per, is available in the zip files ratszip.exe and ratszip.tgz from the ftp site noted
in the previous footnote. The code in vardemcd.prg performs the necessary plots to the
screen and writes them to file. When an output-filename is added to to the command line
the entire output is redirected to that file. The output from vardemcd.prg is in the file
vardemcd.out, which is also contained in the zip-files.
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5 Identification

The moving average representation (11) does not give a proper indication of
how the system responds to shocks to the individual structural equations.
The problem is that the shocks to the equations contained in the vector ut

are correlated with each other. We therefore cannot determine what the
effects on the m variables of a shock to an individual structural equation
alone would be—an observed ut will represent the combined shocks to a
number of equations. This can be seen from the fact that from (9)

ut = (I−A0)−1 et.

In order to determine the effects of a shock to an individual structural equa-
tion of the system we have to be able to solve the system for A0 and thereby
obtain (I−A0)−1. This will enable us to operate on (11) to transform the
ut−j ’s in into et−j ’s. In the process, of course, the matrices Cj will also be
transformed into a useful representation of the impulse-responses.

One way to obtain the matrix A0 is to statistically estimate the struc-
tural model (4). Were we to do this, we would not be running a VAR.
Indeed, the reason for VAR analysis is to avoid multi-equation structural
models.

The approach used to identify A0 in VAR analysis is to find the matrix
that will orthogonalize the errors—i.e., transform the ut−j ’s in into the
et−j ’s, which are uncorrelated with each other.

Given any matrix G that has an inverse, equation (11) can be rewritten

yt = C0 GG−1 ut + C1 GG−1 ut−1 + C2 GG−1 ut−2

+ · · · · · ·+ Cs GG−1 ut−s + y0. (16)

Our task is to find the G for which

G = (I−A0)−1.

Then

yt = Z0 et + Z1 et−1 + Z2 et−2

+ · · · · · ·+ Zs et−s + y0 (17)

where
Zj = Cj G

and
et−j = G−1 ut−j ==⇒ ut−j = Get−j
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5.1 Choleski Decompositions

Suppose that the matrix A0 takes the following form:



0 0 0 · · · · · · · · · · · · 0 0
a0

21 0 0 · · · · · · · · · · · · 0 0
a0

31 a0
32 0 · · · · · · · · · · · · 0 0

a0
41 a0

42 a0
43 · · · · · · · · · · · · 0 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
a0

m1 a0
m2 a0

m3 · · · · · · · · · · · · a0
m(m−1) 0




This will mean that the structural equations will take the form:

y1t = a1
11 y1(t−1)

y2t = a0
21 y1t + a1

21 y1(t−1) + a1
22 y2(t−1)

y3t = a0
31 y1t + a0

32 y2t + a1
31 y1(t−1) + a1

32 y2(t−1)

y4t = a0
41 y1t + a0

42 y2t + a0
43 y3t + a1

41 y1(t−1) + a1
42 y2(t−1)

· · · = · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · = · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · = · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

None of the current year values of y2, y3, y4, · · · · · · · · · , ym enter into the
determination of the current year level of y1. The current year level of y1

enters into the determination of the current year level of y2 and both the
current levels of y1 and y2 enter into the determination of the current level
of y3, the current levels of y1, y2 and y3 enter into the determination of the
current level of y4, and so forth. This system is a recursive system.

The standard approach to identifying the elements of A0 in VAR analysis
is to decompose the matrix of reduced form residuals

ut u′t = Ω = Get(Get)′ = Gete′t G′ = GDG′.

If we choose implicit units of measurement for the variables for which the
standard deviations of the structural errors are unity, D = I and our problem
is to choose the matrix G for which

GG′ = Ω.
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This simply involves doing a Choleski decomposition of the matrix Ω. We
thus obtain

(I− Ã0)−1 = G

and, hence,
Ã0 = I−G−1

where Ã0 is a representation of A0 after scaling of the variables to render
D = I. Using the matrix G so obtained we can obtain the Zj matrices in
equation (17) with the errors et having unit variance.

The upper-left-corner element of Z0 gives the response of y1 to a one
standard-deviation shock to the first equation in the current period. The
sum of the upper-left-corner elements of Z0 and Z1 gives the response of
y1 to a one standard-deviation shock to the first equation in the previous
period. And sum of the of the upper-left-corner elements of Z0,Z1 and Z2

gives the response of that variable to a one standard-deviation shock to the
first equation two periods previously, and so forth. The response of the
first variable to a one-standard-deviation shock to the second variable in the
current and previous periods is given by the second elements from the left
in the top rows of the Zj matrices. And the response of the second variable
to orthogonal one-standard-deviation shocks to the other variables is given
by the elements of the second rows of the Zj matrices, and so forth. These
matrices are called impulse-response functions.

It is important to emphasize that this decomposition of Ω and the
impulse-response functions that are obtained from it are critically dependent
on the ordering of the variables in the VAR. Had we ordered the variables
differently, putting the fourth variable first and the first variable fourth, for
example, the Choleski decomposition would have led to different impulse-
response functions.5 Economic theory has to be used to decide which order-
ing of the variables to use. In many cases, no such ordering is acceptable
because the theoretical system that the VAR is being used to analyse is not
recursive.

The impulse responses for our United States VAR are calculated with
the following ordering: detrended log RGDP, year over year rate of growth of
the GDP deflator, interest rate on 90-day commercial paper, and deviation
of log base money from trend. Figure 1 plots the responses of the four
variables to a first-period shock to each in turn. These responses are scaled

5This assumes that the error terms in the equations of the standard-form representation
are correllated with each other so that the off-diagonal elements of Ω are non-zero. If these
off-diagonal terms are zero, the impulse-response functions obtained from all the different
orderings will be the same.
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by (i.e., divided by) the variance of the responding variable obtained from
Ω.
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Figure 1: The responses of the four variables to first period shocks of each.

The plots in Figure 1 give superficial encouragement to those that would
interpret U.S. monetary policy as operating through changes in the level at
which the Federal Reserve sets short-term interest rates. An upward shock to
the commercial paper rate in the upper-right panel of Figure 1 tends to result
in a decline in real GDP. But its immediate effect on base money, over which
the Fed. has direct control, is to cause an increase. Moreover, the rise in the
short-term interest rate is accompanied during early subsequent periods by
an increase in the inflation rate. Inflation does not become negative until
seven quarters have elapsed. Why should tight money cause inflation in the
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short-run? Also, it is apparent from the lower right panel that an expansion
of base money, which only the Fed. can engineer, causes short-term interest
rates to rise and output to fall. And the inflation rate again eventually
becomes negative, after increasing in the early quarters. A real GDP shock,
in the upper-left panel, leads to increases in short-term interest rates and
the inflation rate, and is associated with a slight subsequent decline in base
money.

The fact that base money increases immediately in response to an upward
shock to the short-term interest rate suggests that the interest rate increase
may have occurred as a result of a positive shock to the demand for money,
with the Fed. leaning slightly against the wind by expanding base money.
We should realize, from looking at these charts, that first-period shocks to
the variables could result from a variety of alternative factors. The Federal
Reserve could reduce base money and deliberately raise short-term interest
rates or, what seems more likely, respond to interest rate changes arising
from other sources, by varying base money endogenously. It could be argued,
of course, that it is the federal funds rate that the Federal Reserve controls,
not the 90-day commercial paper rate. Substitution of the federal funds rate
for the commercial paper rate in this VAR, however, results in no appreciable
change in the impulse-responses.

As it is specified, the VAR does not permit a current-period shock to base
money to affect the short-term interest rate—the ordering of the variables
in the identification scheme has current RGDP affecting all the remaining
variables in the current period, the year-over-year inflation rate affecting
only the nominal interest rate and base money, and the nominal interest rate
affecting the base money. The current level of base money cannot affect any
of the other variables, the current level of the interest rate cannot affect the
inflation rate or output, and the current inflation rate cannot affect output.
We could reorder the variables to produce a different identification—it is
not obvious that the current identification scheme would be superior to
alternative ones. It turns out that placing base money ahead of the interest
rate in the ordering, so that base money can affect the interest rate in
the current period and the interest rate cannot affect base money, leads to
impulse responses that are indistinguishable from those in Figure 1 except
that the response of base money to an interest rate shock in the upper-right
panel shifts upward very slightly with the pattern of response remaining
virtually unchanged, and the the response of the interest rate to a base
money shock in the bottom-right panel shifts upward by a similar amount,
with the pattern of response also remaining essentially unchanged.

Conventional macroeconomic theory would postulate that a rise in the
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real interest rate should reduce output in the current period. It would
also hold that there should be little effect of current output on the current
inflation rate—the latter would be expected to change only with wage and
price adjustments taking more than one quarter to respond. Conventional
theory would also lead us to expect both that the short-term interest rate
should respond to current changes in base money, current output, and the
current price level (i.e., the current and past levels of the inflation rate),
and that the Fed. will adjust base money in response to current period
information about the level of output (actually employment), the short-
term interest rate, and the rate of inflation. It may not observe the inflation
rate and the level of output directly (because current estimates of these
variables are subject to substantial later revision) but it will observe other
contemporaneous variables that will be indicative of the current realizations
of output and inflation.

We might visualize the current-period relationships between real GDP
(call it ot) the current inflation rate (call it τt), the current real interest rate
(call it rt) and the current level of base (or high-powered) money (call it ht),
given the predetermined past levels of these variables as follows:

ot = αr rt (18)
rt = αh ht + αo ot + ατ τt (19)
ht = γr rt + γo ot + γτ τt (20)

where we would expect αr, αh and ατ to be negative and αo to be positive.
Equation (18) is the traditional real goods market equilibrium equation, (19)
a rearrangement of the demand function for money, and (20) is the Fed.’s
reaction function.

5.2 Structural VARs

The problem, of course, is that the system we are trying to model may not
be recursive, making a Choleski decomposition inappropriate. Sims6 and
Bernanke7 model the innovations using economic analysis that postulates
non-recursive relationships between the variables.

As in the Choleski decomposition, the object is to extract the coefficients
of G from the variance-covariation matrix of the reduced-form system Ω.

6“Chrisopher Simms, “Are Forecasting Models Usable for Policy Analysis?” Federal
Reserve Bank of Minneapolis Quarterly Review (Winter 1986), 3–16.

7Ben Bernanke, “Alternative Explanations of Money-Income Correlation,” Carnegie-
Rochester Conference Series on Public Policy 25 (1986), 49–100.
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The latter matrix is symmetric with the variances of the shocks along the
diagonal and the covariances in the off-diagonal elements. It thus contains
only (m2 + m)/2 distinct elements. We are therefore able to identify the
same number of elements of (I−A0)−1 in G. This is precisely the number
of elements identified by the Choleski decomposition. In a structural VAR,
however, we can place the elements we want to identify anywhere in the
m×m grid in accordance with the dictates of economic theory.

Bernanke’s paper provides us with a method of exact identification. To
keep the argument simple, let us assume that m = 4, as in our U.S. example.
We can represent Ω as

Ω = E{utu′t} =
∑

utu′t
n

= M (21)

where n is the number of observations. Then, from (10) we have

(I−A0)Ω(I−A0)′ = (I−A0)M(I−A0)′ = D. (22)

Since D is diagonal, all the off-diagonal elements of the matrix on the left-
hand side must be zero. We can take advantage of this fact to solve for the
elements of A0.

Under the Choleski decomposition the matrix A0 was configured as fol-
lows, according to the way the variables were ranked.




0 0 0 0
a21 0 0 0
a31 a32 0 0
a41 a42 a43 0


 =

o τ r h

o 0 0 0 0
τ a21 0 0 0
r a31 a32 0 0
h a41 a42 a43 0

The decomposition identifies six coefficients plus the variances of the four
equations. Equations (18) through (20) above suggest the configuration

o τ r h

o 0 0 a13 0
τ 0 0 0 0
r a31 a32 0 a34

h a41 a42 a43 0

where αr = a13, αh = a34, αo = a31, ατ = a32, γo = a41, γτ = a42 and
γr = a43. This configuration attempts to estimate one too many parameters
and, even if it did not, could not be identified because the last two equations
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are structurally identical, differing only according to which variable is put
on the left-hand-side. We need to abandon one coefficient from either the
third or fourth equation, imposing an additional restriction on the system
by inserting a zero in its place. The zeros in the matrix represent restrictions
imposed on the system while the aij represent coefficients to be identified.
As it stands, the system is underidentified because there is too little in-
formation to identify all seven coefficients. Moreover, there is no basis for
distinguishing the magnitudes of the parameters in the third equation from
the magnitudes of the corresponding parameters in the fourth equation.

It would seem reasonable to replace the parameter a42 with a zero on
the grounds that the authorities are likely to base their view of the current
equilibrium inflation rate on the history of past inflation and pay little at-
tention to current within-period inflation estimates, while holders of money
will base their decision on how much money to hold based on a ‘feel’ for the
current situation that will be influenced by price movements experienced in
the current period. If one wanted to assume the reverse, that the authorities
pay attention to current period inflation information while the public does
not, then the third equation would be interpreted as the authorities reaction
function and the fourth equation as the private sector’s demand for money
function. Accordingly, we arrive at the following configuration of A0:




0 0 a13 0
0 0 0 0

a31 a32 0 a34

a41 0 a43 0




Letting sij be the ij-th element of M and expanding (I−A0)M (I−A0)′,
we obtain



1 0 −a13 0
0 1 0 0

−a31 −a32 1 −a34

−a41 0 −a43 1







s11 s21 s31 s41

s21 s22 s32 s42

s31 s32 s33 s43

s41 a42 s43 s44







1 0 −a31 −a41

0 1 −a32 0
−a13 0 1 −a43

0 0 −a34 1




=




g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

g41 g42 g43 g44







1 0 −a31 −a41

0 1 −a32 0
−a13 0 1 −a43

0 0 −a34 1




where
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g11 = s11 − a13s31

g12 = s21 − a13s32

g13 = s31 − a13s33

g14 = s41 − a13s43

g21 = s21

g22 = s22

g23 = s32

g24 = s42

g31 = −a31s11 − a32s21 + s31 − a34s41

g32 = −a31s21 − a32s22 + s32 − a34s42

g33 = −a31s31 − a32s32 + s33 − a34s43

g34 = −a31s41 − a32s42 + s43 − a34s44

g41 = −a41s11 − a43s31 + s41

g42 = −a41s21 − a43s32 + s42

g43 = −a41s31 − a43s33 + s43

g44 = −a41s41 − a43s43 + s44

Multiplying together the above two matrices, we then obtain

D =




d11 d12 d13 d14

d21 d22 d23 d24

d31 d32 d33 d34

d41 d42 d43 d44




where

d11 = g11 − g13a13

= s11 − a31s31 − a13s31 + a2
13s33 (23)

d22 = g22 = s22 (24)
d33 = − a31g31 − a32g32 + g33 − g34a34

= a2
31s11 + a31a32s21 − a31s31 + a31a34s41

+ a32a31s21 + a2
32s22 − a32s32 + a32a34s42

− a31s31 − a32s32 + s33 − a34s43 + a34a31s41

+ a34a32s42 − a34s43 + a2
34s44 (25)
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d44 = − a41g41 − a43g43 + g44

= + a2
41s11 + a41a43s31 − a41s41 + a43a41s31 + a2

43s33

− a43s43 − a41s41 − a43s43 + s44 (26)
d12 = d21 = g12

= s21 − a13s32 = 0 (27)
d13 = d31 = − a31g11 − a32g12 + g13 − a34g14

= − a31s11 + a31a13s31 − a32s21 + a32a13s32

+ s31 − a13s33 − a34s41 + a34a13s43 = 0 (28)
d14 = d41 = −a41g11 − a43g13 + g14

= − a41s11 + a41a13s31 − a43s31 + a43a13s33

+ s41 − a13s43 = 0 (29)
d23 = d32 = − a31g21 − a32g22 + g23 − a34g24

= −a31s21 − a32s22 + s32 − a34s42 = 0 (30)
d24 = d42 = − a41g21 − a43g23 + g24

= − a41s21 − a43s32 + s42 = 0 (31)
d34 = d43 = − a41g31 − a43g33 + g34

= a41a31s11 + a41a32s21 − a41s31 + a41a34s41 + a43a31s31

+ a43a32s32 − a43s33 + a43a34s43 − a31s41

− a32s42 + s43 − a34s44 = 0 (32)

The last six of these equations, (27) through (32) can be solved for a21,
a23, a31, a41, a42 and a43. This gives us an estimate of the matrix A0 and,
by matrix substitution, I − A0. These solutions for the aij can then be
plugged into equations (23) through (26) to obtain the diagonal elements
d11, d22, d33 and d44 and, hence, the matrix D. The actual calculations for
our U.S. VAR can be found in the XlispStat code file vardemst.lsp.8

Calculation of (I−A0) by itself is insufficient to obtain the matrix G
and the impulse-response functions. The matrix (I−A0) has to be scaled to
reduce D to an identity matrix to ensure that the orthogonalized residuals
have unit variance. Thus,

G = (I−A0)−1 D1/2

= (I− Ã0)−1 (33)
8This file differs from vardemcd.lsp only in that an additional function,

structural-decomposition, is added to the code file and called in the calculations instead
of the previously used choleski-decomposition function.
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where Ã0 is the representation of A0 for which the et have unit variance.
Structural VARS can be calculated in RATS using code shown in the

file vardemst.prg.9 The procedure first performs the above calculations for
a just-identified structural VAR using our U.S. data. The resulting matrix
of coefficients can then be fed to the RATS procedure in the accompany-
ing file bernanke.src (also contained in the above noted zip files) which
will calculate confidence intervals for the parameters. Alternatively, within
vardemst.prg one can rely exclusively on the RATS bernanke procedure
by simply feeding it a pattern matrix containing ones to represent the co-
efficients that are to be determined and zeros elsewhere. For exact identifi-
cation there should be (m2 + m)/2 ones and (m2 −m)/2 zero restrictions.
The pattern matrix for our U.S. VAR is




1 0 1 0
0 1 0 0
1 1 1 1
1 0 1 1




RATS then attempts to calculate the coefficients of I−A0 and compute
standard errors for these coefficients. To do this it maximizes a likelihood
function through a process of iteration. Quite often it is unable to obtain
a maximum, in which case it indicates that convergence has not occurred
and fails to calculate the standard errors of some of the coefficients. In
these cases it is necessary to prompt RATS by passing it an input matrix of
guesses as to levels of the coefficients at which it should begin iteration. For
a just-identified system we would pass it the matrix of values previously cal-
culated. To estimate an over-determined system we change the appropriate
ones in the pattern matrix to zeros. If RATS cannot successfully calcu-
late the coefficients we could try feeding it the matrix for the just-identified
system after setting the appropriate element or elements equal to zero.

The advantage of using RATS for just-identified structural VARs is that
it will calculate standard errors of the coefficients. Also, in the case of over-
identified systems (i.e., ones with more than (m2 −m)/2 zero restrictions)
RATS performs a likelihood ratio test of whether the overidentifying restric-
tions are statistically significant.10 Only point estimates of the coefficients
can be calculated using our XlispStat code.

9This file and the corresponding output file vardemst.out are contained in above noted
zip-files ratszip.exe and ratszip.tgz obtainable from my web-site.

10The most recent versions of RATS contain a function called cvmodel which can be
used instead of the procedure bernanke.src and makes the above calculation of the just-
identified system unnecessary. For purposes of learning what is happening, the approach
outlined here is best. To repeatedly run many different structural VARs in RATS one
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The impulse-responses for our U.S. data using the above just-identified
structural VAR are plotted in Figure 2. They appear to be much the same
as those obtained from the earlier choleski decomposition.

5.3 Blanchard-Quah Decompositions

For certain types of problems it is useful to decompose Ω by a method
developed by Blanchard and Quah.11 Their method assumes a two vari-
able VAR with two equations and two types of shock, real and nominal,
that are statistically independent of each other and affect both equations.
Here we take the two variables to be the real and nominal exchange rates. A
Blanchard-Quah decomposition identifies the real and nominal shocks under
the assumption that one type of shock, in our case the nominal shock, has a
temporary but no permanent effect on the level of one of the variables, in our
case the real exchange rate, and a permanent effect on the level of the other
variable, the nominal exchange rate. The other type of shock, a real shock,
has permanent effects on the levels of both variables. Neither the real nor
the nominal shocks have permanent long-run effects on the first differences
of either of the variables. Decomposition is accomplished by imposing one
restriction on the two-variable VAR—the restriction, in our case, that nom-
inal shocks can have no permanent effects on the level of the real exchange
rate. In using the Blanchard-Quah method, our interest is directed more
toward decomposition of the standard-form errors into orthogonal structural
errors than to obtaining the elements of the matrix A0.

We are still interested in the matrix G which will reduce the moving
average representation (16) to (17) and in particular enable us to obain the
orthogonal errors

et−j = G−1ut−j .

Now, however, the identifying restriction is that the sum of the upper left
corner elements of the (now 2 × 2) matrices Z0 = C0G, Z1 = C1G, Z2 =
C2G, · · · · · · , Zn = CnG, be equal to zero. This assumes that the real
exchange rate equation is the first equation and that the nominal shock is
the first shock. Had we wanted to assume that the nominal shock is the
second shock the identifying restriction would have been that the sum of
the upper right corner elements of the above matrices is zero. There is no
requirement that the nominal shock be identified with the nominal exchange

would benefit from using the more modern approach.
11Olivier Jean Blanchard and Danny Quah, “The Dynamic Effects of Aggregate Demand

and Supply Disturbances,” American Economic Review, 79, September 1989, 655–73.
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Figure 2: The responses of the four variables to first period shocks of each
under a structural-decomposition of Ω.

20



rate variable. The statistical results will be the same whether the nominal
shock is the first or the second shock.

The sum of the matrices C0, C1, C2, · · · · · · , etc. can be obtained
by calculating the sum of the corresponding elements in equation (15) using
the relationship

S = Imp + B + B 2 + B 3 + B 4 + · · · · · · · · · · · ·
= (Imp − B)−1. (34)

and stripping off the upper-left 2 × 2 matrix of elements from S using the
(now 2×2p) matrix J used to obtain equation (11) from equation (17). We
thus obtain

S = JSJ ′. (35)

The Blanchard-Quah condition is that the upper left element of the 2 × 2
matrix SG (which is the sum of the upper-left elements of the Cj matrices
after each has been post-multiplied by G) be zero.

In addition, the G matrix must have the property GG′ = Ω. A Choleski
decomposition of Ω produces a matrix with this property, as does the trans-
formation of (I−A)−1 by (33) we made in the structural VAR calculations.
It turns out that any orthogonal transformation of a matrix obtained from a
Choleski decomposition will also possess this property. The procedure here
is therefore to make a Choleski decomposition of Ω to obtain some matrix
E which we can then transform using some orthogonal matrix P to im-
pose upon it the Blanchard-Quah condition and thereby obtain the desired
matrix G. The two requirements are that

GG′ = EP(EP)′

= EPP′E′

= EE′ = Ω (36)

since orthogonality of P implies PP′ = I, and that the upper left corner
element of the (2× 2) matrix

SG = SEP = SEP = HP (37)

equal zero, where H = SE. Expanding the latter condition we have12

h11p11 + h12p21 = 0. (38)
12Were we to designate the second shock as the nominal shock, this condition would

become
h11p21 + h12p22 = 0.
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From the fact that PP′ = I we obtain
[

p 2
11 + p 2

12 p11p21 + p12p22

p21p11 + p22p12 p 2
21 + p 2

22

]
=

[
1 0
0 1

]

which yields the three conditions

p 2
11 + p 2

12 = 1 (39)
p11p21 = − p12p22 (40)

p 2
21 + p 2

22 = 1 (41)

Given the values of S and E and H, calculated from the data, the four
equations (38) through (41) solve for the four elements of P. The latter
matrix can then be multiplied by E to obtain G. Using this matrix, the
impulse-response functions can be calculated from (17).13

These calculations are illustrated using monthly data on the Canada/U.S.
real and nominal exchange rates. Following Enders, the first differences of
the logarithms of the two series are taken.14 A careful programming of calcu-
lations in RATS from the ground up are presented in the file vardembq.prg
while calculations exclusively based on RATS functions are undertaken in
the file bqvarcau.prg. These files, along with the corresponding output
files, vardembq.out and bqvarcau.out and the RATS data file vardem.rat
which both programs use, are contained in ratszip.exe and ratszip.tgz.15

The impulse-responses are plotted later on in Figure 3, where confidence in-
tervals are also shown. Nominal shocks of unit variance have very small

13In calculating the elements of the matrix P it is useful to rearrange (38) to obtain

p11 = −h12

h11
p21 = w p21

and then square both sides of this equation and substitute the resulting expression for p2
11

into the square of equation (40). From there it can be shown that

p12 = p21 =

√
1

1 + w2
,

which will be positive regardless of the sign of w. Multiplication of p21 by w then yields
p11. Using these results along with (40), it can then be shown that

p22 = −p11.

14See page 338 of the book cited in the Introduction.
15The code in bqvarcau.prg will work only with version 5 of RATS or higher, since it

utilizes improvements made in that version. The code and results in vardembq.out should
be in large part understandable to readers unfamiliar with the RATS program.
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effects on the real exchange rate and effects on the nominal exchange rate
about half as big as the effects of real shocks.

6 Forecast Error Variance Decomposition

One way to determine how important the different exogenous shocks are in
explaining the dependent variables is to calculate the fractions of the forecast
error variance of these variables attributable to the respective orthogonal
shocks. The variance of any given dependent variable in response to the
orthogonal shocks to it can be thought of as the variance of the errors in
forecasting it using (17) because without the shocks we would forecast the
variable to remain unchanged. The central question is: What fractions of
these forecast errors are due to the individual shocks?

Consider the forecast error for period t obtained from (17) which is
reproduced below.

yt = Z0 et + Z1 et−1 + Z2 et−2

+ · · · · · ·+ Zn et−n + y0 (17)

The vector of one step ahead forecast errors is given by Z0 et. Consider
the simple case where there are only two equations. Letting z0

ij be the ij-th
element of Z0, we can express the current-period forecast errors as

y1t = z0
11e1t + z0

12e2t

y2t = z0
21e1t + z0

22e2t

from which it follows that

Var{y1} = (z0
11)

2Var{e1}+ (z0
12)

2Var{e2} = (z0
11)

2 + (z0
12)

2

Var{y2} = (z0
21)

2Var{e1}+ (z0
22)

2Var{e2} = (z0
21)

2 + (z0
22)

2

since e1 and e2 are independent shocks with unit variance. The standard
errors of y1 and y2 are therefore

Std{y1} =
√

(z0
11)2 + (z0

12)2 and Std{y2} =
√

(z0
21)2 + (z0

22)2

and the fraction of the error variance attributable to the shock to the first
and second equations are, respectively,16

16In a Blanchard-Quah decomposition the shocks are simply labelled 1 and 2 and are
not visualized as ‘tied’ to any particular equation. Nevertheless, the calculations are the
same.
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(z0
11)

2

(z0
11)2 + (z0

12)2
and

(z0
12)

2

(z0
11)2 + (z0

12)2
.

Now consider the two step ahead forecast. In this case the forecast errors
in response to the two period’s shocks are

y1t = z0
11e1t + z0

12e2t + z1
11e1(t−1) + z1

12e2(t−1)

y2t = z0
21e1t + z0

22e2t + z1
21e1(t−1) + z1

22e2(t−1)

where z1
ij is the ij-th element of Z1. The variances of the respective two-

period forecast errors are

(z0
11)

2 + (z0
12)

2 + (z1
11)

2 + (z1
12)

2

and
(z0

21)
2 + (z0

22)
2 + (z0

21)
2 + (z0

22)
2

and the standard errors of the two-period forecasts are
√

(z0
11)2 + (z0

12)2 + (z1
11)2 + (z1

12)2

and √
(z0

21)2 + (z0
22)2 + (z0

21)2 + (z0
22)2.

The fraction of the two-step ahead forecast error variance of y1 attributable
to the shock to the first shock is

(z0
11)

2 + (z1
11)

2

(z0
11)2 + (z0

12)2 + (z1
11)2 + (z1

12)2

and the fraction attributable to the second shock is

(z0
12)

2 + (z1
12)

2

(z0
11)2 + (z0

12)2 + (z1
11)2 + (z1

12)2

And the fractions of the two-step ahead forecast error variance of y2 at-
tributable to the respective shocks are

(z0
21)

2 + (z1
21)

2

(z0
21)2 + (z0

22)2 + (z1
21)2 + (z1

22)2

and
(z0

22)
2 + (z1

22)
2

(z0
21)2 + (z0

22)2 + (z1
21)2 + (z1

22)2
.
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The derivations of the forecast error variances and the fractions attributable
to the two shocks for forecasts greater than two-steps ahead are straight-
forward extensions of the calculations above.

The forecast-error variance decompositions for the Blanchard-Quah VAR
in vardembq.prg are presented in Table 1. It is evident that over 93% of
the forecast-error variance of the Canada/U.S. real exchange rate can be
attributed to real shocks. And nominal shocks account for less than 16% of
the forecast-error variance of the Canada/U.S. nominal exchange rate.

7 Obtaining Confidence Intervals

There are a number of ways to obtain confidence intervals for the impulse-
responses and the forecast-error variance decompositions and there is con-
troversy about which way is best.17 A bootstrap method is adopted here.18.
The vector of residuals ut from the standard-form estimation equation (10)
can be viewed as a random draw from the population of true residuals.
By repeated sampling with replacement from these residuals we can obtain
additional samples from that population. These samples differ from each
other not only in the ordering of the residuals but in the number of times
individual residuals appear. Starting with the initial lagged values of the
vector yt, and using the vector of coefficients obtained from our initial stan-
dard form estimation, we can reconstruct new series of yt for each sample of
residuals drawn. Then using each of these new series in turn we can rerun
the VAR and calculate new impulse-responses and forecast-error variance
decompositions that can be viewed as draws from the true data generat-
ing process for the series. The 5th and 95th percentiles of the resulting
set of impulse-responses and forecast-error variance decompositions for each
step can then be viewed as the lower and upper 90% confidence interval
at that step. The confidence intervals calculated for our Blanchard-Quah
Canada/U.S. real exchange rate VAR are shown in Figure 3. The actual
calculations are outlined in the RATS program file bqvarcau.prg. Not sur-
prisingly, the confidence bounds on the response of the real exchange rate
to the nominal shock in our Blanchard-Quah VAR bracket zero.

17Enders, in the book cited above, does not even discuss the issue.
18For a discussion of bootstrap methods and their application to the problem at hand,

see Bradley Efron and Robert J. Tibshirani, An Introduction to the Bootstrap, Chapman
and Hall/CRC, 1998, David E. Runkle, “Vector Autoregressions and Reality,” Journal
of Business and Economic Statistics, Vol. 5, No. 4 (October), 1987, and Hongyi Lee and
G. S. Maddala, “Bootstrapping Time Series Models,” Econometric Reviews, Vol. 15, No. 2,
pp. 115-158, 1996.
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Table 1: Forecast-Error-Variance Decomposition for the
Blanchard-Quah VAR in vardembq.prg

Step / Real Exchange Rate Nom. Exchange Rate
Shock Nominal Real Nominal Real

1 0.484 99.516 13.416 86.584
2 1.106 98.894 14.154 85.846
3 1.962 98.038 14.302 85.698
4 2.310 97.690 14.851 85.149
5 2.763 97.237 15.484 84.516
6 3.113 96.887 15.709 84.291
7 3.150 96.850 15.705 84.295
8 3.341 96.659 15.701 84.299
9 3.695 96.305 15.519 84.481

10 4.034 95.966 15.497 84.503
11 4.025 95.975 15.188 84.812
12 3.969 96.031 14.828 85.172
13 4.203 95.797 14.838 85.162
14 4.236 95.764 14.553 85.447
15 4.253 95.747 14.554 85.446
16 4.309 95.691 14.552 85.448
17 4.298 95.702 14.648 85.352
18 5.051 94.949 15.208 84.792
19 5.000 95.000 15.030 84.970
20 5.375 94.625 15.486 84.514
21 5.376 94.624 15.456 84.544
22 5.837 94.163 15.573 84.427
23 5.937 94.063 15.591 84.409
24 5.934 94.066 15.589 84.411
25 6.036 93.964 15.591 84.409
26 6.030 93.970 15.588 84.412
27 5.994 94.006 15.505 84.495
28 5.993 94.007 15.499 84.501
29 6.000 94.000 15.489 84.511
30 6.027 93.973 15.519 84.481
31 6.105 93.895 15.575 84.425
32 6.175 93.825 15.597 84.403
33 6.177 93.823 15.614 84.386
34 6.179 93.821 15.636 84.364
35 6.229 93.771 15.752 84.248
36 6.262 93.738 15.786 84.214
37 6.310 93.690 15.788 84.212
38 6.360 93.640 15.806 84.194
39 6.360 93.640 15.804 84.196
40 6.412 93.588 15.828 84.172
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Figure 3: Blanchard-Quah VAR impulse-responses and forecast-error-
variance decompositions for Canada’s real and nominal exchange rates with
respect to the U.S. dollar. The confidence intervals are 90 percent.
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8 Historical Decompositions

It is often useful to decompose the actual movements in a series into the
movements that occurred on the basis of each individual shock. For example,
in our Blanchard-Quah VAR above it is important to be able to determine
what movements in the real exchange rate occurred as a result of nominal
shocks and what movements occurred as a result of real shocks, and similarly
for the nominal exchange rate. First we obtain the actual orthogonalized
shocks from the reduced-form residuals using the relationship

et = G−1ut.

Then the effect of shock one (the nominal shock) in the first period on the
real exchange rate in that period is

z0
11 e11

and the effect of that shock on the nominal exchange rate in that period is

z0
21 e11,

where eij gives the value of the i-th shock in the j-th period. Similarly,
the effects of shock two (the real shock) in the first period on the real and
nominal exchange rates are

z0
12 e21 and z0

22 e21.

In the next period, the effect of the nominal shock on the real exchange rate
will be

z0
11 e12 + z1

11 e11

and in the third period the influence of the nominal shock will be

z0
11 e13 + z1

11 e12 + z2
11 e11.

The influences of the nominal shock on the nominal exchange rate and the
real shocks on the real and nominal exchange rate can be layed out cor-
respondingly. If we have calculated 40-period responses, as we did in the
above example, there will be 40 terms in the expressions determining the
response of each variable in the period 40 and all subsequent periods to each
particular shock.

The calculations above give simply the influences of the real and nominal
shocks on the change in each series in each period. To obtain the effects of
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the shocks on the levels of the real and nominal exchange rates we have
to add, in turn, each period’s change to the level at the beginning of that
period.19

Since the data were first-differenced prior to estimation in our real and
nominal exchange rate VAR, the responses calculated above will contain no
trend, contrary to what is observed in the undifferenced series. It is therefore
appropriate when plotting the historical decompositions against the levels
of the actual series to appropriately assign the trends in the actual series to
the decomposed series. Since the Blanchard-Quah decomposition assumed
that nominal shocks have no long-run influence on the level of the real
exchange rate, the trend in this variable must be assigned entirely to the real
shock. This can be accomplished by adding the mean of the differenced real
exchange rate series to each year’s calculation before adding the incremental
effect of current and past shocks in that period to the level calculated for
the previous period. In decomposing the nominal exchange rate, it would
seem reasonable to assign the excess of the trend of the nominal exchange
rate (mean of the differenced nominal exchange rate series) over the trend
of the real exchange rate (mean of the differenced real exchange rate series)
to the nominal shock. This can be accomplished by adding the excess of the
mean difference of the actual nominal exchange rate series over the mean
difference of the actual real exchange rate series to the incremental change
in the nominal exchange rate resulting from current and previous shocks
before adding that incremental change to the level obtained for the previous
period. The historical decompositions are calculated in the RATS program
file bqvarcau.prg and the results are plotted in Figure 4. It is clear that
nominal shocks had very little influence on the real exchange rate and a
modest though not predominant influence on the nominal exchange rate.
Real shocks explain all the turning points and major variations in both
series.

19In the example here is is also useful to eventually take the antilogs of the decomposed
series.
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Figure 4: Blanchard-Quah-VAR historical decompositions of Canada’s real
and nominal exchange rates with respect to the U.S. dollar into the move-
ments attributable to real and money shocks.
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9 Choosing Lag-Length and Model Specification

In the examples above we set the lag-length arbitrarily, focussing entirely on
the calculations involved in running a VAR. Choosing the lag-length is an
important consideration, and even before that we must decide what variables
to include in the VAR. Deciding what variables to include is fundamentally
a matter of economics, the main considerations being the question that
is being asked and the economic theory being used and tested. Within
this framework, the causality and exogeniety of the variables and groups of
variables has to be investigated.

We say that a particular variable, say variable two, Granger causes an-
other variable, say variable three, if the coefficients of the lagged values of
variable two in the variable three regression (the regression having variable
three as the dependent variable) are statistically significant. This in effect
says that variable two affects variable three in subsequent periods—or pre-
cedes it. A simple F -test for Granger causality can be used. We simply run
the regression in question with the lagged values of variable two and then
again without them. We then obtain

F =

∑
(uR

i(t))
2 −∑

(ui(t))2

v
/

∑
(ui(t))2

df

where the uR
i(t) are the residuals from the restricted regression—the one

with the lagged values of variable two omitted—and the ui(t) are the resid-
uals from the unrestricted regression where all the lags are included. The
number of restrictions imposed (i.e., the number of lagged variables omitted
in calculating the restricted regression) is equal to v, and df is the number of
degrees of freedom in the unrestricted regression. The latter is equal to the
total number of observations minus the number of variables on the right-
hand side of that regression including the constant term—this will equal
(mp + 1) where m is the number of variables in the VAR and p is the num-
ber of lags of those variables. This F -statistic can then be compared with
the appropriate critical value of F (v, df).

In addition to performing the test for the lagged values of all the other
variables in each equation we can use the same test to determine whether
the dependent variables in each of the regression are significantly related to
their own lagged values—we are interested in whether the current values of
a variable are dependent on its own past as well as on the past values of the
other variables. It may be that a particular variable is statistically related
to its own past values but not to the past values of the other variables.
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Granger causality is a weaker condition than exogeneity. A variable is
exogenous with respect to another if its current and past values do not affect
the other variable. It Granger causes the other variable if its past values
affect the current level of that variable. The fact that a variable does not
Granger cause another does not necessarily imply that it is exogenous with
respect to the other variable—their current-period values may be related.

In deciding whether to include a particular variable in the VAR it may
be useful to determine whether that variable Granger causes any of or any
combination of other variables in the system. To test whether the variable
x is causally related to either or both of variables y and z we run the system
with the lags of x included in the y and z equations and then again with the
lags of x omitted from these equations. We then do a likelihood-ratio test
to see if removing the lags of x has a statistically significant effect on the
two-equation system. This test is customarly called a block-exogeneity test,
although the term block-causality would be a more appropriate description.

Likelihood ratio tests use the fact that maximizing the likelihood of
observing a sample is equivalent to minimizing the residual sum of squares
of the regression(s).20 The likelihood ratio is

λ =
[
RRSS

URSS

]−n/2

where RRSS is the residuals sum of squares of the restricted model (with
the relevant lags omitted) and URSS is the residual sum of squares of the
unrestricted model and n is the number of observations. If the restriction
has no effect we would expect λ to be unity. Otherwise, we would expect
it to be less than unity. The question is whether the observed λ is less
than unity by an amount greater than could reasonably be accounted for
on the basis of random chance—i.e., whether the restriction is statistically
significant. To apply the test, we take the logarithms to obtain

−2logeλ = n(logeΣR − logeΣU ).

General applications of the test use the statistic

n(log|ΣR| − log|ΣU |),

where log|ΣR| and log|ΣU | are the natural logarithms of the determinants
of the variance-covariance matrices of the residuals of the restricted and

20See G. S. Maddala, Introduction to Econometrics, Macmillan, 1988, pp. 83–86, for a
simple discussion of the statistical foundations of these tests. See also Enders, pp. 312–316.
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unrestricted systems. Given the sample sizes found in economic analysis,
Sims recommends using a modified form of this statistic

(n− c)(log|ΣR| − log|ΣU |) (39)

where c is the number of parameters estimated in each equation of the un-
restricted system.21 When there are p lags and m variables with a constant
term,

c = pm + 1.

This statistic is distributed according to the χ2 distribution with degrees
of freedom equal to the number of restrictions in the system. In the case
where the restriction involves eliminating v lags from each of two equations
the degrees of freedom would be

df = 2v.

The question of whether to include seasonal dummies when using quar-
terly or monthly data can be resolved using this same approach. Run the
all the regressions in the system with seasonal dummies included and then
impose the restriction of no seasonality by running the same regressions
without them. Then test the restriction using (39).

Likelihood-ratio tests are one of three general methods of determining
the appropriate lag length. Run the system of equations first with long lags
and then repeat with progressively shorter lags. Then perform likelihood
ratio tests of the restriction of leaving out lags in comparing each set of lag
lengths, dropping lags where they are statistically insignificant.

Two additional criteria that are used to determine the appropriate lag
length, and also seasonality, are the Akaike and Schwartz-Bayesian criteria.
To apply these criteria calculate the following statistics for the system for
each lag length (and with and without seasonal dummies)

AIC = log|Σ|+ 2 g/n (40)
SBC = log|Σ|+ g log(n)/n (41)

where |Σ| is the determinant of the variance covariance matrix of the resid-
uals of the system, g is the total number of parameters estimated in all
equations and n is the number of observations. Thus, if we have m equa-
tions and p lags and an intercept in each equation,

g = m2p + m.

21Christopher Sims, “Macroeconomics and Reality,” Econometrica, 48, 1980, 1–49.
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Select the model with the lowest AIC or SBC value. The same sample
period must be used for all models being compared. If in doubt using any
of these criteria for choosing optimal lag length one should err on the side
of including too many lags although close attention must be paid to the
number of degrees of freedom remaining for estimation.

All of the above calculations assume that the same number of lags are
included for all variables in all equations. This is normally done to ensure
symmetry of the system and permit ordinary-least-squares estimation. If one
wishes to have different numbers of lags in different equations the seemingly
unrelated regression technique must be used for estimation.

Table 2: Tests for Lag-Length and Seasonality

Likelihood Ratio Test: P-Value

8 vs. 12 Lags 0.15340089
6 vs. 8 Lags 0.65553269
4 vs. 8 Lags 0.00002649

Seasonal with 4 Lags 0.83247273

AIC SBC

12 Lags -21.9255 -17.9382
8 Lags -22.0255 -19.3402
6 Lags -22.2128 -20.1785
4 Lags -22.0337 -20.6504

Seasonal with 4 Lags -21.0169 -20.3010

Table 2 presents the results of the above tests for our U.S. VAR. These
results are produced by the RATS code file vardemll.prg and are shown in
the resulting output file vardemll.out. The likelihood-ratio test strongly
suggests four lags while the Akaike Information criterion (AIC) suggests
six and the Schwartz-Bayesian criterion (SBC) suggests four. Because the
complete lack of ambiguity of the likeliood-ratio test, 4 lags were chosen in
the preceding analysis. The likelihood ratio test for seasonality indicates
that the seasonal dummies would be statistically significant at only at the
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83% level, confirming our decision not to include seasonal dummies. With
4 lags, the AIC and SBC are both smaller when the seasonal dummies are
not included.

Table 3: Model Selection Tests

Equation – P-Values
Variable

Other Real Inflation Interest Base
Three GDP Rate Rate Money

Real GDP 0.0304732 0.0000000 0.5793367 0.0001040 0.4767769
Inflation Rate 0.9427256 0.0375855 0.0000000 0.0223877 0.1522231
Interest Rate 0.0676488 0.0000384 0.0355060 0.0000000 0.0183484
Base Money 0.4770359 0.8504577 0.7292598 0.8798984 0.0000000

AIC SBC
Included Excluded Included Excluded

Real GDP -22.1960 -21.8995 -20.4646 -20.5755
Inflation Rate -11.2911 -11.1821 -9.5598 -9.8581
Interest Rate -13.3325 -13.0629 -11.6012 -11.7389
Base Money -21.9113 -21.7288 -20.1769 -20.4848

The results of model-selection tests for our U.S. VAR are presented in
Table 3.22. The P-values in the column labelled ‘other three’ indicate that
only the lagged values of the real GDP variable are statistically significant
as a block in the overall model, and then at only the 10% level. The AIC
suggests that the block lags of all the variables belong in the model while the
SBC suggests the exact opposite—that none of them do. The inflation rate,
the interest rate and the lagged values of real GDP itself are statistically
significant in the real GDP equation. The interest rate is the only variable
other than the inflation rate itself whose lagged values are significant in the
inflation rate equation. The lagged values of everything but base money are
statistically significant in the interest rate equation. And the interest rate

22These are produced by the RATS code file vardemll.prg and are contained in the
resulting output file vardemll.out
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is the only variable, other than base money itself, that is significant in the
base money equation.

10 Some Concluding Issues

Economic theory is the basis for choosing the variables in the U.S. VAR. The
fact that the lagged values of the variables are not statistically significant in
some equations suggests that a ‘near VAR’, where different numbers of lags
are included in the different equations, might be worth constructing. In this
case the standard-form model would have to be estimated using seemingly-
unrelated-regression analysis.

Also, preliminary results such as those in Table 3 provide us with some
insight into the possible nature of the relationships between the variables
present in the real world. For example, it is interesting that lagged values of
base money appear to have no effect on the interest rate variable, but lagged
values of the interest rate variable affect the current level of the monetary
base. This, together with the fact that lagged levels of the interest rate are
significantly related to the current levels of all the other variables, provides a
basis for contemporary formulations that leave the base money variable out
of the VAR, treating the interest rate as the instrument of monetary policy.
The problem with that approach, however, is that the only way that the
authorities can affect interest rates is by varying the stock of base money—
it is the only instrument over which the monetary authority has complete
control. One can easily see how a structural VAR can improve upon a simple
recursive system that requires only a Choleski decomposition.

A limitation of the Blanchard-Quah approach is that there must be the
same number of shocks as there are variables—in our example, there can
only be two shocks. This precludes the possibility that there could be two
types of nominal shock—fully anticipated nominal shocks that immediately
affect the nominal exchange rate but have no effect on the real exchange rate,
and unanticipated nominal shocks that temporarily affect the real exchange
rate and ultimately permanently affect the nominal exchange rate. This is
likely to be less of a problem in the current example where the monetary
policies of the two countries have been similar and shown no diversions that
could have been reasonably predicted by agents.

These issues provide food for thought. But it should be kept in mind that
the purpose of the present exercise is simply to help the reader understand
how VARs are constructed. For one intent upon working with VARs, this
is only a beginning.
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