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Abstract

We exploit heterogeneity in decreasing returns to scale parameters across mutual

funds to analyze the importance of scalability for investors’ capital allocation deci-

sions. We find strong evidence that steeper decreasing returns to scale attenuate flow

sensitivity to performance. We calibrate a rational model of active fund management

and show that a large fraction of cross-sectional variation in assets-under-management

is due to investors anticipating the effects of scale on return performance. We con-

clude that decreasing returns to scale play a key role in achieving equilibrium in the

intermediated investment management market.
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1 Introduction

An important determinant of the Net Present Value (NPV) of an investment project is its

scalability. Even if the marginal profitability on a project is large at small scale, when the

profitability deteriorates quickly with size, agents will choose not to commit much capital

to such projects, and, in the presence of fixed costs, may choose to forgo them altogether.

Despite the importance of scalability, surprisingly little empirical work has quantitatively

evaluated how important its cross-sectional variation is for capital allocation. In this paper,

we fill this void by focusing on the mutual fund market, where measuring the scalability

of investment strategies has become commonplace. In particular, the literature has argued

that decreasing returns to scale (DRS) play a key role in equilibrating the mutual fund

market.1 Consistent with this argument, we show that scalability is an important driver

of investors’ capital allocation decisions by exploiting heterogeneity across funds in DRS

parameters: steeper decreasing returns to scale attenuate flow sensitivity to performance.

Further, we calibrate a rational model of active fund management and show that 57% of

the cross-sectional variation in fund size can plausibly be attributed to heterogeneity in

decreasing returns to scale.

Our approach closely follows the insights from Berk and Green (2004) who pioneered a

rational equilibrium model of active mutual fund management. Because the percentage fee

that mutual funds charge changes infrequently, the bulk of the equilibration process operates

through the size (or Assets Under Management (AUM)) of the fund. When good news about

a mutual fund arrives, rational Bayesian updating will lead investors to view the fund as

a positive NPV buying opportunity at its current size. In response, flows will go to that

fund. As the fund grows, the manager of the fund finds it increasingly harder to put the new

inflows to good use, leading to a deterioration of the performance of the fund. The flows

into the fund will stop when the fund is no longer a positive NPV investment, and the fund’s

1See Berk and Green (2004), Berk and van Binsbergen (2015), Pástor, Stambaugh, and Taylor (2020),
and Barras, Gagliardini, and Scaillet (2022).
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abnormal return to investors has reverted back to zero.

We investigate this equilibrating mechanism more closely as follows. If indeed the above-

mentioned equilibration process is at work, we should expect to find that the degree of

decreasing returns to scale (DRS) has implications for the flow sensitivity to performance

(FSP). While there is much evidence that an active fund’s ability to outperform its bench-

mark declines as its size increases,2 there is surprisingly little empirical work devoted to

whether investors account for the adverse effects of fund scale in making their capital allo-

cation decisions.

We address this important question by formally deriving and empirically testing what a

rational model for active management implies about the relation between returns to scale

and flow sensitivity to performance. In the context of the theory model of Berk and Green

(2004), we show that steeper decreasing returns to scale attenuate flow sensitivity to per-

formance. In the model, investors rationally interpret high performance as evidence of the

manager’s superior skill, so good performance results in an inflow of funds. More relevant

to our hypothesis, the magnitude of the capital response is primarily driven by the extent

of decreasing returns to scale. As a fund’s returns decrease in scale more steeply, the posi-

tive net alpha is competed away with a smaller amount of capital inflows, making flows less

sensitive to performance.

To test this theoretical insight, one needs a source of heterogeneity in decreasing returns

to scale. One also needs to observe investor reactions to this heterogeneity. Indeed, we

demonstrate that there is a substantial amount of heterogeneity in DRS across individual

funds,3 with correspondingly heterogeneous flow sensitivity to performance across funds.

Our approach can be interpreted as inferring how the subjective size-performance relation,

perceived by investors in real time, is incorporated into the flow-performance relation going

forward. We find that a steeper decreasing returns to scale parameter predicts a lower

2See, for example, Chen et al. (2004), Yan (2008), Pollet and Wilson (2008), and Zhu (2018).
3Barras, Gagliardini, and Scaillet (2021) also provide empirical evidence that not only skill but also

scalability vary substantially across funds.
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sensitivity of flows to performance, consistent with the main prediction of our model.

One of the challenges in estimating the effect of decreasing returns to scale on flow

sensitivity to performance is the estimation error in fund-specific DRS. As a result, the

point estimates of the DRS-FSP relation using DRS estimates from simple fund-by-fund

regressions are likely to suffer from an errors-in-variables bias. To gauge the severity of this

attenuation bias, we first adjust these simple estimates of the DRS-FSP relation for the

errors-in-variable bias, assuming that the errors are of the classical type (i.e., independent

to the actual DRS). As expected, the simple DRS-FSP relation estimates are indeed biased

toward zero.

To address this issue, we estimate the DRS-FSP relation by instrumenting for the het-

erogeneity in decreasing returns to scale with a set of fund characteristics that are plausibly

related to the scalability of the funds’ investment strategies.4 In particular, by regress-

ing the fund-specific DRS estimates on these characteristics, we obtain fitted values that

we use as a more robust way of obtaining cross-sectional variation. Importantly, we show

that while the statistical significance of the DRS-FSP relation is unaffected by using the

characteristic-based approach, the characteristic-based estimates of the DRS-FSP relation

become substantially more negative, and their magnitudes are similar to those implied by the

classical measurement error assumption, suggesting that the characteristic-based approach

indeed has alleviated the errors-in-variables problem.

Next, we turn to the economic significance of our estimates. In particular, we assess how

equilibrium fund size is affected by the cross-sectional variation in decreasing returns to scale

parameters. This exercise does require model assumptions. We calibrate a rational model in

the spirit of Berk and Green (2004). After simulating data in which investors know the DRS

can vary by fund, we check howmuch of the simulated size can be explained by counterfactual

4We investigate a number of characteristics that seem relevant a priori (also from the previous literature)
for heterogeneity in returns to scale: the number of managers, volatility, expense ratios, marketing expenses,
international exposure, turnover, log fund size, as well as the loadings on the size, value, and momentum
factors. For example, we find the degree of DRS is stronger for higher-volatility funds, sole-managed funds,
small-cap funds, as well as funds charging higher fees.
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fund sizes computed under the assumption that the investors believe the DRS is the same

for all funds. We find that, on average, more than half (57%) of the variance of fund sizes

across funds and periods can be related to cross-sectional variation in DRS parameters. More

importantly, although we do not target the DRS-FSP relation in our calibration, our model

produces DRS-FSP relation estimates that are quantitatively very similar to those obtained

from the data. Thus, it appears that the magnitude of the empirical DRS-FSP relation

estimates is consistent with what the model predicts. This result suggests that the model

does a good job of capturing capital allocation patterns in the data.

Beyond implications for fund flows, steeper decreasing returns to scale have implications

for fund size in equilibrium. In the model, equilibrium fund size is proportional to the ratio

of perceived skill over diseconomies of scale, which predicts that, all else equal (holding the

alpha earned on the first dollar fixed), the decreasing returns to scale parameter should be

lower for larger funds. This prediction is confirmed in our empirical analysis. Moreover, if

investors update their beliefs about skill as in the model, their perception of optimal size

ought to converge to true optimal size as funds grow older. Consistent with this argument,

we find that estimates for the optimal size largely explain capital allocation across older

funds in the data. We measure (log) optimal size of a fund by the average ratio of the fund’s

net alpha (adjusted for returns to scale) to the fund’s individual DRS parameter. We show

that the sizes of older funds continue to be significantly related to the optimal sizes even

when we control for an alternative measure of optimal size that assumes fund scale has the

same effect on performance for all funds. Again, investors seem to account not only for

average decreasing returns to scale, but also for the heterogeneity of decreasing returns to

scale across funds.

Taken together, our results demonstrate that investors do account for the adverse effects

of fund scale in making their capital allocation decisions, and that the rational expectations

equilibrium does a reasonable job of approximating the observed equilibrium in the mutual

fund market. In contrast, the previous literature has often deemed mutual fund investors
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as naive return chasers because fund flows respond to past performance even though per-

formance is not persistent.5 Furthermore, many papers in the mutual fund literature have

documented that mutual fund returns show little evidence of outperformance.6 While these

findings led many researchers to question the rationality of mutual fund investors, Berk

and Green (2004) argue that they are consistent with a model of how competition between

rational investors determines the net alpha in equilibrium. We contribute to this debate

by presenting findings that are hard to reconcile with anything other than the existence of

rational fund flows.

Most closely related to our paper is Barras, Gagliardini, and Scaillet (2022), who also

find that not only skill, but also scalability (i.e., the degree of fund-level decreasing returns

to scale) vary substantially across funds. They find that the majority of funds do add value,

consistent with theoretical models in which investors rationally allocate capital across funds

taking into account fund-level diseconomies of scale. In contrast, we propose scalability as the

primary determinant of the flow-performance relation based on such models,7 a hypothesis

that we test by exploiting the fact that scalability varies substantially across funds. Further-

more, contrary to their analysis, we quantify the importance of cross-sectional variation in

decreasing returns to scale for capital allocation decisions.

2 Definitions and Hypotheses

To formally derive our hypothesis, we use the notation and setup presented in Berk and van

Binsbergen (2016). Let Rn
it denote the return in excess of the risk free rate earned by investors

in fund i at time t and let RB
it denote the excess return of the manager’s benchmark over the

5See Chevalier and Ellison (1997) and Sirri and Tufano (1998), among others.
6See Malkiel (1995), Gruber (1996), Carhart (1997), Fama and French (2010), and Del Guercio and

Reuter (2013), among others.
7Studies that discuss other determinants of the flow-performance relation include Huang, Wei, and Yan

(2007), Chen, Goldstein, and Jiang (2010), Ferreira et al. (2012), Huang, Wei, and Yan (2012), and Franzoni
and Schmalz (2017).
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same time interval. At time t, the investor observes the manager’s net return outperformance,

αit+1 ≡ Rn
it −RB

it . (1)

We assume throughout that αit, or the manager’s return outperformance, can be expressed

as follows:

αit = ai − hi (qit−1) + εit, (2)

where qit−1 denotes assets under management (AUM) of fund i at time t − 1, ai denotes

a parameter that is the difference between fund i’s gross alpha on the first dollar and the

percentage fee that its manager charges, and εit is the noise in observed performance. Here

hi (q) is a strictly increasing function of q that captures the decreasing returns to scale the

manager faces, which can vary by fund.

At time t, investors use the time t information set It to update their beliefs on ai resulting

in the probability density gt (ai) implying that the expectation of ai at time t is:

θit ≡ E [ai |It ] =
∫
aigt (ai) dai. (3)

To avoid triviality, we assume that gt (·) is not a degenerate probability density. Note that

qit, Rn
it and R

B
it are elements of It. Let αit (q) denote investors’subjective expectation of

αit+1 when investing in fund i that has size q between time t and t+ 1, that is, fund i’s net

alpha:

αit (q) = θit − hi (q) . (4)

In equilibrium, the size of the fund qit adjusts to ensure that there are no positive net present

value investment opportunities so αit (qit) = 0 and

θit = hi (qit) . (5)
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Now note that the manager’s return outperformance, αit, is a signal that is informative

about ai. The conditional probability density of αit at time t − 1, ft−1 (αit), satisfies the

following condition in equilibrium:

E [αit |It−1 ] =
∫
αitft−1 (αit) dαit = αit−1 (qit−1) = 0. (6)

In other words, the manager’s return outperformance can be expressed as follows:

αit = sit − hi (qit−1) ,

where sit = ai+εit. Our hypothesis relies on the insight that good news (i.e., high sit) implies

good news about ai and bad news (low sit) implies bad news about ai. The following lemma

shows that this condition holds generally. That is, θit is a strictly increasing function of sit.

Lemma 1 If the likelihood ratio ft−1 (sit |ai ) /ft−1 (sit |aci ) is monotone in sit (increasing if

ai > aci and decreasing otherwise),
∂θit
∂sit

> 0. (7)

Proof. See Milgrom (1981).

In addition, we assume that the costs that manager i faces in expanding the fund’s scale

is given by:

hi (q) = bih (q) , (8)

where bi > 0 is a parameter that captures the cross-sectional variation in the fund’s returns to

scale technology and h (q) is a strictly increasing function of q, which essentially determines

the form of decreasing returns to scale technology that is common across all funds. Using

(8) to rewrite (5) now gives

qit = h−1
(
θit
bi

)
. (9)

The following lemma shows how the size of the fund qit depends on the information in sit or
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the parameter bi.

Lemma 2
∂qit
∂sit

=
1

bih′ (qit)

∂θit
∂sit

(10)

and
∂qit
∂bi

= − h (qit)

bih′ (qit)
. (11)

Proof. See Appendix A.

Next, let the flow of capital into mutual fund i at time t be denoted by Fit, that is,

Fit+1 ≡ log (qit+1/qit) .

Differentiating this expression with respect to sit+1,

∂Fit+1
∂sit+1

=
1

qit+1

∂qit+1
∂sit+1

=
1

qit+1

1

bih′ (qit+1)

∂θit+1
∂sit+1

> 0, (12)

where the second equality follows from (10) and the inequality follows from Lemma 1, so

good (bad) performance results in an inflow (outflow) of funds. This result is one of the

important insights from Berk and Green (2004).

Given the importance of returns to scale technology in determining the size of a fund, a

natural question to ask is, what is the implication of steeper decreasing returns to scale for

the flow-performance relation? We answer this question by computing the derivative of the

flow-performance sensitivity with respect to bi: steeper decreasing returns to scale must lead

to a smaller flow of funds response to performance if and only if

∂

∂bi

(
∂Fit+1
∂sit+1

)
< 0. (13)
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We show in Appendix A that condition (13) is equivalent to

∂

∂qit+1

(
∂ log (h (qit+1))

∂ log (qit+1)

)
< 0, (14)

which means that the size elasticity of performance is decreasing in the size of a fund. This

assumption is satisfied for many functional forms, including the commonly used specification

in empirical studies that assume the function h is logarithmic (h (q) = log (q)). In practice,

such “concavity”of the fund’s decreasing returns to scale technology can arise endogenously

from funds changing their investment behavior as they grow: indeed, prior studies find that

larger funds trade less and hold more-liquid stocks to mitigate the performance erosion due

to diseconomies of scale.8 This leads to the following proposition, i.e., steeper decreasing

returns to scale lead to a weaker flow response to performance. We take this as our main

hypothesis that we will take to the data.

Proposition 3 Under condition (14), the derivative of the flow-performance sensitivity with

respect to the decreasing returns to scale parameter is negative, that is,

∂

∂bi

(
∂Fit+1
∂sit+1

)
< 0.

Proof. See Appendix A.

3 Data

Our data come from CRSP and Morningstar. We require that funds appear in both the

CRSP and Morningstar databases, which allows us to validate data accuracy across the two.

We merge CRSP and Morningstar based on funds’tickers, CUSIPs, and names. We then

compare assets and returns across the two sources in an effort to check the accuracy of each

8See, for example, Pollet and Wilson (2008), Pástor, Stambaugh, and Taylor (2020), and Busse et al.
(2021).
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match following Berk and van Binsbergen (2015) and Pástor, Stambaugh, and Taylor (2015).

We refer the readers to the data appendices of those papers for the details. Our mutual fund

data set contains 3,066 actively managed domestic equity-only mutual funds in the United

States between 1991 and 2014.9

We use Morningstar Category to categorize funds into nine groups corresponding to

Morningstar’s 3×3 stylebox (large value, mid-cap growth, etc.). We also use keywords in the

Primary Prospectus Benchmark variable in Morningstar to exclude bond funds, international

funds, target funds, real estate funds, sector funds, and other non-equity funds. We drop

funds identified by CRSP or Morningstar as index funds, in addition to funds whose name

contains “index.”We also drop any fund observations before the fund’s (inflation-adjusted)

AUM reaches $5 million.

We now define the key variables used in our empirical analysis: fund performance, fund

size, and fund flows. Summary statistics are in Table 1.

3.1 Fund Performance

We take two approaches to measuring fund performance. First, we use the standard risk-

based approach. The recent literature finds that investors use the CAPM in making their

capital allocation decisions (Berk and van Binsbergen (2016)), and hence we adopt the

CAPM. In this case the risk adjustment RCAPMit is given by:

RCAPMit = βitMKTt,

where MKTt is the realized excess return on the market portfolio and βit is the market beta

of fund i. We estimate βit by regressing the fund’s excess return to investors onto the market

portfolio over the sixty months prior to month t. Because we need historical data of suffi cient

length to produce reliable beta estimates, we require a fund to have at least two years of

9We start the sample in 1991, the first year in which CRSP provides monthly data on funds’size.
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track record to estimate the fund’s betas from the rolling window regressions.

Second, we follow Berk and van Binsbergen (2015) by taking the set of passively managed

index funds offered by Vanguard as the alternative investment opportunity set.10 We then

define the Vanguard benchmark as the closest portfolio in that set to the mutual fund. Let

Rj
t denote the excess return earned by investors in the j’th Vanguard index fund at time t.

Then the Vanguard benchmark return for fund i is given by:

RVanguardit =

n(t)∑
j=1

βjiR
j
t ,

where n (t) is the total number of index funds offered by Vanguard at time t and βji is obtained

from the appropriate linear projection of active mutual fund i onto the set of Vanguard index

funds. As pointed out by Berk and van Binsbergen (2015), by using Vanguard funds as the

benchmark, we ensure that this alternative investment opportunity set was marketed and

tradable at the time. Again, we require a minimum of 24 months of data to estimate βji ’s

necessary for defining the Vanguard benchmark for fund i.

Our measures of fund performance are then α̂CAPMit and α̂Vanguardit , the realized return for

the fund in month t less R̂CAPMit and R̂Vanguardit . The average of α̂CAPMit is +1.0 bp per month,

whereas the average α̂Vanguardit is −1.7 bp per month.

3.2 Fund Size and Flows

We adjust all AUM numbers by inflation by expressing all numbers in January 1, 2000 dollars.

Adjusting AUM by inflation reflects the notion that the fund’s real (rather than nominal)

size is relevant for capturing decreasing returns to scale in active management. That is,

lagged real AUM corresponds to qit−1 in the model from Section 2. There is considerable

dispersion in real AUM: the inner-quartile range is from $44 million to $621 million, while

the 99th percentile is orders of magnitude larger at $16 billion.

10See Table 1 of that paper for the list of Vanguard Index Funds used to calculate the Vanguard benchmark.

11



Fund flows are measured in two different ways. First, as in the model, we define fund

flow F as the logarithmic change in real AUM, that is, the percentage change in fund size.

Alternatively, we calculate flows for fund i in month t as:

Fit =
AUMit − AUMit−1 (1 +Rit)

AUMit−1 (1 +Rit)
,

where AUMit is the nominal AUM of fund i at the end of month t, and Rit is the total

return of fund i in month t.11 Under this more traditional definition of F , flows represent

the percentage change in new assets. The flow of fund data contain some implausible outliers,

so we winsorize each of the two flow variables at its 1st and 99th percentiles. Mean percentage

changes (per month) in fund size and in new assets are 0.8% and 0.5%, respectively.

4 Method

Our analysis relies on a theoretical link between decreasing returns to scale and flow sensi-

tivity to returns. We discuss how we estimate each part in the following sections.

4.1 Fund-Specific Decreasing Returns to Scale (DRS)

Empirically, we assume that the net alpha that manager i generates by actively managing

money is given by:

αit = ai − bi log (qit−1) + εit, (15)

where ai is the fund fixed effect, bi captures the size effect, which can vary by fund, and qit−1

is the dollar size of the fund.12

11Note that we use AUMit−1 (1 +Rit) in the denominator rather than AUMit−1, which is typically used
in much of the existing literature on fund flows. Unfortunately, this definition distorts the flow for very large
negative returns, as shown by Berk and Green (2004): for example, liquidition of a fund, i.e., AUMit = 0,
implies a flow of − (1 +Rit). Our measure of the flow of funds is equal to, and correctly so, −1 in this case.
Regardless, our findings are unaffected by using the more common definition of the flow.
12To the extent that fee changes are significant, it is possible that our results going forward might be

sensitive to whether we use the net alpha or the gross alpha in equation (14). We report the former set of
results but find that the latter results lead to the same conclusions. In fact, our results are stronger in the
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The simple regression model in equation (15) corresponds to the model in Section 2.

This model further assumes the form of the fund’s decreasing returns to scale technology is

logarithmic, which is often used to empirically analyze the nature of returns to scale due to

severe skewness in dollar fund size.

We depart frommuch of the literature by allowing for heterogeneity in the size-performance

relation across funds. Indeed, the effect of scale on a fund’s performance is unlikely to be

constant across funds. For example, a fund’s returns should be decreasing in scale more

steeply for those that have to invest in small and illiquid stocks.

We start our analysis by estimating fund-specific ai and bi parameters. It is well known

that the OLS estimators of the coeffi cients bi in (15) are subject to a small sample bias

(Stambaugh (1999)). The small sample bias arises because changes in fund size tend to be

positively correlated with unexpected fund returns. To address this bias, we follow Amihud

and Hurvich (2004) and Barras, Gagliardini, and Scaillet (2022) and include a proxy for

the size innovation vciτ (see Appendix B).
13 Specifically, for each fund i at time t, we define

the fund-specific DRS estimate b̂it to be the coeffi cient of − log (qiτ−1) in the time-series

regression of α̂iτ on − log (qiτ−1) and vciτ (including an intercept) using sixty months of data

before time t. Estimating bi fund-by-fund leads to imprecise estimates especially for funds

with short track records, so we require at least three years of data to estimate fund-specific

returns to scale of a mutual fund.

Note that the estimate of bi, b̂mit , can be obtained using measures of the alpha estimated

under model m ∈ {CAPM,Vanguard}. Intuitively, these estimates represent, for investors

who use model m in making capital allocation decisions, their perception of the effect of size

on performance for fund i at time t based on information prior to time t.

Panel A of Figure 1 shows how the cross-sectional distribution of b̂it using the CAPM

unreported results using the gross alpha in equation (14). This robustness is consistent with the evidence in
the existing literature: fee changes are rare, so they are unlikely to play an important role in equilibrating
the mutual fund market.
13Appendix B considers alternative proxies for vciτ using approaches from the existing literature, as well

as using a novel approach that relies on our model. Our results are robust to these alternative approaches.
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alpha varies over time. For each month in 1991 through 2014, the figure plots the average as

well as the percentiles of the estimated fund-specific b parameters across all funds operating

in that month. The plot shows considerable heterogeneity in decreasing returns to scale

across funds.14 For example, the interquartile range is more than 4 times larger than the

estimates’cross-sectional median in a typical month. We find that, for the average fund,

one percent increase in fund size is typically associated with a sizeable decrease in fund

performance of about 0.4 basis points (bp) per month. This evidence suggests that the

subjective size-performance relation, perceived by investors in real time, provides identifying

variation in the extent of decreasing returns to scale.

Panel B of Figure 1 shows the time evolution of b̂it when we take Vanguard index funds

as the alternative investment opportunity set. Similar to our main measure in Panel A,

the alternative measure exhibits a clear heterogeneity in diseconomies of scale across funds,

though these estimates typically indicate milder decreasing returns to scale.

4.2 Fund-Specific Flow Sensitivity to Performance (FSP)

We estimate the fund-specific flow sensitivities to past performance by estimating the fol-

lowing regression fund by fund:

Fit = ci + γiPit−1 + υit, (16)

where Pit−1 is annual alpha for the year leading to month t− 1, computed by compounding

the monthly alphas as follows:

Pit−1 =
t−1∏

s=t−12

(
1 +Rn

is −RB
is

)
− 1.

14Some of the heterogeneity in DRS could be attributable to estimation error. See Barras, Gagliardini,
and Scaillet (2022) who develop a bias-adjusted approach to inferring the cross-sectional distribution of DRS,
finding substantial heterogeneity in DRS even after adjusting for the bias arising from estimation error.
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This regression is consistent with empirical evidence that investors do not respond immedi-

ately. For example, Berk and van Binsbergen (2016) and Barber, Huang, and Odean (2016)

show that flows respond to recent returns, as well as distant returns. Parameter γi > 0

captures the positive time-series relation between performance and fund flows, which can

vary by fund.

At time t, we calculate the fund’s flow sensitivity to performance by estimating (16)

using its data over the subsequent 5 years. For fund i, let F̂SP
m

it be the estimated flow-

performance regression coeffi cient of that model, where the performance can be estimated

under model m ∈ {CAPM,Vanguard}. To avoid using imprecise estimates, we require these

coeffi cient estimates to be obtained from at least three years of data. For the average fund,

we observe that an increase of 1% in the annual CAPM alpha is associated with an increase

of 0.1% in monthly flows next month.

Figures 2 and 3 display the evolution of the distributions of F̂SP it by plotting the average

as well as the percentiles of the estimated flow sensitivities to performance at each point of

time. In Figure 2, we estimate the FSP’s using the change in fund size to capture flows; in

Figure 3, we estimate the FSP’s using the change in new assets to define F . Panel A in each

figure shows the distribution using the CAPM alpha, and Panel B shows the distribution

when net alpha is computed using Vanguard index funds as benchmark portfolios. Note that

the results are very similar across the two figures, manifesting considerable heterogeneities

in the flow-performance relation across funds. More importantly, these figures show that

while the average F̂SP it for both versions of the flow variable do not exhibit any obvious

trend, they are certainly time varying. As the red dashed lines in the figures make clear, the

distributions remain roughly the same over our sample period, conditional on the median.
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5 Results

5.1 DRS and Flow Sensitivity to Performance

To investigate whether fund-specific decreasing returns to scale parameters are related to

capital allocation decisions, we run panel regressions of fund i’s flow sensitivity to perfor-

mance going forward in month t, F̂SP it, on the fund’s returns to scale estimated as of the

previous month-end, b̂it. We test the null hypothesis that the slope on b̂it is zero.15 We

report the results in Tables 2 and 3.16 In Panel A, we report the results using the change in

fund size to capture flows; in Panel B, we examine their robustness using the change in new

assets to define F . The first two columns in each panel use the CAPM as the benchmark,

while the last two columns use Vanguard index funds as the benchmark.

We show results based on raw estimates in Table 2. We focus on variation coming from the

market equilibrating mechanism beyond differences in sensitivity across funds and over time

by including month and fund fixed effects. The fund fixed effects absorb the cross-sectional

variation in flow/performance sensitivity, for example, due to differences in investor clientele

across funds, while the time fixed effects soak up variation in flow/performance sensitivity

due to factors such as investor attention allocation over time. Indeed, there is evidence of

clientele differences because some investors tend to update faster than others,17 and Figures

2 and 3 show how the average as well as the median of flow-performance dynamics vary

considerably over time.18

15Surely, not only the independent variable, but the dependent variable are measured imprecisely. The
measurement error in b̂it will bias the OLS estimator toward zero. While the measurement error in F̂SP it
will not induce bias in the OLS coeffi cients, it will render their variance larger. For now, we do not worry,
as the errors-in-variables problem will work against us from finding a statistically significant relation that
the model predicts.
16Tables 2 and 3 report the double clustered (by fund and time) standard errors.
17See Berk and Tonks (2007).
18Ferreira et al. (2012) discuss the role of economic, financial, and mutual fund industry development in

determining the flow-performance relation across countries, while Franzoni and Schmalz (2017) document
that mutual funds’flow-performance sensitivity depends on aggregate risk-factor realizations in a hump-
shaped way. Note that our fixed-effect approach already controls for these factors, since time fixed effects
subsume any potential time-series variation in FSP due to different stages of development in the US and/or
across market states.
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In the odd columns, we only include month and fund fixed effects. The results in Panel

A are consistent with the main prediction of our model: the estimated coeffi cients on b̂it are

negative and highly significant, with t-statistics of −6.3 in column 1 and −5.4 in column

3. These findings are unaffected by including a host of controls in the even columns, where

we add proxies for participation costs, as considered by Huang, Wei, and Yan (2007),19 as

well as performance volatility and fund age.20 The slopes on b̂it remain negative and highly

significant, with t-statistics of −7.1 in column 2 and −5.2 in column 4, and their magnitudes

are larger compared to odd columns where controls are excluded.

In Panel B, the same conclusions continue to hold when we consider F̂SP it estimated

using the more traditional definition of F : the percentage change in new assets. Just like

in Panel A, the coeffi cients on b̂it are significantly negative, and they increase in magnitude

when we include a host of controls.

Table 3 repeats this exercise with percentile ranks in each month based on b̂it and F̂SP it.

In this case, we do not use month fixed effects, as percentile ranks already soak up any time

variation in the flow-performance relation. In each column, the estimated coeffi cient on b̂it

is significantly negative at the 1% confidence level. Again, the addition of other potential

determinants of the flow-performance relationship makes the slope coeffi cients on b̂it even

more negative (compare columns 1 and 3 against 2 and 4 in each panel, respectively).

To summarize, we find a strong negative relation between decreasing returns to scale and

flow sensitivity to performance. This relation, which is statistically significant, is consistent

with the presence of investors rationally accounting for the adverse effects of fund scale in

making their capital allocation decisions. Unfortunately, these coeffi cient values are likely

to be biased toward zero because of the measurement error in b̂it. In Section 5.1.1, we first

gauge the severity of attenuation bias under the classical measurement error assumption.

19Specifically, we use marketing expenses, star family affi liation, family size, as well as fund size, to proxy
for the variation in investors’information costs across funds.
20Huang, Wei, and Yan (2012) find that the flow-performance sensitivity is weaker for funds with more

volatile past performance and longer track records.

17



In Sections 5.1.2, we then exploit a set of fund characteristics that are plausibly related

to the scalability of the funds’ investment strategies as instruments for heterogeneity in

DRS parameters across funds to address the attenuation bias associated with estimating the

DRS-FSP relation. Finally, in Section 5.1.3, we propose a way of assessing the economic

magnitude of these estimated coeffi cients by computing counterfactual fund sizes.

5.1.1 DRS-FSP Relation Under the Classical Measurement Error Assumption

We have estimated fund-specific bi parameters based on a rolling estimation window. As

noted earlier, estimating bi fund by fund leads to imprecise estimates especially for funds

with short track records. To gauge the severity of attenuation bias, we adjust the estimated

coeffi cients on b̂it in Table 2 for the errors-in-variable (EIV) problem, assuming that the errors

are of the classical type: they are purely random, have mean zero, and are uncorrelated with

the regressors, including the actual bi, and with the regression errors. Using the standard

errors of b̂it to estimate the variance of measurement error in bi, we can calculate the EIV-

adjusted coeffi cients, reported in the last row of each panel.

As expected, the simple estimates of the DRS-FSP relation tend to be too small in

magnitude. For example, when the DRS-FSP relation is estimated based on the CAPM to

measure fund performance and on the change in fund size to capture flows controlling for

other potential determinants of the flow-performance relationship (i.e., column 2 in Panel

A), the coeffi cient becomes substantially more negative with the EIV adjustment: −16.11,

compared to −1.30 without this adjustment. Bias is even more severe for estimates based

on the Vanguard benchmark than those based on the CAPM. When the DRS-FSP relation

is estimated using the Vanguard benchmark, the EIV-adjusted coeffi cients are over 26 times

larger than their simple-estimate counterparts (see the last two columns of Table 2). Of

course, these results are only true if the errors are indeed of the classical type, but they

illustrate that our estimates of the DRS-FSP relation are likely to be severely biased against
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confirming our model prediction.21 Thus, the fact that we find a strong relation between

DRS and FSP despite this counterveiling effect of measurement error further strengthens

the support for the model.

5.1.2 DRS-FSP Relation Using the Characteristic Component of DRS

In this section, we explore which fund characteristics are correlated with the observed hetero-

geneity in returns to scale. Based on this analysis, we obtain an economically interpretable

component of b̂i based on fund characteristics, using which we re-estimate the DRS-FSP

relation. The characteristic-based approach taken here exploits many fund characteristics

that are relevant for identifying variation in DRS. The prior evidence of fund-level DRS de-

pending on fund characteristics suggests that this method is likely to deliver a more accurate

measure of bi and thus is a reasonable way to mitigate the errors-in-variable problem. Indeed,

when we conduct the analysis using the characteristic component of DRS, the estimates of

the DRS-FSP relation become substantially more negative than in Table 2 and they are

comparable in magnitude to those implied by the classical measurement error assumption.

Determinants of Fund-Level DRS We investigate a number of characteristics that seem

relevant a priori (also from the previous literature) for heterogeneity in returns to scale: the

number of managers, volatility, expense ratios, marketing expenses, an international exposure

indicator, turnover, and log fund size. In analyzing the dependence of returns to scale on

fund characteristics, we control for the loadings on the market, size, value, and momentum

factors to capture fund style and risk.22

The first characteristic, NMgr, is the number of managers managing the fund. About

59% of our funds are multi-manager funds. The second characteristic, Std (Alpha), is the

standard deviation of a fund’s alphas over the prior 1 year. The next two characteristics

21Barras, Gagliardini, and Scaillet (2021) make a closely related observation that the error-in-variable bias
can have significant impact on the cross-sectional distribution of scale coeffi cient bi.
22We estimate these risk exposures by regressing the fund’s return on the four Fama-French-Carhart (FFC)

factors over the prior sixty months.
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we examine are the fund’s expense ratios and marketing expenses. The fifth characteristic,

1 (IntExp), is an indicator for funds with a high degree of international exposure, defined

as follows. We test the null hypothesis that the coeffi cients on three Vanguard international

index funds are 0.23 For any given fund, the international exposure dummy is equal to one

if we reject the null hypothesis at the 5% confidence level. Although we focus our attention

on domestic funds, about 28% of them are highly exposed to international shocks. The sixth

characteristic is the fund’s average annual turnover (from CRSP).24 Median turnover is 64%

per year. We also examine whether the fund’s log real AUM matters for its DRS technology.

We examine how these characteristics affect the impact of a fund’s scale on its perfor-

mance by running panel regressions of fund i’s DRS parameter using only its observations

prior to month t, b̂it, on the fund’s characteristics at the end of the previous month. Ta-

ble 4 shows the estimation results.25 Panel A reports the results using the CAPM as the

benchmark; Panel B uses Vanguard index funds as the benchmark.

In both panels, we find significant relations between b̂ and three characteristics: the

number of managers, volatility, and expense ratios (see the first three columns of Table 4).

While the slope on marketing expenses (column 4) is consistently negative and the slope on

fund size (column 7) is consistently positive, they are insignificant. On the other hand, we

find a statistically insignificant relation between returns to scale and turnover (column 6)

of mixed signs. Finally, we find that the relation between returns to scale and international

exposure (column 5) is positive, but it is both statistically and economically insignificant.

When all seven fund characteristics are added at the same time, the estimated slopes

on volatility and expense ratios are robust, indicating steeper decreasing returns to scale for

higher-volatility funds and funds charging higher expense ratios. We continue to find a nega-

tive relation between b̂ and the number of managers, indicating steeper decreasing returns to

23Recall that we use a set of eleven Vanguard index funds to calculate the Vanguard benchmark. Three of
these index funds are international: European Stock Index, Pacific Stock Index, and Small-Cap Value Index.
24We winsorize turnover at the 1st and 99th percentiles.
25Standard errors of these regressions are two-way clustered by fund and time.
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scale for sole-manager funds, although the relation becomes statistically insignificant. Mar-

keting expenses now enter with a consistently significantly negative slope, indicating that

decreasing returns to scale are less pronounced for funds with higher marketing expenses.

The relation between returns to scale and fund size remains statistically insignificantly pos-

itive. Finally, the slopes on turnover and on international exposure are still insignificant

regardless of how one defines the benchmark, but their signs now flip to negative. Therefore,

we focus on the results when the five fund characteristics whose signs are robust are added

at the same time (see column 8 of Table 4).

While we leave the task of deriving these relations between fund characteristics and

diseconomies of scale in an equilibrium model for future research, these results are consistent

with the following interpretations. The division of labor within a fund might alleviate the

negative impact of size on performance, so it is the fund’s assets under management on a

per-manager basis that matters for capturing decreasing returns to scale. If so, a multi-

manager fund would be able to deploy capital more easily and, consequently, exhibit milder

decreasing returns to scale. Pástor, Stambaugh, and Taylor (2015) offer a narrative for why

higher-volatility funds might also exhibit steeper decreasing returns to scale, while steeper

decreasing returns to scale for funds charging higher expense ratios are consistent with the

model of Stambaugh (2020). Finally, gradual decreasing returns to scale for funds with high-

marketing expenses are consistent with funds marketing to attract more flows only if they

can manage the performance erosion associated with growing fund size.

Implications for DRS-FSP Relation Instead of using the coeffi cient estimates b̂i as

before, we now use the estimates from column 8 of Table 4 to obtain an economically inter-

pretable component of b̂i based on fund characteristics. This implementation choice assumes

that all the funds with the same fund characteristics share the same b value. While ignoring

variation might potentially lead to inaccuracy in quantifying fund-specific b, this method ac-

tually seems to increase the accuracy of the bi estimate by dramatically reducing estimation
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errors. While about 36% of the funds in our sample end up with negative b̂i, about 7% of

their predicted values based on fund characteristics, denoted by b̂Chari , are negative. These

results seem sensible since, theoretically, all mutual funds must face decreasing returns to

scale in equilibrium.

To address the attenuation bias associated with estimating the DRS-FSP relation, we

replace b̂i by b̂Chari and rerun the regressions in Table 2, whose results are tabulated in

Table 5. When we rerun our analysis in Table 2 with characteristic-based DRS, we obtain

similar and even stronger results indicating that steeper decreasing returns to scale attenuate

flow sensitivity. Table 5 shows that b̂Chari has significantly negative slopes throughout, but

the coeffi cients’estimated values become substantially more negative than in Table 2. For

example, the estimated coeffi cients are typically more than 6 times larger when we use the

change in fund size to capture flows (compare Panel A of Tables 2 and 5).

In summary, when we conduct the analysis using cleaner measures of decreasing returns

to scale, our conclusions on the effects of decreasing returns to scale on capital allocation only

become stronger. These estimates of the DRS-FSP relation are comparable in magnitude to

those implied by the classical measurement error assumption.

5.1.3 Simulated DRS-FSP Relation

In this section, we use our model to ask how much capital is allocated the way it is because

of these differences in decreasing returns to scale. Specifically, we compute counterfactual

fund sizes by assuming the investors believe a priori that returns are decreasing in scale at

the same (average) rate for all funds.

Two factors fully determine the magnitude of capital response to performance in a rational

model – the degree of decreasing returns to scale, and the prior and posterior beliefs about

managerial skill. This means that, for a given value of b in equation (15), the prior uncertainty

about a, σ0, can be inferred from the flow-performance relation, as long as investors update

their posteriors with the history of returns as Bayesians.
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We simulate benchmark-adjusted fund returns from equation (15). To this end, we

assume that (i) investors’prior on a fund’s ability is that ai is normally distributed with

mean θi0 and standard deviation σ0 and (ii) the error term, εit, is normally distributed with

mean zero and variance σ2. Then, it is straightforward to show that the mean of investors’

posteriors will satisfy the following recursion:

θit = θit−1 +
σ20

σ2 + tσ20
αit.

Using (9), we compute fund size as follows:

qit = exp

(
θit
bi

)
.

We begin by tying down the model parameters that can be set directly. Following Berk

and Green (2004), we set σ = 20% per year, or 5.77% per month. Recall that investors

believe a priori that ai is normally distributed with mean θi0 and standard deviation σ0.

Since investors are assumed to have rational expectations, this is also the distribution from

which we draw each fund’s skill. We shall also assume that funds shut down the first time

θit < θ, where we set θ = 0.26 These parameter values are summarized in Panel A of Table

6. It is straightforward to see that the only remaining parameters that we need to set for

simulating data are bi, θi0 and σ0.

The empirical distribution of b is approximated by a scaled Beta distribution, from which

we draw b randomly.27 In that case, assuming that θ0 is independent of b gives rise to

distributions of fund size considerably more disperse than in our actual sample. Specifically,

the simulated fund sizes tend to be too big for funds whose returns decrease in scale more

26Intuitively, managers incur fixed costs of operation each period. These costs can be, for example,
overhead, back-offi ce expenses, and the opportunity cost of the manager’s time. Managers will optimally
choose to exit when they cannot cover their fixed costs.
27Specifically, we fit the parameters for the scaled Beta distribution such that the mean, variance, skewness,

and kurtosis of the simulated bi are close to those of the fitted values of b̂it based on fund characteristics
under the IV approach in the previous section (see the last column of Panel A of Table 4).
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gradually, while the simulated fund sizes tend to be too small for those that exhibit steeper

decreasing returns to scale. In turn, we model the prior mean as a linear function of b, θ0 (b).

Our approach is to fit the parameters governing this function such that the simulated mean

and standard deviation of log fund size essentially match the empirical benchmark values of

5.1 and 1.9, respectively.28

We set the prior uncertainty (σ0) to match the average flow-performance relation in the

data. To this end, we construct 10, 000 samples of simulated panel data for 300 funds over

100 months. We simulate a given sample by first drawing each fund’s DRS bi randomly

from the scaled Beta distribution consistent with the empirical distribution of bi estimates,

while drawing the fund’s skill ai from a normal distribution with mean θ0 (bi) and standard

deviation σ0. Next, we simulate the values of εit, building up the panel data of αit and qit.

For each fund in the sample, we run the following regression using data for just that fund to

estimate its flow-performance sensitivity:

log (qit/qit−1) = ci + γiαit + υit.

Given all other parameters, we set σ0 so that the mean of the average γ̂i across simulated

samples matches the average F̂SP it in our actual sample. Panel B of Table 6 shows the

value of σ0 that resulted from this process. It also contains the values of the parameters

governing the scaled Beta distribution of DRS and those of the parameters governing the

prior mean that we use in our simulation analysis. The last three columns of Panel B report

all the moments that we target in our calibration, as well as their values in both the actual

and simulated data. Note that the simulated moments in the model closely match the target

moments.
28Note that there generally exist multiple ways prior mean as a function of b for which the simulated

mean and standard deviation of log fund size can match the empirical benchmark values. To pick a single
function, we impose the additional constraint that the simulated mean of log fund size is decreasing in b.
This constraint is motivated by empirical evidence presented later in Section 5.2: steeper decreasing returns
to scale shrink fund size.
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Thus far, we have provided empirical evidence that steeper decreasing returns to scale

imply less flow sensitivity to performance. For example, as shown in column 2 of Panel A of

Tables 2 and 5, the estimates of the DRS-FSP relation with the EIV adjustment and using the

characteristic component of DRS are −16.1 and −11.8, respectively. To assess the economic

magnitude of such estimates, we estimate the DRS-FSP relation in each of the simulated

samples. Panel A of Table 7 shows summary statistics of these estimates across simulated

samples from the calibrated model. The DRS-FSP relation estimates in the calibrated model

tend to be larger in magnitude compared to column 2 of Panel A of Tables 2 and 5. But

importantly, the empirical estimates of the DRS-FSP relation lie comfortably within the

90% confidence interval for simulated DRS-FSP relation estimates and vice versa. Thus, it

appears that the magnitude of the DRS-FSP relation estimates from the data is consistent

with what the model predicts. This result suggests that the calibrated model does a good

job of capturing capital allocation patterns in the data.

To quantitatively assess the role of heterogeneity in returns to scale in capital allocation,

we must construct a counterfactual. We construct the counterfactual by assuming investors

learn about skill based on distorted beliefs that the fund exhibits average decreasing returns

to scale. Specifically, the counterfactual investors assume that bi = 0.0041 for all funds.29

Then, updating investors’beliefs with the history of its returns under the counterfactual

assumption, we compute what the size of the fund would have been.

Again, we construct 10, 000 samples of simulated panel data for 300 funds over 100

months. To simulate a given sample, we first draw each fund’s DRS bi randomly from the

scaled Beta distribution consistent with the distribution of fund-specific b estimates, while we

draw the fund’s skill ai from a normal distribution with mean θ0 (bi) and standard deviation

29Note that the counterfactual investors have distorted beliefs about the skill level consistent with their
distorted beliefs that bi = 0.0041 for all funds, i.e., they believe a priori that ai is normally distributed with
mean θi0 = θ0 (0.0041) for all funds. Alternatively, we can assume that the counterfactual investors have
rational expectations about the skill level, i.e., they know the true θ0 (bi) for each fund’s DRS parameter bi,
but the counterfactual sizes under this assumption contrast even more sharply with the simulated outcomes
because such investors would have beliefs about skill that are inconsistent with their beliefs about scalability.

25



σ0. Next, we draw the random values of εit, building up the panel data of rit and qit. For

every i and t, we compute the fund’s size under the counterfactual, qCit , as detailed above.

Finally, for each sample, we calculate the R2 from a regression of log (qit) on log(qCit ) to check

the goodness of fit by the counterfactual. Here, 1 minus the R2 can be interpreted as the

fraction of capital allocation explained by individual heterogeneity in DRS.

We report the results from counterfactual simulations in Panel B of Table 7. The first

two rows show summary statistics of the coeffi cient estimates from the regression of log (qit)

on log
(
qCit
)
across simulated samples; the last row shows summary statistics of the R2 from

this regression across simulated samples.

The counterfactually computed fund sizes explain about 43% of the variation of simu-

lated fund sizes. While counterfactual sizes are positively related to actual sizes, they are

considerably larger than actual sizes and their distributions are substantially tighter than

those of actual sizes. On the one hand, since the distribution of DRS is positively skewed

and leptokurtic, what counterfactual investors believe about the size of funds in the right tail

(i.e., funds exhibiting the steepest DRS) greatly influences their beliefs about the average

fund size. The fact that fund size is inversely proportional to DRS implies that the counter-

factual investors overestimate the size of the funds in the right tail and, in turn, the average

fund size. On the other hand, since differences in DRS across funds is a major source of the

cross-sectional variation in fund size, these counterfactual investors naturally underestimate

the true dispersion in fund size. Thus, the counterfactuals ignoring heterogeneity in DRS

are very different than the actual size. In this sense, we can interpret 1 minus the R2 as a

lower bound on the role of heterogeneity in returns to scale on capital allocation: more than

half of the cross-sectional variance of fund sizes can be related to cross-sectional variation in

decreasing returns to scale parameters, which is economically significant.

To summarize, Table 7 shows that a significant fraction of equilibrium capital allocation

can be plausibly explained by investor response to differences in decreasing returns to scale.

Not only are fund sizes in the data quantitatively consistent with what our simple model pre-
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dicts they should be, the magnitude of empirical DRS-FSP relation estimates are consistent

with what our simple model would predict.

5.2 DRS and Fund Size in Equilibrium

While the main implication of our model is that steeper decreasing returns to scale attenuate

flow sensitivity to performance, another immediate implication is that steeper decreasing

returns to scale shrink fund size. Recall that fund size in equilibrium is proportional to the

ratio of perceived skill over diseconomies of scale (see equation (9)). This implies that large

funds either earn a high gross alpha on the first dollar and/or implement strategies that

are highly scalable. We now investigate the importance of the latter effect, while explicitly

controlling for the former effect, as well as for fund style and fund age. Table 8 presents the

results of this exercise.

To control for the effect of perceived skill, we first form quintile groups sorted on âCharit ,

which are fund fixed effects estimated as of month t − 1. Specifically, âCharit is equal to

the average of fund i’s alpha that is adjusted for fund-specific decreasing returns to scale,

α̂iτ + b̂Charit log (qiτ−1), over the 60 months prior to time t, where b̂Charit is the fund-specific

DRS estimated as of month t − 1 based on fund characteristics (see Section 5.1.2). Then,

within each âCharit quintile, we sort funds into five groups based on b̂Charit . We conduct double

sorts of funds belonging to the same Morningstar category and to the same age category.30

After forming the 5 × 5 âCharit and b̂Charit groups, we average fund sizes, as measured by log

real AUM in month t, of each b̂Charit quintile over the five âCharit groups. This characteristic

control procedure creates a set of quintile b̂Charit groups with similar levels of perceived skill,

and with near-identical distributions of fund style and fund age. Thus, these quintile b̂Charit

groups control for differences in skill, as well as fund style and fund age.

Panel A of Table 8 reports average fund sizes of the 25 âCharit × b̂Charit groups using the

CAPM as the benchmark. The column labeled “Average” reports the average month-end

30Specifically, we assign funds to one of three samples based on fund age: [0, 5], (5, 10], and > 10 years.
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fund sizes of the b̂Charit quintiles, controlling for âCharit , fund style and fund age. The row

labeled “High-low”reports the differences in average sizes between the first and fifth quintile

b̂Charit groups in each column.31 The difference in average sizes in the bottom right entry of

Panel A indicates that the sizes of funds that are perceived to face steepest decreasing returns

to scale tend to be 86% smaller than those of funds that are perceived to be relatively immune

to the adverse scale effects. This difference has a robust t-statistic around −15. Hence,

steeper decreasing returns to scale shrink fund size, consistent with the above prediction of

our model. Importantly, this effect is not only statistically but also economically significant.

The patterns within each âCharit quintile moving from low b̂Charit to high b̂Charit funds (reading

down each column) are very similar. Panel B of Table 8 repeats the same exercise as Panel

A, except we use Vanguard index funds as the benchmark. We find the same quantitative

patterns.

In summary, steeper decreasing returns to scale shrink fund size in the data. This relation,

which is not only statistically but also economically significant, is consistent with the presence

of investors rationally accounting for the adverse effects of fund scale in making their capital

allocation decisions. Less important but also noteworthy is that the sizes of funds with higher

perceived skill tend to be larger than those of funds with lower perceived skill (reading from

left to right in each panel), again consistent with our model.

5.2.1 DRS and Optimal Fund Size

Thus far, we have used heterogeneity in decreasing returns to scale across funds and over

time to test whether investors respond to the adverse effects of fund scale in making their

capital allocation decisions. If investors update their beliefs about skill as in the model, their

perception of optimal size ought to converge to true optimal size over a fund’s lifetime. This

implies that the sizes of older funds should be more closely related to their optimal sizes

31To adjust for the strong persistence in fund size, we report standard errors of these differences in average
fund sizes between quintile portfolio 5 (high b̂Charit ) and quintile portfolio 1 (low b̂Charit ) using 60 Newey-West
lags.
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based on the model than those of younger funds. In this section, we test this prediction and

find empirical support for it.

We have estimated fund-specific bi parameters based on a rolling estimation window. As

noted earlier, estimating bi fund by fund leads to imprecise estimates. In particular, about

36% of the funds in our sample end up with negative b̂i.32 While this is not an issue when

focusing only on the relative steepness of the DRS technology as in the rest of the paper, it is

a problem for computing the optimal fund size, which requires that bi > 0 since, theoretically,

all mutual funds must face decreasing returns to scale in equilibrium. A straightforward way

to deal with this econometric shortcoming is to “shrink”the b̂i estimates toward their prior

mean, i.e., the average fund-level DRS parameter in our sample, denoted by bRD2, which we

estimate using the recursive demeaning procedure of Zhu (2018).33 Measuring performance

using the CAPM, b̂RD2 is statistically significant, indicating that an 1% increase in fund size

is associated with a decrease in the fund’s CAPM alpha of 0.47 bp per month.34 All of the

resulting fund-specific DRS values, denoted by b̂Shrit , are positive.
35 Then, the corresponding

estimator of skill, denoted by âShrit , is equal to the average of fund i’s alpha that is adjusted

for fund-specific DRS, α̂iτ + b̂Shrit log (qiτ−1), over the 60 months prior to time t. We employ

the average value of the ratios âShrit /b̂Shrit over a fund’s lifetime to get an estimate for the

optimal fund size, log (q̂∗i ).
36

32While substantially fewer of b̂Chari (the predicted values of b̂i based on fund characteristics) turn out to
be negative, still about 7% of them are negative.
33Pástor, Stambaugh, and Taylor (2015) analyze the nature of returns to scale by developing a recursive

demeaning procedure. They find coeffi cients indicative of decreasing returns to scale both at the fund level
and at the industry level, though only the latter is statistically significant. Zhu (2018) improves upon the
empirical strategy in PST (by using more recent fund sizes as the instrument) and establishes strong evidence
of fund-level diseconomies of scale.
34Using Vanguard index funds as benchmarks, the coeffi cient estimate is again statistically significant,

indicating a decrease in fund performance of 0.0015% per month for an 1% increase in fund size.
35Formally, the shrinkage estimator is a weighted average of b̂it and b̂RD2: b̂Shrit = witb̂it + (1− wit) b̂RD2,

where wit =
1/σ2bit

1/σ2bit
+1/κ2

, σbit is the standard error of b̂it, and κ is a constant controlling the amount of

shrinkage toward b̂RD2. We set the latter constant to ensure that all of the resulting b̂Shrit values are positive
(i.e., b̂Shrit ≥ 0.00001).
36Note that the optimal fund size here is the size at which the benchmark-adjusted net return is expected

to be zero. This is different than, but related to, the optimal amount the manager chooses to actively manage
(Berk and van Binsbergen (2015)).
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However, this measure of optimal fund size can be different than what investors believe to

be optimal (ex-post) if they do not account for individual heterogeneity in decreasing returns

to scale. In this case, the valid proxy for the optimal size, perceived by investors, would be

the optimal size estimated assuming that the fund size has the same effect on performance

across all funds. Once again, the estimator of skill corresponding to b̂RD2, which we denote

by âRD2it , is equal to the average of α̂iτ + b̂RD2 log (qiτ−1) over the 60 months prior to time t.

The alternative measure of optimal fund size log
(
q̂∗RD2i

)
is calculated as âRD2it /b̂RD2.

To test the above prediction, we examine how the relation between log real AUM and

our measure of optimal fund size depends on fund age. Specifically, we assign funds to one

of three samples based on fund age: [0, 5], (5, 10], and > 10 years. In each age sample, we

run panel regressions of fund i’s log real AUM in month t on the fund’s log optimal fund

size estimate, log (q̂∗i ). We report the results in the first three columns of Table 9.
37 In Panel

A, we report the results using the CAPM as the benchmark; in Panel B, we use Vanguard

index funds as the benchmark.

Across all three age groups, the estimated coeffi cients on log (q̂∗i ) are positive and highly

statistically significant. These coeffi cient values also increase over a typical fund’s lifetime,

indicating that this positive relation between the fund’s size and its optimal size is stronger

for older funds. As the fund ages, investors learn about its optimal size, implying that the

equilibrium size is closer to this optimal size measure. In addition, the R2 of the regressions

confirm this insight. The R2 in the > 10 age sample is the highest and the R2 decreases

monotonically as we move to the samples of ages (5, 10] and [0, 5] funds.

In columns 4 through 6, we run the multiple regression of log (qit) on both log (q̂∗i ) and

log
(
q̂∗RD2i

)
in all three age-sorted samples. We find that the slopes on log (q̂∗i ) in the ≤ 5

sample are rendered substantially smaller, and their magnitudes are close to zero (and their

signs flip). The slopes on log (q̂∗i ) in samples of older funds are also smaller than before, but

they do remain positive and significant.

37Table 9 reports the double clustered (by fund and time) standard errors.
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More importantly, we continue to find that log (q̂∗i ) enters with slopes that increase over

a typical fund’s lifetime. In contrast, while log
(
q̂∗RD2i

)
enters with significantly positive

slopes across all age-sorted samples, the coeffi cients decrease in magnitude over a typical

fund’s lifetime. Taken together, these two results suggest that investors do account for the

fund heterogeneity in decreasing returns to scale when allocating their capital to older funds,

but they allocate their money to younger funds based on the simple version of optimal size.

Consistent with this interpretation, the R2 of the multiple regressions in the > 10 age sample

(column 6) remains about the same as in column 3, and the R2 improvement when we add

log
(
q̂∗RD2i

)
to the regression of log real AUM on log (q̂∗i ) gets steeper and steeper as we move

to the samples of ages (5, 10] and [0, 5] funds.

Our results offer the following narrative. Investors want to account for heterogeneity in

decreasing returns to scale, but need to learn about fund-specific values. Given that such

fund-specific information is not yet available for young funds, investors use the sample-wide b

instead. In particular, the investors only use the q̂∗i estimate (together with q̂
∗RD2
i ) in making

their capital allocation decisions when a fund grows old enough such that the remaining

Bayesian uncertainty on fund-specific b is relatively modest. Thus, it appears that investors

in the data might be learning not only about skill but also about decreasing returns to

scale.38 We leave the task of examining the capital allocation implications of learning about

fund heterogeneity in decreasing returns to scale technology for future research.

In short, the estimates of optimal size largely explains capital allocation to older funds.

Both measures of optimal fund size matter, which is consistent with our narrative that in-

vestors account for not only the presence of decreasing returns to scale, but the heterogeneity

of decreasing returns to scale across funds.

38For formal models that relate capital allocation to learning about returns to scale, see Pástor and
Stambaugh (2012) and Kim (2022).
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6 Conclusion

One important feature that determines the value of an investment opportunity is its degree

of scalability. On the one hand, for the value of a positive net present value project to be

finite, its scalability must be limited. On the other hand, in the presence of fixed costs, if the

decreasing returns to scale are too large, investors may forgo the project altogether. In this

paper, we empirically study the scalability of investment projects in the context of actively

managed mutual funds. One common assumption in that literature is that all investment

managers face the same degree of decreasing returns to scale while differing in the marginal

profitability (gross alpha) on the first dollar invested. In this paper, we show that that

assumption does not hold in the data. Heterogeneity in the degree of scalability is a key

determinant of the capital allocation decision that investors make. Not only do we find that

steeper decreasing returns to scale attenuate flow sensitivity to performance, we also find

that differences in decreasing returns to scale across funds are quantitatively important for

explaining capital allocation in the market for mutual funds. This heterogeneity is therefore

an important driver of the cross-sectional distribution of fund size (AUM).
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Appendix

A Proofs

A.1 Proof of Lemma 2

First, note that εit does not contain information about managerial ability that is not already

contained in sit. Because rescaling the fund’s returns to scale technology (i.e., changing the

parameter bi) does not change the signal sit, we can conclude that

∂θit
∂bi

= 0. (17)

Now differentiating (9) with respect to sit, using the Inverse Function Theorem, and using

the fact that these signals are independent of bi (i.e., ∂bi/∂sit = 0), gives

∂qit
∂sit

=
1

h′ (qit)

∂ (θit/bi)

∂sit
=

1

bih′ (qit)

∂θit
∂sit

,

Similarly, differentiate (9) with respect to bi, use the Inverse Function Theorem, and use

(17) to substitute for ∂θit/∂bi in this expression. This gives (11).

A.2 Proof of Proposition 3

∂

∂bi

(
∂Fit+1
∂sit+1

)
=

∂

∂bi

(
1

qit+1

1

bih′ (qit+1)

)
∂θit+1
∂sit+1

= −
qit+1h

′ (qit+1) +
∂qit+1
∂bi

(bih
′ (qit+1) + qit+1bih

′′ (qit+1))

q2it+1 (bih
′ (qit+1))

2

∂θit+1
∂sit+1

= −
qit+1h

′ (qit+1)− h (qit+1)
(
1 + qit+1h

′′(qit+1)
h′(qit+1)

)
q2it+1 (bih

′ (qit+1))
2

∂θit+1
∂sit+1

, (18)

where the first equality is implied by expression (12) and the fact that ∂
∂bi

(
∂θit+1
∂sit+1

)
= 0 (since
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θit+1 is solely a function of the history of realized signals and is not a function of bi), and

the last equality invokes expression (11). What (18) combined with Lemma 1 tells us is

that steeper decreasing returns to scale must lead to a smaller flow of funds response to

performance if and only if

qit+1h
′ (qit+1)− h (qit+1)

(
1 +

qit+1h
′′ (qit+1)

h′ (qit+1)

)
> 0. (19)

Condition (19) is equivalent to

h′ (qit+1)

(h (qit+1))
2 ×

[
qit+1h

′ (qit+1)− h (qit+1)
(
1 +

qit+1h
′′ (qit+1)

h′ (qit+1)

)]
>

h′ (qit+1)

(h (qit+1))
2 × 0 (20)

because h (q) is a strictly increasing function of q, ensuring that h′ (qit+1) > 0. Notice that

the left-hand side of (20) is equal to − ∂
∂qit+1

(
∂ log(h(qit+1))
∂ log(qit+1)

)
, so (20) can be rewritten as

− ∂

∂qit+1

(
∂ log (h (qit+1))

∂ log (qit+1)

)
> 0,

which is also equivalent to (14), completing the proof.

B Estimation Procedure for Fund-Specific DRS

This appendix describes the details of how we estimate fund-specific ai and bi parameters

in the time-series regression αit = ai − bi log (qit−1) + εit. It is well known that the OLS

estimators of the coeffi cients bi are subject to a small sample bias (Stambaugh (1999)). The

small sample bias arises because of the flow-performance relation, which induces a positive

correlation between the regression disturbance εit and the innovation in log (qit) (see below).

Specifically, if log (qit) obeys a first-order autoregressive process,

log (qit) = χi + ρi log (qit−1) + vit, (21)
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Stambaugh (1999) shows that b̂OLSi is upward biased, and proposes a first-order bias-corrected

estimator of bi. Amihud and Hurvich (2004, hereafter “AH”) improve upon this estimator

of Stambaugh by noting that adding a proxy vcit for the innovations in the autoregressive

model can reduce the small-sample bias. The proxy vcit takes the form, v
c
it = log (qit) −

(χ̂ci + ρ̂ci log (qit−1)), where χ̂
c
i and ρ̂

c
i are any estimators of χi and ρi constructed based on

size data. Specifically, if we let b̂ci be the coeffi cient of log (qit−1) in a time-series regression

of αit on − log (qit−1) and vcit, AH show that the bias of this estimator is given by:

E
[
b̂ci − bi

]
= −φE [ρ̂ci − ρi] , (22)

where φ = σεv/σ
2
v . We adopt this estimation procedure, except we use different estimators

of ρi than AH, guided by a horse race among the various ρi estimators using simulations as

further explained in the next subsection.

B.1 Reduced-Bias Estimators of the AR ρi

AH’s bias expression (22) implies that the smaller the bias in the estimator ρ̂ci , the smaller

the bias in the estimator b̂ci . AH suggest using a second-order bias-corrected estimator,

ρ̂c,AHi = ρ̂OLSi +
(
1 + 3ρ̂OLSi

)
/Ti + 3

(
1 + 3ρ̂OLSi

)
/T 2i ,

where ρ̂OLSi is the coeffi cient of log (qit−1) in a time-series regression of log (qit) on log (qit−1)

and Ti is the number of months. Barras, Gagliardini, and Scaillet (2022) improve upon

this estimator by using ρ̂c,BGSi = min
(
ρ̂OLSi +

(
1 + 3ρ̂OLSi

)
/Ti + 3

(
1 + 3ρ̂OLSi

)
/T 2i , 0.999

)
.

Andrews (1993) proposes a median-unbiased estimator (MUE) of the AR parameter ρi,

ρ̂c,MUE
i = m−1TS

(
ρ̂OLSi

)
,
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where mTS (ρi) is the unique median of ρ̂OLSi when ρi is the true parameter ∀ρi ∈ (−1, 1).39

Phillips and Sul (2003) extend this estimator to the fixed-effects setting under homogeneous

ρ across funds by using ρ̂OLS FE (the coeffi cient of log (qit−1) in a panel regression of log (qit)

on log (qit−1) with fund fixed effects) to infer the true ρ. Similar to the MUE of Andrews, the

panel median-unbiased estimator (PMUE) is ρ̂c,PMUE = m−1PNL
(
ρ̂OLS FE

)
, where mPNL (ρ)

is the unique median of ρ̂OLS FE when ρ is the true parameter ∀ρ ∈ (−1, 1).40

Using our model, we first assess the performance of these various estimators of the AR

parameter ρi for the sake of recovering the bi coeffi cients, and we propose an improved

estimator in the next subsection. As in Section 5.1.3, we simulate equilibrium alphas and

sizes from the calibrated model to generate 10, 000 samples of panel data for 300 funds over

100 months. In each sample, we estimate b̂c,AHi , b̂c,BGSi , b̂c,MUE
i , and b̂c,PMUE

i , which denote

the bias-corrected estimators of bi corresponding to ρ̂
c,AH
i , ρ̂c,BGSi , ρ̂c,MUE

i , and ρ̂c,PMUE
i ,

respectively. In each sample, we then compute the positive biases in each of the b̂ci’s as the

average difference between b̂ci and bi across funds. Another way to assess the performance

of these bias-corrected estimators of bi is to regress each of the b̂ci’s on bi in each simulated

sample: b̂ci = ψ0 + ψ1bi + εi. The results of these exercises are in columns 1—4 of Table 10.

Panel A shows the mean biases of the bi estimates across samples; Panel B shows the means

of the ψ0 and ψ1 estimates across samples.

The first takeaway from this table is that the bias-corrected estimators of bi corresponding

to reduced-bias estimators of ρi from the existing literature do reduce the bias, compared

to the OLS estimator whose bias is equal to 2.37. Further, the table shows that these

estimators do approximate the bi coeffi cients in the sense that they are positively related

to the bi coeffi cients. In particular, b̂
c,PMUE
i performs the best. For this reason, as a first

approach (and as a benchmark for the approach proposed in the next subsection), we use the

39Key to this estimator is the fact that the distribution of ρ̂OLSi depends only on ρi (and the sample size,
viz., Ti + 1) when (21) is correct. In particular, it does not depend on χi or σ2υ in (21).
40As with the MUE, key to this estimator is the fact that the distribution of ρ̂OLS FE depends only on ρ

when the homogeneous dynamic panel model is correct.

36



PMUE to estimate fund-specific bi parameters in our main analysis. Specifically, for each

month t,

1. we use panel data on size {log (qiτ )} across funds i and months τ from t− 61 to t− 1

to construct the PMUE ρ̂ct of the size’s persistence ρi and obtain the proxy for size

innovations υciτ = log (qiτ ) − (χ̂cit + ρ̂ct log (qiτ−1)), where χ̂
c
it is chosen to ensure that

{υciτ} has zero mean for each fund i; and

2. we then obtain b̂it as the coeffi cient of − log (qiτ−1) in the time-series regression of αiτ

on − log (qiτ−1) and υciτ , with intercept, using data from months τ = t − 60, . . . , t − 1

for each fund i.

In addition, we obtain âit as the average of fund i’s alpha that is adjusted for fund-specific

DRS, α̂iτ + b̂it log (qiτ−1), over the 60 months prior to time t.

On the other hand, none of the bias-corrected estimators of bi corresponding to reduced-

bias estimators of ρi from the existing literature can completely eliminate the bias if data

were generated in a Berk and Green equilibrium.

B.2 Novel Approach to Estimating the AR Parameter ρi

Given that none of the bias-corrected estimators of bi corresponding to reduced-bias estima-

tors of ρi from the existing literature can completely eliminate the bias if data were generated

in a Berk and Green equilibrium, we propose a novel bias-corrected estimator of bi motivated

by AH’s bias expression (22): set ρi to minimize the magnitude of the mean bias of the bi

estimates across simulated samples. This process results in the value of ρi = 0.999863, which

we denote by ρ̂c,∗i , with the corresponding bias-corrected bi estimator, denoted by b̂
c,∗
i . We

consider the same simulation exercise approach as before: using the calibrated model, we

generate 10, 000 samples of panel data for 300 funds over 100 months, in each of which we

estimate b̂c,∗i . In each sample, we then assess the performance of this bias-corrected estimator

of bi by (i) computing its bias (as the average difference between b̂
c,∗
i and bi across funds)
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and (ii) regressing it on bi (̂b
c,∗
i = ψ0 + ψ1bi + εi). We report the results in the last column

of Table 10. Again, Panel A reports the mean bias of b̂c,∗i across simulated samples; Panel B

reports the means of the ψ0 and ψ1 estimates across simulated samples.

Fortunately, b̂c,∗i does eliminate the bias completely. Therefore, we also report our main

results (Tables 2—5) based on the model-implied estimator of ρi (i.e., ρ̂
c,∗
i = 0.999863) to

estimate fund-specific bi parameters in Tables 11—14. The latter set of tables lead to the

same conclusions as the former tables.41

B.3 Further Discussion

We end this appendix by explaining how reduced-bias estimators of ρi from the existing

literature cannot effectively eliminate the bias in the corresponding estimators of bi if data

were generated in a Berk and Green equilibrium, and yet our empirical results are robust to

the choice of the bias-corrected estimator b̂ci . To this end, Panel C of Table 10 reports the

means of the ρi estimates across simulated samples.

Consistent with AH’s bias expression (22), the performance of a given estimator of bi

is monotonically worsening in the distance of the underlying estimator of ρi from ρ̂c,∗i (i.e.,

the “true” ρi in the simulated data).42 But all of the reduced-bias estimators of ρi from

the existing literature are found to be very close to ρ̂c,∗i , which in turn implies that the

poor performance of the bi estimates corresponding to the ρi estimates from the existing

literature must involve very high values of φ = σεv/σ
2
v . Such high values of φ arise in

our model for two reasons. The first is the fact that εit is perfectly correlated with vit: a

high fund return in period t is the sole reason for a higher fund size at the end of that

period in a Berk and Green equilibrium. Therefore, σεv is very high in our model. The

second is the fact that σ2v = (1− ρ)2 σ
2
ε

b2i
in our model:43 a high persistence in fund size

41In fact, our results in Tables 8 and 9 are also very similar when we use the model-implied estimator of ρi
(i.e., ρ̂c,∗i = 0.999863) to estimate fund-specific bi parameters. All of these results are available upon request.
42The PMUE of ρi in our actual data is 0.9988.
43Technically, ρ is a function of the fund’s age in our model, but the variation in ρ that is due to differences
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coincides with tighter beliefs about skill in a Berk and Green equilibrium and thus a weaker

flow-performance relationship– smaller changes in fund size in response to unexpected fund

returns. Therefore, σ2v is very small in our model because fund size is highly persistent.

Taken together, φi = bi
1−ρ in our model, and is very high because the true ρ is close to one.

On the other hand, while a flow-performance relation exists, a substantial fraction of

flows remain unexplained by performance in the data (Berk and van Binsbergen (2016)).44

Consistent with this observation, the average of the φ estimates (based on the CAPM) in our

actual data is 0.115. This value implies that the bias of 0.00496 in ρ̂c,PMUE
i would produce a

bias of 0.000570 in b̂c,PMUE
i , which is about 14% of 0.0041 (i.e., the mean of bi). Therefore,

our empirical results are robust to the choice of the bias-corrected estimator because small

biases in ρ̂ci do lead to small biases in the corresponding b̂
c
i in the actual data. Importantly,

this observation suggests that the estimation error in fund-specific DRS are mostly of the

classical type (i.e., mean zero and independent to the actual DRS parameter) in the actual

data, so correcting the estimated coeffi cients on b̂it in Table 2 under the classical measurement

error assumption in Section 5.1.1 ought to do a good job of recovering the true DRS-FSP

relation. Indeed, these estimates of the DRS-FSP relation are comparable to those implied

by the characteristic-based approach, as well as the calibrated model.

in age is essentially negligible.
44Similarly, Barber, Huang, and Odean (2016) find that less than 18% of flows are explained by performance

and a variety of controls.
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Table 1: Summary Statistics

This table shows summary statistics for our sample of active equity mutual funds from 1991—2014. The unit

of observation is the fund/month. All returns are in units of fraction per month. Net return is the return

received by investors. Net alpha equals net return minus the return on benchmark portfolio, calculated

using the CAPM or using a set of Vanguard index funds. Fund size is the fund’s total AUM aggregated

across share classes, adjusted by inflation. The numbers are reported in Y2000 $ millions per month. The

first version of Flows is the logarithmic change in real AUM (i.e., the percentage change in fund size); the

second version of Flows is the monthly change in the fund’s net assets not attributable to its return gains

or losses. β̂�it are fund i’s estimated risk exposures from the regression of the fund’s return on the four FFC

factors over the sixty months prior to month t. # of managers is the number of managers managing the

fund in a given month. Volatility is the standard deviation of a fund’s alphas, calculated over the prior 1

year. All expenses are in units of fraction per year. Marketing expenses is a fund’s total fee ratio, defined as

the annual expense ratio plus one-seventh of the up-front load fees. Fund age is the number of years since

the fund’s first offer date (from CRSP or, if missing, from Morningstar). Turnover is in units of fraction

per year. b̂it is the fund’s decreasing returns to scale estimated as of the previous month-end; b̂Charit is the

characteristic component of b̂it estimated from the specification in column 8 of Table 4. F̂SP it is the fund’s

flow sensitivity to performance going forward.
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Panel A: Fund-Level Variables

Percentiles
# of obs. Mean Stdev. 25% 50% 75%

Net return 394, 351 0.0075 0.0498 −0.0196 0.0122 0.0384
Net alpha (CAPMRisk Adj.) 331, 450 0.0001 0.0225 −0.0105 −0.0002 0.0103
Net alpha (Vanguard BM) 389, 721 −0.0002 0.0162 −0.0082 −0.0002 0.0078
Fund size (in 2000 $millions) 391, 615 1031 4147 44 164 621
Flows (v.1) 391, 611 0.0078 0.0735 −0.0288 0.0096 0.0447
Flows (v.2) 391, 611 0.0049 0.0504 −0.0134 −0.0020 0.0136

β̂mktit 331, 450 0.9670 0.1429 0.8910 0.9707 1.0480

β̂smbit 331, 450 0.2157 0.3376 −0.0613 0.1314 0.4764

β̂hmlit 331, 450 −0.0046 0.3100 −0.2214 −0.0020 0.2020

β̂momit 331, 450 0.0146 0.1374 −0.0598 0.0062 0.0774
# of managers 382, 531 2.41 2.16 1 2 3
Volatility (CAPM Risk Adj.) 303, 147 0.0188 0.0116 0.0105 0.0158 0.0239
Volatility (Vanguard BM) 360, 609 0.0138 0.0080 0.0084 0.0119 0.0172
Expense ratio 391, 631 0.0125 0.0043 0.0097 0.0120 0.0148
Marketing expenses 258, 905 0.0182 0.0115 0.0143 0.0195 0.0218
Fund age 393, 909 12.92 13.04 4.48 8.95 15.97
Turnover 375, 293 0.837 0.705 0.350 0.642 1.100

Panel B: Estimated DRS and FSP

Percentiles
# of obs. Mean Stdev. 25% 50% 75%

b̂ (CAPM Risk Adj.) 252, 433 0.0038 0.0153 −0.0027 0.0029 0.0100

b̂ (Vanguard BM) 300, 963 0.0023 0.0105 −0.0021 0.0017 0.0064

b̂Char (CAPM Risk Adj.) 152, 007 0.0041 0.0030 0.0020 0.0037 0.0056

b̂Char (Vanguard BM) 176, 756 0.0025 0.0016 0.0014 0.0023 0.0033

F̂SP (CAPM Risk Adj., v.1) 266, 376 0.0560 0.2758 −0.0846 0.0432 0.1907

F̂SP (Vanguard BM, v.1) 293, 895 0.0993 0.3938 −0.0988 0.0940 0.2973

F̂SP (CAPM Risk Adj., v.2) 266, 376 0.1045 0.1910 0.0140 0.0756 0.1694

F̂SP (Vanguard BM, v.2) 293, 895 0.1487 0.2898 0.0171 0.1094 0.2499
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Table 2: Relation Between DRS and Flow Sensitivity to Performance

The dependent variable in each regression model is F̂SP it, the fund’s flow sensitivity to performance going

forward, where flow is defined as the % change in fund size in Panel A and as the % change in new assets

in Panel B. b̂it is the fund’s decreasing returns to scale estimated as of the previous month-end. In the odd

columns, we only include month and fund fixed effects; in the even columns, we add proxies for participation

costs, as well as performance volatility and fund age. Standard errors, two-way clustered by fund and by

month, are in parentheses. We report the EIV-adjusted coeffi cients in the last row of each panel.

Panel A: Flow as % Change in Fund Size

F̂SP it

b̂it −0.937
(0.148)

−1.299
(0.182)

−1.551
(0.288)

−1.714
(0.328)

Fund FE & Month FE Yes Yes Yes Yes
Controls No Yes No Yes

Observations 182, 675 114, 623 221, 743 136, 365
Performance relative to CAPM CAPM Vanguard

BM
Vanguard
BM

EIV Adj. Coeffi cient −9.143 −16.112 −40.984 −77.384

Panel B: Flow as % Change in New Assets

F̂SP it

b̂it −0.262
(0.087)

−0.386
(0.117)

−0.370
(0.199)

−0.549
(0.182)

Fund FE & Month FE Yes Yes Yes Yes
Controls No Yes No Yes

Observations 182, 675 114, 623 221, 743 136, 365
Performance relative to CAPM CAPM Vanguard

BM
Vanguard
BM

EIV Adj. Coeffi cient −2.560 −4.788 −9.772 −24.781
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Table 3: Relation Between DRS and FSP Based on Their Percentile Ranks
This table is the same as Table 2 but, instead of using the coeffi cient estimates b̂it and F̂SP it, uses their

percentile ranks in each month.

Panel A: Flow as % Change in Fund Size

Pctl. rank based on F̂SP it

Pctl. rank based on b̂it −0.1083
(0.0109)

−0.1251
(0.0129)

−0.0918
(0.0095)

−0.0951
(0.0117)

Fund FE Yes Yes Yes Yes
Month FE No No No No
Controls No Yes No Yes

Observations 182, 675 114, 623 221, 743 136, 365
Performance relative to CAPM CAPM Vanguard

BM
Vanguard
BM

Panel B: Flow as % Change in New Assets

Pctl. rank based on F̂SP it

Pctl. rank based on b̂it −0.0659
(0.0095)

−0.0753
(0.0117)

−0.0560
(0.0086)

−0.0593
(0.0108)

Fund FE Yes Yes Yes Yes
Month FE No No No No
Controls No Yes No Yes

Observations 182, 675 114, 623 221, 743 136, 365
Performance relative to CAPM CAPM Vanguard

BM
Vanguard
BM
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Table 5: DRS-FSP Relation Using the Characteristic Component of DRS

This table is the same as Table 2 but, instead of using the coeffi cient estimate b̂it as before, uses its charac-

teristic component estimated from the specification in column 8 of Table 4, denoted by b̂Charit .

Panel A: Flow as % Change in Fund Size

F̂SP it

b̂Charit −6.472
(1.453)

−11.751
(2.015)

−5.679
(3.433)

−8.497
(3.912)

Fund FE & Month FE Yes Yes Yes Yes
Controls No Yes No Yes

Observations 112, 975 112, 071 134, 117 132, 802
Performance relative to CAPM CAPM Vanguard

BM
Vanguard
BM

Panel B: Flow as % Change in New Assets

F̂SP it

b̂Charit −3.828
(0.948)

−6.482
(1.275)

−3.612
(2.047)

−7.568
(2.266)

Fund FE & Month FE Yes Yes Yes Yes
Controls No Yes No Yes

Observations 112, 975 112, 071 134, 117 132, 802
Performance relative to CAPM CAPM Vanguard

BM
Vanguard
BM
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Table 6: Parameter Values Used for Simulations
Panel A summarizes the model parameters that we set directly and their parameter values. The empirical

distribution of b̂Charit is approximated by a scaled Beta distribution, from which we draw bi randomly.

In that case, assuming that θi0 is independent of bi gives rise to distributions of fund size considerably

more disperse than in our actual sample. Therefore, we model the prior mean as a linear function of bi,

θi0 = θ0 (bi) = θ0a + θ0bbi. Our approach is to fit the parameters θ0a and θ0b by essentially matching the

simulated mean and standard deviation of log fund size to their empirical counterparts. We set the prior

uncertainty (σ0) to match the average flow-performance relation in the data. Panel B shows the value of

σ0 that resulted from this process. It also contains the values of the parameters governing the scaled Beta

distribution of DRS and those of the parameters governing the prior mean that we use in our simulation

analysis. The last three columns of Panel B report all the moments that we target in our calibration, as well

as their values in both the actual and simulated data.

Panel A: Parameters Set Directly

Variable Symbol Value

Return standard deviation σ 5.77%

Exit mean θ 0%

Panel B: Calibrated Parameters

Variable Symbol Value Target Emp. Value Sim. Value

x ∼ Beta (A,B) , bi = Cx

First shape parameter A 1.5 Mean of bi 0.0041 0.0041
Second shape parameter B 11.9 Std dev of bi 0.0030 0.0030
Scale parameter C 0.036 Skewness of bi 1.04 1.20

Kurtosis of bi 5.56 4.68

θ0 (bi) = θ0a + θ0bbi

Prior mean for CRS funds θ0a 0.15% Mean of log (qit) 5.1 5.1
Prior mean slope on DRS θ0b 4.2 Std dev of log (qit) 1.9 1.9

Prior uncertainty σ0 0.06% Mean of γ̂i 0.56 0.55
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Table 7: Simulated DRS-FSP Relation
We construct 10, 000 samples of simulated panel data for 300 funds over 100 months. We simulate a given

sample by first drawing each fund’s DRS bi randomly from the scaled Beta distribution consistent with the

distribution of fund-specific b estimates (̂bCharit ), while drawing the fund’s skill ai from a normal distribution

with mean θ0 (bi) and standard deviation σ0. Next, we simulate εit as independent draws across funds and

periods, building up the panel data of αit and qit. For each fund in the sample, we run the following regression

using data for just that fund to estimate its FSP: log (qit/qit−1) = ci + γiαit + υit. We then estimate the

DRS-FSP relation in each of the simulated samples. Panel A shows summary statistics of these estimates

across simulated samples from the calibrated model. To quantitatively assess the role of heterogeneity in

returns to scale in capital allocation, we construct a counterfactual by assuming investors learn about skill

based on distorted beliefs that bi = 0.0041 for all funds. Then, updating investors’beliefs with the history of

its returns under the counterfactual assumption, we compute the fund’s size under the counterfactual, qCit ,

for every i and t. For each sample, we calculate the R2 from a regression of log (qit) on log(qCit ) to check

the goodness of fit by the counterfactual. We report the results from counterfactual simulations in Panel

B. The first two rows show summary statistics of the coeffi cient estimates from the regression of log (qit)

on log
(
qCit
)
across simulated samples; the last row shows summary statistics of the R2 from this regression

across simulated samples.

Panel A: Simulated DRS-FSP Relation

γ̂i = k + λbi + ui

Percentiles
Mean 1% 10% 25% 50% 75% 90% 99%

λ̂ −16.9 −49.0 −22.6 −18.0 −14.8 −12.7 −11.2 −9.33

Data −11.8

Panel B: Capital Allocation Explained by Counterfactual

log (qit) = π0 + π1 log
(
qCit
)
+ eit

Percentiles
Mean 1% 10% 25% 50% 75% 90% 99%

π̂0 −421 −743 −664 −548 −405 −288 −217 −136
π̂1 93.5 30.9 48.8 64.1 90.0 121 147 164

R2 0.430 0.138 0.227 0.301 0.413 0.556 0.668 0.749

51



Table 8: Relation Between DRS and Fund Size
We first form quintile groups sorted on fund fixed effects estimated as of month t − 1, âCharit . Within each

âCharit quintile, we sort funds into five groups based on fund-specific DRS estimated as of month t−1, b̂Charit .

We conduct double sorts of funds belonging to the same Morningstar category × month × age category.

After forming the 5 × 5 âCharit and b̂Charit groups, we average fund sizes, as measured by log real AUM, in

month t, of each b̂Charit quintile over the five âCharit groups. Panel A reports average fund sizes of the 25

âCharit × b̂Charit groups using the CAPM as the benchmark; Panel B repeats the same exercise, except we use

Vanguard index funds as the benchmark. The column labeled “Average” reports the average month-end

fund sizes of the b̂Charit quintiles, controlling for âCharit , fund style and fund age. The row labeled “High-low”

reports the differences in average sizes between the first and fifth quintile b̂Charit groups in each column. We

report standard errors of these differences using 60 Newey-West lags.

Panel A: Performance Relative to the CAPM

âCharit Quintiles
Group 1 Low 2 3 4 5 Average

1 Low b̂Charit 5.452 6.463 6.915 7.280 7.484 6.689
2 5.667 6.158 6.399 6.763 7.256 6.419
3 5.318 5.349 5.682 6.108 6.768 5.808
4 4.802 4.877 5.137 5.678 6.615 5.390

5 High b̂Charit 3.870 3.982 4.403 4.965 6.559 4.705

High-low −1.582
(0.182)

−2.480
(0.095)

−2.513
(0.191)

−2.316
(0.165)

−0.925
(0.156)

−1.983
(0.132)

Panel B: Performance Relative to the Vanguard BM

âCharit Quintiles
Group 1 Low 2 3 4 5 Average

1 Low b̂Charit 5.203 6.075 6.531 6.946 7.279 6.361
2 5.490 5.892 6.266 6.655 7.064 6.237
3 5.147 5.189 5.570 5.950 6.575 5.656
4 4.647 4.691 5.033 5.577 6.502 5.247

5 High b̂Charit 3.818 3.893 4.338 4.955 6.392 4.628

High-low −1.385
(0.085)

−2.182
(0.091)

−2.193
(0.164)

−1.991
(0.124)

−0.887
(0.132)

−1.733
(0.092)
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Table 9: Relation Between Optimal Size and Fund Size

The dependent variable in each regression model is the fund’s log real AUM in $ millions (base year is 2000).

A fund’s optimal size, log (q̂∗i ), is the average ratio of its net alpha (adjusted for decreasing returns to scale)

to its individual DRS parameter; the alternative measure of a fund’s optimal size, log
(
q̂∗RD2i

)
, is calculated

assuming that the effect of scale on performance is the same for all funds. Details of these optimal fund

size measures are in Section 5.2.1. In Panel A, we report the results using the CAPM as the benchmark;

in Panel B, we use Vanguard index funds as the benchmark. Standard errors are double clustered (by fund

and time) and are reported in parentheses.

Panel A: Performance Relative to the CAPM

Dependent Variable: Log Real AUM

log (q̂∗i ) 0.367
(0.016)

0.674
(0.015)

0.905
(0.012)

−0.052
(0.021)

0.271
(0.023)

0.597
(0.037)

log
(
q̂∗RD2i

)
0.585
(0.025)

0.517
(0.023)

0.332
(0.038)

R2 0.24 0.63 0.78 0.39 0.71 0.79

Observations 84, 310 100, 048 176, 375 84, 310 100, 048 176, 375
Fund ages [0, 5] yr. (5, 10] yr. > 10 yr. [0, 5] yr. (5, 10] yr. > 10 yr.

Panel B: Performance Relative to the Vanguard BM

Dependent Variable: Log Real AUM

log (q̂∗i ) 0.203
(0.011)

0.416
(0.028)

0.659
(0.024)

0.031
(0.011)

0.181
(0.025)

0.361
(0.038)

log
(
q̂∗RD2i

)
0.300
(0.014)

0.354
(0.024)

0.340
(0.038)

R2 0.17 0.44 0.65 0.31 0.54 0.68

Observations 98, 088 102, 325 176, 505 98, 088 102, 325 176, 505
Fund ages [0, 5] yr. (5, 10] yr. > 10 yr. [0, 5] yr. (5, 10] yr. > 10 yr.
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Table 10: Horse Race Among the Various Estimators of DRS Using Simulations

This table reports the results of a horse race among the various estimators of the AR parameter ρi governing

the size process log (qit) = χi+ρi log (qit−1)+vit for the sake of recovering the bi coeffi cients using our model.

We simulate equilibrium alphas and sizes from the calibrated model to generate 10, 000 samples of panel data

for 300 funds over 100 months. In each sample, we estimate b̂ci as the coeffi cient of log (qit−1) in a time-series

regression of αit on − log (qit−1) and vcit, where vcit is a proxy for the size innovation. The proxy vcit takes
the form, vcit = log (qit)− (χ̂ci + ρ̂ci log (qit−1)), where χ̂ci and ρ̂ci are any estimators of χi and ρi constructed
based on size data. To obtain the proxy vcit, we consider four popular reduced-bias estimators of ρi from the

existing literature, details of which are in Appendix B.1. Importantly, we propose yet another bias-corrected

estimator of bi motivated by AH’s bias expression (22): set ρi to minimize the magnitude of the mean bias

of the bi estimates across simulated samples. This process results in the value of ρi = 0.999863, which we

denote by ρ̂c,∗i , with the corresponding bias-corrected bi estimator, denoted by b̂
c,∗
i . In each sample, we

then compute the non-negative biases in each of the b̂ci’s as the average difference between b̂
c
i and bi across

funds. Panel A shows the mean biases of the bi estimates across simulated samples. Another way to assess

the performance of these bias-corrected estimators of bi is to regress each of the b̂ci’s on bi in each sample:

b̂ci = ψ0 + ψ1bi + εi. Panel B shows the means of the ψ0 and ψ1 estimates across simulated samples. Panel

C reports the means of the ρi estimates (averaged across funds in each sample) across simulated samples.

Panel A: Bias in estimators of bi corresponding to

reduced-bias estimators of ρi our approach to estimating ρi
from the existing literature

Bias in b̂c,AHi b̂c,BGSi b̂c,MUE
i b̂c,PMUE

i b̂c,∗i

Mean 0.570 1.043 1.095 0.520 0.000

Panel B: Relation between bi and its estimators corresponding to

reduced-bias estimators of ρi our approach to estimating ρi
from the existing literature

b̂c,AHi b̂c,BGSi b̂c,MUE
i b̂c,PMUE

i b̂c,∗i

Mean ψ̂0 0.003 0.003 0.003 0.000 0.000

Mean ψ̂1 139.2 254.7 267.2 127.8 1.000

Panel C: Mean estimated ρi across funds corresponding to

reduced-bias estimators of ρi our approach to estimating ρi
from the existing literature

ρ̂c,AHi ρ̂c,BGSi ρ̂c,MUE
i ρ̂c,PMUE

i ρ̂c,∗i

Mean 0.9873 0.9769 0.9758 0.9949 0.999863
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Table 11: Relation Between DRS and Flow Sensitivity to Performance

This table is the same as Table 2 but, in lieu of b̂it (the bias-corrected bi estimator based on the PMUE of ρi),

uses b̂c,∗it (the bias-corrected bi estimator based on the model-implied estimator of ρi (i.e., ρ̂
c,∗
i = 0.999863).

Details of these bi estimators (as well as other bi estimators from the existing literature) are in Appendix B.

Panel A: Flow as % Change in Fund Size

F̂SP it

b̂it −0.943
(0.148)

−1.308
(0.182)

−1.551
(0.288)

−1.709
(0.327)

Fund FE & Month FE Yes Yes Yes Yes
Controls No Yes No Yes

Observations 182, 675 114, 623 221, 743 136, 365
Performance relative to CAPM CAPM Vanguard

BM
Vanguard
BM

EIV Adj. Coeffi cient −9.812 −17.989 −50.572 −134.929

Panel B: Flow as % Change in New Assets

F̂SP it

b̂it −0.263
(0.087)

−0.386
(0.117)

−0.384
(0.197)

−0.559
(0.181)

Fund FE & Month FE Yes Yes Yes Yes
Controls No Yes No Yes

Observations 182, 675 114, 623 221, 743 136, 365
Performance relative to CAPM CAPM Vanguard

BM
Vanguard
BM

EIV Adj. Coeffi cient −2.738 −5.314 −12.512 −44.160

55



Table 12: Relation Between DRS and FSP Based on Their Percentile Ranks
This table is the same as Table 3 but, in lieu of b̂it (the bias-corrected bi estimator based on the PMUE of ρi),

uses b̂c,∗it (the bias-corrected bi estimator based on the model-implied estimator of ρi (i.e., ρ̂
c,∗
i = 0.999863).

Details of these bi estimators (as well as other bi estimators from the existing literature) are in Appendix B.

Panel A: Flow as % Change in Fund Size

Pctl. rank based on F̂SP it

Pctl. rank based on b̂it −0.1084
(0.0109)

−0.1250
(0.0128)

−0.0914
(0.0095)

−0.0943
(0.0117)

Fund FE Yes Yes Yes Yes
Month FE No No No No
Controls No Yes No Yes

Observations 182, 675 114, 623 221, 743 136, 365
Performance relative to CAPM CAPM Vanguard

BM
Vanguard
BM

Panel B: Flow as % Change in New Assets

Pctl. rank based on F̂SP it

Pctl. rank based on b̂it −0.0657
(0.0094)

−0.0750
(0.0117)

−0.0563
(0.0085)

−0.0597
(0.0108)

Fund FE Yes Yes Yes Yes
Month FE No No No No
Controls No Yes No Yes

Observations 182, 675 114, 623 221, 743 136, 365
Performance relative to CAPM CAPM Vanguard

BM
Vanguard
BM
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Table 14: DRS-FSP Relation Using the Characteristic Component of DRS

This table is the same as Table 5 but, in lieu of b̂it (the bias-corrected bi estimator based on the PMUE of ρi),

uses b̂c,∗it (the bias-corrected bi estimator based on the model-implied estimator of ρi (i.e., ρ̂
c,∗
i = 0.999863).

Details of these bi estimators (as well as other bi estimators from the existing literature) are in Appendix B.

Panel A: Flow as % Change in Fund Size

F̂SP it

b̂Charit −6.908
(1.494)

−12.470
(2.076)

−5.829
(3.550)

−8.586
(3.974)

Fund FE & Month FE Yes Yes Yes Yes
Controls No Yes No Yes

Observations 112, 975 112, 071 134, 117 132, 802
Performance relative to CAPM CAPM Vanguard

BM
Vanguard
BM

Panel B: Flow as % Change in New Assets

F̂SP it

b̂Charit −3.964
(0.975)

−6.669
(1.303)

−3.714
(2.108)

−7.596
(2.297)

Fund FE & Month FE Yes Yes Yes Yes
Controls No Yes No Yes

Observations 112, 975 112, 071 134, 117 132, 802
Performance relative to CAPM CAPM Vanguard

BM
Vanguard
BM
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Figure 1: Distribution of individual decreasing returns to scale (DRS) parameters
over time: The figure plots each month’s mean and percentiles of estimated size effect on
performance (̂bit) across all funds operating during that month. Panel A estimates DRS
when we calculate outperformance relative to the CAPM. Panel B estimates DRS when we
calculate outperformance relative to the Vanguard benchmark.
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Figure 2: Distribution of individual DRS parameters’characteristic component
over time: The figure plots each month’s mean and percentiles of estimated size effect on
performance (̂bit) explained by fund characteristics (̂bCharit ) across all funds operating during
that month. Panel A estimates DRS when we calculate outperformance relative to the
CAPM. Panel B estimates DRS when we calculate outperformance relative to the Vanguard
benchmark.
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Figure 3: Distribution of individual flow sensitivity to performance (FSP, v.1)
over time: The figure plots each month’s mean and percentiles of estimated % change
in real AUM due to performance across all funds operating during that month. Panel A
estimates FSP when we calculate outperformance relative to the CAPM. Panel B estimates
FSP when we calculate outperformance relative to the Vanguard benchmark.
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Figure 4: Distribution of individual flow sensitivity to performance (FSP, v.2)
over time: The figure plots each month’s mean and percentiles of estimated % change
in new assets due to performance across all funds operating during that month. Panel A
estimates FSP when we calculate outperformance relative to the CAPM. Panel B estimates
FSP when we calculate outperformance relative to the Vanguard benchmark.
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