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Abstract

Motivated by the problem of sustaining cooperation in large communities with lim-

ited information, we analyze the relationship between the population size, the discount

factor, and the monitoring structure in repeated games with individual-level noise. We

identify the ratio of the discount rate and the per-capita channel capacity of the mon-

itoring structure as a key determinant of the possibility of cooperation. If this ratio

is large, all repeated-game Nash equilibrium payoffs are consistent with approximately

myopic play. We provide a near-converse to this result under public, product-structure

monitoring. For example, if the above ratio is small, a folk theorem holds under

random auditing, where each player is monitored with the same probability in every

period. If instead attention is restricted to linear equilibria (a generalization of strongly

symmetric equilibria), cooperation is possible only under much more severe parameter

restrictions.
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1 Introduction

Large groups of individuals often have a remarkable capacity for cooperation, even in the ab-

sence of external contractual enforcement (Ostrom, 1990; Ellickson, 1991; Seabright, 2004).

Cooperation in large groups usually seems to rely on high-quality monitoring of individual

agents’actions, together with sanctions that narrowly target deviators. These are key fea-

tures of the community resource management settings documented by Ostrom (1990), as

well as the local public goods provision environment studied by Miguel and Gugerty (2005),

who in a development context found that parents who fell behind on their school fees and

other voluntary contributions faced social sanctions. Large cartels seem to operate on similar

principles. For example, the Federation of Quebec Maple Syrup Producers– a government-

sanctioned cartel that organizes more than 7,000 producers, accounting for over 90% of

Canadian maple syrup production– strictly monitors its members’sales, and producers who

violate its rules regularly have their sugar shacks searched and their syrup impounded, and

can also face fines, legal action, and ultimately the seizure of their farms (Kuitenbrouwer,

2016; Edmiston and Hamilton, 2018). In contrast, we are not aware of any evidence that

individual maple syrup producers– or the parents studied by Miguel and Gugerty, or the

farmers, fishers, and herders studied by Ostrom– are motivated by the fear of starting a

price war or other general breakdown of cooperation.

The principle that large-group cooperation requires precise monitoring and personalized

sanctions seems like common sense, but it is not reflected in current repeated game models.

The standard analysis of repeated games with patient players (e.g., Fudenberg, Levine, and

Maskin, 1994; henceforth FLM) fixes all parameters of the game except the discount factor

δ and considers the limit as δ → 1. This approach does not capture situations where, while

players are patient (δ ≈ 1), they are not necessarily patient in comparison to the population

size N (so (1− δ)N may or may not be close to 0). In addition, since standard results are

based on statistical identifiability conditions that hold generically regardless of the number

of players, they also do not capture the possibility that more information may be required to

support cooperation in larger groups. Finally, since there is typically a vast multiplicity of

cooperative equilibria in the δ → 1 limit, standard results also say little about what kind of

strategies must be used to support large-group cooperation, for example whether it is better

to rely on individual sanctions (e.g., fines) or collective ones (e.g., price wars).
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In this paper, we extend the standard analysis of repeated games with imperfect moni-

toring by letting the population size, discount factor, stage game, and monitoring structure

all vary together. These aspects of the repeated game can vary in a quite general manner:

we assume only a uniform upper bound on the magnitude of the players’stage-game payoffs

and a uniform lower bound on individual-level noise. Our main results provide necessary and

suffi cient conditions for cooperation as a function of N , δ, and a measure of the “informa-

tiveness”of the monitoring structure. We also show that cooperation is possible only under

much more restrictive conditions if society exclusively relies on collective sanctions. In sum,

we show that large-group cooperation requires a lot of patience and/or a lot of information,

and cannot be based on collective sanctions for reasonable parameter values.

We preview our main ideas and results. We model individual-level noise by assuming that

each player’s action ai stochastically determines an individual-level outcome xi, indepen-

dently across players, and that the distribution of signals y = (yi) (the outcome monitoring

structure) depends on the action profile a = (ai) only through the outcome profile x = (xi).

This setup follows earlier work by Fudenberg, Levine, and Pesendorfer (1996; henceforth

FLP) and al-Najjar and Smorodinsky (2000, 2001; henceforth a-NS). We find that a useful

measure of the informativeness of the outcome monitoring structure is its channel capacity,

C. This is a standard measure in information theory, which in the current context is defined

as the maximum expected reduction in uncertainty (entropy) about the outcome profile x

that results from observing the signal profile y. (The elements of y can be distinct, as mon-

itoring need not be public.) Channel capacity obeys the elementary inequality C ≤ log |Y |,
where Y is the set of possible signal realizations. Due to this inequality, our results based on

channel capacity are more general than they would be if we simply measured informativeness

by the cardinality of the set of signal realizations. At the same time, channel capacity is

convenient to work with, as it lets us use results from information theory such as Pinsker’s

inequality and the chain rule for mutual information, which play key roles in our analysis.

Our first result (Theorem 1) is that if (1− δ)N/C– that is, the ratio of the discount
rate 1 − δ to the per-capita channel capacity C/N– is large, then all repeated-game Nash
equilibrium payoffs are consistent with almost-myopic play. This result builds on a general

necessary condition for cooperation in repeated games that we establish in a companion paper

(Sugaya and Wolitzky, 2022a; henceforth SW). Compared to that result, the key difference is

that here we consider games with individual-level noise, which allows a connection between
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the key information measure in SW (the χ2-divergence between the signal distribution at

equilibrium and that following a deviation) and channel capacity.

Our second result (Theorem 2) provides a near-converse to the first, under some ad-

ditional structure on monitoring. We show that for games with public, product-structure

monitoring that satisfies a condition that we call η-individual identifiability, for η > 0 such

that (1− δ) log (N) /η is small, a large set of payoffs arise as perfect equilibria in the re-

peated game.1 A simple example of public, product-structure monitoring that satisfies η-

individual identifiability is η-random auditing, where in each period ηN players are chosen

at random and and perfectly monitored, while nothing is revealed about the other players’

actions. Since the channel capacity of η-random auditing is a constant multiple of ηN , this

example describes a class of monitoring structures where a folk theorem holds whenever

(1− δ)N log (N) /C is small. This shows that the condition of our first theorem is tight up

to log (N) slack.

Our final result (Theorem 3) considers the implications of restricting society to “collec-

tive”sanctions and rewards. We formalize this restriction by focusing on linear equilibria,

where all on-equilibrium-path continuation payoffvectors lie on a line in RN . When the stage

game is symmetric and the line in question is the 45◦ line, linear equilibria reduce to strongly

symmetric equilibria, which are a standard model of collusion through the threat of price

wars (Green and Porter, 1984; Abreu, Pearce, and Stacchetti, 1986; Athey, Bagwell, and

Sanchirico, 2004). We show that if there exists ρ > 0 such that (1− δ) exp (N1−ρ) is large,

then all equilibrium payoffs are consistent with almost-myopic play. Since this condition

holds even if N → ∞ much slower than δ → 1, we interpret this result as an impossibility

theorem for large-group cooperation based on collective incentives.2

1.1 Related Literature

Prior research on repeated games has established folk theorems in the δ → 1 limit for fixed

N , as well as anti-folk theorems in the N →∞ limit for fixed δ, but has not considered the

case where N and δ vary together. Our main results on the three-way relationship among

1The definitions of public, product-structure monitoring and individual identifiability follow FLM. The
η-identifiability condition is a version of FLM’s individual full rank with η “slack.”

2It is well-known that strongly symmetric equilibria are typically less effi cient than general perfect public
equilibria in games with public monitoring. Our result is instead that the relationship between N and
δ required for any non-trivial incentive provision differs dramatically between strongly symmetric (more
generally, linear) equilibria and general ones.
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N , δ, and monitoring also do not have close antecedents in the literature.

The closest paper is our companion work, SW. That paper establishes general necessary

and suffi cient conditions for cooperation in repeated games as a function of discounting and

monitoring. The current paper introduces two features that are specific to large-population

games: individual-level noise (the key feature underlying Theorem 1), and the possibility that

N varies together with discounting and monitoring (the key feature underlying Theorem 2).

The most relevant folk theorems are due to FLM, Kandori and Matsushima (1998, hence-

forth KM), and SW. The proof approach in these papers does not easily extend to the case

where N and δ vary together. Our proof of Theorem 2 thus take a different approach, which

is based on “block strategies”as in Matsushima (2004) and Hörner and Olszewski (2006),

and involves a novel application of some large deviations bounds.

Other than that in SW, the most relevant anti-folk theorems are those of FLP, a-NS,

Pai, Roth, and Ullman (2014), and Awaya and Krishna (2016, 2019). Following earlier work

by Green (1980) and Sabourian (1990), these papers establish conditions under which play

becomes approximately myopic as N →∞ for fixed δ.3 These conditions can be adapted to

the case where N , δ, and monitoring vary together, but the results so obtained are weaker

than ours, and are not tight up to log terms. The key difference is that these results rely

on bounds on the strength of players’incentives that have a worse order in 1− δ than that
given in SW. In sum, the earlier literature established anti-folk theorems as N → ∞ for

fixed δ, while our paper tightly (up to log terms) characterizes the tradeoff among N , δ, and

monitoring.4

Since the monitoring structure varies with δ in our model, we also relate to the literature

on repeated games with frequent actions, where the monitoring structure varies with δ in

a particular, parametric manner (e.g., Abreu, Milgrom, and Pearce, 1991; Fudenberg and

Levine, 2007, 2009; Sannikov and Skrzypacz, 2007, 2010). The most related results here are

Sannikov and Skrzypacz’s (2007) theorem on the impossibility of collusion in duopoly with

frequent actions and Brownian noise, as well as a similar result by Fudenberg and Levine

(2007). These results relate to our anti-folk theorem for linear equilibrium, as we explain in

3Awaya and Krishna instead establish conditions under which cheap talk is valuable. Green and
Sabourian’s papers imposed a continuity condition on the mapping from action distributions to signal dis-
tributions. Continuity is implied by FLP/a-NS’s individual noise assumption.

4Farther afield, there is also work suggesting that repeated-game cooperation is harder to sustain in larger
groups based on evolutionary models (Boyd and Richerson, 1988) and simulations (Bowles and Gintis, 2011;
Chapter 5).
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Section 5.5

Finally, in earlier work (Sugaya and Wolitzky, 2021) we studied the relationship among

N , δ, and monitoring in repeated random-matching games with private monitoring and in-

complete information, where each player is “bad”with some probability. In that model,

society has enough information to determine which players are bad after a single period of

play, but this information is disaggregated, so the question is whether information diffuses

quickly enough to ensure that it pays to be good. In contrast, in the current paper there

is complete information and monitoring can be public, so the analysis concerns monitoring

precision (the “amount”of information available to society) rather than the speed of informa-

tion diffusion (the “distribution”of information). In general, whether the key friction is that

societal information is insuffi cient or disaggregated distinguishes “large-population repeated

game”models, such as FLP, a-NS, and the current paper, from “community enforcement”

models, such as Kandori (1992), Ellison (1994), and our earlier paper.

2 Model

We consider a general model of repeated games with individual-level noise and imperfect

monitoring.

Stage Games. A stage game G = (I, A, u) consists of a finite set of players I =

{1, . . . , N}, a finite product set of actions A = ×i∈IAi, and a payoff function ui : A→ R for

each i ∈ I. The interpretation is that ui (a) is player i’s expected payoff at action profile a.

Denote the range of player i’s payoff function by ūi = maxa,a′ ui (a)− ui (a′).

Noise. There is a finite product set of individual outcomes X = ×i∈IXi and a noise

matrix πi ∈ [0, 1]Ai×Xi for each player i such that, when action profile a ∈ A is played,

outcome profile x ∈ X is realized with probability πa,x =
∏

i π
i
ai,xi

. We call the pair (X, π)

a noise structure. Let πi = minai,xi π
i
ai,xi

and assume that πi > 0 for each i: we call this

assumption individual-level noise. The point of this setup is that signals will depend on a

only through x. One natural interpretation of the individual outcomes is that there is some

independent noise in the execution of the players’actions, so that ai is player i’s intended

5Another somewhat related question is the rate of convergence of the equilibrium payoff set as δ → 1
(Hörner and Takahashi, 2016; Sugaya and Wolitzky, 2022b).
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action and xi is her realized action– in this case, X = A. Also, since we will assume that

players do not observe their own payoffs in addition to signals, it is natural to require that

players’realized payoffs are determined by their signals, and hence depend on a only through

x; however, this assumption is not necessary for our analysis.

Monitoring Structures and Channel Capacity. An outcome monitoring structure

(Y, q) consists of a finite product set of signal profiles Y = ×i∈IY i and a family of conditional

probability distributions q (y|x). The distribution of signal profiles thus depends only on the

realized outcome. Given an outcome monitoring structure (Y, q), denote the probability of

signal profile y at action profile a by p (y|a) =
∑

x πa,xq (y|x). We refer to the pair (Y, p)

as the action monitoring structure induced by (Y, q). Let Ȳ ⊆ Y denote the set of signal

profiles y ∈ Y such that there exists an outcome profile x ∈ X at which q (y|x) > 0. Since

πi > 0 for each i, signals are always supported on Ȳ : for any action profile a, p (y|a) > 0 iff

y ∈ Ȳ .
Given a distribution of outcomes ξ ∈ ∆ (X), a standard measure of the informativeness of

a signal y about the realized outcome x is the mutual information between x and y, defined

as

I (ξ) =
∑

x∈X,y∈Ȳ

ξ (x) q (y|x) log
q (y|x)∑

x′∈X ξ (x′) q (y|x′) .
6

Mutual information measures the expected reduction in uncertainty (entropy) about x that

results from observing y. This is an endogenous object, as it depends on the prior distribution

ξ of x. The channel capacity of (Y, q) is defined as

C = max
ξ∈∆(X)

I (ξ) .

This is an exogenous measure of the informativeness of y about x. Note that C is no greater

than the entropy of the signal y, which in turn is at most log |Y | (Theorem 2.6.3 of Cover and
Thomas, 2006; henceforth CT). Channel capacity plays a central role in information theory,

because it is the maximum rate at which information can be transmitted over a noisy channel

(Shannon’s channel coding theorem, CT Theorem 7.7.1). Our analysis does not use this

theorem; we use channel capacity only as an upper bound on mutual information. In turn,

mutual information arises in our analysis because it obeys useful properties, in particular the

6In this paper, all logarithms are base e.
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chain rule (CT, Theorem 2.5.2) and Pinsker’s inequality (CT, Lemma 11.6.1): see Lemma

3 in Section 3.3.7

Our folk theorem (Theorem 2) will assume that monitoring is public and has a prod-

uct structure. A monitoring structure (Y, q) is public if all players observe the same sig-

nal: yi = yj for all i, j ∈ I, y ∈ Y . In this case, we simply denote the public signal by

y. A public monitoring structure (Y, q) has a product structure if there exists sets (Yi)i∈I

and a family of conditional distributions (qi (yi|xi))i∈I,,yi∈Yi,xi∈Xi such that Y =
∏

i Yi and

q (y|x) =
∏

i qi (yi|xi) for all y, x: that is, the public signal y consists of conditionally in-
dependent signals of each player’s individual outcome.8 Note that if (Y, q) is public and

has a product structure, then so does (Y, p), meaning that there exists a family of con-

ditional distributions (pi (yi|ai))i∈I,,yi∈Yi,ai∈Ai (given by pi (yi|ai) =
∑

xi
πiai,xiqi (yi|xi)) such

that p (y|a) =
∏

i pi (yi|ai) for all y, a.

Repeated Games. A repeated game with individual-level noise Γ = (G,X, π, Y, q, δ)

is described by a stage game, a noise structure, an outcome monitoring structure, and a

discount factor δ ∈ (0, 1). In each period t = 1, 2, . . ., (i) the players observe the outcome

of a public randomizing device zt drawn from the uniform distribution over [0, 1], (ii) the

players take actions a, (iii) the outcome x is drawn according to πa,x, (iv) the signal y is

drawn according to q (y|x), and (v) each player i observes yi.9 A history hti for player i at

the beginning of period t thus takes the form hti =
(

(zt′ , ai,t′ , y
i
t′)
t−1

t′=1 , zt

)
, while a strategy

σi for player i maps histories hti to distributions over actions ai,t. A repeated game outcome

µ ∈ (A×X × Y )∞ (not to be confused with a single profile of individual outcomes x)

is a distribution over infinite paths of actions, individual outcomes, and signals. Players

maximize discounted expected payoffs with discount factor δ.

For any ū > 0 and π > 0, we say that a repeated game Γ is (ū, π)-bounded if the

range of stage-game payoffs is bounded above by ū and individual-level noise is bounded

below by π: that is, if ūi ≤ ū and πi ≥ π for all i. Note that if Γ is (ū, π)-bounded then

7Entropy methods have previously been used to study various issues in repeated games, including com-
plexity and bounded recall (Neyman and Okada, 1999, 2000; Hellman and Peretz, 2020), communication
(Gossner, Hernández, and Neyman, 2006), and reputation effects (Gossner, 2011; Ekmekci, Gossner, and
Wilson, 2011; Faingold, 2020). However, these papers are not very related to ours.

8Our notation is thus that Y i denotes the set of possible signals observed by player i (for any monitoring
structure), while Yi denotes the set of public signals of player i’s individual outcome (for public, product
structure monitoring).

9The analysis and results are unchanged if player i also observes her own individual outcome xi.

7



min {|Ai| , |Xi|} ≤ 1/π for all i. We also say that Γ is ū-bounded if the range of stage-game

payoffs is bounded above by ū (but noise is not necessarily bounded).

Our anti-folk theorem (Theorem 1) will apply not only for any Nash equilibrium in

Γ, but also for any Nash equilibrium in an associated repeated game ΓB, which we call

the blind game. The blind game (which we introduced in SW) is a variant of Γ where

(i) the players have access to a neutral mediator, (ii) at the beginning of each period, the

mediator privately recommends an action ri ∈ Ai to each player i, and (iii) at the end of

each period, the mediator observes the signal y (drawn according to p ((yi)i | (ai)i)), while
the players observe nothing. Players remember their own past actions, and the mediator

does not observe the players’actions. Thus, a history for player i in the repeated game ΓB

takes the form hti =
(
(ri,t′ , ai,t′)

t−1
t′=1 , ri,t

)
, while a history for the mediator takes the form

ht0 =
(
(ri,t′)i , (y

i
t′)i
)t−1

t′=1
. By standard arguments, any repeated game outcome µ that is

induced by a Nash equilibrium in Γ is also induced by a Nash equilibrium in ΓB.

We can also defined the mediated game ΓM , which differs from ΓB in that each player i

continues to observe yi at the end of a period. Thus, ΓM is obtained from Γ by introducing

a mediator who observes y, and we can then obtain ΓB from ΓM by removing the signal

components yi from the players’information sets. The set of Nash equilibrium outcomes in

ΓM is larger than that in Γ, but smaller than that in ΓB.

Manipulations. A manipulation for a player i is a mapping si : Ai → ∆ (Ai). The

interpretation is that when player i is recommended action ai, she instead plays si (ai).

Player i’s gain from manipulation si at a (possibly correlated) action profile distribution

α ∈ ∆ (A) is

gi (si, α) =
∑
a

α (a) (ui (si (ai) , a−i)− ui (a)) ,

and player i’s maximum gain at α ∈ ∆ (A) is

gi (α) = max
si:Ai→∆Ai

gi (si, α) .

Sets of Payoffs. Finally, we define some relevant sets of payoff vectors. The feasible

payoff set is F = co
{
{u (a)}a∈A

}
⊆ RN (where co denotes convex hull). Let F ∗ ⊆ F denote

the set of payoff vectors that weakly Pareto-dominate a payoff vector which is a convex

combination of static Nash payoffs: that is, v ∈ F ∗ if v ∈ F and there exists a collection
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of static Nash equilibria (αn) and non-negative weights (βn) such that v ≥
∑

n βnu (αn)

and
∑

n βn = 1.10 For each v ∈ RN and ε > 0, let Bv (ε) =
∏

i [vi − ε, vi + ε], and let

B (ε) =
{
v ∈ RN : Bv (ε) ⊆ F ∗

}
. That is, B (ε) is the set of payoff vectors v ∈ RN such that

the cube with center v and side-length 2ε lies entirely within F ∗.

Next, for any ε > 0, the set of action distributions consistent with ε-myopic play is

A (ε) =

{
α ∈ ∆ (A) :

1

N

∑
i

gi (α) ≤ ε

}
,

and the set of payoff vectors consistent with ε-myopic play is

M (ε) =
{
v ∈ RN : v = u (α) for some α ∈ A (ε)

}
.

That is, an action distribution α is consistent with ε-myopic play if the per-player average

deviation gain at α is less than ε. Note that gi (α) is convex as the maximum of affi ne

functions, and hence A (ε) and M (ε) are convex sets.

Our anti-folk theorem will provide conditions under which all repeated-game equilibrium

payoff vectors are contained in the set M (ε), while our folk theorem will provide conditions

under which all payoff vectors in the set B (ε) arise in repeated-game equilibria. These

results are interesting insofar as M (ε) is “small”and B (ε) is “large.”As a check that B (ε)

is reasonably large, in Appendix A.1 we consider a canonical public-goods game where each

player chooses Contribute or Don’t Contribute, and a player’s payoff is the fraction of players

who contribute less a constant c ∈ (0, 1) (independent of N) if she contributes herself. In

this game, we show that for every v ∈ (0, 1− c) there exists ε > 0 such that the symmetric

payoff vector where all players receive payoff v lies in B (ε), for all N . We discuss M (ε) in

Section 6, following our main results.

3 Necessary Conditions for Cooperation

3.1 Anti-Folk Theorem

Our first result is that whenever per-capita channel capacity is much smaller than the dis-

count rate, payoffs are consistent with almost-myopic play.

10Here and throughout, we linearly extend payoff functions to mixed actions.
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Theorem 1 Fix any ū > 0 and π > 0. For any ε > 0, there exists k > 0 such that, for

any (ū, π)-bounded repeated game Γ such that (1− δ)N/C > k, any Nash equilibrium payoff

vector v in Γ (or, moreover, in ΓB) is consistent with ε-myopic play.

Theorem 1 implies that cooperation in large groups requires a large amount of information

or a high degree of patience.

When N is large, the implied necessary condition for cooperation– that (1− δ)N/C is

not too large– is restrictive for some classes of repeated games but not others. First, if the

space of possible signal realizations Y is fixed independently of N then, since C ≤ log |Y |,
the necessary condition implies that δ must converge to 1 at least as fast as N →∞, which
is restrictive. This negative conclusion applies for traditional applications of repeated games

with public monitoring where the signal space is fixed independently of N , such as when

the public signal is the market price facing Cournot competitors, the level of pollution in a

common water source, the output of team production, or some other aggregate statistic.

However, in other types of games C naturally scales linearly with N , so that (1− δ)N/C
is small whenever players are patient. In repeated games with random matching (Kandori,

1992; Ellison, 1994; Deb, Sugaya, and Wolitzky, 2020), players match in pairs each period

and yit = am(i,t),t, where m (i, t) ∈ I\ {i} denotes player i’s period-t partner. In these

games, C = N log |Ai|, so per-capita channel capacity is independent of N . Intuitively,
in random matching games each player gets a distinct signal of the overall action profile,

so the total amount of information available to society is proportional to the population

size. Channel capacity also scale linearly with N in public-monitoring games where public

information includes a distinct signal of each player’s action, as in the ratings systems used by

websites like eBay and AirBnB. In general, C/N may be constant in games where players are

monitored “separately,”rather than being monitored jointly through an aggregate statistic.

Remark 1 In applications like Cournot competition, pollution, or team production, the sig-

nal space may be modeled as a continuum, in which case the constraint C ≤ log |Y | is
vacuous. However, our results extend to the case where Y is a compact metric space and

there exists another compact metric space Z and a function fN : XN → Z (which can vary

with N) such that the signal distribution admits a conditional density of the form qY |Z (y|z),

where Y , Z, and qY |Z are fixed independent of N . (For example, in Cournot competition z

is industry output and y is the market price; and the market price depends on z and noise,
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where the “amount of noise” is independent of N .) In this case,

C = max
ξ∈∆(X)

∫
y∈Ȳ

∑
x∈X

ξ (x) qY |Z
(
y|fN (x)

)
log

qY |Z
(
y|fN (x)

)∑
x′∈X ξ (x′) qY |Z (y|fN (x′))

,

which is bounded by

C̄ = max
qZ∈∆(Z)

∫
y∈Ȳ

∫
z∈Z

qZ (z) qY |Z (y|z) log
qY |Z (y|z)∫

z′∈Z qZ (z′) qY |Z (y|z′) .

Since C̄ is independent of N , it follows that C is bounded independent of N .

The proof of Theorem 1 proceeds in three steps, each of which is fairly straightforward

once we introduce the right definitions and apply the right prior results. First, we define a

measure of the detectability of a manipulation under the induced action monitoring structure

(Y, p), and we show that every Nash equilibrium payoff vector in ΓB is attained by an

action distribution where the average deviation gain is bounded by the ratio of the average

detectability and the discount rate (Lemma 1). This lemma is an immediate extension of

the main result in SW. Second, we show that with individual-level noise, detectability for

each player is bounded by the mutual information between that player’s individual outcome

xi and the signal profile y (Lemma 2). This lemma follows from the Cauchy-Schwarz and

Pinsker inequalities. Third, we show that, again under individual-level noise, the average

across players i of the mutual information between xi and y is bounded by C (Lemma 3).

This lemma follows from the chain rule for mutual information and the definition of channel

capacity. Combining the three lemmas delivers the theorem.

3.2 Bounding Incentives by Detectability

Our first lemma requires some more terminology.

First, we define the detectability of manipulation si at action profile a as

χ2
i (si, a) =

∑
y∈Ȳ

p (y|a)

(
p (y|si (ai) , a−i)− p (y|a)

p (y|a)

)2

, (1)

11



and define the maximum detectability of manipulation si as

χ2
i (si) = max

a
χ2
i (si, a) .

Our detectability measure is the χ2-divergence between the probability distributions p (·|a)

and p (·|si (ai) , a−i). The χ2-divergence is a standard measure of statistical distance. Note

that it is well-defined because p has full support on Ȳ .11

Second, denote the variance of player i’s payoff under an action profile distribution α ∈
∆ (A) by Vi (α) = Vara∼α (ui (a)). For any subset of players J ⊆ I, action profile distribution

α ∈ ∆ (A), and profile of manipulations sJ = (si)i∈J for players i ∈ J , we also define “group
average”versions of the deviation gain gi, detectability χ2

i , and payoff variance Vi, by

gJ (sJ , α) =
1

|J |
∑
i∈J

gi (si, α) , gJ (α) =
1

|J |
∑
i∈J

gi (α) ,

χ2
J (sJ , a) =

1

|J |
∑
i∈J

χ2
i (si|a) , χ2

J (sJ) =
1

|J |
∑
i∈J

χ2
i (si) , and VJ (α) =

1

|J |
∑
i∈J

Vi (α) .

Third, given a repeated game outcome µ ∈ ∆ ((A× Y )∞), we let αµt ∈ ∆ (A) denote

the marginal distribution of period-t action profiles under µ, and define αµ ∈ ∆ (A), the

occupation measure over action profiles induced by µ, by

αµ (a) = (1− δ)
∞∑
t=1

δt−1αµt (a) for each a ∈ A.

Note that the payoff vector under repeated game outcome µ equals

(1− δ)
∞∑
t=1

δt−1
∑
a∈A

αµt (a)u (a) =
∑
a∈A

(1− δ)
∞∑
t=1

δt−1αµt (a)u (a) =
∑
a∈A

αµ (a)u (a) = u (αµ) .

(2)

The occupation measure is thus a suffi cient statistic for the players’payoffs.

Now we can state our first lemma, which bounds players’gains from manipulations at an

equilibrium outcome as a function of the discount factor, the maximum detectability of the

manipulations, and the on-path variance of the players’payoffs, where the deviation gains

and variance are both evaluated at the equilibrium occupation measure.

11The detectability measure is the same as in SW, but there we did not assume individual-level noise.
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Lemma 1 For any Nash equilibrium outcome µ in ΓB, any subset of players J , and any

profile of manipulations sJ , we have

gJ (sJ , α
µ) ≤

√
δ

1− δχ
2
J (sJ)VJ (αµ). (3)

In particular, any Nash equilibrium payoff vector v is consistent with ε-myopic play, where

ε =

√
δ

1− δ

(
max
sI

χ2
I (sI)

)
ū2.

Proof. The special case of Lemma 1 where J is required to be a singleton is Theorem 1 of SW.

The result for general J follows as a corollary, because if gi (si, αµ) ≤
√

(δ/ (1− δ))χ2
i (si)Vi (αµ)

for each i ∈ I, then by Cauchy-Schwarz, for any J ⊆ I,

gJ (sJ , α
µ) =

1

|J |
∑
i∈J

gi (si, α
µ) ≤ 1

|J |
∑
i∈J

√
δ

1− δχ
2
i (si)Vi (αµ)

≤ 1

|J |

√
δ

1− δ
∑
i∈J

χ2
i (si)

∑
i∈J

Vi (αµ) =

√
δ

1− δχ
2
J (sJ)VJ (αµ).

The logic behind the singleton case of Lemma 1 is discussed at length in SW. Briefly,

the bound comes from decomposing the variance of a player’s continuation payoff: if ma-

nipulating is unprofitable, then the signal must vary significantly with the action and the

continuation payoff must vary significantly with the signal, and this payoff variation must

be delivered relatively quickly due to discounting.

3.3 Bounding Detectability by Channel Capacity

We now show that, with individual-level noise, average detectability under (Y, p) can be

bounded by the per-capita channel capacity of (Y, q).

We start with an intermediate lemma.

Lemma 2 For any player i ∈ I, any manipulation si, and any action profile a, we have

χ2
i (si, a) ≤ 4I (xi; y|a)

π2
, (4)
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where I (·; ·|·) denotes condition mutual information.

Lemma 2 follows from standard inequalities, including Cauchy-Schwarz and Pinsker.

Pinsker’s inequality is where mutual information enters the analysis.

We can now use Lemma 2, the chain rule for mutual information, and the independence

of individual-level noise to bound average detectability under (Y, p) by the per-capita channel

capacity of (Y, q).

Lemma 3 For any subset of players J ⊆ I and any profile of manipulations sJ , we have

χ2
J (sJ) ≤ 4C

π2 |J | . (5)

Theorem 1 now follows immediately from Lemmas 1 and 3.

Proof of Theorem 1. By Lemmas 1 and 3, all repeated-game Nash equilibrium payoff

vectors are consistent with ε-myopic play, where

ε =

√
δ

1− δ ×
4C

π2N
× ū2.

For any fixed ū, π > 0, taking (1− δ)N/C suffi ciently large makes ε as small as desired.

Without individual-level noise, detectability under (Y, p) cannot be bounded by the chan-

nel capacity of (Y, q), and Theorem 1 fails. For example, suppose that the stage game is

an N -player prisoner’s dilemma with a binary public monitoring structure, where y = 0 if

every player cooperates, and y = 1 if any player defects. Obviously, mutual cooperation is a

repeated-game equilibrium outcome for a moderate discount factor, independent of N : under

grim trigger strategies where the signal y = 1 triggers permanent defection, each player’s

incentives in this game are the same as in a 2-player prisoner’s dilemma with perfect moni-

toring. This observation is consistent with Lemma 1 because detectability is infinite in this

example: when the other players cooperate, a deviation to defection is perfectly detectable.

However, channel capacity in this example is log 2, so detectability is infinitely greater than

channel capacity. Thus, without individual noise, a monitoring structure can detect devia-

tions (and support strong incentives) even if it not very “informative” in terms of channel

capacity. In contrast, Lemma 3 shows that with individual noise, only “informative”signals

can support strong incentives.
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4 Suffi cient Conditions for Cooperation

4.1 Folk Theorem

Our second result is a folk theorem for repeated games with public, product-structure mon-

itoring, which implies that the relationship among N , δ, and C in Theorem 1 is tight for

these games (up to logN slack).

Under public monitoring, the public history ht at the beginning of period t takes the form

ht =
(
(zt′ , yt′)

t−1
t′=1 , zt

)
. A strategy σi for player i is public if it depends on player i’s history

hti only through its public component h
t. A perfect public equilibrium (PPE) is a profile of

public strategies that, beginning at any period t and any public history ht, forms a Nash

equilibrium from that period on.12 Denote the set of PPE payoff vectors by E ⊆ RN .
For any η > 0, we say that a public action monitoring structure (Y, p) satisfies η-individual

identifiability if

∑
yi:pi(yi|ai)≥η

pi (yi|ai)
(
pi (yi|αi)− pi (yi|ai)

pi (yi|ai)

)2

≥ η for all i ∈ I, ai ∈ Ai, αi ∈ ∆ (Ai\ {ai}) .

(6)

This condition is a variant of FLM’s individual full rank condition and KM’s assumption

(A2”). It says that the detectability of a deviation from ai to any mixed action αi supported

on Ai\ {ai} is at least η, from the perspective of an observer who ignores signals that occur

with probability less than η under ai. Intuitively, this requires that deviations from ai are

detectable, and that in addition “detectability”does not come entirely from a few very rare

signal realizations. This assumption will ensure that player i can be incentivized through

rewards whose variance and maximum absolute value are both of order (1− δ) /η.13

For example, suppose that the monitoring structure is given by η-random auditing, where

in every period ηN players (i.e., fraction η of the population) are selected uniformly at

random, and the public signal perfectly reveals their identities and their realized (“noisy”)

12As usual, this definition allows players to consider deviations to arbitrary, non-public strategies, but
such deviations are irrelevant because, whenever a player’s opponents use public strategies, she has a public
strategy as a best response.
13If (6) were weakened by taking the sum over all yi (rather than only yi such that qi (yi|ai) ≥ η), player

i could be incentivized by rewards with variance O ((1− δ) /η), but not necessarily with maximum absolute
value O ((1− δ) /η). Our proof of the folk theorem requires controlling both the variance and absolute value
of players’rewards, so we need the stronger condition.
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actions: that is, Xi = Ai, Yi = Xi ∪ {∅}, and

qi (yi|xi) =


η if yi = xi,

0 if yi ∈ Xi\ {xi} ,
1− η if yi = ∅,

so that pi (yi|ai) =

 ηπai,xi if yi ∈ Xi,

1− η if yi = ∅.

For simplicity, suppose also that πai,a′i = π < 1/ (|Ai|+ 1) for all i, ai 6= a′i. Since pi (yi|xi) ≥
ηπ for all xi, yi 6= ∅, we then have

∑
yi:pi(yi|ai)≥ηπ

pi (yi|ai)
(
pi (yi|αi)− pi (yi|ai)

pi (yi|ai)

)2

≥
(
pi (ai|ai)−maxa′i 6=ai pi (ai|a

′
i)
)2

pi (ai|ai)

=
(η (1− (|Ai| − 1) π)− ηπ)2

η (1− (|Ai| − 1) π)
≥ ηπ2,

so random auditing satisfies ηπ2-individual identifiability.

Theorem 2 Fix any ū > 0. For any ε > 0, there exists k > 0 such that, for any ū-

bounded repeated game Γ with public, product-structure monitoring satisfying η-individual

identifiability and (1− δ) log (N) /η < k, we have B (ε) ⊆ E.

Theorem 2 implies that the relationship among N , δ, and C in Theorem 1 is tight

up to logN slack. To see this, consider η-random auditing, which satisfies ηπ2-individual

identifiability. Since |Xi| ≤ 1/π for each i, η-random auditing has a channel capacity of

at most ηN log (1/π). Therefore, under η-random auditing Theorem 1 implies that payoffs

in any Nash equilibrium are consistent with almost-myopic play if (1− δ) /η → ∞, while
Theorem 2 implies that a folk theorem holds in PPE if (1− δ) log (N) /η → 0.

For any repeated game Γ (possibly with private monitoring), one can define the corre-

sponding public game ΓP , where all players observe the entire signal vector y at the end of

each period. Note that ΓP is a repeated game with public monitoring, and that every PPE

payoff in ΓP is a Nash equilibrium payoff in ΓM (because the mediator in ΓM can replicate

any public strategy profile in ΓP , and the players in ΓM have less information, and hence

fewer possible deviations, than in ΓP ). Thus, Theorem 2 implies a folk theorem for mediated

repeated games with arbitrary monitoring, in the sense that, for any repeated game Γ, if

the corresponding public game ΓP satisfies the conditions of Theorem 2, then every payoff

vector in B (ε) is an equilibrium payoff in the corresponding mediated game ΓM .
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Theorem 2 is a “Nash threat” folk theorem, as F ∗ is the set of payoffs that Pareto-

dominate a static Nash equilibrium. To extend this result to a “minmax threat”theorem,

players must be made indifferent among all actions in the support of a mixed strategy that

minmaxes an opponent. This requires a stronger identifiability condition, similar to Kandori

and Matsushima’s assumption (A1).14

4.2 Remarks on the Proof

Theorem 2 is a folk theorem for PPE in repeated games with public monitoring. The

standard proof approach, following FLM and KM, relies on transferring continuation payoffs

among the players along hyperplanes that are tangent to the boundary of the PPE payoff

set. Unfortunately, this approach encounters diffi culties when N and δ vary together. The

problem is that when N is large, changing each player’s continuation payoff by a small

amount can result in a large overall movement in the continuation payoff vector, which

makes self-generation diffi cult to satisfy. Mathematically, FLM’s proof relies the equivalence

of the L1 norm and the Euclidean norm in RN . Since this equivalence is not uniform in N ,

their proof does not apply when N and δ vary together.

To see the problem in more detail, note that under η-individual identifiability, the per-

period movement in each player’s continuation payoffrequired to provide incentives is of order

(1− δ) /η, so the movement of the continuation payoff vector in RN is O
(√

N (1− δ) /η
)
.

Fix a ball B contained in F ∗, and consider the problem of generating the point v =

argmaxw∈B w1– the point in B that maximizes player 1’s payoff– using continuation pay-

offs drawn from B. To satisfy promise-keeping, player 1’s continuation payoff must be

within distance O (1− δ) of v, so the greatest movement along a tangent hyperplane is
O
(√

1− δ
)
. FLM’s proof approach thus requires that

√
N (1− δ) /η �

√
1− δ, or equiva-

lently (1− δ)N/η2 � 1, while we assume only (1− δ) log (N) /η � 1. Therefore, while the

conditions for Theorem 2 are tight up to logN slack, FLM’s approach would instead require

slack N .15

14Specifically, consider the |Yi| × |Ai| matrix Qi whose (yi, ai) entry is qi (yi|ai). We assume this matrix
has full column rank, and hence there exists a |Ai|× |Yi| matrix P−1i such that P−1i Pi is the identity matrix.
A suffi cient condition for the minmax threat folk theorem is that the absolute value of each entry of P−1i is
no more than 1/η (and (1− δ) log (N) /η → 0).
15In SW, we extend FLM’s proof to characterize the tradeoff between discounting and monitoring for

an arbitrary fixed stage game. In that paper, FLM’s proof approach works, because N is held fixed as
discounting and monitoring vary.
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Our proof of Theorem 2 (in Appendix A.4) is instead based on the “block strategy”

approach introduced by Matsushima (2004) and Hörner and Olszewski (2006) in the context

of repeated games with private monitoring. We view the repeated game as a sequence of

T -period blocks of periods, where T is a number proportional to 1/ (1− δ). At the beginning
of each block, a target payoff vector is determined by public randomization, and with high

probability the players take actions throughout the block that deliver the target payoff.

Players accrue promised continuation payoff adjustments throughout the block based on the

public signals of their actions, and the distribution of target payoffs in the next block is

set so as to deliver the promised adjustments. By η-individual identifiability, the required

adjustment to each player’s continuation payoff in every period is O (1/η). By the law of

large numbers, when T � 1/η, with high probability the total adjustment that a given

player accrues over a T -period block is of order less than T , and is thus small enough that

it can be delivered by appropriately specifying the distribution of target payoffs at the start

of the next block.

The main diffi culty in the proof is caused by the low-probability event that a player

accrues an unusually large total adjustment over a block, so that at some point the target

payoff for the next block cannot be modified any further. In this case, the player can no

longer be incentivized to take a non-myopic best response, and all players’behavior in the

current block must change. Thus, if any player’s payoffadjustment is “abnormal,”all players’

payoffs in the block may be far from the target equilibrium payoffs.

To prove the theorem, we must ensure that rare payoff-adjustment abnormalities do not

compromise either ex ante effi ciency or the players’incentives. Effi ciency is preserved if the

blocks are long enough that the probability that any player’s payoff adjustment is abnormal

is small. Since the per-period payoffadjustment for each player is O (1/η) and the length of a

block isO (1/ (1− δ)), standard concentration bounds imply that the probability that a given
player’s payoff adjustment is abnormal is exp (−O (η/ (1− δ))). Hence, by union bound, the
probability that any player’s adjustment is abnormal is at most N exp (−O (η/ (1− δ))),
which converges to 0 when (1− δ) log (N) /η → 0. This step in the proof accounts for the

log (N) slack.

Finally, since all players’payoffs are affected when any player’s payoffadjustment becomes

abnormal, incentives would be threatened if one player’s action affected the probability that

another player’s adjustment becomes abnormal. We avoid this problem by letting each
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player’s adjustment depend only on the signals of her own actions. Such a separation of payoff

adjustments across players is possible because we assume product structure monitoring. We

do not know if Theorem 2 can be extended to non-product structure monitoring without

introducing polynomial slack in N .16

5 Comparison with Linear Equilibria

We say that a Nash equilibrium is linear if all continuation payoff vectors lie on a line: for

each player i 6= 1, there exists a constant bi ∈ R such that, for all on-path complete histories
of play h, h′, we have wi (h′)− wi (h) = bi (w1 (h′)− w1 (h)), where wi (h) denotes player i’s

equilibrium continuation payoff at history h.17 Relabeling the players if necessary, we can

take |bi| ≤ 1 for all i without loss. This notion of linear equilibrium generalizes that of a

linear public perfect equilibrium in a game with public monitoring, where continuation payoff

vectors at all public histories lie on a line, as well as that of a strongly symmetric equilibrium

(SSE) in a symmetric game with public monitoring, where the line in question is additionally

required to be the 45◦ line.

Linear equilibria are of interest because they model collective incentive provision. If

bi ≥ 0 for all i, all players have the same preferences over histories, and are thus all rewarded

or punished together. If bi < 0 for some i, the players can be divided into two groups, where

each group is rewarded when the other is punished.

Our final result is that cooperation in a linear equilibrium is possible only under extremely

restrictive conditions on N and δ. We view this result as essentially an impossibility theorem

for large-group cooperation under collective incentives.

Theorem 3 Fix any ū > 0 and π > 0. For any ε > 0 and ρ > 0, there exists k > 0 such

that, for any (ū, π)-bounded repeated game Γ such that (1− δ) exp (N1−ρ) > k, any linear

equilibrium payoff vector v in Γ (or, moreover, in ΓB) is consistent with ε-myopic play.

Theorem 3 differs from Theorem 1 not only in the required relationship between N and

δ, but also in that the conclusion of Theorem 3 applies no matter how informative the

16As noted above, we conjecture that the approach of FLM and KM– which requires only a pairwise
identfiability condition, not a product structure– yields a folk theorem if (1− δ)N/η2 → 0.
17A complete history of play h at the beginning of period t takes the form

(
(zt′ , yt′ , at′)

t−1
t′=1 , zt

)
.
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outcome monitoring structure is. Intuitively, this is because optimal linear equilibria have

a bang-bang form even when the realized outcome profile is perfectly observed, so a binary

signal that indicates which of two extreme continuation payoff vectors should be played is

as effective as any more informative signal.

Theorem 3 is proved in Appendix A.5. To see the main idea, consider the case where

the game is symmetric and bi = 1 for all i, so linear equilibria are SSE. Suppose we wish

to enforce a symmetric pure action profile ~a0 = (a0, . . . , a0), where gi (~a0) = η, and suppose

for simplicity that |Ai| = 2, X = A, and πai,xi = 1 − π whenever ai = xi, and πai,xi = π

otherwise. By standard arguments, an optimal SSE takes the form of a “tail test,”where the

players are all punished if the number n of players for whom xi = a0 falls below a threshold

n∗. Due to individual-level noise, the distribution of n is approximately normal when N

is large, with mean (1− π)N and standard deviation
√
π (1− π)N . Denote the threshold

z-score of a tail test with threshold n∗ by z∗ = (n∗ − (1− π)N) /
√
π (1− π)N , let φ and

Φ denote the standard normal pdf and cdf, and let x ∈ [0, ū/ (1− δ)] denote the size of the
penalty when the tail test is failed. We then must have

φ (z∗)√
π (1− π)N

x ≥ η and Φ (z∗)x ≤ ū,

where the first inequality is incentive compatibility, and the second inequality says that the

expected penalty cannot exceed the stage-game payoff range. Dividing the first inequality

by the second, we obtain
φ (z∗)

Φ (z∗)
≥ η

√
π (1− π)N

ū
.

The left-hand size of this inequality is the statistical score of a normal tail test, which is

approximately equal to |z∗|. Hence, |z∗| must increase at least linearly with
√
N . But since

φ (z∗) decreases exponentially with |z∗|, and hence exponentially with N , Theorem 3 now

follows from incentive compatibility, which implies that the product of φ (z∗) /
√
π (1− π)N

and ū/ (1− δ) must exceed η.18

The analysis of tail tests as optimal incentive contracts under normal noise goes back to

Mirrlees (1975). The logic of Theorem 3 shows that the size of the penalty in a Mirrleesian

18Conversely, if πai,ai is suffi ciently large for each ai and (1− δ) exp
(
N1+ρ

)
→ 0 for some ρ > 0, then a

folk theorem holds for linear equilibria. Intuitively, a target action profile a can now be enforced by a tail
test where the players are all punished only if xi 6= ai for every player.
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tail test must increase exponentially with the variance of the noise.19 Theorem 3 is related

to Proposition 1 of Sannikov and Skrzypacz (2007), which is an anti-folk theorem for SSE in

a two-player repeated game where actions are observed with additive, normally distributed

noise, with variance proportional to 1/ (1− δ). (The interpretation is that the players change
their actions every ∆ units of time, where δ = e−r∆ for fixed r > 0 and variance is inversely

proportional to ∆, for example as a consequence of observing the average increments of a

Brownian process.) As a tail test is also optimal in their setting, the reasoning just given

implies that incentives can be provided only if 1/ (1− δ) increases exponentially with the
variance of the noise. Since in their model 1/ (1− δ) increases with variance only linearly,
they likewise obtain an anti-folk theorem. Similarly, Proposition 2 of Fudenberg and Levine

(2007) is an anti-folk theorem in a game with one patient player and a myopic opponent,

where the patient player’s action is observed with additive, normal noise, with variance

proportional to 1/ (1− δ)ρ for some ρ > 0; and their Proposition 3 is a folk theorem when the

variance is constant in δ. Theorem 3 suggests that their anti-folk theorem extends whenever

the variance asymptotically dominates (log 1/ (1− δ))1/(1−ρ) for some ρ > 0, while their folk

theorem extends whenever the variance is asymptotically dominated by (log 1/ (1− δ))1/(1+ρ)

for some ρ > 0.

6 Discussion

6.1 How Large is M (ε)?

Recall that Theorem 1 gives conditions under which all equilibrium payoffs lie in the set

M (ε) =

{
v ∈ RN : v = u (α) for some α such that

1

N

∑
i

gi (α) ≤ ε

}
.

Payoff vectors inM (ε) are consistent with ε-myopic play, in the sense that they are attained

by action distributions where the per-player average deviation gain is less than ε. However,

a few players can have large deviation gains at an action distribution α ∈ A (ε). A more

standard notion of “ε-myopia”is that all players’deviations gains are less than ε. The set of

payoff vectors consistent with this notion is the set of static ε-correlated equilibrium payoffs,

19We are not aware of a reference to this point in the literature.
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given by

CE (ε) =
{
v ∈ RN : v = u (α) for some α such that gi (α) ≤ ε for all i

}
.

We can illustrate the set M (ε) by comparing it with CE (ε). We give a simple example

where M (ε) and CE (ε) are very different (and M (ε) cannot be replaced by CE (ε) in

Theorem 1), and then give a general bound on the distance between M (ε) and CE (cε) for

any suffi ciently large constant c. Intuitively, M (ε) and CE (ε) can be very different if moral

hazard binds for only a few players, and these players’actions have large effects on others’

payoffs; while M (ε) and CE (cε) are similar if each player’s action has a small effect on

every opponent’s payoff.

For an example where M (ε) and CE (ε) differ, consider a “product choice”game where

player 1 is a seller who chooses high or low quality (H or L), and the other N − 1 players

are buyers who choose whether to buy or not (B or D). If the seller takes a1 ∈ {H,L} and
a buyer i takes ai ∈ {B,D}, this buyer’s payoff is given by

B D

H 1 0

L −1 0

,

and the seller’s payoff is given by

2k

N
− 1 {a1 = H} ,

where k ∈ {0, 1, . . . , N} is the number of buyers who take B. Suppose also that X = A and

πi = π ∈ (0, 1/3) for all i. Note that this game is (3, π)-bounded.

In this game, for any ε > 0, when N is suffi ciently large, we have (H,B, . . . , B) ∈ A (ε),

and hence (1, 1, . . . , 1) ∈ M (ε). This follows because the per-player average deviation gain

at action profile (H,B, . . . , B) equals 1/N : the seller has a deviation gain of 1, and each

buyer has a deviation gain of 0. Thus, Theorem 1 does not preclude (1, 1, . . . , 1) (or any

convex combination of (1, 1, . . . , 1) and (0, 0, . . . , 0)) as an equilibrium payoff vector, even

when (1− δ)N/C is very large. This is reassuring, because the monitoring structure given

by perfect monitoring of the seller’s action (i.e., Y = {H,L}, q (y|x) = 1 {y = x1}) has
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channel capacity log 2 and supports the payoff vector(
1− 3π

1− 2π
,
1− 3π

1− 2π
, . . . ,

1− 3π

1− 2π

)
, for all δ >

1

2− 3π
and all N ≥ 2.20

In contrast, the greatest symmetric payoff vector in CE (ε) is given by (ε, ε, . . . , ε), because

the seller’s deviation gain equals the probability that she is recommended H.

We can also bound the distance between M (ε) and CE (cε), for any suffi ciently large

constant c.

Proposition 1 Fix b > 0 such that
∣∣ui (a′j, a−j)− ui (a)

∣∣ ≤ b/N for all i 6= j, a′j, a. Then,

for any v ∈M (ε) and any c ≥
√

4b/ε, there exists v′ ∈ CE (cε) such that

1

N

∣∣∣∣∣∑
i∈I

vi −
∑
i∈I

v′i

∣∣∣∣∣ ≤ ū

c
.

For example, in a repeated random matching game, b is the impact of a player’s action

on her partner’s payoff, which is independent of N . Note that for the smallest value of c

permitted by Proposition 1, we have cε ≈
√

4bε, so when ε is small every v′ ∈ CE (cε) is an

approximate static correlated equilibrium, albeit with an approximating factor of order
√
ε

rather than ε.

6.2 Conclusion

This paper has developed a theory of large-group cooperation based on repeated games with

individual-level noise where the population size, discount factor, stage game, and monitoring

structure all vary together in a flexible manner. Our main results establish necessary and

suffi cient conditions for cooperation, which identify the ratio of the discount rate and the

per-capita channel capacity of the monitoring structure as a key statistic. For a specific class

of monitoring structures (random auditing), our necessary and suffi cient conditions coincide

up to log (N) slack. We also show that cooperation in a linear equilibrium is possible only

under much more stringent conditions. This last result formalizes a sense in which large-

group cooperation must rely on personalized sanctions.
20This is a standard calcuation, which results from considering “forgiving trigger strategies”that prescribe

Nash reversion with probability φ when y = L. The smallest value of φ that induces the seller to take H is
given by φ = (1− δ) / (δ − 3δπ), and substituting this into the value recursion v = (1− δ) (1) + δ (1− πφ) v
yields v = (1− 3π) / (1− 2π).
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We hope our results raise questions for future theoretical and applied research. On the

theory side, we believe that connections between repeated games, mechanism design, and

information theory remain under-explored. As for applied work, it would be interesting to

see more systematic empirical or experimental evidence on the determinants of large-group

cooperation, for example on the relative effi cacy of individual and collective sanctions in

populations of different sizes.
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A Appendix

A.1 The Set B (ε) in A Public-Goods Game

Consider the public-goods game where each player chooses Contribute or Don’t Contribute,

and a player’s payoff is the fraction of players who contribute less a constant c ∈ (0, 1)

(independent of N) if she contributes herself. Fix any v ∈ (0, 1− c), let v = (v, . . . , v) ∈ RN ,
and let ε = cv (1− c− v) /4 > 0. We show that Bv (ε) ⊆ F for all N . Since no one

contributing is a Nash equilibrium with 0 payoffs, this implies that Bv (ε) ⊆ F ∗, and hence

v ∈ B (ε), for all N .

To see this, fix any N . Since the game is symmetric, to show that Bv (ε) ⊆ F it suffi ces

to show that, for any number n ∈ {0, . . . , N}, there exists a feasible payoff vector where n
“favored”players receive payoffs no less than v + ε, and the remaining N − n “disfavored”
players receive payoffs no more than v − ε. Fix such an n, and let ψ = n/N .

Consider the mixed action profile α1 where favored players Contribute with probability

(v + ε) / (1− c) ∈ (0, 1) and disfavored players always Contribute. At this profile, favored

players receive payoff

f (ψ) := ψ
v + ε

1− c + (1− ψ) (1)− cv + ε

1− c ,

while disfavored players receive payoff

g (ψ) := ψ
v + ε

1− c + (1− ψ) (1)− c.

Note that f ′ (ψ) < 0, so f (ψ) ≥ f (1) = v + ε.

With f (ψ) so defined, consider the mixed action profile α2 where favored players Con-

tribute with probability (v + ε)2 / ((1− c) f (ψ)) ∈ (0, 1) and disfavored players Contribute

with probability (v + ε) /f (ψ) ∈ (0, 1). Note that each player’s payoff at profile α2 equals

her payoff at profile α1 multiplied by (v + ε) /f (ψ). Therefore, at profile α2, favored players

receive payoff

f (ψ)
v + ε

f (ψ)
= v + ε,
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while disfavored players receive payoff

g (ψ)
v + ε

f (ψ)
=

(
f (ψ)−

(
1− v + ε

1− c

)
c

)
v + ε

f (ψ)

≤ v + ε−
(

1− v + ε

1− c

)
c (v + ε) (since f (ψ) ≤ 1)

≤ v − ε,

where the last inequality follows from ε = cv (1− c− v) /4 and straightforward algebra.

A.2 Proof of Lemma 2

For any a ∈ A, let Pr (·|a) denote the resulting joint probability distribution over (X, Y ). For

all xi ∈ Xi, y ∈ Y , and a ∈ A, we have Pr (xi, y|a) = πai,xi Pr (y|a, xi) = p (y|a) Pr (xi|a, y).

Hence, since πai,xi ≥ π, we have

(Pr (y|a, xi)− p (y|a))2 =

(
p (y|a)

πai,xi
(Pr (xi|a, y)− πai,xi)

)2

≤
(
p (y|a)

π
(Pr (xi|a, y)− πai,xi)

)2

.

(7)
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For any player i, manipulation si, and action profile a, we thus have

χ2
i (si, a) =

∑
y∈Ȳ

1

p (y|a)
(p (y|si (ai) , a−i)− p (y|a))2

=
∑
y

1

p (y|a)

(∑
xi

(
πsi(ai),xi − πai,xi

)
Pr (y|a, xi)

)2

=
∑
y

1

p (y|a)

(∑
xi

(
πsi(ai),xi − πai,xi

)
(Pr (y|a, xi)− p (y|a))

)2

≤
∑
xi

(
πsi(ai),xi − πai,xi

)2
∑
y

1

p (y|a)

∑
xi

(Pr (y|a, xi)− p (y|a))2

≤ 2

π2

∑
y

p (y|a)
∑
xi

(Pr (xi|a, y)− πai,xi)
2

≤ 2

π2

∑
y

p (y|a)

(∑
xi

|Pr (xi|a, y)− πai,xi |
)2

≤ 4

π2

∑
y

p (y|a)
∑
xi

Pr (xi|a, y) log
Pr (xi|a, y)

πai,xi

=
4

π2

∑
xi,y

Pr (xi, y|a) log
Pr (xi|a, y)

πai,xi
=

4I (xi; y|a)

π2
.

where the first inequality follows by Cauchy-Schwarz, the second follows by (7) and∑
xi

(πai,xi − πai,xi)
2 ≤ 2, the third is immediate, and the fourth follows by Pinsker’s in-

equality (CT, Lemma 11.6.1).

A.3 Proof of Lemma 3

By Lemma 2, for any subset of players J ⊆ I, any profile of manipulations sJ , and any

action profile a ∈ A, we have

χ2
J (sJ , a) =

1

|J |
∑
i∈J

χ2
i (si, a) ≤ 4

π2 |J |
∑
i∈J
I (xi; y|a) =

4

π2 |J |I (xJ ; y|a) ,

where the last equality follows by the chain rule for mutual information (CT, Theorem 2.5.2),

because (xi)i∈J are independent conditional on a.
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Next, note that

I (xJ ; y|a) = I (x; y|a)− I
(
xI\J ; y|a, xJ

)
≤ I (x; y|a) = I (x, a; y)− I (a; y)

= I (x; y) + I (a; y|x)− I (a; y) = I (x; y) + 0− I (a; y) ≤ I (x; y) ≤ C,

where the first equality follows by the chain rule, the first inequality follows because mutual

information is non-negative, the second and third equalities again follow by the chain rule,

the fourth equality follows because a and y are independent conditional on x, the second

inequality again follows by non-negativity, and the last inequality follows by the definition

of channel capacity.

In total, we have

χ2
J (sJ , a) ≤ 4C

π2 |J | for all a ∈ A,

and (5) follows as χ2
J (sJ |a) = maxa χ

2
J (sJ , a).

A.4 Proof of Theorem 2

A.4.1 Preliminaries

Fix any ε > 0. If ε ≥ ū/2 then B (ε) = ∅ and the conclusion of the theorem is trivial, so

assume without loss that ε < ū/2. We begin with two preliminary lemmas. First, for each

i ∈ I and ri ∈ Ai, we define a function fi,ri : Yi → R that will later be used to specify player

i’s continuation payoff as a function of yi.

Lemma 4 Under η-individual identifiability, for each i ∈ I and ri ∈ Ai there exists a

function fi,ri : Yi → R such that

E [fi,ri (yi) |ri]− E [fi,ri (yi) |ai] ≥ ū for all ai 6= ri, (8)

E [fi,ri (yi) |ri] = 0, (9)

Var (fi,ri (yi) |ri) ≤ ū2/η, and (10)

|fi,ri (yi)| ≤ 2ū/η for all yi. (11)
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Proof. Fix i and ri. Let Y ∗i = {yi : pi (yi, ri) ≥ η}, and let

pi (ri;Y
∗
i ) =

(√
pi (yi|ri)

)
yi∈Y ∗i

and Pi (ri;Y
∗
i ) =

⋃
ai 6=ri

(
pi (yi|ai)√
pi (yi|ri)

)
yi∈Y ∗i

.

Note that (6) is equivalent to

d (pi (ri;Y
∗
i ) , co (Pi (ri;Y

∗
i ))) ≥ √η for all i ∈ I, ri ∈ Ai,

where d (·, ·) denotes Euclidean distance in R|Y ∗i |. Hence, by the separating hyperplane theo-
rem, there exists x = (x (yi))yi∈Y ∗i ∈ R

|Y ∗i | such that ‖x‖ = 1 and (pi (ri;Y
∗
i )− p)·x ≥ √η for

all p ∈ Pi (ri;Y ∗i ). By definition of pi and Pi, this implies that
∑

yi∈Y ∗i
(pi (yi|ri)− pi (yi|ai))x (yi) ≥√

pi (yi|ri) η for all ai 6= ri. Now define

fi,ri (yi) =
ū
√
η

(
x (yi)√
pi (yi|ri)

−
∑
ỹi∈Yi

p (ỹi|ri)√
pi (ỹi|ri)

xi (ỹi)

)
for all yi ∈ Y ∗i , and

fi,ri (yi) = 0 for all yi /∈ Y ∗i .

Clearly, conditions (8) and (9) hold. Moreover, since E [fi,ri (yi) |ri] = 0 and the term∑
ỹi∈Yi

√
p (ỹi|ri)xi (ỹi) is independent of yi, we have

Var (fi,ri (yi) |ri) = E

[
ū2x (yi)

2

pi (yi|ri) η

]
− E

[
ūxi (yi)√
pi (yi|ri) η

]2

≤
∑
yi∈Y ∗i

ū2x (yi)
2

η
≤ ū2

η
,

and hence (10) holds. Finally, (11) holds since, for each yi ∈ Y ∗i ,

|fi,ri (yi)| ≤ ū

|x (yi)|+
∑
ỹi∈Y ∗i

p (ỹi|ri) |xi (ỹi)|

 /
√
pi (yi|ri) η ≤ ū

1 +
∑
ỹi∈Y ∗i

p (ỹi|ri)

 /η ≤ 2ū/η.

Now fix i ∈ I and ri ∈ Ai, and suppose that yi,t ∼ pi (·|ri) for each period t ∈ N,
independently across periods (as would be the case in the repeated game if ri were taken in
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every period). By (10), for any T ∈ N, we have

Var

(
T∑
t=1

δt−1fi,ri (yi,t)

)
=

T∑
t=1

δ2(t−1)Var (fi,ri (yi,t)) ≤
1− δ2T

1− δ2

ū2

η
.

Together with (9) and (11), Bernstein’s inequality (Boucheron, Lugosi, and Massart, 2013,

Theorem 2.10) now implies that, for any T ∈ N and f̄ ∈ R+, we have

Pr

(
T∑
t=1

δt−1fi,ri (yi,t) ≥ f̄

)
≤ exp

− f̄ 2η

2
(

1−δ2T
1−δ2 ū

2 + 2
3
f̄ ū
)
 . (12)

Our second lemma fixes T and f̄ so that the bound in (12) is suffi ciently small, and some

other conditions used in the proof also hold.

Lemma 5 There exists k > 0 such that, whenever (1− δ) log (N) /η < k, there exist T ∈ N
and f̄ ∈ R that satisfy the following three inequalities:

60ūN exp

−
(
f̄
3

)2

η

2
(

1−δ2T
1−δ2 ū

2 + 2
3
f̄
3
ū
)
 ≤ ε, (13)

8
1− δ

1− δT
(
f̄ +

2ū

η

)
≤ ε, (14)

4ū
1− δT

δT
+

1− δ
δT

(
f̄ +

2ū

η

)
≤ ε. (15)

Proof. Let T be the largest integer such that 8ū
(
1− δT

)
/δT ≤ ε, and let

f̄ =

√
36 log

(
60ū

ε

)
log (N)

1− δT

1− δ
ū2

η
.

Note that if (1− δ) log (N) /η → 0 then 1−δT → ε/ (ε+ 8ū), and hence (1− δ) log (N) /
(
η
(
1− δT

))
→

0. Therefore, there exists k > 0 such that, whenever (1− δ) log (N) /η < k, we have

4

9

√
36 log

(
60ū

ε

)
log (N)

1− δ
1− δT

1

η
≤ 1 and (16)

8ū

(√
36 log

(
60ū

ε

)
log (N)

1− δ
1− δT

1

η
+

1− δ
1− δT

2

η

)
≤ ε. (17)
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It now follows from straightforward algebra (provided in Appendix A.4.4) that (13)—(15)

hold for every k ≥ k̄.

A.4.2 Equilibrium Construction

Fix any k, T , and f̄ that satisfy (13)—(15), as well any v ∈ B (ε). For each extreme point

v∗ of Bv (ε/2), we construct a PPE in a T -period, finitely repeated game augmented with

continuation values drawn from Bv (ε/2) that generates payoff vector v∗. By standard argu-

ments, this implies that Bv (ε/2) ⊆ E (Γ), and hence that v ∈ E (Γ).21 Since v ∈ B (ε) was

chosen arbitrarily, it follows that B (ε) ⊆ E (Γ).

Specifically, for each ζ ∈ {−1, 1}N and v∗ = argmaxv∈Bv(ε/2) ζ · v, we construct a public
strategy profile σ in a T -period, finitely repeated game (which we call a block strategy profile)

together with a continuation value function w : HT+1 → RN that satisfy

Promise Keeping. v∗i = Eσ
[
(1− δ)

∑T
t=1 δ

t−1ui,t + δTwi
(
hT+1

)]
for all i ∈ I.

Incentive Compatibility. σi ∈ argmaxσ̃i E
σ̃i,σ−i

[
(1− δ)

∑T
t=1 δ

t−1ui,t + δTwi
(
hT+1

)]
for

all i ∈ I.

Self Generation. w
(
hT+1

)
∈ Bv (ε/2) for all hT+1. (Note that, since Bv (ε/2) is cube with

side-length ε and v∗ = argmaxv∈Bv(ε/2) ζ · v, this is equivalent to ζ i
(
wi
(
hT+1

)
− v∗i

)
∈

[−ε, 0] for all i and hT+1.)

Defining πi
(
hT+1

)
=
(
δT/ (1− δ)

) (
wi
(
hT+1

)
− v∗i

)
, these conditions can be rewritten as

Promise Keeping.

v∗i =
1− δ

1− δT
Eσ
[

T∑
t=1

δt−1ui,t + πi
(
hT+1

)]
for all i. (18)

Incentive Compatibility.

σi ∈ argmax
σ̃i

Eσ̃i,σ−i
[

T∑
t=1

δt−1ui,t + πi
(
hT+1

)]
for all i. (19)

21Specifically, at each history hT+1 that marks the end of a block, public randomization can be used
to select an extreme point v∗ to be targeted in the following block, with probabilities chosen so that the
expected payoff E [v∗] equals the promised continuation value w

(
hT+1

)
.
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Self Generation.

ζ i
1− δ
δT

πi
(
hT+1

)
∈ [−ε, 0] for all i and hT+1. (20)

Fix ζ ∈ {−1, 1}N and v∗ = argmaxv∈Bv(ε/2) ζ · v. We construct a block strategy profile σ
and continuation value function π which, in the next subsection, we show satisfy these three

conditions. This will complete the proof of the theorem.

First, fix a correlated action profile ᾱ ∈ ∆ (A) such that

ui (ᾱ) = v∗i + ζ iε/2 for all i, (21)

and fix a probability distribution over static Nash equilibria αNE ∈ ∆ (
∏

i ∆ (Ai)) such that

ui
(
αNE

)
≤ v∗i − ε/2 for all i. Such ᾱ and αNE exist because v∗ ∈ Bv (ε/2) and Bv (ε) ⊆ F ∗.

We now construct the block strategy profile σ. For each player i ∈ I and period t ∈
{1, . . . , T}, we define a state θi,t ∈ {0, 1} for player i in period t, which will determine player
i’s prescribed equilibrium action in period t. The states are determined by the public history,

and so are common knowledge among the players. We first specify players’prescribed actions

as a function of the state, and then specify the state as a function of the public history.

Prescribed Equilibrium Actions: For each period t, let rt ∈ A be a pure action

profile which is drawn by public randomization at the start of period t from the distribution

ᾱ ∈ ∆ (A) fixed in (21), and let rNEt ∈ A be a mixed action profile which is drawn by

public randomization at the start of period t from the distribution αNE.22 The prescribed

equilibrium actions are defined as follows.

1. If θi,t = 0 for all i ∈ I, the players take at = rt.

2. If there is a unique player i such that θi,t = 1, the players take at = (r′i, r−i,t) for

some r′i ∈ BRi (r−i,t) if ζ i = 1, and they take rNEt if ζ i = −1, where BRi (r−i) =

argmaxai∈Ai ui (ai, r−i) is the set of i’s best responses to r−i.

3. If there is more than one player i such that θi,t = 1, the players take rNEt .

22Technically, the public randomization device Zt is always a uniform [0, 1] random variable. Throughout
the proof, whenever we say that a certain variable is “drawn by public randomization,”we mean that its
realization is determined by public randomization, independently of the other variables in the construction.
Since we define only a finite number B of such variables, this can be done by, for example, specifying that
if n = bmodB then the nth digit of z is used to encode the realization of the bth such variable we define.
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Let α∗t ∈
∏

i ∆ (Ai) denote the distribution of prescribed equilibrium actions, prior to

public randomization zt.

(It may be helpful to informally summarize the prescribed actions. So long as θi,t = 0

for all players, the players take actions drawn from the target action distribution ᾱ. If

θi,t = 1 for multiple players, the ineffi cient Nash equilibrium distribution αNE is played.

The most subtle case is when there is a unique player i such that θi,t = 1. Intuitively, this

case will correspond to situations where the signals of player i’s actions are “abnormal,”

which later in the proof will imply that her continuation payoffs cannot be adjusted further

without violating the self-generation constraint. In this case, player i starts taking static

best responses. Moreover, if ζ i = −1– so that player i’s continuation payoff is already

“low”– then αNE is played.)

It will be useful to introduce the following additional state variable Si,t, which summarizes

player i’s prescribed action as a function of (θj,t)j∈I :

1. Si,t = 0 if θj,t = 0 for all j ∈ I, or if there exists a unique player j 6= i such that

θj,t = 1, and for this player we have ζj = 1. In this case, player i is prescribed to take

ai,t = ri,t.

2. Si,t = NE if θi,t = 0 and either (i) there exists a unique player j such that θj,t = 1,

and for this player we have ζj = −1, or (ii) there are two distinct players j, j′ such

that θj,t = θj′,t = 1. In this case, player i is prescribed to take rNEi,t .

3. Si,t = BR if θi,t = 1. In this case, player i is prescribed to best respond to her

opponents’actions (which equal either r−i,t or rNE−i,t, depending on (θj,t)j 6=i.)

States: At the start of each period t, conditional on the public randomization draw of

rt ∈ A described above, an additional random variable ỹt ∈ Y is also drawn by public ran-

domization, with distribution p (ỹt|rt). That is, the distribution of the public randomization
draw ỹt conditional on the draw rt is the same as the distribution of the realized public sig-

nal profile ỹt at action profile rt; however, the distribution of ỹt depends only on the public

randomization draw rt, and not on the players’actions. For each player i and period t, let
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fi,ri,t : Yi → R be defined as in Lemma 4, and let

fi,t =


fi,ri,t (yi,t) if Si,t = 0,

fi,ri,t (ỹi,t) if Si,t = NE,

0 if Si,t = BR.

(22)

Thus, the value of fi,t depends on the state (θn,t)n∈I , the target action profile rt (which

is drawn from distribution ᾱ as described above), the public signal yt, and the additional

variable ỹt.23 Later in the proof, fi,t will be a component of the “reward”earned by player

i in period t, which will be reflected in player i’s end-of-block continuation payoff function

π : HT+1 → R.

We can finally define θi,t as

θi,t = 1

{
∃t′ ≤ t :

∣∣∣∣∣
t′−1∑
t′′=1

δt
′′−1fi,t′′

∣∣∣∣∣ ≥ f̄

}
. (23)

That is, θi,t is the indicator function for the event that the magnitude of the component of

player i’s reward captured by (fi,t′′)
t′−1
t′′=1 exceeds f̄ at any time t

′ ≤ t.

This completes the definition of the equilibrium block strategy profile σ. Before proceed-

ing further, we note that a unilateral deviation from σ by any player i does not affect the

distribution of the state vector
(

(θj,t)j 6=i

)T
t=1
. (However, such a deviation does affect the

distribution of (θi,t)
T
t=1.)

Lemma 6 For any player i and block strategy σ̃i, the distribution of the random vector(
(θj,t)j 6=i

)T
t=1

is the same under block strategy profile (σ̃i, σ−i) as under block strategy profile

σ.

Proof. Since θj,t = 1 implies θj,t+1 = 1, it suffi ces to show that, for each t, each J ⊆ I\ {i},
each ht such that J = {j ∈ I\ {i} : θj,t = 0}, and each zt, the probability Pr

(
(θj,t+1)j∈J |ht, zt, ai,t

)
is independent of ai,t. Since θj,t+1 is determined by ht and fj,t, it is enough to show that

Pr
(

(fj,t)j∈J |ht, zt, ai,t
)
is independent of ai,t.

Recall that Sj,t is determined by ht, and that if j ∈ J (that is, θj,t = 0) then Sj,t ∈
{0, NE}. If Sj,t = 0 then player j takes rj,t, which is determined by zt, yj,t is distributed ac-

23Intuitively, introducing the variable ỹt, rather than simply using yi,t everywhere in (22), ensures that
the distribution of fi,t does not depend on player i’s opponents’strategies.
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cording to pj (yj,t|rj,t), and fj,t is determined by yj,t, independently across players conditional
on zt. If Sj,t = NE then ỹj,t is distributed according to pj (ỹj,t|rj,t), where rj,t is determined
by zt, and fj,t is determined by ỹj,t, independently across players conditional on zt. Thus,

Pr
(

(fj,t)j∈J |ht, zt, ai,t
)

=
∏

j 6=i Pr (fj,t|Sj,t, rj,t), which is independent of ai,t as desired.
Continuation Value Function: We now construct the continuation value function

π : HT+1 → RN . For each player i and end-of-block history hT+1, player i’s continuation

value πi
(
hT+1

)
will be defined as the sum of T “rewards”πi,t, where t = 1, . . . , T , and a

constant term ci that does not depend on hT+1.

The rewards πi,t are defined as follows:

1. If θj,t = 0 for all j ∈ I, then

πi,t = δt−1
(
v∗i + ζ iε/4− ui (α∗t ) + fi,ri,t (yi,t)

)
. (24)

2. If θi,t = 1 and θj,t = 0 for all j 6= i,

πi,t = δt−1 (v∗i + ζ iε/4− ui (α∗t )) . (25)

3. Otherwise,

πi,t = δt−1
(
−ζ iū− u (α∗t ) + 1 {Si,t = 0} fi,ri,t (yi,t)

)
. (26)

The constant ci is defined as

ci = −E
[

T∑
t=1

δt−1

(
1

{
max
j 6=i

θj,t = 0

}
(v∗i + ζ iε/4)− 1

{
max
j 6=i

θj,t = 1

}
ζ iū

)]
+

1− δT

1− δ v
∗
i .

(27)

Note that, since v∗i + ζ iε/4 and v
∗
i are both feasible payoffs, we have

|ci| ≤ 2ū
1− δT

1− δ . (28)

Finally, for each i and hT+1, player i’s continuation value at end-of-block history hT+1 is

defined as

πi
(
hT+1

)
= ci +

T∑
t=1

πi,t. (29)
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A.4.3 Verification of the Equilibrium Conditions

We now verify that σ and π satisfy promise keeping, incentive compatibility, and self gener-

ation. We first show that θi,t = 0 for all i and t with high probability, and then verify the

three desired conditions in turn.

Lemma 7 We have

Pr

(
max

i∈I,t∈{1,...,T}
θi,t = 0

)
≥ 1− ε

20ū
. (30)

Proof. By union bound, it suffi ces to show that, for each i, Pr
(
maxt∈{1,...,T} θi,t = 1

)
≤

ε/20ūN , or equivalently

Pr

(
max

t∈{1,...,T}

∣∣∣∣∣
t∑

t′=1

δt−1fi,t′

∣∣∣∣∣ ≥ f̄

)
≤ ε

20ūN
. (31)

To see this, let f̃i,t = fi,ri,t (ỹi,t). Note that the variables
(
f̃i,t

)T
t=1
are independent (unlike the

variables (fi,t)
T
t=1). Since

(
f̃i,t′
)t
t′=1

and (fi,t′)
t
t′=1 have the same distribution if Si,t 6= BR,

while fi,t = 0 if Si,t = BR, we have

Pr

(
max

t∈{1,...,T}

∣∣∣∣∣
t∑

t′=1

δt−1fi,t′

∣∣∣∣∣ ≥ f̄

)
≤ Pr

(
max

t∈{1,...,T}

∣∣∣∣∣
t∑

t′=1

δt−1f̃i,t′

∣∣∣∣∣ ≥ f̄

)
. (32)

Since
(
f̃i,t

)T
t=1

are independent, Etemadi’s inequality (Billingsley, 1995; Theorem 22.5) im-

plies that

Pr

(
max

t∈{1,...,T}

∣∣∣∣∣
t∑

t′=1

δt−1f̃i,t′

∣∣∣∣∣ ≥ f̄

)
≤ 3 max

t∈{1,...,T}
Pr

(∣∣∣∣∣
t∑

t′=1

δt−1f̃i,t′

∣∣∣∣∣ ≥ f̄/3

)
. (33)

Letting xi,t = δt−1f̃i,t, note that |xi,t| ≤ 2ū/η with probability 1 by (11), E [xi,t] = 0 by (9),

and

Var

(
t∑

t′=1

xi,t′

)
=

t∑
t′=1

Var (xi,t′) ≤
T∑
t′=1

Var (xi,t′) =
1− δT

1− δ
ū2

η
by (10).
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Therefore, by Bernstein’s inequality ((12), which again applies because
(
f̃i,t

)T
t=1

are inde-

pendent) and (13), we have, for each t ≤ T ,

Pr

(∣∣∣∣∣
t∑

t′=1

δt
′−1f̃i,t′

∣∣∣∣∣ ≥ f̄/3

)
≤ ε

60ūN
. (34)

Finally, (32), (33), and (34) together imply (31).

Incentive Compatibility: We use the following lemma (proof in Appendix A.4.5).

Lemma 8 For each player i and block strategy profile σ, incentive compatibility holds (i.e.,

(19) is satisfied) if and only if

suppσi
(
ht
)
⊆ argmax

ai,t∈Ai
Eσ−i

[
δt−1ui,t + πi,t|ht, ai,t

]
for all t and ht. (35)

In addition, for all t ≤ t′ and ht, we have

Eσ
[
δt
′−1ui,t + πi,t′ |ht

]
= Eσ

[
δt
′−1

(
1

{
max
j 6=i

θj,t′ = 0

}
(v∗i + ζ iε/4)− 1

{
max
j 6=i

θj,t′ = 1

}
ζ iū

)
|ht
]
.

(36)

We now verify that (35) holds. Fix a player i, period t, and history ht. We consider

several cases, which parallel the definition of the reward πi,t.

1. If θj,t = 0 for all j ∈ I, recall that the equilibrium action profile is the rt that is

prescribed by public randomization zt. For each action ai 6= ri,t, by (8) and (24), and

recalling that ū ≥ maxa ui (a)−mina ui (a), we have

Eσ−i
[
δt−1ui,t + πi,t|ht, zt, ai,t = ri,t

]
− Eσ−i

[
δt−1ui,t + πi,t|ht, zt, ai,t = ai

]
= δt−1

(
E
[
ui (rt) + fi,ri,t (yi,t) |ai,t = ri,t

]
− E

[
ui (ai, r−i,t) + fi,ri,t (yi,t) |ai,t = ai

])
≤ 0, so (35) holds.

2. If θi,t = 1 and θj,t = 0 for all j 6= i, then the reward πi,t specified by (25) does not

depend on yi,t. Hence, (35) reduces to the condition that every action in suppσi (h
t)

is a static best responses to σ−i (ht). This conditions holds for the prescribed action

profile, (r′i ∈ BRi (r−i,t) , r−i,t) or rNEi,t .
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3. Otherwise,

(a) If Si,t = 0, then (35) holds because it holds in Case 1 above and (24) and (26)

differ only by a constant independent of yi,t.

(b) If Si,t 6= 0, then either θj,t = θj′,t = 1 for distinct players j, j′, or there exists a

unique player j 6= i with θj,t = 1, and for this player we have ζj = −1. In both

cases, rNEt is prescribed. Since the reward πi,t specified by (26) does not depend

on yi,t, (35) reduces to the condition that every action in suppσi (h
t) is a static

best responses to σ−i (ht), which holds for the prescribed action profile rNEt .

Promise Keeping: This essentially holds by construction: we have

1− δ
1− δT

Eσ
[

T∑
t=1

δt−1ui,t + πi
(
hT+1

)]

=
1− δ

1− δT

(
Eσ
[

T∑
t=1

(
δt−1ui,t + πi,t

)]
+ ci

)
(by (29))

=
1− δ

1− δT
Eσ
[

T∑
t=1

δt−1

(
1

{
max
j 6=i

θj,t = 0

}
(v∗i + ζ iε/4)− 1

{
max
j 6=i

θj,t = 1

}
ζ iū

)
+ ci

]
(by (36))

= v∗i (by (27)), so (18) holds.

Self Generation: We use the following lemma (proof in Appendix A.4.6).

Lemma 9 For every end-of-block history hT+1, we have

ζ i

T∑
t=1

πi,t ≤ f̄ +
2ū

η
and (37)∣∣∣∣∣

T∑
t=1

πi,t

∣∣∣∣∣ ≤ f̄ +
2ū

η
+ 2ū

1− δT

1− δ . (38)

In addition,

ζ ici ≤ −
1− δT

1− δ
ε

8
. (39)
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To establish self generation ((20)), it suffi ces to show that, for each hT+1, ζ iπi
(
hT+1

)
≤ 0

and
(
(1− δ) /δT

) ∣∣πi (hT+1
)∣∣ ≤ ε. This now follows because

ζ iπi
(
hT+1

)
= ζ i

(
ci +

T∑
t=1

πi,t

)
≤ −1− δT

1− δ
ε

8
+ f̄ + 2ū/η (by (37) and (39))

≤ 1− δT

8 (1− δ)

(
−ε+ 8

(
1− δ

1− δT
)(

f̄ + 2ū/η
))
≤ 0 (by (14)), and

1− δ
δT

∣∣πi (hT+1
)∣∣ ≤ 1− δ

δT

(
|ci|+

∣∣∣∣∣
T∑
t=1

πi,t

∣∣∣∣∣
)

≤ 1− δ
δT

(
4ū

1− δT

1− δ + f̄ + 2ū/η

)
(by (28) and (38))

=
1− δT

δT
4ū+

1− δ
δT

(
f̄ + 2ū/η

)
≤ ε (by (15)),

which completes the proof.

A.4.4 Omitted Details for the Proof of Lemma 5

We show that, with the stated definitions of T and f̄ , (16) and (17) imply (13)—(15). First,

note that
1− δ2

1− δ2T
=

(1 + δ) (1− δ)(
1 + δT

) (
1− δT

) < 2
1− δ

1− δT
.

Hence,

2f̄
(
1− δ2

)
9ū
(
1− δ2T

) <
4

9ū

1− δ
1− δT

√
36 log

(
60ū

ε

)
log (N)

1− δT

1− δ
ū2

η

=
4

9

√
36 log

(
60ū

ε

)
log (N)

1− δ
1− δT

1

η
≤ 1 (by (16)).

Therefore,

60ūN exp

 −
(
f̄
3

)2

η

2
(

1−δ2T
1−δ2 ū

2 + 2
3
f̄
3
ū
)
 ≤ 60ūN exp

 −
(
f̄
3

)2

η

2
(

1−δ2T
1−δ2 ū

2 + 1−δ2T
1−δ2 ū

2
)
 = 60ūN exp

(
−f̄ 2η

361−δ2T
1−δ2 ū

2

)
.
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Moreover,

f̄ 2η

361−δ2T
1−δ2 ū

2
=

36 log
(

60ū
ε

)
log (N) 1−δT

1−δ

361−δ2T
1−δ2

=
1 + δ

1 + δT
log

(
60ū

ε

)
log (N) ≥ log

(
60ū

ε

)
log (N) .

Hence, we have

60ūN exp

 −
(
f̄
3

)2

η

2
(

1−δ2T
1−δ2 ū

2 + 2
3
f̄
3
ū
)
 ≤ 60ūN exp

(
− log

(
60ū

ε

)
log (N)

)
= ε.

This establishes (13).

Next, we have

8
1− δ

1− δT
(
f̄ +

2ū

η

)
= 8ū

(√
36 log

(
60ū

ε

)
log (N)

1− δ
1− δT

1

η
+

1− δ
1− δT

2

η

)
≤ ε (by (17)).

(40)

This establishes (14).

Finally, by (40) and 8ū
(
1− δT

)
/δT ≤ ε, we have

4ū
1− δT

δT
+

1− δ
δT

(
f̄ +

2ū

η

)
= 4ū

1− δT

δT
+

1− δT

δT
1− δ

1− δT
(
f̄ +

2ū

η

)
≤ 4

ε

8
+
ε

8

ε

8
≤ ε.

This establishes (15).

A.4.5 Proof of Lemma 8

We show that player i has a profitable one-shot deviation from σi at some history ht if and

only if (35) is violated at ht. To see this, we first calculate player i’s continuation payoff

under σ from period t + 1 onward (net of the constant ci and the rewards already accrued∑t
t′=1 πi,t′). For each t

′ ≥ t+ 1, there are several cases to consider.

1. If θj,t′ = 0 for all j, then by (9) and (24) we have

Eσ
[
δt
′−1ui,t′ + πi,t′|ht

′
]

= δt
′−1
(
ui (α

∗
t′) + v∗i + ζ iε/4− ui (α∗t′) + E

[
fi,ri,t′ (yi,t′) |ri,t′

])
= δt

′−1 (v∗i + ζ iε/4) .
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2. If θi,t′ = 1 and θj,t′ = 0 for all j 6= i, then by (25) we have

Eσ
[
δt
′−1ui,t′ + πi,t′|ht

′
]

= δt
′−1 (ui (α

∗
t′) + v∗i + ζ iε/4− ui (α∗t′)) = δt

′−1 (v∗i + ζ iε/4) .

3. Otherwise,

(a) If Si,t′ = 0, then by (9) and (26) (and recalling that player i’s equilibrium action

is ri,t′ when Si,t′ = 0) we have

Eσ
[
δt
′−1ui,t′ + πi,t′ |ht

′
]

= δt
′−1
(
ui (α

∗
t′)− ζ iū− u (α∗t′) + E

[
fi,ri,t′ (yi,t′) |ri,t′

])
= δt

′−1 (−ζ iū) .

(b) If Si,t′ 6= 0, then by (26) we have

Eσ
[
δt
′−1ui,t′ + πi,t′ |ht

′
]

= δt
′−1 (ui (α

∗
t′)− ζ iū− u (α∗t′)) = δt

′−1 (−ζ iū)

In total, (36) holds, and player i’s net continuation payoff under σ from period t + 1

onward equals

Eσ
[

T∑
t′=t+1

δt
′−1

(
1

{
max
j 6=i

θj,t′ = 0

}
(v∗i + ζ iε/4)− 1

{
max
j 6=i

θj,t′ = 1

}
ζ iū

)
|ht
]
.

By Lemma 6, the distribution of
(

(θn,t′)n6=i

)T
t′=t+1

does not depend on player i’s period-t

action, and hence neither does player i’s net continuation payoff under σ from period t + 1

onward. Therefore, player i’s period-t action ai,t maximizes her continuation payoff from

period t onward if and only if it maximizes Eσ−i [δt−1ui,t + πi,t|ht, ai,t].
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A.4.6 Proof of Lemma 9

Define

πvi,t =

 δt−1 (v∗i + ζ iε/4− ui (α∗t )) if θj,t = 0 for all j 6= i,

δt−1 (−ζ iū− ui (α∗t )) otherwise
, and

πfi,t =

 δt−1fi,ai,t (yi,t) if either θj,t = 0 for all j or Si,t = 0,

0 otherwise.

Note that, by (24)—(26), we can write πi,t = πvi,t + πfi,t. We show that, for every end-of-block

history hT+1, we have

ζ i

T∑
t=1

πvi,t ∈
[
−2ū

1− δT

1− δ , 0
]

and (41)∣∣∣∣∣ζ i
T∑
t=1

πfi,t

∣∣∣∣∣ ≤ f̄ + 2ū/η. (42)

Since πi,t = πvi,t + πfi,t, (41) and (42) imply (37) and (38), which proves the first part of the

lemma.

For (41), note that, by definition of the prescribed equilibrium actions, if θj,t = 0 for

all j 6= i, then (i) if ζ i = 1, we have ui (α∗t ) ≥
∑

a ᾱ (a) min
{
ui (a) ,maxa′i ui (a

′
i, a−i)

}
≥

ui (ᾱ) = v∗i + ε/2, by (21); and (ii) if ζ i = −1, we have ui (α∗t ) ≤ max
{
ui (ᾱ) , ui

(
αNE

)}
=

ui (ᾱ) = v∗i − ε/2, again by (21). In total, we have ζ i (v∗i + ζ iε/4− ui (α∗t )) ≤ −ε/4. Since
obviously ζ i (v

∗
i + ζ iε/4− ui (α∗t )) ≥ −2ū and −ū− ζ iui (α∗t ) ≥ −2ū, we have

ζ iπ
v
i,t =

 δt−1ζ i (v
∗
i + ζ iε/4− ui (α∗t )) if θj,t = 0 for all j 6= i

δt−1 (−ū− ζ iui (α∗t )) otherwise
∈
[
−2ūδt−1, 0

]
.

For (42), note that Si,t = 0 implies θi,t = 0, and hence∣∣∣∣∣ζ i
T∑
t=1

πfi,t

∣∣∣∣∣ ≤
∣∣∣∣∣ζ i

T∑
t=1

1 {θi,t = 0} δt−1fi,ai,t (yi,t)

∣∣∣∣∣ .
Since θi,t+1 = 1 whenever

∣∣∣∑t′=1,..,t δ
t−1fi,ai,t (yi,t)

∣∣∣ ≥ f̄ , and in addition
∣∣fi,ai,t (yi,t)

∣∣ ≤ 2ū/η

by (11), this inequality implies (42).
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For the second part of the lemma, by (27), we have

ζ ici = ζ i

(
−E

[
T∑
t=1

δt−1

(
1

{
max
j 6=i

θj,t = 0

}
(v∗i + ζ iε/4)− 1

{
max
j 6=i

θj,t = 1

}
ζ iū

)]
+

1− δT

1− δ v
∗
i

)

= E

 T∑
t=1

δt−1

1{max
j 6=i

θj,t = 0

}
(−ε/4) + 1

{
max
j 6=i

θj,t = 1

}
(ū+ ζ iv

∗
i )︸ ︷︷ ︸

∈[0,2ū]




≤ E

[
T∑
t=1

δt−1

(
1

{
max
j 6=i

θj,t = 0

}
(−ε/4) + 1

{
max
j 6=i

θj,t = 1

}
2ū

)]

≤ −1− δT

1− δ

((
1− ε

20ū

) ε
4

+
( ε

20ū

)
2ū
)

(by (30))

≤ −1− δT

1− δ
ε

8
(as ε < ū/2).

A.5 Proof of Theorem 3

Fix a linear equilibrium with weights b = (1, b2, . . . , bN), where |bi| ≤ 1 for all i. Let

I+ = {i : bi ≥ 0} and I− = {i : bi ≤ 0}. Define

vi =

 infhwi (h) if i ∈ I+,

suphwi (h) if i ∈ I−,
and v̄i =

 suphwi (h) if i ∈ I+,

infhwi (h) if i ∈ I−.

By standard arguments, for every β ∈ [0, 1], there exists a linear equilibrium with the same

weights b and expected payoff v = (1− β) v + βv̄ such that the set {v : ∃h s.t. v = u (h)} is
closed and there exist histories h and h′ such that w (h) = v and w (h′) = v̄. Since M (ε) is

convex, it thus suffi ces to show that v, v̄ ∈M (ε).

In the following lemma, given α ∈ ∆ (A) and a function ω : A × Y → R, Eα [ω (r, y)]

denotes expectation where r ∼ α and then y ∼ p (·|r), and Eα,a′i [ω (r, y)] denotes expectation

where r ∼ α and then y ∼ p (·|a′i, r−i).

Lemma 10 There exist α ∈ ∆ (A) and ω : A× Y→R such that

v̄ = Eα [u (r)− bω (r, y)] ,

Eα [ui (r)− biω (r, y) |ri = ai] ≥ Eα,a′i [ui (a
′
i, r−i)− biω (r, y) |ri = ai] for all i, ai ∈ suppαi, a

′
i ∈ Ai,

ω (r, y) ∈
[
0,

δ

1− δ ū
]

for all r, y.
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If the constraint ω (r, y) ∈ [0, (δ/ (1− δ)) ū] is replaced with ω (r, y) ∈ [− (δ/ (1− δ)) ū, 0],

then the same statement holds with v in place of v̄.

Proof. Let E = {(1− β) v + βv̄ : β ∈ [0, 1]}. By standard arguments, E is self-generating:

for any v ∈ E, there exist α ∈ ∆ (A) and w : A× Y → E such that

v = Eα [u (r) + δw (r, y)] and

Eα [ui (r) + δwi (r, y) |ri = ai] ≥ Eα,a′i [ui (a
′
i, r−i) + δwi (r, y) |ri = ai] for all i, ai ∈ suppαi, a

′
i ∈ Ai.

Since v ∈ E and w (r, y) ∈ E for all r, y, we have

vi − wi (r, y) = bi (v1 − w1 (r, y)) for all i 6= 1, r ∈ A, y ∈ Y.

Since v̄1 ≥ v1 for all v ∈ E, if v = v̄ then w1 (r, y) ≤ v1 for all r, y. Hence, taking

v = v̄ = (1− δ)u (α) + δbE [w (r, y) |α] and defining ω (r, y) = (δ/ (1− δ)) (v̄1 − w1 (r, y)) ∈
[0, (δ/ (1− δ)) ū] for all r, y, and letting E [·] denote expectation where y ∼ p (·|a), we have,

for all a, r,

u (a)− bE [ω (r, y)] = u (a)− bE
[

δ

1− δ (v̄1 − w1 (r, y))

]
= u (a)− E

[
δ

1− δ (v̄ − w (r, y))

]
= (1− δ)u (a) + δE [w (r, y)] ,

and the result follows. Similarly, if v = v then w1 (r, y) ≥ v1 for all r, y, and the symmetric

argument applies.

Taking α and ω as in Lemma 10, we have, for any player i and manipulation si,

gi (si, α) ≤
∑
ai

αi (ai)
(
Eα,si(ai) [biω (r, y) |ri = ai]− Eα [biω (r, y) |ri = ai]

)
≤

∑
ai

αi (ai) max
a′i

∣∣∣Eα,a′i [ω (r, y) |ri = ai]− Eα [ω (r, y) |ri = ai]
∣∣∣

≤
∑
r

α (r) max
ai
|E [ω (r, y) |r, ai]− E [ω (r, y) |r]| ,

44



where the second inequality uses |bi| ≤ 1. Hence,

1

N

∑
i

gi (α) ≤ 1

N

∑
i

∑
r

α (r) max
ai
|E [ω (r, y) |r, ai]− E [ω (r, y) |r]|

≤ max
r,a

1

N

∑
i

|E [ω (y) |ai, r−i]− E [ω (y) |r]| .

We conclude that
∑

i gi (α) /N is bounded by the solution to the program

max
(Y,p),r,a,ω

1

N

∑
i

|E [ω (y) |ai, r−i]− E [ω (y) |r]| s.t.

ω (y) ∈
[
0,

δ

1− δ ū
]

for all y,

E [ω (y) |r] ≤ ū,

where the last constraint follows because E [ω1 (y) |r] = u1 (r) − v̄1 ≤ ū. The remainder of

the proof shows that the value of this program converges to 0 if (1− δ) exp (N1−ρ)→∞ for

ρ > 0.

We first consider the sub-program where (Y, p) is fixed, so maximization is over (r, a, ω).

Recall that p (y|a) =
∑

x πa,xq (y|x). Note that the value of the sub-program with signal

distribution p is greater than that with signal distribution p̂, if p̂ is a garbling of p. (That

is, there exists a Markov matrix M such that p̂ = Mp.) To see this, fix any (r, a, ω̂) that is

feasible with signal distribution p̂, and define ω (r, y) =
∑

ŷM (ŷ|y) ω̂ (r, ŷ). Then

∑
y

p (y|a)ω (r, y) =
∑
y

p (y|a)
∑
ŷ

M (ŷ|y) ω̂ (r, ŷ) =
∑
ŷ

p̂ (ŷ|a) ω̂ (r, ŷ) for all a,

so (r, a, ω) is feasible with signal distribution p and yields the same value in the sub-program.

Consequently, it is without loss to let Y = X and q (y|x) = 1 {y = x} for all y, x, so that
p (x|a) = πa,x for all a, x. Now fix r, a ∈ A, and for each i, define X̄ = A,

π̄iai,xi =


1− π if xi = ai,

π if xi = ri,

0 otherwise,

π̄iri,xi =


1− π if xi = ri,

π if xi = ai,

0 otherwise,

π̄iãi,xi = 1 {xi = ãi} for ãi /∈ {ai, ri} ,

and finally π̄ã,x =
∏

i π̄
i
ãi,xi

for all ã, x. The following lemma implies that the value of the
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program is upper-bounded by that with X = X̄ and π = π̄.

Lemma 11 π is a garbling of π̄.

Proof. Since (xi) are independent conditional on (ai), it suffi ces to show that πi is a garbling

of π̄i for each i. Since π < 1/2, the matrix π̄i is invertible, with inverse matrix π̂i given by

π̂iai,âi =


1−π
1−2π

if âi = ai,

− π
1−2π

if âi = ri,

0 otherwise,

π̂iri,âi =


1−π
1−2π

if âi = ri,

− π
1−2π

if âi = ai,

0 otherwise,

π̂iãi,âi = 1 {âi = ãi} for ãi /∈ {ai, ri} .

The matrix M i := πiπ̂i is easily calculated as

M i
âi,xi

=

 πiâi,xi
1−π
1−2π

−
(
1− πiâi,xi

)
π

1−2π
if âi ∈ {ai, ri} ,

πiâi,xi otherwise.

Note that, for âi ∈ {ai, ri},

∑
xi

M i
âi,xi

=
|Ai| − 1− π
|Ai| − 1− |Ai|π

− (|Ai| − 1)
π

|Ai| − 1− |Ai| π
= 1,

and clearly
∑

xi
M i

âi,xi
= 1 for âi /∈ {ai, ri}. In addition, since πiâi,xi ≥ π for all âi, xi, we

have
πiâi,xi (1− π)−

(
1− πiâi,xi

)
π

1− 2π
≥ π (1− π)− (1− π) π

|Xi| − 1− |Xi| π
= 0,

and clearly M i
âi,xi
≤ 1 for all âi, xi. So M i is a Markov matrix and πi = M iπ̄i, completing

the proof.

Given Lemma 11, our program simplifies to

max
r,a,ω

1

N

∑
i

|E [ω (x) |ai, r−i]− E [ω (x) |r]| s.t. (43)

ω (x) ∈
[
0,

δ

1− δ ū
]

for all x ∈ A, (44)

E [ω (x) |r] ≤ ū, (45)

where x is distributed π̄ã,x. Note that, for ã = r or ã = (ai, r−i) for some i, π̄ã,x > 0 iff

x ∈ ×i {ai, ri}. Note also that it is without loss to take ai 6= ri for all i. For, if ai = ri then
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the program becomes

max
a−i,r−i,ω−i:A−i→R

1

N

∑
j 6=i

|E [ω−i (x−i) |aj, r−j]− E [ω−i (x−i) |r]| s.t. (44), (45).

Any feasible triple (a−i, r−i, ω−i) in this reduced program can be extended to a feasible

triple (a, r, ω) with ai 6= ri in the original program which gives the same value, by defining

ω (x) = ω−i (x−i) for all x. We thus assume that ai 6= ri for all i.

We now show that the value of program (43)—(45) converges to 0, which completes the

proof. Note that this value is less than the sum of the values of the two programs

max
r,a,ω

1

N

∑
i

(E [ω (x) |ai, r−i]− E [ω (x) |r])+ s.t. (44), (45), and

max
r,a,ω

1

N

∑
i

(E [ω (x) |r]− E [ω (x) |ai, r−i])+ s.t. (44), (45).

We show that the value of the first of these programs converges to 0. A symmetric argument

shows that the value of the second program also converges to 0, which implies that the value

of program (43)—(45) converges to 0 as well, as desired.

Letting λ ≥ 0 denote the multiplier on (45), it is immediate that the solution to the first

program takes the form

ω (x) =

 δ
1−δ ū if

(
1
N

∑
i π̄(ai,r−i),x

)
−π̄r,x

π̄r,x
> λ,

0 if
π̄(ai,r−i),x

−π̄r,x
π̄r,x

< λ
=

 δ
1−δ ū if 1

N

∑
i

π̄(ai,r−i),x
π̄r,x

> λ+ 1,

0 if 1
N

∑
i

π̄(ai,r−i),x
π̄r,x

< λ+ 1.

For all x ∈ ×i {ai, ri}, we have

π̄(ai,r−i),x

π̄r,x
=


1−π
π

if xi = ai,
π

1−π if xi = ri.

Since (1− π) /π > π/ (1− π) (as π < 1/2), it follows that there exists n∗ ∈ {0, 1, . . . , N}
and β ∈ [0, 1] such that

ω (x) =


δ

1−δ ū if {i : xi = ai} > n∗,

β δ
1−δ ū if {i : xi = ai} = n∗,

0 if {i : xi = ai} < n∗.
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Let n = |{i : xi = ai}| and let n−i = |{j 6= i : xj = aj}|. Note that, for any n∗,

Pr (n = n∗|ai, r−i) = (1− π) Pr (n−i = n∗ − 1|r−i) + π Pr (n−i = n∗|r−i) , and

Pr (n = n∗|r) = π Pr (n−i = n∗ − 1|r−i) + (1− π) Pr (n−i = n∗|r−i) ,

and hence Pr (n ≥ n∗|ai, r−i)− Pr (n ≥ n∗|r−i) = (1− 2π) Pr (n−i = n∗ − 1|r−i). Therefore,
the program becomes

max
n∗∈{0,1,...,N},β∈[0,1]

δ

1− δ ū (1− 2π) (β Pr (n−i = n∗ − 1|r−i) + (1− β) Pr (n−i = n∗|r−i)) (46)

s.t. β Pr (n = n∗|r) + Pr (n ≥ n∗ + 1|r) ≤ 1− δ
δ

, (47)

where

Pr (n−i = n∗|r−i) =

(
N − 1

n∗

)
πn
∗

(1− π)N−1−n∗ and Pr (n = n∗|r) =

(
N

n∗

)
πn
∗

(1− π)N−n
∗
.

Fix ρ > 0 and a sequence, indexed by k, of games with (1− δ) exp (N1−ρ) > k and pairs

(n∗, β) that satisfy the constraint (47). Fix ε > 0, and suppose toward a contradiction that,

for every k̄, there is some k ≥ k̄ such that the value of the objective (46) exceeds ε. Taking

a subsequence and relabeling k̄ if necessary, this implies that there exists k̄ such that, for

every k ≥ k̄, the value of the objective (46) exceeds ε.

We consider two cases and derive a contradiction in each of them.

First, suppose that there exists c > 0 such that, for every k̃, there is some k ≥ k̃ satisfying

|π − (n∗ − 1) / (N − 1)| > c. By Hoeffding’s inequality (Boucheron, Lugosi, and Massart,

2013, Theorem 2.8),

Pr (n−i ≥ n∗ − 1|r−i) ≤ exp

(
−2

(
π − n∗ − 1

N − 1

)2

(N − 1)

)
.

Hence, for every k̃, there is some k ≥ k̃ such that the value of (46) is at most

δ

1− δ ū (1− 2π) exp

(
−2

(
π − n∗ − 1

N − 1

)2

(N − 1)

)
≤ δ

1− δ ū (1− 2π) exp
(
−2c2 (N − 1)

)
.

Since (1− δ) exp (N1−ρ) → ∞, we have exp (−2c2 (N − 1)) / (1− δ) → 0 for all c > 0, and
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hence (46) is less than ε for suffi ciently large k, a contradiction.

Second, suppose that for any c > 0, there exists k̃ such that, for every k ≥ k̃, we have∣∣∣∣π − n∗ − 1

N − 1

∣∣∣∣ ≤ c. (48)

For this case, we establish a final lemma.

Lemma 12 For any m ∈ N and any γ > 0, there exists k̃ such that, for every k ≥ k̃, we

have
β Pr (n = n∗|r) + Pr (n ≥ n∗ + 1|r)

β Pr (n−i = n∗ − 1|r−i) + (1− β) Pr (n−i = n∗|r−i)
≥ m (1− γ) . (49)

Proof. Fix c > 0 and take k suffi ciently large that (48) holds. For any m ∈ N, we have

Pr (n ≥ n∗ + 1|r)
Pr (n−i = n∗|r−i)

=
N∑

n=n∗+1

N (1− π)

N − n∗
(N − n∗)!n∗!
(N − n)!n!

(
π

1− π

)n−n∗

≥
N∑

n=n∗+1

N (1− c)
N − 1

(
N − n∗
n

)n−n∗ (
n∗ − 1− c (N − 1)

N − n∗ + c (N − 1)

)n−n∗

≥
n∗+m∑
n=n∗+1

(1− c)
(
N − n∗
n∗ +m

× n∗ − 1− c (N − 1)

N − n∗ + c (N − 1)

)m
= m (1− c)

(
N − n∗
n∗ +m

× n∗ − 1− c (N − 1)

N − n∗ + c (N − 1)

)m
.

By (48), for any γ′ > 0, for suffi ciently large k we have (n∗ − 1) / (n∗ +m) ≥ 1 − γ′, and
hence

N − n∗
n∗ +m

× n∗ − 1− c (N − 1)

N − n∗ + c (N − 1)
≥ (1− γ′) N − n

∗

n∗ − 1
× n∗ − 1− c (N − 1)

N − n∗ + c (N − 1)

= (1− γ′)
1− c N−1

n∗−1

1 + c N−1
N−n∗

≥ (1− γ′)
1− c

π−c

1 + c
1−π−c

=
(1− γ′) (π − 2c) (1− π − c)

(π − c) (1− π)
,

which converges to 1 − γ′ as c → 0. Hence, for any γ > 0, there exists k̃ suffi ciently large

such that, for every k ≥ k̃,

Pr (n ≥ n∗ + 1|r)
Pr (n−i = n∗|r−i)

≥ m (1− c)
(

(1− γ′) (π − 2c) (1− π − c)
(π − c) (1− π)

)m
≥ m (1− γ) .
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We therefore have

β Pr (n = n∗|r) + Pr (n ≥ n∗ + 1|r)
Pr (n−i = n∗|r−i)

≥ Pr (n ≥ n∗ + 1|r)
Pr (n−i = n∗|r−i)

≥ m (1− γ) .

Similarly, for any m and γ > 0, there exists k̃ such that, for every k ≥ k̃, we have

β Pr (n = n∗|r) + Pr (n ≥ n∗ + 1|r)
Pr (n−i = n∗ − 1|r−i)

≥ m (1− γ) .

Together, these inequalities imply that, for any m and γ > 0, there exists k̃ such that, for

every k ≥ k̃, (49) holds.

Thus, for any m ∈ N and any γ > 0, there exists k̃ such that, for every k ≥ k̃, the value

of (46) satisfies

δ

1− δ ū (1− 2π) (β Pr (n−i = n∗ − 1|r−i) + (1− β) Pr (n−i = n∗|r−i))

≤ ū (1− 2π)
β Pr (n−i = n∗ − 1|r−i) + (1− β) Pr (n−i = n∗|r−i)

β Pr (n = n∗|r) + Pr (n ≥ n∗ + 1|r) (by (47))

≤ ū (1− 2π)

m (1− γ)
(by (49)).

Taking m and γ such that ū (1− 2π) / (m (1− γ)) < ε gives the desired contradiction.

A.6 Proof of Proposition 1

Fix α ∈ A (ε). Let J = {i : gi (α) > cε/2}, and note that |J | ≤ N/c. Let α̃ ∈ ∆ (A) be any

action distribution whose marginal on AI\J coincides with that of α and satisfies gi (α̃) ≤ cε

for all i ∈ J : for example, take a Nash equilibrium in the game among the players in J , where
the action distribution among the players in I\J is held fixed. Since

∣∣ui (a′j, a−j)− ui (a)
∣∣ ≤

b/N for all i 6= j, a′j, a, and the actions of at most N/c players differ between α̃ and α, we

have gi (α̃) ≤ gi (α)+2b/c for each i ∈ I\J . Since gi (α) ≤ cε/2 (as i ∈ I\J) and 2b/c ≤ cε/2

(as c ≥
√

4b/ε), we have gi (α̃) ≤ cε. Since we assumed that gi (α̃) ≤ cε for all i ∈ J , we
have gi (α̃) ≤ cε for all i ∈ I, and hence u (α̃) ∈ CE (cε). Finally, since the actions of at most

N/c players differ between α̃ and α, we have |ui (α̃)− ui (α)| ≤ b/c ≤ ū/c for all i ∈ I\J ,
and by definition of ū we have |ui (α̃)− ui (α)| ≤ ū for all i ∈ J . Since |J | ≤ N/c, we have∣∣∑

i∈I ui (α̃)−
∑

i∈I ui (α)
∣∣ ≤ Nū/c.
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