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The simple linear regression model (as a starting point)

yt = α + βxt + ut ,

where the u′ts are i.i.d., independent of xt .

• The Gaussian Pseudo-Maximum Likelihood estimator of β is
consistent (even if the Gaussian distribution of u is not zero
mean).

• It coincides with the solution β̂T of the first-order conditions :

cove(yt − β̂T xt , xt ) = 0.

• Thus we have a double interpretation of the OLS estimator :
• as a PML estimator,
• as a covariance estimator.
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Question :

Can we extend these results to much more general
frameworks?

What are the respective roles of

• the sum (between α and βxt , between βxt and ut ) ;
• the intercept ;
• the Gaussian choice of the pseudo-distribution?
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Answer

What really matters :
• A group structure of the transformations.
• the "intercept".

What does not matter :

• the Gaussian pseudo-distribution.
• the linearity in u.
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Outline

• The Semi-Parametric Model
• Consistent Estimation
• Examples
• Abelian Lie Group
• Concluding Remarks
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Transformation Group

2.1 The Transformation Group
A triple (A,Y, C), where (A, ∗) is a group, Y a (Hausdorff
topological) space and C a set of maps from A× Y to Y such
that :

i) c[a, c(b, y)] = c[a ∗ b, y ],∀y ∈ Y,a,b ∈ A,
ii) c(e, y) = y ,∀y ∈ Y, where e is the identity of (A, ∗).

[see e.g. Bredon (1972) : "Introduction to Compact
Transformation Groups", Vol 46, Pure and Applied
Mathematics, Chapter 1].

The group structure (A, ∗) is transferred (isomorphic) to the
group structure (C,o), where o is the composition of functions.
In particular each function : y → c(a, y) is invertible.
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Transformation Group

• Additional constraints can be introduced on the group :

- Abelian group, when a ∗ b = b ∗ a, ∀a,b ∈ A;

- Lie group, when a differentiable structure with
respect to a.

• A group transformation is easily transferred by any one-to-one
change of parameter (or change of argument y ).
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The Econometric Model

2.2 The Econometric Model

The semi-parametric model is deduced from the transformation
group by making parameter a depend on explanatory variables
and introducing an "intercept" parameter :

ut = c[α ∗ a(xt , β), yt ]
⇐⇒ yt = c[a−1(xt , β) ∗ α−1,ut ],

where • the errors (ut ) are i.i.d.,
• the error ut is independent of the explanatory variable

xt (either exogenous, or lagged endogenous).
• the parameter : α, β : α ∈ A, β ∈ B.

As many intercepts α as scores (indexes) a(x , β).
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An Identification Issue

2.3 An Identification Issue

Let us assume that the econometric model is well-specified :

true parameter value : α0, β0,

true error distribution : f0.

• If f0 is known, (α, β) is identifiable iff :
α ∗ a(x , β) = α0 ∗ a(x , β0),∀x ∈ X ⇒ α = α0, β = β0.

• If f0 is unknown, we cannot expect to identify separately α0, f0.
This is the reflection problem discussed by Manski (1993) for
linear models. Indeed :

yt = c[a−1(xt , β0) ∗ α−1
0 ,ut ]

= c[a−1(xt , β0), c(α−1
0 ,ut )]

= c[a−1(xt , β0) ∗ e, vt ].

(α0, f0) cannot be distinguished from (e, distribution of vt ).
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3.1 Two Estimation Methods

• Covariance Estimators

Based on the covariance restrictions :
cov [ϕ(vt ), ψ(vt−h)] =, ∀t ,h, and a large class of functions ϕ,ψ,
⇐⇒ Cov [ϕ[c(a(xt , β), yt )], ψ[c(a(xt−h, β), yt−h)]} = 0, ∀t ,h, ϕ, ψ.

Under stationarity assumption and an appropriate choice of
functions ϕ,ψ and lag h, consistent estimators of β0 can be
derived from the empirical covariance counterparts.

Generalized Covariance (GCov) Estimators :
Gourieroux, Jasiak (2017) : "Noncausal Vector Autoregressive
Process : Representation, Identification and Semi-Parametric
Estimation", Journal of Econometrics, 200, 118-134, Section 4
and Appendix C.
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• The covariance estimators are similar to GMM estimators, but
differ from them. Indeed the restrictions involve both moments
and products of moments.

This is an indirect way to adjust for the nonidentifiable intercept.

• The GCov estimators can be applied to continuous as well as
discrete variables y .
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• Pseudo Maximum Likelihood (PML) Estimators

An alternative is to apply a maximum likelihood approach on
the econometric model with intercept and a given distribution f
for the u′ts. Since in general f is different from the unknown f0,
this is a PML approach.

The optimisation is :

(α̂T , β̂T ) = arg maxα,β
1
T

T∑
t=1

log l(α ∗ a(xt , β), yt ),

and the asymptotic criterion is :

E0Ex log l{α ∗ a(x , β), c[a−1(x ;β0) ∗ α−1
0 ,u]}.

The transformation group structure implies a special form of the
pseudo likelihood function and the following result :
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The consistency result

Let us assume that the optimisation problem :

maxα E0Ex log l(α,u),

has a unique solution ẽ0, and the identification condition for
fixed f , then the limiting optimization problem has the unique
solution :

p lim α̂T = ẽ0 ∗ α0,p lim β̂T = β0.

In other words,
For any choice of pseudo distribution f (satisfying minimal
regularity conditions), the introduction at the right place of
intercept parameters adjusts for the asymptotic bias of the PML
estimator of β.
This result is valid for any type of observation : discrete as well
as continuous.
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How to understand the consistency result?

Consider the discrete state case : Y = {1, . . . ,K}(= U), say,
and introduce a pseudo distribution on u, that are, fix
elementary probabilities : p(k) (or p(u)). We have :

log lt = log p[c(α ∗ a(xt , β), yt )]

= log p[c[α ∗ a(xt , β), c[a−1(xt , β0) ∗ α−1
0 ,ut ]]]

= log p[c[α ∗ a(xt , β) ∗ a−1(xt , β0) ∗ α−1
0 ,ut ]].

Then
E0Ex log p[c[α ∗ a(x , β) ∗ a−1(x , β0) ∗ α−1

0 ,ut ]]
≤ E0 log p[c(ẽ0,u)],

and the maximum is reached for :
β = β0, α ∗ α−1

0 = ẽ0,
⇐⇒ β = β0, α = ẽ0 ∗ α0.
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The PML estimator of the intercept is not consistent of α0, but
tends to the pseudo-true value :

α∗0 = ẽ0 ∗ α0 ⇔ α∗0 ∗ α
−1
0 = ẽ0.

When the group operation is the addition : ∗ = +, we get :

α∗0 − α0 = ẽ0,

that is the bias is constant, i.e. independent of α0.
This result of constant bias is general with another definition of
the bias on α0 as : α∗0 ∗ α

−1
0 . Indeed in general the right

interpretation of an intercept is not to be a mean.
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3.2 Consistent Estimation of Standardized Errors

Once parameter β is estimated consistently, we deduce :

• consistent approximations of the standardized errors vt by
computing the residuals :

v̂tT = c[a(xt , β̂T ), yt ];

• consistent functional estimators of the common distribution of
the v ′t s :
by an appropriate (kernel) smoothing of the empirical
distribution of the residuals ;

• then, the possibility to develop adaptive estimation method for
parameter β.

19/54



ECONOMETRIC MODELLING and TRANSFORMATION GROUPS

CONSISTENT ESTIMATION

Unobserved Heterogeneity

3.3 Unobserved Heterogeneity

The PML approach can also be applied assuming that the
(misspecified) distribution of errors belongs to a parametric
family : f (u; γ), say.

Then we get PML estimators for α, β, γ. They converge to
values : α̂T → α∗0, β̂T → β0, γ̂T → γ∗0.

Thus we still get the consistency of the estimator of parameter
β.

This result has an interesting interpretation for group
transformation model with unobserved heterogeneity.
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Unobserved Heterogeneity

The model is defined by :
ut = c[ηt ∗ α ∗ a(xt , β), yt ]

⇐⇒ yt = c[a−1(xt , β) ∗ α−1 ∗ η−1
t ,ut ]

where ηt denotes the unobserved heterogeneity : (ηt ,ut ) i.i.d.

Let us assume that the DGP is parametric : ut ∼ f (u, γ0),
ηt ∼ h(η, δ0), β = β0, α = α0, say.

Proposition : The ML estimator of α, β, γ computed without
assuming heterogeneity is such that β̂T → β0.

This is a consequence of the alternative form of the model :
yt = c[a−1(xt , β), vt ], where vt = c[α−1 ∗ η−1

t ,ut ].
Message : be aware about the way of introducing unobserved
heterogeneity.
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4.1 Affine Transformation Model
ut = a0(xt , β) + A1(xt , β)yt .

⇐⇒ yt = −A−1
1 (xt , β)a0(xt , β) + A−1

1 (xt , β)ut .
c(a, y) = a0 + A1y , with a0 ∈ IRn,A1 an invertible (n,n) matrix.

• The group operation :
(b0,B1) ∗ (a0,A1) = (b0 + B1a0,B1A1)

• The econometric model with intercept :

yt = b0 + B1a0(xt , β) + B1A1(xt , β)yt ,

where : α = (b0,B1) is the intercept.

• This is the multivariate extension of :
Newey, Steigerwald (1997) : "Asymptotic Bias for
Quasi-Maximum Likelihood Estimators in Conditional
Heteroscedastic Models’, Econometrica, 65, 587-599.
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i) Multivariate ARCH-Model

When ut = A1(xt , β)yt , α = B1 and xt = yt−1, the model
includes the multivariate ARCH models.

But with a new modelling perspective hidden in the
identification condition of A1 in the (pseudo) generic model. Let
us assume that the components uit , i = 1, . . . ,n of ut are
independent, a condition needed for analyzing the
consequences of shocks in such an ARCH model :

yt = A1(xt , β)−1ut .
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If either the true or the pseudo distributions are Gaussian, say,
the square A1A′1 is identifiable, but not necessarily A1. In other
words, there exists a multiplicity of square roots of the volatility
matrix that could be chosen for deriving the impulse response
functions.

If both the true and pseudo distributions admit at most one
Gaussian component, we can identify and estimate consistently
all β parameters, not only the subparameters of β identifiable
from A1(xt , β)A1(xt , β)′.
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ii) Peer Effects

The standard modelling of peer effects in a linear framework is :
yt = Byt + α(xt , θ) + ut ,

or equivalently :
yt = (Id − B)+α(xt , β) + (Id − B)+wt
≡ a(xt , β) + Awt ,

(where i the student, t = j the school, say).
This model features the standard identification issue, i.e. the
reflection problem.
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The model can be extended to an explanatory modelling of
peer effects A(⇐⇒ B), i.e. to :

yt ≡ a(xt , β) + A(xt , β)ut .

Difficulty : the rather large dimension n = dim yt and n2 for the
number of additional intercepts.

Solution : Constrain the explained peer effects in order A to
belong to a subgroup of a much smaller dimension.
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3.2 The Least Impulse Response (LIR) Estimator

The stress test exercices demanded by the supervisors for
credit risk are based on a decomposition of the total expected
loss for an homogenous segment of loans as :

Expected Loss = EL = EAD. CCF. PD. (E)LGD,

where : EAD = Exposure-at-Default,
CCF = Credit Conversion Factor,
PD = Probability of Default,
(E)LGD = (Expected) Loss-Given-Default.

The variables PD, (E)LGD, CCF are valued in [0,1] and there is
a lack of flexible models and of interpretable estimation
methods for their analysis.
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Instead of the standard parametric beta model, we suggest the
use of a transformation group and a PML approach based on
the uniform distribution on [0,1].

DGP : ut = c[α0 ∗ a(xt , β0), yt ],ut i.i.d.
pseudo log-likelihood :

LT (α, β) =
T∑

t=1

log
∂c
∂u

[α ∗ a(xt ;β), yt ]

= −
T∑

t=1

log
∂c
∂u

[a−1(xt ;β) ∗ α−1,ut ]

= −
T∑

t=1

log IRt (α, β),

where IRt (α, β) is the effect on yt of a local shock on ut .

This justifies the name :

Least Impulse Response (LIR) estimator.
29/54



ECONOMETRIC MODELLING and TRANSFORMATION GROUPS

EXAMPLES

An unfair estimation approach

• The idea is to select the estimates α̂T , β̂T in order to minimize
the estimated consequences of (local) shocks on u ; in other
words, to minimize the amount of estimated reserves
introduced to be hedged against such shocks.

• As unfair as the OLS approach in the standard regression
model, where the OLS approach selects the estimate to give
the impression that the estimated model is accurate : minimize
the sum of squared residuals.

Nevertheless :

• the unfair approach provides consistent results ;
• is also appropriate for analyzing the effect of nonlocal shocks
(just the distribution of vt matters, not separately f0 and α0).

30/54



ECONOMETRIC MODELLING and TRANSFORMATION GROUPS

EXAMPLES

Examples of transformation groups on [0,1]

i) Power transformation

c(a, y) = ya,a ∈ IR+∗,a ∗ b = ab;
ii) Homographic transformation

c(a, y) =
ay

1 + (a− 1)y
,a ∈ IR+∗,a ∗ b = ab;

iii) Piecewise transformation

c(a, y) =
10∑

k=1

c∗k (ak , y)1lk − 1
10

≤ c ≤ k
10

,

with c∗k (ak , y) =
k − 1

10
+

1
10

c(ak ,10y − (k − 1)), k = 1,10.
iv) Moebius transformations

For a joint analysis of two variables valued in (0,1), such as PD
and (E)LGD.
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3.3 Boolean Group and Adjusted Maximum Score

An (exotic?) example with discrete variables : Y = U = {0,1}.

• The group of permutations :
u = y = c(1, y), the identity Id,
u = 1− y = c(0, y), the other permutation P.

• The group operation :
a ∈ A = {0,1},a ∗ b = ab + (1− a)(1− b).

Id o Id = Id
Id o P = P
P o Id = P
P o P = Id

=⇒


1 ∗ 1 = 1
1 ∗ 0 = 0
0 ∗ 1 = 0
0 ∗ 0 = 1.

• Simplified form :
c(a, y) = ay + (1− a)(1− y).
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• The econometric model (without intercept).

log Π ST (β) + log(1− Π)(T − ST (β)],
where Π = P[ut = 1] and

ST (β) =
T∑

t=1

[1lã(xt ,β)>0yt + 1lã(xt ,β)<0(1− yt )],

is the score (here t = i individual index).

If Π > 0.5, the PML is simply the maximum score estimator.

Manski, C. (1975) : "Maximum Score Estimation of the
Stochastic Utility Model of Choice", Journal of Econometrics, 3,
205-228.
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• The econometric model (with intercept) :

ut = a(xt , β) ∗ α ∗ yt .

The associated concentrated pseudo log-likelihood is the max
of :

log ΠST (β) + log(1− Π)[T − ST (β)], log Π[T − ST (β)] + log(1− Π)ST (β).

The PML estimator of β maximizes :

β̂T = arg max
β

max(ST (β),T − ST (β)).

The standard maximum score has to be adjusted for "orientation".
Indeed we do not know a priori if Π0 > 0.5.
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It is well known that a maximum likelihood estimator can be
interpreted as a moment estimator, where the moment
restrictions correspond to the expected score being zero.

Do we have a similar result for the consistent PML estimator
taking into account the adjustment for not identifiable intercept?

First we need a differentiability assumption on the group to be
able to derive first-order conditions :

• Lie group ;

We also need the commutativity property of the operation :

• Abelian Lie group.
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5.1 A Characterization of an Abelian Lie Group

Theorem [Bredon (1972), Th 5-4] :

A (connected) Abelian Lie Group (A, ∗) is isomorphic to
T K × IRp−K for some p,K , where T K is the K -dimensional
torus, i.e. the product of K copies of the circle group
S1 = IR/2ΠZ,S1 and IR with their standard group operations.

Thus, up to a one-to-one change of the group elements, we can
choose for the components of a :

K "angles", wk , k = 1, . . . ,K , with wk ∗ wl = wk + wl (mod 2π) ;

p reals : aj , j = K + 1, . . . ,p, with aj ∗ al = aj + al .
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It is also isomorphic to the group of (p + K ,p + K )
block-diagonal matrices, where the K first (2,2) blocks are

matrices of rotations :
(

cos wk sin wk
− sin wk cos wk

)
, and the next (1,1)

blocks have diagonal elements exp aj , j = K + 1, . . . ,p.

It is easily checked that such matrices can be written as :

exp(
K∑

k=1

wkCk +

p∑
j=K+1

ajCj),

where the (p + K ,p + K ) matrices Cj are known, commute, and
the exponential of a matrix is defined as :

exp(aC) =
∞∑

i=0

aiC i

i!
.
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To summarize it is equivalent to analyse an Abelian Lie group
or a group of matrices of the form :

exp(

p∑
j=1

ajCj),

where the matrices Cj , j = 1, . . . ,p commute.

This is useful from a theoretical point of view.

From a practical point of view, the difficulty is that the change of
parameter to reach this simplified expression of the
transformation, or equivalently to transform the operation ∗ into
an addition +, is not easy to find.
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5.2 First-Order Conditions and Covariance Estimators

Proposition 1 : Let us consider a model :

ut = Πp
j=1 exp[(aj(xt , β) + αj)Cj ]yt

= exp[

p∑
j=1

(aj(xt ;β) + αj)Cj ]yt ,

where the Cj , j = 1, . . . ,p commute, then the FOC for
parameter β are equivalent to empirical covariance restrictions
between appropriate functions of xt (the underlying
instruments) and appropriate functions of vt .
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The asymptotic variance-covariance matrix of the PML
estimator has also a specific form. For instance for a single
score p = 1, we have :

Vas[
√

T (β̂T − β0)] ≡ i
j2

Ω−1,

where i/j2 is the asymptotic variance of the PML estimator of
α1 in the generic model ut = exp(α1C1)yt with intercept only,
which depends on both the true and pseudo-distributions of the
error, but not on the distribution of explanatory variables ;

Ω = Vx

[
∂a(xt ;β0)

∂β

]
is a variance matrix independent of the

pseudo and true distributions of the errors.
In particular, the asymptotic variance-covariance matrices of all
PML estimators are proportional.
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5.3 Additional Examples

Before introducing these examples, note that the exponential of
a matrix C can be written as :

exp(aC) = (exp C)a ≡ Ba,with B = exp C.

Any matrix B which is diagonalizable, with complex, or positive
real eigenvalues can be written under an exponential form.
C is called the generator of this group.
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5.3.1. Dynamic Model for Stochastic Measures

Let us consider a (n,n) transition matrix P, say, with complex,
or positive real eigenvalues :

P = exp∧,
where the generator ∧ is the associated matrix of intensities.

The econometric model :
yt = Pa(xt ,β)ut = exp(a(xt , β)∧)ut ,

is appropriate for defining a dynamic model for observed
probability distributions if :
uit > 0,Σiuit = 1[yit > 0,∀i ,Σiyit = 1], and a(xt , β) > 0, xt = yt−1.

a(xt , β) is a time deformation.

The extended model with intercept is :
yt = Pa(xt ,β)+αut ,

where α is not constrained to be positive. α is a time origin.
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5.3.2 Stratified Models

Let us consider a decomposition of IRn into J orthogonal vector
spaces and denote Pj , j = 1, . . . , J, the associated orthogonal
projectors. We have :

exp(
J∑

j=1

ajPj) =
J∑

j=1

exp(aj)Pj .

The associated econometric model is of the type :

yt = exp(
J∑

j=1

aj(xt , β)Pj)ut =
J∑

j=1

exp[aj(xt , β)]Pjut .

We will illustrate such econometric models with the simple
case : J = 2,Pn the orthogonal projector on the vector space
generated by the unitary vector (1,1, . . . ,1)′.
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i) Model with Equi-Individual Interactions (peer effects)

The model :

yt =


α1(xt , β) α2(xt , β) . . . α2(xt , β)
α2(xt , β) α1(xt , β)

...
. . .

α2(xt , β) α1(xt , β)

ut , (∗)

can be rewritten as :

(α1(xt , β)− α2(xt , β)]Id + nα2(xt , β)Pn

= [α1(xt , β)− α2(xt , β)](Id − Pn) + (α1(xt , β) + (n − 1)α2(xt , β)]Pn

= exp[a1(xt , β)Pn + a2(xt , β)(Id − Pn)],

with : a1(xt , β) = α1(xt , β) + (n − 1)α2(xt , β), a2(xt , β) = α1(xt , β)− α2(xt , β).

After the change of parameter, the introduction of the additional intercept is
additive. This introduction is much more complicated when it is written from
the initial parameters α1, α2 in (∗).
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Interpretation for academic achievement

yic achievement for student i and class c

yic = a0(xic , β) + a1(xic , β)ūc + uic

• The reflection problem is not solved : we cannot disentangle
the constant part of the peer effect and the dependence
between the components ui,c , i = 1, . . . ,n.

• But we can estimate consistently the "exogenous"
(contextual) component of the peer effect, even if the
uic , i = 1, . . . ,n are linked.

This extends Graham (2008) : "Identifying Social Interactions
Through Conditional Variance Restrictions", Econometrica, 76,
where the effect of the size of the class (large vs small) was
introduced.
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ii) Within and Between Equi-Interactions (peer effects)

This modelling is easily extended to several segments (strata)
to distinguish the interaction between and within segments. For
instance for two segments of a same size n, we can write :

yt = exp[aB
1 (xt , β)P2 + aB

2 (xt , β)(Id2 − P2)]⊗ exp[aw
1 (xt , β)Pn + aw

2 (xt , β)(Idn − Pn)]

= exp{aB
1 (xt , β)aw

1 (xt , β)P2 ⊗ Pn + aB
1 (xt , β)aw

2 (xt , β)P2 ⊗ (Idn − Pn)
+ aB

2 (xt , β)aw
1 (xt , β)(Id2 − P2)⊗ Pn + aB

2 (xt , β)aw
2 (xt , β)(Id2 − P2)⊗ (Idn − Pn)]

where P2 ⊗ Pn,P2 ⊗ (Id − Pn) are orthogonal projectors and ⊗ denotes the Kronecker
product.

The additional intercepts (4 intercepts) have to be added to the products

aB
1 aw

1 , a
B
1 aw

2 . . ., not separately on aB
1 , a

B
2 . . ..
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iii) Seasonal Adjustment

A seasonal model with two seasons (semesters) :
y1t semester 1, year t ,
y2t semester 2, year t .

The two parametrizations :{
y1t = α1(xt , β)u1t + α2(xt , β)u2t ,
y2t = α2(xt , β)u1t + α1(xt , β)u2t ,

or
y1t + y2t

2
= y.t = a1(xt , β)u.t , with a1 = α1 + α2,

y1t − y2t

2
= y1t − y.t = a2(xt , β)(u1t − u.t ) with a2 = α1 − α2.

The second parametrization is more convenient for the
interpretation and the modelling :
•u.t = yearly innovation, u1t − u.t = seasonal specific
innovation.

• Dynamics for the year and seasonal components can be
directly introduced on the second specification. 48/54
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5.3.3 Evolutionary Trees (Hierarchical Models)

Let us denote C(k) the matrix with unitary values on the upper
k th diagonal and zero anywhere else.

These matrices commute since :

C(k)C(l) = C(k + l) = C(1)k+l ,

and we have C(k) = 0, ∀k ≥ n.

Then, after an appropriate change of parameter, we get :

exp[
n−1∑
j=0

ajC(j)] ≡
n−1∑
j=0

bj(a)C(j).
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This explains how to introduce the additional intercepts in a
model of the type :

yt =


b0(xt , β) b1(xt , β) . . . bn−1(xt , β)

0
. . .

...
... b1(xt , β)
0 . . . 0 b0(xt , β)

ut .
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6. CONCLUDING REMARKS
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The ML approach usually leads to unconsistent estimators if
the distribution of the errors is misspecified. We have seen that
for models based on transformation groups, this lack of
consistency is easily adjusted for by introducing an appropriate
number of intercept parameters at appropriate places.

Moreover, for Abelian Lie Group, the PML estimators are
interpretable as covariance estimators, and their asymptotic
variance-covariance matrix has a simple form, that
disentangles the effect of explanatory variables and the effect
of pseudo and true distributions of the errors.
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However the main message seems more important since these
transformation group models with their associated PML
estimator approaches can be used as an alternative modelling
strategy. Typically this point has been illustrated :

• for models with unobserved heterogeneity

• for credit risk, with the interpretation of some estimation
approaches in terms of reserve,

• for ARCH type models, when it is possible to estimate the
nonlinear sensitivity to random shocks, instead of the standard
volatility which is usually less informative.

• to account for the explanatory component in peer effects.
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Up to now transformation groups were not explicitely used in
econometric modelling, but they are intensively used in other
fields, mainly without introducing explanatory variables and/or
dynamics :

not only for the Rubik’s cube,

but for facial recognition, video analysis or neuroscience,

and of course for modelling the effect of time on space
(relativity).

We hope that our results will help in introducing dynamic and/or
explanatory models in these other fields.
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