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This document presents a review of very basic mathematics for use by stu-
dents who plan to study economics in graduate school or who have long-ago
completed their graduate study and need a quick review of the basics. The
first section covers variables and equations, the second deals with functions,
the third reviews some elementary principles of calculus and the fourth sec-
tion reviews basic matrix algebra. Readers can work through whatever parts
they think necessary as well as do the exercises provided at the end of each
section. Finally, at the very end there is an important exercise in matrix
calculations using the freely available statistical program XLispStat.

To obtain XLispStat, download the self extracting zip-file wxls32zp.exe

from http://www.economics.utoronto.ca/jfloyd/stats/wxls32zp.exe,
and place it in a directory you create for it called xlispstat in the Program
Files directory on your MS-Windows computer. Then click on wxls32zp.exe
and all the program files will be extracted into that directory. Finally, right-
click on the wxls32.exe icon in the directory and drag it to your desktop to
create a desk-top icon.



1. Variables and Equations1

Mathematical analysis in economics focuses upon variables that are re-
lated to each other in various ways. Variables are entities like the price of a
good and the quantities of that good produced and consumed, which can be
denoted respectively by letters like P , Qd and Qs and can take as values pos-
itive real numbers. There are two types of real numbers: rational numbers
consisting of either integers such as -1, 0, 1, 2, and 3 or fractions like 1/4 =
.2500 , 2/6 = .3333333 and 22/7 = 3.14285714285714 which are repeating
decimal numbers, and irrational numbers such as

√
2 = 1.4142135623730950

which are non-repeating decimal numbers. The set of real numbers can be
visualized as lying along a straight line running from −∞ and +∞ with
infinitely many such numbers lying between any two points on the line rep-
resented, for example, by the rational numbers 1/8 = .12500 and 1/5 = .2000.

The relationship between the quantity demanded of a product and its
price can be expressed in the form of an equation like

Qd = α− βP (1)

where Qd is the quantity demanded, P is the price, and the greek letters α
and β are parameters that take fixed values such as, for example, α = 100
and β = 2. In this example, the above equation could be rewritten as

Qd = 100− 2P. (2)

It should be emphasized here that it makes no economic sense to have neg-
ative prices or quantities, so the condition must be imposed that both Qd

and P be greater than or equal to zero. The quantity demanded would be
zero if the price is high enough to exceed the value to consumers of even one
unit of the commodity. A zero price would imply that an additional unit of
the commodity is of no value although units already purchased would have
value. From equation (1), the condition that Qd ≥ 0 can be expressed as

0 ≤ α− βP. (3)

1An appropriate background for the material covered in this section can be obtained by
reading the first two chapters of Alpha C.Chiang, Fundamental Methods of Mathematcial
Economics, McGraw Hill, Third Edition, 1984. The coverage of this material is virtually
the same both in earlier editions of this book and in the Fourth Edition, joint with Kevin
Wainwright, published in 2005.
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Expressions like the one above can be manipulated without violating the
equality or inequality by adding the same number to both sides or by multi-
plying both sides by the same positive number. Multiplying both sides by a
negative number will reverse an inequality. Adding βP to both sides of the
above inequality yields

α ≥ βP (4)

which, after dividing both sides by β, becomes

P ≤ α

β
. (5)

Keeping in mind that this represents the condition for Qd ≥ 0, it specifies
the maximum value that P can take when Qd = 0 as equal to the ratio of α
over β . Suppose that −β is negative, implying a positive value for β, giving
the demand curve its negative slope. Since P cannot be less than zero, α
must then be positive or zero. It turns out, however, that a zero value of α
would imply that Qd is zero when P is zero and that the good is of no value
to consumers even if it is free. So α must be positive—that is, when the price
is zero the quantity demanded must be positive. Now assume that β is zero.
As can be seen from (1) above, this would imply that Qd = α, independently
of the magnitude of P . This could not be ruled out as entirely impossible,
although the commodity involved would have to be some absolute necessity
like air or water. So we can conclude that, under reasonable circumstances,
the condition that α and β both be positive and finite should be imposed
upon the demand equation. And the price at which the quantity demanded
is zero—that is, the maximum value that P can take—equals α/β .

Actually, the conditions that must be imposed on the demand equation
can be more easily determined by simply plotting the equation on a graph.
as is done in Figure 1. below.

You can easily see that, if negative price and quantity are not allowed, the
demand curve (or better, line) will slope downward to the right from some
maximum point equal to the ratio of α over β and cross the quantity axis at
a distance from the origin equal to α . As α gets bigger the intersection point
with the horizontal axis moves to the right, and as β gets bigger the absolute
value of the slope gets smaller and the intersection with the vertical axis
moves down closer to the origin. Obviously, as α approaches zero the demand
for the commodity disappears. And as β approaches zero the demand curve

3



Q

P

100

50

50
α = 100α = 50

α / β  =  50

β = 2

β = 1

β = 1

Figure 1: Graphical illustration of Equation (1) where α = 100 and β = 2.

becomes vertical at a point on the horizontal axis to the right of the origin by
the amount α. And, as β becomes infinite the demand curve becomes flat, on
top of the quantity axis. In that case, the commodity is literally of zero value
to consumers but they are willing to consume any amount forced on them.
Note that this implies that the commodity is not of negative value—were
that the case, consumers would be willing to pay in order to avoid having to
consume it.

Another important equation presents the relationship between the quan-
tity supplied of a product and its price. This relationship can be expressed
in the form of an equation that gives the value of P associated with each
quantity supplied Qs as follows

P = γ + δQs (6)

where γ and δ are, as before, parameters. As in the case of the demand
relationship, neither the quantity supplied nor the price can be negative. It
can be easily seen from this equation that γ is the level that P will take when
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Qs is zero. Therefore, γ has to be a non-negative number. And the level of
P has to increase by an amount equal to δ for each one-unit increase in Qs

above zero. It makes little sense to allow P to be zero at low but positive
levels of Qs. This would imply that some amount of the good is available
free, after which it has to be produced at increasing cost. Were this the case,
γ would have to be negative.

An interesting situation arises in the case of a good such as land, of which
a fixed amount is freely available and no increase is possible. In this situation
the supply equation would take the form

Qs = Q0 (7)

where Q0 is a constant that is independent of the level of P . The equilibrium
level of P can then be obtained by setting Q0 = Qd in equation (1) to obtain

Q0 = α− βP. (8)

To calculate the equilibrium level of P we first subtract α from both sides to
get

Q0 − α = −βP. (9)

and then divide both sides by −β and rearrange the resulting expression to
obtain

α−Q0

β
= P. (10)

The condition that P not be negative implies that α must be equal to or
greater than Q0.

The above supply equations are plotted in Figure 2 below under the
assumption that γ = 20, δ = .5 and Q0 = 70.

Another interesting exercise is to solve the demand equation (1) and
the supply equation (6) for the equilibrium price and quantity which will
henceforth be denoted as Q in the equilibrium condition

Q = Qd = Qs. (11)

To do this, substitute (11) and (6) into (1) to eliminate P , Qd and Qs and
thereby obtain

Q = α− β(γ + δQ) = α− βγ − βδQ (12)
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Figure 2: Graphical illustration of Equation (6) where γ = 20, δ = .5. and
Q0 = 70.

which, upon addition of βδQ to both sides, simplifies to

(1 + βδ)Q = α− βγ (13)

which, upon division of both sides by (1 + βδ), yields the equilibrium level
of Q.

Qe =
α− βγ

1 + βδ
(14)

Now, to find the equilibrium level of P we can substitute this equation into
equation (1) to eliminate Qd, which now must equal Qe, to obtain

α− βγ

1 + βδ
= α− βP (15)

which, after subtracting α from both sides, becomes

α− βγ

1 + βδ
− α = −βP. (16)
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Now divide both sides by −β to obtain the equilibrium price, which equals

Pe =
α

β
− α− βγ

β(1 + βδ)
. (17)

This expression can be simplified by multiplying and dividing the right side
of the equality by the ratio of α over β or, in other words, factoring out the
ratio of α to β. This yields

Pe =
α

β

[
1− α− βγ

α(1 + βδ)

]
. (18)

Substituting the values of the parameters in our numerical example—namely,
α = 100, β = 2, γ = 20 and δ = 0.5 —we obtain an equilibrium level of P
equal to 35 and an equilibrium level of Q equal to 30, as shown graphically
in the Figure below.

Q

P

β = 2

δ = 0.5

α / β = 50

α = 100

γ = 20

30

35

S

S

D

D

0

Figure 3: Demand curve [Equation (1)] and supply curve [Equation (6)] and
market equilibrium where α = 100, β = 2, γ = 20 and δ = 0.5.
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Exercises

1. What type of real number is each of the following?

√
3

√
4 − 1/6 21/19

And what is the difference between real numbers and rational numbers?

2. Addition, subtraction, multiplication or division of both sides of an equa-
tion by the same real number will leave that equation unchanged. Demon-
strate this by performing these operations on the equation

x = 3 + 4y

using arbitrarily chosen values of x and y to check your results.

3. Demonstrate what happens to inequalities when you add, subtract, mul-
tiply and divide both sides by the same number, using as an example the
inequality 4 ≥ 2 .

4. Solve the following two equations for the equilibrium levels of the variables
x and y.

αx+ βy = 32

δx− γy = 9

Then demonstrate that when α = 3, β = 6, δ = 1 and γ = 3, the equilibrium
values of x and y are 10 and 1/3.
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2. Functions

A function is a relationship between variables. The two equations (1) and
(6) of the previous section are examples of functions. The first of these was
the demand function that can now be more rigorously expressed as

Qd = D(P ) = α− βP (1)

where Qd represents the quantity demanded of a commodity and P represents
its market price, and the function D(P ) states that Qd depends on P in the
sense that if we assign a value to P , D(P ) will tell us the resulting value
of Qd. The expression D(P ) is a general form which simply states that for
every value of P there is an associated value of Qd. The part of the above
equation to the right of the right-most equal sign is a detailed specification
of the form of the demand function D(P ). It states that the amount of Q
demanded is a linear function of P that has the two parameters α and β.
Equation (6) of the previous section can be rearranged for expression as a
supply function in the following form.

Qs = S(P ) = ξ + ϵP (2)

where ξ = −γ/δ and ϵ = 1/δ andQs is the quantity of the good supplied. The
function S(P ) tells us that for every level of P there is a quantity what will
be supplied, Qs and the set of terms on the right gives an exact specification
of the response of Qs to P that is again linear. A complete specification
of market equilibrium for this commodity is given by equations (1) and (2)
together with the equilibrium condition

Q = Qd = Qs (3)

and the equilibrium price and quantity can be obtained by substituting this
equilibrium condition into (1) and (2) and then solving these two equations
simultaneously for P and Q.

There are many different functional forms in addition to the linear ones
specified above. For example, suppose that a monopolist is interested in the
revenue that can be obtained by selling various quantities of a good. The
demand function above can be arranged to express P , which is the average
revenue, as a function of the quantity supplied by simply rearranging the
equation to put P in the left side as follows

P = A(Qs) =
α

β
− 1

β
Qs (4)
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where A(Qs) is the average cost function, the specifics of which are given
by the terms on the right. Total revenue is the quantity supplied multiplied
by the price and can be expressed as follows as a function of the quantity
supplied alone

TR = T (Qs) = QsP = QsA(Qs) = Qs

[
α

β
− 1

β
Qs

]
=

α

β
Qs −

1

β
Q 2

s (5)

where

T (Qs) =
α

β
Qs −

1

β
Q 2

s . (6)
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Figure 1: Total revenue (solid line) and average revenue (dashed line) when
α = 100, β = 2.

The total revenue function T (Qs) turns out to be a second degree polynomial
in Qs. The degree of the polynomial is the highest power to which any
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variable is taken—in this case 2. The linear functions D(P ) and S(P ) above
are therefore first-degree polynomial functions because the variable P in both
cases is taken to the first power—that is, P 1 equals P . Using the values
α = 100 and β = 2 chosen for the examples in the previous section, the
above function becomes

TR = 50Qs − 0.5Q 2
s , (7)

which is plotted in Figure 1 above. It can be seen from this Figure that
a second-order polynomial takes the form of a parabola—in this case, an
inverted one.

A third-degree polynomial was used in my book to represent the effect on
useable output of insufficient liquidity in the economy.2 The level of output
when the optimal quantity of money is in circulation can be represented as

Y = mK (8)

where Y is the level of output andK is the aggregate stock of capital, broadly
defined to include human capital, technology, and knowledge as well as the
usual forms of physical capital. When there is insufficient liquidity as a result
of there being too small a stock of money in circulation, resources have to
be used up making exchange, thereby reducing the quantity of final goods
and services available for consumption and investment. The right side of the
above equation must then be multiplied by the term[

1− 1

3λ

(
ϕ− λ

L

K

)3
]

(9)

where L is the stock of liquidity. Equation (8) becomes

Y = mK

[
1− 1

3λ

(
ϕ− λ

L

K

)3
]
. (10)

The optimal ratio of the stock of liquidity to the stock of capital is equal to
ϕ/λ at which point the cubed term in the square brackets becomes equal to
zero, making the term in the square brackets equal to unity, and equation
(10) reduces to equation (8). As the stock of liquidity declines the cubed term

2See John E. Floyd, Interest Rates, Exchange Rates and World Monetary Policy,
Springer-Verlag, 2010, pages 24-29.
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becomes positive and larger and the term in the square brackets becomes less
than unity. As L approaches zero the term in the square brackets becomes
equal to [

1− ϕ 3

3λ

]
which gives the fraction of the maximum possible output level remaining
when money disappears and all exchange is conducted by barter. The term
(9) is plotted in the Figure below for the case where ϕ = 8.94 and λ = 298.14.
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Figure 2: Effect of Provision of Liquidity on Fraction of Output that is
Useable

When there is no liquidity, the level of useable output is reduced to 20
percent of maximum possible level and a stock of liquidity equal to 3 per-
cent of the capital stock is turns out to be optimal. Only the levels of the
liquidity/capital ratio of 3 percent or below are relevant. For levels of liq-
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uidity above that ratio we simply impose the condition that useable output
remains at its maximum and the term in the square brackets remains equal
to unity. This is another example where a particular function is assumed
to apply only over a specific range of values of the independent variable,
which in this case is the ratio of the stock of liquidity to the stock of capital.

As will become clear in the next section on differentiation and derivatives,
this third order polynomial function was chosen so that the demand function
for liquidity (or money) will be represented by the downward-sloping leftward
side of a parabola.

Another thing to keep in mind when working with polynomial functions
is the multiplication rule

(a x+ b y)(c x+ d y) = ac x 2 + ad xy + bc xy + bd y2

= ac x 2 + (ad+ bc) xy + bd y2.

Additional functional forms that often appear either directly in economic
analysis or indirectly in statistical testing of economic hypotheses are expo-
nential and logarithmic functions. An exponential function takes the form

y = f(x) = bx (11)

where b denotes the fixed base of the exponent. The following exponential
function takes the base 10 to the power x.

y = f(x) = 10x (12)

The logarithm to the base 10 of y is the number what would have to be raised
to the power 10 to obtain y. As you can see from the equation above, that
number turns out to be x. So there is a logarithmic function directly related
to the above base-10 exponential function—that is,

x = log(y) (13)

where the expression log(y) means the logarithm to the base 10 of y. Ac-
cordingly, by substitution of (13) into (12) we obtain

y = 10 log(y). (14)

This relationship is illustrated by example in the following table
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x 0 1 2 2.5 3
y = 10x 1 10 100 316.228 300

z = log(y) 0 1 2 2.5 3

where, as you can see, z always equals x.
The most commonly used exponential function has as its base the irra-

tional number

e = lim
n→∞

(
1 +

1

n

)n

= 2.71828182845904523536 (15)

and takes the form

y = ex. (16)

Its logarithmic counterpart is

x = ln(y) (17)

where ln() denotes the natural logarithm to the base e —that is, x is the
power to which emust be raised to obtain the number y. A table representing
examples of the exponents of selected numbers and their logarithms, all to
the base e, is presented below.

x 0 1 2 2.5 3
y = ex 1 2.7128 7.3906 12.1825 20.0855

x = ln(y) 0 1 2 2.5 3

All these exponents are irrational numbers, here taking the form of non-
repeating decimals rounded to four places. From (16) and (17) above, we
have

y = e ln(y). (18)

There are some important rules to keep in mind when working with ex-
ponents, all of which can be derived from the fact that xn simply equals x
multiplied by itself n times.3

1) xm × xn = xm+n

2) xm/xn = xm−n

3See pages 27 and 28 of the third edition of Chiang’s book cited above, or the corre-
sponding pages of any other edition, for a detailed derivation of these rules.
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3) x−n = 1/xn (x ̸= 0)

4) x 0 = 1 (x ̸= 0)

5) x 1/n = n
√
x

6) (xm)n = xmn

7) xm × ym = (x y)m

There are also a number of important rules for working with and simpli-
fying logarithmic expressions.4

1) ln(x y) = ln(x) + ln(y) (x, y > 0)

2) ln(x/y) = ln(x)− ln(y) (x, y > 0)

3) ln(a xαy β) = ln(a) + ln(xα) + ln(y β) = ln(a) + α ln(x) + β ln(y)

4) ln(a e 6e 3) = ln(a) + ln(e 6) + ln(e 3) = ln(a) + 6 + 3 = ln(a) + 9

5) log10 x = (log10 e)(loge x) (x > 0)

6) log10 e = 1/loge 10

7) ln(x± y) ̸= ln(x)± ln(y)

One of the most common uses of logarithms in economics is in the plotting
of data. Canada’s real exchange rate with respect to the United States,
defined as the relative price of Canadian output in terms of U.S. output, is
plotted in Figure 3 below. The solid line gives the actual series expressed
as a percentage if its initial level in the first quarter of 1957. The dashed
line gives the natural logarithm of that series expressed as a percentage of its
level in that first quarter. It turns out that use of the logarithm to base 10
instead of the natural logarithm (to the base e) produces an identical series
as expressed above. As you can see, the logarithm of the series shows much
less variability than the actual level. The reason is that the logarithm of a
series, as will become clear in the next section on derivatives, represents the
cumulation of the rates of change of the series through time while the level
of the series represents the cumulation of the absolute changes through time,
where the size of neighboring individual periods over which these respective
absolute and relative rates of change are calculated is tiny and the number
of such periods over any small interval is therefore extremely large.

4For proofs, see pages 284–286 of the Chiang book cited. Use the index to find the
appropriate pages in other editions of the book.
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Figure 3: Canadian Real Exchange Rate With Respect to the United States

The question might arise as to whether we distort data by taking log-
arithms of them. In empirical analysis we attempt to test theories by ob-
taining quantitative measures of the relationship between different economic
variables—in my book cited above, quantitative measures of the effects of
various factors determining countries’ real exchange rates are obtained. It
turns out that, in many cases, the logarithms of relevant series may be more
closely related to each other than the unmodified levels of those variables.
This provides evidence about the nature of the relationships between the
underling variables—the elasticity of series x with respect to series y may
appear to be rather constant in the data, and the corresponding slope of
series x in terms of series y may be variable, providing important evidence
about the nature of the underlying economic relationship between them. In-
deed, taking the logarithm of a series does not distort it—it merely represents
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another of the many ways in which the time-path of the underlying variable
can be measured.

In closing this section we must keep in mind that, while it is convenient
to explore the nature of functions by examining functions involving only
two variables, the emphasis in most economic analysis is on situations in
which there are several related variables. For example, we might have three
functions

X = F (Y, Z) (19)

Y = G(Z,X) (20)

Z = L(X, Y ) (21)

that could each take different forms. The problem then is to specify the
details of the functional forms F ( ), G( ) and L( ), and then to solve the
three-equation system for the equilibrium levels of the variables X, Y and
Z.
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Exercises

1. What is the difference between first, second and third degree polynomial
functions?

2. What degree polynomial is the following function?

y = (x− 2)(x+ 2)

3. Expand and simplify the equation

0 = (x+ 2 y) 2

to express y as a function of x. What degree of polynomial is this function?

4. What is the difference between an exponential function and a polynomial?

5. Suppose that ln(y) = 10. What is the value of y ?

6. What is the reciprocal of x−n ?

7. Show that xm × x−n equals 1 when m = n .

8. What degree of polynomial is (xm) 3 ?

9. Consider the Cobb-Douglas production function

X = Lα K 1−α

where X is the output of a particular product, L and K are the quantities
of labour and capital used in its production and α is a parameter. Express
this function in logarithmic form.

10. What single number would one have to take the logarithm of to calculate
ln(10)− ln(5) ?

11. Suppose that log10x = 4 . Calculate the logarithm of x to the base e .
You should get a number approximately equal to 9.21.
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3. Differentiation and Integration5

We now review some basics of calculus—in particular, the differentiation
and integration of functions. A total revenue function was constructed in the
previous section from the demand function

Q = α− βP (1)

which was rearranged to move the price P , which equals average revenue, to
the left side and the quantity Q to the right side as follows

P = A(Q) =
α

β
− 1

β
Q . (2)

To get total revenue, we multiply the above function by Q to obtain

T (Q) = P Q = A(Q)Q =
α

β
Q− 1

β
Q 2. (3)

where Q is the quantity supplied by a potential monopolist who, of course,
is interested in equating the marginal revenue with the marginal cost. The
marginal revenue is the increase in total revenue that results from selling one
additional unit which, as can easily be seen from Figure 1, must equal the
slope of the total revenue curve—that is, the change in total revenue divided
by a one-unit change in the quantity. The marginal revenue from selling the
first unit equals both the price and the total revenue from selling that unit.
The sale of an additional unit requires that the price be lower (given that
the demand curve slopes downward) and, hence, the marginal revenue is also
lower. This is clear from the fact that the slope of the total revenue curve
gets smaller as the quantity sold increases. In the special case plotted, where
α = 100 and β = 2, total revenue is maximum at an output of 50 units and,
since its slope at that point is zero, marginal revenue is also zero. Accordingly,

5An appropriate background for the material covered in this section can be obtained
by reading Alpha C.Chiang, Fundamental Methods of Mathematcial Economics, McGraw
Hill, Third Edition, 1984, Chapter 6, Chapter 7 except for the part on Jacobian de-
terminants, the sections of Chapter 8 entitled Differentials, Total Differentials, Rules of
Differentials, and Total Derivatives, and all but the growth model section of Chapter 13.
Equivalent chapters and sections, sometimes with different chapter and section numbers,
are available both in earlier editions of this book and in the Fourth Edition, joint with
Kevin Wainwright, published in 2005.
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Figure 1: Total, average and marginal revenue when α = 100, β = 2.

the marginal revenue curve plotted as the dotted line in the Figure crosses
zero at an output of 50 which turns out to be one-half of the 100 units of
output that consumers would purchase at a price of zero, at which point total
revenue would also be zero. We do not bother to plot the marginal revenue
curve where marginal revenue is negative because no firm would produce
and sell output under those conditions, given that marginal cost is always
positive. The average revenue, or demand, curve is plotted in the Figure as
the dashed line. To make the relationship between the demand curve and
marginal revenue curve clearer, these two curves are plotted separately from
the total revenue curve in Figure 2. The total revenue associated with any
quantity is the area under the marginal revenue curve—that is the sum of
the marginal revenues—to the left of that quantity.

20



Figure 2: Demand and marginal revenue curves when α = 100, β = 2.

We now state the fact that the derivative of a function y = F (x) is equal
to the slope of a plot of that function with the variable x represented by the
horizontal axis. This derivative can be denoted in the four alternative ways

dy

dx

dF (x)

dx

d

dx
F (x) F ′(x)

where the presence of the integer d in front of a variable denotes a infinites-
imally small change in its quantity. We normally denote the slope of y with
respect to x for a one-unit change in x by the expression ∆ y/∆ x . The
expression dy/dx represents the limiting value of that slope as the change in
x approaches zero—that is,

lim
∆x→0

∆y

∆x
=

dy

dx
(4)
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The first rule to keep in mind when calculating the derivatives of a func-
tion is that the derivative of the sum of two terms is the sum of the derivatives
of those terms. A second rule is that in the case of polynomial functions like
y = a (b x)n the derivative takes the form

dy

dx
=

d

dx
a (b x)n = a n (b x)n−1 d

dx
(b x) = b a n (b x)n−1 (5)

where, you will notice, a multiplicative constant term remains unaffected.
Accordingly, the derivative of equation (3) is the function

M(Q) =
d

dQ

[
α

β
Q− 1

β
Q 2

]

=
d

dQ

α

β
Q− d

dQ

1

β
Q 2

=
α

β
− 2

β
Q (6)

which is the marginal revenue function in Figure 2. The slope of that
marginal revenue function is its derivative with respect to Q, namely,

dM(Q)

dQ
=

d

dQ

α

β
− d

dQ

2

β
Q

= 0− 2

β

= − 2

β
. (7)

which verifies that, when the demand curve is linear, the marginal revenue
curve lies half the distance between the demand curve and the vertical axis.
Notice also from the above that the derivative of an additive constant term
is zero.

Since marginal revenue is the increase in total revenue from adding an-
other unit, it follows that the total revenue associated with any quantity is
the sum of the marginal revenues from adding all units up to and including
that last one—that is

Q0∑
0

MR ∆Q =
Q∑
0

∆TR

∆Q
∆Q = TRQ0 . (8)
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Figure 3: Total revenue visualized as the sum of sucessive marginal revenues.

When we represent marginal revenue as the derivative of the total revenue
curve—that is, as

dTR

dQ
= lim

∆→0

∆TR

∆Q
(9)

equation (8) can be rewritten as∫ Q0

0
MR dQ =

∫ Q0

0

dTR

dQ
dQ = TRQ0 . (10)

Marginal revenue is the length of an infinitesimally narrow vertical slice ex-
tending from the marginal revenue curve down to the quantity axis in the
reproduction of Figure 2 above and dQ is the width of that slice. We horizon-
tally sum successive slices by calculating the integral of the marginal revenue
function.
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In the previous section, the effect of the stock of liquidity on the fraction of
output that is useable—that is, not lost in the process of making exchange—
is a third-degree polynomial term that multiplies the level of the capital stock
as follows

Y = mKΩ (11)

where

Ω = 1− 1

3λ

(
ϕ− λ

L

K

)3

. (12)

The derivative of income Y with respect to the stock of liquidity L takes the
form

dY

dL
= mK

dΩ

dL
(13)

where, taking into account the fact that ϕ and K are constants,

dΩ

dL
= − 3

1

3λ

(
ϕ− λ

L

K

)2 d

dL

(
ϕ− λ

L

K

)
= − 1

λ

(
ϕ− λ

L

K

)2
(
dϕ

dL
− λ

d

dL

L

K

)

= − 1

λ

(
ϕ− λ

L

K

)2
(
0− λ

d

dL

L

K

)

=
(
ϕ− λ

L

K

)2

λ

(
d

dL

L

K

)

=
(
ϕ− λ

L

K

)2 λ

K

(
dL

dL

)

=
λ

K

(
ϕ− λ

L

K

)2

(14)

so that

dY

dL
= mλ

(
ϕ− λ

L

K

)2

(15)

which is a second-degree polynomial function. Since dY/dL is equal to the
increase in the final output flow resulting from an increase in the stock of
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liquidity (or, in a cruder model, money) the above equation can be interpreted
as a demand function for liquidity or money when we set dY dL equal to
the increase in the income flow to the individual money holder that will
result from holding another unit of money. This income-flow comes at a cost
of holding an additional unit of money, normally set equal to the nominal
interest rate. Also, we need to incorporate the fact that the quantity of
money demanded normally also depends on the level of income. It turns out
that, under conditions of full-employment, the level of income can be roughly
approximated by mK so that, treating some measure of the money stock as
an indicator of the level of liquidity, we can write the demand function for
money as

i = mλ

(
ϕ− λ

m

M

Y

)2

(16)

where i is the nominal interest rate. A further modification would have to be
made to allow for income changes resulting from changes in the utilization
of the capital stock in booms and recessions. In any event, you can see that
an increase in i will reduce the level of M demanded at any given level of Y
and and increase in Y holding i constant will also increase the quantity of
M demanded.

Suppose now that we are presented with a fourth-degree polynomial of
the form

y = F (x) = α+ β x+ γ x2 + δ x3 + ϵ x4 . (17)

We can differentiate this following the rule given by equation (5) together
with the facts that the derivative of a constant is zero and the derivative of
a sum of terms equals the sum of the respective derivatives to obtain

F ′(x) =
dy

dx
= β + 2 γ x+ 3 δ x2 + 4 ϵ x3 . (18)

Suppose, alternatively, that we are given the function F ′(x) in equation (18)
without seeing equation (17) and are asked to integrate it. We simply follow
for each term the reverse of the differentiation rule by adding the integer 1
to the exponent of that term and then dividing the term by this modified
exponent. Thus, for each term

dy

dx
=

d

dx
a xn = a n xn−1 (19)
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we obtain ∫ dy

dx
dx =

n

n− 1 + 1
a xn−1+1 = a xn . (20)

Application of this procedure successively to the terms in equation (18) yields∫
F ′(x) dx =

1

1
βx0+1 +

2

2
γ x1+1 +

3

3
δ x2+1 +

4

4
ϵ x3+1

= β x+ γ x2 + δ x3 + ϵ x4 (21)

which, it turns out, differs from equation(17) in that it does not contain
the constant term α . Without seeing (17), we had no way of knowing the
magnitude of any constant term it contained and in the integration process
in (21) inappropriately gave that constant term a value of zero. Accordingly,
when integrating functions we have to automatically add to the integral an
unknown constant term—the resulting integral is called an indefinite integral.
To make it a definite integral, we have to have some initial information
about the level of the resulting function and thereby be able to assign the
correct value to the constant term. This problem does not arise when we are
integrating from some initial x-value xo and know the value of the function
at that value of x.

The derivative of the logarithmic function

y = α+ β ln(x) (22)

is

dy

dx
=

dα

dx
+

d

dx
β ln(x) = 0 + β

d ln(x)

dx
= β

1

x
=

β

x
. (23)

As you can see, the derivative of ln(x) is the reciprocal of x

d

dx
ln(x) =

1

x
(24)

which is consistent with the fact that the logarithm of a variable is the
cumulation of its past relative changes. The indefinite integral of the function

F ′(x) =
β

x

is thus simply β ln(x) .

26



Then there is the exponential function with base e, y = ex, which has the
distinguished characteristic of being its own derivative—that is,

dy

dx
=

d

dx
ex = ex . (25)

This property can be verified using the fact, shown in the previous section,
that

y = ex → x = ln(y) . (26)

Given the existance of a smooth relationship between a variable and its log-
arithm, the reciprocal of the derivative of that function will also exist so
that,

dx

dy
=

d

dy
ln(y) =

1

y
→ dy

dx
= y → dy

dx
= ex . (27)

Of course, we will often have to deal with more complicated exponential
functions such as, for example,

y = α eβ x+ c (28)

for which the derivative can be calculated according to the standard rules
outlined above as

dy

dx
= α (β x + c) e (β x+ c)−1 d

dx
(β x + c) = αβ (β x + c) e (β x+ c)−1

= α (β 2 x + β c) eβ x+ c−1 . (29)

At this point it is useful to collect together the rules for differentiating
functions that have been presented thus far and to add some important
additional ones.

Rules for Differentiating Functions

1) The derivative of a constant term is zero.

2) The derivative of a sum of terms equals the sum of the derivatives of the
individual terms.

3) The derivative of a polynomial where a variable x is to the power n is

d

dx
xn = nxn−1 .
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In the case of a function that is to the power n, the derivative is

d

dx
αF (x)n = nαF (x)n−1 F ′(x) .

4) The derivative of the exponential function y = bx is

d

dx
bx = bx ln(b)

or, in the case of y = ex, since ln(e) = 1 ,

d

dx
ex = ex .

In the case where y = eF (x) the derivative is

d

dx
eF (x) = eF (x) F ′(x) .

5) Where y is the logarithm of x to the base e, the derivative with respect
to x is

dy

dx
=

d

dx
ln(x) =

1

x
.

6) The chain rule. If

y = Fy(z) and z = Fz(x)

then
d

dx
Fy(Fz(x)) = F ′

y (F
′
z (x)) .

7) The derivative of the product of two terms equals the first term multiplied
by the derivative of the second term plus the second term multiplied by the
derivative of the first term.

d

dx
[F1(x)F2(x)] = F1(x)F

′
2 (x) + F2(x)F

′
1 (x)

8) The derivative of the ratio of two terms equals the denominator times the
derivative of the numerator minus the numerator times the derivative of the
denominator all divided by the square of the denominator.

d

dx

[
F1(x)

F2(x)

]
=

F2(x)F
′
1 (x) − F1(x)F

′
2 (x)

[F2(x)] 2
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9) The total differential of a function of more than a single variable such as,
for example,

y = F (x1, x2, x3)

is

dy =
∂y

∂x1

dx1 +
∂y

∂x2

dx2 +
∂y

∂x3

dx3

where the term ∂y/∂xi is the partial derivative of the function with respect
to the variable xi—that is, the change in y that occurs as a result of a change
in xi holding all other x−variables constant.

We end this section with some applications of the total differential rule
immediately above. An interesting application is with respect to the standard
Cobb-Douglas production function below which states that the level of output
of a firm, denoted by X, depends in the following way upon the inputs of
labour L and capital K

Y = ALα K 1−α (30)

where α is a parameter and A is a constant representing the level of technol-
ogy. The total differential of this function is

dY = A [K1−α αLα−1 dL+ Lα (1− α)K1−α−1 dK]

= (AαLα−1K1−α) dL+ (A (1− α)LαK−α) dK (31)

where you should note that (AαLα−1K1−α) and (A (1− α)LαK−α) are the
respective marginal products of labour and capital. The increase in output
associated with changes in the labour and capital inputs thus equals the
marginal product of labour times the change in the input of labour plus the
marginal product of capital times the change in the input of capital. Note
also that, using a bit of manipulation, these marginal products can also be
expressed as

∂Y

∂L
=

LAαLα−1K1−α

L
=

αALαK1−α

L
= α

Y

L
(32)

and

∂Y

∂K
=

K A (1− α)Lα K−α

K
=

(1− α) ALαK1−α

K
= (1− α)

Y

K
. (33)
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Substituting the above two equations back into (31), we obtain

dY = α
Y

L
dL+ (1− α)

Y

K
dK (34)

which, upon division of both sides by Y becomes

dY

Y
= α

dL

L
+ (1− α)

dK

K
. (35)

Actually, a simpler way to obtain this equation is to take the logarithm of
equation (30) to obtain

ln(Y ) = ln(A) + α ln(L) + (1− α) ln(K) (36)

and then take the total differential to yield

d ln(Y ) = α
∂ln(L)

∂L
dL+ (1− α)

∂ln(K)

∂K
dK

= α
1

L
dL+ (1− α)

1

K
dK

= α
dL

L
+ (1− α)

dK

K
(37)

An important extension of the total differential analysis in equations (31)
and (34) is to the process of maximization. Suppose for example that the
wage paid to a unit of labour is ω and the rental rate on a unit of capital is
κ. The total cost of production for a firm would then be

T C = ω L+ κK (38)

and if the quantity of the labour input is changed holding total cost constant
we will have

dTC = 0 = ω dL+ κ dK

which implies that

dK = −ω

κ
dL (39)

which, when substituted into the total differential equation (34) yields

dY =

[
α
Y

L
− ω (1− α)

κ

Y

K

]
dL . (40)
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Maximization of the level of output producible at any given total cost requires
that, starting from a very low initial level, L be increased until a level is
reached for which a small change in L has no further effect on output. This
will be the level of L for which

α
Y

L
− ω (1− α)

κ

Y

K
= 0 → α

Y

L
=

ω (1− α)

κ

Y

K
.

When both sides of the above are divided by (1 − α)Y/K, the expression

reduces to

α (Y/L)

(1− α) (Y/K)
=

ω

κ
. (41)

You will recognize from equations (32) and (33) that the left side of the
above equation is simply the ratio of the marginal product of labour over
the marginal product of capital—otherwise known as the marginal rate of
substitution of labour for capital in production. As noted in the Figure
below, this ratio is the slope of the constant output curve. Since the right
side of the equation is the ratio of the wage rate to the rental rate on capital,
the condition specifies that in equilibrium the marginal rate of substitution
must be equal to the ratio of factor prices, the latter being the slope of
the firm’s budget line in the Figure below. The optimal use of factors in
production is often stated as the condition that the wage rate of each factor
of production be equal to the value marginal product of that factor, defined as
the marginal product times the price at which the product sells in the market.
You can easily see that multiplication of the numerator and denominator of
the left side of the equation above by the price of the product will leave the
optimality condition as stated there unchanged.
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Figure 4: Cobb-Douglas production function Y = AL.75K .25 at specific out-
put level.

Another concept of interest is the elasticity of substitution of labour for
capital in production. It is defined as the elasticity of the ratio of capital to
labour employed with respect to the marginal rate of substitution defined as
the marginal product of labour divided by the marginal product of capital—
that is, the relative change in the capital/labour ratio divided by the relative
change in the ratio of the marginal product of labour over the marginal prod-
uct of capital. The elasticity of substitution in the Cobb-Douglas production
function can be obtained simply by differentiating the left side of equation
(41) above with respect to the capital/labour ratio. First, we can cancel out
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the variable Y and then take the logarithm of both sides and differentiate the
logarithm of the marginal rate of substitution with respect to the logarithm
of the capital/labour ratio. This yields

MRS =
α (Y/L)

(1− α) (Y/K)
=

α

1− α

K

L

ln(MRS) = ln
(

α

1− α

)
+ ln

(
K

L
)
)

d ln(MRS)

d ln (K/L)
=

d ln(α)/(1− α)

d ln(K/L)
+

d ln(K/L)

d ln(K/L)

dMRS

MRS
/
d (K/L)

K/L
= 0 + 1 = 1/σ

σ = 1 (42)

where σ is the elasticity of substitution, which always equals unity when the
production function is Cobb-Douglas.

The above result makes it worthwhile to use functions having constant
elasticities that are different from unity. A popular function with this char-
acteristic is the constant elasticity of substitution (CES) function which is
written below as a utility function in the form

U = A
[
δ C −ρ

1 + (1− δ)C −ρ
2

]−1/ρ
(43)

where U is the level of utility and C1 and C2 are the quantities of two
goods consumed. Letting Ψ denote the terms within the square brackets,
the marginal utility of C1 can be calculated as

∂U

∂C1

=
−A

ρ

(
Ψ [−(1/ρ)−1]

)
(−δ ρ)C −ρ−1

1

= Aδ
(
Ψ− (1+ρ)/ρ

)
C

−(1+ρ)
1

= Aδ
[
δ C −ρ

1 + (1− δ)C −ρ
2

]− (1+ρ)/ρ
C

−(1+ρ)
1 . (44)

By a similar calculation, the marginal utility of C2 is

∂U

∂C2

= A (1− δ)
[
δ C −ρ

2 + (1− δ)C −ρ
2

]− (1+ρ)/ρ
C

−(1+ρ)
2 (45)

and the marginal rate of substitution is therefore

MRS =
∂U/∂C1

∂U/∂C2

=
δ

(1− δ)

(
C1

C2

)−(1+ρ)

=
δ

(1− δ)

(
C2

C1

) (1+ρ)

(46)
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Figure 5: CES utility function U = A[δ C −ρ
1 +(1−δ)C2

−ρ]−1/ρ at a specific
utility level with δ = 0.5 and the elasticity of substitution, equal to 1/(1+ρ),
set alternatively at 0.5, 1.0, and 2.0 .

which, upon taking the logarithm, becomes

ln(MRS) = ln

(
δ

1− δ

)
+ (1 + ρ) ln

(
C2

C1

)
= (1 + ρ) ln

(
C2

C1

)
. (47)

The elasticity of substitution therefore equals

σ =
d ln(C2/C1)

d ln(MRS)
=

1

1 + ρ
(48)
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and becomes equal to unity when ρ = 0, less than unity when ρ is positive
and greater than unity when −1 < ρ < 0, becoming infinite as ρ → −1.
Obviously it would make no sense for ρ to be less than minus one. Indiffer-
ence curves with elasticities of substitution ranging from zero to infinity are
illustrated in Figure 5 above where δ = .5.

It turns out that the Cobb-Douglas function is a special case of the CES
function where ρ = 0 , although equation (43) is undefined when ρ = 0
because division by zero is not possible. Nevertheless, we can demonstrate
that as ρ → 0 the CES function approaches the Cobb-Douglas function.
To do this we need to use L’Hôpital’s rule which holds that the ratio of
two functions m(x) and n(x) approaches the ratio of their derivatives with
respect to x as x → 0 .

lim
x→0

m(x)

n(x)
= lim

x→0

m′(x)

n′(x)
(49)

When we divide both sides of equation (43) by A and take the logarithms
we obtain

ln
(
Q

A

)
=

−ln[δC −ρ
1 + (1− δ)C −ρ

2 ]

ρ
=

m(ρ)

n(ρ)
(50)

for which m′(ρ) becomes, after using the chain rule and the rule for differen-
tiating exponents with base b ,

m′(ρ) =
−1

[δC −ρ
1 + (1− δ)C −ρ

2 ]

d

dρ
[δC −ρ

1 + (1− δ)C −ρ
2 ]

=
−[−δ C −ρ

1 ln(C1)− (1− δ)C −ρ
2 ln(C2)]

[δC −ρ
1 + (1− δ)C −ρ

2 ]

which, in the limit as ρ → 0 becomes

m′(ρ) = δ ln(C1) + (1− δ) ln(C2) . (51)

Since n(ρ) = ρ , n′(ρ) also equals unity, so we have

lim
ρ→0

ln
(
Q

A

)
= lim

ρ→0

m′(ρ)

n′(ρ)
=

δ ln(C1) + (1− δ) ln(C2)

1

= δ ln(C1) + (1− δ) ln(C2) (52)
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This implies that

Q = AC δ
1 C 1−δ

2 (53)

which is the Cobb-Douglas function.6

Exercises

1. Explain the difference between ∆y/∆x and dy/dx .

2. Differentiate the following function.

y = a x 4 + b x 3 + c x 2 + d x+ g

3. Integrate the function that you obtained in the previous question, assum-
ing that you are without knowledge of the function you there differentiated.

4. Differentiate the function

y = a+ b ln(x) .

5. Differentiate the following two functions and explain why the results differ.

y = a bx y = a ex

6. Given that x = ln(y), express y as a function of x.

7. Suppose that

y = a+ b z 2 and z = ex

Use the chain rule to calculate the derivative of y with respect to x .

8. Using the two functions in the previous question, find

d

dx
(yz) and

d

dx

(
y

z

)
.

6Every use of L’Hôpital’s rule brings to mind the comments of a well-known economist
when asked about the quality of two university economics departments, neither of which
he liked. His reply was “You’d have to use L’Hôpital’s rule to compare them”.
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9. Let U(C1) be the utility from consumption in period one and U(C2)
be the utility from consumption in year two, where the functional form is
identical in the two years. Let the utility from consumption in both periods
be the present value in year one of utilities from consumption in the current
and subsequent years where the discount rate is ω, otherwise known as the
individual’s rate of time preference. Thus,

U = U(C1) +
1

1 + ω
U(C2) .

Take the total differential of the present value of utility U . Let the interest
rate r be the relative increase in year two consumption as a result of the
sacrifice of a unit of consumption in year one, so that

∆C2 = −(1 + r)∆C1

Assuming that the individual maximizes utility, calculate the condition for
optimal allocation of consumption between the two periods.

10. Calculate the marginal products of labour and capital arising from the
following production function.

Q = A[δ L−ρ + (1− δ)K −ρ]−1/ρ

Then calculate the elasticity of substitution between the inputs. How do the
results differ then you use the Cobb-Douglas production function instead of
the CES production function above?
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4. Matrix Algebra7

Finally, we review some basics of matrix algebra. Consider the three-equation
model

a11 x1 + a12 x2 + a13 x3 = d1

a21 x1 + a22 x2 + a23 x3 = d2 (1)

a31 x1 + a32 x2 + a33 x3 = d3

which, under appropriate conditions, can be solved for the three variables x1,
x1 and x1 in terms of the parameters aij and di. This system of equations
can also be written in the following form where we chose i and j above to
refer respectively to the rows and columns with the row denoted first.

 a11 a12 a13
a21 a22 a23
a31 a32 a33


 x1

x2

x3

 =

 d1
d2
d3


This system of equations can also be expressed as

Ax = d (2)

where A is the 3× 3 matrix  a11 a12 a13
a21 a22 a23
a31 a32 a33


and the two column vectors, x1

x2

x3

 and

 d1
d2
d3


which can also be described as 3 × 1 matrices, are denoted as x and d
respectively.

7An excellent detailed presentation of the principles of matrix algebra reviewed in the
discussion that follows can be found in Alpha C.Chiang, Fundamental Methods of Math-
ematcial Economics, McGraw Hill, Third Edition, 1984, Chapters 4 and 5. Equivalent
material can be found in the same chapters in the Fourth Edition, joint with Kevin Wain-
wright, published in 2005.
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The matrix A can be transposed by interchanging its rows and columns
as follows, where the transpose is denoted as A ′,

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 A ′ =

 a11 a21 a31
a12 a22 a32
a13 a23 a33


and, accordingly, the transposes of x and d convert them from column vectors
into the row vectors

x ′ =
[
x1 x2 x3

]
and d ′ =

[
d1 d2 d3

]
.

Obviously, the transpose of the transpose of a matrix will be equal to the
original matrix.

The sum of two matrices can be calculated only if both matrices have the
same number of rows and columns—that is, are of the same dimension. The
elements of the resulting matrix are the sums of the corresponding elements
in the two matrices being summed, as noted below.

B+C =

 b11 b12
b21 b22
b31 b32

+
 c11 c12
c21 c22
c31 c32

 =

 b11 + c11 b12 + c12
b21 + c21 b22 + c22
b31 + c31 b32 + c32


Multiplication of a matrix by a single number, which in this context is

called a scalar, produces a new matrix whose elements are those of the original
matrix after each element is multiplied by the scalar—that is,

kA =

 k a11 k a12 k a13
k a21 k a22 k a23
k a31 k a32 k a33


where k is the scalar.

The multiplication of two matrices is much more complicated. As a start,
we can review the multiplication of A and x in equation (2) which gives us
the vector on the left side of the equality in equation (2).

Ax =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


 x1

x2

x3

 =

 a11 x1 + a12 x2 + a13 x3

a21 x1 + a22 x2 + a23 x3

a31 x1 + a32 x2 + a33 x3
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The result is a column vector which is obtained by multiplying the elements of
each row of A by the corresponding element of the column vector x and then
summing those products to yield the corresponding element of the resulting
column vector.

Suppose now that we try to multiply the two matrices B and C which
are reproduced below. b11 b12

b21 b22
b31 b32


 c11 c12
c21 c22
c31 c32


This cannot be done because the two matrices are not conformable—each
column of C has three elements while each row of B has only two elements.
To multiply two matrices, the left-most one must have the same number of
columns as the right-most one has rows—that is, if the left-most matrix has
the dimension n × m the the right-most matrix has the dimension p × q ,
the two matrices are conformable for multiplication only if m = p . The
multiplication process can be illustrated by multiplying the 2 × 4 matrix H
by the 3 × 2 matrix B .

BH =

 b11 b12
b21 b22
b31 b32

 [ h11 h12 h13 h14

h21 h22 h23 h24

]

=

 b11 h11 + b12 h21 b11 h12 + b12 h22 b11 h13 + b12 h23 b11 h14 + b12 h24

b21 h11 + b22 h21 b21 h12 + b22 h22 b21 h13 + b22 h23 b21 h14 + b22 h24

b31 h11 + b32 h21 b31 h12 + b32 h22 b31 h13 + b32 h23 b31 h14 + b32 h24


The resulting matrix has dimension equal to the number of rows of the matrix
on the left and the number of columns of the matrix on the right. This
multiplication process produces a new matrix whose (i, j)th element is equal
to the sum of products of the corresponding elements of the ith row of B and
jth column of H. Notice that we cannot take the product HB because the
number of columns of H is different from the number of rows of B—that is
we can only pre-multiply H by B or post-multiply B by H.

Consider now the two vectors

a =

 a1
a2
a3

 and b =

 b1
b2
b3
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The inner product of these two vectors is

a ′ b =
[
a1 a2 a3

]  b1
b2
b3

 = b ′ a =
[
b1 b2 b3

]  a1
a2
a3


=
[
a1 b1 + a2 b2 + a3 b3

]
and their outer product is

ab ′ =

 a1
a2
a3

 [ b1 b2 b3
]
= ba ′ =

 b1
b2
b3

 [ a1 a2 a3
]

=

 a1 b1 a1 b2 a1 b3
a2 b1 a2 b2 a2 b3
a3 b1 a3 b2 a3 b3


where, in both cases, the number of rows in the left-most matrix, which is
1 × 3 in the inner-product case and 3 × 1 in the outer-product case, equals
the number of columns in the right-most matrix, which is 3 × 1 in the inner-
product case and 1 × 3 in the outer-product case.

Suppose now that we want to solve the three equation system (1) which
is reproduced below.

a11 x1 + a12 x2 + a13 x3 = d1

a21 x1 + a22 x2 + a23 x3 = d2 (1)

a31 x1 + a32 x2 + a33 x3 = d3

It is well known that for a three-equation system like this to have a solution,
none of the equations can be a multiple of any other equation or a linear
combination of the other equations—in that case, we would really have only
a two-equation system above and the redundant equation would have to be
dropped. In terms of matrix algebra, determinant of the matrix

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


would be zero in that case. The determinant of the matrix A is expressed as
|A| and calculated as follows.
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|A| =

∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣∣ = a11

∣∣∣∣∣ a22 a23
a32 a33

∣∣∣∣∣ − a12

∣∣∣∣∣ a21 a23
a31 a33

∣∣∣∣∣ + a13

∣∣∣∣∣ a21 a22
a31 a32

∣∣∣∣∣
= a11(a22 a33 − a23 a32)− a12(a21 a33 − a23 a31) + a13(a21 a32 − a22 a31)

= (a11 a22 a33 − a11 a23 a32)− (a12 a21 a33 − a12 a23 a31) + (a13 a21 a32 − a13 a22 a31)

= a11 a22 a33 − a11 a23 a32 − a12 a21 a33 + a12 a23 a31 + a13 a21 a32 − a13 a22 a31 (3)

The calculations are more complicated in cases where the dimension of the
matrix in question exceeds 3 × 3. The first condition to keep in mind here
is that only square matrices have determinants. And the second condition
is that if the determinant of a matrix is zero the matrix is singular and the
underlying system of equations does not have a unique solution because at
least one equation is a a multiple of another equation or a linear combination
of other equations—and, therefore, one row (or column) of the matrix is not
independent of other rows (or columns).

It turns out that for most non-numeric problems it is easier to try to solve
a system of equations by substitution, and thereby determine if a solution
exists, than to calculate the relevant determinant and then solve the system
using matrix algebra. When the analysis is entirely numeric, however, the
matrix approach is often easiest because one can use the computer in cal-
culating determinants and in solving the equation system, especially when
there are a large number of equations involved.

If |A| non-zero, and A is therefore non-singular, one needs to calculate
the inverse of A to solve the system of equations. The inverse of this matrix
is another square matrix denoted by A−1 for which

A−1 A = AA−1 = I (4)

where

I =

 1 0 0
0 1 0
0 0 1


is an identity matrix—that is a square matrix whose diagonal elements are 1
and all other elements are 0 . Obviously, the resulting identity matrix must
have the same dimensions as the matrix whose inverse is being calculated.
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The solution of the system

Ax = d

is therefore

A−1Ax = A−1 d

which is the column vector

I x = x = A−1 d . (5)

Finally, we should note that the rank of a matrix is defined as the number
of independent rows and columns of that matrix. Accordingly, the rank of an
m × n matrix can never be greater than the smaller of m or n—rectangular
matrices will have a rank equal to, at most, the lesser of the number of their
rows or number of columns.
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Exercises

1. Subtract the matrix 4 0 8
6 0 2
8 2 3

 from the matrix

 8 1 3
4 0 1
6 0 3

 .

2. Calculate the inner-product and outer-product of the vectors 8
4
6

 and

 2
3
3

 .

3. Pre-multiply and post-multiply the matrix 4 8
6 2
8 3

 by the matrix

[
8 1 3
4 2 1

]
.

4. Pre-multiply and post-multiply the matrix[
8 1 3
4 2 1

]
by the matrix

[
4 8
6 2

]
.

5. Calculate the determinants of the two matrices 4 0 8
6 0 2
8 2 3

 and

 4 2 2
6 2 3
8 4 2


and explain why they are singular or non-singular.
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6. Put the three equations

8x+ y + 3 z = d

4x+ z = e

6x+ 3 z = f

into matrix form and then solve by substitution to obtain the equilibrium
values of x , y and z in terms of the parameters d , e and f . Write the solution
in matrix form and then extract the inverse of the original matrix that pre-
multiplied the (x, y, z) column-vector. Assuming that d = e = f = 1 , what
are the equilibrium values of x , y and z ?

Computer Exercise

Work through the attached XLispStat matrix-calculations exercise and fol-
low the programing instructions to obtain the correct answers to the above
questions and thereby check your work. You need no initial knowledge
of computer programming or the program XLispStat to work through the
exercise—everything you will need to know is explained there.
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Matrix Calculations Using XLispStat

While XLispStat is a program using the programming language Lisp (which
means List Processing) for statistical calculations, we can very easily use it
for computational matrix programing and analysis. To begin, click on the
XLispStat icon on your desktop. A screen will appear with the following text
at the top.

XLISP-PLUS version 3.03 Portions Copyright (c) 1988, by David
Betz. Modified by Thomas Almy and others. XLISP-STAT Release
3.52.8 (Beta). Copyright (c) 1989-1998, by Luke Tierney.
>

The > character is the program’s request for your input to tell it what to do.

Lisp commands have a very simple form. You enclose in a single set of brack-
ets ( ) first the command or function you want the program to execute and
then a series of words giving the arguments—that is, relevant information—
the function requires in executing the command.

The first thing we need to do is give the XLispStat interpreter instructions
to make some lists of numbers. The function we need to execute is named
(not surprisingly) list and requires as arguments the group of numbers to
appear in the list in the order in which you want them to appear. Also we
need to give each list a name. This we do by using the function def which
takes as its two arguments in this case the name of the list and the command
to execute to produce the list. So let us make the following lists of numbers
by entering the code

> (def LIST1 (list 4 6 8))
> (def LIST2 (list 0 0 2))
> (def LIST3 (list 8 2 3))
> (def LIST4 (list 8 4 6))
> (def LIST5 (list 1 0 0))
> (def LIST6 (list 3 1 3))

Notice that the list function is embedded in the def function.

To find out what items are in the work space we simply enter at the prompt
the variables function, which takes no arguments, and to check the content
of the lists we have just defined, we simply type the name of the list-object
at the prompt. For example,

46



> (variables)
(LIST1 LIST2 LIST3 LIST4 LIST5 LIST6)
> LIST1
(4 6 8)
> LIST2
(0 0 2)
> LIST3
(8 2 3)
> LIST4
(8 4 6)
> LIST5
(1 0 0)
> LIST6
(3 1 3)
>

If you have a look at exercise 1 above, you will note that these lists are the
columns of the two matrices there defined. To construct the matrices from
these lists we use the bind-columns function, which takes as its arguments
the names of the lists that are to form the columns. Again we have to use
the def function to give these matrices names.

> (def MATA (bind-columns LIST1 LIST2 LIST3))
MATA
> (def MATB (bind-columns LIST4 LIST5 LIST6))
MATB
>

To have a look at these matrices, we use the print-matrix function, which
takes as its single argument the name of the matrix to be printed.

> (print-matrix MATA)
#2a(

(4 0 8 )
(6 0 2 )
(8 2 3 )
)

NIL
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> (print-matrix MATB)
#2a(

(8 1 3 )
(4 0 1 )
(6 0 3 )
)

NIL
>

The termNIL tell us that no new objects have been created in the workspace
by our command.

Subtraction of MATA from MATB simply involves appropriate use of the
- function which subtracts the second matrix listed from the first.

> (print-matrix (- MATB MATA))
#2a(

( 4 1 -5 )
(-2 0 -1 )
(-2 -2 0 )
)

NIL
>

Suppose now that we want to take the transpose of MATA. To do this we
use the function transpose, feeding it the name of the matrix and using the
def function to give the transpose the name MATAT.

>(def MATAT (transpose MATA))
MATAT
>

And we can have a look at this transposed matrix using the command

> (print-matrix MATAT)
#2a(

(4 6 8 )
(0 0 2 )
(8 2 3 )
)
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NIL
>

Another way to calculate the transpose of MATA is to bind the lists LIST1
LIST2 and LIST3 together as rows, not columns using the bind-rows
function.

> (def MATC (bind-rows list1 list2 list3))
MATC
> (print-matrix MATC)
#2a(

(4 6 8 )
(0 0 2 )
(8 2 3 )
)

NIL
>

You will recognize that MATC and MATAT are identical.

Question 2 asked for calculation of the inner-and outer-products of two col-
umn vectors, which can be created as 3x1 matrices using the bind-columns,
list and def functions.

> (def vec1 (bind-columns (list 8 4 6)))
VEC1
> (def vec2 (bind-columns (list 2 3 3)))
VEC2
> (print-matrix VEC1)
#2a(

(8 )
(4 )
(6 )
)

NIL
> (print-matrix VEC2)
#2a(

(2 )
(3 )
(3 )
)
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NIL
>

Notice that we embedded the list function in the bind-columns function
which was then embedded in the def function.

The inner-product and the outer-product can be calculate using the function
matmult, which pre-multiplies the right-most matrix by the left-most matrix
given as its two arguments.

> (def IPROD (matmult (transpose VEC1) VEC2))
IPROD
> (print-matrix IPROD)
#2a(

( 46.0000 )
)

NIL
> (def OPROD (matmult VEC1 (transpose VEC2)))
OPROD
> (print-matrix OPROD)
#2a(

( 16.0000 24.0000 24.0000 )
( 8.0000 12.0000 12.0000 )
( 12.0000 18.0000 18.0000 )
)

NIL
>

Next we construct the two matrices in Question 3, embedding alternatively
the list and the bind-columns and list and bind-rows functions in the
def function.

> (def MATD (bind-columns (list 4 6 8)(list 8 2 3)))
MATD
> (def MATE (bind-rows (list 8 1 3)(list 4 2 1)))
MATE
> (print-matrix MATD)
#2a(

(4 8 )
(6 2 )
(8 3 )
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)
NIL

> (print-matrix MATE)
#2a(

(8 1 3 )
(4 2 1 )
)

NIL
>

Now when we pre- and post-multiply MATD by MATE we get

> (def MATED (matmult MATE MATD))
MATED
> (def MATDE (matmult MATD MATE))
MATDE
> (print-matrix MATED)
#2a(

( 62.0000 75.0000 )
( 36.0000 39.0000 )
)

NIL
> (print-matrix MATDE)
#2a(

( 64.0000 20.0000 20.0000 )
( 56.0000 10.0000 20.0000 )
( 76.0000 14.0000 27.0000 )
)

NIL
>

Notice that the two product matrices are completely different.

Question 4 asks you to pre- and post-multiply MATD above by the 2 × 2
matrix constructed below.

> (def MATF (bind-columns (list 4 6)(list 8 2)))
MATF
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> (print-matrix MATF)
#2a(

(4 8 )
(6 2 )
)

NIL
>

Pre-multiplication of MATF by MATD yields

> (def MATDF (matmult MATD MATF))
MATDF
> (print-matrix MATDF)
#2a(

( 64.0000 48.0000 )
( 36.0000 52.0000 )
( 50.0000 70.0000 )
)

NIL
>

while post-multiplication of MATF by MATD produces the error message

> (def MATFD (matmult MATF MATD))
Error: dimensions do not match
Happened in: #<Byte-Code-Closure-MATMULT: #1418c34>
>

which results, of course, because the matrices are not conformable for multi-
plication in that order—MATF has 2 columns while matrix MATD has 3
rows.

Question 5 asks for calculation of the determinant of MATA and the deter-
minant of the following new matrix.

> (def MATG (bind-columns (list 4 6 8)(list 2 2 4)(list 2 3 2)))
MATG
> (print-matrix MATG)
#2a(

(4 2 2 )
(6 2 3 )
(8 4 4 )
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)
NIL
>

To calculate determinants we use the function determinant which takes as
its sole argument the matrix for which the determinant is to be calculated.
Applying this function to the two matrices above yields

> (def DETMATA (determinant MATA))
DETMATA
> DETMATA
80.0
>

which is non-singular and

> (def DETMATG (determinant MATG))
DETMATG
> DETMATG
0.0
>

which is singular because, as you can see, the third column is the first column
multiplied by 2 and the two columns are therefore not independent.

Finally, we need to do the computations relevant for Question 6. The three-
equation system is as follows in matrix form. 8 1 3

4 0 1
6 0 3


 x
y
z

 =

 d
e
f


Solving the sytem by substitution produces the following results.

x = (1/2) e− (1/6) f

y = d− e− (2/3) f

z = −e+ (2/3) f

which can be presented in matrix form as x
y
z

 =

 0.0000 0.5000 −1.6666
1.0000 −1.0000 −0.6666
0.0000 −1.0000 0.3333


 d

e
f


53



where the square matrix is the inverse of the original one. We construct the
original matrix in XLispStat using the following code.

> (def ORIGMAT (bind-columns (list 8 4 6)(list 1 0 0)(list 3 1 3)))
ORIGMAT
> (print-matrix ORIGMAT)
#2a(

(8 1 3 )
(4 0 1 )
(6 0 3 )
)

NIL
>

The inverse of this matrix is

> (def INVOMAT (inverse ORIGMAT))
INVOMAT
> (print-matrix INVOMAT)
#2a(

(-6.938894E-18 0.50000 -0.166667 )
( 1.00000 -1.00000 -0.666667 )
( 2.775558E-17 -1.00000 0.666667 )
)

NIL
>

which is the same as the one calculated by hand using substitution, except
for the fact that XLispStat makes mathematically perfect calculations which
recognize that the zero-numbers are only approximate and must therefore
be presented in scientific notation. To obtain conventional decimal numbers,
the decimal point of the number in the upper left corner of the matrix has to
be moved 18 positions to the left, yielding the conventional decimal number
−.000000000000000006938894 , and 17 positions to the left in case of the
number in the bottom left corner, yielding .00000000000000002775558.
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Finally, assuming that d = e = f = 1, the solution of the system can be
obtained in XLispStat as follows.

> (def XYZEQ (matmult INVOMAT (bind-columns (list 1 1 1))))
XYZEQ
> XYZEQ
#2A((0.33333333333333337) (-0.6666666666666666) (-0.33333333333333337))
>

You are advised that the calculations here are performed in the XLispStat
batch file matrix.lsp and the output you will obtain from running that file
is in the file matrix.lou. You will notice in the batch file the functions
princ and terpri that are not discussed here. The princ function tells the
program to print whatever is included as an argument. When printing text,
the material must be encased in quotation marks while printing objects in
the workspace requires only the name of the object. The terpri function,
which is placed in the usual brackets without any arguments included, merely
tells the interpreter to start a new line.
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