Noisy Global Value Chains*

Ha Bui Zhen Huo
University of Texas at Austin Yale University

Andrei A. Levchenko Nitya Pandalai-Nayar
University of Michigan University of Texas at Austin
NBER and CEPR and NBER

Monday 30th October, 2023

Abstract

We study international propagation of both fundamental and non-fundamental shocks in a global production network model with information frictions. Producers in a sector do not perfectly observe other country-sector fundamentals, and their production decisions depend their beliefs about worldwide exogenous states as well as other producers' behavior. In this environment, “noise” shocks – errors in the public signals about fundamentals – propagate internationally and generate aggregate fluctuations. Using a novel panel dataset containing the frequencies of country-industry-specific economic news reports by 11 leading newspapers in the G7 plus Spain, we show that greater news coverage is associated with both smaller GDP forecast errors, and less disagreement among forecasters. We use these empirical regularities to discipline the parameters governing the severity of information frictions. We find that noise shocks are a quantitatively important source of international fluctuations. Noise shocks propagate relatively more powerfully to the more distant parts of the network, while TFP shocks propagate less powerfully to the more distant sectors in the presence of informational frictions.

Keywords: Information Frictions, Noise shocks, Global Value Chains, News Media, International Comovement

JEL Codes: F41, F44

*We thank our discussant Chen Lian as well as Marios Angeletos, Chris Boehm, Ryan Chahrour, Oli Coibion, Steve Davis, Doireann Fitzgerald, Kris Nimark, Dennis Novy, Todd Walker and seminar participants at Basel, Bocconi, Brown, BU, Chicago, College of William and Mary, Colorado, CUHK, Duke, Federal Reserve Board, Fudan, Harvard/MIT, HKU, Indiana, Lausanne, LSE CFM International Macro Conference, Maastricht, Montreal, NBER IFM, Paris School of Economics, Richmond Fed, SciencesPo, SF Fed, SED 2021 (Minnesota), Stanford, UCLA, UT Austin, and the Virtual Conference on Imperfect Information in Macroeconomics for helpful comments, George Cui for superb research assistance, and our team of RAs from the University of Michigan and UT Austin for the multi-year effort in gathering our international news coverage data. Previously circulated as “Information Frictions and News Media in Global Value Chains.” Email: habuithu@utexas.edu, zhen.huo@yale.edu, alev@umich.edu and npnayar@utexas.edu.
1. Introduction

A long tradition going back to Keynes (1936) argues that aggregate fluctuations can arise from shocks to beliefs, such as animal spirits or sentiments. More recent work has indeed found that these types of non-fundamental shocks can be a quantitatively important source of domestic business cycle fluctuations (e.g. Lorenzoni, 2009; Angeletos, Collard, and Dellas, 2018). If non-fundamental shocks are a driver of the business cycle, it is a natural conjecture that they also propagate internationally.¹ However, the active literature on international shock transmission through trade and global value chains (GVCs) employs perfect information frameworks. As a result, we currently lack a theoretical and quantitative framework to study the international propagation of non-fundamental shocks through GVCs.²

This paper makes three main contributions. Theoretically, we develop a new framework that accommodates incomplete information in global value chains, and present analytical results that characterize the propagation of both fundamental (TFP) and non-fundamental (noise) shocks through the production network. Empirically, we introduce a new panel data set on the intensity of economic news coverage of individual countries and sectors, and combine it with data on professional forecasts to discipline the key structural parameters of the theory. Quantitatively, we use the calibrated model to evaluate the impact of information frictions on international fluctuations at the macro level, and on shock transmission at the micro level.

Our main finding is that noise shocks and incomplete information are both quantitatively important in international business cycles, and generate qualitatively different fluctuations compared to the perfect information benchmark. At the macro level, noise shocks generate nearly a third of observed international comovement in hours, and aggregate fluctuations driven by noise shocks exhibit relatively stronger higher-order network effects. At the micro level, (i) noise shocks propagate relatively more powerfully to the more distant parts of the network; while (ii) with information frictions, the impact of TFP shocks decays faster in network distance compared to the perfect-information benchmark.

Theory. Our theoretical framework combines a standard model of shock transmission through GVCs with an environment characterized by dispersed information and noise shocks (Lorenzoni, 2009; Angeletos and La’O, 2010). As in the perfect-information international input network literature,

¹There is both suggestive and formal evidence that non-fundamental shocks transmit internationally. To fix ideas, a “textbook” example of a non-fundamental shock is the dot-com boom in the United States in the late 1990s: a period of optimistic beliefs that generated an economic expansion (Angeletos, Lorenzoni, and Pavan, 2022). The expansion was broad-based globally, and spilled over to many countries that did not themselves experience a tech boom. World GDP growth rose from 2.6% in 1998 to a peak of 4.8% in 2000, falling back to 2.8% in 2001 after the dot-com bubble burst (International Monetary Fund, 2023). Additionally, Levchenko and Pandalai-Nayar (2020) provide econometric evidence that identified US sentiment shocks transmit to Canada and are an important source of Canadian fluctuations.

²In the closed-economy literature non-fundamental fluctuations arise from innovations to beliefs in incomplete information environments (Lorenzoni, 2009; Angeletos and La’O, 2013; Huo and Takayama, 2015). Indeed, there is abundant empirical evidence that managers are imperfectly aware of the global state (e.g. Candia, Coibion, and Gorodnichenko, 2023; Carstensen and Bachmann, 2023), attesting to the presence of information frictions in the GVCs.
our framework is fully flexible about the configuration of domestic and international trade links. There are multiple countries and sectors subject to productivity shocks, connected with each other via trade in inputs and final goods. Firms know the structure of the GVC, including which sectors they are going to buy from and sell to, and receive vectors of both public and private signals about the fundamentals in each country-sector in the world. The signals have heterogeneous precisions, allowing the severity of informational frictions to vary across country-sectors. The errors in the public signals, that we label “noise,” shift aggregate beliefs about fundamentals, and are non-fundamental shocks that can also propagate through the global value chains. Despite its richness, the model admits an analytical solution. The response of the world economy to the productivity and noise shocks is given by a generalized Leontief inverse, that is a function of the observed input-output matrix and structural parameters.

We use the model to characterize the transmission of shocks at the macro and micro levels. At the macro level, incomplete information in global value chains opens the door to international fluctuations driven by the non-fundamental noise shocks. When TFP cannot be perfectly observed, innovations to the public signals about a country-sector’s TFP induce changes in its trading partners’ production decisions, even if there is no change in true TFP. The noise shocks can thus be a source of aggregate fluctuations and international GDP synchronization. This is valuable because measured TFP shocks cannot successfully account for the observed level of cross-border comovement (Levchenko and Pandalai-Nayar, 2020; Huo, Levchenko, and Pandalai-Nayar, 2019, 2020), necessitating a search for another driver of international business cycles. At the same time, introducing informational frictions dampens the fluctuations driven by TFP: agents do not fully react to foreign TFP innovations as they are not completely sure whether they took place and whether other agents are aware of them.

At the micro level, our main theoretical insights are that noise shocks propagate relatively more powerfully to the more distant parts of the network, while TFP shocks propagate less powerfully to the more distant sectors in the presence of informational frictions. These two properties have a common source. Under incomplete information, the equilibrium outcomes are a function of infinitely many higher-order expectations, or beliefs about beliefs of others (Morris and Shin, 2002; Woodford, 2003). New in our theory, the order of expectations interacts with network distance. The first-order (in the network sense) impact of a shock on the economy is a function of first-order expectations, the second-order network impact is a function of second-order expectations, and so on. This property cannot be gleaned from the first-generation models that lack input-output relationships, but becomes evident when the input network and informational frictions are combined.\(^3\)

The public signal is relatively more useful than the private signal in forming higher-order expec-

\(^3\)The early seminal contributions in the macroeconomics of dispersed information used highly stylized models with no distinction between industries or between final vs. intermediate goods. In these first-generation models, information islands receive signals either about the aggregate economic fundamental (Lucas, 1972) or about their randomly encountered trading partner (Angeletos and La’O, 2013). By contrast, our framework incorporates key heterogeneities in the production functions and information frictions. The main advantages of this environment are that (i) it leads to novel theoretical results on the interactions between the input network and information frictions; and (ii) the theory can be tightly connected with the data and used for a quantification of the role of the information frictions.
tation, as it is common knowledge in the economy. Since the noise shock lives in the public signal, it moves the higher-order expectations more than the first-order ones, and is thus relatively more important in higher-order network propagation that reaches the more distant parts of the network. At the same time, a fundamental shock moves the higher-order expectations by less than first-order expectations. This is simply a property of the expectations operator. Since higher-order network propagation terms are tied to higher-order expectations, a given TFP shock decays faster as it moves through the network under informational frictions compared to perfect information.

Empirics. The key feature of the model is the presence of a vector of noisy public signals about each country-sector in the world economy. Our next goal is to assemble data that can be used to discipline the properties of these public signals. To do that, we use the major global newspapers. Since news appearing in the major newspapers are public and highly visible, they are likely a strong correlate of the available public information about different country-sectors.

Our empirical contribution is to collect a large-scale dataset on the intensity of economic news coverage of individual countries and sectors in the major newspapers of the G7 countries plus Spain (henceforth, “G7+”). Our dataset consists of the frequencies with which a particular country-sector – say, French pharmaceuticals, or the US auto industry – appears in the main newspapers throughout the G7+ countries. We record these frequencies quarterly from 1995 to 2020. We merge these newly collected data with GDP forecasts; standard production datasets such as KLEMS and the World Input-Output Database (WIOD); and quarterly sectoral indicators such as industrial production and total hours worked. We document several basic patterns about international economic news coverage intensity. First, there are pronounced differences in the coverage intensity across industries and countries. These differences are correlated with, but at best partly accounted for by the overall size, upstreamness, or downstreamness of a sector.

Second, higher news coverage intensity is associated with lower GDP forecast errors and less disagreement among forecasters in their GDP projections. This empirical regularity suggests that more intense news coverage provides information useful for improving the accuracy of economic predictions. In contrast with recent survey evidence on expectations (e.g. Coibion and Gorodnichenko, 2015; Bordalo et al., 2020), in which the empirical tests stay agnostic about the source of information, our results connect the variation in the forecast quality to news coverage intensity. Furthermore, existing work on survey evidence on expectations has focused on the consequences of noisy private information, while the idea of noise-driven business cycles require noisy public information or correlated noise (Lorenzoni, 2009; Angeletos and La’O, 2010; Barsky and Sims, 2012; Angeletos, Collard, and Dellas, 2018). Our micro evidence makes it possible to discipline the role of public information, as implemented in our quantitative exercise.

Quantification. Our final contribution is to quantify the international propagation of noise shocks and the role of incomplete information in the international business cycle. We use the news coverage intensity data to pin down the key parameters governing the information structure. In particular, we
posit that the precision of the public signal about a country-sector’s productivity is increasing in the news coverage intensity of that country-sector. This assumption is guided by the reduced-form results, that show GDP forecasts becoming more precise and less dispersed with greater coverage intensity.

We use indirect inference via the theoretical counterparts of the empirical forecast error regressions to translate coverage intensity in the data to the signal precision in the model. This exercise reveals that coverage intensity contributes strongly to making the public signal more precise. The unconditional dispersion of professional GDP forecasts further helps identify the fraction of information that is in the public versus private domain.

We simulate global fluctuations by feeding both TFP and noise shocks into our calibrated model world economy. The stochastic process for TFP is taken from the data. To be conservative, the noise shocks are assumed to be uncorrelated across countries and sectors. Noise shocks are quantitatively important: they can produce about one-fifth of the observed fluctuations in the aggregate hours worked, and about one-third of the observed international correlations in hours. At the same time, introducing information frictions reduces the standard deviation of hours generated by TFP shocks by 50%. In addition, reduced-form international business cycle accounting exercises have found that labor wedges are correlated across countries and are quantitatively important in synchronizing GDP internationally (Huo, Levchenko, and Pandalai-Nayar, 2019). We show that incomplete information leads to correlated labor wedges in the quantitative model simulations. Thus, noise shocks provide a micro-foundation for internationally correlated labor wedges.

Informational frictions affect not only the relative importance of fundamental vs. non-fundamental shocks in the aggregate fluctuations, but also the underlying sources of aggregate volatility. We can write hours worked as a sum of the first- and higher-order network propagation terms. Introducing informational frictions reduces the importance of higher-order terms in the overall TFP-driven fluctuations. At the same time, higher-order terms are responsible for a greater share of the total hours volatility generated by noise shocks than by TFP shocks.

Next, we explore shock propagation at the micro level. Using a theory-derived measure of network distance between sectors, we demonstrate the quantitative relevance of the two main theoretical micro predictions. The relative importance of the noise shock rises in the network distance; and informational frictions dampen the propagation of TFP shocks relatively more to the more remote sectors. We also show that the reaction of the labor input in the rest of world to a TFP shock in a particular sector depends strongly on the intensity of news coverage about that sector: productivity shocks in country-sectors more covered in the news (e.g., US financial services) have a larger impact on world GDP, even controlling for sector size. This is because higher news coverage intensity is associated with more precise signals about fundamentals in the origin sector, leading to a larger global response to its TFP shock. This pattern does not hold in the perfect information economy.

Finally, we externally validate the quantitative model by examining the patterns of comovement in the cross-section of sector pairs. In the data, we document a link between news coverage and
comovement in the context of a textbook “trade-comovement” regression (Frankel and Rose, 1998) at the country-sector-pair level. We relate correlations in hours or output between two country-sectors to input trade between those sectors, as well as the news coverage intensity of those sectors. In the data, sectors more covered in the news tend to experience more synchronization. We also include an interaction between news coverage intensity and bilateral trade. It turns out that sectors more covered in the news comove even more if they trade more with each other. These reduced-form correlations both serve as targets for external validation of the model, and more broadly provide statistical evidence that news coverage plays a role in international business cycle comovement. In the quantitative model, raising the news coverage intensity of a pair of sectors increases the covariance in hours worked between these sectors, and more so if these sectors trade more with each other. Thus, in contrast to a perfect information model, our model can successfully reproduce the qualitative patterns documented in the data.

In summary, the presence of informational frictions interacted with a complex production network can be quantitatively important for understanding the sources of international fluctuations and the transmission of different types of shocks. The news media plays an important role in modulating the informational frictions, and can be used as a key source of discipline for quantitative models.

Related literature. Our project connects two research programs that so far have had fairly limited contact. The first is the closed-economy literature on the role of imperfect information and noise shocks in the business cycle (a very partial list includes Beaudry and Portier, 2006; Lorenzoni, 2009; Barsky and Sims, 2011; Blanchard, L’Huillier, and Lorenzoni, 2013; Angeletos and La’O, 2013; Nimark, 2014; Benhabib, Wang, and Wen, 2015; Huo and Takayama, 2015; Chahrour and Jurado, 2018; Acharya, Benhabib, and Huo, 2021; Hébert and La’O, 2022; Bybee et al., 2023). While previous literature quantified the role of belief shocks by matching aggregate variables (Angeletos, Collard, and Dellas, 2018), we combine novel news coverage data with cross-country expectations survey data to discipline the information frictions and shocks to beliefs. With the partial exception of Levchenko and Pandalai-Nayar (2020) and Bailey, Veldkamp, and Waugh (2020), this literature has made little contact with the study of international shock transmission or international trade patterns. Our contribution is to explore how information frictions affect shock transmission channels in the context of global supply chains.

The second is the literature on aggregate fluctuations in production networks under perfect information (see, among others, Carvalho, 2010; Foerster, Sarte, and Watson, 2011; Acemoglu et al., 2012; Acemoglu, Akcigit, and Kerr, 2016; Barrot and Sauvagnat, 2016; Atalay, 2017; Grassi, 2017; Baqaee, 2018; Baqaee and Farhi, 2019a,b; Boehm, Flaaren, and Pandalai-Nayar, 2019; Bigio and La’o, 2020; Carvalho et al., 2020; Foerster et al., 2022; vom Lehn and Winberry, 2022), as well as applications of these ideas and techniques to international shock transmission (e.g. Kose and Yi, 2006; Burstein, 2010).

A smaller set of contributions introduces non-technology shocks in a reduced form, and shows that doing so improves the performance of international business cycle models (Stockman and Tesar, 1995; Wen, 2007; Bai and Rios-Rull, 2015).

Our paper is also related to a growing literature on network games with incomplete information (Bergemann, Heumann, and Morris, 2017; Angeletos and Huo, 2021; Auclert, Rognlie, and Straub, 2020; Lian, 2021), especially in the context of input-output networks (Atolia and Chahrour, 2020; La’O and Tahbaz-Salehi, 2022). Closest to our work is the recent contribution by Chahrour, Nimark, and Pitschner (2021), that develops a framework with information frictions in a closed-economy production network, and shows that variations in news coverage can synchronize sectors’ responses and amplify aggregate fluctuations. Our paper connects international news coverage data with data on expectations, quantifies the role of noise shocks in international business cycle fluctuations, and explores the interaction between the production network and incomplete information in shaping shock propagation. The feature that the equilibrium outcome is shaped jointly by the network structure and information frictions resembles that in La’O and Tahbaz-Salehi (2022). That paper focuses on the optimal monetary policy implications in a closed economy and does not study the differential impacts of private vs. public signals.

Finally, our paper complements the empirical work on the properties of subjective beliefs at the business cycle frequency (recent contributions include Coibion and Gorodnichenko, 2015; Bhandari, Borovička, and Ho, 2019; Bianchi, Ludvigson, and Ma, 2022; Bordalo et al., 2020, 2023a,b; Kohlhas and Walther, 2021; Angeletos, Huo, and Sastry, 2021; Fraiberger et al., 2021; Hassan et al., 2023). The literature has mostly focused on whether consensus and individual forecasts overreact or underreact to changes in economic conditions, without identifying the sources of information. Our paper contributes to this line of research by providing empirical evidence that greater news coverage is associated with improved quality of professional forecasts. For regular households, D’Acunto et al. (2021) shows that individuals’ daily shopping experiences are informative when they forecast inflation rates. Closest to our empirical results, Carroll (2003), Lamla and Lein (2014) and Larsen, Thorsrud, and Zhulanova (2021) relate the gap in inflation forecasts between consumers and professional forecasters to the intensity of inflation news coverage. These papers focus on the regular consumers’ acquisition of information that is available in the economy (i.e. possessed by the professional forecasters). In contrast, our results are about the relationship between news coverage and information available to the professional forecasters themselves.

The rest of the paper is organized as follows. Section 2 sets up and solves a global network model of production and trade with informational frictions. Section 3 describes our data collection effort, and documents some reduced-form patterns in international news coverage. Section 4 calibrates and quantifies the model. Section 5 concludes. The appendices collect proofs of propositions and additional details on theory, data, and robustness.
2. Theoretical Framework

This section develops a model with sufficiently rich production and information structures to quantify the role of informational frictions and non-fundamental shocks in global value chains.

2.1 Setup

There are N countries indexed by n and m and J sectors indexed by j and i. Each country n is populated by a representative household. The household consumes the final good available in country n and supplies labor and capital to firms. In each country-sector, there is a continuum of information islands indexed by t, with a large number of competitive firms on each island.\(^5\)

Unlike the standard production network models, in our framework agents face informational frictions. In particular, each period is split into two stages. In the first stage, local labor markets open at each information island t and the quantity of labor is determined. At this stage, firms may not have perfect knowledge about the fundamentals in other locations. In the second stage, all information becomes public. Firms choose their intermediate goods inputs, households choose final consumption, and all goods markets clear at the equilibrium prices.\(^6\)

Households. The problem of the household is

\[
\max \mathcal{F}_{n,t} - \sum_j \int H_{nj,t}(t)^{1+\frac{1}{\gamma}} dt
\]

subject to

\[
P_{n,t} \mathcal{F}_{n,t} = \sum_j \int W_{nj,t}(t)H_{nj,t}(t)dt + \sum_j R_{nj,t}K_{nj},
\]

where $\mathcal{F}_{n,t}$ is consumption of final goods, and $H_{nj,t}(t)$ is the total labor hours supplied to island t in sector j. Labor collects a sector-island-specific wage $W_{nj,t}(t)$, $R_{nj,t}$ is the return to capital in each sector, and $P_{n,t}$ is the price of the final consumption bundle. For simplicity, we assume that final consumption is a Cobb-Douglas aggregate of goods coming from each country-sector:

\[
\mathcal{F}_{n,t} = \prod_{m,i} \mathcal{F}_{mni,n,t}^{\pi_{ni,n}}
\]

\(^5\)The assumption of a continuum of islands within each country-sector helps ensure that innovations to the private signals do not have an impact on aggregate variables, which is in contrast to the innovations to the public signals.

\(^6\)This is the conventional timing assumption in the literature on belief shocks (e.g. Angeletos and La’O, 2013). Alternatively, firms could also choose a subset of their intermediate inputs in the first stage under incomplete information. In this case, more inputs in the production will be subject to informational frictions, which would strengthen our main results about the role of information frictions in shock propagation. We do not pursue this modeling approach for two reasons. First, it would further complicate the analysis. Second, these frictional intermediate inputs choices would manifest themselves as international trade wedges from a business cycle accounting perspective. As shown in Huo, Levchenko, and Pandalai-Nayar (2019), these trade wedges only play a secondary role in shaping international business cycles.
where the \(\pi_{mi,n} \)'s capture the expenditure shares on various goods.

Our formulation of the disutility of the labor supply extends the GHH preferences (Greenwood, Hercowitz, and Huffman, 1988) to allow labor to be supplied separately to each sector and each island. In this formulation, labor is neither fixed to each sector nor fully flexible, and its responsiveness is determined by the Frisch elasticity \(\psi \).

Production technology. Firms within sector \(j \) in country \(n \) operate the following production function

\[
Y_{nj,t} = \exp \left(-\omega_{nj} \left(K_{nj}^{1-\alpha_j} H_{nj,t}^{\alpha_j} \right)^{\eta_j} \left(\prod_{m,j} X_{mi,nj,t}^{\omega_{mi,nj}} \right)^{1-\eta_j} \right),
\]

where \(X_{mi,nj} \) is the usage of inputs from country-sector \((m, i) \) in \((n, j) \) and \(\omega_{mi,nj} \) determines its importance in production. The total factor productivity shock \(z_{nj,t} \) is the fundamental shock in the model economy. We interpret \(K_{nj} \) as a fixed factor that does not change. TFP shocks in sector \((n, j) \) are distributed \(z_{nj,t} \sim N(0, \mathcal{V}(z_{nj,t})) \). For simplicity, this section assumes that these shocks are uncorrelated across sectors.

For maximum expositional simplicity and transparency, we assume Cobb-Douglas functional forms for the preferences and the production technologies. This is not essential for any of the main insights on the effects of informational frictions. A CES specification of preferences and technology leads to a more involved expression for equilibrium prices than the one in Lemma 1 below, but the main theoretical results (Propositions 2.1 and 2.2 below) continue to hold. Appendix D.3 replicates the quantitative results under non-unitary substitution elasticities.

Second stage. In the second stage, the primary factors have already been fixed and firms only choose the amounts of intermediate goods. The problem of a firm in information island \(t \) that has chosen \(H_{nj,t}(\cdot) \) is

\[
\Omega_{nj,t}(H_{nj,t}(\cdot)) = \max_{\{X_{mi,nj,t}(\cdot)\}} P_{nj,t} \exp \left(-\omega_{nj} \left(K_{nj}^{1-\alpha_j} H_{nj,t}^{\alpha_j} \right)^{\eta_j} \left(\prod_{m,j} X_{mi,nj,t}(\cdot)^{\omega_{mi,nj}} \right)^{1-\eta_j} \right) - \sum_{m,i} P_{mi,n,t} X_{mi,nj,t}(\cdot), \tag{2.2}
\]

where \(P_{nj,t} \) is the output price, and \(P_{mi,n,t} \) is the price of input \((m, i) \) in country \(n \). This price can differ from the output price of \((m, i) \), \(P_{mi,t} \), due to trade costs.\(^7\)

\(^7\)We do not explicitly introduce trade costs in our framework. For our purposes, iceberg trade costs are isomorphic to taste shifters. To economize on notation, we thus conceive of the preference shifters \(\pi_{mj,n} \) and \(\omega_{mj,nj} \) as reflecting trade costs, an approach common in the IRBC literature (e.g. Backus, Kehoe, and Kydland, 1992).
The goods market clearing condition can be written as

\[p_{nj,t}Y_{nj,t} = \sum_m P_{m,t}F_{m,t}^\pi_{nj,m} + \sum_{m,t} (1 - \eta_t)P_{m,t}Y_{m,t,\eta} \omega_{nj,mi}, \]

\[= \sum_{m,t} \eta_t P_{m,t}Y_{m,t,\eta} \omega_{nj,mi} + \sum_{m,t} (1 - \eta_t)P_{m,t}Y_{m,t,\eta} \omega_{nj,mi}, \]

where the second equality is due to the trade balance condition.

Throughout, we use lowercase letters to denote variables in log deviations from steady state, and bold letters to denote vectors or matrices that collect the corresponding country-sector elements. The following lemma summarizes how changes in prices are related to changes in hours and fundamentals.

Lemma 1. Given the predetermined hours, the prices that clear markets in the second stage are

\[p_t = -(I - (1 - \eta)\omega)^{-1}(z_t + \eta \alpha h_t). \]

Proof. See Appendix A. \(\square\)

In turn, both output and input prices determine profits (2.2).

First stage. In the first stage, households send workers to each information island. We assume that all workers and firms share the same information within island \(i\). The local wage is determined by the labor market clearing on island \(i\).

The labor supply is determined by the expected real wage

\[W_{nj,t}(i) = H_{nj,t}(i)^{\frac{1}{\eta}} \mathbb{E} \left[P_{nj,t}|I_{nj,t}(i) \right], \]

where \(I_{nj,t}(i)\) denotes the information set on island \(i\), specified below. Meanwhile, firms choose their labor demand to maximize their expected profit

\[\max_{H_{nj,t}(i)} \mathbb{E} \left[\Omega_{nj,t}(H_{nj,t}(i)) | I_{nj,t}(i) \right] - W_{nj,t}(i)H_{nj,t}(i), \]

which leads to the following first-order condition

\[H_{nj,t}(i)W_{nj,t}(i) = \alpha_j \eta_j (1 - \eta_j)^{\frac{1}{\eta_j}} \mathbb{E} \left[\prod_{m,j} \left(P_{m,nj,t} \omega_{mi,nj}^{1 - \frac{1}{\eta_j}} \right)^{\frac{1}{\eta_j}} P_{nj,t}^\rho \exp(z_{nj,t}) \frac{1}{\eta_j} K_{nj}^{1 - \alpha_j} H_{nj,t}(i) | I_{nj,t}(i) \right]. \]

Equating local labor demand and supply leads to the following condition that characterizes the local
equilibrium hours:

\[h_{n_j,t}(t) = \left(1 + \frac{1}{q_j} - \alpha_j \right)^{-1} \mathbb{E} \left[\frac{1}{\eta_j} z_{n_j,t} + \frac{1}{\eta_j} p_{n_j,t} + \left(1 - \frac{1}{\eta_j} \right) \sum_{m,i} \omega_{mi,n_j} p_{mi,t} - \sum_{m,i} \tau_{mi,n} p_{mi,t} \right] I_{n_j,t}(t) \].

(2.3)

Equation (2.3) highlights that in order to decide on the optimal hours in stage 1, island \(t \) must form expectations of what its output, input, and consumption prices will be at stage 2. Hours increase in both the island’s expectation of its country-sector’s TFP and output price. Hours decrease in the island’s expectation of both the prices of inputs it needs in production (the \(\left(1 - \frac{1}{\eta_j} \right) \sum_{m,i} \omega_{mi,n_j} p_{mi,t} \) term), and the prices of goods that households consume (\(\sum_{m,i} \tau_{mi,n} p_{mi,t} \)).

In turn, Lemma 1 shows that in order to forecast these prices, a firm needs to forecast all other locations’ fundamentals and hours, due to the linkages through the production network as encapsulated by the Leontief inverse \((I - (I - \eta \omega)^{-1})\).

Also note that when (2.3) holds exactly instead of in expectation, there is no labor wedge. The expectation error about the outcomes in the second-stage creates a wedge between marginal rate of substitution and marginal product of labor, which can be interpreted as the labor wedge. We will revisit this observation in Section 4.

Information structure. We make the following assumptions on the information structure in the first stage. Agents receive two types of information: a private signal that is only observed by a particular information island and a public signal that is shared by all firms. First, all firms observe a public signal about TFP in each country-sector \((m, i)\):

\[s_{mi,t} = z_{mi,t} + \epsilon_{mi,t}, \quad \epsilon_{mi} \sim \mathcal{N}(0, \kappa_{mi}^{-1} \mathbb{V}(z_{mi,t})) \quad \forall m, i. \]

(2.4)

As will become clear below, the innovation to the public signal \(\epsilon_{mi,t} \) will have aggregate consequences. This is the non-fundamental shock in our economy, and we label it “noise.” We allow the precision of the public signal to vary across country-sectors \((m, i)\). To keep the scale of information heterogeneity manageable, we do not differentiate the public signals by receiving country \(n \).

Second, firms receive private information about other sectors’ TFP shocks. On information island \(t \) in sector \((n, j)\), firms observe

\[x_{nj,mi,t}(t) = z_{mi,t} + u_{nj,mi,t}(t), \quad u_{nj,mi,t}(t) \sim \mathcal{N}(0, \tau_{nj,mi}^{-1} \mathbb{V}(z_{mi,t})) \quad \forall m, i, t. \]

(2.5)

The private signal contains all other sources of information that is not common knowledge. The precision of the private signal is \(\tau_{nj,mi} \). Firms may have very accurate information about their own sector’s TFP, which would be captured by a high \(\tau_{mi,mi} \). Note that the precisions of both public and private signals about TFP in sector \((m, i)\) are scaled by the variance of the actual TFP of that sector.
\[V(z_{mi,t}), \] as in the quantification we will use actual sectoral data in which sectoral volatilities differ.

In this section we do not need to specify the source of these signals. In Section 4 below, we will interpret the public signal as coming at least in part from news stories appearing in newspapers, and the variation in the signal precision \(\kappa_{mi} \) will reflect the differences in the intensity of news coverage of the sector. In Section 4 we also explore a specification in which the precision of private signals falls in the network distance, in the spirit of rational inattention.

Taking stock, the information set of island \(t \) is given by \(I_{nj,t}(t) = \{ x_{mi,t}(t), s_{mi,t} \} \). The presence of private signals implies that information is dispersed, and we discuss the implications of this for equilibrium outcomes in the next subsection.

2.2 Equilibrium Characterization

At the sectoral level, the total hours worked is given by the aggregation across information islands within the country-sector

\[
h_{nj,t} = \int h_{nj,t}(t) dt = \left(1 + \frac{1}{\psi} - \alpha \right)^{-1} \mathbb{E}_{nj,t} \left[\frac{1}{\eta_j} z_{nj,t} + \frac{1}{\eta_j} p_{nj,t} + \left(1 - \frac{1}{\eta_j} \right) \sum_{m,j} \omega_{mi,nj} p_{mi,t} - \sum_{m,j} \pi_{mi,n} p_{mi,t} \right].
\]

Under incomplete information, the response of a sector’s aggregate hours depends on the average expectations \(\mathbb{E}_{nj,t}[\cdot] \) about the prices that are determined in the second stage. Recall from Lemma 1 that all price changes are functions of the global vectors of changes in hours and fundamentals. It follows that the outcomes hinge on the expectations of other sectors’ responses to shocks, and the fixed point problem can be represented as a beauty contest game.

Lemma 2. The vector of country-sector changes in hours solves the following beauty contest game:

\[
h_t = \varphi \mathbb{E}_t[z_t] + \gamma \mathbb{E}_t[h_t],
\]

where \(\gamma \) and \(\varphi \) capture the effects of global value chains

\[
\varphi = \left(\frac{1 + \psi}{\psi} I - \alpha \right)^{-1} M, \quad \gamma = \left(\frac{1 + \psi}{\psi} I - \alpha \right)^{-1} (M\eta - I) \alpha,
\]

and

\[
M = \pi(I - (I - \eta)\omega)^{-1}.
\]

Proof. See Appendix A. \(\square \)

The Lemma characterizes the solution to this global general equilibrium model conditional on a vector of fundamental and signal shocks. Knowing the change in hours implicitly given by (2.6)
and the vector of TFP changes pins down GDP in every country (see Huo, Levchenko, and Pandalai-Nayar, 2019, for the detailed derivations). The result highlights the respective roles of GVCs and imperfect information. The cross-country linkages through trade are encapsulated by the matrices φ and γ. These matrices are functions of only various observable shares, such as labor and intermediate input intensities in production, and final and intermediate expenditure shares. These matrices can be computed using widely available world input-output datasets. The role of information frictions is encapsulated by the fact that agents set hours based on expectations of the log changes in productivity and hours in all countries and sectors worldwide, as highlighted in the discussion of the frictionless benchmark that follows next.

Frictionless benchmark. Consider momentarily the frictionless benchmark ($\tau = \infty$), in which case the outcomes are uniquely pinned down by the fundamentals alone. Particularly, we can take off the expectation operator from (2.6) and simplify to obtain:

$$h_t = (I - \gamma)^{-1} \varphi z_t.$$

This is a special case of the analytical solution to the global network model in Huo, Levchenko, and Pandalai-Nayar (2019), under Cobb-Douglas preferences. It resembles the Leontief inverse, and the change in hours can be decomposed into direct and indirect effects

$$h_t = \varphi z_t + \gamma \varphi z_t + \gamma^2 \varphi z_t + \ldots.$$

The direct (also called “first-order,” in the network sense) effect captures the changes in hours resulting from the change in own productivity and in the world vector of prices following a vector of productivity changes, but holding every other sector’s hours response fixed. The second-order effect adds the first-round change in hours. The third-order effect adds the response of hours to the first-round change in hours, and so on. All the indirect effects together encapsulate the infinite-round adjustment of hours to changes in other sectors’ hours.

As in conventional production network models, the fundamental shocks z_t uniquely determine the outcomes. A strong implication of perfect information and rationality is that agents have no difficulty in inferring the beliefs, and therefore the decisions, of other firms. As a result, news coverage plays no role in shaping international fluctuations or shock transmission. However, the feature that agents can perfectly infer others’ beliefs is at odds with abundant empirical evidence that beliefs are heterogeneous (e.g. Coibion and Gorodnichenko, 2015), and it will be modified once we allow for incomplete information.

Incomplete information. With incomplete information, an important deviation from the frictionless benchmark above is that the equilibrium outcomes now depend on both first-order and higher-order expectations. To see this, consider the response of hours in sector (i, j) to a TFP shock that takes place
in sector \((m, i)\). Repeatedly iterating condition (2.6) leads to

\[
\begin{align*}
 h_{nj,t} &= \varphi_{nj,mi} \overline{E}_{nj,t}[z_{mi,t}] + \sum_{k,t} \gamma_{nj,kt} \varphi_{kt,mi} \overline{E}_{nj,t}\left[\overline{E}_{kt,t}[z_{mi,t}]\right] + \\
 &+ \sum_{k,t} \sum_{o,q} \gamma_{nj,kt} \gamma_{kt,oq} \varphi_{oq,mi} \overline{E}_{nj,t}\left[\overline{E}_{kt,t}\left[\overline{E}_{oq,t}[z_{mi,t}]\right]\right] + \cdots
\end{align*}
\]

(2.9)

When the shock is not common knowledge, the law of iterated expectations does not apply and higher-order expectations start to differ from first-order expectations. Firms need to forecast the forecasts of their suppliers and customers, and the forecasts of their suppliers' suppliers, and so on. In fact, in equilibrium firms' decisions will depend on an infinite number of different higher-order expectations. The following proposition summarizes this discussion.

Proposition 2.1. If the norm of the leading eigenvalue of \(\gamma\) is less than one, the optimal responses of sectoral hours satisfy

\[
\begin{align*}
 h_i &= \varphi \overline{E}_t[z_i] + \gamma \varphi \overline{E}_t^2[z_i] + \gamma^2 \varphi \overline{E}_t^3[z_i] + \ldots
\end{align*}
\]

(2.10)

where \(\overline{E}_t[\cdot]\) are higher-order expectations defined recursively as in (2.9).

Proof. See Appendix A. \(\square\)

Compared with the frictionless benchmark (2.8), Proposition 2.1 shows that the direct effect is arrested by the first-order uncertainty about the underlying fundamental, since the expectation of the shock is less volatile than the shock itself. Further, the indirect effect is arrested by the higher-order uncertainty. Proposition 2.1 also highlights the interaction between the order of expectations and the position of sectors in the production network. In particular, the order of the expectations increases together with the order of the network effect. For the direct effect, agents only need to forecast the vector of world TFP. For that forecast, they use the first-order expectations. For the second order effect, they need to forecast the endogenous response of hours to the change in TFP. For that they rely on second-order expectations, as they need to forecast what the other agents believe. For the third round effect, they need to forecast yet other agents' response to the first round change in hours, for which third-order expectations are required, and so on. So the relative importance of higher-order expectations depends on the relative positions of sectors in the production network, a point we will illustrate via examples below.

Analytical solution. Given the assumption on the information structure, it is straightforward to specify sector \((n, j)\)'s first-order expectations about sector \((m, i)\)'s shocks

\[
\begin{align*}
 \overline{E}_{nj,t}\left[\begin{array}{c} z_{mi,t} \\ \varepsilon_{mi,t} \end{array}\right] &= \left[\begin{array}{c} \frac{\tau_{nj,mi} + \kappa_{mi}}{1 + \tau_{nj,mi} + \kappa_{mi}} \\ 1 \end{array}\right] \left[\begin{array}{c} z_{mi,t} \\ \varepsilon_{mi,t} \end{array}\right] \equiv \Lambda_{nj,mi}\left[\begin{array}{c} z_{mi,t} \\ \varepsilon_{mi,t} \end{array}\right].
\end{align*}
\]
The equilibrium outcomes, however, depend on the shocks in a more involved way because of all the higher-order expectations. The following proposition provides the closed-form solution.

Proposition 2.2. In response to shocks about sector \((m, i)\), the equilibrium outcomes respond to both the fundamental shock and the noise:

\[
h_{nj,t} = G_{nj,mi}^C z_{mi,t} + G_{nj,mi}^\epsilon \epsilon_{mi,t} = G_{nj,mi} \begin{bmatrix} z_{mi,t} & \epsilon_{mi,t} \end{bmatrix}'.
\]

The policy function \(G_{mi} \equiv \begin{bmatrix} G_{11,mi} & G_{12,mi} & \ldots & G_{Nj,mi} \end{bmatrix}'\) is given by

\[
\text{vec}(G'_{mi}) = \left(I - \left[\gamma_{11} \otimes \Lambda'_{11,mi} \quad \ldots \quad \gamma_{Nj} \otimes \Lambda'_{Nj,mi} \right] \right)^{-1} \left[\begin{bmatrix} \varphi_{11,mi} & 0 & \ldots & \varphi_{Nj,mi} & 0 \end{bmatrix} \Lambda_{11,mi} & \ldots & \Lambda_{Nj,mi} \right]'.
\]

Proof. See Appendix A. \(\square\)

In contrast to the frictionless solution in equation (2.8), the responses of hours are determined by a modified version of the Leontief inverse. Under information frictions, it is the interaction between the uncertainty about the underlying shocks and the production network that shapes aggregate fluctuations.

Proposition 2.2 makes it explicit that the aggregate fluctuations are no longer driven exclusively by fundamental shocks; rather they are influenced by the noise shocks as well. The presence of the imperfect signal not only provides information about the fundamentals, but also opens the door to fluctuations that are orthogonal to the fundamentals. The basic logic is similar to the closed-economy models without production networks such as Lorenzoni (2009) or Angeletos and La’O (2013).

Benchmark with common precision. To see the underlying forces in a more transparent way, it is useful to explore the case in which the signal precision is homogeneous across locations.

Proposition 2.3. Assume common precision across locations: \(\tau_{nj,mi} = \tau\) and \(\kappa_{mi} = \kappa\).

1. The equilibrium outcome can be expressed as

\[
h_t = (I - \lambda_\tau \gamma)^{-1} \left\{ \varphi \lambda_\tau z_t + (I - \gamma)^{-1} \varphi \lambda_\epsilon (z_t + \epsilon_t) \right\}, \tag{2.11}
\]

where \(\lambda_\tau = \frac{\tau}{1 + \tau + \kappa} \in (0, 1)\) and \(\lambda_\epsilon = \frac{\kappa}{1 + \tau + \kappa} \in (0, 1)\).

2. Consider the \(k\)-th order response of country-sector \((n, j)\) to \((m, i)\)'s shocks in equation (2.9). The loading of the \(k\)-th order response on the public signal relative to that on the private signal is increasing in \(k\), and the \(k\)-th order response conditional on the TFP shock relative to its perfect-information counterpart is decreasing in \(k\).

Proof. See Appendix A. \(\square\)
We unpack part 1 in Proposition 2.3 by first inspecting two extreme cases. When there is only private information (λ_z = 0), the first-order uncertainty results in a weaker response to the fundamental, \(E_{mi,t} = \lambda_z z_{mi,t} \), as the true innovation in \(z_{mi,t} \) is not fully reflected in the agents’ expectations. Higher-order uncertainty further dampens the propagation mechanism through trade linkages with \(E_{nj,t}^k = \lambda_z^k z_{mi,t} \). At the macro level, the response of hours can be written as \(h_t = (I - \lambda_z \gamma)^{-1} \varphi \lambda_z z_t \), which is as if the network dependence becomes \(\lambda_z \gamma \) in the “Leontief inverse” and the fundamental shock itself is attenuated by \(\lambda_z \). When there is only public information (\(\lambda_z = 0 \)), inference is still imperfect but the first-order and higher-order expectations coincide with each other, \(E_{mi,t} = \lambda_z(z_{mi,t} + \epsilon_{mi,t}) \). The response of hours becomes \(h_t = (I - \gamma)^{-1} \varphi \lambda_z (z_t + \epsilon_t) \). This expression underscores that the noise shock contributes to international fluctuations, as actual hours depend not only on the fundamentals \(z_t \), but also on the noise in the public signal about those fundamentals \(\epsilon_t \). In this case, the impacts of the noise shocks on the economy are uniform across lower- and higher-order network effects, as the “Leontief inverse” remains the same as in the perfect information benchmark. Finally, when both private and public information are present, the equilibrium outcome is a mixture of the two extreme cases.

The two extreme cases also help build intuition for part 2 of the proposition. Higher-order expectations react progressively less to true innovations in TFP. Thus, relative to the perfect-information case, higher-order responses to fundamentals become weaker and weaker as \(k \) rises. While this is especially transparent in the private-information only case, as \(E_{nj,t}^k = \lambda_z^k z_{mi,t} \), the result still holds when there are both private and public signals. There is no similar “discounting” of public information as the order of the expectations rises, and thus the public signals become relatively more important as \(k \) increases. While Proposition 2.3 states the results under homogeneous signal precision, Section 4 revisits these predictions in the fully general model calibrated to data.

2.3 Example: Vertical Network

To clarify the interaction between the production network and the role of incomplete information, we consider a stylized vertical network. While in the general case, the \(k \)-th order response is a complicated function of the full network, as encapsulated by the impact matrix \(\gamma^k \varphi \) (see 2.10), in this example the \(k \)-th order response has an especially simple form, allowing us to bring to the fore the role of higher-order expectations and illustrate the intuition behind Proposition 2.3. We begin by arbitrarily ordering all country-sectors by their upstreamness, where the most upstream sector is 1 and the most downstream sector is \(NJ \). To make the results as transparent as possible, we assume that only the most upstream sector is subject to the fundamental shock \(z_{1,t} \), all other sectors’ TFP shocks are muted, and define a vertical network such that

\[
 h_{1,t} = E_{1,t}[z_{1,t}], \quad h_{k,t} = E_{k,t}[h_{k-1,t}] \quad \text{for } k > 1.
\]
That is, only sector 1 has a first-order reaction to its own TFP shock. All the other sectors react only to expected hours changes in the sector directly upstream, with a unitary elasticity. In other words, sector k’s total response to the sector 1 shock is given by the k–th order term in (2.10).

Figure 1 displays the responses of hours to TFP and noise shocks as a function of the sector’s downstreamness. With perfect information, the equilibrium outcome in this stylized economy is simple: all country-sectors k respond one-for-one to the fundamental shock:

$$h_{k,t} = z_{1,t} \quad \forall k \in \{1, \ldots, NJ\}.$$

That is, the shock transmits to other country-sectors perfectly. This is depicted by the solid blue line. In contrast, with information frictions the transmission is imperfect, and sectors at different points in the supply chain react differently to the same shock. The following proposition characterizes the economy’s responses to shocks under imperfect information.

Proposition 2.4. Assume the precision of private information is $\tau_{k,1} = \tau$ for all k and of public information is $\kappa_1 = \kappa$. A sector k production stages downstream from sector 1 has the following equilibrium hours:

$$h_{k,t} = \mathbb{E}_{k,t}[z_{1,t}] = G^z_k z_{1,t} + G^\varepsilon_k \varepsilon_{1,t},$$

where G^z_k is decreasing in k and G^ε_k is increasing in k:

$$G^z_k = \frac{1}{1 + \kappa} \left(\kappa + \left(\frac{\tau}{1 + \kappa + \tau} \right)^k \right), \quad G^\varepsilon_k = \frac{\kappa}{1 + \kappa} \left(1 - \left(\frac{\tau}{1 + \kappa + \tau} \right)^k \right).$$

(2.12)

Proof. See Appendix A. □

This proposition states two basic properties of the interaction between informational frictions and the network structure. First, the response to the fundamental shock $z_{1,t}$ is smaller for more downstream sectors (higher k). This is depicted by the dashed blue line in Figure 1. Note that this is in contrast to the response to the exact same fundamental shock under perfect information, where the response does not decay downstream. Second, the hours response to the noise shock $\varepsilon_{1,t}$ is stronger in the more downstream sectors, as depicted by the dashed red line in Figure 1. To describe the result differently, an island’s policy function translates the private and public signals into the hours response. As one moves further downstream, the higher is the responsiveness of sectoral hours to the public signal and the lower is the responsiveness to the private signal. Since in the policy function the coefficient on the public signal is the coefficient on the noise shock $\varepsilon_{1,t}$, noise plays a bigger role in the fluctuations of hours in more downstream sectors. For the TFP shock $z_{1,t}$, the reduced response to the private signal dominates the increased response to the public signal, attenuating the total response to the TFP shock in sectors further downstream.

Proposition 2.4 is best understood via the role of higher-order expectations. Each sector needs to forecast the hours of the sector immediately upstream from it. Take the sector immediately
Notes: This figure displays the response of hours in a vertical network to a shock in the most upstream sector as a function of sector downstreamness. The solid line displays the response to a TFP shock in the environment without information frictions. The dashed lines display the hours responses to a TFP shock (blue) and noise shock (red) under incomplete information. The calibration uses $\lambda_s = 0.6$ and $\lambda_e = 0.2$.

downstream from sector 1. By assumption, its hours do not depend directly on its expectation of $z_{1,t}$, but do depend on the sector 1 hours $h_{1,t}$. Thus, the downstream sector needs to forecast the endogenous response of $h_{1,t}$. To do that requires evaluating a second-order expectation, namely sector 2’s belief about sector 1’s beliefs. For that, the public signal is more useful than the private signal, as it is common knowledge that both sector 1 and sector 2 are observing the same public signal. The public signal is a better window into the beliefs of others than the private signal. Then sector 3 has to forecast the hours of sector 2. Since 3 is further downstream from the fundamental shock than 2, it is even less important to 3 what the true fundamental is. To forecast 2’s hours, it needs to form expectations about 2’s beliefs about sector 1’s hours. Because the public signal is common to sectors 1, 2, and 3, it is relatively more important in evaluating the third-order expectation, and thus sector 3 relies even more on the public signal than sector 2.

Since the public signal is simply true TFP plus noise, putting progressively more weight on the public signal has the direct consequence that the noise shock has a greater effect on hours. Indeed, by about sector 12, the responses of hours to true TFP and to the noise shock coincide. This means that from sector 12 onwards, it is as if sectors only rely on the public signal to make its hours supply decision. Meanwhile, the same fundamental shock $z_{1,t}$ moves higher-order expectations by less than lower-order ones, attenuating the transmission of the TFP shocks further downstream.

This section defines a vertical network directly in terms of impact matrices, rather than the structural parameters such as input-output coefficients. This is done for maximum clarity in conveying the key intuition. Appendix A.1 presents the results of a vertical network example in which the “snake”
The network is defined more conventionally by the coefficients of the input-output matrix. In this case, responses to all shocks under all informational structures decay further downstream. However, it is still the case that the public signal matters relatively more in the more downstream sectors.

Our next goal is to quantify this model and explore the importance of imperfect information and noise shocks in the global value chain for international fluctuations. To do this requires data that can be used to discipline not only the global production structure, but also the informational frictions.

3. Data

The calibration of our model uses several sources of data.

Global sectoral news data. Our key empirical contribution is to assemble a novel database of international economic news coverage. Our data collection spans the main national newspapers in the G7 countries plus Spain over the period 1995-2020. The newspapers are: the Wall Street Journal (US), the New York Times (US), USA Today (US), Financial Times (UK), the Globe and Mail (Canada), Süddeutsche Zeitung (Germany), Corriere della Sera (Italy), El País (Spain), Le Figaro (France), Mainichi Shimbun (Japan), and Sankei Shimbun (Japan). For each of these newspapers, we tabulate the frequency with which each sector from each country in the sample is mentioned in a particular time window. That is, one observation in our data would be how many articles about the German automotive sector appear in the New York Times in a particular quarter.

The information is sourced from Dow Jones Factiva, a news aggregator. Similar to Chahrour, Nimark, and Pitschner (2021), our approach relies on a set of “tags,” which are standardized content identifiers applied to each news article in Factiva. The tags can range from sector or country names to the names of celebrities. We restrict attention to articles tagged as “economic,” and within them, search manually for sector×country tags in each newspaper in a particular time window. Factiva does not employ commonly used sectoral classifications, so we concord Factiva sectors to ISIC Rev. 4 to merge these data with other sources. Appendix Table A2 displays the concordance between Factiva sectors and ISIC Rev. 4. All in all, there are 131 country-sectors. In principle data are available daily, but to merge with the other economic time series we aggregate to quarters.

There are a number of nuances in this process, discussed in detail in Appendix B.1. One worth mentioning is that revisions to Factiva’s tagging algorithm around the year 2000 resulted in an increase in the number of tags applied to each article. This creates a level shift in the number of tags, as the algorithm does not appear to have been applied to articles prior to 2000 retroactively. For the purposes of our analysis, we will either use frequency shares (share of tags about a country-sector in total tags) or time fixed effects, and so this aspect of the data will not drive our results. While we do not collect

8 As we search for the interaction of a sector and country, the dimensionality of our manual search is orders of magnitude higher than in Chahrour, Nimark, and Pitschner (2021). That is, we cannot simply download all tags in all newspapers in, say, 2020:Q2 and then sort by sector to count “automobile” tags. We must search for automobiles×Germany, automobiles×France, etc in 2020:Q2, and also account for overlaps where multiple countries or countries outside our sample are mentioned.
Figure 2: News Coverage and Input-Output Heat Maps

A. Sectoral News Coverage
B. Bilateral News Coverage
C. Input-Output Matrix

Notes: This figure displays heatmaps of local news coverage shares. Panel A presents the news coverage about the sector on the y-axis in newspapers in countries on the x-axis. Panel B displays the heatmap of the bilateral news coverage of country-sectors on the x-axis in newspapers in countries on the y-axis. The colors code the share of the y-axis country news coverage about the x-axis country-sector in the y-axis country’s total news. For reference, Panel C displays the heatmap of the input-output matrix. The colors code the share of the y-axis country-sector’s sales to the x-axis country-sector in the x-axis country-sector’s total sales. In panels B and C sector labels are suppressed due to lack of space. All non-zero shares are logged to improve legibility.

information on what is reported in the news – such information would be challenging to gather systematically manually – we provide suggestive evidence on types of news content in Appendix C.1.

Basic patterns in economic news data. We document some patterns in these novel data, highlighting that country-sector news coverage is cross-sectionally heterogeneous, and only weakly correlated with observables.

As a visual illustration of the cross-sectional heterogeneity, Panel A of Figure 2 plots the domestic sector shares in local news coverage. While some domestic sectors (e.g. financial services) always receive a large share of news coverage, coverage of other sectors varies by country. For instance, German news outlets report on equipment and automobile sectors more frequently than many other countries. Panel B of Figure 2 depicts a heatmap of local news coverage shares (averaged over time), and contrasts it to a standard input-output heatmap in Panel C (e.g. Huo, Levchenko, and Pandalai-Nayar, 2019). While both news coverage shares and input shares are higher for domestic sectors, as evident from the more saturated block diagonals in Panels B and C, there is significant variation off-diagonal. For instance, some US sectors receive a relatively large share of news coverage in all countries in our sample. Newspapers in Japan and Canada do not tend to cover European countries. It is immediately evident when comparing Panels B and C that the patterns of news coverage are not highly correlated with input usage.

Panel A of Figure 3 illustrates that the average frequency share of a sector in global news is
positively correlated with the sector’s size (measured by sector sales share in global sales). While there is an association, it is far from perfect, with an R^2 of only 32%. The panels B and C of Figure 3 highlight that coverage is also positively correlated with a sector’s importance as an input for downstream sectors, and as a sales destination for upstream sectors.\(^{10}\) Finally, Panel D considers the Bonacich network centrality as a single summary measure of how important the sector is in the global production network. As with the overall size, this measure of GVC position has the expected positive correlation with the share of a sector in global news coverage, but the relationship is far from close.

Appendix C.1 explores these correlations between sector size, GVC position, and news coverage intensity more systematically by projecting news coverage on multiple indicators jointly, as well as exploiting the bilateral country patterns in news coverage. We also assess the correlation between news coverage and sectoral TFP growth, and news coverage and sectoral comovement with aggregate GDP (Appendix Figure A5). None of these observables systematically explain a majority of news coverage.

Forecast data. Monthly data on GDP forecasts come from Consensus Forecasts. This database provides current- and next-year real GDP growth forecasts for our sample of countries. The data are at the forecaster level, and include professional forecasters from business, academia, and industry groups. To compute forecast errors, we combine Consensus Forecasts with the actual GDP growth from the IMF World Economic Outlook database. Appendix B.2 describes these data in detail.

Sectoral macro data. Panel data on sectoral macroeconomic variables at the quarterly frequency are not readily available for many countries. We gather this information from national statistical sources and create concordances to build a new panel dataset of industrial production and hours worked by sector for the 8 countries in our sample. As the national sources vary in sectoral classifications and in levels of disaggregation, we concord each individual data source to our 23 ISIC-Revision 4 sectors for each country. The panel covers the entire private economy over the years 1972-2020, but is unbalanced. Appendix B.3 describes the the national data sources and their coverage for the underlying series used to construct our panel, as well as an overview of the data cleaning steps. We provide a detailed Online Handbook for constructing these series and assessing their quality.

For the global trade and input-output linkages, we use the World Input Output Database (WIOD). Basic sectoral output data for calibrating our model come from KLEMS 2019. We use the year 2006 to compute production and input shares.

4. Quantification

This section begins by describing how we use the news coverage intensity data to discipline the key parameters of our model. We then study the calibrated model’s quantitative properties. We first present the macro implications, that quantify the roles of TFP and noise shocks in aggregate volatility

\(^{10}\)Upstreamness and downstreamness are defined in Appendix C.1.
Figure 3: News Coverage, Size, and Sectoral GVC Position

A. Share of News vs Sector Size

B. Share of News vs Upstreamness

C. Share of News vs Downstreamness

D. Share of News vs Bonacich Centrality

Notes: This figure displays the scatterplots of the share of global news coverage on the y-axis (all 4 panels) against the share of the sector in world output (panel A), upstream intensity (panel B), downstream intensity (panel C), and Bonacich centrality, which here is equivalent to the Leontief inverse (panel D). All plots report the bivariate regression slope coefficient, robust standard error, and the R^2. The size of the circles corresponds to the country-sector’s share in world output.

and international comovement. We then turn to the micro implications, and show how TFP and noise shocks propagate through the network. Next, we externally validate the model by documenting the relationship between news coverage and comovement in real variables, both in the data and in the model. Finally, we develop several extensions: (i) varying the precision of the public signal contained in the news coverage; (ii) exploring the differential implications of public vs. private information, and (iii) allowing for the private signal precision to decay in network distance, capturing the notion that agents might have better information about neighboring sectors than more distant ones.

4.1 Calibration

On the real side the model is quite parsimonious. It requires only the Frisch elasticity and the various production function parameters. We calibrate the Frisch elasticity to 2, a common value in the business cycle literature. The labor and value added intensities α_j and η_j come from KLEMS, and are average
Table 1: Parameterization

<table>
<thead>
<tr>
<th>Param.</th>
<th>Value</th>
<th>Source</th>
<th>Related to</th>
</tr>
</thead>
<tbody>
<tr>
<td>ψ</td>
<td>2</td>
<td></td>
<td>Frisch elasticity</td>
</tr>
<tr>
<td>α_j</td>
<td>[.38, .69]</td>
<td>KLEMS 2019</td>
<td>labor and capital shares</td>
</tr>
<tr>
<td>η_j</td>
<td>[.33, .65]</td>
<td>KLEMS 2019</td>
<td>intermediate input shares</td>
</tr>
<tr>
<td>$\pi_{mi,n}$</td>
<td></td>
<td>WIOD 2016</td>
<td>final use trade shares</td>
</tr>
<tr>
<td>$\omega_{mi,nj}$</td>
<td></td>
<td>WIOD 2016</td>
<td>intermediate use trade shares</td>
</tr>
</tbody>
</table>

Fundamental Economy Parameters

Information Friction Parameters

τ	0.11	dispersion of forecasts errors	private signal precision
χ_0	0.22	indirect inference	public signal precision, intercept
χ_1	1.45	indirect inference	private signal precision, elasticity to news coverage

Notes: This table summarizes the model calibration. The indirect inference procedure for calibrating χ_0 and χ_1 is described in detail in the text.

shares of labor in value added and shares of value added in gross output across countries and years. The final consumption shares $\pi_{mi,n}$ and input expenditure shares $\omega_{mi,nj}$ are taken from WIOD. The top panel of Table 1 summarizes these calibration choices. While the main text presents the results under Cobb-Douglas functional forms for the final and intermediate input bundles, Appendix D.3 replicates the quantitative results under non-unitary substitution elasticities.

The more novel aspect of our quantitative framework is the information frictions. Recall from (2.4) and (2.5) that these frictions are pinned down by two vectors of parameters, the private signal precision $\tau_{nj,mi}$ and the public signal precision κ_{mi}. To complete the calibration of the model, we must set values to these parameters. Since news appearing in the major country newspapers are public and highly visible, our approach is to use the news coverage intensity data to discipline the variation in the public signal precision about different country-sectors. The challenge is that while we observe news coverage frequencies, we do not directly observe agents’ public signals obtained from the news coverage. Thus, we need to establish a connection between the news coverage intensity and agents’ information sets. We do that by estimating an empirical relationship between news coverage and forecast errors and forecast dispersion. We then use indirect inference to pin down the $\tau_{nj,mi}$’s and κ_{mi}’s by running the same regressions inside the model.
News coverage and information frictions: empirical results. We begin by establishing that greater news coverage is associated with smaller absolute forecast errors using the following specification:

$$|\text{forecast error}|_{f,n,t} = \beta_0 + \beta_1 \log F_{n,t} + \delta_{f,n} + \delta_t + \nu_{f,n,t},$$ \hspace{1cm} (4.1)

where \(f \) indexes forecasters, \(n \) countries, and \(t \) quarters. The dependent variable is the absolute error in either the prediction of current (nowcast) or the next year’s country \(n \) GDP by forecaster \(f \) in quarter \(t \). The news coverage variable \(F_{n,t} \) is the share of global news coverage of country \(n \) in period \(t \), that is, the total news coverage in all newspapers from all source countries of country \(n \) in period \(t \) divided by total news coverage in all newspapers in period \(t \). We control for forecaster\(\times\)country and time effects. The inclusion of time effects absorbs the level of economic news coverage in a period.\(^\text{11}\)

All standard errors are clustered at the forecaster\(\times\)country level to account for autocorrelation in the residuals.

Table 2 reports the results for nowcasts in Panel A, and one-year ahead forecasts in Panel B. Estimates of equation (4.1) are in columns 1 and 3. The news coverage intensity has a strong negative and statistically significant relationship with forecast errors. The magnitude of the coefficient is economically significant. A one-standard deviation change in the news intensity is associated with absolute nowcast errors that are 0.16 standard deviations lower, and 1-year forecast errors that are 0.22 standard deviations lower.

News coverage is also associated with less disagreement among forecasters. We relate the cross-sectional standard deviation of the forecasts for each country and date to news coverage as follows:

$$SD \left(|\text{forecast error}|_{f,n,t} \right)_{n,t} = \beta_0 + \beta_1 \log F_{n,t} + \delta_n + \delta_t + \varepsilon_{n,t},$$ \hspace{1cm} (4.2)

where the dependent variable is the standard deviation across forecasters of GDP forecasts for country \(n \) at time \(t \). Since the forecaster dimension is collapsed in this regression, we can only include country and time fixed effects. Because the cross-sectional dimension is small (only 8 countries), we use Driscoll-Kraay standard errors instead of clustering by country. Panels A-B, columns 2 and 4 of Table 2 report the results. There is indeed significantly less disagreement among forecasters when news coverage increases. The slope is high in magnitude. A one-standard deviation change in news coverage intensity is associated with forecast dispersion that is 0.24 standard deviations lower for nowcasts, and 0.36 standard deviations lower one year ahead.

Endogeneity and interpretation. The regression estimates relating news coverage to absolute forecast errors and dispersion should not be viewed as causal. Nonetheless, we will use these estimates as calibration targets, so it is desirable that they are not driven purely by omitted variables.\(^\text{12}\) The

\(^{11}\)Note that as more information comes to light, forecasts later in the calendar year should be more precise than forecasts at the beginning of the year. Time effects take care of this regularity.

\(^{12}\)The other form of endogeneity – true reverse causality – is less plausible here, as it is more difficult to imagine pure exogenous shocks to forecastability of GDP, and why forecastability should affect news coverage intensity directly.
fixed effects absorb a variety of confounders, for instance, forecaster-country specific factors that affect forecast precision independent of news coverage, and global shocks that could raise the level of news coverage and change forecast precision at the same time. Conditional on these fixed effects, a threat to identification is that there is some other variable that creates time series variation in the forecastability of GDP and at the same time is correlated with news coverage intensity.

In what follows we attempt to control in a flexible way for observable shocks that could potentially affect both forecast precision and news coverage intensity. As an example, suppose that an upward deviation in productivity growth made GDP easier to forecast, while at the same time was associated with more intense news coverage. Then, omitting productivity growth from the regression would lead to a spurious coefficient on the news coverage intensity. Of course, there are many possibilities. It could actually be that downward deviations in productivity growth improve forecast precision/increase coverage, or absolute deviations. Thus, we add controls for a variety of transformations of productivity growth to equations (4.1) and (4.2): (i) the simple growth rate, (ii) its absolute value, (iii) its square, as well as (iv) an indicator for whether the period’s productivity growth is negative. We use quarterly labor productivity as the underlying measure of productivity. The results are in Panel C of Table 2. The addition of these controls has a minimal impact on either the level of the coefficient of interest or its significance.¹³

Productivity is not the only shock that might affect forecastability of GDP and news coverage. Closest to our conceptual framework, noise shocks also drive fluctuations (Angeletos and La’O, 2013; Angeletos, Collard, and Dellas, 2020) and may change forecastability of GDP. It is notoriously difficult to identify an empirical counterpart of the Angeletos-La’O-style noise/sentiment shock. This is because shifts in empirical measures of agents’ expectations (such as GDP forecasts, consumer confidence indices, etc.) can be driven by any shock, not just the truly exogenous shifts in beliefs. Thus, identifying the correct noise shock in the data requires orthogonalizing shifts in agents’ expectations with respect to all the other (plausible) shocks that can move expectations (not only current and expected future productivity, but fiscal policy, monetary policy, commodity price and financial shocks, etc.). While this can be done to some extent (Levchenko and Pandalai-Nayar, 2020), orthogonalizing shifts in empirically measured sentiment with respect to all other shocks is a tall order.

With that caveat, in the next set of robustness checks we control for “news sentiment” distilled from the news coverage data by Fraiberger et al. (2021). We apply the same 4 transformations to the news sentiment series as we do to productivity. Including the news sentiment variables has the additional benefit of controlling for the direction/tone of the news coverage, whereas our main variable of interest is the coverage intensity.¹⁴ Panel D reports the results. Because of the imperfect overlap

¹³Neither the premise that large shocks coincide with more coverage, nor that large shocks are easier to forecast appear supported by the data. We checked whether larger productivity shocks are associated with more news coverage by regressing news coverage on productivity growth conditional on country-sector and time effects. There is no significant relationship. We also checked whether larger deviations from the norm in GDP are easier to forecast. Forecast errors are actually larger when the realized GDP growth is exceptionally high or low. This is true whether exceptional is defined as below 25th percentile/above 75th percentile, or as below 5th percentile/above 95th percentile.

¹⁴The empirical news sentiment series reflect changes in sentiment due to true noise shocks (as in our model), but also
between our data and Fraiberger et al. (2021), the sample size falls by nearly 30%. Nonetheless, the coefficients and their level of significance are very similar to the baseline.

Note that these additional results do not rule out the possibility that agents learn about the public signal shocks through non-newspaper sources. Indeed, without controlling for every other possible source of agents’ information, we could never be sure that it is newspaper coverage per se that improves the precision of the signal, rather than some other source of information correlated with the newspaper coverage. Thus, we would not want to insist that the improved forecasts are driven only by the newspaper coverage.

However, this last source of confounding variation is not problematic when we use these regressions to calibrate our model. To anticipate what comes below, we will posit that greater news coverage of a country-sector is associated with greater public signal precision about that sector’s fundamentals. We will then use these regressions as a disciplining device for the calibration of this relationship. For this purpose, it is not crucial that the regression coefficient identifies the full causal relationship, only that the news coverage intensity is correlated with the precision of public information. That is, in the calibration we will use the regression as a forecasting device (no pun intended), rather than a structural estimate of the causal effect of newspapers on public signal precision.

Additional robustness. Our baseline estimates of equations (4.1) and (4.2) use the total news coverage in each country and quarter. It could be that sectors important as input suppliers receive more attention from forecasters, and news coverage about them could better help predict aggregate outcomes. To account heuristically for this possibility, we weight news coverage in each sector by its Domar weight. In this way, the hypothesis is that news coverage of sectors with higher Domar weights reduces forecast errors by more than the same amount of news coverage in a sector with a low Domar weight. Appendix Table A5 displays the results. They are quite similar to Table 2.

The active margin in the model is labor input, which is the main endogenous variable that reacts to news coverage. Unfortunately, to the best of our knowledge databases of forecasts of total hours worked do not exist for our countries. However, Consensus data do include forecasts for the unemployment rate. We thus estimate equations (4.1)-(4.2) for the forecast errors in the unemployment rate. The results are reported in Appendix Table A6. News coverage does reduce both the nowcast and one-year ahead forecast errors for unemployment, but the coefficients for the dispersion in the forecasts are not significant, albeit of the right sign.

Calibration of information friction parameters. These estimation results cannot be used to calibrate unrestricted vectors of $\tau_{nj,mj}$’s and κ_{nj}’s. Therefore, we must shrink the parameter space of the signal precisions. We make the following assumptions. The public signal precision in the theory has an any other shocks (e.g., productivity, future productivity, fiscal and monetary policy, financial shocks, etc.) that affect newspapers’ views of the economy. Thus, including the empirical sentiment measures in the regressions controls for all shocks that might affect the tone/direction of news, not just the productivity shocks and noise shocks present in our theoretical framework. This aspect makes the empirical sentiment more attractive as a control variable, as it encompasses more potential confounders.
Table 2: Global News Coverage and Forecast Errors

<table>
<thead>
<tr>
<th>Dep. Var.</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>forecast error</td>
<td>SD (forecast error)</td>
<td>forecast error</td>
<td>SD (forecast error)</td>
</tr>
<tr>
<td>log (F_{n,t})</td>
<td>-0.0817***</td>
<td>-0.0295***</td>
<td>-0.290***</td>
<td>-0.0609***</td>
</tr>
<tr>
<td>Observations</td>
<td>18,582</td>
<td>800</td>
<td>17,338</td>
<td>768</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.379</td>
<td>0.706</td>
<td>0.668</td>
<td>0.543</td>
</tr>
<tr>
<td>Time FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>(f \times n) FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>(n) FE</td>
<td>yes</td>
<td></td>
<td>yes</td>
<td></td>
</tr>
</tbody>
</table>

Panel C: nowcast errors, productivity controls

<table>
<thead>
<tr>
<th>Dep. Var.</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>forecast error</td>
<td>SD (forecast error)</td>
<td>forecast error</td>
<td>SD (forecast error)</td>
</tr>
<tr>
<td>log (F_{n,t})</td>
<td>-0.0924***</td>
<td>-0.0298***</td>
<td>-0.0734***</td>
<td>-0.0335***</td>
</tr>
<tr>
<td>Observations</td>
<td>18,517</td>
<td>796</td>
<td>13,488</td>
<td>584</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.396</td>
<td>0.657</td>
<td>0.511</td>
<td>0.657</td>
</tr>
<tr>
<td>Time FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>(f \times n) FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>(n) FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Prod. controls</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Sent. controls</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td></td>
</tr>
</tbody>
</table>

Panel D: nowcast errors, productivity and sentiment controls

Notes: Standard errors clustered by country-forecaster (columns 1 and 3) and Driscoll-Kraay standard errors (columns 2 and 4) in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Columns 1 and 3 report the results of estimating equation (4.1). Columns 2 and 4 report the results of estimating equation (4.2). Panel C uses several transformations of labor productivity as additional controls. Panel D in addition uses several transformations of the news sentiments index from Fraiberger et al. (2021) as additional controls. Variable definitions and sources are described in detail in the text.
affine relationship to the observable news coverage intensity:

\[\kappa_{nj} = \chi_0 + \chi_1 F_{nj}, \]

where \(F_{nj} \) is the average frequency share of sector \((n, j)\) in the global news coverage as in (4.1)-(4.2). Here, \(\chi_0 \) captures the minimum amount of information in the public domain, while \(\chi_1 \) captures the sensitivity of the precision to news coverage intensity. For the private signals, we assume that firms perfectly observe their own sector’s TFP, i.e., \(\tau_{nj,nj} = \infty \), and set a common precision for the private signals about other sectors’ TFP, \(\tau_{nj,m_i} = \tau \). Under these assumptions on the public and private signals, the calibration requires finding three values: \(\tau \), \(\chi_0 \), and \(\chi_1 \).

We calibrate \(\{\tau, \chi_0, \chi_1\} \) via indirect inference, by fitting three data moments. The first two are the slope coefficients of the reduced-form relationships (4.1) and (4.2) that capture how the forecast errors and the cross-sectional belief dispersion vary with the news intensity. The third targeted data moment is the unconditional cross-sectional dispersion of the absolute forecast error in the Consensus Forecast data.

In mapping the model to the heuristic regressions (4.1) and (4.2) we face three challenges. First, we only have data on professional forecasters, not firms or workers. Second, the forecasts are of GDP and not of individual country-sectors \((n, j)\). And third, while the theoretical model is static, the empirical regressions rely on within-forecaster variation in forecast quality and news coverage over time. There is no viable alternative to this, as forecaster fixed effects are essential in the empirics in order to absorb confounding factors. To align the model environment more tightly with the data and the empirical variation we use, we make the following auxiliary assumptions.

Let there be forecasters, who have no role in any real outcomes in the economy, but who also extract signals about the economy. Similar to firms in the model, the forecasters receive a private signal and a public signal about each country-sector \((n, j)\). To better connect with the empirical regressions, we assume the forecasters differ from firms in the model in two ways. First, the forecasters do not observe any sector’s fundamental perfectly. And second, instead of fixing the precision of public signals based on the average news share, we allow the precision to change with the news share over time as in the data, i.e, for the forecasters, \(\kappa_{nj,t} = \chi_0 + \chi_1 F_{nj,t} \). While our model is static, this approach allows us to exploit the longitudinal variation in the data for the purposes of calibrating these critical parameters.

The forecasters assume that the firms’ and workers’ signal precision for all country-sectors is given by (4.3) in which \(F_{nj} \) is average news share of sector \((n, j)\) over time. Thus, we obtain the influence matrix that describes how country \(n \)’s GDP growth, \(v_{nl} \), depends on the underlying TFP and noise shocks under the average \(F_{nj} \) rather than the quarter-to-quarter variation in news coverage.

\(^{15}\)Since our news coverage data are at the country-sector-time level, it would have been desirable to relate news coverage to forecasts of sectoral output/value added, rather than of GDP. Regrettably, we could not find a dataset of sectoral forecasts that covers our countries and sectors.

\(^{16}\)The alternative would be to use the average news shares \(\kappa_{nj} = \chi_0 + \chi_1 \bar{F}_{nj} \), but we would lose statistical power for estimating these parameters.
We then run the following regressions on model-generated data:

\[
E \left[\left| v_{nt} - E_{f,t}[v_{nt}] \right| \right] = \beta_{01}^M + \beta_{11}^M \log F_{n,t} + \delta_n + \nu_{nt}
\] \hspace{1cm} (4.4)

\[
SD \left(\left| v_{nt} - E_{f,t}[v_{nt}] \right| \right) = \beta_{02}^M + \beta_{21}^M \log F_{n,t} + \delta_n + \nu_{nt}.
\] \hspace{1cm} (4.5)

These are the model counterparts to the empirical specifications (4.1) and (4.2). In equation (4.4), the dependent variable is the theoretical mean of the individual absolute nowcast error of GDP. Since this is a theoretical moment, there is no need to include the time fixed effect (as confounding time-varying factors are not present in this repeated static model) or the individual forecaster fixed effect. Similarly, in equation (4.5), the dependent variable is the theoretical standard deviation of the cross-sectional forecast error in every period.

To build intuition for how the empirical estimates inform the model parameters, Appendix D.1 shows that under some simplifying assumptions, the coefficient in equation (4.4) is related to the slope \(\chi_1 \), and the coefficient in equation (4.5) is related to the product of \(\chi_1 \) and the precision of private signal \(\tau \):

\[
\beta_{11}^M \propto -\chi_1, \quad \beta_{21}^M \propto -\chi_1 \tau.
\]

The intuition is as follows. The slope of the relationship between the news coverage intensity and the quality of the forecasts (4.1)/(4.4) contains information on how much the public signal precision improves with more news coverage. Because the forecasters rely on both private and public signals, the relative strength of the public and private signals manifests itself in the dispersion across forecasts. Thus, the slope of the news coverage-dispersion relationship (4.2)/(4.5) is informative about both the private signal precision and the slope of the news-public signal precision relationship. Finally, the unconditional cross-sectional belief dispersion together with the slope of (4.2)/(4.5) helps pin down the level parameter \(\chi_0 \).

Table 3 displays the moments generated by the model and compares them to the data counterparts. The calibrated model matches well the empirical relationships between the forecast levels and dispersion and news coverage, as well as the unconditional dispersion. The bottom panel of Table 1 lists the implied values of \(\tau, \chi_0 \), and \(\chi_1 \).

Shock processes. To simulate the model, we also need the covariance structure of the TFP shocks. At quarterly frequency, estimates of TFP shocks are not available at the country-sector level. We instead employ the covariance matrix of the Solow residual at the yearly frequency. We use the Solow residuals for all sectors of the G7+ countries computed in Huo, Levchenko, and Pandalai-Nayar (2020). As that paper computes the Solow residuals for sectors at an ISIC-Rev 3 level of disaggregation, we concord these sectors to the 23 sectors in our baseline dataset.

Computation. When solving the model, we make two additional assumptions. First, we assume that firms’ subjective beliefs do not internalize the fact that the TFP shocks are slightly correlated.
Table 3: Information Friction Parameter Calibration: Model vs. Data

<table>
<thead>
<tr>
<th></th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indirect inference</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope,</td>
<td>forecast error</td>
<td>-0.082</td>
</tr>
<tr>
<td>Slope, SD (forecast error)</td>
<td>-0.030</td>
<td>-0.034</td>
</tr>
<tr>
<td>Unconditional moment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD (forecast error)</td>
<td>0.072</td>
<td>0.077</td>
</tr>
</tbody>
</table>

Notes: This table reports the fit of the calibration procedure for the information frictions parameters. The targets are (i) the slope coefficient in the forecast error regressions (4.1) (Slope, |forecast error|), (ii) the slope coefficient in the forecast dispersion regression (4.2) (Slope, SD (forecast error)), and (iii) the cross-country average of the unconditional standard deviation of the nowcast error of the GDP growth rate. The column labeled “Model” displays the same moments in the model, namely the slope coefficients from estimating regressions (4.4) and (4.5) and the unconditional dispersion of the forecast errors, under the best-fit values of \(\{\tau, \lambda_0, \lambda_1\} \).

This assumption helps ease the computation burden, though our main results remain valid when we impose full rationality. Second, we assume that firms can observe their own sector’s hours, but do not use this information to infer other locations’ shocks. Whether we make this assumption or not has a negligible impact on our quantitative results, but allows us to implement the decomposition in equation (2.10).

4.2 Macro Implications

Section 2 establishes that under incomplete information, international fluctuations can arise from both fundamental and non-fundamental shocks, and that the shock transmission channels are modified relative to the perfect information benchmark. This subsection explores the quantitative implications of incomplete information for macro volatility and international comovement.

We start with some impulse response exercises. Figure 4 shows the changes in hours in response to a one standard deviation TFP shock in all sectors in the US. (Because the response of the US hours to a US shock is by far the highest in the sample, it is displayed on the right scale.) The beige bars display the hours changes in the perfect information model. As is common in network propagation models, the impact is uneven, with by far the largest hours change in the US itself, and the second-largest change in the economy most closely connected to it, Canada. The blue bars depict the hours changes following the same TFP shock, but in our baseline imperfect information model. The world economy is uniformly less reactive to TFP shocks when there are informational frictions. This is intuitive: when agents do not perfectly know the TFP shock, they will not react fully to it. When facing such uncertainty about the fundamentals, agents also rely on signals when making their production decisions. It follows that the noise shocks in the public signal contribute to international fluctuations. The brown bars in Figure 4 show the changes in hours in response to a one standard
deviation noise shock in all sectors in the US. World output goes up following a positive noise shock about US TFP. The impact is once again strongest in the US itself (right axis), and second-strongest in Canada.

Table 4 displays the business cycle statistics of hours growth, aggregated at the country level. The first row illustrates the two basic implications of incomplete information: it attenuates the response to the fundamental shocks while opening the door for non-fundamental fluctuations. Column 1 presents the standard deviation of hours growth under perfect information and only TFP shocks. Column 2 instead feeds in the same TFP shocks, but under informational frictions. The standard deviation of growth in hours worked coming from TFP shocks falls by half compared to the perfect information case. On the other hand, fluctuations generated by noise shocks are about 65% of those driven by fundamental shocks. Putting the TFP and noise shocks together in column 4, the model generates around one-third of the average volatility of hours observed in the data (last column). and (ii) neither model aims to match empirical hours growth volatility, which would require more shocks and possibly correlated shocks.

Direct vs. indirect effects. Informational frictions affect not only the relative importance of fundamental vs. non-fundamental shocks in the aggregate fluctuations, but also the underlying channels

Notes: This figure displays the change in hours worked in each country following a 1-standard deviation TFP or noise shock in the US. The beige bars show the hours change due to a TFP shock without informational frictions. The blue bars show the hours change due to a TFP shock in the baseline model with imperfect information. The brown bars show the hours change in response to a noise shock in the US. The scale of the response in US is on the right y-axis, and the scale of all other countries is listed on the left y-axis.

17The perfect information model generates hours volatility closer to the data for most countries. However, we note that (i) the perfect information model has counterfactual implications in several other dimensions, including inability to match empirical evidence on the international transmission of noise shocks (Levchenko and Pandalai-Nayar, 2020), and inability to match the observed international comovement with TFP shocks (Huo, Levchenko, and Pandalai-Nayar, 2019);
Table 4: Business Cycle Statistics

<table>
<thead>
<tr>
<th></th>
<th>(1) Perfect Information</th>
<th>(2) Incomplete Information</th>
<th>(3) Data</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TFP</td>
<td>TFP noise</td>
<td>both</td>
</tr>
<tr>
<td>Hours volatility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>indirect vs direct effects:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\frac{\sigma_{\text{indirect}}}{\sigma_{\text{direct}}}$</td>
<td>0.99</td>
<td>0.50</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Bilateral hours correlation					
uncorrelated noise	0.09	0.11	0.06	0.10	0.19
correlated noise	0.09	0.11	0.30	0.17	

Bilateral labor wedge correlation				
uncorrelated noise	—	0.06	0.03	0.05
correlated noise	—	0.06	0.24	0.12

Notes: For hours volatility, this table reports the mean across the G7+ countries of the standard deviation of aggregate hours. For bilateral correlation, this table reports the mean of bilateral correlation of aggregate hours or the labor wedge between all possible G7+ country pairs. The Data column reports the volatility or bilateral correlation of four-quarter growth rates of aggregate hours, excluding the years 2008 and 2009 from the sample.

through which the shocks propagate in the economy. Recall from Section 2 that hours are driven by both direct (changes in expected fundamentals) and indirect effects (changes in other sectors’ expected hours). With incomplete information, the direct effects are arrested by first-order uncertainty about the fundamental while indirect effects are arrested by higher-order uncertainty. A fundamental shock moves higher-order expectations by less than the first-order expectations, which implies that firms’ beliefs about their upstream suppliers’ and downstream customers’ changes in hours are less important in production decisions. It follows that informational frictions weaken the indirect effects, relative to the perfect-information benchmark. The second row in Table 4 confirms this intuition. It reports the ratio of the standard deviation of hours due to the indirect effects to the standard deviation of hours due to direct effects. The relative volatility of indirect to direct effects declines from 0.47 to 0.40 when going from perfect to imperfect information (column 1 vs. column 2).

Turning to the noise shocks, public signals are more useful than private ones in forming expectations about others’ beliefs. Because noise shocks live in the public signals, noise is more important in shaping higher-order expectations than first-order expectations. Since the indirect effects are a function of higher-order expectations, the volatility due to indirect effects relative to direct effects is higher for noise-driven fluctuations compared to TFP-driven fluctuations, as evident in Table 4 (0.56 vs. 0.4).

18The direct effects are often referred to as “first-order” (in the network sense), and the indirect effects are often referred to as “higher-order” (again in the network sense).
Comovement. The noise shocks also induce international comovement. In our baseline model, we have maintained the assumption that noise shocks are independent across countries and across sectors. The average bilateral correlations between different country pairs are reported in Table 4 under "uncorrelated noise." In the data, the correlation in aggregate hours worked is about 0.19 in our sample of countries. Uncorrelated noise shocks alone generate nearly a third of this correlation, 0.06. We next relax the assumption that noise shocks are uncorrelated internationally. To discipline this exercise, we turn to the identified sentiment shocks in the U.S. and Canada in Levchenko and Pandalai-Nayar (2020), which yields a country-level noise shock correlation of 0.18. Thus, we impose a covariance matrix for the noise shock such that the bilateral correlation of noise shocks at the country level matches this estimate. The results are reported in the row labeled "correlated noise." The bilateral hours correlations increase significantly. The model correlation with both TFP and noise shocks is quite close to the observed hours correlation.19

Labor Wedge. With incomplete information, the marginal rate of substitution (MRS) and the marginal product of labor (MPL) are equalized only in expectation ex ante, but not necessarily ex post. As a result, a noise shock produces a divergence between MRS and MPL, and appears as a labor wedge, as discussed in Angeletos and La’O (2010). What is unique in our setting is that the fluctuations in the labor wedges help understand international comovement. Huo, Levchenko, and Pandalai-Nayar (2019) show in an international business cycle accounting exercise that labor wedges are correlated internationally, and that the labor and the efficiency (TFP) wedges are the two most important ones when it comes to accounting for observed international comovement. Our incomplete-information model generates internationally correlated labor wedges, as reported in the bottom panel of Table 4. The modest correlation in the noise shocks we consider in the table generates a notable correlation in the labor wedge, 0.12.

4.3 Micro Implications

Beyond generating aggregate fluctuations, our framework delivers a rich set of implications at the micro level on the patterns of propagation of different shocks through the input network.

Interaction between noise shocks and network effects. Proposition 2.3 highlights that following a shock in country m sector i, the responses of the country-sectors more remote from (m, i) in the network sense tend to put a higher weight on higher-order expectations and therefore rely more heavily on the public signal. To see the meaning of network remoteness in our setting more clearly, recall that in condition (2.9), the importance of first-order effects in country-sector (n, j) is captured by $\eta_{nj,m}$, and the importance of the second-order effects depends on how other country-sectors respond to the shock, $\sum_{k,t} \gamma_{n,j,k,t} \phi_{k,t,m_i}$. Without going to even higher-order terms, the relative importance of

19Incorporating information frictions and a new source of aggregate fluctuations need not in general increase international comovement. Whether comovement increases or decreases relative to perfect information will depend on the production network, the nature of information frictions, and the properties of the shock processes, and is thus a quantitative question.
second-order effects can be approximated by

\[d_{n,j,mi} = \frac{\sum_{k,l} M_{nj,kt} M_{kl,mi}}{M_{nj,mi} + \sum_{k,l} M_{nj,kt} M_{kl,mi}}, \] \hspace{1cm} (4.6)

where \(M \) defined in equation (2.7) is related to the observed expenditure shares (see Lemma 2). In this expression, the term \(M_{nj,mi} \) approximates the direct impact of a shock to country-sector \((m, i)\) on \((n, j)\), while the other term \(\sum_{k,l} M_{nj,kt} M_{kl,mi} \) approximates the indirect impact through the responses of other country-sectors' direct response to \((m, i)\). The numerator thus captures the second-order effects, and the denominator captures the sum of first- and second-order effects. Thus, \((n, j)\) is more remote from \((m, i)\) when the second-order effects are relatively more important. We will refer to \(d_{n,j,mi} \) as network distance.

We expect that when \(d_{n,j,mi} \) is high, the response of country-sector \((n, j)\) to \((m, i)\)'s shocks will rely more on public signals than private ones. Denote by \(R_{nj,mi} \) the ratio of \((n, j)\)'s responsiveness to the private signal to the responsiveness to the public signal about \((m, i)\)'s productivity. A smaller \(R_{nj,mi} \) implies that \((m, i)\) relies more on the public signal about \((n, j)\). We fit the following relationship in the model’s simulation to confirm this conjecture:

\[R_{nj,mi} = \beta_0 - 0.321 \, \delta_{mi} + \delta_{mi} + \nu_{nj,mi}, \] \hspace{1cm} (4.7)

where \(\delta_{mi} \) controls for the variance of \((m, i)\)'s TFP shock and the precision of the public signal. The negative coefficient on \(d_{n,j,mi} \) shows that agents rely less on the private signals and more on the public signals as the network remoteness increases. (The standard error is reported in parentheses below the coefficient.) Figure 5 visualizes this relationship via a bincsatter plot.

Interaction between TFP shocks and network effects. Proposition 2.3 also shows that the presence of informational frictions affects how the TFP shocks transmit through the input network. With incomplete information, the response of \((n, j)\)'s hours depends on both first-order and higher-order expectations of \((m, i)\)'s TFP. As discussed above, higher-order expectations respond less to true TFP innovations than lower-order expectations. When \((m, i)\) is more remote from \((n, j)\), the relative importance of higher-order expectations increases, attenuating the response of \((n, j)\)'s hours when compared to the perfect-information benchmark. Therefore, the magnitude of the hours response declines faster in network distance in the economy with incomplete information.

Figure 6 illustrates this graphically in our quantitative model. It plots the log response of hours in \((n, j)\) to a TFP shock in sector \((m, i)\) normalized by the response of \((m, i)\) to its own shock, \(\ln G_{nj,mi} - \ln G_{mi,m}\) under perfect information (blue dots) and with informational frictions (beige dots), as a bincsatter in network distance. By construction, there is no difference between these two when \(mi = nj \). Of course, even with perfect information, country-sector \((n, j)\)'s response to a TFP shock in \((m, i)\) falls in network distance between them. However, the response decays faster in network
Notes: The figure displays the ratio of responses to private signals to responses to news signals as a function of the network distance. This is the binscatter plot of the regression (4.7) controlling for variances of the TFP and the noise shocks.

distance under informational frictions compared to the perfect information benchmark. We can make this statement formal by fitting slopes through the full sample of country pairs summarized by the two binscatters in Figure 6. It turns out that the difference in slopes is highly statistically significant.²⁰

News coverage and shock propagation in the cross-section of sectors. Intuitively, if a sector \((m,i)\) is covered in the news more intensively, other sectors are more likely to respond to a shock originating from sector \((m,i)\), even conditional on the origin sector’s size. This is because firms have more information and they also understand that other firms are more aware of the shock. To highlight the role of news coverage in the shock transmission, we define the average elasticity of hours response to a TFP or a noise shock in sector \((m,i)\) as follows:

\[
\theta_{mi}^s = \frac{1}{NJ-1} \sum_{mi\neq nj} G_{nj,mi}^s \quad s = z, \epsilon. \tag{4.8}
\]

That is, \(\theta_{mi}^s\) is the average log change in hours across all countries and sectors following a 1-unit log change in TFP in sector \((m,i)\), and similarly for the noise shock \(\epsilon\).

Figure 7 displays the relationship between \(\theta_{mi}^z\) and the news frequency share of sector \((m,i)\), after

²⁰We fit the following relationship in the sample of country-sector pairs and information friction assumptions:

\[
\ln c_{nj,mi}^{z,q} - \ln G_{mi,mi}^{z,q} = \beta_1 d_{nj,mi} + \beta_2 d_{nj,mi} I\{q = \text{Incomplete}\} + \delta_{mi}^d + \nu_{nj,mi}^q
\]

where \(q = \{\text{Complete, Incomplete}\}\) indexes the information structure. That is, we fit the slopes in Figure 6 separately for both the complete and incomplete information models, including \(mi\) fixed effects specific to the information structure, so that we can test for the difference in slopes by means of the coefficient \(\beta_2\). Standard errors are clustered by \(mi\). The \(\beta_2\) is highly significantly different from zero, with a point estimate of \(-0.42\) and a standard error of 0.14, implying a \(p\)-value of 0.004.
Notes: The figure displays the binscatters of the normalized responses to TFP shocks as a function of the network distance for the complete (blue) and incomplete (beige) information models.

Figure 7: News Share and TFP Shock Transmission

Notes: The figure displays scatterplots of the average elasticity of total hours change in other sectors following a TFP shock in a particular sector, (4.8), against the sector’s share of the global news coverage. The left panel depicts the perfect information model, while the right panel the baseline model with informational frictions.

partialling out the country-sector size measured by the sales value in the steady state. The left panel presents this relationship under perfect information. In this case, there is not much of a discernible relationship, with both the slope and the R^2 near zero. The right panel presents this relationship under incomplete information. Here, the average elasticity is strongly correlated with the news share, with a slope of 0.2 and R^2 of 0.62. Greater news coverage increases the shock propagation from sector (m, i) to the rest of the world economy.
Appendix Figure A10 displays the elasticity ρ_{mi}^H of hours with respect to the noise shock in sector (m, i) against the news share. The correlation with the news share is even stronger than for the TFP elasticity. Noise shocks to sectors well-covered in the news transmit more strongly.

4.4 External Validation: News Coverage and Sectoral Comovement

Relative to perfect information GVC models, our framework better matches patterns in the data such as the role of non-fundamental shocks in domestic business cycles (Angeletos, Collard, and Dellas, 2018), the transmission of an identified U.S. sentiment shock to Canada (Levchenko and Pandalai-Nayar, 2020), and the importance of correlated labor wedges in international comovement (Huo, Levchenko, and Pandalai-Nayar, 2019). This section additionally validates the model by showing that it can replicate non-targeted relationships between news coverage, bilateral trade, and output comovement at the sector level. In the process, we document a novel correlation between news coverage and bilateral comovement, that further highlights the relevance of news coverage to the real economy.

Trade, news coverage and comovement in the data. As an empirical setting, we use one of the best-known reduced-form relationships linking international trade and comovement – the “trade-comovement” regression (Frankel and Rose, 1998). We extend the standard regression to include bilateral news coverage and its interaction with bilateral trade intensity. In particular, we fit the following relationship in the cross-section of country-sector pairs:

$$
\rho_{nj,mi}^H = \beta_1 \ln \text{Trade}_{nj,mi} + \beta_2 \ln \text{Trade}_{nj,mi} \times F_{nj,mi} + \beta_3 F_{nj,mi} + \delta + \nu_{nj,mi},
$$

(4.9)

where $\rho_{nj,mi}^H$ is the correlation of hours worked growth rates between country-sector (n, j) and country-sector (m, i). Our hours data are quarterly, and we use 4-quarter growth rates as the baseline. The traditional trade intensity regressor ($\text{Trade}_{nj,mi}$) is defined in Appendix C.3.

The new regressor is the news intensity, computed as the average of the frequencies with which the country-sectors are covered in the news:

$$
F_{nj,mi} = \frac{1}{2} \left(F_{nj} + F_{mi} \right),
$$

(4.10)

where F_{nj} is the frequency share of sector (n, j) in the global news. We include $F_{nj,mi}$ both as a main effect, and also as an interaction with trade intensity. The latter explores the possibility that greater news coverage is associated with disproportionately greater comovement in sectors linked more intensively via trade relationships.

Table 5 reports the results. The columns differ in the fixed effects included. As highlighted in many studies, greater bilateral trade intensity is associated with higher comovement. In our specification, this is true even controlling for country-pair effects and thus exploiting variation within a pair of countries across sector pairs. The novel result is that both news coverage intensity by itself, and
Table 5: International Comovement, Trade, and News Coverage

<table>
<thead>
<tr>
<th>Dep. Var.: $\rho_{nj,mi}^H$</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All country-sector pairs</td>
<td>International</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\ln \text{Trade}_{nj,mi}$</td>
<td>0.014*** (0.001)</td>
<td>0.009*** (0.001)</td>
<td>0.021*** (0.001)</td>
<td>0.008*** (0.001)</td>
<td>0.007*** (0.001)</td>
</tr>
<tr>
<td>$\ln \text{Trade}{nj,mi} \times F{nj,mi}$</td>
<td>0.868*** (0.117)</td>
<td>0.487*** (0.092)</td>
<td>0.604*** (0.121)</td>
<td>0.261*** (0.101)</td>
<td>0.510*** (0.151)</td>
</tr>
<tr>
<td>$F_{nj,mi}$</td>
<td>9.686*** (1.016)</td>
<td>5.335*** (1.056)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>16,032</td>
<td>16,032</td>
<td>16,032</td>
<td>16,032</td>
<td>14,030</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.052</td>
<td>0.448</td>
<td>0.152</td>
<td>0.464</td>
<td>0.454</td>
</tr>
<tr>
<td>Country-sector FE</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Country pair FE</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Notes: Robust standard errors in parentheses. *** $p<0.01$, ** $p<0.05$, * $p<0.1$. This table reports the results of estimating (4.9). The dependent variable is the correlation in 4-quarter growth rates of total hours worked between country-sectors (n, j) and (m, i). The dependent variables are log trade intensity as in (C.7) and news coverage intensity as in (4.10). Throughout, we restrict the sample to country-sector pairs where a minimum of 10 years of data are available for computing correlations. Columns 1-4 use all country-sector pairs. Column 5 restricts the sample to pairs where $m \neq n$.

The news intensity interacted with trade are highly statistically significant. Even controlling for both sets of country-sector effects, sector pairs that are more covered in the news comove more. Once we include country pair effects we cannot estimate the main effect of news coverage, but even in this case we can estimate the interaction of news coverage with bilateral trade. Sectors more covered in the news exhibit more pronounced comovement the more they trade with each other. Finally, column 5 restricts the sample to sector-pairs located in different countries. If anything, the coefficient on the interaction between news coverage and trade intensity becomes larger. This is prima facie evidence that news coverage intensity plays a role in conditioning the extent of cross-border comovement.

Appendix C.3 provides further details and presents a number of robustness checks. Note that, similar to the forecast regressions in Section 4.1, these results should be interpreted as conditional correlations and not a causal relationship (as is the case with the entirety of the trade-comovement empirical literature). This is in contrast to the model exercise described below, where we can assess the causal effect of an increase in bilateral news coverage. Eliminating all sources of confounding variation is possible in a model environment, but not in the empirical regressions.

Trade, news coverage and comovement in the model. To explore the interaction between news coverage and trade intensity in the model, we implement the following local perturbation exercise: fixing a pair of country-sectors, the news share for these two country sectors is increased by 25% and the global influence matrix is recomputed. We then compare the covariance between these two
Figure 8: Changes in Bilateral Comovement and Trade Intensity

Notes: This figure displays the change in bilateral covariance due to a sector-pair specific increase in the news coverage intensity, against percentile of sector-pair bilateral trade intensity.

sectors’ hours worked with that in the baseline economy. We perform this local perturbation for all the country-sector pairs. This exercise is intended to mimic the empirical trade-comovement regression, but in the model we have the added benefit of being able to implement a fully controlled experiment in which nothing changes except for news coverage intensity/signal precision. This exercise is of course not attainable in empirical analysis, which must worry about confounding factors.

Figure 8 displays the changes in covariance relative to the baseline counterparts. In the figure, the “shocked” country-sector pairs are ranked according to their bilateral trade intensity. The changes in covariance are positive overall, consistent with the intuition that more news coverage facilitates shock transmission. Furthermore, this increase tends to be greater for the pairs that exhibit a greater trade intensity – the model counterpart of the interaction coefficient between news coverage and trade intensity in the empirical regressions. The reason is simple: when the trade linkages between two country sectors are weak, whether they are aware of each others’ fundamental or not is nearly irrelevant. On the other hand, sectors that trade intensively with each other must form expectations about the productivity of their trading partners, and thus increasing news precision about that productivity leads to higher comovement.

4.5 Additional Exercises

Non-monotonicity in noise-driven fluctuations. Given the role of the public signal noise in international fluctuations, a natural question is whether the magnitude of the fluctuations generated by the noise shocks is monotonic in the news coverage intensity or equivalently, the sensitivity of the public
signal precision to news coverage χ_1. The answer is no. Consider two extreme cases: if $\chi_1 \approx 0$, the news coverage is not informative at all and firms will ignore it when making decisions. Consequently, the noise contained in the news coverage is irrelevant. At the opposite extreme, suppose $\chi_1 \approx \infty$ and the news coverage is very informative. In this case, the variance of the noise shock approaches zero and agents know the fundamental state perfectly after observing the public signal. In this case, the model converges to perfect information and noise shocks also cannot play a significant role in shaping the aggregate fluctuations. Appendix Figure A9 displays the hours volatility driven by the noise shock as a function of the slope of the precision-news coverage relationship χ_1. According to our assumptions, signal precision increases one-for-one with χ_1. The vertical line displays the value of χ_1 that emerges from our indirect inference procedure.

It is evident that the fluctuations are indeed non-monotonic in signal precision over the relevant range of χ_1. But there is no clear pattern across countries. While for Japan our calibrated values imply that the noise-driven volatility is close to the maximum, the peak volatility obtains for lower χ_1 in the US, and higher χ_1 in several other countries. In a number of cases, the volatility is quite flat above our preferred value of χ_1.

Private vs. public information. In our baseline model agents have access to both public and private signals. One may wonder to what extent this distinction has real consequences for the equilibrium allocations, relative to a counterfactual informational structure in which all signals are private but the informativeness about other country-sectors’ fundamental remains the same. To answer this question, we consider the following alternative information structure: firms only receive modified private signals $\tilde{x}_{nj,mi,t}(i)$

$$
\tilde{x}_{nj,mi,t}(i) = z_{mi,t} + \tilde{u}_{nj,mi,t}(i), \quad \tilde{u}_{nj,mi,t}(i) \sim N(0, \tilde{\tau}_{nj,mi}^{-1} \mathcal{V}(z_{mi,t})) \quad \forall m, i,
$$

where

$$
\tilde{\tau}_{nj,mi} = \tau + \chi_0 + \chi_1 F_{mi}.
$$

That is, the total precision is identical to the baseline model, but all the information is now in the private domain.

In these two environments, the first-order expectations conditional on TFP shocks are identical. Crucially, the higher-order expectations are different, as public signals are more useful than private ones for forecasting others’ beliefs. As shown in Section 2, the equilibrium outcome hinges on the interaction between the production network and all the higher-order expectations, which makes the distinction between complete and incomplete information relevant. Table A10 in Appendix D.2 reports the business cycle statistics in this alternative economy. Relative to the baseline model, the overall volatility is smaller, but it turns out that there is no uniform amplifying or dampening effects for TFP-driven fluctuations in the private-information-only economy, which highlights the importance of calibrating the network structure and the informational friction jointly.
Another important difference is that when information is all private, aggregate fluctuations can only be driven by TFP shocks. The noise-driven fluctuations require common or correlated aggregate noise shocks. In our baseline economy, we assume that the news are publicly observed by all agents and agents interpret the signals in the same way. This assumption could be violated if some agents do not pay full attention to the news or they have idiosyncratic interpretations of the news.

In addition, one may interpret the regression evidence on the correlation between forecast quality and news coverage as indicating that agents do not directly obtain information from public signals, but instead pay more attention to their private information about the fundamental when news coverage is high. In this case, higher news coverage still implies greater transmission, but now it is through the private information channel. In Figure A8, we compare the role of news share in the shock transmission, and the two economies are similar to each other. The particular information structure discussed in this subsection could be viewed as an extreme case that maximizes the information in the private domain.

In short, the distinction between private and public information matters for the equilibrium allocations. The fraction of non-fundamental driven fluctuations depends on the exact split of the information between public and private, but the role of news in facilitating shock transmission is robust to this variation.

Heterogeneous precision for private signals. So far, we have imposed that firms receive private information about other country sectors with the same precision. This is of course a simplifying assumption. In reality, firms are more willing to acquire information about locations that are more relevant for their own profits, a key insight from the rational inattention literature (Sims, 2003; Maćkowiak and Wiederholt, 2009). We accommodate this type of endogenous information structure by allowing country sector \((n, j)\)'s private signal precision about \((m, i)\)'s TFP shock to decay in network distance. In particular, we assume that

\[
\tau_{nj,mi} = \tau + \delta(1 - d_{nj,mi}),
\]

where the network distance \(d_{mi,nj}\) is defined in (4.6) and \(\delta\) the extent with which the precision varies with the network distance. Our baseline model corresponds to \(\delta = 0\); when \(\delta > 0\), \((n, j)\) has more precise private signals about sectors close to it in the network. Thus, this formulation implements the basic idea of rational inattention in a reduced-form way.\(^{21}\)

Figure A11 in Appendix D.4 shows how the volatility of hours changes with the parameter \(\delta\). As expected, a larger \(\delta\) reduces firms' needs to rely on public news in general, and therefore the contribution of noise shocks decreases and that of TFP shocks increases. However, even for relatively large values of \(\delta\), the noise shock remains an important source of international fluctuations. At the micro level, the precision of private information is lower when country sectors are further away from

\(^{21}\)In a similar manner, it would also be straightforward to model a dependence of the signal precision on the volatility of the TFP shocks.
each other, which reinforces our result on the relationship between the network remoteness and the reliance of public signals. With common precision, the network remoteness only shifts the relative importance between first-order and higher-order expectations; with heterogeneous precision, first-order expectations will also rely more on public information when network remoteness increases. Figure A12 in Appendix D.4 confirms this intuition.

5. Conclusion

This paper studies the importance of information frictions in complex global value chains, with an emphasis on the role of the news media in disciplining the magnitude of the frictions. We develop a quantitative framework in which non-technology shocks (noise in the public signal) can also transmit internationally through the production network. Our theory features both a flexible international input-output structure, and a rich informational structure, while at the same time admitting an analytical solution. We calibrate this framework using novel data on international economic news coverage disaggregated by country and sector. Both in reduced-form heuristic regressions, and in our quantitative model, sectors or countries more covered in the news (i) exhibit more precise and less dispersed forecasts; and (ii) generate more international synchronization. Our paper thus provides a microfoundation, empirical evidence, and quantification of international shock transmission of non-technology shocks, and of the role of production networks in modulating the effect of information frictions.

Our analysis is parsimonious, and can be enriched in several dimensions. The news coverage varies across newspapers located in different countries. At the same time, it is possible to infer whether forecasters in the Consensus data are local or foreign. These two pieces of information open the door to modeling and quantifying finer information structures, in which the public signals received by agents differ by country, and thus noise shocks are country-specific. The analysis above sidesteps the financial channel of international transmission of noise shocks. While Angeletos, Lorenzoni, and Pavan (2022) model the interaction of belief shocks and the financial system in the closed economy setting, little is currently known about international transmission of noise shocks through the financial markets, and the role of belief shocks in the global financial cycle more generally. These open questions are a fruitful avenue for future research.

References

Appendix

A. Proofs

Proof of Lemma 1. The market clearing condition for the sales in country \(n \) sector \(j \) in levels is

\[
P_{nj,t}Y_{nj,t} = \sum_{m,i} \eta_i P_{mi,t} Y_{mi,t} \pi_{nj,m} + \sum_{m,i} (1 - \eta_i) P_{mi,t} \omega_{nj,m}.
\]

Note that with financial autarky, the total sales of final goods is the same as the value added across sectors

\[
P_{m,t} F_{m,t} = \sum_{i} \eta_i P_{mi,t} Y_{mi,t}.
\]

The market clearing condition is then

\[
P_{nj,t}Y_{nj,t} = \sum_{m} \sum_{i} \eta_i P_{mi,t} Y_{mi,t} \pi_{nj,m} + \sum_{m} \sum_{i} (1 - \eta_i) P_{mi,t} \omega_{nj,m}.
\]

The log-linearized version is

\[
p_{nj,t} + y_{nj,t} = \sum_{m} \sum_{i} \frac{\pi_{nj,m} P_{m,t} F_{m,t} \eta_i P_{mi,t} Y_{mi}}{P_{nj,t} Y_{nj}} + \sum_{m} \sum_{i} \frac{(1 - \eta_i) \omega_{nj,m} P_{mi,t} Y_{mi}}{P_{nj,t} Y_{nj}} (p_{mi,t} + y_{mi,t}).
\]

It is easy to verify that \(p_{nj,t} = -y_{nj,t} \) satisfies the equilibrium condition.

In the second-stage of a period, the first-order condition on the intermediate goods is that

\[
(1 - \eta_{nj}) P_{nj,t} Y_{nj,t} = p^{x}_{nj,t} X_{nj,t},
\]

where \(X_{nj,t} = \prod_{m,i} x_{mi,nj}^{\pi_{mi,nj}} \) and \(p^{x}_{nj,t} \) is the corresponding price index. It follows that

\[
x_{nj,t} = y_{nj,t} + p_{nj,t} - p^{x}_{nj,t} = y_{nj,t} + p_{nj,t} - \sum_{m} \omega_{mi,nj} P_{mi,t}.
\]

The production technology implies that

\[
y_{nj,t} = z_{nj,t} + \eta \alpha h_{nj,t} + (I - \eta) x_{nj,t}.
\]

Using the expression for \(p_{nj,t} \) and \(x_{nj,t} \) derived earlier, we reach the following expression for the output changes in matrix form

\[
y_t = z_t + \eta \alpha h_t + (I - \eta) y_t.
\]

Solving for \(y_t \) leads to

\[
p_t = -y_t = -(I - (I - \eta) \omega)^{-1} (z_t + \eta \alpha h_t).
\]

Proof of Lemma 2. In the first stage, the local labor supply condition at island \((n, j, t)\) is

\[
W_{nj,t}(t) = H_{nj,t}(t)^{\frac{1}{2}}[P_{nj,t} | I_{nj,t}(t)].
\]

The labor demand solves firms’ problem

\[
\max_{H_{nj,t}(t)} \mathbb{E}_{nj}[\Omega_{nj,t}(H_{nj,t}(t))] - W_{nj,t}(t) H_{nj,t}(t),
\]
which leads to the following FOC

\[H_{n_j,t}(t)W_{n_j,t}(t) = \alpha_j \eta_j (1 - \eta_j)^{\frac{1}{\eta_j}} d^{\frac{1}{\eta_j}} \left[\left(P_{n_j,t}^x \right)^{1 - \frac{1}{\eta_j}} P_{n_j,t}^y \exp(z_{n_j,t}) \right] \frac{1}{\eta_j} I_{n_j,t} \right] K_{n_j,t}^{1 - \alpha_j} H_{n_j,t}(t)^{\alpha_j} \]

Combining demand and supply leads to

\[H_{n_j,t}(t)^{1 + \frac{1}{\eta_j} - \alpha_j} \left[P_{n_j,t}^x I_{n_j,t}(t) \right] \left[(P_{n_j,t}^x)^{1 - \frac{1}{\eta_j}} P_{n_j,t}^y \exp(z_{n_j,t}) \right] \frac{1}{\eta_j} I_{n_j,t} \right] K_{n_j,t}^{1 - \alpha_j} \]

In terms of log-deviation from the trend,

\[h_{n_j,t}(t) = \left(1 + \frac{1}{\psi} - \alpha_j \right)^{-1} \left(\frac{1}{\eta_j} z_{n_j,t} + \frac{1}{\eta_j} p_{n_j,t} + \left(1 - \frac{1}{\eta_j} \right) p_{n_j,t} - p_{n_j,t} \right) \]

At the country-sector level, we have

\[h_{n_j,t} = \left(1 + \frac{1}{\psi} - \alpha_j \right)^{-1} \left(\frac{1}{\eta_j} z_{n_j,t} + \frac{1}{\eta_j} p_{n_j,t} + \left(1 - \frac{1}{\eta_j} \right) p_{n_j,t} - p_{n_j,t} \right) \]

In matrix form,

\[\left(\frac{1 + \psi}{\psi} I - \alpha \right) h_t = \eta^{-1} z_t + \left(\eta^{-1} + (I - \eta^{-1}) \omega - \pi \right) \bar{E}_t [p_t] \]

\[\left(\frac{1 + \psi}{\psi} I - \alpha \right) h_t = \eta^{-1} z_t + \left(\eta^{-1} + (I - \eta^{-1}) \omega - \pi \right) \bar{E}_t [(I - (I - \eta) \omega)^{-1} (z_t + \eta \alpha h_t)] \]

\[\left(\frac{1 + \psi}{\psi} - \eta \omega \right) h_t = \eta \pi (I - (I - \eta) \omega)^{-1} z_t - \eta \pi (I - (I - \eta) \omega)^{-1} \eta \alpha \bar{E}_t [h_t] + h_t = \left(\frac{1 + \psi}{\psi} I - \alpha \right)^{-1} \pi (I - (I - \eta) \omega)^{-1} z_t + \left(\frac{1 + \psi}{\psi} I - \alpha \right)^{-1} \pi (I - (I - \eta) \omega)^{-1} \eta \alpha - \alpha \right) \bar{E}_t [h_t] \]

Denote \(\mathbf{M} \equiv \pi (I - (I - \eta) \omega)^{-1} \). It follows that

\[h_t = \left(\frac{1 + \psi}{\psi} - \alpha \right)^{-1} \mathbf{M} z_t + \left(\frac{1 + \psi}{\psi} I - \alpha \right)^{-1} (\mathbf{M} \eta \alpha - \alpha) \bar{E}_t [h_t] \]

Under the assumption that firms can observe their own country-sector’s hours, we have

\[h_t = \left(\frac{1 + \psi}{\psi} - \alpha \right)^{-1} \mathbf{M} z_t + \left(\frac{1 + \psi}{\psi} I - \alpha \right)^{-1} (\mathbf{M} \eta \alpha - \alpha + (\mathbf{M} - \mathbf{M} \eta \alpha) \bar{E}_t [h_t] \]

\[(I - \left(\frac{1 + \psi}{\psi} I - \alpha \right)^{-1} (\mathbf{M} \eta \alpha - \alpha)) h_t = \left(\frac{1 + \psi}{\psi} - \alpha \right)^{-1} \mathbf{M} z_t + \left(\frac{1 + \psi}{\psi} I - \alpha \right)^{-1} (\mathbf{M} - \mathbf{M} \eta \alpha) \bar{E}_t [h_t], \]

which leads to

\[h_t = \left(\frac{1 + \psi}{\psi} I - \alpha \eta \mathbf{M} \right)^{-1} \left(\mathbf{M} z_t + (\mathbf{M} - \mathbf{M} \eta \alpha) \bar{E}_t [h_t] \right) \]

Proof of Proposition 2.1. It follows from the main text directly.
Proof of Proposition 2.2. Consider the response to shocks take place in country-sector \((m, i)\). The aggregate response of firms in country-sector \((n, j)\) takes the following form

\[
h_{nj,t} = G_{nj,mj}^z z_{mi,t} + G_{nj,mj}^\epsilon \epsilon_{mi,t} = G_{nj,mj} z_{mi,t} \epsilon_{mi,t}'.
\]

The best response requires that

\[
h_{nj,t} = \varphi_{nj,mj} E_{nj,t} z_{mi,t} + \sum_{k,q} \gamma_{nj,kq} h_{kj,t} = \varphi_{nj,mj} E_{nj,t} z_{mi,t} + \sum_{k,q} \gamma_{nj,kq} h_{kj,t} = \left[\varphi_{nj,mj} 0 \right] E_{nj,t} z_{mi,t} \epsilon_{mi,t} + \sum_{k,q} \gamma_{nj,kq} G_{kq,mj} E_{nj,t} z_{mi,t} \epsilon_{mi,t} = \left[\varphi_{nj,mj} 0 \right] \Lambda_{nj,mj} z_{mi,t} \epsilon_{mi,t} + \sum_{k,q} \gamma_{nj,kq} G_{kq,mj} \Lambda_{nj,mj} z_{mi,t} \epsilon_{mi,t}
\]

In equilibrium, it requires that

\[
G_{nj,mj} = \left[\varphi_{nj,mj} 0 \right] \Lambda_{nj,mj} + \sum_{k,q} \gamma_{nj,kq} G_{kq,mj} \Lambda_{nj,mj}.
\]

Solving for the fixed point, the policy function \(G_{mi} \equiv [G_{11,mi} \ G_{12,mi} \ldots G_{NJ,mi}]'\) is given by

\[
\text{vec}(G') = \left(I - [\gamma_{11} \otimes \Lambda'_{11,mi} \ldots \gamma_{NJ} \otimes \Lambda'_{NJ,mi}] \right)^{-1} \left[\left[\varphi_{11,mi} 0 \right] \Lambda_{11,mi} \ldots \left[\varphi_{NJ,mi} 0 \right] \Lambda_{NJ,mi} \right]'
\]

Proof of Proposition 2.3. Part 1: Suppose that the policy function takes the following form:

\[
h_t = G_z z_t + G_\epsilon s_t.
\]

With common information structure, we use the notation \(E_i[\cdot]\) to indicate average expectation, which is common across country sectors. Notice that

\[
E_i[z_t] = \lambda_z z_t + \lambda_\epsilon s_t, \quad E_i[s_t] = s_t.
\]

The best response requires that

\[
h_t = \varphi E_i[z_t] + \gamma E_i[h_t]
\]

\[
G_z z_t + G_\epsilon s_t = \varphi(\lambda_z z_t + \lambda_\epsilon s_t) + \gamma(G_z(\lambda_z z_t + \lambda_\epsilon s_t) + G_\epsilon s_t).
\]

Matching the coefficients leads to

\[
G_z = \varphi \lambda_z + \gamma \lambda_\epsilon G_z,
\]

\[
G_\epsilon = \varphi \lambda_\epsilon + \gamma(\lambda_z G_z + G_\epsilon).
\]

The policy functions are thus given by

\[
G_z = (I - \lambda_z \gamma)^{-1} \varphi \lambda_z,
\]

\[
G_\epsilon = (I - \gamma)^{-1}(I + \gamma \lambda_z (I - \lambda_z \gamma)^{-1}) \varphi \lambda_\epsilon = (I - \gamma)^{-1}(I - \lambda_\gamma)^{-1} \varphi \lambda_\epsilon = (I - \lambda_\gamma)^{-1}(I - \gamma)^{-1} \varphi \lambda_\epsilon.
\]
Part 2: Consider the response of \((n, j)\) to shocks in \((m, i)\):

\[
h_{nj,t} = \varphi_{njmi} \mathbb{E}_{nj,t}[z_{mi,t}] + \sum_{k,l} \gamma_{nj,kl} \varphi_{kt,mi} \mathbb{E}_{nj,t} \left[\mathbb{E}_{kl,t}[z_{mi,t}] \right] + \\
+ \sum_{k,l} \sum_{o,q} \gamma_{nj,kl} \gamma_{kt,oq} \varphi_{oq,mi} \mathbb{E}_{nj,t} \left[\mathbb{E}_{kt,t} \left[\mathbb{E}_{oq,t}[z_{mi,t}] \right] \right] + \cdots
\]

Denote \(D^k \equiv \gamma^k \varphi\). Under the assumption of common information precision, the \(k\)-th order response of \(h_{nj,t}\) is captured by

\[
h_{nj,t}^k = D_{nj,mi}^k \mathbb{E}^k [z_{mi,t}]
\]

where

\[
\mathbb{E}^1 [z_{mi,t}] = \int_I \mathbb{E} [z_{mi,t} | I_{nj,t}(t)] \, dt, \quad \mathbb{E}^k [z_{mi,t}] = \int_I \mathbb{E}^{k-1} [z_{mi,t} | I_{nj,t}(t)] \, dt
\]

These higher-order expectations can be derived recursively as

\[
\mathbb{E}_1 [z_{mi,t}] = \lambda_z z_{mi,t} + \lambda_z \varepsilon_{mi,t}
\]

\[
\mathbb{E}_2 [z_{mi,t}] = \lambda_z (\lambda_z z_{mi,t} + \lambda_z \varepsilon_{mi,t}) + \lambda_z \varepsilon_{mi,t} = \lambda_z^2 z_{mi,t} + \lambda_z(1 + \lambda_z) \varepsilon_{mi,t}
\]

\[
: \quad \mathbb{E}_k [z_{mi,t}] = \lambda_z^k z_{mi,t} + \lambda_z(1 + \lambda_z + \ldots + \lambda_z^{k-1}) \varepsilon_{mi,t}
\]

The reliance on the public versus private signals in the \(k\)-th order response is

\[
\frac{D_{nj,mi}^k \varepsilon(1 + \lambda_z + \ldots + \lambda_z^{k-1})}{D_{nj,mi}^k \lambda_z^k} = \frac{\lambda_z(1 + \lambda_z + \ldots + \lambda_z^{k-1})}{\lambda_z^k},
\]

which is increasing in \(k\).

The last equation can also be expressed as

\[
\mathbb{E}^k [z_{mi,t}] = \left(\frac{\lambda_z}{1 - \lambda_z} + \frac{1 - \lambda_z - \lambda_z \lambda_z^k}{1 - \lambda_z} \right) z_{mi,t} + \left(\frac{\lambda_z}{1 - \lambda_z} - \frac{\lambda_z \lambda_z^k}{1 - \lambda_z} \right) \varepsilon_{mi,t}
\] \hspace{1cm} (A.1)

As a result, the \(k\)-th order response to the fundamental \(z_{mi,t}\) under incomplete information relative to that under perfect information is

\[
\frac{D_{nj,mi}^k \left(\frac{\lambda_z}{1 - \lambda_z} + \frac{1 - \lambda_z - \lambda_z \lambda_z^k}{1 - \lambda_z} \right) z_{mi,t}}{D_{nj,mi}^k z_{mi,t}} = \frac{\lambda_z}{1 - \lambda_z} + \frac{1 - \lambda_z - \lambda_z \lambda_z^k}{1 - \lambda_z}
\]

which is decreasing in \(k\).

Proof of Proposition 2.4. Since \(h_{kj,t} = \mathbb{E}_{kj,t} [z_{1,t}]\), it is sufficient derive the expressions for higher-order expectations about \(z_{1,t}\). Applying (A.1) directly, we get:

\[
\mathbb{E}^k_{kj,t} [z_{1,t}] = \lambda_z \left(1 - \lambda_z \right) \varepsilon_{1,t} + \left(\frac{\lambda_z}{1 - \lambda_z} + \frac{1 - \lambda_z - \lambda_z \lambda_z^k}{1 - \lambda_z} \right) z_{1,t}.
\]

Substituting the definition for \(\lambda_z\) and \(\lambda_z\) leads to the desired result.
A.1 Alternative Vertical Network

While the main text defines a vertical network directly in terms of impact matrices φ and γ, this section presents the results of a more familiar vertical network that is defined by a “snake” input-output matrix instead. Consider an Armington-type model where each country has one sector ($I = 1$). We order each country by its upstreamness, where the most upstream is country 1 and the most downstream is country N. For simplicity, let the final goods consumption in each country only source from their domestic sector – i.e., $\pi = I$, $\alpha_i = \alpha$, and $\eta_i = \eta$ for all countries i, and let the input-output matrix be:

$$\omega = \begin{bmatrix}
0 & 0 & \ldots & 0 & 0 \\
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & 1 & 0
\end{bmatrix}.$$

In this economy, each country will respond to their own productivity shock and the productivity shocks in their upstream countries. Under perfect information, the hours response to a country 1 TFP shock as a function of network distance is depicted by the solid line in the left panel of Figure A1. Without information frictions, the response of hours in country i is:

$$h_{1,i} = \frac{\psi}{1 + (1 - \alpha \eta) \psi} \left(\frac{(1 - \eta)(1 + \psi)}{1 + (1 - \alpha \eta) \psi} \right)^{i-1} z_{1,t}.$$

All countries will respond to a shock to country 1, though the responses decay further downstream.

The dashed lines in Figure A1 display the responses under information frictions. As we found elsewhere, information frictions attenuate the impact of TFP shocks, but introduce transmission of noise shocks. The responses to both shocks decay in network distance. However, the noise shock becomes relatively more important as we move downstream. The right panel plots the ratio of the responses to the public signal compared to the private signal. As in the main text, the relative response to the public signal increases with downstreamness.

Figure A1: Hours Response in a Vertical Network

Notes: The left panel displays the response of hours in a vertical network shocks in the most upstream sector as a function of sector downstreamness. The solid line displays the response to a TFP shock in the environment without information frictions. The dashed lines display the hours responses to a TFP shock (blue) and noise shock (red). The right panel plots the ratio of the responses to the public signal relative to the private signal. The parameters are set to $\lambda_z = \lambda_\epsilon = 0.3$, $\alpha = \eta = 0.5$.

51
B. Data Appendix

B.1 International News Data

We collect the frequency of sectors mentioned in newspapers using Down Jones Factiva in the period of 1995-2020. It is a digital global news database, covering nearly 33,000 sources including publications, web news, blogs, pictures, and videos from 159 countries. We focus on 11 top newspapers by circulation in G7+Spain. In particular, we cover the leading newspaper(s) in Canada (The Globe and Mail), France (Le Figaro), Germany (Süddeutsche Zeitung), Italy (Corriere della Sera), Japan (Mainichi Shimbun, Sankei Shimbun), Spain (El País), the UK (Financial Times), and the US (Wall Street Journal, USA Today, New York Times). The criteria that we use to select the newspapers are (i) it is the top newspaper(s) by circulation in each country, (ii) it covers important economic and business news, and (iii) Factiva has a consistent coverage of the newspaper for the whole period of 1995-2020. The frequency data are from both paper and online editions of each newspaper. Factiva allows user to exclude identical articles from search results, so we can avoid duplicate articles across different editions of the same newspapers or duplicates due to minor changes in the articles like typos.

One advantage of Factiva is that Factiva develops and maintains a list of Dow Jones Intelligent Identifiers (DJID) Codes for sectors and regions. They are descriptive terms attached to each article as metadata. Users can search on these codes instead of using keywords. It allows us to search and obtain frequency data consistently across different newspapers and countries regardless of the languages used in the newspaper and its editions.

Factiva has more than 1,150 DJID codes covering a huge range of sectors. There are five levels in the industry coding hierarchy, which allows users to search at broad or detailed levels. For example, agriculture is the broadest level. It includes farming which can be disaggregated into more refined sectors like coffee growing or horticulture. Horticulture includes subsectors like vegetable growing or fruit growing which can be refined to even more detailed categories such as citrus groves and non-citrus fruit/tree nut farming. We use the second broadest aggregation level of sectors as defined by Factiva (for example, farming) and create a concordance with ISIC Rev. 4 to merge with other datasets.

When using data from Factiva we need to be careful with data prior and after 2000. In early 2000, Factiva expanded and modified the Reuters Business Briefing indexing hierarchy to build the new Factiva Intelligent Indexing hierarchy, which later developed into Dow Jones Intelligent Identifiers Codes. Therefore, we observe a step increase in frequency of sectors across newspapers and countries after 2000.

B.2 Forecast Data

Consensus Forecasts assembles forecaster-level data for GDP now-casts and 1-year ahead forecasts by major organizations in financial services and research. (For instance, in the United States forecasters include both major investment banks such as Goldman Sachs and JP Morgan, and academic-based economic analysis units such as the University of Michigan’s Research Seminar on Quantitative Economics). On average in our sample, there are 21 forecasters per country per month. The set of forecasters polled by Consensus changes somewhat over time. We use data over the period 1995-2019, to match the time span of our news data. To match the frequency of the news data, we take means across the months within each quarter for each forecaster×country.

We combine the Consensus data with the actual GDP growth realizations to compute the forecast errors. The GDP growth data come the IMF’s World Economic Outlook database. To more closely align the forecasters’ information sets with the potentially available information, we use the first vintage GDP release for each year. That is, the “actual” GDP we compare the forecasts to does not include any revisions to the GDP subsequent to the first release. The IMF WEO database comes out twice per year, in April and October. The first release GDP number for year \(t \) comes out in the April \(t + 1 \) WEO. Note that actual GDP data and forecast errors pertain to annual GDP outcomes. However, we have up to 4 now-casts and up to 4 one-year ahead forecasts for each annual GDP number, since the forecast data are quarterly, and each forecaster is asked repeatedly about current/future annual GDP. Our measure of forecast error is the absolute deviation of the forecast from the actual. Unfortunately, to our knowledge comprehensive data on sectoral forecasts does not exist. Thus, we are forced to collapse the sectoral dimension of our news coverage data for this exercise, and relate GDP forecast errors to the intensity of news coverage at the country level.
B.3 Macroeconomic Data: Sectoral Hours Worked and Industrial Production

We collect quarterly information on total hours worked by sector, and on industrial production by sector (or the best available substitute) from national sources. Table A1 summarizes the sources briefly. The rest of the section summarizes the data cleaning procedures. As compiling these data involves non-harmonized national sources, approaches vary by country and sometimes by sector, we provide a data construction Online Handbook that should be consulted for further details. The Handbook also contains all the country-specific concordances into the sectoral classification used in the paper.

Table A1: Quarterly Sectoral Data Sources

<table>
<thead>
<tr>
<th>Country</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td>Federal Reserve Board; US Census Bureau;</td>
</tr>
<tr>
<td></td>
<td>US Bureau of Labor Statistics</td>
</tr>
<tr>
<td>Canada</td>
<td>Statistics Canada</td>
</tr>
<tr>
<td>Japan</td>
<td>Japanese Ministry of Economy, Trade and Industry;</td>
</tr>
<tr>
<td></td>
<td>Statistics Japan</td>
</tr>
<tr>
<td>Germany, France, Italy, Spain, UK</td>
<td>Eurostat</td>
</tr>
</tbody>
</table>

B.3.1 United States

US Industrial Production. The US industrial production data are from the Federal Reserve Board for the manufacturing sector. The IP data are index numbers, and reflect the amount of gross output produced by an industry. The IP database covers industrial sectors going back to 1972. We use the concordance tables 17 and 18 in the Online Handbook to aggregate the IP data.

There is no directly comparable real output series for services. The US Census Bureau has conducted a Quarterly Services Survey since 2003, though many service categories were not added until later years. The database collects data on total revenues. Services PPI information is also obtained from the Census Bureau. We seasonally adjusted the time series using X-11-ARIMA. In some cases we imputed industry growth rates from available subindustries.

US hours. The US hours worked data are from the US Bureau of Labor Statistics. We compute total hours worked by multiplying the average weekly hours worked with employment. There are two series of the US average weekly working hours and employment: all employees’ (AE) and production and non-supervisory employees’ (PNE). The AE series are not available before February 2006. Our final hours series uses the AE working hours while it is available, and PNE hours prior to February 2006. We splice the two series based on the ratios between AE and PNE hours in March 2006.

B.3.2 Canada

Canadian sectoral GDP. There is no industrial production data for Canada. Instead, it has been supplanted by monthly sectoral GDP series compiled by Statistics Canada. The data start in 1997. We aggregate the months into quarters.

23https://www.census.gov/services/qss/historic_data.html
24https://www.bls.gov/ces/data/
Canadian hours. There is no readily available series for total hours worked by sector for Canada. We can construct it by combining information on average weekly hours and total employment. Measurement of Canadian working hours is based on SEPH (Survey of Employment Payroll and Hours) data. There is not a total number of hours directly provided in this data, but we construct one with the data provided by StatCan by means of the following steps:26

1. Extract the average weekly hours of hourly-paid employees,27 and the standard work week hours for salaried employees.28
2. Download the employment of salaried and hourly-paid employees.29
3. Combine them into a monthly time series of the average total hours worked:

 \[
 Hours_{mt} = HrHrly_{mt} \times 4 + EmpHrly_{mt} + HrSalary_{mt} \times 4 + EmpSalary_{mt},
 \]

 where \(Hours_{mt} \) is the aggregate working hours of sub-industry \(m \) in month \(t \); \(HrHrly_{mt} \) is the "average weekly hours for employees paid by the hour, by sub-industry, monthly, unadjusted for seasonality" (hour/week); \(HrSalary_{mt} \) is the "standard work week for salaried employees, by sub-industry, monthly, unadjusted for seasonality" (hour/week); \(EmpHrly_{mt} \) and \(EmpSalary_{mt} \) are "employment by industry, monthly, unadjusted for seasonality" for "Employees paid by the hour" and "Salaried employees paid a fixed salary".

 These data are monthly and start from 2001. We aggregate up to quarterly frequency to match the rest of our data.

B.3.3 Japan

Japanese Industrial Production. The Japanese industrial production data are from the Ministry of Economy, Trade and Industry.30

Japanese Hours. The Japanese working hours data are from Statistics of Japan. There are two series provided here: Average/Aggregated weekly hours of work by industry and status in employment and Weekly hours of work by industry and status in employment. However, the series begin at different dates varying from Q1 2000 to Q1 2011, and they also vary in their sectoral classification (either the 10, 11, 12 or 13th Japanese Standard Industrial Classification).31

As the data encompass two revisions of the JSIC codes in 2002 and 2007, we use the official concordance tables to reclassify all the series into ISIC-4.32 We seasonally adjust the final series using X-12ARIMA-SEATS.

B.3.4 European Countries

We have five European countries in the data: Germany, Spain, France, Italy, and the UK. The five countries' industrial production data and total hours worked data are from Eurostat.33

26We are grateful to Xing Guo for giving us this procedure.
27https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1410025501
28https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1410021101
29https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1410020101
31https://www.e-stat.go.jp/en/dbview?sid=0003031520
32Note that some of these concordance tables are only available in Japanese.
European Industrial Production. For each series, we download information on production, turnover and prices. We prioritize the series as follows. First, we use the deflated production series where available. When not available, we use industrial PPI to deflate the nominal turnover series. If industrial PPI is not available, we use the growth rates of nominal turnover and flag the data. If there are gaps in the deflated production series or it is very short, we impute/backcast it using the deflated nominal turnover.

European Working Hours. We use two complementary sources of working hours from Eurostat: quarterly industry actual working hours (calculated by multiplying quarterly industry employment by average weekly working hours in the industry times 12) and quarterly industry working hours index. When possible, we use the actual working hours (seasonally adjusted using X-11-Arima-SEATS). For the manufacturing sector, as the average weekly working hours are not broken down by subsector, we use the working hours index. There is a classification revision during our sample – we only use series where despite the reclassification there is no obvious break in the series.
<table>
<thead>
<tr>
<th>No</th>
<th>ISIC Rev-4 sector</th>
<th>ISIC Rev-4 sector description</th>
<th>Factiva sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>Agriculture, Forestry and Fishing</td>
<td>Farming</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>Agriculture, Forestry and Fishing</td>
<td>Fishing</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>Agriculture, Forestry and Fishing</td>
<td>Forestry/Logging</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>Agriculture, Forestry and Fishing</td>
<td>Hunting/Trapping</td>
</tr>
<tr>
<td>5</td>
<td>A</td>
<td>Agriculture, Forestry and Fishing</td>
<td>Seeds</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>Agriculture, Forestry and Fishing</td>
<td>Support Activities for Agriculture</td>
</tr>
<tr>
<td>7</td>
<td>A</td>
<td>Agriculture, Forestry and Fishing</td>
<td>Agriculture Technology</td>
</tr>
<tr>
<td>8</td>
<td>B</td>
<td>Mining and Quarrying</td>
<td>Mining/Quarrying</td>
</tr>
<tr>
<td>9</td>
<td>10-15</td>
<td>Food Products, Beverages and Tobacco; Textiles, Wearing Apparel, Leather and Related Products</td>
<td>Clothing/Textiles</td>
</tr>
<tr>
<td>10</td>
<td>10-15</td>
<td>Food Products, Beverages and Tobacco; Textiles, Wearing Apparel, Leather and Related Products</td>
<td>Baby Products</td>
</tr>
<tr>
<td>11</td>
<td>10-15</td>
<td>Food Products, Beverages and Tobacco; Textiles, Wearing Apparel, Leather and Related Products</td>
<td>Food/Beverages</td>
</tr>
<tr>
<td>12</td>
<td>10-15</td>
<td>Food Products, Beverages and Tobacco; Textiles, Wearing Apparel, Leather and Related Products</td>
<td>Leather/Fur Goods</td>
</tr>
<tr>
<td>13</td>
<td>10-15</td>
<td>Food Products, Beverages and Tobacco; Textiles, Wearing Apparel, Leather and Related Products</td>
<td>Leisure/Travel Goods</td>
</tr>
<tr>
<td>14</td>
<td>10-15</td>
<td>Food Products, Beverages and Tobacco; Textiles, Wearing Apparel, Leather and Related Products</td>
<td>Marijuana Products</td>
</tr>
<tr>
<td>15</td>
<td>10-15</td>
<td>Food Products, Beverages and Tobacco; Textiles, Wearing Apparel, Leather and Related Products</td>
<td>Tobacco Products</td>
</tr>
<tr>
<td>16</td>
<td>16-18</td>
<td>Wood and Paper Products; Printing and Reproduction of Recorded Media</td>
<td>Paper/Pulp</td>
</tr>
<tr>
<td>17</td>
<td>16-18</td>
<td>Wood and Paper Products; Printing and Reproduction of Recorded Media</td>
<td>Wood Products</td>
</tr>
<tr>
<td>18</td>
<td>16-18</td>
<td>Wood and Paper Products; Printing and Reproduction of Recorded Media</td>
<td>Converted Paper Products</td>
</tr>
<tr>
<td>19</td>
<td>16-18</td>
<td>Wood and Paper Products; Printing and Reproduction of Recorded Media</td>
<td>Media Content Distribution</td>
</tr>
<tr>
<td>20</td>
<td>16-18</td>
<td>Wood and Paper Products; Printing and Reproduction of Recorded Media</td>
<td>3D/4D Printing</td>
</tr>
<tr>
<td>21</td>
<td>19</td>
<td>Coke and Refined Petroleum Products</td>
<td>Alternative Fuels</td>
</tr>
<tr>
<td>22</td>
<td>19</td>
<td>Coke and Refined Petroleum Products</td>
<td>Fossil Fuels</td>
</tr>
<tr>
<td>23</td>
<td>19</td>
<td>Coke and Refined Petroleum Products</td>
<td>Downstream Operations</td>
</tr>
<tr>
<td>24</td>
<td>20-21</td>
<td>Chemicals and Chemical Products</td>
<td>Chemicals</td>
</tr>
<tr>
<td>25</td>
<td>20-21</td>
<td>Chemicals and Chemical Products</td>
<td>Nondurable Household Products</td>
</tr>
<tr>
<td>26</td>
<td>20-21</td>
<td>Chemicals and Chemical Products</td>
<td>Personal Care Products/Appliances</td>
</tr>
<tr>
<td>27</td>
<td>20-21</td>
<td>Chemicals and Chemical Products</td>
<td>Pharmaceuticals</td>
</tr>
<tr>
<td>28</td>
<td>22-23</td>
<td>Rubber and Plastics Products, and Other Non-Metallic Mineral Products</td>
<td>Abrasive Products</td>
</tr>
<tr>
<td>29</td>
<td>22-23</td>
<td>Rubber and Plastics Products, and Other Non-Metallic Mineral Products</td>
<td>Glass/Glass Products</td>
</tr>
<tr>
<td>No</td>
<td>ISIC Rev-4 sector</td>
<td>ISIC Rev-4 sector description</td>
<td>Factiva sector</td>
</tr>
<tr>
<td>----</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>30</td>
<td>22-23</td>
<td>Rubber and Plastics Products, and Other Non-Metallic Mineral Products</td>
<td>Industrial Ceramics</td>
</tr>
<tr>
<td>31</td>
<td>22-23</td>
<td>Rubber and Plastics Products, and Other Non-Metallic Mineral Products</td>
<td>Plastics Products</td>
</tr>
<tr>
<td>32</td>
<td>22-23</td>
<td>Rubber and Plastics Products, and Other Non-Metallic Mineral Products</td>
<td>Rubber Products</td>
</tr>
<tr>
<td>33</td>
<td>22-23</td>
<td>Rubber and Plastics Products, and Other Non-Metallic Mineral Products</td>
<td>Building Materials/Products</td>
</tr>
<tr>
<td>34</td>
<td>24-25</td>
<td>Basic Metals and Fabricated Metal Products, Except Machinery and Equipment</td>
<td>Primary Metals</td>
</tr>
<tr>
<td>35</td>
<td>24-25</td>
<td>Basic Metals and Fabricated Metal Products, Except Machinery and Equipment</td>
<td>Metal Products</td>
</tr>
<tr>
<td>36</td>
<td>26-28</td>
<td>Electrical and Optical Equipment; Machinery and Equipment n.e.c.</td>
<td>Telecommunications Equipment</td>
</tr>
<tr>
<td>37</td>
<td>26-28</td>
<td>Electrical and Optical Equipment; Machinery and Equipment n.e.c.</td>
<td>Durable Household Products</td>
</tr>
<tr>
<td>38</td>
<td>26-28</td>
<td>Electrical and Optical Equipment; Machinery and Equipment n.e.c.</td>
<td>Home Improvement Products</td>
</tr>
<tr>
<td>39</td>
<td>26-28</td>
<td>Electrical and Optical Equipment; Machinery and Equipment n.e.c.</td>
<td>Office Equipment/Supplies</td>
</tr>
<tr>
<td>40</td>
<td>26-28</td>
<td>Electrical and Optical Equipment; Machinery and Equipment n.e.c.</td>
<td>Optical Instruments</td>
</tr>
<tr>
<td>41</td>
<td>26-28</td>
<td>Electrical and Optical Equipment; Machinery and Equipment n.e.c.</td>
<td>Watches/Clocks/Parts</td>
</tr>
<tr>
<td>42</td>
<td>26-28</td>
<td>Electrical and Optical Equipment; Machinery and Equipment n.e.c.</td>
<td>Electric Power Generation</td>
</tr>
<tr>
<td>43</td>
<td>26-28</td>
<td>Electrical and Optical Equipment; Machinery and Equipment n.e.c.</td>
<td>Industrial Electronics</td>
</tr>
<tr>
<td>44</td>
<td>26-28</td>
<td>Electrical and Optical Equipment; Machinery and Equipment n.e.c.</td>
<td>Machinery</td>
</tr>
<tr>
<td>45</td>
<td>26-28</td>
<td>Electrical and Optical Equipment; Machinery and Equipment n.e.c.</td>
<td>Wires/Cables</td>
</tr>
<tr>
<td>46</td>
<td>26-28</td>
<td>Electrical and Optical Equipment; Machinery and Equipment n.e.c.</td>
<td>Computers/Consumer Electronics</td>
</tr>
<tr>
<td>47</td>
<td>29-30</td>
<td>Transport Equipment</td>
<td>Motor Vehicle Parts</td>
</tr>
<tr>
<td>48</td>
<td>29-30</td>
<td>Transport Equipment</td>
<td>Motor Vehicles</td>
</tr>
<tr>
<td>49</td>
<td>29-30</td>
<td>Transport Equipment</td>
<td>Aerospace/Defense</td>
</tr>
<tr>
<td>50</td>
<td>29-30</td>
<td>Transport Equipment</td>
<td>Drones</td>
</tr>
<tr>
<td>51</td>
<td>29-30</td>
<td>Transport Equipment</td>
<td>Railroad Rolling Stock</td>
</tr>
<tr>
<td>52</td>
<td>29-30</td>
<td>Transport Equipment</td>
<td>Shipbuilding</td>
</tr>
<tr>
<td>53</td>
<td>31-33</td>
<td>Other Manufacturing; Repair and Installation of Machinery and Equipment</td>
<td>Product Repair Services</td>
</tr>
<tr>
<td>54</td>
<td>31-33</td>
<td>Other Manufacturing; Repair and Installation of Machinery and Equipment</td>
<td>Furniture</td>
</tr>
<tr>
<td>55</td>
<td>31-33</td>
<td>Other Manufacturing; Repair and Installation of Machinery and Equipment</td>
<td>Luxury Goods</td>
</tr>
<tr>
<td>56</td>
<td>31-33</td>
<td>Other Manufacturing; Repair and Installation of Machinery and Equipment</td>
<td>Medical Equipment/Supplies</td>
</tr>
<tr>
<td>57</td>
<td>D-E</td>
<td>Electricity, Gas and Water Supply</td>
<td>Natural Gas Processing</td>
</tr>
<tr>
<td>58</td>
<td>D-E</td>
<td>Electricity, Gas and Water Supply</td>
<td>Nuclear Fuel</td>
</tr>
<tr>
<td>59</td>
<td>D-E</td>
<td>Electricity, Gas and Water Supply</td>
<td>Electricity/Gas Utilities</td>
</tr>
<tr>
<td>60</td>
<td>D-E</td>
<td>Electricity, Gas and Water Supply</td>
<td>Multiutilities</td>
</tr>
<tr>
<td>61</td>
<td>D-E</td>
<td>Electricity, Gas and Water Supply</td>
<td>Water Utilities</td>
</tr>
<tr>
<td>62</td>
<td>D-E</td>
<td>Electricity, Gas and Water Supply</td>
<td>Construction</td>
</tr>
<tr>
<td>63</td>
<td>F</td>
<td>Construction</td>
<td>Retail</td>
</tr>
<tr>
<td>64</td>
<td>45-47</td>
<td>Wholesale and Retail Trade, Except of Motor Vehicles and Motorcycles</td>
<td>Wholesalers</td>
</tr>
<tr>
<td>65</td>
<td>45-47</td>
<td>Wholesale and Retail Trade, Except of Motor Vehicles and Motorcycles</td>
<td>Highway Operation</td>
</tr>
<tr>
<td>66</td>
<td>49-52</td>
<td>Transport and Storage</td>
<td>Continued on next page</td>
</tr>
<tr>
<td>No</td>
<td>ISIC Rev-4 sector</td>
<td>ISIC Rev-4 sector description</td>
<td>Factiva sector</td>
</tr>
<tr>
<td>----</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>67</td>
<td>49-52</td>
<td>Transport and Storage</td>
<td>Moving/Relocation Services</td>
</tr>
<tr>
<td>68</td>
<td>49-52</td>
<td>Transport and Storage</td>
<td>Air Transport</td>
</tr>
<tr>
<td>69</td>
<td>49-52</td>
<td>Transport and Storage</td>
<td>Road/Rail Transport</td>
</tr>
<tr>
<td>70</td>
<td>49-52</td>
<td>Transport and Storage</td>
<td>Water Transport/Shipping</td>
</tr>
<tr>
<td>71</td>
<td>53</td>
<td>Postal and Courier Activities</td>
<td>Freight Transport/Logistics</td>
</tr>
<tr>
<td>72</td>
<td>I</td>
<td>Accommodation and Food Service Activities</td>
<td>Lodgings/Restaurants/Bars</td>
</tr>
<tr>
<td>73</td>
<td>J</td>
<td>Information and Communication</td>
<td>Computer Services</td>
</tr>
<tr>
<td>74</td>
<td>J</td>
<td>Information and Communication</td>
<td>Internet/Cyber Cafes</td>
</tr>
<tr>
<td>75</td>
<td>J</td>
<td>Information and Communication</td>
<td>Audiovisual Production</td>
</tr>
<tr>
<td>76</td>
<td>J</td>
<td>Information and Communication</td>
<td>Broadcasting</td>
</tr>
<tr>
<td>77</td>
<td>J</td>
<td>Information and Communication</td>
<td>Freelance Journalism</td>
</tr>
<tr>
<td>78</td>
<td>J</td>
<td>Information and Communication</td>
<td>Printing/Publishing</td>
</tr>
<tr>
<td>79</td>
<td>J</td>
<td>Information and Communication</td>
<td>Social Media Platforms/Tools</td>
</tr>
<tr>
<td>80</td>
<td>J</td>
<td>Information and Communication</td>
<td>Sound/Music Recording/Publishing</td>
</tr>
<tr>
<td>81</td>
<td>J</td>
<td>Information and Communication</td>
<td>Online Service Providers</td>
</tr>
<tr>
<td>82</td>
<td>J</td>
<td>Information and Communication</td>
<td>Virtual Reality Technologies</td>
</tr>
<tr>
<td>83</td>
<td>J</td>
<td>Information and Communication</td>
<td>Integrated Communications Providers</td>
</tr>
<tr>
<td>84</td>
<td>J</td>
<td>Information and Communication</td>
<td>Satellite Telecommunications Services</td>
</tr>
<tr>
<td>85</td>
<td>J</td>
<td>Information and Communication</td>
<td>Wired Telecommunications Services</td>
</tr>
<tr>
<td>86</td>
<td>J</td>
<td>Information and Communication</td>
<td>Wireless Telecommunications Services</td>
</tr>
<tr>
<td>87</td>
<td>K</td>
<td>Financial and Insurance Activities</td>
<td>Debt Recovery/Collection Services</td>
</tr>
<tr>
<td>88</td>
<td>K</td>
<td>Financial and Insurance Activities</td>
<td>Diversified Holding Companies</td>
</tr>
<tr>
<td>89</td>
<td>K</td>
<td>Financial and Insurance Activities</td>
<td>Shell Company</td>
</tr>
<tr>
<td>90</td>
<td>K</td>
<td>Financial and Insurance Activities</td>
<td>Banking/Credit</td>
</tr>
<tr>
<td>91</td>
<td>K</td>
<td>Financial and Insurance Activities</td>
<td>Insurance</td>
</tr>
<tr>
<td>92</td>
<td>K</td>
<td>Financial and Insurance Activities</td>
<td>Investing/Securities</td>
</tr>
<tr>
<td>93</td>
<td>K</td>
<td>Financial and Insurance Activities</td>
<td>Rating Agencies</td>
</tr>
<tr>
<td>94</td>
<td>K</td>
<td>Financial and Insurance Activities</td>
<td>Risk Management Services</td>
</tr>
<tr>
<td>95</td>
<td>K</td>
<td>Financial and Insurance Activities</td>
<td>Blockchain Technology</td>
</tr>
<tr>
<td>96</td>
<td>K</td>
<td>Financial and Insurance Activities</td>
<td>Financial Technology</td>
</tr>
<tr>
<td>97</td>
<td>L</td>
<td>Real Estate Activities</td>
<td>Real Estate</td>
</tr>
<tr>
<td>98</td>
<td>M-N</td>
<td>Professional, Scientific, Technical, Administrative and Support Service Activities</td>
<td>Accounting/Consulting</td>
</tr>
<tr>
<td>99</td>
<td>M-N</td>
<td>Professional, Scientific, Technical, Administrative and Support Service Activities</td>
<td>Administrative/Support Services</td>
</tr>
<tr>
<td>100</td>
<td>M-N</td>
<td>Professional, Scientific, Technical, Administrative and Support Service Activities</td>
<td>Advertising/Marketing/Public Relations</td>
</tr>
<tr>
<td>101</td>
<td>M-N</td>
<td>Professional, Scientific, Technical, Administrative and Support Service Activities</td>
<td>Investigation Services</td>
</tr>
<tr>
<td>102</td>
<td>M-N</td>
<td>Professional, Scientific, Technical, Administrative and Support Service Activities</td>
<td>Legal Services</td>
</tr>
<tr>
<td>103</td>
<td>M-N</td>
<td>Professional, Scientific, Technical, Administrative and Support Service Activities</td>
<td>Parking Lots/Garages</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>No</th>
<th>ISIC Rev-4 sector</th>
<th>ISIC Rev-4 sector description</th>
<th>Factiva sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>M-N</td>
<td>Professional, Scientific, Technical, Administrative and Support Service Activities</td>
<td>Photographic Processing</td>
</tr>
<tr>
<td>105</td>
<td>M-N</td>
<td>Professional, Scientific, Technical, Administrative and Support Service Activities</td>
<td>Recruitment Services</td>
</tr>
<tr>
<td>106</td>
<td>M-N</td>
<td>Professional, Scientific, Technical, Administrative and Support Service Activities</td>
<td>Rental/Leasing Services</td>
</tr>
<tr>
<td>107</td>
<td>M-N</td>
<td>Professional, Scientific, Technical, Administrative and Support Service Activities</td>
<td>Scientific Research Services</td>
</tr>
<tr>
<td>109</td>
<td>M-N</td>
<td>Professional, Scientific, Technical, Administrative and Support Service Activities</td>
<td>Security/Prison Services</td>
</tr>
<tr>
<td>110</td>
<td>M-N</td>
<td>Professional, Scientific, Technical, Administrative and Support Service Activities</td>
<td>Services to Facilities/Buildings</td>
</tr>
<tr>
<td>111</td>
<td>M-N</td>
<td>Professional, Scientific, Technical, Administrative and Support Service Activities</td>
<td>Technical Services</td>
</tr>
<tr>
<td>112</td>
<td>M-N</td>
<td>Professional, Scientific, Technical, Administrative and Support Service Activities</td>
<td>Packaging</td>
</tr>
<tr>
<td>113</td>
<td>M-N</td>
<td>Professional, Scientific, Technical, Administrative and Support Service Activities</td>
<td>Tourism</td>
</tr>
<tr>
<td>114</td>
<td>M-N</td>
<td>Professional, Scientific, Technical, Administrative and Support Service Activities</td>
<td>Architects</td>
</tr>
<tr>
<td>115</td>
<td>M-N</td>
<td>Professional, Scientific, Technical, Administrative and Support Service Activities</td>
<td>Sports Technologies</td>
</tr>
<tr>
<td>116</td>
<td>O-Q</td>
<td>Public Administration and Defence, Compulsory Social Security; Education; Health and Social Work</td>
<td>Educational Services</td>
</tr>
<tr>
<td>117</td>
<td>O-Q</td>
<td>Public Administration and Defence, Compulsory Social Security; Education; Health and Social Work</td>
<td>Healthcare Provision</td>
</tr>
<tr>
<td>118</td>
<td>O-Q</td>
<td>Public Administration and Defence, Compulsory Social Security; Education; Health and Social Work</td>
<td>Healthcare Support Services</td>
</tr>
<tr>
<td>119</td>
<td>O-Q</td>
<td>Public Administration and Defence, Compulsory Social Security; Education; Health and Social Work</td>
<td>E-learning/Educational Technology</td>
</tr>
<tr>
<td>120</td>
<td>R-S</td>
<td>Arts, Entertainment and Recreation; Other Service Activities</td>
<td>Agents/Managers for Public Figures</td>
</tr>
<tr>
<td>121</td>
<td>R-S</td>
<td>Arts, Entertainment and Recreation; Other Service Activities</td>
<td>Dry Cleaning/Laundry Services</td>
</tr>
<tr>
<td>122</td>
<td>R-S</td>
<td>Arts, Entertainment and Recreation; Other Service Activities</td>
<td>Professional Bodies</td>
</tr>
<tr>
<td>123</td>
<td>R-S</td>
<td>Arts, Entertainment and Recreation; Other Service Activities</td>
<td>Specialized Consumer Services</td>
</tr>
<tr>
<td>124</td>
<td>R-S</td>
<td>Arts, Entertainment and Recreation; Other Service Activities</td>
<td>Artists/Writers/Performers</td>
</tr>
<tr>
<td>125</td>
<td>R-S</td>
<td>Arts, Entertainment and Recreation; Other Service Activities</td>
<td>Film/Video Exhibition</td>
</tr>
<tr>
<td>126</td>
<td>R-S</td>
<td>Arts, Entertainment and Recreation; Other Service Activities</td>
<td>Gambling Industries</td>
</tr>
<tr>
<td>127</td>
<td>R-S</td>
<td>Arts, Entertainment and Recreation; Other Service Activities</td>
<td>Libraries/Archives</td>
</tr>
<tr>
<td>128</td>
<td>R-S</td>
<td>Arts, Entertainment and Recreation; Other Service Activities</td>
<td>Performing Arts/Sports Promotion</td>
</tr>
<tr>
<td>129</td>
<td>R-S</td>
<td>Arts, Entertainment and Recreation; Other Service Activities</td>
<td>Sporting Facilities/Venues</td>
</tr>
<tr>
<td>130</td>
<td>R-S</td>
<td>Arts, Entertainment and Recreation; Other Service Activities</td>
<td>Sports/Physical Recreation Instruction</td>
</tr>
<tr>
<td>131</td>
<td>R-S</td>
<td>Arts, Entertainment and Recreation; Other Service Activities</td>
<td>Theaters/Entertainment Venues</td>
</tr>
</tbody>
</table>
Section 3 presented some broad patterns about the relationships between sector size and GVC participation and news coverage intensity. This appendix provides further details on the data and the basic correlations of news coverage with other observables such as size and GVC participation.

Heterogeneity and variation. The frequency of total economic news varies over time, but appears to be at best modestly correlated with recessions. Figure A2 plots global economic news coverage (the sum of the raw frequencies of news about all country-sectors in all of our newspaper sources in each quarter), along with the NBER recession dates for our sample. To minimize the effect of the level changes in tags caused by Factiva’s algorithm change detailed discussed in Appendix B, we also plot the HP-filtered global economic news coverage series. Economic news coverage varies over time, and increased relative to trend at the start of the Great Recession. A clear pattern is not discernible for the 2002 recession, perhaps as it corresponds to a period with other aggregate shocks (e.g. China’s WTO accession in December 2001).

Figure A2: Economic News Frequency, 1995-2020

![Figure A2](image)

Notes: This figure displays the total frequency of economic news over time (solid black line), as well as its cyclical component (thin red line). The gray bars denote the NBER recessions in the US.

Figure A3 plots the shares of several large sectors in total global news coverage over time. While there is some time variation, the ordering of sectors in terms of news coverage shares in the cross-section remains quite stable. This suggests that within-sector variation over time is less important than cross-sectional variation. To make this more precise, we estimate a simple within-across decomposition to illustrate that average cross-sectional
variation is much more important than time-series variation within a sector over time:

\[F_{mi,t} = \delta_{mi} + u_{mi,t}, \]

(C.1)

where \(F_{mi,t} \) is either the total frequency (number of mentions), or the frequency share of sector \(i \) in country \(m \) reported in total economic news coverage in quarter \(t \), and \(\delta_{mi} \) are sector-country fixed effects. The \(R^2 \) of this regression is informative of the role of cross-sectional variation, accounted for by the fixed effects.

The share of the variation explained by \(\delta_{mi} \) is 0.75 for the absolute frequencies, and 0.88 for frequency shares. Thus, it appears that the large majority of the overall variation in the data is cross-sectional rather than time series.

Upstreamness and downstreamness indicators. For Figure 3, we define sector \(i \)'s importance as an input as the average expenditure share on sector \(i \)'s inputs in other sectors:

\[UP_i = \frac{1}{NN} \sum_m \sum_s \sum_j \frac{x_{mi,sj}}{\sum_{l,k} x_{lk,slj}}. \]

(C.2)

where \(x_{mi,sj} \) is input expenditure by country-sector \((s,j)\) on \((m,i)\), and there are a total of \(N \) countries and \(J \) sectors. We define sector \(i \)'s importance as a downstream sales destination as the average sales of upstream sectors to \(i \):

\[DN_i = \frac{1}{NN} \sum_n \sum_s \sum_j \frac{x_{sj,ni}}{\sum_{l,k} x_{sj,lk}}. \]

(C.3)
Table A3: Correlates of Global News Coverage, Country-Sector Level

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep. Var.: F_{mi}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S_{mi}</td>
<td>0.837*</td>
<td>0.385</td>
<td>0.967**</td>
<td>0.522</td>
</tr>
<tr>
<td></td>
<td>(0.465)</td>
<td>(0.472)</td>
<td>(0.378)</td>
<td>(0.401)</td>
</tr>
<tr>
<td>UP_{mi}</td>
<td>0.675**</td>
<td>0.658**</td>
<td>1.160**</td>
<td>0.897*</td>
</tr>
<tr>
<td></td>
<td>(0.294)</td>
<td>(0.264)</td>
<td>(0.575)</td>
<td>(0.474)</td>
</tr>
<tr>
<td>DN_{mi}</td>
<td>-0.582</td>
<td>-0.281</td>
<td>-0.966</td>
<td>-0.653</td>
</tr>
<tr>
<td></td>
<td>(0.437)</td>
<td>(0.432)</td>
<td>(0.708)</td>
<td>(0.653)</td>
</tr>
<tr>
<td>Observations</td>
<td>184</td>
<td>184</td>
<td>184</td>
<td>184</td>
</tr>
<tr>
<td>R^2</td>
<td>0.192</td>
<td>0.250</td>
<td>0.603</td>
<td>0.647</td>
</tr>
<tr>
<td>Country FE</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
</tr>
<tr>
<td>Sector FE</td>
<td>NO</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>

Notes: This table reports the results of estimating (C.4). Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. Variable definitions and sources are described in detail in the text.

Size and GVC participation at finer levels of disaggregation. We now document the partial correlations between news coverage and sectoral characteristics. To begin, we add the country dimension and regress the share of global coverage on these characteristics simultaneously:

$$F_{mi} = \beta_1 S_{mi} + \beta_2 UP_{mi} + \beta_3 DN_{mi} + \delta + \varepsilon_{mi},$$

(C.4)

where F_{mi} is the share of news about sector i in country m in global news coverage, S_{mi} is sector size measured by its share in global sales, δ are fixed effects, if any, and the upstream and downstream indicators are defined at the country-sector level similarly to the main text:

$$UP_{mi} = \frac{1}{NJ} \sum_s \sum_j \frac{x_{mi,sj}}{\sum_{lj,k} x_{lj,k}} \quad DN_{mi} = \frac{1}{NJ} \sum_s \sum_j \frac{x_{sj,mi}}{\sum_{lj,k} x_{lj,k}}.$$

(C.5)

Table A3 reports the results. Sector size and upstream intensity are significant and some with the expected sign. Overall, even these three variables together explain less than 20% of the variation in the global news coverage across countries and sectors (column 1).

Finally, we exploit the bilateral dimension of news coverage, and assess how frequently countries report on each other’s sectors:

$$F_{s,mi} = \beta_1 S_{mi} + \beta_2 UP_{s,mi} + \beta_3 DN_{s,mi} + \beta_41 \{s = m\} + \delta + \varepsilon_{s,mi},$$

(C.6)

where s indexes country of the source of the news, m and i index country and sector about which news is reported, and $F_{s,mi}$ is the news coverage frequency share about (m, i) in the newspapers printed in source country s (“local news”). For this equation, we use the bilateral versions of upstream and downstream indicators, that reflect how important is sector (m, i) for producers in country s. These are defined analogously, but at the country level.\(^34\) We also added to the specification the indicator for whether the country of the

\(^34\)These indicators are:

$$UP_{s,mi} = \frac{1}{J} \sum_j x_{mi,sj} \quad DN_{s,mi} = \frac{1}{J} \sum_j x_{sj,mi}.$$
Table A4: Correlates of Local News Coverage, Country-Pair-Sector level

<table>
<thead>
<tr>
<th>Dep. Var.: $F_{s,mi}$</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{mi}</td>
<td>0.226**</td>
<td>0.226**</td>
<td>0.111</td>
<td>0.273***</td>
<td>0.111</td>
<td>0.116</td>
<td>0.139</td>
<td>0.142</td>
</tr>
<tr>
<td></td>
<td>(0.0983)</td>
<td>(0.0985)</td>
<td>(0.0903)</td>
<td>(0.0998)</td>
<td>(0.0905)</td>
<td>(0.0909)</td>
<td>(0.107)</td>
<td>(0.103)</td>
</tr>
<tr>
<td>$UP_{s,mi}$</td>
<td>0.365***</td>
<td>0.365***</td>
<td>0.364***</td>
<td>0.341***</td>
<td>0.364***</td>
<td>0.366***</td>
<td>0.339***</td>
<td>0.342***</td>
</tr>
<tr>
<td></td>
<td>(0.120)</td>
<td>(0.120)</td>
<td>(0.120)</td>
<td>(0.103)</td>
<td>(0.120)</td>
<td>(0.119)</td>
<td>(0.103)</td>
<td>(0.102)</td>
</tr>
<tr>
<td>$DN_{s,mi}$</td>
<td>0.0661</td>
<td>0.0664</td>
<td>0.0741</td>
<td>0.0855</td>
<td>0.0744</td>
<td>0.0647</td>
<td>0.0877</td>
<td>0.0773</td>
</tr>
<tr>
<td></td>
<td>(0.115)</td>
<td>(0.115)</td>
<td>(0.114)</td>
<td>(0.106)</td>
<td>(0.115)</td>
<td>(0.115)</td>
<td>(0.106)</td>
<td>(0.105)</td>
</tr>
<tr>
<td>1{$s=m$}</td>
<td>0.0152***</td>
<td>0.0152***</td>
<td>0.0150***</td>
<td>0.0154***</td>
<td>0.0150***</td>
<td>0.0154***</td>
<td>0.0154***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.00338)</td>
<td>(0.00339)</td>
<td>(0.00337)</td>
<td>(0.00293)</td>
<td>(0.00338)</td>
<td>(0.00294)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observations: 1,472 1,472 1,472 1,472 1,472 1,472 1,472 1,472
R^2: 0.390 0.390 0.392 0.504 0.393 0.406 0.506 0.520
Country s FE: NO YES NO NO YES NO YES NO
Country m FE: NO NO YES NO YES NO YES NO
Country pair FE: NO NO NO NO YES NO NO YES
Sector FE: NO NO NO YES NO NO YES YES

Notes: This table reports the results of estimating equation (C.6). Standard errors in parentheses. ** p<0.01, *** p<0.05, * p<0.1. Variable definitions and sources are described in detail in the text.

newspaper is the same as the country of the sector, 1{$s=m$}, to pick up the strength of the home bias in news coverage.

Table A4 reports the results. Overall, the coefficients have the expected sign, and the explanatory power of these regressors at the bilateral level is higher than at the global level, explaining 40% of the variation (column 1). There is clear home bias in news coverage, with shares on average 1.5% higher for home sectors conditional on the other observables. Larger country-sectors receive more coverage, as expected, though the coefficient becomes insignificant with country-being-covered (m) fixed effects, suggesting that it is primarily larger countries that get coverage. All in all, the highest combined R^2 of all the explanatory variables is only about 0.4, implying there is substantial cross-sectional variation in news coverage that is not systematically related to these simple observables.

To further illustrate these patterns, Figure A4 plots the log share of US coverage of country-sector (m, i) against the the upstream importance $UP_{US,mi}$ (panel A) and downstream importance $DN_{US,mi}$ (panel B) in the US economy. The positive correlations are evident, but so is the large amount of variation of actual around the predicted values.

Finally, Figure A5 plots the share of news coverage of sector (i) in global news against the average correlation of industrial production growth in m, i with GDP growth in m (panel A) and against the average TFP growth of m, i across all m (panel B). News coverage is more strongly related to average TFP growth, and has no obvious relationship with sectoral correlations with own GDP growth.

What is in the news? Appendix Figures A6-A7 plot the time series of US news coverage for several prominent global companies, labeling large events. At the company level, there is a great deal of time variation in the intensity of news coverage, both at short and long frequencies. Spikes in news coverage can be identified with important events for these companies, but cannot always be mapped to company innovations. For instance, the introduction of the original iPhone received very little news coverage, but the launch of the iPhone 5 resulted
Figure A4: Importance in US GVC and US News Coverage

A. Share of US News vs Share in US Inputs
B. Share of US News vs Share of US Downstream Sales

Notes: This figure displays the scatterplots of the log share of US news coverage on the y-axis (both panels) against the intensity with which US uses the sector as an input (panel A), and downstream intensity (panel B). Both plots report the bivariate regression slope coefficient, robust standard error, and the R^2.

Figure A5: News Coverage, Sector Comovement and TFP Growth

A. Share of Global News vs Average Sectoral Comovement with Country GDP
B. Share of Global News vs Average Sectoral TFP (Solow Residual) Growth

Notes: This figure displays the scatterplots of the log share of global news coverage on the y-axis (both panels) against average comovement of the sector with country GDP (panel A), and the average growth rate of the sector’s TFP shocks (panel B). Both plots report the bivariate regression slope coefficient and the R^2.

in a spike in the coverage about Apple Inc.30 The bottom panel of Figure A7 plots the news coverage of key Japanese industries in global news around the time of the 2011 Tohoku earthquake, together with some control industries for comparison. There is a spike in coverage of the industries that were most severely affected by the natural disaster.

30The news coverage of Apple varies in levels across the three US newspapers plotted, but is positively correlated across the newspapers, suggesting the news media focuses on similar events in reporting. The levels variation reflects the number of articles in the typical newspaper. For instance the Wall Street Journal published around 64000 articles in 2012:Q3, while the New York Times published around 15000 articles a month in this period.
Figure A6: Company-Specific Figures: Apple, JP Morgan Chase, Starbucks

Notes: This figure displays the frequencies of news coverage of Apple Inc., Starbucks Corp., and JPMorgan Chase & Co. in the Financial Times, the New York Times, and the Wall Street Journal. Recognizable events in the company history are labeled.
Figure A7: The Auto Sector and the 2011 Tohoku Earthquake

![Graph showing General Motors Company's events](image)

Notes: This figure displays the frequencies of news coverage of General Motors Company, and the frequency of the coverage of key sectors around the time of the 2011 Tohoku earthquake in the Financial Times, the New York Times, and the Wall Street Journal. Recognizable events in the company history are labeled.
C.2 Forecast Error Regressions: Robustness

Table A5: Global News Coverage and Consensus Forecast Errors: Domar-Weighted News Coverage

<table>
<thead>
<tr>
<th>Dep. Var</th>
<th>Panel A: nowcast errors</th>
<th>Panel B: one-year ahead forecast errors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) forecast error</td>
<td>SD (forecast error)</td>
</tr>
<tr>
<td>log $F_{n,t}$</td>
<td>-0.0772***</td>
<td>-0.0254**</td>
</tr>
<tr>
<td></td>
<td>(0.0097)</td>
<td>(0.0111)</td>
</tr>
<tr>
<td>Observations</td>
<td>18,582</td>
<td>800</td>
</tr>
<tr>
<td>R^2</td>
<td>0.378</td>
<td>0.703</td>
</tr>
<tr>
<td>Time FE</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Country-forecaster FE</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Country FE</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Notes: Standard errors clustered by country-forecaster (columns 1 and 3) and Driscoll-Kraay standard errors (columns 2 and 4) in parentheses. *** $p<0.01$, ** $p<0.05$, * $p<0.1$. Columns 1 and 3 report the results of estimating equation (4.1). Columns 2 and 4 report the results of estimating equation (4.2). The independent variable is the Domar-weighted news frequency share. Variable definitions and sources are described in detail in the text.

Table A6: Global News Coverage and Consensus Forecast Errors: Unemployment

<table>
<thead>
<tr>
<th>Dep. Var</th>
<th>Panel A: nowcast errors</th>
<th>Panel B: one-year ahead forecast errors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1) forecast error</td>
<td>SD (forecast error)</td>
</tr>
<tr>
<td>log $F_{n,t}$</td>
<td>-0.1690***</td>
<td>-0.0069</td>
</tr>
<tr>
<td></td>
<td>(0.0349)</td>
<td>(0.0066)</td>
</tr>
<tr>
<td>Observations</td>
<td>16,348</td>
<td>700</td>
</tr>
<tr>
<td>R^2</td>
<td>0.111</td>
<td>0.642</td>
</tr>
<tr>
<td>Time FE</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Country-forecaster FE</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Country FE</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Notes: Standard errors clustered by country-forecaster (columns 1 and 3) and Driscoll-Kraay standard errors (columns 2 and 4) in parentheses. *** $p<0.01$, ** $p<0.05$, * $p<0.1$. Columns 1 and 3 report the results of estimating equation (4.1). Columns 2 and 4 report the results of estimating equation (4.2). The dependent variable is the forecast error of the unemployment rate. Variable definitions and sources are described in detail in the text.
C.3 Trade-Comovement Regressions: Details and Robustness

The trade intensity variable. While the majority of trade-comovement regressions are estimated at the country-pair level, it is somewhat less straightforward to define bilateral trade intensity at the sector-pair than at the aggregate level, since generically sectors are simultaneously upstream and downstream from each other. We define the trade intensity variable as:

\[
\text{Trade}_{n,j,m,i} = \frac{1}{4} \left(\omega_{m,i,nj} + \omega_{nj,m,i} + \theta_{mj,nj} + \theta_{nj,mj} \right),
\]

where \(\omega_{m,i,nj} = \frac{x_{m,i,nj}}{\sum_{k,l} x_{m,j,k,l}} \) is the share of input (\(m, i \)) in the total input spending of (\(n, j \)). Thus, it captures the importance of (\(m, i \)) as a supplier of inputs to sector (\(n, j \)). The share \(\theta_{mj,nj} = \frac{x_{mj,nj}}{\sum_{l,k} x_{m,j,k,l}} \) is the sales share of (\(n, j \)) in (\(m, i \))’s total sales. Thus, it captures the importance of (\(m, i \)) as a destination of (\(n, j \))’s sales. Our measure of trade intensity averages the directional bilateral upstream and downstream intensities \(\omega \)’s and \(\theta \)’s.

Robustness. Table A7 confirms the findings with correlations in industrial production instead of hours worked. While the interaction terms with news coverage are not significant in all specifications, they are strongly significant for country-sector pairs in different countries. Appendix Table A8 performs further robustness checks assessing correlations based on 1-quarter growth rates in hours and IP, respectively. We also consider a local news coverage regressor, that is an average of the local coverage frequencies of sectors (\(n, j \)) and (\(m, i \)) in the newspapers of \(m \) and \(n \) respectively, \(F_{n,j,m} \) and \(F_{n,m,i} \). Finally we also assess robustness using a sales based measure of trade intensity, where \(\text{Trade}_{n,j,m,i} = \frac{1}{2} (\theta_{mj,nj} + \theta_{nj,mj}) \).

Our external validation exercise in the model centers on the relationship between trade intensity, news coverage, and sectoral covariances (Section 4.3). Table A9 assesses this relationship in the data and finds that the interaction between trade intensity and news coverage is positively associated with increased sector-pair covariance in a wide range of specifications.

Table A7: International Comovement, Trade, and News Coverage, Industrial Production

<table>
<thead>
<tr>
<th>Dep. Var.: (p_{n,j,m,i}^{IP})</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All country-sector pairs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In Trade_{n,j,m,i}</td>
<td>0.026***</td>
<td>0.013***</td>
<td>0.038***</td>
<td>0.011***</td>
<td>0.008***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.002)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>In Trade_{n,j,m,i} \times F_{n,j,m,i}</td>
<td>-0.214</td>
<td>0.142</td>
<td>0.412**</td>
<td>0.174</td>
<td>0.705***</td>
</tr>
<tr>
<td></td>
<td>(0.159)</td>
<td>(0.115)</td>
<td>(0.168)</td>
<td>(0.134)</td>
<td>(0.166)</td>
</tr>
<tr>
<td>(F_{n,j,m,i})</td>
<td>0.657</td>
<td>7.833***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.375)</td>
<td>(1.471)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>11,475</td>
<td>11,475</td>
<td>11,475</td>
<td>11,475</td>
<td>10,088</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.084</td>
<td>0.638</td>
<td>0.174</td>
<td>0.645</td>
<td>0.646</td>
</tr>
<tr>
<td>Country-sector ((n, j)) FE</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Country-sector ((m, i)) FE</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Country pair FE</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. This table reports the results of estimating (4.9). The dependent variable is the correlation in 4-quarter growth rates of industrial production between country-sectors (\(n, j \)) and (\(m, i \)). The regressors are log trade intensity as in (C.7) and news coverage intensity as in (4.10). Columns 1-4 use all country-sector pairs in computing correlations. Column 5 only uses pairs where \(m \neq n \). In all cases, the sample is restricted to pairs where a minimum of 10 years of data is available for computing correlations.
Table A8: International Comovement, Trade, and News Coverage, Robustness

<table>
<thead>
<tr>
<th>Dep. Var.:</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho_{nj,mi}^{H}$</td>
<td>$\rho_{nj,mi}^{IP}$</td>
<td>$\rho_{nj,mi}^{H}$</td>
<td>$\rho_{nj,mi}^{IP}$</td>
<td>$\rho_{nj,mi}^{H}$</td>
<td>$\rho_{nj,mi}^{IP}$</td>
<td></td>
</tr>
<tr>
<td>1Q Growth Rates</td>
<td>4Q Growth Rates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Local News</td>
<td>Sales Intensity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>In Trade$_{nj,mi}$</th>
<th>0.003***</th>
<th>0.010***</th>
<th>0.007***</th>
<th>0.010***</th>
<th>0.009***</th>
<th>0.010***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>In Trade${nj,mi} \times F{nj,mi}$</td>
<td>0.136*</td>
<td>0.092</td>
<td>0.509***</td>
<td>0.597***</td>
<td>0.201**</td>
<td>0.253**</td>
</tr>
<tr>
<td></td>
<td>(0.073)</td>
<td>(0.122)</td>
<td>(0.095)</td>
<td>(0.122)</td>
<td>(0.087)</td>
<td>(0.119)</td>
</tr>
<tr>
<td>$F_{nj,mi}$</td>
<td>1.762***</td>
<td>1.550***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.419)</td>
<td>(0.504)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observations	16,653	11,627	16,032	11,475	16,032	11,475
R-squared	0.321	0.582	0.465	0.646	0.465	0.645
Country-sector FE	yes	yes	yes	yes	yes	yes
Country pair FE	yes	yes	yes	yes	yes	yes

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. This table reports the results of estimating (4.9). The dependent variable is the correlation between country-sectors (n, j) and (m, i) of, alternatively, 1-quarter growth rates of hours in column 1; 1-quarter growth rate of industrial production in column 2; 4-quarter growth rates of hours in columns 3 and 5; 4-quarter growth rates of industrial production in columns 4 and 6. The regressors are log trade intensity as in (C.7) in columns 1-4 and a final sales based measure of trade intensity in columns 5-6, and news coverage intensity as in (4.10). The news coverage is assumed to be global in columns 1, 2, 5 and 6, and is assumed to be local in columns 4 and 5. In all cases, the sample is restricted to pairs where a minimum of 10 years of data is available for computing correlations.
Table A9: International Comovement, Trade, and News Coverage: Covariances

<table>
<thead>
<tr>
<th>Dep. Var.:</th>
<th>(1) $\text{Cov}^H_{nj,mi}$</th>
<th>(2) $\text{Cov}^{Ip}_{nj,mi}$</th>
<th>(3) $\text{Cov}^H_{nj,mi}$</th>
<th>(4) $\text{Cov}^{Ip}_{nj,mi}$</th>
<th>(5) $\text{Cov}^H_{nj,mi}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4Q Growth Rates</td>
<td>1Q Growth Rates</td>
<td>4Q Growth Rates</td>
<td>1Q Growth Rates</td>
<td>4Q Growth Rates</td>
</tr>
<tr>
<td>ln Trade$_{nj,mi}$</td>
<td>0.0257*** (0.00448)</td>
<td>0.0641*** (0.00464)</td>
<td>2.29e-05 (0.00513)</td>
<td>0.0719*** (0.00504)</td>
<td>0.0237*** (0.00516)</td>
</tr>
<tr>
<td>ln Trade${nj,mi}$ \times News$^{global}{nj,mi}$</td>
<td>0.758** (0.340)</td>
<td>2.021*** (0.520)</td>
<td>0.950** (0.376)</td>
<td>1.087*** (0.417)</td>
<td>1.811*** (0.502)</td>
</tr>
<tr>
<td>Observations</td>
<td>16,032</td>
<td>11,475</td>
<td>16,653</td>
<td>11,627</td>
<td>14,030</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.567</td>
<td>0.744</td>
<td>0.417</td>
<td>0.646</td>
<td>0.558</td>
</tr>
<tr>
<td>Country-sector FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Country pair FE</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

Notes: Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. This table reports the results of estimating (4.9), with the dependent variables the covariances in 4-quarter growth rates of hours and industrial production between country-sectors (n, j) and (m, i) (columns 1 and 2), or the covariances in 1-quarter growth rates of hours and industrial production between country-sectors (n, j) and (m, i) (columns 3 and 4). Column 5 considers only pairs of sectors in where $m \neq n$. The regressors are log trade intensity as in (C.7) and news coverage intensity as in (4.10). All covariances are computed on samples with a minimum of 10 years of data.
D. Quantification Appendix

D.1 Indirect Inference

To illustrate the basic logic of the identification, consider a simple case where labor is inelastically supplied \((\psi = 0)\). In this case, the change in a country’s GDP is simply due to the changes in TFP

\[
v_{nt} = \sum_{j} D_{nj} z_{nj,t},
\]

where \(D_{nj}\) is the corresponding Domar weight. Denote the individual forecast error as

\[
e_{f,n,t} \equiv v_{nt} - \mathbb{E}_t[v_{nt}] = \sum_{j} D_{nj} \left(\frac{1}{1 + \tau + \kappa_{nj,t}} z_{nj,t} - \frac{\kappa_{nj,t}}{1 + \tau + \kappa_{nj,t}} e_{nj,t} - \frac{\tau}{1 + \tau + \kappa_{nj,t}} u_{nj,f,t} \right).
\]

Note that here we allow the news coverage share to vary with time and \(\kappa_{nj,t}\) is therefore indexed by \(t\) as well. The individual noise \(u_{nj,f,t}\) is associated with the individual forecaster \(f\), which wash out in aggregate, \(\int f u_{nj,f,t} df = 0\). The variance of the individual forecast error at time \(t\) can be expressed as

\[
\mathbb{V}_t(e_{f,n,t}) = \sum_{j} D_{nj}^2 \mathbb{V}(z_{nj,t}) \frac{1}{1 + \tau + \kappa_{nj,t}}.
\]

Under the assumption that \(\kappa_{nj,t} = \lambda_0 + \lambda_1 F_{nj,t}\), the first-order approximation of \(\mathbb{V}_t(e_{f,n,t})\) around the average news coverage \(\bar{F}\) can be written as

\[
\mathbb{V}_t(e_{f,n,t}) \approx \text{const} - \lambda_1 \frac{\bar{F}}{(1 + \tau + \lambda_0 + \lambda_1 \bar{F})^2} \sum_{j} D_{nj}^2 \mathbb{V}(z_{nj,t})(F_{nj,t} - \bar{F})
\]

\[
\approx \text{const} - \lambda_1 \frac{\bar{F}}{(1 + \tau + \lambda_0 + \lambda_1 \bar{F})^2} \sum_{j} D_{nj}^2 \mathbb{V}(z_{nj,t}) \ln F_{nj,t}.
\]

The loading on the news coverage is a function of \(\lambda_1\), which is increasing in \(\lambda_1\) when \(\lambda_1\) is below certain threshold. Note that absolute value of the forecast error \(|e_{f,n,t}|\) follows a folded normal distribution, and the mean of it is proportional to the standard deviation of \(|e_{f,n,t}|\). As a result, the coefficient \(\beta^H_1\) in equation (4.4) is directly related to \(\lambda_1\).

Similarly, consider the across-sectional dispersion of the forecast error, which corresponds to the variance of \(e_{f,n,t}\) due to the idiosyncratic noise.

\[
\mathbb{V}_t(e_{f,n,t} - \bar{e}_{f,n,t}) = \sum_{j} D_{nj}^2 \mathbb{V}(z_{nj,t}) \frac{\tau}{(1 + \tau + \kappa_{nj,t})^2}.
\]

Its first-order approximation is

\[
\mathbb{V}_t(e_{f,n,t} - \bar{e}_{f,n,t}) \approx \text{const} - 2\lambda_1 \frac{\bar{F}^2}{(1 + \tau + \lambda_0 + \lambda_1 \bar{F})^3} \sum_{j} D_{nj}^2 \mathbb{V}(z_{nj,t}) \ln F_{nj,t}.
\]

Notice in this case, the product of \(\lambda_1\) and \(\tau\) appears in the loading on the news share. The variance of the absolute value of \(e_{f,n,t} - \bar{e}_{f,n,t}\) is proportional to \(\mathbb{V}_t(e_{f,n,t} - \bar{e}_{f,n,t})\), and is also directly related to \(\lambda_1 \tau\).

Finally, the unconditional variance of the individual forecast error is

\[
\frac{1}{T} \sum_{t=1}^{T} \mathbb{V}_t(e_{f,n,t}) = \frac{1}{T} \sum_{t=1}^{T} \sum_{j} D_{nj}^2 \mathbb{V}(z_{nj,t}) \frac{1}{1 + \tau + \lambda_0 + \lambda_1 \bar{F}_{nj,t}}.
\]
Figure A8: News Share and TFP Shock Transmission

A. Baseline economy

B. Private-info only economy

Notes: The figure displays the scatterplot of the average elasticity of total hours change in other sectors following a TFP shock in a particular sector, ψ_0, against the sector’s share of the global news coverage, in the baseline model with informational frictions (left panel), and in the alternative economy in which all information is private (right panel).

which helps to determine the magnitude of χ_0.

With elastic labor supply, one needs to replace the Domar weights with the influence matrix, but the derivation applies in a similar way.

D.2 Economy with Only Private Information

This subsection reports the results in the economy where there is no public signal but the information about the fundamentals is as accurate as in the baseline model, as described in subsection 4.5. The following table reports the business cycle statistics under the private-information economy. Comparing with the baseline economy, the changes in the volatility of hours driven by TFP shocks display sizable heterogeneity across countries. Figure A8 compares the role of news share in TFP shock transmission between the baseline economy and that in the economy with only private information. The patterns are quite similar to each other, though the R^2 is slightly higher in the baseline economy.

Table A10: Business Cycle Statistics

<table>
<thead>
<tr>
<th></th>
<th>(1) Private-Info Economy</th>
<th>(2) Baseline Economy</th>
</tr>
</thead>
<tbody>
<tr>
<td>TFP</td>
<td>0.56</td>
<td>0.50</td>
</tr>
<tr>
<td>Noise</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.59</td>
<td></td>
</tr>
</tbody>
</table>

Notes: This table reports the mean across the G7+ countries of the standard deviation of aggregate hours, in the model with only private information (column 1) and the baseline model (columns 2-4).
Table A11: Business Cycle Statistics, CES Model

<table>
<thead>
<tr>
<th></th>
<th>(1) Perfect Information</th>
<th>(2) Incomplete Information</th>
<th>(3) Incomplete Information Noise Only</th>
<th>(4) Incomplete Information Both</th>
<th>(5) Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours volatility</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>indirect vs direct effects:</td>
<td>0.92</td>
<td>0.44</td>
<td>0.30</td>
<td>0.53</td>
<td>1.55</td>
</tr>
<tr>
<td></td>
<td>0.48</td>
<td>0.44</td>
<td>0.53</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>Bilateral hours correlation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>uncorrelated noise</td>
<td>0.10</td>
<td>0.12</td>
<td>0.06</td>
<td>0.10</td>
<td>0.19</td>
</tr>
<tr>
<td>correlated noise</td>
<td>0.10</td>
<td>0.12</td>
<td>0.31</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>Bilateral labor wedge correlation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>uncorrelated noise</td>
<td>—</td>
<td>0.06</td>
<td>0.03</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>correlated noise</td>
<td>—</td>
<td>0.06</td>
<td>0.24</td>
<td>0.12</td>
<td></td>
</tr>
</tbody>
</table>

Notes: This table presents the business cycle statistics for the model with CES final and intermediate demand. For hours volatility, this table reports the mean across the G7+ countries of the standard deviation of aggregate hours. For bilateral correlation, this table reports the mean of bilateral correlation of aggregate hours or the labor wedge between all possible G7+ country pairs. The Data column reports the volatility or bilateral correlation of four-quarter growth rates of aggregate hours, excluding the years 2008 and 2009 from the sample.

D.3 CES Model Results

This appendix presents the quantitative results under non-unitary elasticities of substitution. We extend the model in Section 2 to allow for CES preferences in consumers’ final goods and firms’ intermediate goods composite bundles:

\[
\mathcal{F}_n = \left(\sum_{m,i} \bar{g}_{mi,n} \mathcal{F}_{mi,n}^{\rho-1} \right)^{\frac{\rho}{\rho-1}}, \quad X_{n,j} = \left(\sum_{m,i} \bar{\zeta}_{mi,nj} X_{mi,nj}^{\mu-1} \right)^{\frac{\mu}{\mu-1}}.
\]

The elasticities of substitution are \(\rho \) and \(\mu \), respectively. We choose \(\rho = 1.2 \) and \(\mu = 0.7 \), both of which are standard values used in the literature (see, among others, Boehm, Flaaen, and Pandalai-Nayar, 2019; Huo, Levchenko, and Pandalai-Nayar, 2019; Boehm, Levchenko, and Pandalai-Nayar, 2023). Table A11 replicates the main quantitative results (Table 4 in the main text), and shows that the magnitudes are similar.
D.4 Additional Figures

Figure A9: Precision Sensitivity and Volatility Driven by Noise Shocks

Notes: The figure displays the non-monotonicity of noise-driven fluctuations as a function of χ_1.

Figure A10: News Share and Noise Shock Transmission

Notes: The figure displays the scatterplot of the average elasticity of total hours change in other sectors following a noise shock in a particular sector, (4.8), against the sector’s share of the global news coverage, in the baseline model with informational frictions.
Figure A11: Heterogeneous Private Information Precision and Volatility

Notes: The figure displays the average standard deviation of hours across countries driven by TFP shocks (blue dashed line) and noise shocks (red dashed line) as a function of the elasticity of private information precision with respect to network remoteness.

Figure A12: Reliance on Public Signals and Network Remoteness

Notes: The figure displays the ratio of responses to private signals to responses to news signals as a function of the network distance. This is the binscatter plot of the regression (4.7) controlling for variances of the TFP and the noise shocks. The blue dots correspond to the baseline model with common private information precision, and the red dots correspond to the heterogeneous precision case where δ is set to 1.