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1 Introduction

An extensive literature in economics and psychology has documented individuals’ sys-

tematic biases and errors when interpreting information and forming beliefs, as well as

examined how to model such inaccurate updating. Two modeling approaches are com-

monly used: the ‘non-Bayesian’ approach and the misspecified model approach. In the

non-Bayesian approach, a particular bias is parameterized with an updating rule that

maps signal realizations to posterior beliefs (e.g. under- and overreaction in Epstein,

Noor, and Sandroni (2008).) In the misspecified model approach, a subjective model of

the signal generating process describes how individuals interpret signals; the individual

forms beliefs from Bayes rule with respect to this model but the model may be incor-

rect (e.g. Bohren (2016) models naive learning as a misspecified model of other agents’

information.)

The aim of this paper is to link these two approaches. In particular, we characterize

when an updating rule can be represented as a misspecified model, in the sense that

the model prescribes the same posterior belief as the updating rule after each signal

realization, and derive the other component of beliefs (i.e. the forecast of future beliefs)

required to pin down a unique representation. We then explore the forms of bias that

may manifest through the forecast.

Our setting is a general informational environment in which an agent learns about an

unknown state from a signal. The non-Bayesian approach consists of an updating rule

mapping each signal realization to a posterior belief and a forecast describing the agent’s

belief about the distribution of her posterior belief. The misspecified model approach

consists of a family of subjective distributions over the signal space, one for each state.

This model is misspecified when it differs from the true (objective) signal distribution.

Our main result shows that a misspecified model can be decomposed into the two

components of bias that it induces: (i) the prospective bias, which corresponds to how

an agent anticipates she will form beliefs before observing the signal; and (ii) the ret-

rospective bias, which corresponds to how the agent misinterprets information after she

observes the signal. The latter is captured by the updating rule, while the former is cap-

tured by the forecast. Every misspecified model can be decomposed into these two parts.

Further, any forecast that satisfies a condition we call plausibility—the requirement that,

from the agent’s perspective, the expected future belief is equal to the prior—and any

updating rule together identify a unique misspecified model (up to a small caveat, which

we describe in more detail below). This provides a convenient formulation for the mis-

specified model in terms of the biases it induces. Further, it establishes that prospective

biases do not place much structure on retrospective biases and vice versa: a given updat-

ing rule can be paired with many different forecasts, and similarly for a given forecast.
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Therefore, specifying one piece of the decomposition does not restrict the other piece.

Finally, it establishes that together, the updating rule and forecast pin down all behav-

ioral implications of the misspecified model, in that the chosen model imposes no further

restrictions on behavior beyond those implied by the induced forecast and updating rule.

This decomposition provides a natural tool for constructing misspecified models to

represent a desired updating rule. In general, as we show, an updating rule can be

represented by a multiplicity of misspecified models. Therefore, our decomposition sheds

light on the necessary second piece to find a unique representation i.e. the forecast.

Motivated by this insight, we examine reasonable choices of forecast in different economic

decision-problems.

We first consider the accurate forecast, where the agent’s subjective distribution of

her posterior belief is equal to the true ex-ante distribution. If this accurate forecast is

plausible, then it identifies a unique misspecified model. Moreover, the corresponding

misspecified model satisfies a property called introspection-proof. This property en-

sures that even with an infinite amount of data, a misspecified agent would not observe

inconsistencies with her model. While the introspection-proof property provides a nat-

ural constraint in many settings, the accurate forecast is not plausible—and therefore,

not representable—for many common updating rules. This means that many simple

updating rules cannot be represented by an introspection-proof misspecified model.

We then define a forecast that captures a natural analogue to the naivete assumption

commonly used in many behavioral settings. The naive consistent forecast is equal to

the accurate forecast of an agent who uses Bayes rule to update beliefs. A agent with

a naive consistent forecast behaves as-if all updates will be formed correctly but when

she actually updates her beliefs, she does so incorrectly using a biased updating rule.

In other words, the agent believes that she will update without bias in the future, but

interprets her past information with bias. We also identify necessary and sufficient

conditions for a naive consistent forecast to be represented, and show that again this

representation is unique. The condition in this case is quite mild—informally, it requires

the naive consistent forecast to have the same support as the accurate forecast. In

contrast to introspection-proofness, a naive consistent representation exists for many

common updating rules.

The benefits to connecting the updating rules and misspecified model approaches

are fourfold. First, there is a large literature in economics and statistics that seeks to

establish general properties of Bayesian updating with a misspecified model. Connecting

the misspecified model approach to non-Bayesian updating rules provides the analyst

with a set of off-the-shelf tools that can be used to immediately establish, for instance,

convergence of beliefs when agents are non-Bayesian. Second, this linkage helps clarify
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the conceptual connection between the form of the misspecification and the behavioral

bias that the misspecification induces. Third, this approach provides guidance on how

to incorporate a behavioral bias into more complex decision problems, including strate-

gic settings where agents must draw inference about both the underlying state and

the behavior of others, and settings where agents must make ex-ante decisions before

information arrives. Model misspecification allows us to apply the choice frameworks

and game-theoretic tools that were largely developed with respect to an expected util-

ity framework to settings with biased updating in a straightforward way.1 Finally, an

updating rule and forecast are relatively straightforward to measure empirically by elic-

iting beliefs either before or after information is observed, whereas a misspecified model

is more complicated to measure. Therefore, distilling a misspecified model into the two

components that are empirically identifiable provides an indirect way to measure such

misspecified models.

We close with two applications to demonstrate how our results can be used to derive

novel economic insights. The first shows how discrimination can emerge endogenously

due to self-image concerns, which lead to motivated reasoning when interpreting infor-

mation from others with a shared group identity. In this dual-selves model, the first

self selects an updating rule that the second self uses to evaluate herself and others. A

natural constraint to place on the first self’s choice of updating rule is that the bias

will be undetectable by the second self, i.e. the updating rule is consistent with an

introspection-proof misspecified model. We show that this places an endogenous upper

bound on the magnitude of the motivated reasoning bias that emerges. It also leads

to discrimination in the sense that the chosen updating rule inflates signals for others

who share the same group identity, and compensates for this inflation by shading down

signals for members of the other group identity.

In the second application, a firm searches for a new technology. After observing a

signal of the technology’s productivity, the firm chooses whether to adopt the technology

or to continue search. We show how this search decision depends on the prospective bias,

as captured by the forecast. A firm that interprets signals correctly but has overpre-

cise forecast searches inefficiently many alternatives, while a firm with an underprecise

forecast searches too few. This contrasts with what would happen in a similar exercise

where the firm instead has an over or underprecise updating rule. A firm with a low

cost of search and an overprecise updating rule searches too little, while a firm with a

1A bit of caution here. There is a true data generating process that misspecified agents may place
zero weight on. So justifications for equilibrium concepts that rely on limiting behavior of repeated play
under a common prior assumption do not translate directly to misspecified models. Esponda and Pouzo
(2016) provide an alternative to Bayes-Nash equilibrium that addresses these concerns in equilibrium
settings.
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high cost of search and an overprecise updating rule searches too often. This example

demonstrates that conceptually similar prospective and retrospective biases can lead to

very different predictions about behavior.

1.1 Literature Review

Model misspecification as a tool for capturing behavioral biases has received renewed

interest of late.2 In a variety of general settings, recent work has developed the solu-

tion concept of Berk-Nash equilibrium (Esponda and Pouzo 2016), characterized the

asymptotic beliefs of misspecified Bayesian learning, (Molavi 2019; Bohren and Hauser

2021; Fudenberg, Lanzani, and Strack 2021; Frick, Iijima, and Ishii 2020b; Esponda,

Pouzo, and Yamamoto 2021), and explored questions of robustness to perturbations of

the model (Frick, Iijima, and Ishii 2020a; Bohren and Hauser 2021). Papers have also

studied the implications of misspecified learning for a variety of specific biases, includ-

ing overconfidence (Heidhues, Koszegi, and Strack 2018), gambler’s fallacy (He 2022),

and omitted variable bias (Mailath and Samuelson 2020; Levy, Razin, and Young 2022).

This paper shows how the updating rule approach can be converted to a misspecified

model, allowing for analysis using these general results.

There is also a related literature on the foundations of non-Bayesian updating. A

number of recent papers provide foundations for general classes of non-Bayesian updat-

ing rules and draw parallels between the structure of non-Bayesian updating rules and

Bayes rule (Epstein et al. 2008; Lehrer and Teper 2017; Cripps 2018; Chauvin 2020;

Zhao 2022). In contrast, we study what updating rules emerge as an immediate conse-

quence of Bayesian updating with respect to a misspecified model. He and Xiao (2017)

describe a class of updating rules that emerge from distorting the prior and replacing

the likelihood term in Bayes rule with an object they call the ‘pseudo-likelihood,’ then

provide necessary and sufficient conditions for such an updating rule to result in the

same posterior regardless of whether signals arrive sequentially or simultaneously.

Our main result includes a version of Bayes plausibility (Kamenica and Gentzkow

2011) for misspecified models. Relatedly, de Clippel and Zhang (2022) develop an ana-

logue of Bayes plausiblity for non-Bayesian updating. Their condition is both technically

and conceptually distinct from ours. They study Bayesian persuasion in setting where

the receiver updates according to a function that maps from the true posterior to an

incorrect posterior. They develop a version of Bayes plausibility and concavification

arguments for these updating rules. Their Bayes plausibility condition characterizes the

set of possible distributions over posteriors a correctly specified sender can induce, while

our plausibility condition describes the possible distributions over posteriors a biased

2Early papers in this literature include Arrow and Green (1973); Nyarko (1991).
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updater could believe their own posterior will be drawn from.3 A key object in our

decomposition, the forecast, the unconditional distribution posterior beliefs are drawn

from is analogous to the object that is often characterized in the Bayesian Persuasion

literature (Kamenica 2019). This unconditional distribution also plays an important

role in the literature that describes general measures of the value/cost of information

(Frankel and Kamenica 2019; Caplin, Dean, and Leahy 2022; Pomatto, Strack, and

Tamuz Forthcoming; Mensch 2018).

A number of papers provide characterizations of Bayesian updating in terms of the

behavior of posteriors. Shmaya and Yariv (2016) show that if an agent updates using

Bayes rule, then the prior belief is in the interior of the convex hull of the set of posterior

beliefs. Our Lemma 1 provides a minor extension of this result that applies to the class

of updating rules and misspecified models we consider. Molavi (2021) shows that any

distribution over posteriors satisfying very mild assumptions can be induced via Bayes

rule with respect to a misspecified model. This condition is weaker than both the

condition in Shmaya and Yariv (2016) and our conditions, as he allows the misspecified

model to put positive probability on signals outside of the support of the correctly

specified model. A similar result follows from our characterization under slightly more

restrictive conditions to account for our more stringent requirements on the support of

the misspecified model. Augenblick and Rabin (2021) provide tests on the movement of

beliefs over time to detect (correctly specified) Bayesian updating empirically.

There is a literature that seeks to provide a foundation for the emergence of a mis-

specified model. (Ba 2022; Fudenberg and Lanzani 2022; Gagnon-Bartsch, Rabin, and

Schwartzstein 2018; He and Libgober 2021; Frick, Iijima, and Ishii 2021). Our approach

is complementary to this literature in that we provide tools to analyze the updating

rules that result from these theories. One of the main classes of models we consider,

introspection-proof models, identifies a class of models that are naturally robust to many

of these criteria. This condition, which requires that the misspecified agent correctly

anticipates the unconditional distribution of signals is analogous to conditions used to

correct misspecified models in Espitia (2021), Spiegler (2020), Mailath and Samuelson

(2020), and solution concepts like cursed equilibrium (Eyster and Rabin 2005), behav-

ioral equilibrium (Esponda 2008), and analogy expectation equilibrium (Jehiel 2005).

** Fudenberg, Lanzani, and Strack (2022) show that the long-run learning outcomes

that arise when an agent has selective memory coincide with outcomes that arise when

an agent has perfect memory but a misspecified model and vice versa. This provides an

alternative foundation for the misspecified model approach as a consequence of selective

3Other papers on communication games with biased receivers include Alonso and Câmara (2016);
Lee, Lim, and Zhao (2023).
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memory.

Our characterization draws a distinction between the prospective bias of the agent –

how the agent reasons about information yet to be realized– and the retrospective model

– how the agent reasons about realized information. A related, but conceptually distinct,

distinction has previously been highlighted in specific non-Bayesian settings in Benjamin,

Rabin, and Raymond (2016); Benjamin, Bodoh-Creed, and Rabin (2019); He and Xiao

(2017). The distinction they draw describes the time inconsistency properties of the

updating rules. In contract, we distinguish between how a time consistent misspecified

agent effectively has the potential to make two types of mistakes, mistakes anticipating

how they’ll update and mistakes actually updating. We argue that all biases induced by

misspecified models can in some sense be uniquely described by the differences between

this kind of prospective and retrospective reasoning. In Section 6.3 we briefly discuss a

way to incorporate time inconsistencies into our setting.

Much of the literature on misspecification uses the misspecified model to capture ei-

ther a prospective or retrospective bias. The work on misspecified causal graphs (Spiegler

2016), and Berk-Nash equilibrium (Esponda and Pouzo 2016) take a largely prospective

perspective, focusing on identifying how an agent (incorrectly) predicts the world will

act once they’ve made their decision. In contrast, papers like Heidhues et al. (2018);

Levy et al. (2022) as well as much of the behavioral work that documents and models

specific biases in updating (see Benjamin (2019) for a survey) focus on retrospective

biases. When modeling even simple economic decisions, like the environment in Sec-

tion 5.2, or interactions between economic agents, such as those studied in Bohren and

Hauser (2021); He (2022); Frick et al. (2021), both prospective and retrospective biases

play a role. In Bohren and Hauser (forthcoming), we show how the our decomposition

can be used to determine how the retrospective and prospective biases induced by a

misspecified model impact an optimal lending contract.

2 Model

2.1 The Informational Environment.

We study belief updating in the following informational environment. Suppose nature

selects one of N states of the world ω ∈ Ω ≡ {ω1, ω2, . . . , ωN} according to prior distribu-

tion p ≡ (p1, ..., pN) ∈ ∆(Ω), which we assume to be strictly interior. An agent observes

a signal of the state drawn from a measurable space (Z,F), where Z is an arbitrary set

with element z and F is a σ-algebra defined on Z. To ensure that densities exist, we

define a σ-finite reference measure ν on (Z,F); we will assume all subsequent measures

are absolutely continuous with respect to ν.4 Let µi ∈ ∆(Z) be the true probability

4When Z is not finite, this introduces a number of measure-theoretic and topological complications.
A standard tool to resolve these complications is to define a reference measure that dominates the other
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measure on Z in state ωi. Assume that µi and µj are mutually absolutely continuous for

each i, j = 1, ..., N and µi is absolutely continuous with respect to ν for all i = 1, ..., N .5

This ensures that no signal perfectly rules out a state.6 Let ∆∗(Z) denote the set of all

probability measures that are mutually absolutely continuous with respect to µ1 (note

this also implies the measures are mutually absolutely continuous with respect to µi for

i 6= 1). Finally, let µ ≡
∑N

i=1 piµi denote the unconditional measure on Z.

This set-up is rich enough to capture many different common signal structures used

in the literature, including real-valued continuous signals (Z ⊆ R and ν is the Lebesgue

measure), finite signals (Z ⊆ R is finite and ν is the counting measure), multidimen-

sional signals, causal graphs, Markov signals, and signal distributions that are neither

continuous nor discrete (e.g. mixture distributions).7

2.2 Modeling Errors in Belief Updating

We are interested in exploring the relationship between two approaches used to model

behavioral biases and errors in belief-formation: (i) a “non-Bayesian” approach that

consists of defining an arbitrary updating rule and/or a prediction about future beliefs;

and (ii) a “misspecified Bayesian” approach that derives beliefs from Bayesian updating

with respect to a misspecified model. We introduce each approach in turn, then discuss

the relative advantages and disadvantages of each approach.

The Non-Bayesian Approach. This approach, often used in the behavioral learning

literature (e.g. see Benjamin (2019) for review), describes how an agent forms a pos-

terior belief after observing each possible signal realization—that is, an updating rule.

When there is an ex-ante decision before the signal is observed, an agent must also

predict what future beliefs will be. We refer to this as a forecast, which describes a

predicted distribution over the posterior belief. The posterior belief determines how

the optimal action depends on the signal realization for decisions that occur after the

signal is observed, whereas the forecast guides pre-signal action choices by pinning down

the likelihood of different post-signal actions. In addition to ex-ante decision-making,

measures in the model. This allows us to consider multiple types of signal spaces within the same
framework, such as settings where the signal measures have densities and settings where the signal is
not a real-valued continuous random variable. Note that our set-up is the finite state version of the
misspecified parametric environment from Kleijn and van der Vaart (2006).

5Given our assumptions, one could set ν = µi for any i or ν = µ. We chose to separate these objects
to maintain a reference measure that is independent of the state and prior.

6Note this implies that dµi

dν (z) = 0 if and only if
dµj

dν (z) = 0 except on a set of ν-measure 0, so that
signals that lead to a Bayesian posterior that places probability zero on a state or signals for which the
Bayes posterior is not defined are a probability 0 events.

7This set-up can also capture signals that are multiple draws from an urn (Rabin 2002), signals that
are up to K realizations of some process (He 2022), and signals that are a realization of a Brownian
motion (Fudenberg, Romanyuk, and Strack 2017).
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the forecast is a necessary component for strategic interaction and social learning. Our

general definitions of an updating rule and a forecast nest specific updating rules and

forecasts used in these non-Bayesian approaches to belief-formation.

Specifically, an updating rule specifies how an agent forms beliefs after observing

each signal realization.

Definition 1 (Updating Rule). An updating rule h : Z → ∆(Ω) is a measurable

function that maps each signal realization to a posterior belief over the state space and

is not constant ν-almost everywhere.

An agent uses updating rule h(z) if, for each i = 1, ..., N , the agent assigns probability

h(z)i to state ωi after observing signal realization z ∈ Z.8 We restrict attention to

updating rules that do not interpret any signals as perfectly ruling out a state and map

a certain prior belief to a certain posterior belief: h(z)i = 0 iff pi = 0 and h(z)i = 1 iff

pi = 1. A special case of an updating rule is Bayesian updating with respect to the true

family of measures (µi)ωi∈Ω. Given a signal realization z ∈ Z, this corresponds to

hB(z)i ≡
pi
dµi
dν

(z)∑N
j=1 pj

dµj
dν

(z)
, (1)

with 0/0 = 0 by convention.9

An updating rule can capture many common biases studied in the literature. For

example, suppose Ω = {ω1, ω2} and define the biases with respect to the belief that

the state is ω2, i.e. h(z)2. Partisan bias in favor of ω2 is captured by h(z)2 = hB(z)α2
for some α ∈ (0, 1), a counting updating rule is captured by Z = {ω1, ω2}K for some

K ∈ N and h(z)2 = 1
K

∑K
k=1 1zk=ω2 , confirmation bias is captured by h(z)2 ≥ hB(z)2 if

p2 ≥ 1/2 and h(z)2 ≤ hB(z)2 if p2 ≤ 1/2, h(z)2 = αp2 + (1 − α)hB(z)2 captures linear

underreaction for α ∈ (0, 1) and overreaction for α > 1, h(z)2
h(z)1

= p2
p1

(
dµ2
dµ1

(z)
)β

captures

geometric overreaction for β > 1 and underreaction for β ∈ (0, 1), and base rate neglect

is captured by h(z)2
h(z)1

=
(
p2
p1

)α
dµ2
dµ1

(z) for some α ∈ (0, 1). We refer to bias that arise from

the updating rule as retrospective bias, since it arises following the signal realization.

A forecast is an agent’s prediction of how she will form beliefs after observing the

signal—that is, it is a distribution over posterior beliefs. In order for the forecast to be

compatible with the signal, the space of posteriors cannot be “larger” than the space of

8We start with a fixed prior, but one could instead define an updating rule as a mapping from the
signal and the prior to a posterior in order to study dynamics or comparative statics with respect to
the prior. Our framework and analysis naturally extends to this set-up, albeit with more cumbersome
notation. See Section 6.1 for the formal treatment of this more general set-up.

9This defines an equivalence class of updating rules that differ on a set of measure 0 with respect
to ν (and thus with respect to all distributions considered).
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signal realizations. In the case of a finite support Z, this condition is straightforward—it

requires that the cardinality of the support of the forecast is less than or equal to the

cardinality of Z. In the case of an infinite Z, the condition is a bit more nuanced—it

uses mutual absolute continuity to relate the measure-zero sets of the forecast to the

measure zero sets of the information structure.

Definition 2 (Forecast). A forecast ρ̂ is a Borel probability measure over ∆(Ω) for

which there exists a measurable g : Z → ∆(Ω) such that µ ◦ g−1 and ρ̂ are mutually

absolutely continuous.

For a given updating rule h, we define the accurate forecast with respect to h as

ρh(X) ≡ µ({z : h(z) ∈ X}) (2)

for any Borel set X ∈ ∆(Ω). This is well defined since h is measurable. We denote

the special case of the accurate forecast with respect to Bayes rule as ρB(X) ≡ µ({z :

hB(z) ∈ X}).
Bias can also enter through the forecast. For example, suppose Ω = {ω1, ω2} and

denote the posterior belief by the belief that the state is ω2. When the accurate forecast

with respect to Bayes rule is uniform on [0, 1], then overprecision is captured by a

distribution that over-weights extreme beliefs and underweights intermediate beliefs,

while underprecision overweights intermediate beliefs and overweights extreme beliefs.

We refer to bias that arises from the forecast as prospective bias, since it stems from a

prediction of what the signal will be.

Given that updating rules are more frequently the object of focus in the non-Bayesian

learning literature, one goal of this paper is to construct reasonable forecasts and analyze

how they interact with different updating rules. In this vein, we construct two classes

of forecasts with compelling properties in Section 4.

The Misspecified Model Approach. This approach defines an agent’s subjective

model of the signal process. Posterior beliefs and predictions of posterior beliefs are

both pinned down by this model and Bayes rule.

A misspecified model is a family of subjective measures over the signal space that is

not equal to the family of true measures. We focus on misspecified models where µi and

µ̂i are mutually absolutely continuous for all i = 1, ..., N .10

Definition 3 (Misspecified Model). A misspecified model corresponds to (µ̂i)ωi∈Ω ∈
∆∗(Z)N such that there exists an ωi ∈ Ω where µ̂i 6= µi.

10This implies that dµi

dν (z) = 0 iff dµ̂i

dν (z) = 0 except on a set of ν-measure 0. It also implies that µ̂i
is absolutely continuous with respect to ν for all i = 1, ..., N .
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An agent with a misspecified model uses Bayes rule as defined in Eq. (1) to form her

posterior belief with respect to her subjective measures. Mutual absolute continuity with

respect to the correct model implies that no set of signal realizations that the misspec-

ified model assigns zero probability occur with positive probability under the correctly

specified model, and that the misspecified model does not assign positive probability

to sets of signal realizations that occur with probability zero under the correctly speci-

fied model. It also implies that µ̂i and µ̂j are mutually absolutely continuous for each

i, j = 1, ..., N , since µi and µj are mutually absolutely continuous. Let µ̂ ≡
∑N

i=1 piµ̂i

denote the subjective unconditional signal measure (note this depends on the prior).

It follows directly from Bayes rule and mutual absolute continuity that a misspecified

model induces an updating rule. Specifically, (µ̂i)ωi∈Ω induces posterior belief

pi
dµ̂i
dν

(z)∑N
j=1 pj

dµ̂j
dν

(z)
(3)

that the state is ωi following signal realization z. A model also induces a forecast, which is

the unconditional distribution of posteriors according to the model. Specifically, (µ̂i)ωi∈Ω

induces forecast

µ̂

z :

{
pi
dµ̂i
dν

(z)∑N
j=1 pj

dµ̂j
dν

(z)

}
ωi∈Ω

∈ X


 (4)

that the posterior belief is in Borel set X ∈ ∆(Ω).

2.3 Defining a Representation

The goal of this paper is to connect these two approaches. Specifically, we seek to char-

acterize when different updating rules and forecasts can be represented as a misspecified

model, when an updating rule and forecast pair can be jointly represented, and when

such a representation is unique. To this end, we formalize what it means for a misspeci-

fied model to represent an updating rule or a forecast. In particular, a model represents

an updating rule if it prescribes the same posterior belief as the updating rule following

each signal realization, and a model represents a forecast if it prescribes the same ex-ante

distribution over posterior beliefs as the forecast.

Definition 4 (Representing Updating Rules and Forecasts).

1. An updating rule h is represented by misspecified model (µ̂i)ωi∈Ω if, for every signal

z ∈ Z, an agent who uses Bayes rule to update her posterior with respect to

this misspecified model forms the beliefs prescribed by the updating rule ν-almost
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everywhere:

pi
dµ̂i
dν

(z)∑N
j=1 pj

dµ̂j
dν

(z)
= h(z)i. (5)

2. A forecast ρ̂ is represented by misspecified model (µ̂i)ωi∈Ω if, for every Borel set

X ⊂ ∆(Ω):

µ̂

z :

(
pi
dµ̂i
dν

(z)∑N
j=1 pj

dµ̂j
dν

(z)

)
ωi∈Ω

∈ X


 = ρ̂(X). (6)

If an updating rule maps a positive measure of signal realizations to the same poste-

rior belief and can be represented by a given misspecified model, then any other model

that shifts mass between the signal realizations that map to the same posterior will also

represent this updating rule. However, the difference between these models is trivial in

an economic sense, since they all prescribe the same distribution over realized beliefs and

they all induce the same forecast. Therefore, we define the following notion of essential

uniqueness to capture the idea that the representation is unique in terms of the model

features that are relevant for beliefs and decisions.

Definition 5 (Essentially Unique Representation). An updating rule h has an essen-

tially unique representation if all misspecified models representing h are equivalent when

restricted to sets of signal realizations in the σ-algebra generated by h, i.e. Fh ≡ {Z ∈
F : Z = h−1(X) for some Borel set X ⊂ ∆(Ω)}.

Informally, an updating rule has an essentially unique representation when any misspec-

ified model representing the updating rule is equivalent on the sets of signal realizations

that map to the same posterior belief.

2.4 Discussion of Two Approaches

A fundamental aspect of behavioral learning models, which separates them from most

fully rational models, is the distinction between “prospective” and “retrospective” belief

formation. The way a behavioral agent forecasts her future behavior may be in some

sense different from how she formed beliefs in the past. This is common in the literatures

on time consistency, projection bias, reference dependence, and self-control, and moti-

vates the two components of our behavioral learning set-up. We formalize retrospective

bias in the form of an updating rule and prospective bias in the form of a forecast.

While misspecified models are generally time-consistent, misspecification allows for a

stochastic version of this phenomena. In misspecified settings, the distribution an agent

expects her future beliefs and behavior to be drawn from is fundamentally different from
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the distribution her past behavior was actually drawn from. See Section 6.3 for further

discussion of time consistency in our framework.

The updating rule approach is often used to model a specific form of bias or belief-

updating error. In general, this literature chooses a reasonable parameterization for a

bias, and studies how this parameterization impacts beliefs and behavior. In contrast,

the misspecified model approach is often applied to general learning environments that

can capture a range of biases within the same framework. For example, recent work

in the misspecified learning literature establishes general convergence results for a large

class of misspecified models (Bohren and Hauser 2021; Frick et al. 2020b; Fudenberg

et al. 2021). Connecting these approaches makes it straightforward to apply the tools

developed in the misspecified learning literature to extend the results from the updating

rules literature to a larger set of parameterizations of a given bias. For instance, in

Bohren and Hauser (2019), we use these tools to generalize the learning results from

Rabin and Schrag (1999) to a larger set of updating rules that capture the conceptual

features of confirmation bias. This establishes that the qualitative insights of Rabin

and Schrag (1999) do not rely on their specific parameterization of confirmation bias or

choice of information structure (i.e. binary signals).

To a large extent, the theoretical and empirical literature on behavioral biases has

focused on updating rules, which are a simple way to define and express biases. But

updating rules are ‘incomplete’ in that on their own, they do not pin down all aspects

of belief formation required for economic analysis. Since a misspecified model of belief

formation is complete, in the sense that it describes all aspects of the environment

necessary for analysis, mapping updating rules into misspecified models makes it possible

to study the implications of a given bias in a richer set of economic environments.

3 Representing Updating Rules and Forecasts

This section derives our main representation result. We first establish a necessary and

sufficient condition for an updating rule to be represented by a misspecified model, and

analogously for a forecast. We then establish a necessary and sufficient condition on

an updating rule and forecast pair for them to be jointly represented by a misspecified

model and show that this model is essentially unique.

3.1 Representing Updating Rules

We begin by fixing an updating rule and characterizing when it can be represented by

a misspecified model. An important feature of Bayesian updating is that the posterior

belief is equal to the prior in expectation. Therefore, given the set of posterior beliefs in-

duced by the updating rule, it must be possible to find a misspecified model that satisfies

this property. We use this martingale property of beliefs to characterize necessary and
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sufficient conditions for there to exist a misspecified model that represents the updating

rule. Let N (h) ≡ supp ρh denote the support of the accurate forecast ρh for updating

rule h, and let

S(h) ≡ rel int(ConvN (h)) (7)

denote the relative interior of the convex hull of this support.11 It is straightforward to

see that the prior must fall within S(h) in order for the martingale property to hold. It

turns out that this condition is also sufficient for the prior to be the center of mass for

some distribution over posterior beliefs, which we can then map back into some family

of signal distributions.

Lemma 1 (Existence of an Updating Rule Representation). There exists a misspecified

model (µ̂i)ωi∈Ω with µ̂i ∈ ∆∗(Z) that represents updating rule h if and only if p ∈ S(h).

This result extends Lemma 1 from Shmaya and Yariv (2016) to a more general signal

space.12 Some care must be taken here, both due to the lack of structure on the signal

space and the requirements that a misspecified model is absolutely continuous with

respect to the reference measure ν and has non-zero Radon-Nikodym derivatives. The

space of posterior beliefs has more structure than the signal space, which we leverage

via S(h) for this characterization.

The condition in Lemma 1 is very weak. It rules out pathological updating rules such

as an updating rule that increases the posterior probability of some state ω following all

possible signal realizations, but holds for all of the examples of updating rules discussed

in Section 2.2. Therefore, this result establishes that most updating rules of interest can

be represented by a misspecified model.

However, in general, a representation is not essentially unique. As we illustrate in

the following example, there are often many misspecified models that represent a given

updating rule. Each representation is associated with a different induced forecast, and

therefore, a different prospective bias. Therefore, the choice of model to represent a

given updating rule determines the prospective bias. Different representations can lead

to very different predictions depending on the forecast they induce. A natural next

question is which representation one should select, which we address in Section 4.

Example 1. Consider binary state space Ω = {L,R} with a flat prior Pr(R) = 1/2

and signal space Z = {z1, z2, z3, z4}. In a slight abuse of notation, when the state space

is binary we can define the updating rule as the probability assigned to state R after

11Recall that the relative interior of a set S is the set of points that are on the interior of S within
its affine hull.

12In Shmaya and Yariv (2016), S(h) is the relative interior of the convex hull spanned by posteriors.
Our set S(h) is the analogue of this set with the additional measurability restrictions necessary for this
to be well-defined on infinite signal spaces.
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observing each signal, i.e. h(z) = Pr(R|z) for each z ∈ Z, and the forecast as a

distribution ρ̂ over a set of probabilities that the state is R. Note | supp ρ̂ | ≤ 4 since a

signal cannot map to multiple beliefs. In this set-up, a model corresponds to a pair of

vectors (µ̂L, µ̂R), where each vector specifies a subjective probability mω,k for each signal

zk in each state ω, i.e. µ̂ω = (mω,1,mω,2,mω,3,mω,4) with
∑4

k=1mω,k = 1.

The condition in Lemma 1 requires the updating rule to map at least one signal to a

posterior above the prior and one signal to a posterior below the prior, i.e. mink h(zk) <

1/2 < maxk h(zk). In fact, a continuum of misspecified models represent an updating

rule h that satisfies this property: any solution (m1,m2,m3,m4) ∈ ∆ to
∑4

k=1 h(zk)mk =

1/2 pins down such a model with mR,k = 2h(zk)mk and mL,k = 2(1 − h(zk))mk for

k = 1, ..., 4.13 Aside from knife-edge cases,
∑4

k=1 h(zk)mk = 1/2 has multiple solutions.

Note that each model induces a unique forecast, which assigns probability mk = mR,k/2+

mL,k/2 to posterior belief h(zk).

3.2 Representing Forecasts

We next develop an analogous result to Lemma 1 for forecasts. Again, the property

that the posterior belief is equal to the prior in expectation plays a key role. Except

now, since the forecast is a distribution over posterior beliefs, this property applies to

the forecast directly. This motivates the following definition.

Definition 6 (Plausible Forecast). A forecast ρ̂ is plausible if
∫
∆(Ω)

xidρ̂(x) = pi for

each ωi ∈ Ω.

In other words, a forecast is plausible if the expected posterior, taken with respect to

the agent’s forecast, is equal to the prior. Plausibility ensures that the agent believes

that their prior captures all their current uncertainty about the state. In order for the

forecast to be represented by a misspecified model, it must be plausible. In fact, this is

also a sufficient condition for a representation to exist.

Lemma 2 (Existence of a Forecast Representation). There exists a misspecified model

(µ̂i)ωi∈Ω with µ̂i ∈ ∆∗(Z) that represents forecast ρ̂ if and only if ρ̂ is plausible.

Plausibility is a necessary property of Bayesian updating: a Bayesian agent always

believes that on average, her posterior will be equal to her prior. In other words, even

a misspecified Bayesian agent does not believe that she is systematically biased. Unlike

the updating rule, which needs very little structure to be consistent with a misspecified

model, a forecast must satisfy this strong requirement of Bayesian learning. However,

while the plausibility requirement rules out many forecasts, it still allows for a broad

13To see that any such model represents h, note that it induces posterior belief mR,k/(mR,k+mL,k) =
h(zk) following signal realization zk, and therefore, the desired updating rule.
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class of forecasts, as we illustrate below in Example 2.

As in the case of updating rules, a forecast on its own does not generally identify a

unique misspecified model. In fact, a continuum of misspecified models can be consistent

with a given forecast. Each model is associated with a different induced updating rule,

and therefore, a different retrospective bias. Therefore, the choice of model to represent

a given forecast determines the retrospective bias. Different models that represent the

same forecast can lead to very different predictions depending on the updating rule they

induce.

The following two examples demonstrate the notion of plausible forecasts and provide

an illustration of the multiplicity of representations.

Example 1 (continued). Return to the set-up introduced in Section 3.1. A forecast

ρ̂ is plausible if
∑

x∈supp ρ̂ xρ̂(x) = 1/2. For example, the forecast ρ̂ = {.5, .5} with

support {x, 1 − x} for some x ∈ (0, .5) is plausible since .5x + .5(1 − x) = .5. One

such model that represents this forecast is mR,1 = x/2, mR,2 = x/2, mR,3 = (1 − x)/2

and mR,4 = (1 − x)/2 in state R, and similarly for state L substituting 1 − x for x.14

This model induces updating rule h(z1) = h(z2) = x and h(z3) = h(z4) = 1 − x.15

Alternatively, the model mR,1 = x/3, mR,2 = x/3, mR,3 = x/3 and mR,4 = 1 − x in

state R, and similarly for state L substituting 1− x for x, also represents ρ̂. This model

induces a different updating rule: it maps {z1, z2, z3} to posterior x and z4 to posterior

1− x. In fact, for any updating rule that assigns at least one signal to each posterior x

and 1− x, it is possible to find a misspecified model that induces this updating rule and

represents ρ̂. As discussed above, different updating rules induce different retrospective

biases. For example, if the updating rule generated by the correct model maps {z1, z2} to

posterior x, then mapping {z1, z2, z3} to x corresponds to slanting information towards

state L, whereas mapping {z1, z3} to x corresponds to inverting the interpretation of z2

and z3.

Example 2. Suppose there are two equally likely states of the world Ω = {L,R}. Let

Z = [0, 1] and F be the Borel σ-algebra, and let the correctly specified model be a set of

14To see that this model represents ρ̂, note that from Bayes rule, it induces posterior belief
mR,k/(mR,k + mL,k) following signal zk. This simplifies to posterior belief x following z1 and z2
and posterior belief 1 − x following z3 and z4. Therefore, it induces forecast ρ̂(x) = µ̂({z1, z2}) =
(mR,1 +mL,1)/2 + (mR,2 +mL,2)/2 = .5 and ρ̂(1− x) = µ̂({z3, z4}) = .5 by an analogous calculation,
as desired.

15In fact, any α ∈ (0, 1) pins down a model that represents ρ̂ with signal distribution mR,1 = αx,
mR,2 = (1 − α)x, mR,3 = α(1 − x) and mR,4 = (1 − α)(1 − x) in state R, and similarly for state L
substituting 1− x for x. For each α, the corresponding model induces updating rule h(z1) = h(z2) = x
and h(z3) = h(z4) = 1−x. Therefore, all models in this class induce the same forecast and updating rule,
and hence, their difference is economically irrelevant. This motivates our notion of essential uniqueness
in Definition 5.
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full support distributions over Z. Consider the following parametric family of forecasts,

where, in a slight abuse of notation, dρ̂θ denotes the probability density function of the

forecast:

dρ̂θ(x) =
xθ−1L (1− xL)θ−1

Γ (θ)2/Γ (2θ)
(8)

for θ > 0, where x = (xL, xR) is a posterior belief.16 This corresponds to the family

of beta distributions with mean 1/2. Any forecast from this family is plausible since∫
∆(Ω)

xi dρ̂θ(x) = 1/2 for ωi ∈ Ω.

To illustrate the multiplicity of representations, consider the case of θ = 1. This

corresponds to the uniform forecast, i.e. dρ̂1(x) = 1. For any γ > 0, the misspecified

model with pdfs dµ̂R(z) = 2γz2γ−1 and dµ̂L(z) = 2γzγ−1− dµ̂R(z) represents ρ̂1.
17 From

Bayes rule, this model induces updating rule h(z)R = dµ̂R(z)/(dµ̂R(z) + dµ̂L(z)) =

zγ. Each value of γ captures a different level of retrospective bias: as γ increases, the

updating rule slants information more towards state R.

3.3 Decomposition

As shown above, an updating rule or a forecast on its own does not identify a unique

misspecified model. This multiplicity gives rise to several important questions. First,

given an updating rule, what (if any) restrictions does this place on the set of forecasts

that are compatible with it for a representation? In other words, does fixing a retro-

spective bias restrict the set of feasible prospective biases, and vice versa? Second, given

an updating rule and forecast that are jointly compatible with a representation, are

these two parts sufficient to pin down a unique representation, or does a model contain

additional relevant information about the decision environment?

Our next result answers these questions. We establish a necessary and sufficient

condition for a forecast to be compatible with a given updating rule, in that the pair

can be jointly represented by a misspecified model, and vice versa. This condition is

quite mild: it requires the support of the updating rule and the forecast to be equal.

Therefore, representing a given retrospective bias does not place very strong restrictions

on the set of prospective biases that can arise alongside it, and vice versa. Further, we

establish that this representation is unique and provide a construction of it. Hence, the

updating rule and forecast jointly pin down a complete model for analysis. Conversely,

a misspecified model can be decomposed into the two forms of bias it introduces: a

16Note that g(z) = (z, 1 − z) satisfies the mutually absolutely continuous condition in Definition 2,
and therefore, this is indeed a forecast.

17To see this, note that the unconditional signal cdf is µ̂(z) = zγ . Given x = zγ , this induces forecast
cdf µ̂(x1/γ) = x which is the uniform forecast.

16



“prospective bias”, the forecast, and a “retrospective bias”, the updating rule.

Theorem 1 (Decomposition). Consider an updating rule h and a forecast ρ̂. Let ρh be

the accurate forecast for h. There exists a misspecified model (µ̂i)ωi∈Ω ∈ ∆∗(Z)N that

represents h and ρ̂ if and only if ρ̂ is plausible and mutually absolutely continuous with

ρh. When such a representation exists, it is essentially unique and satisfies

µ̂i(Z) =
1

pi

∫
Z

h(z)idρ̂(h(z)) (9)

for any measurable set of signal realizations Z ∈ Fh and i = 1, ..., N .

Theorem 1 shows that the updating rule and the forecast are the “essential” com-

ponents of a misspecified model: together they pin down the features of a misspecified

model that are relevant for behavior. It also shows that these components are largely

independent of each other: aside from the mild restriction that the forecast and updat-

ing rule have the same measure zero sets, the forecast does not place restrictions on

the updating rule and vice versa. Thus, a misspecified model is pinned down by the

retrospective and prospective biases that it induces, and these two forms of bias are

largely separate properties of the model—they do not contain overlapping restrictions.

For instance, optimistic updating does not imply optimistic forecasting. This insight has

appealing consequences for economic modeling, as it allows for the interaction between

different natural biases within the same misspecified model.

The condition that the agent’s forecast ρ̂ and the accurate forecast ρh are mutually

absolutely continuous has a natural conceptual interpretation. It means that it is not

possible for an agent to predict that she will have one set of beliefs, but then actually

update to a different set of beliefs. This does not rule out the possibility that the

agent has an incorrect expectation about future beliefs; the forecast must place positive

probability on the same set of beliefs that arise from the updating rule, but the predicted

and actual probability of holding a given belief can differ. In fact, aside from the support

condition, the forecast places no further restrictions on which updating rules it can be

paired with.

This representation provides a powerful tool for the construction of models of biased

learning, as it reduces a misspecified model into two components that transparently re-

late to the conceptual properties the model seeks to capture. Rather than specifying a

family of conditional probability distributions—which is potentially quite complicated

and removed from the conceptual bias of interest—one can simply write down a rea-

sonable parameterization of the desired retrospective and prospective biases. Together

these biases completely capture how a misspecified agent’s behaviour will depart from

that of a correctly specified agent.
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Before discussing the intuition for Theorem 1, we present a corollary. Since the

forecast doesn’t place structure on how mass is allocated within a set of signal realizations

h−1(x) that induce the same posterior x, the construction in Eq. (9) is for the sigma-

algebra generated by h, i.e. Fh. We next construct a representation on the underlying

sigma-algebra on Z, i.e. F . Given that we focus on misspecified models that are

mutually absolutely continuous with respect to the correctly specified model, such a

construction needs to satisfy this property. The following construction uses the correctly

specified distribution to allocate mass within the set of signal realizations that map to

the same posterior. This is a simple way to ensure that the required mutual absolute

continuity holds.

Corollary 1 (Construction of Representation). Consider an updating rule h and a fore-

cast ρ̂, and let ρh be the accurate forecast for h. The following model represents h and

ρ̂:

µ̂i(Z) =
1

pi

∫
Z

h(z)i
dρ̂

dρh
(h(z)) dµ(z) (10)

for any measurable set of signal realizations Z ∈ F and i = 1, ..., N .

Intuition for proof of Theorem 1. To establish this result, we first prove an inter-

mediate result that significantly simplifies the process of finding misspecified model(s) to

represent a given updating rule. Given either a state-contingent distribution µ̂i in state

ωi or the unconditional distribution µ̂, we establish a necessary and sufficient condition

for this distribution to be part of a misspecified model representing a given updating

rule. Moreover, if a model that includes this distribution exists, we show that this sin-

gle distribution uniquely pins down the remainder of the model—in other words, all of

the other state-contingent distributions. When the condition is not satisfied, then the

updating rule is incompatible with the given measure and it cannot be part of a model

that represents the updating rule.

This intermediate result implies a restriction on how a forecast and updating rule

must jointly behave over measure 0 sets in order to be represented by the same mis-

specified model. Specifically, to be compatible with an updating rule, a forecast cannot

place positive probability on a set of posteriors that are associated with a measure zero

set of signals under the updating rule. This corresponds to the subjective forecast ρ̂

being mutually absolutely continuous with the accurate forecast ρh for updating rule h.

It is straightforward to see why this condition is necessary to find a misspecified model

to jointly represent the forecast and updating rule. We show that this condition is also

sufficient, and therefore, is the only joint requirement on the updating rule and forecast

for such a representation to exist.
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Example 1 (continued). In this example, any plausible forecast and updating rule can

be jointly represented provided that the support of the forecast is equal to the image of

the updating rule, i.e. given h, supp ρ̂ = {h(z1), h(z2), h(z3), h(z4)}.

Given that updating rules are much more frequently studied in the literature, a

natural next question is how to select a forecast to pin down a misspecified model to

represent the updating rule. This motivates the remainder of the paper, in which we

explore which forecasts to pair with an updating rule in order to construct misspecified

model representations with certain desirable properties.

4 Selecting Forecasts

In this and the following sections, we use the decomposition into forecasts and updating

rules to identify natural restrictions on the forecast that provide conceptual guidance for

which model to select. We focus on two classes of forecasts that have desirable proper-

ties in relation to the correct model: introspection-proof forecasts and naive consistent

forecasts. For a given updating rule, introspection-proofness imposes the requirement

that the forecast is correct with respect to this updating rule. Naive-consistency imposes

the requirement that the forecast is equal to the accurate forecast for an agent with the

correct model. Each condition uniquely selects a misspecified model when such a model

exists.

4.1 Introspection-Proof Models

A common concern with the use of misspecified models as a modeling tool is that,

given a large number of observations, an agent may observe a pattern that is incredibly

unlikely under her misspecified view of the world. For example, she may observe an

extreme violation of the law of large numbers. Therefore, if an agent forms her view

of the world by observing a lot of data—in the context of this framework, an infinite

sequence of independent draws of the signal and state—one might worry that the agent

could, through introspection, come to realize that she is misspecified. Motivated by this

concern, we define the following notion of an introspection-proof model.

Definition 7 (Introspection-Proof Model). A misspecified model (µ̂i)ωi∈Ω ∈ ∆∗(Z)N

with induced unconditional measure µ̂ is introspection-proof if µ̂(Z) = µ(Z) for all

measurable sets of signal realizations Z ∈ F .

Using the tools developed in Theorem 1, we establish a necessary and sufficient con-

dition for an updating rule and forecast to have an introspection-proof representation—

namely, the forecast must be plausible and accurate with respect to the updating rule.

When such a representation exists, the following result also constructs the corresponding

model.
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Proposition 1. Fix an updating rule h. There exists an introspection-proof misspecified

model (µ̂i)ωi∈Ω ∈ ∆∗(Z)N that represents h and the accurate forecast ρh if and only if

ρh is plausible. If this representation exists, then it is unique and defined by

µ̂i(Z) =
1

pi

∫
Z

h(z)i dµ(z) (11)

for all measurable sets of signal realizations Z ∈ F . There is no introspection-proof

misspecified model that represents h and a forecast ρ̂ 6= ρh.

This result follows from Theorem 1 and the observation that ρ̂IP = ρh, and therefore,

trivially ρ̂IP and ρh are mutually absolutely continuous. The requirement that ρh is

plausible is quite restrictive. Recall that a plausible forecast ρ satisfies
∫
∆Ω

xi dρ(x) = pi

for all i, which by the change of variables formula becomes
∫
Z h(z)i dµ(z) = pi. So the

accurate forecast is plausible only if the updating rule is on average equal to the prior

under the correctly specified signal distribution.18

When an updating rule is represented by an introspection-proof misspecified model,

then the agent observes exactly the distribution of signal realizations that she expects,

given her model of the world. Regardless of the information that she selects to validate

her model, she does not observe violations that would cause her to second guess this

worldview. Alternatively, introspection-proofness can be viewed as a robustness criteria

for the updating rule: from the perspective of an analyst who only observes signal

realizations, any agent who updates using an updating rule that admits an introspection-

proof misspecified model is indistinguishable from a correctly-specified Bayesian agent,

and therefore, this agent will naturally pass any tests that the analyst designs to detect

Bayesianism. If an updating rule can’t be represented by an introspection-proof model,

then with infinite data the analyst will be able to reject that the agent is a correctly-

specified Bayesian.

The condition required the forecast to be plausible is reminiscent of the Bayes-

plausibility condition in Kamenica and Gentzkow (2011). It requires that the forecast

of the expected posterior belief from the updating rule is equal to the prior, where the

expectation is taken with respect to the true unconditional signal distribution. If this

condition does not hold, then it is impossible for the true distribution over posterior

beliefs to be equal to the forecast, and thus it can’t be a forecast from an agent using

a misspecified model. An agent’s posterior beliefs must satisfy the martingale property

18A natural class of biases that may appear to satisfy this condition are those that either over-
or underestimate the precision of information, in the sense that the corresponding misspecified model
is Blackwell ranked with respect to the true model. But this is not the case. In Appendix C, we
provide examples of misspecified models that are Blackwell less informative than the true model but
not introspection-proof and Blackwell more informative than the true model but not introspection-proof.
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with respect to the subjective unconditional signal distribution. Under the introspection-

proof condition, this simplifies to Eq. (11). Moreover, Eq. (11) is sufficient to construct

an introspection-proof misspecified model and it uniquely pins down such a model.

Introspection-proofness provides the researcher with a natural choice of misspecified

model to represent a given updating rule. An introspection-proof misspecified model

must preserve the “center of mass” of beliefs, but otherwise has the freedom to arbitrarily

distort the spread of these beliefs. This makes it possible to represent conceptual biases

such as conservatism in belief updating or overreaction to new information with an

introspection-proof misspecified model, as we illustrate in the following examples.

Example 1 (continued). Suppose the updating rule generated by the correct model maps

{z1, z2} to posterior x and {z3, z4} to 1 − x and consider the updating rule that maps

{z1, z2, z3} to x and z4 to 1 − x. Then the introspection-proof forecast corresponds to

ρ̂(x) = µ(z1) + µ(z2) + µ(z3) and ρ̂(1− x) = µ(z4), where µ is the correct unconditional

model, as this is the accurate probability of each posterior given the biased updating rule.

Example 3 (Conservatism). Consider a common updating rule for conservatism in belief

updating, h(z) = λhB(z) + (1− λ)p for some λ ∈ (0, 1) (Epstein et al. 2008; Hagmann

and Loewenstein 2019; Gabaix 2019). In other words, the posterior belief is a weighted

average of the Bayesian posterior and the prior. This updating rule is represented by the

introspection-proof misspecified model µ̂i ≡ (1−λ)µi +λµ. Note that the second term in

this sum depends on the prior.

On the other hand, updating rules that systematically shift beliefs in one direction,

such as partisan bias, can never be paired with forecasts that satisfy this condition, as

any reasonable parameterization of such a bias must shift the center of mass of beliefs.

Example 4 (Partisan Bias). Consider the following model of partisan bias. There are

two states of the world ω ∈ {ω1, ω2} and an agent who updates according to updating

rule h(z)1 = (hB(z)1)
2 and h(z)2 = 1 − (hB(z)1)

2. In this model, after any signal the

agent has beliefs that are more favorable to state ω2 than the correctly specified agent.

Under the accurate forecast ρh∫ 1

0

xi dρh(x) =

∫
Z
h(z)i dρh(h(z)) =

∫
Z
h(z)i dµ(z).

But,
∫
Z h(z)1 dµ(z) <

∫
Z hB(z)1 dµ(z) = p1, so the accurate forecast is not plausible.

This argument clearly holds not only here, but more generally for any bias that system-

atically skews the updates in one direction.

Moreover, this condition requires a certain amount of complexity in how the updating

rule distorts updates which prevents many simple updating rules from satisfying it. For
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example, the canonical model of overreaction cannot satisfy it.

Similar approaches to introspection-proof models have been used in existing work

to construct plausible restrictions on the space of misspecified models being considered.

For example, Spiegler (2016) uses a similar condition to connect misspecified causal

graphs—as opposed to updating rules—to a misspecified model. He requires a condi-

tion resembling introspection-proofness on each link of the graph, which pins down a

misspecified probability distribution over the outcome of interest. Mailath and Samuel-

son (2020) study a model of omitted variable bias, where the set of omitted variables

combined with an introspection-proof condition pin down the misspecified model agents

use.

Alternative Notions of Introspection. This notion of introspection-proofness is rel-

atively strong, in that it requires the subjective unconditional signal measure to exactly

match the correct unconditional measure. With a bit more structure on the signal space,

one could do a conceptually similar exercise with weaker requirements. For example,

one could require that mean of the subjective unconditional signal measure matches the

mean of the correct unconditional signal measure, but allow the subjective unconditional

signal measure to differ from the correct unconditional signal measure on other dimen-

sions, such as the variance, that may be harder to detect than differences in means. We

explore alternative definitions of introspection-proof in Appendix B.

4.2 Naive Consistent Forecasts

Another natural forecast is one in which the agent naively predicts that she will form

accurate beliefs in the future. This property is analogous to common naivete assumptions

made in many behavioral models (e.g. models of time inconsistency), and has previously

been made in models of biased learning such as Benjamin et al. (2019); Bohren and

Hauser (2021). We say a forecast exhibits naive consistent forecasting when the agent’s

forecast of future beliefs is identical to the accurate forecast of future beliefs when an

agent updates using Bayes rule.

Definition 8 (Naive Consistent Forecast). The naive-consistent forecast is the accurate

forecast with respect to the Bayesian updating rule hB, ρ̂NCF ≡ ρB.

Informally, this requires that for any Borel set of posteriors X, the naive consistent

forecast ρ̂NCF (X) places the same probability on X as the accurate forecast with respect

to the Bayesian updating rule hB(z). Therefore, an agent who exhibits naive consistent

forecasting assigns the same probability as a correctly specified agent that she will form

a posterior belief in set X. Note that since ρB is the distribution of posteriors that a

correctly specified Bayesian generates, it is always plausible.

Using Theorem 1, we establish that mutual absolute continuity of ρ̂NCF and ρh is
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the only property that an updating rule must satisfy to be represented by a misspecified

model that exhibits naive consistent forecasting.

Proposition 2 (Naive Consistent Representation). Fix an updating rule h. There ex-

ists a misspecified model (µ̂i)ωi∈Ω ∈ ∆∗(Z)N that represents h and the naive consistent

forecast ρ̂NCF if and only ρh and ρ̂NCF are mutually absolutely continuous. When such

a representation exists, it is essentially unique and satisfies

µ̂i(Z) = µi({z : hB(z) ∈ h(Z)}) (12)

for any measurable set of signal realizations Z ∈ Fh and i = 1, ..., N .19

The absolute continuity condition is relatively mild: it requires that the set of posteriors

that are possible under the updating rule are the same as the set of posteriors that the

agent believes are possible under the forecast. Formally, µ({z : h(z) ∈ X}) = 0 if and

only if ρ̂NCF (X) = 0. Naive consistent forecasting also implies that in each state ωi, an

analogue of the naive consistent forecasting property holds. In each state ωi, a naive

consistent forecast predicts that the posterior will be in set X with the same probability

that a correctly specified agent predicts that the posterior will be in this set. This is a

consequence of Lemma 3 and is straightforward to see from Bayes rule.

Example 1 (continued). As before, suppose the updating rule generated by the correct

model maps {z1, z2} to posterior x and {z3, z4} to 1− x and consider the updating rule

that maps {z1, z2, z3} to x and z4 to 1−x. Then the naive consistent forecast corresponds

to ρ̂(x) = µ(z1) + µ(z2) and ρ̂(1 − x) = µ(z3) + µ(z4), since this is the correct forecast

given an unbiased updating rule.

In Section 5.2, we apply the naive consistent representation to compare overprecision

in forecasting versus updating. In Bohren and Hauser (2021), we impose naive consistent

forecasting to study social learning in the presence of overreaction or partisan bias.

Example 5 (Overreaction). Consider a binary state space ω ∈ {ω1, ω2} and an agent

who updates using the updating rule defined by

h(z)2
1− h(z)2

=
p

1− p

(
dµR
dν

(z)
dµL
dν

(z)

)γ

.

in state ω2, with complementary probability h(z)1 = 1−h(z)2 in state ω1 and overreaction

parameter γ > 1. If the random variable h(z, 1/2)2 is continuous with support [0, 1], then

this admits a misspecified model that exhibits naive consistent forecasting at all priors.

19Alternatively, one could write this representation in analogous form to Eq. (9) as µ̂i(Z) =
1
pi

∫
Z
h(z)idρB(h(z)) and pin down a full representation by substituting ρB for ρ̂ in Eq. (10).
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This naive consistent representation is particularly convenient in the social learning

game studied in Bohren and Hauser (2021). In that game, a sequence of short-lived

agents see a private signal zt with they interpret using the updating rule and choose an

action at ∈ {L1, L2, R1, R2}. An agent receives utility u(a, ω) from their action choice

where u(L1, ω1) > u(L2, ω1) > u(R2, ω1) > u(R1, ω1) and u(R1, ω2) > u(R2, ω2) >

u(L2, ω1) > u(L1, ω1). If all agents use a naive consistent forecast, then at any belief

the update following each action is exactly the update that an agent would make in the

correctly specified game. That is, at any prior pt, the perceived probability of each action

is equal to the probability that a correctly specified player would take that action, the

update a player would make if, for instance, they didn’t take into account that them-

selves and others were interpreting information using the updating rule h(z), but instead

believed that all agents were updating correctly. This does not imply that the learning

dynamics in this problem are the same, or even similar to, that of the correctly specified

social learning game. Since agents are in fact using a biased updating rule to interpret

information, the realized action frequency is different from the frequency that would be

realized in the game with correctly specified agents. As we show in the paper, this can

cause beliefs to fail to converge.

4.3 Biased Forecasts with Accurate Updating

Introspection-proof models and naive consistent forecasting both pin down a forecast

with respect to the correctly specified signal distribution. That is, the forecast is either

accurate with respect to the agent’s updating rule or with respect to the Bayesian

updating rule. This isolates the retrospective bias from any prospective bias by having

the agent naively form forecasts as-if they were correctly specified. One can also consider

situations in which an agent correctly interprets signals (i.e. uses the Bayesian updating

rule hB(z)) but has a biased forecast. These situations such down any retrospective

biases and only allow for prospective biases. The following definition formalizes this

notion of a retrospectively correct model.

Definition 9 (Retrospectively Correct Model). A misspecified model (µ̂i)ωi∈Ω ∈ ∆∗(Z)N

is retrospectively correct if it induces hB(z), i.e. for all ωi ∈ Ω,

pi
dµ̂i
dν

(z)∑N
j=1 pj

dµ̂j
dν

(z)
= hB(z)i (13)

ν-almost everywhere.

The following corollary follows immediately from Theorem 1, as ρB is the accurate

forecast for the updating rule hB.
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Corollary 2. Fix a forecast ρ̂. There exists a retrospectively correct model (µ̂i)ωi∈Ω ∈
∆∗(Z)N that represents ρ̂ if and only if ρ̂ and ρB are mutually absolutely continuous and

ρ̂ is plausible.

This establishes that many forecasts are consistent with Bayesian updating. An agent

can form very wrong predictions about their future beliefs, but still update correctly

after observing a signal. Therefore, the misspecified model approach can be used to

capture prospective biases without needing to also allow for retrospective bias.

5 Applications

We next provide two applications to demonstrate the results from Sections 3 and 4.

In the first application, we start with the updating rule approach and show how the

introspection-proof condition is a natural requirement to impose when selecting an up-

dating rule in a dual-selves model with self-image concerns. In the second application,

5.1 Optimal Bias with Self-Image Concerns

The first application is a dual-selves model with self-image concerns, where a manager

first chooses an updating rule to interpret information about ability, then uses this

updating rule to evaluate himself and workers. We show that the introspection-proof

constraint places a natural upper bound on the level of motivated reasoning that the

manager exhibits. Moreover, the manager compensates for overestimating the ability

of workers sharing a group identity with the manager by underestimating the ability

of workers from the other group identity, despite group identity being orthogonal to

productivity. In contrast, without the introspection-proof constraint, the manager does

not distort beliefs for the other group identity. Therefore, self-image concerns in combi-

nation with introspection-proof updating leads to inaccurate beliefs about workers from

all group identities, whereas self-image concerns on their own only lead to inaccurate

beliefs about workers that share a group identity with the manager.

Set-up. Suppose a manager evaluates a worker. The worker has either low or high

ability, ωw ∈ {L,H}, drawn with equal probability. The manager selects evaluation

a ∈ [0, 1] for the worker. Before evaluating the worker, the manager observes a two-

dimensional signal zw = (yw, tw). The first dimension yw ∈ {b, g} provides information

about the worker’s ability, with distribution Pr(g|H) = Pr(b|L) = α > 1/2. We refer

to this as the worker’s test performance. The second dimension is the worker’s group

identity tw ∈ {M,F}, which we assume is independent of (yw, ωw) and distributed

according to q ≡ Pr(M). This group identity can be interpreted as a demographic

variable that is readily observed from interacting with the worker.

Analogous to the worker, the manager has ability ωm ∈ {H,L} drawn with equal
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probability. The manager also observes his own test performance ym ∈ {b, g}, which has

the same distribution as the worker’s test performance yw. Without loss of generality,

assume that the manager’s group identity is tm = M , and therefore the manager’s two-

dimensional signal is zm = (ym,M). The manager’s ability and signal are independent

of the worker’s ability and signal.

We consider a dual-selves model where the manager’s first self chooses an updating

rule for interpreting the signal, and the second self uses this rule to update his beliefs

about his own ability and the worker’s ability then evaluates the worker. Before the

signals are realized, the first self chooses an updating rule h for the second period self to

use. Given that the state is binary, in a slight abuse of notation we let h(z) denote the

manager’s subjective probability that ability is high following signal z. After the signals

are realized, the second self updates his belief about his own ability to h(zm) and his

belief about the worker’s ability to h(zw), then chooses evaluation a.

The manager cares about his self-image, captured by the second self’s belief that he

is of high ability, and accurately forecasting the worker’s ability,

u(a, ωw, zm) = h(zm)− c(1{ωw=H} − a)2, (14)

where c > 1/2q(1− α) to ensure that the manager puts sufficient weight on accurately

evaluating the worker.20 Each self maximizes his expected utility, where the first self

takes this expectation with respect to the correctly specified model before signals are

realized and the second self takes this expectation with respect to the chosen updating

rule h after signals are realized.

Given updating rule h, it is straightforward to see that the second self will choose

evaluation a∗(zw) = h(zw). Therefore, the first self chooses an updating rule h to

maximize

E[h(zm)− c(1{ωw=H} − h(zw))2]. (15)

Given that the manager must choose the same updating rule to interpret his own and

the worker’s signals, the choice of updating rule influences both the payoff from self-

image and the payoff from the accuracy of the evaluation. Self-image concerns lead the

manager to exhibit motivated reasoning, i.e. to choose an updating rule that inflates

the interpretation of test performance for members of group M , while the desire for

accuracy prevents this motivated reasoning from becoming too extreme. This is the key

trade-off in selecting an updating rule.

20This condition ensures that the manager does not choose an updating rule that maps a noisy signal
into a certain belief about ability.
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The Optimal IP Updating Rule. The first self may wish to select an updating rule

such that the second self does not observe a pattern of signals that, after evaluating a

sufficiently large number of workers, is at odds with his forecast about his beliefs—in

other words, an introspection-proof updating rule. We next characterize the optimal

introspection-proof updating rule and compare it to the optimal updating rule without

this constraint.

From Proposition 1, an updating rule has an introspection-proof representation if∑
y∈{b,g}

1

2
(qh(y,M) + (1− q)h(y, F )) =

1

2
. (16)

In order to inflate self-image and simultaneously satisfy the introspection-proof con-

dition, which requires consistency with the observed signal distribution, the manager

must compensate for overestimating the ability of group M workers by deflating the

interpretation of test performance for group F workers, thereby underestimating their

ability. Given Bayesian updating rule hB(g, t) = α and hB(b, t) = 1 − α, this leads to

the following result.

Proposition 3. The optimal introspection-proof updating rule inflates the interpretation

of both test outcomes for group M , h(y,M) = hB(y,M) + 1−q
2cq

for y ∈ {b, g}, and

deflates the interpretation of both test outcomes for group F , h(y, F ) = hB(y, F ) − 1
2c

for y ∈ {b, g}.

The optimal updating rule features inaccurate beliefs about both groups that endoge-

nously emerge from the interaction between self-image concerns and the introspection-

proof constraint. Fig. 1(a) illustrates this updating rule.

The optimal distortion for group M is decreasing in q: when the hiring pool is

more similar to the manager in terms of group identity, the manager uses a less biased

updating rule for group M , resulting in more accurate evaluations. This is because it

becomes more costly for the manager to distort information in a way that improves his

self-image, as this distortion leads to a bigger loss from inflating the evaluation of the

larger share of group M workers. In contrast, the optimal distortion for group F is

independent of q: as q increases, distortion is less costly for this group since it comprises

a smaller share of workers, but also less beneficial as a means to balance the distortion

against group M since less distortion against group M is desired. It turns out that these

two forces exactly balance for the linear-quadratic payoff form Eq. (14).

The Optimal Unconstrained Updating Rule. When the updating rule is not

constrained to be introspection-proof, self-image concerns still lead the manager to inflate

the interpretation of test performance for members of group M . However, there is no
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(a) Introspection-Proof (b) Unconstrained

Figure 1. Optimal average update by group (α = .7, c = 4, q = .5).

reason to distort the information for group F . This leads to the following result.

Proposition 4. The optimal unconstrained updating rule inflates the interpretation of

both test outcomes for group M , h(y,M) = hB(y,M)+ 1
2cq

for y ∈ {b, g}, and accurately

interprets both test outcomes for group F , h(y, F ) = hB(y, F ) for y ∈ {b, g}.

The optimal updating rule only features inaccurate beliefs about the manager’s

group. This contrasts with the optimal introspection-proof updating rule, in which

the introspection-proof constraint forces the overestimation of own group ability to be

counterbalanced by underestimating the ability of the other group. Therefore, in set-

tings where agents evaluate a sufficiently large pool of workers such that consistency

with the underlying signal distributions is a reasonable requirement, self-image concerns

can lead to inaccurate beliefs about other groups even though the manager derives no

intrinsic payoff benefit from this distortion.

Without the discipline of the introspection-proof constraint, distorting self-image

is only costly for the manager when he is hiring type M workers. This leads to a

higher level of signal distortion for group M relative to the optimal introspection-proof

updating rule. Thus, the introspection-proof constraint serves as a natural moderator to

the magnitude of the motivated reasoning bias that can emerge. Without this constraint,

the manager stands to lose less from distorting his belief about his ability, as he does

not have to compensate for this distortion by also distorting the perception of group

F . Fig. 1(b) illustrates the optimal unconstrained updating rule. Although there is less

belief distortion for group F , the higher distortion for group M dominates and leads to

less accurate evaluations overall.21

21The expected loss E((1ω=H − h(zw))2) from the evaluation using the optimal unconstrained up-
dating rule is 1−α2 − (1−α)2 + 1/8qc2, which is larger than the expected loss from using the optimal
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5.2 Search with Biased Forecasts

Our second application considers a simple search problem where a firm explores two new

technologies with unknown value. We explore how overprecision and underprecision (i.e.

overestimating or underestimating the precision of signals) in interpreting information

about the value of these technologies impacts search decisions. Whether the bias enters

prospectively or retrospectively leads to qualitatively different predictions about how the

bias impacts search behavior. When the bias enters prospectively, overestimating the

precision of future information leads to excess search, while underestimating it leads to

too little. In contrast, when the bias enters retrospectively, overestimating the precision

of an observed signal leads to too little search, while underestimating it leads to excess

search. This demonstrates that whether a given bias manifests ex-ante or ex-post to the

arrival of information is critical for determining how it impacts decision-making.

Set-Up. A firm is considering whether to adopt one of two new technologies, j ∈
{1, 2} of unknown value. Each technology has either high or low value, ωj ∈ {L,H},
where ω1 and ω2 are independent and Pr(ωj = H) = p. The firm learns about these

technologies sequentially. In each of two periods, the firm chooses whether to search

another technology or to adopt one of the technologies it has already searched. It costs

the firm c ∈ (0, p) to search each technology. The firm receives a payoff of 1 from

adopting a high value technology and 0 from adopting a low value technology or not

adopting any technology. Without loss of generality, assume that j = 1 is searched first

and j = 2 is searched second.

When the firm searches technology j, it draws a signal zj from model (µH , µL) which

specifies the signal distribution in each state. These signals are independent across

technologies. After observing the signal, it evaluates it using updating rule h(z), where

in a slight abuse of notation we define h(z) = Pr(ω = H|z). Ex-ante, it believes that

its posterior belief that a given technology is productive (i.e. ωj = H) has distribution

ρ̂ ∈ ∆p([0, 1]), where ∆p([0, 1]) is the set of forecasts that are plausible with respect to

prior p and are mutually absolutely continuous with ρh.

The firm always searches the first technology since p > c. After observing signal

realization z1, it searches the second technology if

c <

∫ 1

hB(z1)

(x− h(z1)) dρ̂(x), (17)

where we break indifference by assuming the firm does not search.

introspection-proof updating rule, 1− α2 − (1− α)2 + (1− q)/(8qc2).
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Search with Prospective Bias. First suppose that the firm has prospective bias but

no retrospective bias, i.e. h = hB. A firm has an overprecise forecast if ρ̂ is a mean

preserving spread of the accurate forecast ρB, and has an underprecise forecast if ρB is a

mean preserving spread of ρ̂. When the firm has an overprecise forecast, it overweights

the likelihood of receiving a very precise signal, and when the firm has an underprecise

forecast, it overweights the probability of receiving a relatively uninformative signal.

From Eq. (17), it follows that a firm with an overprecise forecast searches too often

relative to an accurate forecast, while a firm with an underprecise forecast searches

too little. Therefore, even though ex-post the firm interprets information correctly, its

prospective bias leads to inefficiencies. We formalize this in the following proposition.

Proposition 5. Let ZS denote the set of signal realizations following which a firm with

an accurate forecast searches the second technology. Then a firm with an overprecise

forecast searches following signal realizations in a superset of ZS and a firm with an

underprecise forecast searches following signal realizations in a subset of ZS.

Search with Retrospective Bias. Now suppose that the firm has retrospective

under- or overprecision and uses the naive consistent forecast, i.e. ρ̂ = ρB. In par-

ticular, it exhibits overprecision if h(z) < hB(z) when hB(z) < 1/2, h(z) > hB(z) when

hB(z) > 1/2, and h(z) = 1/2 when hB(z) = 1/2, and it exhibits underprecision if

h(z) ∈ (hB(z), 1/2) when hB(z) < 1/2, h(z) ∈ (1/2, hB(z)) when hB(z) > 1/2, and

h(z) = 1/2 when hB(z) = 1/2. In the first case, signals are interpreted as being more

precise then they actually are, whereas in the second case, signals are interpreted as

being less precise.

Retrospective overprecision leads to more search after signal realizations that lead to

a low posterior belief that the technology has high value and less search after signal real-

izations that lead to a high posterior belief that the technology has high value, relative to

an unbiased updating rule. In contrast, as shown above, prospective overprecision leads

to (weakly) more search after any signal realization, relative to an unbiased forecast.

Whether retrospective overprecision leads to more or less search overall depends on the

cost of search: for a sufficiently low cost, it leads to less search and for a sufficiently high

cost, it leads to more. We formalize this in the following proposition.

Proposition 6. Let ZS denote the set of signal realizations that yield a posterior belief

following which a firm that uses the Bayesian updating rule searches the second technol-

ogy. There exists a c > 0 such that:

1. For c < c, if the firm has an overprecise updating rule, it searches following signal

realizations in a subset of ZS and it if has an underprecise updating rule, it searches

following signal realizations in a superset of ZS.
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(a) Prospective Bias: h = hB , ρ̂ ∼ Beta(θ, θ) (b) Retrospective Bias: h(z)/(1 − h(z)) =
(hB(z)/(1− hB(z))γ , ρ̂ = ρB

Figure 2. Search Decisions with Over- and Underprecision (p = 1/2, c = 1/16, ρB ∼
U [0, 1]).

2. For c > c, if the firm has an overprecise updating rule, it searches following signal

realizations in a superset of ZS and it if has an underprecise updating rule, it

searches following signal realizations in a subset of ZS.

Fig. 2 illustrates how the search decision changes as a function of the level of prospective

or retrospective bias for the case of a low cost. As the figure illustrates, retrospective

versus prospective overprecision leads to qualitatively different predictions for how the

bias impacts search behavior: the prospective bias leads to more search while the ret-

rospective bias leads to less search, relative to an unbiased agent. Therefore, while

each form over overprecision captures a similar distortion to information, whether the

bias emerges before or after the arrival of information has important implications for

economic behavior. The case of underprecision is analogous.

6 Extensions

In order to consider dynamics, we extend the definition of an updating rule to specify

a posterior belief for each possible signal realization and prior belief p ∈ ∆(Ω), h(z, p),

and similarly for a forecast ρ̂(x, p). In this case, the analysis from Sections 3 and 4 pins

down the misspecified model(s) that represent the updating rule and/or forecast at each

prior.

6.1 Prior-Independent Representations.

An important question in this expanded framework is whether there exists a represen-

tation that is independent of the prior. We explore this question for updating rules
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below.

Definition 10 (Prior-Independent Representation). An updating rule h(z, p) has a prior-

independent representation if there exists a model (µ̂i)ωi∈Ω that represents h(z, p) at all

p ∈ ∆(Ω).

When this property holds, the subjective model representing the updating rule does not

vary with the prior belief about the likelihood of each state. This makes it a conceptually

appealing property for biases in which an agent is inherently Bayesian but has a mistaken

understanding of the information generating process that is independent of her current

worldview. For example, biases such as overreaction and optimism are not inherently

linked to the agent’s prior belief. In contrast, the property is conceptually at odds

with biases that directly depend on the agent’s current worldview in the sense that this

worldview influences her perception of information. For example, confirmation bias is

inherently linked to the agent’s prior belief about the state, and therefore, is naturally

represented by a model that varies with the prior. As we will show below, the property

is also at odds with some biases in which an agent is non-Bayesian, as representing such

biases in a Bayesian framework can require prior-dependence (e.g. Epstein et al. (2008)).

The following proposition presents a necessary and sufficient condition for an updat-

ing rule to have a prior-independent representation. In particular, such a representation

exists if and only if it is possible to factor the prior likelihood ratio pi/pj out of the

posterior likelihood ratio h(z, p)j/h(z, p)i for any pair of states. When this condition

holds, then any model that represents an updating rule at some prior p also represents

the updating rule at any other prior p′—and therefore, can form a prior-independent

representation.

Proposition 7 (Prior-Independent Representation). Fix an updating rule h(z, p) such

that p ∈ S(h(·, p)) for all p ∈ ∆(Ω). Then h(z, p) has a prior-independent representation

if and only if

pi
pj

h(z, p)j
h(z, p)i

(18)

is independent of p for all p ∈ ∆(Ω), z ∈ Z, and i, j = 1, ..., N . When this holds, then

any model that represents h at prior p also represents h at all other priors p′ ∈ ∆(Ω).22

22Whenever an updating rule h can be represented by at least two models at some prior p, then
trivially a prior-dependent representation exists even when a prior-independent representation also
exists. To see this, suppose Eq. (18) holds and consider two models that represent h at prior p. Then
both models represent h at all priors. To form a prior-dependent representation, select one model to
represent h at a subset of priors P ⊂ ∆(Ω) and select the other model to represent h at the remaining
priors ∆(Ω) \ P .
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This property has an important implication for empirical work. When an updating rule

has a prior-independent representation, then identifying the updating rule at one prior

pins down the updating rule at all priors.

Many canonical parameterizations of common biases have prior-independent repre-

sentations. For example, the parameterization of overreaction in Example 5 and the pa-

rameterization of partisan bias in Bohren and Hauser (2021) both have prior-independent

representations (see Appendix D.1). Intuitively, any bias that distorts the true signal

likelihoods dµi
dν
/
∑

ωj∈Ω
dµj
dν

independently of the prior will have a prior-independent rep-

resentation.

Many biases are also naturally parameterized in a way that only admits prior-

dependent representations. For example, the direction of confirmation bias and the

magnitude of base rate neglect depend on the prior. Therefore, updating rules that only

admit prior-dependent representations are essential for capturing the essence of these

biases (see Page 8 for examples of such updating rules). While less obvious, the linear

parameterization of over/underreaction in Epstein et al. (2008) (see Example 3) and the

posterior parameterization of partisan bias in Example 4 only admit prior-dependent

representations (see Appendix D.1). In the former, even though the over/underreaction

parameter is independent of the prior, the additivity of the non-Bayesian updating rule

with respect to the prior and the Bayesian posterior differs structurally from the multi-

plicative form of Bayes rule with respect to the prior and signal likelihoods, and therefore,

can only be represented by Bayesian updating in a misspecified model when the model

varies with the prior belief. In the latter, distorting the Bayesian posterior, rather than

the signal likelihood, links the magnitude of the bias to the prior even though the pa-

rameter capturing the bias is independent of the prior. Similarly, the misspecified causal

models from Spiegler (2020) only admit prior-dependent representations.23

Even when a prior-independent representation exists for a given updating rule, the

unique model that represents a forecast-updating rule pair may not be prior-independent

due to the dependence of the forecast on the prior. This brings us to the following result,

which establishes a desirable property for the naive consistent forecast.

Proposition 8. Fix an updating rule h(z, p) that has a prior-independent representation.

Then the unique representation of h(z, p) and the naive consistent forecast is prior-

independent.

We already know that, by definition, the naive consistent forecast is consistent with

23While prior-independent representations lend themselves to more straightforward dynamic analy-
sis, prior-dependent representations are still tractable. For example, recent work in the literature on
misspecified learning establishes general convergence results in settings where the model varies with the
prior belief (Bohren and Hauser 2021; Frick et al. 2020b).
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the forecast induced by the correctly specified model in a one-period setting. In a dy-

namic setting in which a sequence of signals is observed, it turns out that the naive

consistent forecast paired with an updating rule that has a prior-independent repre-

sentation satisfies a stronger consistency property. While ρ̂(x, p) specifies the period-t

forecast of the posterior belief in period t + 1, in a dynamic setting one can also define

the period-t forecast of the posterior belief in any future period τ > t. It turns out

that the representation of the naive consistent forecast and an updating rule that has a

prior-independent representation induces period-t forecasts over posterior beliefs in any

future period τ > t that are equal to the period-t forecast of beliefs in period τ induced

by the correctly specified model.

6.2 Subjective Prior Representation.

Recent work in the misspecified learning literature has also allowed for the possibility

that an agent has a misspecified prior (e.g. Fudenberg et al. (2017)). Our framework

easily extends to allow for this possibility. Letting p̂ denote the subjective prior, for any

forecast and updating rule pair, the analogue of Theorem 1 pins down a unique prior

and misspecified model of the signal process that represents this pair.

Theorem 2 (Decomposition with Misspecified Priors). Consider an updating rule h

and a forecast ρ̂. Let ρh be the accurate forecast for h. There exists a misspecified prior

p̂ ∈ ∆(Ω) and a misspecified model (µ̂i)ωi∈Ω ∈ ∆∗(Z)N that represents h and ρ̂ if and

only if ρ̂ and ρh are mutually absolutely continuous. When such a representation exists,

it is essentially unique and satisfies

p̂i =

∫
∆(Ω)

xi dρ̂(x) (19)

and

µ̂i(Z) =
1

p̂i

∫
Z

h(z)idρ̂(h(z)) (20)

for any measurable set of signal realizations Z ∈ Fh and i = 1, ..., N .

The key difference from Theorem 1 is that, rather than requiring the forecast to be

plausible, Theorem 2 uses plausibility to pin down the unique subjective prior as the

prior that the forecast is plausible with respect to. Given this misspecified prior, the

misspecified model of the signal process is as in Theorem 1.24

A misspecified prior allows for a wider range of forecasts to be represented, as it

relaxes the restrictive plausibility condition. Moreover, it also allows for a wider range

24Analogous to Corollary 1, one can use the correctly specified model to pin down a representation
on F .
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of updating rules to be represented by an introspection-proof model of the signal process

as defined in Definition 7. In fact, every updating rule now has such a representation.

But in order for the predicted empirical frequencies of signals to match the true empirical

frequencies, the predicted empirical frequencies of states do not match the true empirical

frequencies. So although the representation is introspection-proof with respect to the

signal distribution, it is not introspection-proof with respect to the state distribution.

6.3 Time Inconsistency.

Time inconsistency is a key property of many dynamic behavioral models. We next

discuss how a prior-dependent representation is a natural way to allow for dynamic

inconsistency.

Consider a dynamic setting in which a state ω is drawn at the beginning of the

game. An agent observes a sequence of signals drawn independently from µi when the

realized state is ωi. Suppose the agent’s updating rule and forecast is represented by

prior-independent model (µ̂i)ωi∈Ω, and the agent accurately anticipates that she will use

this updating rule and forecast in all periods. In contrast to many dynamic behavioral

models, this leads to behavior that is dynamically consistent: the optimal action an agent

chooses following any signal realization is the same regardless of whether she commits

to an action strategy before the signal is realized or selects an action after the signal is

realized.

While dynamic consistency is desirable in certain settings, dynamic inconsistency is

an inherent feature of certain biases e.g. confirmation bias or disbelief in the law of

large numbers (Benjamin et al. 2016). Therefore, representing such biases requires a

misspecified model that can exhibit dynamic inconsistency. That is, the misspecified

model an agent believes they will use in future periods must differ from the (potentially)

misspecified model they actually use to form beliefs in future periods. A prior-dependent

representation is a natural way to allow for this. For example, suppose the forecast and

updating rule at prior p are represented by model (µ̂i(·; p))ωi∈Ω and the agent believes

she will use the forecast and updating rule induced by this model in all future periods. In

contrast, the agent’s actual updating rule and forecast has a prior-dependent represen-

tation denoted by family of models ((µ̂i(·; p))ωi∈Ω)p∈∆(Ω). This can lead to dynamically

inconsistent behavior: since the agent’s model of how to interpret information changes

with her belief but she does not anticipate this, the agent may wish to deviate from her

ex-ante action strategy after observing the signal and updating her belief.

Prior-dependent representations do not always lead to dynamic inconsistency. When

the agent accurately anticipates how her model varies with the prior, a prior-dependent

representation can capture an agent who is time consistent. For example, if the true

model varies with the prior as in active and social learning environments, then the
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unique representation of an agent who is Bayesian and has an accurate forecast will be

prior-dependent. Alternatively, a biased agent who is sophisticated about her bias will

accurately predict how her future updating rule and forecast will vary with her future

belief, and therefore, exhibit time consistency.

7 Conclusion

We develop a representation that links updating rules to misspecified models. We show

that any misspecified model can be represented through an updating rule and a plausible

forecast and vice-versa under mild conditions. This provides a natural tool for expressing

a misspecified model and it’s implications on decision making entirely in terms of the

two important biases it induces; the prospective and retrospective bias. In addition,

this provides a natural way to complete an updating rule through the construction of a

forecast. We identify paths to complete an updating rule – the introspection-proof model

and the naive consistent forecast – and provide necessary and sufficient conditions for

these to exist. These results allow us to embed well-documented information processing

biases into economic decision problems where the updating rule on its own would have

been insufficient. This decomposition also highlights the importance of eliciting more

than the agent’s updating rule in experimental work in order to get a complete picture

of how the economically relevant ways an agent reasons about information.

A Proofs

A.1 Proofs from Section 3

Proof of Lemma 1. (If:) Let F ≡ {x : xi =
∫
Z h(z)i dµ̂(z), µ̂ ∈ ∆∗(Z)}. We first

show that F = S(h), which implies that S(h) = rel int F since both sets are convex,

and then show that any prior that lies in the relative interior of F can be represented

by a misspecified model. Consider any x ∈ S(h). Since S(h) is a compact convex set,

there is a set of K ≤ N ai ∈ S̄(h) s.t.
∑K

j=1 λjaj = x, λj > 0,
∑K

j=1 λj = 1. Fix

ε ∈ (0,minj{λj}), and for each aj take a collection of disjoint balls of radius δ < ε
2K

around aj, Bδ(aj). The set of signals that map to this ball has positive measure.

Define a density by

dµ̂

dµ
(z) =


λj− ε

2K

µ(h−1(Bδ(ai)))
if z ∈ h−1(Bδ(ai))

ε

2µ(Z\h−1(
⋃K
j=1Bδ(aj)))

o.w.

if µ(Z \ h−1(
⋃K
j=1Bδ(aj))) > 0, otherwise let dµ̂

dµ
(z) =

λj
µ(h−1(Bδ(ai)))

if z ∈ h−1(Bδ(ai)).

Then with respect to this density |
∫
Z h(z)idµ̂(z) − xi| ≤ ε, so x ∈ F . By standard

argument any point in F is in the closure of S(h), so these two sets are the same. So,

we can work directly with points in F .
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Consider the vector m ∈ ∆(Ω) where mi =
∫
Z h(z)i dµ(z), the expected value of the

misspecified posterior under the true unconditional distribution, which exists, and lies in

F . Since the prior p is in the relative interior, there exists an ε > 0 s.t. q = (1+ε)p−εm ∈
F . Moreover, there exists a probability distribution γ ∈ ∆∗(Z) absolutely continuous

with respect to ν s.t. q =
∫
Z h(z)i dγ(z). Consider the compound lottery where with

probability 1
1+ε

the signal z is drawn from γ and with complementary probability is it

is drawn from µ. Call this measure µ̂. Then
∫
Z h(z)i dµ̂(z) = pi. Finally, suppose that

there was a set Z with ν-positive measure where for all z ∈ Z dµi
dν

(z) > 0 but dµ̂i
dν

(z) = 0.

This set occurred with positive probability in the under µ so it must occur with positive

probability under µ̂, which is a contradiction. Therefore, by part 3 we can represent this

with a misspecified model.

(Only If:) Take a measure µ̂ ∈ ∆∗(Z). This induces a full support distribution

over supp ρh, denoted ρ̂µ̂ ≡ µ̂ ◦ h−1. Let mi =
∫
Z h(z)idµ̂(z). Suppose m was not on

the relative interior. Then there exists a hyperplane that properly supports S(h) at m,

v ∈ RN s.t. v ·m ≥ v · s for all s ∈ S(h), strict for any s on the relative interior. But

then, since the relative interior is non-empty, and any point on the relative interior can

be written as the convex combination of points in the support, implying at least one of

these points is not on the hyperplane, and since any neighborhood of that point occurs

with positive probability v ·m =
∫
v · s dρ̂µ̂(s) < v ·m by the full support assumption,

which is a contradiction. �

Proof of Lemma 2. (If:) Fix a plausible forecast ρ̂ and and the associated function

g : Z → ∆(Ω). Let ρg = µ ◦ g−1. Define the measure

µ̂(Z) =

∫
Z

dρ̂

dρg
(g(z)) dµ(z).

Now note that ∫
Z
g(z)idµ̂(z) =

∫
∆(Ω)

xidρ̂(x) = pi

so the misspecified model

µ̂i(Z) =
1

pi

∫
Z

g(z)i dµ̂(z)

is a misspecified model with unconditional signal distribution µ̂. This misspecified model

has forecast ρ̂ by construction of µ̂ and the change of variables formula.

(Only If: ) Fix a misspecified model (µ̂i)ωi∈Ω. Let h(z) be the updating rule defined

by Bayes Rule with respect to this misspecified model. Then if ρ̂(X) = µ̂(h−1(X)) is

a forecast, it is, by definition, the forecast represented by the misspecified model. By

construction, h(z) is a measurable function s.t. ρ̂(X) = 0 if and only if ρh(X) = 0. So
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ρ̂ is a forecast. Finally, for any i∫
∆(Ω)

xidρ̂(x) =

∫
Z
h(z)idµ̂(z) =

∫
Z

pi
dµ̂i
dν

(z)∑N
k=1 pk

dµ̂k
dν

(z)
dµ̂(z) = pi

∫
Z
dµ̂i(z) = pi,

so it is a plausible forecast. �

Before proving Theorem 1, we first prove the following lemma, which establishes when

a measure over the signal space can be part of a model representing a given updating

rule.

Lemma 3.

1. Updating rule h can be represented by a misspecified model with unconditional signal

distribution µ̂ ∈ ∆∗(Z) iff ∫
Z
h(z)i dµ̂(z) = pi (21)

for all i. If a representation exists, then for any state ωi with pi > 0, µ̂i(Z) =
1
pi

∫
Z
h(z)i dµ̂(z) for any measurable set of signal realizations Z ⊂ F .

2. Updating rule h can be represented by a misspecified model with conditional signal

distribution µ̂j ∈ ∆∗(Z) in state ωj iff∫
Z

h(z)i
h(z)j

dµ̂j(z) =
pi
pj

(22)

for all ωi ∈ Ω. If a representation exists, then for any state ωi with pi > 0,

µ̂i(Z) =
pj
pi

∫
Z
h(z)i
h(z)j

dµ̂j(z) for any measurable set of signal realizations Z ⊂ F .

The first part of this result is reminiscent of the well-known Bayes plausibility condi-

tion from the literature on communication games (Kamenica and Gentzkow 2011)—that

is, the posterior belief must be a martingale with respect to the prior. The second part

follows from the well-known condition that the likelihood ratio of the probability of

state ωi to state ωj is a martingale with respect to the distribution in state ωj—in this

case, applying this condition with respect to the subjective distribution µ̂j. In either

case, once one distribution is fixed, this distribution in conjunction with the updating

rule either pin down the entire set of conditional signal distributions or violate Bayes-

plausibility, and therefore, cannot be part of a misspecified model that represents the

updating rule.

Lemma 3 also simplifies the process of selecting a model to represent an updating

rule. In particular, since specifying either the unconditional signal measure or one of the
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state-contingent signal measures uniquely pins down the remainder of the misspecified

model, a condition that selects an essentially unique such measure will also uniquely

select a misspecified model.

Proof of Lemma 3. Fix an updating rule h.

Part 1: (⇒) Suppose h can be represented by a model with unconditional sig-

nal distribution µ̂. It follows from standard argument that beliefs must be a martin-

gale, which implies
∫
Z h(z)i dµ̂(z) = pi. (⇐) Now suppose that µ̂ is a measure with∫

Z h(z)i dµ̂(z) = pi. Define conditional distributions

µ̂i(Z) =
1

pi

∫
Z

h(z)i dµ̂(z)

for all Z ∈ F . These are probability distributions. It remains to show this model induces

the posterior prescribed by h following each signal realization z. Since µ̂i is absolutely

continuous with respect to µ, Bayes rule and the properties of the Radon-Nikodym

derivative imply that, under (µ̂i)ωi∈Ω,

Prµ̂(ωi|z) =
pi
dµ̂i
dν

(z)∑N
j=1 pj

dµ̂j
dν

(z)
=

pi
dµ̂i
dµ̂

(z)∑N
j=1 pj

dµ̂j
dµ̂

(z)
= h(z)i,

so these distributions induce the posterior prescribed by h. Finally, for the above equa-

tion to hold, any misspecified model that represents h must solve
1/h(z)1 −1/h(z)2 0 . . . 0

1/h(z)1 0 −1/h(z)3 . . . 0
...

. . .

1/h(z)1 0 . . . 0 −1/h(z)N

1 1 . . . 1 1




p1

dµ̂1
dµ̂

(z)

p2
dµ̂2
dµ̂

(z)
...

pN
dµ̂N
dµ̂

(z)

 =


0

0
...

0

1


µ̂-a.s. Therefore, the conditional distributions are unique as the left-hand matrix is an

N ×N full-rank matrix.

Part 2. (⇒) Suppose h can be represented by a misspecified model with conditional

signal distribution µ̂j. Then, by standard argument, for any ωi the likelihood ratios

h(z)i/h(z)j must be martingales with respect to µ̂j so∫
Z

h(z)i
h(z)j

dµ̂j(z) =
pi
pj
.
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(⇐) Now suppose that µ̂j is a measure that satisfies∫
Z

h(z)i
h(z)j

dµ̂j(z) =
pi
pj

for updating rule h and all i. Define the misspecified model

µ̂i(Z) =

∫
Z

pj
pi

h(z)i
h(z)j

dµ̂j(z).

This is a misspecified model that induces updating rule h(z). Finally any family of

misspecified models must solve
1/h(z)1 −1/h(z)2 0 . . . 0

1/h(z)1 0 −1/h(z)3 . . . 0
...

. . .

1/h(z)1 0 . . . 0 −1/h(z)N

1 1 . . . 1 1




p1

p2
dµ̂2
dµ̂1

(z)
...

pN
dµ̂N
dµ̂1

(z)

 =


0

0
...

0

1


µ̂i a.s. so this model is unique. �

Proof of Theorem 1. (If:) To establish sufficiency of the conditions, it is convenient

to establish the model defined in Corollary 1 represents h and ρ̂. By assumption ρ̂ is

absolutely continuous with respect to ρh, so dρ̂
dρh

exists. For any Borel set X, define

ρ̂i(X) ≡
∫
X

1

pi
xi
dρ̂

dρh
(x)dρh(x) =

∫
h−1(X)

1

pi
h(z)i

dρ̂

dρh
(h(z)) dµ(z)

where the second equality follows from change of variables. These are probability mea-

sures, and
∑
piρ̂i(X) = ρ̂(X). For any Z ∈ F , define

µ̂i(Z) ≡
∫
Z

1

pi
h(z)i

dρ̂

dρh
(h(z)) dµ(z).

We are integrating a measurable function over a measurable set, so the model {µ̂i}ωi∈Ω
is indeed a family of measures over (Z,F). This is a probability measure as

µ̂i(Z) =

∫
Z

1

pi
h(z)i

dρ̂

dρh
(h(z)) dµ(z) =

∫
∆(Ω)

1

pi
xi
dρ̂

dρh
(x) dρh(x) = 1.

It remains to show that this induces the desired forecast and updating rule. That is, we

must establish Corollary 1.

Proof of Corollary 1. {µ̂i}ωi∈Ω clearly induces the the specified updating rule h, as
dρ̂
dρh

is non-zero a.s. over the support of ρh. It remains to show that µ̂ ◦ h−1(X) = ρ̂(X)

40



for any Borel X. For any Borel set X, note that

ρ̂i(X) =

∫
X

1

pi
xi
dρ̂

dρh
(x) dρh(x) =

∫
h−1(X)

1

pi
h(z)i

dρ̂

dρh
(h(z)) dµ(z) = µ̂i(h

−1(X)).

Therefore, for any Borel X, µ̂(h−1(X)) =
∑
piρ̂i(X) = ρ̂(X). Therefore (µ̂i)ωi∈Ω is a

model that induces the desired forecast.

�

To establish necessity of the absolute continuity and plausibility conditions and the

uniqueness of the representation, we rely n Lemma 2 and Lemma 3.

(Only If:) The forecast must be plausible by Lemma 2. Suppose that there exists

a Borel X such that ρh(X) > 0 but ρ̂(X) = 0 and a misspecified model (µ̂i)ωi∈Ω

that induces the desired forecast and updating rule exists. Let Z = h−1(X). Then

by the mutual absolute continuity of the misspecified and correctly specified measures,

0 = µ̂(Z) = µ(Z) = ρh(X) > 0, which is a contradiction. Nearly identical logic implies

that ρh(X) = 0 but ρ̂(X) > 0 is a contradiction. Therefore, ρh and ρ̂ must be mutually

absolutely continuous.

Uniqueness of the representation for sets in Fh follows from Lemma 3. Fix a model

(µ̂i)i∈ωi that represents h and ρ̂. For any Z ∈ Fh, the unconditional measure µ̂(Z) must

satisfy µ̂(Z) = ρ̂ ◦ h−1(Z). Since the model (µ̂i)i∈ωi induces µ̂ and h when restricted to

the measurable space (Z,Fh implies that

µ̂i(Z) =

∫
Z

h(z)idµ̂(z) =

∫
Z

h(z)idρ̂(h−1(z)).

so these conditional measures are unique.

�

A.2 Proofs from Section 4

Proof of Proposition 1. Suppose h(z) is an updating rule such that the accurate

forecast is plausible. This implies that∫
Z
h(z)i dµ = pi for all ω ∈ Ω

then by Lemma 3 there exists a misspecified model (µ̂ω)ω∈Ω that induces unconditional

distribution µ over Z and is represented by updating rule h(z). By the proof of Lemma 3,

µ̂i(Z) =

∫
Z

1

pi
h(z)i dµ
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describes a family of misspecified models that induce the desired distribution and up-

dating rule. Moreover, as argued before any family of misspecified models must solve
1/h(z)1 −1/h(z)2 0 . . . 0

1/h(z)1 0 −1/h(z)3 . . . 0
...

. . .

1/h(z)1 0 . . . 0 −1/h(z)N

1 1 . . . 1 1




p1

dµ̂1
dµ

(z)

p2
dµ̂2
dµ

(z)
...

pN
dµ̂N
dµ

(z)

 =


0

0
...

0

1


so there is at most one Radon-Nikodym derivative that solves this equation, and thus

the misspecified models are unique.

Now suppose that (µ̂i)ωi∈Ω describes a family of introspection proof misspecified

models that are represented by updating rule h(z) and have unconditional distribution

µ. By the above logic, the Radon-Nikodym derivative dµ̂i

dµ
(z) = 1

pi
h(z)i. This implies

that

µ̂i(Z) =

∫
Z

1

pi
h(z)i dµ(z) = 1,

which in turn implies that
∫
Z h(z)i dµ̂(z) =

∫
Z h(zi) dµ = pi, so the accurate forecast is

plausible. Therefore the desired condition holds. �

Proof of Proposition 2. (If:) The existence of a misspecified model with naive-

consistent forecast follows immediately from Theorem 1, since ρ̂NCF = ρB and ρB is

plausible since it is the correctly specified forecast. For any Borel X such that Z =

h−1(X), note that µ̂i(Z) = 1
pi

∫
Z
h(z)idρ̂

NCF (h(z)) = µi(h
−1
B (X)) = µi(h

−1
B (h(Z))) by

construction of µ̂i, Eq. (9), and the naive-consistency of the forecast

(Only If:) Let ρB = µ(h−1(X)) be the accurate Bayesian forecast. Suppose there

exists a naive-consistent representation (µ̂i)ωi∈Ω and there exists a Borel set X s.t.

ρB(X) > 0 but ρ̂(X) = 0. Then µ̂(h−1(X)) = 0, which by absolute continuity implies

that µ(h−1(X)) = 0. But, this then implies that µ(h−1B (X)) = 0 which is a contradiction.

A similar argument applies to the case where ρB(X) = 0 but ρ̂(X) > 0. �

A.3 Proofs from Section 5

Proof of Proposition 3. Fix the manager’s expected self-image, γ ≡ E(h(zm)|M) =

(h(g,M) +h(b,M))/2. The larger γ, the more the test scores for group identity M need

to be inflated on average. In order to maintain the introspection-proof constraint, this

requires on average a lower interpretation of test scores for group identity F , (h(g, F ) +

h(b, F ))/2 = 1−qγ
2(1−q) . For a given γ, the first self chooses an updating rule to maximize

− E[(1ωw=H − h(zw))2],
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where the expectation is taken with respect to the true distribution over zw, subject

to the constraint that the self-image is indeed equal to γ, 1
2
(h(g,M) + h(b,M)) = γ

and that the updating rule is introspection-proof, 1
2
(h(g, F ) + h(b, F )) = 1−2qγ

2(1−q) . This is

solved by:

h∗(g,M ; γ) = α + γ − 1/2

h∗(b,M ; γ) = 1− α + γ − 1/2

h∗(g, F ; γ) = α +
q

1− q

(
1

2
− γ
)

h∗(b, F ; γ) = 1− α +
q

1− q

(
1

2
− γ
)
.

To choose the optimal γ, the first self maximizes

max
γ∈[0,1]

γ − cE[(1ω=H − h∗(zw; γ))2].

This is solved by γ∗ = 1
2

+ 1−q
2qc

. This leads to the IP-updating rule in Proposition 3. �

Proof of Proposition 4. Fix the manager’s expected self-image, γ ≡ E(h(zm)|M) =

(h(g,M)+h(b,M))/2. Similar to the derivation for Proposition 3, the optimal updating

rule in terms of γ is

h∗(g,M ; γ) = α + γ − 1/2

h∗(b,M ; γ) = 1− α + γ − 1/2

h∗(g, F ; γ) = α

h∗(b, F ; γ) = 1− α.

This leads to the optimal γ∗ = 1
2cq

+ 1
2
, which is higher than in the introspection-proof

case. �

Proof of Proposition 5. Consider how
∫ 1

hB(z)
(x − hB(z)) dρ̂(x) varies with ρ̂. We

can recast this as the utility a consumer with utility function u(x) = max{0, x− hB(z)}
receives from the lottery ρ̂. Since u(x) is a convex function, if ρ̂ is a mean preserving

spread of ρ̂′ then Eρ̂(u(x)) ≥ Eρ̂′(u(x)). Therefore, the right hand side of Eq. (17) is

higher under ρ̂ than ρ̂′, so as the degree of overprecision increases, the firm searches

following a larger set of signal realizations. �

Proof of Proposition 6. Let f(q) ≡
∫ 1

q
(x − q) dρB(x). This is clearly a decreasing

function. The firm searches the second technology following any z1 such that f(h(z1)) >

c. Define c̄ ≡ f(1/2). Suppose c < c. Then for any h, a firm that uses updating rule h
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searches for all z1 such that h(z1) < 1/2. If the firm is retrospectively underprecise, then

for every z1 such that the underprecise firm does not search following z1, i.e. f(h(z1)) ≤
c, we have h(z1) ≥ 1/2, and therefore, h(z1) < hB(z1). This implies f(hB(z1)) <

f(h(z1)) ≤ c, and therefore, the unbiased firm also does not search. Therefore, the

underprecise firm searches following signal realizations in a superset of ZS. If the firm

is retrospectively overprecise, then for every z1 such that the unbiased firm does not

search, f(hB(z1)) ≤ c, by analogous reasoning we have f(h(z1)) < f(hB(z1)) ≤ c and

the overprecise firm also does not search. Therefore, the overprecise firm searches for

signal realizations in a subset of ZS. The logic for c > c is analogous. �

A.4 Proofs from Section 6

Proof of Proposition 7. (If:) Fix an interior prior p ∈ ∆(Ω). By Lemma 1, there

exists a misspecified model (µ̂i)
n
i=1 that represents h(z, p) at p. Therefore, by Bayes rule,

for ν-almost all z
h(z, p)i
h(z, p)j

=
pi
dµ̂i
dν

(z)

pj
dµ̂j
dν

(z)
.

So the condition from observation 1 implies that

h(z, p′)i
h(z, p′)j

=
p′i
dµ̂i
dν

(z)

p′j
dµ̂j
dν

(z)

which is exactly the condition h(z, p′) must satisfy to be induced by (µ̂i)
n
i=1 at p′.

(Only If:) Suppose that h(z, p) admits a prior independent representation (µ̂i)
n
i=1.

By Lemma 1, for every p, h(z, p) ∈ S(h(·, p)). Moreover, by Bayes rule

h(z, p)i
h(z, p)j

=
pi
dµ̂i
dν

(z)

pj
dµ̂j
dν

(z)
,

so for any p,p′

pjh(z, p)i
pih(z, p)j

=
p′jh(z, p′)i

p′ih(z, p′)j
.

�

Proof of Proposition 8. Fix a prior p and let (µ̂i)
N
i=1 be the essentially unique rep-

resentation of h(z, p) and the naive consistent forecast ρB at prior p. It follows from

Proposition 7 that this induces h(z, p) at every prior, as for any p′ the likelihood ratio

of the updating rule must be the likelihood ratio induced by Bayes rule with respect to

the representation;
p′j
p′i

h(z, p′)i
h(z, p′)j

=
pj
pi

h(z, p)i
h(z, p)j

=
dµ̂i
dν

(z)
dµ̂j
dν

(z)
.
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By construction, this representation induces the naive consistent forecast ρNCF at p′, as

for any Borel set X,

ρNCF (X; p′) =
N∑
i=1

p′iµi({z : hB(z) ∈ X}) =
N∑
i=1

p′iµ̂
i(h−1(X)).

�

Proof of Theorem 2 This follows immediately from Theorem 1. If ρ̂ and ρ are

mutually absolutely continuous then the forecast ρ̂ is plausible with respect to the prior

p̂. So, under prior p̂ the conditions of Theorem 1 are satisfied and a misspecified model

exists and is essentially unique. Moreover, under any other prior the forecast is not

plausible. Therefore the misspecified prior and model that jointly represents ρ̂ and h(z)

is unique.

If ρ̂ and ρ are not mutually absolutely continuous, then by Theorem 1 the forecast

and updating rule cannot be jointly represented. Therefore, the absolute continuity

condition is necessary and sufficient for the existence of a unique misspecified prior and

an essentially unique misspecified model that jointly represent h(z) and ρ̂

�

B Extensions

B.1 Almost Introspection-Proof.

Given a misspecified model, it is natural to ask (i) how far away is the forecast it induces

from the true distribution over misspecified posteriors, (ii) how far away is the forecast

it induces from the “optimal” forecast for the given updating rule. A natural way to

formalize these questions is in terms of divergences.

Definition 11. Fix a misspecified model (µ̂i)ωi∈Ω. Let ρ̂ and h be the updating rule and

forecast induced by this misspecified model. ρ̂ is the KL-optimal forecast for updating

rule h if it minimizes minρ̂∗ D(ρ̂∗||µ ◦ h−1) across all forecasts that can represented by a

misspecified model that induces h(z).

The KL-optimal forecast provides a natural benchmark for in some sense quantifying

the additional prospective distortions induced by a misspecified model.

Before characterizing the KL optimal forecast ρ̂∗, it is convenient to think about the

following natural exercise. Even if no introspection-proof representation exists, perhaps

a natural model to represent an updating rule would be the one that in some sense

did the best against any sort of test for misspecification the agent could construct. To

formalize this, let Tn : Zn → ∆{0, 1} be a test, a mapping from a realized sequence of

signals to a 0 or 1. We say a sequence passes the test if the realization of this random
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variable is 1, and it fails otherwise. Let Tn the set of all tests for samples of size n.

Given a test Tn, we can ask how effective is at detecting misspecification. That is,

Tn is a hypothesis test for the binary hypothesis

H0 : µ̂

H1 : µ.

Let

βnα = sup
Tn∈Tn

− lnPrµ(Tn = 1)

n

s.t. Prµ̂(Tn = 1) ≥ 1− α

so e−nβ is the probability of failing the detect misspecification when the true data gen-

erating process is (µi)i∈Ω.

Using this, we can define another class of misspecified models:

Definition 12. Given an updating rule h, a misspecified model (µ̂i)ωi∈Ω ∈ ∆∗(Z)N

that represents h is α-introspection proof if across all possible representations of h it

minimizes lim infn→∞ β
n
α.

That is, given any hypothesis test that rejects the misspecified model with probability

less than α if it was true, the α-introspection-proof model minimizes the worst-case

probability of rejection under the true distribution as n grows large. The α-introspection

proof misspecified model is in some sense the representation of h that makes it hardest

to detect misspecification. By the Chernoff-Stein lemma, for any α ∈ (0, 1) and µ̂,

limn→∞ β
n
α = D(µ̂||µ), where D is KL-divergence, so we can reformulate this problem as

minD(µ̂||µ)

s.t.

∫
hi(z)

dµ̂

dν
(z)dν(z) = pi for all i.

So the α-introspection proof misspecified model is the model induced by the KL-optimal

forecast.

Using tools from information theory, we can then characterize the α-introspection-

proof misspecified model.

Proposition 9. Let ψh : RN
+ → R be the joint moment generating function of posteriors

ψh(λ) = Eµ(eλ·h(z)). Given an updating rule h, the α-introspection-proof misspecified

model is given by:

dµ̂i
dν

(z) =
1

pi
hi(z) exp(λ · h(z)− logψh(λ))

dµ

dν
(z)
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where λ ∈ Rn
+ solves

∫
(pi − h(z)i)e

λ·h(z)dµ(z) = 0 for each i.25 This model has KL-

divergence p · λ− logψh(λ) from the truth.

Proof. Our goal is to solve the program

min
µ̂∈∆∗(Z)

D(µ̂||µ)

s.t.

∫
hi(z)dµ̂(z) = pi for all i

If this min exists, we can apply our tools to construct a misspecified model that in-

duces unconditional distribution µ̂, and by the Chernoff-Stein Lemma this is the α

introspection-proof misspecified model. Let dµ̂∗/dν(z) = exp(λ·h(z)−logψh(λ)) dµ/dν(z).

Under this measure Eµ̂∗(h(z)i) satisfies

1

ψh(λ)

∫
Z
h(z)i exp(λ · h(z))dµ(z) =

1

ψh(λ)

∫
Z
pi exp(λ · h(z)) dz = pi,

where the first equality follows from the definition of λ. In addition, µ̂∗ is non-negative

and integrates to 1 by the definition of the ψh, so µ̂∗ satisfies the constraints. The

misspecified model described in the statement of the theorem is then simply the model

induced jointly by µ̂∗ and h (Lemma 3). To see it is a minimizer, note that for any

feasible µ̂.

D(µ̂||µ) = Eµ̂(log
dµ̂

dµ̂∗
(z)

dµ̂∗

dµ
(z))

= Eµ̂(log
dµ̂

dµ̂∗
(z)) + Eµ̂(log

dµ̂∗

dµ
(z))

= D(µ̂||µ̂∗) + Eµ̂(λ · h(z)− logψh(λ))

= D(µ̂||µ̂∗) + λ · p− logψh(λ)

≥ λ · p− logψh(λ) = D(µ̂∗||µ)

so µ̂∗ is a minimizer. �

The updating rule h pins down the exponential family that the α-introspection-proof

misspecified model belongs to while the true distribution determines the exact represen-

tative of this family. Applying the change of variables formula, this also characterizes

the KL-optimal forecast, which satisfies for any x ∈ ∆(Ω)

dρ̂∗

dρh
(x) = exp(λ · x− logEρh(exp(λ · x))),

25Since h is a bounded random variable ψh exists. λ solves maxλ p · λ − logψh(λ), which has a
solution iff the convex hull condition is satisfied.
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where λ is the λ from the proposition.

B.2 State Dependent Introspection-Proof

We motivated our notion of introspection-proofness as robustness of the misspecified

model to infinite independent draws of the state and the signal. A natural, related

notion, would be to instead fix the true state of the world ωi and then require the

misspecified model to be robust to observing infinite conditionally independent draws of

z.

Definition 13. A family of misspecified models (µ̂i)ωi∈Ω representing updating rule h(z)

is an ωi introspection-proof model relative to ωj if for all Z ∈ F , µ̂j(Z) = µi(Z).

This restriction requires there to exist some state ωj where the observed frequencies

of different signals matches the truth. As with introspection-proofness, this condition is

enough to pin down a unique misspecified model that represents a given updating rule.

Proposition 10. Fix an updating rule h. This can be represented by an ωi-introspection-

proof misspecified model relative to ωj, (µ̂k)ωi∈Ω if and only if for all k ∈ {1, 2, . . . N}∫
Z

h(z)k
h(z)j

dµi(z) =
pk
pj
.

Moreover, if this representation exists, for any k and any Z ∈ F ,

µ̂k(Z) =

∫
Z

pj
pk

h(z)k
h(z)j

dµi(z).

Proof. Note that this satisfies the introspection proof condition as

µ̂j(Z) =

∫
Z

pj
pj

h(z)j
h(z)j

dµi(z) = µi(Z).

It follows immediately from Lemma 3 that (µ̂)ωi∈Ω represents h and induces distribution

µ̂j. �

This condition is once again a variation of the martingale property of beliefs, in this

case, the requirement that the likelihood ratio is a martingale with respect to the true

data generating process. While it seems very similar to the original introspection-proof

condition, this condition is in fact, much less restrictive.

C Comparison to Blackwell’s Order

A common way of modeling biases, especially in the motivated reasoning literature, is to

take a correctly specified model and have the agent imperfectly recall signals by adding

noise to the signal distribution. This makes the agent perceive information as being
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drawn from a Blackwell less informative distribution. At first glace, it seems like this

may be connected with our notion of introspection-proofness, but in this appendix we

demonstrate these are distinct concepts.

Roughly, an information structure is Blackwell more informative than another in-

formation structure if and only if it is a mean preserving spread of the distribution of

posteriors, which is equivalent to the existence of a garbling matrix. A garbled distribu-

tion in general induces different probabilities of each signal realization, as it combines

signals to make them less precise. In contrast, it is difficult to combine signals in a way

that is introspection-proof, as the agent still observes a draw from the original signal

space. In this section, we formally show that these concepts are distinct by providing

examples in which a misspecified model is Blackwell ranked with respect to the true

model but not introspection-proof, and introspection-proof but not Blackwell ranked

with respect to the true model.

Consider a finite signal space Z = {z1, z2, . . . zK} and let Q be a N ×K matrix with

(Q)ij = µi({zj}). Define Q̂ analogously. In this framework, Q and Q̂ capture models.

Model Q̂ is Blackwell less informative than Q iff there exists an K×K stochastic matrix

M s.t. QM = Q̂. The definition of introspection-proof corresponds to pQ = pQ̂, where

p is the (row) vector of priors as defined in Section 2. Proposition 1 establishes that

introspection-proof is equivalent to the the requirement that HQ′p′ = ĤQ′p′, where H

is the matrix with Hij = hB(zj)i and Ĥ is the matrix with Ĥij = h(zj)i.

To see that a misspecified model can be Blackwell ranked with respect to the true

model but not be introspection-proof, consider the models

Q =

(
3
4

1
4

1
4

3
4

)
, Q̂ =

(
2
3

1
3

1
4

3
4

)
.

Then Q̂ is a garbling of Q (use M = (7/8, 1/8; 1/24, 23/24)) and therefore, Blackwell

less informative. But Q̂ is not introspection-proof with respect to Q for any interior

prior, as unlike garbling information, the unconditional probabilities of each signal must

be the same under Q and Q̂, e.g. for z1,

p1
2

3
+ (1− p1)

1

4
= p1

3

4
+ (1− p1)

1

4
,

which only holds at p1 = 0.

However, the introspection-proof condition does not preclude a model from being

Blackwell ranked with respect to the true model. To see that a model can be Blackwell
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ranked and introspection-proof, consider prior p1 = 1/2 and model

Q̂ =

(
3
4
− τ 1

4
+ τ

1
4

+ τ 3
4
− τ

)
.

for τ ∈ [0, 1/4]. Then model Q̂ is introspection-proof with respect to Q and is also

Blackwell less informative than Q.

To see that models that are not Blackwell ranked with respect to the true model can

also be introspection-proof, consider

Q =

(
2
8

3
8

2
8

1
8

1
8

2
8

3
8

2
8

)
, Q̂ =

(
5
16

5
16

5
16

1
16

1
16

5
16

5
16

5
16

)
.

Then Q and Q̂ are not Blackwell ranked but Q̂ is introspection-proof with respect to Q.

D Additional Examples

D.1 Examples of Updating Rules with Prior-Independent and Prior-Dependent

Representations

In this section we show that the parameterization of overreaction in Example 5 and

the parameterization of partisan bias in Bohren and Hauser (2021) satisfy the condition

in Proposition 7, and therefore, have a prior-independent representation. We also show

that the parameterization of over/underreaction in Epstein et al. (2008) (see Example 3)

and the parameterization of partisan bias in Example 4 do not satisfy the condition in

Proposition 7, and therefore, do not have a prior-independent representation.

In Example 5,
h(z, p)i
h(z, p)j

=
pi
pj

(
dµi
dµj

(z)

)γ
.

It is straightforward to see that it is possible to factor the prior out of this updating

rule.

Consider the parameterization of partisan bias from Bohren and Hauser (2021).

There are two states, |Ω| = 2. Normalize the signal to be the posterior probability

of ω1 following a flat prior, z = dµ1
dν

(z)/(dµ2
dν

(z) + dµ1
dν

(z)), with support Z ⊂ [0, 1]. Con-

sider updating rule h(z, p)1/h(z, p)2 = p1z
α/(1 − p1)(1 − zα), where α ∈ (0,∞) is the

partisan bias parameter. Again it is straightforward to see that it is possible to factor

the prior out of this updating rule.

In contrast, the model of over/underreaction in Example 3 does not satisfy the con-
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dition in Proposition 7, as

pj
pi

h(z, p)i
h(z, p)j

=
dµi
dν

(z) +
∑N

k=1 pk
dµk
dν

(z)
dµj
dν

(z) +
∑N

k=1 pk
dµk
dν

(z)

clearly depends on the prior. Similarly, in the model of partisan bias in Example 4,

p2
p1

h(z, p)1
h(z, p)2

=
p2
p1

(
hB(z, p)21

1− hB(z, p)21

)

where hB(z, p)1 ≡
p1
dµ1
dν

(z)

p1
dµ1
dν

(z)+p2
dµ2
dν

(z)
. This expression also clearly depends on the prior.

D.2 Linear Under- and Overreaction

Fix a correctly specified model (µi)ωi∈Ω, and consider the updating rule for under- and

overreaction defined by Epstein et al. (2008):

h(z) = αhB(z) + (1− α)p

for some α ∈ (−∞, 1]. We can use Lemma 3 to find misspecified models that represent

this updating rule. For instance, consider a misspecified model with an unconditional

measure that is equal to the true unconditional measure, µ̂ = µ. Then µ̂ satisfies

Eq. (21) as
∫
Z hB(z)i dµ̂(z) =

∫
Z hB(z)i dµ(z) = pi by standard argument, and therefore,∫

Z(αhB(z)i + (1 − α)p) dµ̂(z) = pi. Given this unconditional distribution, the state-

contingent distribution in state ωi is given by:

dµ̂i
dν

(z) =

[
α

pi
hB(z)i + (1− α)

]
dµ

dν
(z).

In other words, it is completely pinned down by the true unconditional measure µ̂, the

Bayesian updating updating rule hB, and the under- or overreaction parameter α.

This representation is not unique. Suppose for instance that |Ω| = 2, Z = [0, 1], p =

1/2, µ is the uniform distribution over Z and |hB(z)1 − 1
2
| is symmetric about z = 1/2.

Then the distribution with pdf f(z) = 3/2−6(z−1/2)2 also satisfies
∫
Z hB(z)if(z)dz =

1/2, and therefore,
∫

(αhB(z)i + (1 − α)/2) f(z)dz = 1/2. While in the first case, the

agent correctly anticipates the frequencies of different signals but underreacts to them, in

this case, the agent underestimates the frequency of “extreme” signal realizations which,

given that hB(z) is monotone, means that in addition to underreacting to the signal, the

agent also anticipates that she’ll observe signal realizations which, on average, are less

informative than the signal realizations she actually observes.
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