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Abstract
Blockchains are distributed ledgers, operated within peer-to-peer

networks. If reliable and stable, they could offer a new, cost effective,
way to record transactions and asset ownership, but are they? We
model the blockchain as a stochastic game and analyse the equilib-
rium strategies of rational, strategic miners. We show that mining the
longest chain is a Markov perfect equilibrium, without forking on the
equilibrium path, in line with the seminal vision of Nakamoto (2008).
We also clarify, however, that the blockchain game is a coordination
game, which opens the scope for multiple equilibria. We show there
exist equilibria with forks, leading to orphaned blocks and also possibly
to persistent divergence between different chains.
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1 Introduction
Blockchains are decentralised protocols for recording transactions and asset
ownership. The blockchain design was the main innovation underlying the
digital currency network Bitcoin (Nakamoto, 2008), but its potential ben-
efits in terms of cost-efficiency, speed and security, for a variety of assets
and contracts, have attracted interest from a broad range of institutions and
businesses.1 Blockchain experiments, and in some cases limited deployments,
have been conducted by the Australian Stock Exchange, the Nasdaq, BHP
Billiton and major banks around the globe. As blockchains are being embed-
ded into major transaction platforms, we propose to investigate the stability
of the protocol: how efficient is a blockchain at building a stable consensus
among participants about the history of past transactions? This question is
particularly relevant when blockchains are public, that is when participants
are anonymous and there is no formal authority to coordinate their behaviour
in last resort.2 We take a game-theoretic approach that captures the key fea-
tures of a blockchain design and allows to pin down the tradeoffs faced by
the key players (the “miners”) in the blockchain’s decentralised certification
process.

Nakamoto (2008) (Section 5) gives the following description of the blockchain’s
functioning.

“The steps to run the network are as follows:

1. New transactions are broadcast to all nodes.

2. Each node collects new transactions into a block.

3. Each node works on finding a difficult proof-of-work for its block.

4. When a node finds a proof-of-work, it broadcasts the block to all nodes.

5. Nodes accept the block only if all transactions in it are valid and not
already spent.

1The blockchain is cost effective in that the administrative costs of running it are limited
compared to those incurred within older technologies and institutions, such as notaries,
banks or depositories.

2Bitcoin and Ethereum are best-known examples of public blockchains. There also exist
private blockchains, which use the same technology, but whose participants are selected
and which can have specific coordination devices. Our paper focuses on public blockchains.
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6. Nodes express their acceptance of the block by working on creating the
next block in the chain, using the hash of the accepted block as the
previous hash.”

The nodes conducting the above mentioned tasks are called “miners”, as
they “mine” to solve proof-of-work problems,3 and get rewarded for this in
bitcoins. When mining, a miner sets a computer capacity that performs trials
to find a hash value lower than a given threshold. Each trial is independent:
past failures do not affect the probability of success of a future trial. Once
a trial is successful, the winning miner sends the block with the solution to
other participants. If participants accept this block as the new consensus,
they take it as the parent of the new block they start mining. In that case
(unless the consensus is altered), the miner who solved the block gets a re-
ward.4 This process is illustrated in Figure 1.

0
time

B1 B2 B3

t1 t2 t3

Figure 1: The Blockchain
At t = 0, there is an initial block B0 and a stock of transactions included in a
block B1, chained to B0. Miners work on a cryptographic problem until a miner
solves B1 at t1. B1 is broadcast to all. Nodes check proof-of-work and transactions
validity, and express acceptance by chaining the next block to B1.

Ideally, there is only one chain, to which all miners attach their blocks.
One of the major questions about blockchain is whether such an outcome
will arise. The alternative outcome is one in which miners do not all attach
their block to the same chain. Suppose, e.g., that the last block solved
is Bn, but miner m chains his next block to the parent block of Bn, i.e.,
Bn−1. This starts a fork, as illustrated in Figure 2. If some miners follow m,

3The problem to be solved by the miners is a purely numerical problem, completely
unrelated to the economic nature of the transactions in the block. Once found, the solution
to this problem is easy to verify.

4This includes rewards given by the blockchain system plus transaction fees which the
originators of trade can choose to offer for the validation of their transactions.
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while others continue to attach their blocks to the original chain, there are
competing versions of the ledger. This reduces the credibility and reliability
of the blockchain, especially if the fork is persistent. Even if, eventually, all
miners agree to attach their blocks to the same chain, the occurrence of the
fork is not innocuous. The blocks in the chain eventually abandoned are
orphaned. They have been mined in vain, and the corresponding computing
power and energy have been wasted. Moreover, the transactions recorded in
the orphaned blocks may be called in question.

0
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t1 tn−2 tn−1 tn

Bn+1

Original chain

B
′
n

Fork

Figure 2: A fork

Blockchain networks did experience major forks in the past. One of the
most significant was the fork occurred on Bitcoin in March 2013: Due to a
bug in a software upgrade, two competing branches started. It took more
than 8 hours for miners to identify the fork and abandon one of the branches.
Another example is the July 2016 fork on Ethereum, the major smart con-
tract network. Following the hack of TheDAO, a large venture capital fund
operating through smart contracts, members of the Ethereum community
suggested to roll back the blockchain in order to cancel the transactions that
diverted the fund’s money. Other members defended the principle that the
history of the ledger should not be altered in any way, for the sake of the
network’s credibility. Ethereum eventually split in two branches that still
exist today, giving rise to two different cryptocurrencies. The possibility of
major forks is still lurking. The Bitcoin community is currently divided on
which technical solution to adopt to address the limitation of the network
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transaction throughput.5 Two main solutions, Segregated Witness (SegWit)
and Bitcoin Unlimited (BU), are supported by different Bitcoin community
members, with the threat of some to fork in an attempt to impose their
preferred solution. As of May 2017, it is not clear which solution will be
adopted, nor whether it will lead to a fork.

How do forks happen? The above coordination issues, which can arise
following a technological change or an unpredictable event (like the hacking of
TheDAO) have been overlooked and it is a contribution of the present paper
to undescore and analyse them. Coming from a different angle, an often
mentioned potential cause of forks is “double-spending.” Suppose miner m
from the example above buys an object from some party Y and the transfer
of m’s bitcoins to Y is recorded in Bn. This could give an incentive for miner
m to mine from Bn−1, trying to attract miners to his chain, to orphan Bn

and void the transfer of his bitcoins to Y . m would then be able to spend
his bitcoins again, i.e., would “double spend.”

Non-instantaneous dissemination of information through the network is
another potential reason why forks, i.e., competing versions of the ledger,
could arise. Nakamoto (2008) identified that problem and suggested it would
be solved if miners always chained their blocks to the longest chain:

“Nodes always consider the longest chain to be the correct one
and will keep working on extending it. If two nodes broadcast
different versions of the next block simultaneously, some nodes
may receive one or the other first. In that case, they work on
the first one they received, but save the other branch in case it
becomes longer. The tie will be broken when the next proof-of-
work is found and one branch becomes longer; the nodes that
were working on the other branch will then switch to the longer
one.”

In the present paper, we abstract from these two problems, assuming
miners do not attempt to double spend and also that information is instan-
taneously disseminated in the network. In this frictionless world, it is com-
monly argued, in particular by the blockchain community, that blockchains
should give rise to a single and stable consensus, and thus offer a reliable way

5Precisely, the protocol sets the maximum size of a block of transactions to one
megabyte, which slows down the speed of transactions validation and hinders the de-
velopment of the network itself.
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to record transactions and ownership. We examine the validity of that “folk
theorem” and analyse how consensus can emerge from miners’ interactions.

To do so, we rely on a theoretical model, capturing the key features of the
blockchain technology. We model the blockchain as a stochastic game, we
analyse miners’ best responses and beliefs, and we characterise the properties
of the corresponding equilibria. Explicitly writing down the blockchain as
a game, and explicitly writing down the action space, states, beliefs and
strategies of the miners, is necessary to pin down precisely the economic
forces at play in that environment, the tradeoffs faced by the miners, and
the mechanisms pushing towards stability or instability of the distributed
ledger.

Our analysis uncovers two important economic forces at play in the
blockchain.

First, because the value of the rewards for mining a block in a given
blockchain depends on the credibility of that chain and correspondingly on
the number of miners active on that chain, the blockchain game is a coordina-
tion game: If I anticipate all the others to mine a given chain, this increases
my incentives to mine that chain. As often in coordination games, there can
be multiple equilibria and instability. We show that there exists a Markov
perfect equilibrium involving a single chain and in which the longest chain
rule (hereafter LCR) suggested by Nakamoto (2008) holds (Proposition 1).
In that equilibrium, miners do not want to deviate because they rationally
anticipate that if they did, the other miners would not follow them, so that
the blocks they would solve on forks out of the equilibrium path would carry
no reward. On the other hand, we also show that the same coordination
effects can give rise to Markov perfect equilibria involving forks (Proposition
2). In such equilibria, a sunspot variable realises, suggesting miners to fork.
No miner wants to deviate from forking for the same reason as above: each
miner rationally anticipates that any block solved out of the equilibrium path
will not be accepted by the others, and will have no value. The possibility
of these forks creates uncertainty about the allocation of property rights and
undermines the stability and reliability of the distributed ledger.

Second, we identify another force which we refer to as “vested interest:”
When a miner solves blocks on a chain, he is rewarded with units of the
cryptocurrency associated with that chain. As long as the miner has not
sold this cryptocurrency, he has a vested interest in that chain becoming the
consensus. Now, miners cannot immediately sell the cryptocurrency they
receive as reward for the blocks they hold. They must keep them until
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sufficiently many blocks have been attached to that chain (this is the so-
called “k-blocks rule”). This can lead miners working on different chains to
continue to do so, in order to beat the competing chain. This can contribute
to the emergence of persistent forks (Proposition 3).

While the persistent forks result hinges on the strategic behaviour of
miners, who anticipate their strategy will affect the value of their rewards, the
emergence of forks, making the previously longest chain orphan, relies only
on coordination effects, and would also arise in a competitive environment.

In the last section of the current paper, we discuss how integrating fric-
tions in our model, such as attempts to double-spend or non-instantaneous
dissemination of information, could provide further insights into the blockchain’s
stability. We also suggest to endogenise the computing capacity that each
miner installs on the network. In the Bitcoin protocol, total computing ca-
pacity determines the difficulty to solve blocks. Because each miner does not
take into account the impact of his computing capacity on the difficulty of
the cryptographic problem faced by other miners, we conjecture that an arms
race can occur, leading to over-investment in computing power (not unlike
the over-investment in financial expertise noted by Glode, Green and Lowery
(2012)). This provides a roadmap for our future research.

Literature: Most existing literature on blockchains is in computer sci-
ence, with the notable exceptions of Harvey (2016), who discusses the pros
and cons of blockchains and Yermack (2017) who discusses their implications
for corporate governance.

Computer science papers offer insightful analyses of potential strategic
problems, but usually do not rely on the same type of formalism as in eco-
nomics. Bonneau et al. (2016) analyse how mining pools (i.e., groups of
miners) controlling a large fraction of the computing power could attack the
chain. Eyal and Sirer (2014) show how colluding miners can obtain a larger
revenue than their fair shares. Teusch, Jain and Saxena (2016) study how
a strategic miner can fork and attack the blockchain to double spend. The
paper to which our analysis is the closest is Kroll, Davey and Felten (2013).
They note that the interaction between miners should be analysed as a game.
They argue that the LCR is a Nash equilibrium. While their analysis offers
interesting economic intuition, it does not offer a formal analysis and proof
of equilibrium. Another difference between our analysis and theirs is our
analysis of forks on the equilibrium path.

7



Several papers (e.g., Evans, 2014) note that an additional problem with
the Bitcoin mining incentive scheme is that miners are paid with bitcoins,
which have a volatile value. In our analysis, the only source of variation
in the value of rewards to a given block is the extent to which the chain
including that block is actively mined. We analyse how these variations
affect incentives. Schrijvers et al. (2016) study a different type of incentive
problems than that we consider. They study the behaviour of miners in a
pool, assuming that the pool organiser does not observe when miners solve
blocks nor the computing power they dedicate to that task. They analyse
how to incentivise miners to reveal that they have solved a block as soon as
they have done so.

The remainder of the paper is organised as follows. The next section
presents the model. Section 3 develops our equilibrium analysis and contains
our main results. Future extensions of the model are provided in Section 4,
and Section 5 concludes. All proofs are in the Appendix.

2 Model setup
In line with the above description of the blockchain technology, we consider
the following model.

Miners and pools: There are M ≥ 2 risk-neutral miners, indexed
by m ∈ M = {1, ...M}. While, in our model, we refer to each m as a
miner, in practice miners work in pools, which coordinate the efforts of their
miners, in particular as regards which blocks they mine. For example, on
https://www.bitcoinmining.com/bitcoin-mining-pools/, one can read:

“If you participate in a Bitcoin mining pool then you will want
to ensure that they are engaging in behavior that is in agreement
with your philosophy towards Bitcoin...Therefore, it is your duty
to make sure that any Bitcoin mining power you direct to a mining
pool does not attempt to enforce network consensus rules you
disagree with.”

Thus, we can think of M as the number of pools. Figure 3 presents the
distribution of computing power of the pools operating on Bitcoin in April
2017: 14 mining pools represented about 93% of the total hash capacity.
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Thus, a reasonable order of magnitude for M is around 15. Because the
number of pools is finite, it is appropriate to take a game theoretic approach,
in which each of theM players behaves strategically. In the discussion below,
we will highlight which results rely on this strategic behaviour and which
would also obtain in a competitive environment.

Figure 3: Hashrate distribution of Bitcoin mining pools on April 20, 2017.
Source: blockchain.info. AntPool servers are located in China. The other three
main pools have servers in China, Japan and the US.

Mining technology: There is a continuous flow of transactions sent
for confirmation by end-users.6 For the moment, for simplicity, we assume
all miners perfectly and instantaneously observe this flow, which they include
in the blocks they mine. The time it takes a miner to solve his block depends
on the difficulty of the cryptographic problem and the miner’s computing

6For simplicity we take the flow of transactions to be exogenous, while in practice it can
actually be endogenous. In fact, we don’t model the transactions and model the blockchain
process directly at the level of the blocks.
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power. The difficulty is set by the blockchain protocol to keep the average
duration between two blocks close to a target (10 minutes on Bitcoin and
between 10 and 20 seconds on Ethereum). Correspondingly, as long as the
total computing power in the network does not change, the difficulty of the
cryptographic problem does not change. If the total computing power in-
creases (e.g., due to the entry of new miners and new pools), the difficulty is
scaled up so that average duration between two blocks remains equal to the
desired level. Thus, on Bitcoin every 2,016 blocks, i.e., approximately every
2 weeks, the difficulty is rescaled to ensure that the average time between
blocks remains at 10 minutes. In the present paper we consider a stationary
environment, in which the number of miners and the difficulty of the task
are constant.

As explained in Nakamoto (2008), the time it takes miner m to solve a
block problem is exponential with parameter θm. For a given computational
power, the greater the difficulty, the lower the intensity θm. A key prop-
erty of the exponential distribution is that it is memoryless: at each point
in time, the distribution of the waiting time until the miner finds a solution
is independent from how long the miner has been working on the problem.7
An important feature of the blockchain is that this waiting time is also in-
dependent of which block m is mining, and also from the blocks the other
miners are mining. These properties have important strategic consequences.
For example, suppose m has been mining block B, and another miner solves
a block (possibly B or possibly another one). At this point, the duration
until the next time at which m solves a block is independent of whether m
continues to mine B or any other block. We denote by Nm the Poisson pro-
cess jumping each time miner m solves a block. Thus, the number of blocks
solved by miner m between time 0 and time t, is

Nm(t) =

∫ t

s=0

dNm(s).

For simplicity we assume (in line with what happens in practice) that
miners do not update the set of transactions defining the block they mine
until they have solved the hash problem (transactions that flow in mean-

7Another key property of the exponential distribution is that the minimum of two
exponentials, with parameters θ and θ′, is also exponential, with parameter θ + θ′. Thus,
when interpreting the M players in our game as M pools, we interpret the intensity of
pool m, θm, as the sum of the intensities of all the miners active in that pool.

10



while are stored in a buffer.) Relaxing that assumption would not alter the
economic mechanism we analyse below.

We assume that at time zm, exponentially distributed, with parameter
λm, miner m is hit by a liquidity shock. At time zm the miner must leave
the game and sell the cryptocurrencies he earned previously to a new miner
who also inherits his beliefs and preferences.8 Thus, exits are compensated
by entries and the environment is stationary.

Blockchain: At time 0, there is an initial state of the ledger, encoded
in B0, and a set of transactions. Starting from B0, miners start working on
the first block, B1, which contains the initial set of transactions. Once B1

is solved, miners must choose to which parent block to chain the next block
(B2) they mine. If miners choose B1 as a parent block, they continue the
first chain. Alternatively, miners can choose to disregard B1 and attach B2

to B0. In that case, miners start a fork and there are two competing chains,
one including B0 and B1, the other B0 and B2.

As the game unfolds, a tree of blocks develops. In the above example,
once B2 is solved, the tree has three vertices: B0, B1 and B2. If miners
continue the first chain, by attaching B2 to B1 the two edges (or branches) of
the tree are (B0, B1) and (B1, B2). In contrast, if miners start a fork, the two
edges are (B0, B1) and (B0, B2). At each vertex Bk, the tree also includes a
label, identifying the miner who solved the corresponding block, m(Bk). The
indices of the blocks give the order in which they have been solved. That is,
if k < n, then block Bk was solved before block Bn.

In general, at any time t, one can observe a tree of solved blocks Ct =
{Bt, Et, I t}, where Bt = (B0, ...Bn) is the set of all blocks that have been
solved by time t, Et = {(B0, B1), ...(Bk, Bk′), ...}, with 0 ≤ k < k′ ≤ n, is the
set of edges chaining these blocks, and I t = (m(B1), ...m(Bn)) is the set of
identities of miners who solved blocks. Within a tree, a chain is a sequence of
connected blocks in which each block is connected to at most one subsequent
block. Thus, each fork starts a new chain. More formally, we define a fork
as follows:

Definition 1 Fork: There is a fork at time t if and only if there exists
(Bi, Bk, Bk′) included in Bt such that (Bi, Bk) and (Bi, Bk′) belong to Et.

It is also useful to define the original chain for a given tree Ct, as follows:
8We explain below the process through which miner m accumulates cryptocurrencies.

11



Definition 2 Original Chain: Suppose Et contains (Bi, Bk) and (Bi, Bk′).
A chain that includes (Bi, Bk) preexists a chain that includes (Bi, Bk′) if and
only if k < k′. We call the original chain the chain that preexists all other
chains in Ct.

Note that the original chain is well defined since the “preexist” relation
provides a complete ranking of all chains (as all chains have at least one
common block, B0).

Stopping times: We assume miners make decisions at different points
in time, corresponding to a sequence of stopping times. Whenever a block
is solved or a miner is hit by a liquidity shock, all miners make a decision.
Miners can also make a decision, after a time interval of length ∆, if no
block is solved and no liquidity shock has occurred during that interval. ∆
can be arbitrarily small to approximate a continuous time environment.9
Thus, the sequence of stopping times at which miners make decisions is
T ={0, ...τj, τj+1, ...} where the next stopping time after τj, τj+1, is equal
to τj+1 = min[τj + ∆, τ l(τj), τ

b(τj)], τ l(τj) being the first time a liquidity
shock occurs after τj and τ b(τj) the first time a block is solved after τj.

Action space: At any time τ ∈ T , miners observe the set Bτ of all
the blocks that have been solved previously. A miner’s action is the choice
of which block in Bτ to attach his current block to. All miners m ∈ M =
{1, ...M} face the same action space.

Payoffs: When miner m solves a block in a given chain, he receives a
reward, included in the block he mined, and expressed in the cryptocurrency
corresponding to that chain.10 We assume that miner m consumes the re-
wards he earned throughout the game at time zm. That is, we assume that,
until time zm, the miner keeps the units of cryptocurrency he earned. In

9This discretisation enables us to avoid technical issues regarding the definition of
strategies in continuous time games.

10For example, when a miner solves a hash problem on Bitcoin or Ethereum, he is
rewarded in bitcoins (BTC) or ethers (ETH). On Bitcoin, miners receive in 2017 12.5
BTC for each block, on Ethereum they receive 5 ETH per block. For simplicity, we neglect
further fees offered by final traders to reward the certification of their transactions, since
we do not model explicitly transactions.
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practice, miners do not sell their reward immediately after they have earned
it. In particular, the so called “k-blocks rule” implies that the cryptocur-
rency obtained by m for solving a block will be accepted by others only after
sufficiently many blocks have been chained to that block.

At time zm, the payoff from each solved block depends on the credibility
of the chain that contains the block. Consider two polar cases: In the first
case, a block solved by a miner becomes orphaned, i.e., no further blocks are
attached to it, so that no miner expresses acceptance of that block and the
transfer of cryptocurrency it encodes. In the second case there is a single
chain to which all blocks belong, reflecting consensus on the blocks in that
chain. The value of a reward in the first case, is likely to be zero, and is
bound to be smaller than in the second case. Next, consider an intermediate
case, in which the block is included in a chain competing with another one.
As long as a significant fraction of the miners are working on each of the
chains, the value of rewards included in the blocks of the two chains, while
uncertain, can remain positive.

More formally, we assume that the payoff for miner m from solving B
is an increasing function, G(.), of the number of miners active at time zm
in the chain including B. For example, suppose there are two active chains
at time zm. If there are K miners active in the chain including B, and
M −K in the other, the payoffs from solving blocks are the following: The
miner who solved block B, which we denote by m(B), earns G(K) for block
B. A miner who solved a block in the other chain earns G(M − K) for
that block. If a miner solved a block that belongs to both chains, he earns
G(M −K) +G(K).11 We assume that G(0) = G(1) = 0 since, when there is
only one or no miner on a chain, the associated cryptocurrency has no value.
Finally, we assume that when several chains compete, the total value of a

11 One must also specify what happens if zm occurs just after a fork starts, after a block
Bn has just been solved. The probability of this event is very small, and in practice it
is not a very relevant consideration, but, for completeness, we need to specify the value
of the reward earned by m(Bn) when K miners chain the block they currently mine to
Bn, while M −K chain their block to Bn−1. Suppose there was a single chain up to and
including Bn. Three alternative hypotheses are possible. First, one could posit that the
not yet realised fork does not reduce the credibility of the current chain. In that case,
m(Bn) earns G(M) for Bn. Second, one could posit that, irrespective of how many miners
fork, the attempt to fork reduces the overall credibility of the chain, reducing the reward
for Bn to some arbitrary g < G(M). Third, one could posit that the reward for Bn is
worth G(K). We will highlight in the proofs the extent to which these alternatives affect
our construction.
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unit of cryptocurrency that belongs to the competing chains is weakly lower
than if it belonged to a single chain that was the consensus of all miners. To
ensure this we assume that G(M −K) +G(K) ≤ G(M),∀K.

Our assumption that the value of the virtual currency is reduced by forks
is illustrated by Figure 4, which plots the decline in bitcoin value during the
March 2013 fork. The first vertical line indicates the time (around 22:00) at
which miners started working on two different chains. Chats between miners
realising there was a fork, started around 23:30.12 At 1:30 am, a message
posted on Bitcointalk asked miners to stop mining one the two branches of
the chain (the 0.8 branch). The second vertical line (approximately at 6:20)
indicates the time at which the 0.7 branch caught up the 0.8 branch. By 7:30,
miners had stopped mining the 0.8 branch, which became orphaned, so that
the fork was no longer active. The figure illustrates that, when the market
realised that miners worked on different branches this triggered a 25% drop
in the value of the virtual currency (from around 48 at 1:00 am to around 36
at 3:00).

States: At time τ ∈ T , a state ωτ includes three elements:

• First, ωτ includes the tree of solved blocks Cτ = {Bτ , Eτ , Iτ}. The
entire set of previously solved blocks, Bτ , is relevant for the miners,
since they can chain a new block to any of these previously solved
blocks. For each miner, the set of blocks he solved, measurable with
respect to Iτ , determines his payoff, and therefore influences his actions.

• Second, ωτ includes the number of miners active on branches stemming
from each of the previously solved blocks:13 Aτ = (Aτ (B1), ..A

τ (Bk), ...A
τ (Bn)),

where Aτ (Bk) is the number of miners mining at time τ a block directly
chained to Bk, determines the value of each miner’s reward if he’s hit
by a liquidity shock.

• Finally, as in Duggan (2012) or Cole and Kehoe (2000), to enable play-
ers to coordinate their actions using a public randomisation device, we

12Source: http://web.archive.org/web/20130421062600/http://bitcoinstats.com:80/irc/bitcoin-
dev/logs/2013/03/12.

13In practice, miners cannot directly observe the current distribution of the computing
power across the different branches of the chain, but estimate it based on the observed
frequency of block resolutions. In our analysis, equilibrium strategies only depend on Aτ
via miners’ payoffs at zm.
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Figure 4: Bitcoin price during the March 2013 fork.
The graph plots individual transaction prices obtained from a major bitcoin ex-
change platform, Bitstamp, during the March 11-12, 2013 fork. The first dotted
vertical line represents the time at which the fork started, and the second dotted
vertical line represents the time at which the original chain caught up the fork.

assume that at each time τ ∈ T , the realisation of a sunspot random
variable rτ is observed by all, and we include it in the state. rτ is
uniformly distributed on [0, 1] and i.i.d. over time.

Thus, we define ωτ = ( Cτ , Aτ , rτ ) and denote by Ω the set of states of
the world.

Strategies: Miner m chooses his strategy to maximise his expected
payoff at time zm. At each time τ ∈ T , miners observe the whole history of
the game, that is, the state ωτ , as well as, e.g., the exact timing of blocks
resolution and the previous mining choices. In the spirit of Markov perfection,
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we only consider strategies that are measurable with respect to ωτ .14 A pure
strategy for miner m is a function στm mapping each possible state of the
blockchain ωτ ∈ Ω, into an element of the action space Bτ . We denote the
strategy of miner m throughout the entire history of the game by σm and the
profile of strategies for theM miners by σ = {σm}m∈M. σ, combined with the
random variables {z}m∈M and {Nm}m∈M, yield the transition probabilities
from one state of the blockchain to the next.

Equilibrium: The above elements define our stochastic game. Our
equilibrium concept is Markov Perfect Equilibrium, i.e., Subgame Perfect
Equilibrium with strategies restricted to depend only on the current state
ωτ .

3 Equilibrium analysis
To analyse equilibrium strategies, it is useful to first note that an upper
bound on the lifetime payoff miner m can earn is

Gmax
m =

[∫ s=zm

s=0

dNm(s)

]
G(M),

minus the price he paid for the cryptocurrency if he was not there at time
0. This sunk cost does not affect his strategies and we neglect it hereafter.
Gmax
m is an upper bound because i) the total number of blocks solved by m

before zm is
∫ zm
s=z−m

dNm(t), whatever his mining strategy, and ii) m cannot
earn more than G(M) each time he solves a block. At time t, the expectation
of Gmax

m , conditional on zm ≥ t, is

Et

[∫ t

s=0

dNm(s) +

∫ zm

s=t

dNm(s)|zm ≥ t

]
G(M)

=

{
Nm(t) + E

[∫ zm

s=t

dNm(s)|zm ≥ t

]}
G(M) =

{
Nm(t) +

θm
λm

}
G(M).

Does there exist a natural strategy enabling miners to achieve this max-
imum expected payoff? The definition of Gmax

m implies that, to obtain the
maximum expected payoff, all miners should be on the same chain, when any

14Indeed, the timing of previous block resolutions, as well as previous mining choices,
are payoff irrelevant.
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of them is hit by the liquidity shock. This is the case if all miners stick to the
original chain at any time τ ∈ T . If they do so the longest chain rule (LCR)
trivially holds. Our first proposition states that there exists an equilibrium
in which miners follow this strategy.

Proposition 1 There exists a Markov Perfect Equilibrium in which, on the
equilibrium path there is a single chain and all miners follow the LCR, thus
obtaining their maximum expected payoff, E[Gmax

m ].

The intuition for Proposition 1 is the following. When all miners up to τ
attach their blocks to the original chain, thus following the LCR, there is a
single chain at τ . If the others abide to this strategy, then m can obtain his
maximum possible expected payoff, E[Gmax

m |ωτ ], by also abiding to it. Hence
there is no profitable one shot deviation from the strategy which consists
in extending the original (and thereby longest) chain. Precisely, each miner
rationally anticipates that if he deviates and solves a block, the other miners
would not follow him, and the block solved out of the equilibrium path would
have no value.

In the context of the strategic interaction characterised in Proposition 1,
miners are not really competing to solve their block before the others. That
another miner solves his block before m does not, in itself, reduce m’s gains.
The only thing that matters for miners to obtain the maximum payoff they
get in Proposition 1 is that they coordinate well and all work on the same
chain.

It is also noteworthy that the result in Proposition 1 does not depend on
the number of miners M . The economic mechanism involved in Proposition
1 does not hinge on strategic behaviour. It is purely driven by coordination
effects, which would also be at play in a competitive environment.

Proposition 1 emphasises that attaching blocks to the original chain is a
simple way for miners to coordinate their actions, and results in a single chain
with no fork. There might, however, be other ways for miners to coordinate
in our stochastic game. In particular they could rely on the sunspot variable
rτ . We now exhibit an equilibrium in which conditioning actions on rτ leads
to equilibria with forks.

Intuitively, suppose miners follow the original chain until the realisation
of the sunspot variable is such that miners anticipate a fork. As shown below,
because of coordination effects, this anticipation is self fulfilling.
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More precisely, set a threshold ε, which can be arbitrarily small, consider
the first time, τ f , at which the sunspot variable is above 1− ε and denote by
Bn(τf ) the last block in the chain at that time (n(τ) denotes the index of the
last block solved by τ). In the sunspot equilibrium of our next proposition,
at τ f all participants fork and mine a new block whose parent is Bn(τf )−f .
This fork becomes the only active chain. Since it does not include blocks
Bn(τf )−f+1 to Bn(τf ), miners do not earn any reward for these blocks.15 We
now state our next proposition:

Proposition 2 Consider an arbitrary integer f . There exists a Markov Per-
fect Equilibrium in which, on the equilibrium path, the following occurs: As
long as rτ ≤ 1− ε, or f ≥ n(τ), there is a single chain and all miners chain
their current block to Bn(τ). At the first time τ such that rτ > 1 − ε and
f < n(τ), each miner chains his current block to Bn(τ)−f . Afterwards, min-
ers chain their current block to the last solved block on the chain including
the edge (Bn(τ)−f , Bn(τ)+1).

In the statement of the proposition we focus on what happens on the
equilibrium path. In the proof in the appendix, we characterise the equi-
librium strategy profile for any state. The intuition of Proposition 2 is the
following: If I expect all to fork to Bn(τ)−f , and if I choose to deviate and
not fork, any block I solve will not be followed by the other miners, and I
will earn no reward for this block. Rationally anticipating this, the rewards I
obtain on the new chain become more valuable, therefore I choose to do like
the others and fork.

The March 12, 2013 Bitcoin fork illustrates the strength of coordination
issues in shaping miners’ strategies. On March 11 some miners upgraded to
a new version of the software, referred to as 0.8. There turned out to be a
bug so that the miners operating in the 0.7 version rejected as invalid one
block solved by the 0.8 miners (and consequently the subsequent ones). From
that point on, the 0.8 miners worked on a chain stemming from that block,
while the 0.7 worked on a competing chain, stemming from its parent. After
a while participants became aware that a fork had occurred and had to de-
cide on which branch to coordinate. Narayanan (2015) reports the following
discussion, among miners and developers, from the log of the #bitcoin-dev
IRC channel:

15This might also eliminate some of the underlying transactions included in blocks
Bn(τf )−f+1 to Bn(τf ).
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“Gavin Andresen: the 0.8 fork is longer, yes? so majority
hashpower is 0.8 ... first rule of bitcoin: majority hashpower
wins

Luke Dashjr: if we go with 0.8 we are hard forking
BTC Guild: I can single handedly put 0.7 back to the majority

hashpower. I just need confirmation that that’s what should be
done.

Pieter Wuille: that is what should be done, but we should
have consensus first"

As illustrated by the above quoted discussions, miners faced a dilemma.
Should they follow the longest chain rule and continue mining the 0.8 chain
which had attracted the majority of the computing power? Or should they
fork from it, reverting to a different version of the blockchain? The above
discussion shows that the overarching concern of the miners was that they
wanted to follow the consensus. BTC Guild, which was one of the largest
pools at the time, eventually chose to downgrade to the 0.7 version. This
resulted in the 0.7 chain becoming the longest, and all miners coordinating
back to it. Consequently more than 24 blocks, solved on the 0.8 chain, became
orphaned, and their miners (including BTC Guild) lost the corresponding
rewards. Commenting on this situation, Narayanan (2015) wrote:

“One way to look at this is that BTC Guild sacrificed rev-
enues for the good of the network. But these actions can also
be justified from a revenue-maximising perspective. If the BTC
Guild operator believed that the 0.7 branch would win anyway
(perhaps the developers would be able to convince another large
pool operator), then moving first is relatively best, since delaying
would only take BTC Guild further down the doomed branch.”

This illustrates the behaviour of miners in Proposition 2: if one miner
expects all the others to fork, then he is better off following them. Similarly
to the 0.7 chain in the 2013 Bitcoin fork, in Proposition 2, the fork stemming
from Bn(τ)−f becomes the only active chain. Since it does not include blocks
Bn(τ)−f+1 to Bn(τ), the miners who solved these blocks lose their rewards.
Consequently, these miners earn less than Gmax

m , while the other miners do
not earn more than Gmax

m . Thus the forking equilibrium in Proposition 2 is
Pareto dominated by the single chain equilibrium in Proposition 1.
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Observe that, like Proposition 1, Proposition 2 does not depend on the
number of miners M . Both propositions hinge on coordination effects, which
also arise in a competitive environment.

While in the previous proposition, in spite of forking, there was eventually
a single chain, we now show that forking can lead to the persistent coexistence
of different branches. The Ethereum network offers an example of a persistent
fork. In response to the TheDAO hacking, on July 20, 2016 80% of the
nodes moved to a new, forked chain, that kept the name Ethereum. It was
believed that the remaining 20% would follow. Instead, the initial blockchain
continued to be mined and took the name Ethereum Classic, which gave
rise to a new currency, denoted ETC. Today, two networks coexist: As of
may 2017, Ethereum Classic represented about 10% of the hash capacity of
Ethereum, and the price of ETC was about 10% of the ETH price.

As in Proposition 2, we consider the possibility that, at any time τ f , the
realisation of the sunspot can suggest that some miners fork to a new chain.
This can, for instance, give rise to two coexisting chains at time τ > τ f , the
original chain, including the blocks linked by the sequence of edges

(B0, B1), ...(Bn(τf )−f , Bn(τf )−f+1), ...

and a new chain, including the blocks linked by

(B0, B1), ...(Bn(τf )−f , Bk+1), ...

with k ≥ n(τ f ).
The number of blocks solved by m after Bn(τf )−f on any of these two

chains defines the vested interest of m on that chain. We denote the vested
interests of miner m at time τ on the original and the new chain by vo(m, τ)
and vn(m, τ) respectively. For example, suppose miner m keeps mining the
original chain. The vested interest of that miner on the original chain at
time τ is equal to vo(m, τ) = Nm(τ) − Nm(τ(Bn(τf )−f )) (where τ(Bn(τf )−f )
is the stopping time at which Bn(τf )−f is solved), while his vested interest on
the new chain is vn(m, τ) = 0. Alternatively, consider miner m′ who mines
the new chain from time τ f on. The vested interest of that miner on the
original chain at time τ is vo(m′, τ) = Nm′(τ

f )−Nm′(τ(Bn(τf )−f )), while his
vested interest on the new chain is vn(m′, τ) = Nm′(τ)−Nm′(τ

f ). For miners
switching between the original chain and the new one, vested interests are a
bit more intricate, but follow the same logic.
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In our model miners hold their rewards until zm and therefore have vested
interests. In practice, miners cannot sell their rewards immediately after
solving blocks, due to the k-blocks rule. Our model takes a simplified view of
this situation by assuming that the vesting period lasts until zm. Our next
result illustrates the consequences of vested interests. To state that result,
rank the miners by their vested interest in the original chain at time τ f as
follows

Pr(zm = τ ′)

Pr(Nm(τ ′)−Nm(τ f ) = 1)
vo(m, τ f ) ≤ Pr(zm+1 = τ ′)

Pr(Nm+1(τ ′)−Nm+1(τ f ) = 1)
vo(m+1, τ f ),

where Pr(zm = τ ′) is the probability that at the next stopping time τ ′, miner
m is hit by a liquidity shock, and Pr(Nm(τ ′)−Nm(τ f ) = 1) is the probability
that he solves his block at τ ′.

Other things equal, miners with larger vested interest vo(m, τ f ) (and cor-
respondingly ranked high) have more to lose if the original chain is orphaned
and therefore are less inclined to fork. This issue was raised during the res-
olution of the March 2013 fork. The tradeoff faced by miners is explicit in
the following discussion (also quoted in Narayanan (2015)):

“Luke Dashjr: it’s either lose 6 blocks [mined on 0.8] or hard-
fork [to 0.8]

Pieter Wuille: all old miners will stick to their old chain re-
garless of the mining power behind the other

BTC Guild: I’ve lost so much money in the last 24 hours from
0.8"

In spite of the vested interests expressed in this discussion, miners eventu-
ally agreed on a single chain and the fork disappeared. The presence of vested
interests, however, could lead to persistent forks in equilibrium. Consider the
following condition.

Condition 1 For any M and any K < M , G(K) + G(M − K) = G(M),
and ωτ is such that there exists K ∈ {Int(M

2
) + 2, ...M} (where Int denotes

the integer part) such that

G(M −K) ≤ G(M −K − 1) +G(M −K + 1)

2
(1)
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and for m > K

Pr(Nm(τ ′)−Nm(τ) = 1)

Pr(zm = τ ′)
(G(K)−G(M−K)) < vo(m, τ)(G(M−K)−G(M−K−1))

(2)
while for m ≤ K

Pr(Nm(τ ′)−Nm(τ) = 1)

Pr(zm = τ ′)
(G(K)−G(M−K)) > vo(m, τ)(G(M−K+1)−G(M−K))

(3)

The assumption that for any M and any K < M , G(K) +G(M −K) =
G(M), simplifies the presentation of Condition 1. However, Proposition 3
below also holds in the more general case whereG(K)+G(M−K) ≤ G(M).16

Consider an arbitrary integer f . Let τ f be the first time at which rτ >
1− ε, f < n(τ) and Condition 1 holds.

Proposition 3 For ε sufficiently small, there exists a Markov Perfect Equi-
librium in which, on the equilibrium path, the following occurs: As long as
τ < τ f there is a single chain and all miners chain their current block to
Bn(τ). At τ f , all miners m ≤ K (defined in Condition 1) chain their current
block to Bn(τf )−f and follow that chain afterwards, while the other miners
chain their current block to Bn(τf ) and follow that chain afterwards.

The intuition for this result is the following. First note that for some
miners to fork, we must have that the left-hand-side of (3) be non negative,
which implies that K ≥ M

2
+ 1. That is, in Proposition 3, persistent forks

can occur only if a majority of miners choose to fork and this is expected by
all.

Now, suppose all miners expect that a majority will fork and this will
result in two coexisting chains and consider the choice of miner m between
forking and remaining on the original chain. For m, the benefit from forking
is that the blocks he will mine on the new chain will be worth G(K), which is
larger than the value of blocks mined on the original chain, G(M −K). This
benefit is large if the probability that m solves a block in any given period,
Pr(Nm(τ ′) − Nm(τ) = 1), is large relative to the probability that m leaves

16In addition to notational changes, it would require imposing an (arbitrarily large)
upper bound on miners’ vested interests.
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the game because of a liquidity shock, Pr(zm = τ ′). Note that the ratio of
these probabilities increases with the ratio of the mining intensity θm to the
liquidity shock intensity, λm. This benefit is captured in the left-hand-side
of equations (2) and (3) in Condition 1.

On the other hand, the cost of mining the new chain is that it reduces the
value of the blocks already mined on the original chain. For instance, if miner
m > K deviates from the equilibrium strategy and mines the new chain,
he reduces the value of all the blocks he solved on the original chain from
G(M−K) to G(M−K−1). This cost is large if m has large vested interests
in the original chain, that is, if vo(m, τ) is large. This cost is captured in the
right-hand-side of equations (2) and (3) in Condition 1.

Overall, Proposition 3 shows that the endogenous sorting between miners
who prefer to stick to the original chain and those who fork is driven by two
forces: the number of blocks that a miner expects to solve in the future, θm

λm
,

and his vested interest in the original chain, vo(m, τ). A miner is more likely
to fork when the former is higher, and the latter is lower.

Last, inequality (1) ensures that the set of miners who choose to stick to
the original chain has no intersection with the set of miners who prefer to
fork. Figure 5 represents the competing chains sustained at the equilibrium
of Proposition 3.

t

Bn(τf )−f Bn(τf )−f+1 Bn(τf )+i

Original chain with M −K miners

Bn(τf )+1 Bn(τf )+j

τ f

New chain with K miners

Figure 5: Equilibrium of Proposition 3

Unlike Proposition 1 and Proposition 2, the conditions in Proposition
3 depend on the number of miners. More precisely, the tradeoffs faced by
the miners involve the effect of their mining strategy on the value of their
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rewards. If miners were competitive and their choice had no impact on the
value of their rewards, this strategic effect would not arise.

Finally note that the equilibrium outcome in Proposition 3 is Pareto
dominated by that in Proposition 1. Again, forking reduces the total gains
of the miners, and yet it can arise in equilibrium.

4 Extensions (work-in-progress)
So far we have considered the case in which i) there are no frictions, and ii)
computing capacity is given and constant. In future research, we will work
on relaxing some or all of these assumptions and examine to what extent
the economic mechanisms we already identified are still at play and what
new effects arise. We will also endeavour to distill the implications of our
theoretical analysis.

4.1 Frictions

4.1.1 Information transmission delays

One way to introduce frictions is to consider delays in the dissemination
of information through the network. Such delays could induce short term
forks. As mentioned above, (Nakamoto, 2008) considered that possibility and
conjectured that miners would follow the LCR and that this would resolve
short term forks. We explore below how delays can give rise to forks and
multiplicity of equilibria.

To model information transmission, we introduce the following modifica-
tion of our framework: To keep things as simple as possible, we assume that
a delay in information transmission can happen only once. Thus, as long as
all miners have observed when all previous blocks were solved, each time a
new block Bn is solved there is a probability η that one (and only one) of the
miners does not observe that event. In that case each of the M − 1 miners
has an equal chance of not observing the block solved by the other miner.
(when this happens all miners don’t have the same stopping times.) As soon
as the next block (Bn+1) is solved, the miner who did not observe that Bn

was solved learns that information.

Proposition 4 When miners can observe solved blocks with a delay, there
exists a Markov Perfect Equilibrium such that on the equilibrium path miners
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always mine the chain that they perceive as the longest. After a fork, they
can continue mining the original chain or the forking branch.

At the equilibrium presented in Proposition 4, either there is a fork leading
to abandon the last block solved on the original chain, or there is no fork,
and the last block forming a chain as long as the original chain is orphaned.
This is due to the fact that when two chains have the same length, miners
continue mining the chain on which they were active before they observed
the fork. When one chain becomes longer, miners apply the LCR. This is in
line with the conjecture of Nakamoto (2008). The equilibrium described in
Proposition 4 therefore corresponds to the LCR equilibrium of Proposition 1
in the presence of observation delays. Yet coordination issues can still arise
in that setting. In particular, miners may not choose to continue mining the
chain on which they were active when they observe a fork. This point is
illustrated in the following proposition.

Proposition 5 When miners can observe solved blocks with a delay, there
exists a Markov Perfect Equilibrium such that on the equilibrium path miners
always mine the chain that they perceive as the longest. After a fork, they
always continue mining the forking branch.

In Proposition 5, miners follow the LCR on the equilibrium path, but, when
the information delay causes a fork, they abandon the chain on which they
were active and follow the fork. Hence even without sunspots, miners can
coordinate on a fork. In our example, the fork is only one-block-long because
the delay can only affect the observation of one block. By extension, longer
forks could be sustained if delays affect more blocks. Note that delays are
not necessarily due to network latency. In the case of the Bitcoin March
2013 Fork, a delay in the observation of several blocks occurred, because one
block was mistakenly rejected by computers using one version of the mining
software.

4.1.2 Double spending

Another important potential issue outlined in Nakamoto (2008) is double
spending. Double spending refers to one party’s ability to send a transaction
t′ that uses money already spent in a previous transaction t. This requires
that i) miners first chain their blocks to the block containing t, and ii) miners
later choose to mine blocks chained to the block that contains t′, thereby
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forking to abandon the block that includes t. We study below whether double
spending can be sustained at equilibrium. In the spirit of the modelling of
delays above, assume that after each block is solved, there is a probability
η′ that one miner can divert the payment S from a transaction included in
the last solved block. To earn S, the miner needs to create a fork from the
parent of the last solved block, that becomes the only active chain. Assume
that this opportunity to double spend occurs only once.

Proposition 6 When miners can double spend S, there exists a Markov
Perfect Equilibrium such that on the equilibrium path miners always mine
the longest chain except the miner who has the opportunity to double spend.
A fork can occur on the equilibrium path.

4.2 Computing capacity

We now endogenise computing power in the network. θm is determined by
the individual computing power installed by miner m, hm and the difficulty
of the mining task set by the network protocol, D:

θm =
hm
D
. (4)

The difficulty is set so that the expected time between two blocks is equal
to a constant, X (on Bitcoin X = 10 minutes)

X =
1∑
m θm

. (5)

Substituting 4 into 5

X =
1∑
m

hm
D

.

That is
D = X

∑
m

hm.

Therefore
θm =

1

X

hm∑
m hm

. (6)

We now analyse the optimal choice of hm by miner m. To perform this
choice the miner needs to anticipate how his computing power will affect his
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continuation game payoff. To do so, the miner needs to form a conjecture
on the equilibrium that will prevail in the mining game. For simplicity, we
assume all miners rationally anticipate the single chain equilibrium described
in Proposition 1 will prevail.

The program of miner m is

max
hm

θm
λm

G(M)− cm(hm),

where cm(hm) is the cost of acquiring and using hm until the miner is hit by
a liquidity shock. Substituting 6 this is

max
hm

hm∑
i∈M hi

λiX
G(M)− cm(hm).

The first order condition is(∑
i∈M hi

)
− hm(∑

i∈M hi
)2 G(M)

λmX
= c′m(hm).

It is reasonable to assume that the cost function is linear

cm(hm) = cmhm.

In this case the first order condition simplifies to(∑
i∈M hi

)
− hm(∑

i∈M hi
)2 G(M)

λmX
= cm. (7)

A Nash equilibrium of the computing power acquisition game is a vec-
tor {h∗m}m=1,...M such that h∗m is the optimal choice of miner m when he
anticipates the others will choose h∗−m.

Evaluated at equilibrium, 7 yields(∑
i∈M

h∗i

)
− h∗m =

λmX

G(M)
cm

(∑
i∈M

h∗i

)2

(∑
i∈M

h∗i

)
− (λmcm)

X

G(M)

(∑
i∈M

h∗i

)2

= h∗m. (8)
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Summing over miners

M

(∑
i

h∗i∈M

)
− (
∑
i∈M

λici)
X

G(M)

(∑
i∈M

h∗i

)2

=

(∑
i∈M

h∗i∈M

)

(M − 1)

(∑
i∈M

h∗i

)
= (
∑
i∈M

λici)
X

G(M)

(∑
i∈M

h∗i

)2

(M − 1)∑
i∈M λici

G(M)

X
=
∑
i∈M

h∗m

∑
i∈M

h∗i =
G(M)

X

M − 1∑
i∈M λici

. (9)

Substituting 9 into 8

h∗m =

(
G(M)

X

M − 1∑
i∈M λici

)
− (λmcm)

X

G(M)

(
G(M)

X

M − 1∑
i∈M λici

)2

.

h∗m =

(
G(M)

X

M − 1∑
i∈M λici

)(
1− (λmcm)

X

G(M)

G(M)

X

M − 1∑
i∈M λici

)

h∗m =
G(M)

X

M − 1∑
i∈M λici

(
1− (λmcm)

M − 1∑
i∈M λici

)
. (10)

Equilibrium computing power is increasing in reward for mining (G(M)),
decreasing in the average duration between blocks (X). In the special case in
which all miners have the same cost and the same liquidity shock intensity,
10 simplifies to

h∗m =
G(M)

λcX

M − 1

M2
.

Thus, in this simple case, equilibrium computing is decreasing in λc.
If all miners could collude, they would choose computing powers to max-

imise their joint profit. The corresponding maximisation problem (in the
case in which all miners are the same) is

max
h

M(
1

λX

h∑
m h

G(M)− ch).

28



This is decreasing in h. So the planner chooses the smallest possible value
of h, h = ε. By doing this he drives difficulty to 0, and there is still a block
discovered every X minutes.

So there is overinvestment in computing power. Note that, in our frame-
work, hashing and difficulty are useless, because by assumption there is no
double spending or malevolent manipulation.

5 Conclusion
Our analysis suggests that mining in a blockchain is a coordination game. Co-
ordination games usually have multiple equilibria, some of which are Pareto
dominated. Our first results illustrate that this can be the case in the
blockchain, and raise an important point in the policy debate on blockchains:
when record keeping is decentralised, efficient decentralisation requires co-
ordination, while coordination problems can lead to inefficient equilibria.
It would be interesting to study if and how inefficient equilibria could be
avoided. Maybe cheap talk could play a role in this context. This might pro-
vide a rationale for communication channels among miners and developers,
such as IRC channels and forums. Another communication device used in
practice by miners is flags attached to blocks to convey messages to other
miners, such as, e.g., support for an upgrade, which might then lead to or
help avoid a fork. It would also be interesting to identify the main drivers
of blockchain instability. For example, one could analyse if concentration
of computing power can be dangerous. One could also study if other re-
ward schemes than that currently used in blockchains could generate better
outcomes. For example, while Bitcoin does not reward orphaned blocks,
Ethereum does, to some extent. Should one expect the latter reward scheme
to generate better outcomes than the former?

We also conjecture that, with endogenous computing power there can
be negative externalities and excess investment. Could such inefficiencies be
corrected by appropriate regulation or taxation? More generally, it would
be useful to better understand the social costs and benefits of having more
computing power in the network and to examine if policy intervention is
called for.

29



Appendix
Throughout the proofs we will use the following lemma:

Lemma 1 Our blockchain game is continuous at infinity.

Proof of Lemma 1: Denote by J(σm) the expected payoff of minerm if
he follows strategy σm. Consider an alternative strategy, σ′m, that prescribes
the same actions as σm until time T and differs afterwards. The difference
between the two expected payoffs can be written as

J(σm)−J(σ′m) = Pr(zm ≤ T )E[J(σm)−J(σ′m)|zm ≤ T ]+Pr(zm > T )E[J(σm)−J(σ′m)|zm > T ].

Now, by definition,

E[J(σm)− J(σ′m)|zm ≤ T ] = 0.

Moreover
lim
T→∞

Pr(zm > T ) = 0,

and J(σm)− J(σ′m) is bounded, since Gmax
m is finite. Hence,

lim
T→∞

J(σm)− J(σ′m) = 0,

which ensures that our game is continuous at infinity.
QED

Proof of Proposition 1: By Lemma 1, a strategy profile forms a sub-
game perfect equilibrium if and only if there is no profitable one shot devia-
tion from that strategy at any stage in the game.

Our candidate equilibrium, {σ∗m}m∈M, is that, for any ωτ , miners chain
their block to the most recent block in the original chain.

To prove that this is a Markov perfect equilibrium we now show that, in
any state ωt, any miner prefers to follow the equilibrium, and chain his block
to the most recent one in the original chain, rather than engaging in a one
shot deviation, chaining his block to another block, B̃, at time τ , and then
reverting to the equilibrium strategy.

To do so, consider three cases, whose probabilities are independent of the
miners’ actions (since they reflect the distributions of independent Poisson
processes whose intensities are exogenous):
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The first case is when the next event is zm. The equilibrium strategy
prescribes that all miners mine the original chain at τ . Therefore if m follows
the equilibrium strategy, he earns G(M) for each previously solved block on
that chain and 0 on any block potentially solved on another chain. If instead
m deviates, his payoff from his previously solved blocks cannot be larger:

• If he continues a previous fork, he does not increase the payoffs of his
previously mined blocks on that fork, since he is the only one mining it
(and G(1) = 0), and he cannot increase his payoff from his other solved
blocks.

• If he starts a new fork, under the first two assumptions in Footnote 11,
which block m was mining is irrelevant, while under the third assump-
tion m earns less if he deviates than if he follows the equilibrium.

The second case is when the next event is that a block is solved by an-
other miner than m. Then, again, which block m chose as a parent block is
irrelevant. Observe first that the choice of parent block by m at τ does not
affect which chain is the original one after τ . Therefore it does not affect
future actions and m’s expected payoff from future blocks. It does not affect
either the payoff m expects from previously mined blocks, since that payoff
depends only on what happened before τ and on the (equilibrium) actions
that will be chosen in the future.

The third case is when the next event is that m solves Bn(τ)+1 (where
n(τ) is the index of the last block solved by time τ). If m had deviated by
chaining Bn(τ)+1 to B̃, since all other miners play the equilibrium strategy
going forward, andm himself reverts to equilibrium after solving Bn(τ)+1 (one
shot deviation), m anticipates that no miner will chain to Bn(τ)+1 (since the
Bn(τ)+1 is not in the original chain). Hence, as above, which block m chose
as a parent block at τ does not affect the payoff m expects from previously
mined blocks or from future blocks. Consequently, m’s payoff in any one shot
deviation differs from his equilibrium payoff only in the reward he obtains
for Bn(τ)+1. He anticipates that reward to be G(0) = 0 for any one shot
deviation.

Overall, there is no state ωτ at which a one shot deviation gives m a
strictly higher expected payoff than σ∗m. Consequently, {σ∗m}m∈M is a Markov
perfect equilibrium.

QED
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Proof of Proposition 2: Denote by n(τ) the index of the last block
solved by time τ , by Bn(τ) the corresponding block and by τ f the first time
at which the sunspot variable is above 1− ε and f < n(τ).

Our candidate equilibrium strategy profile, σ∗, specifies the following:

a) Before the fork: If τ < τ f , miners chain their block to the most recent
block in the original chain.

b) At the fork inception: If τ = τ f , or τ > τ f and ωt does not include
an edge (Bn(τf )−f , Bk+1), with k ≥ n(τ), miners chain their block to
Bn(τf )−f .

c) After the fork: If τ > τ f and ωτ includes an edge (Bn(τf )−f , Bk+1), with
k ≥ n(τ f ), miners chain their block to the most recently solved block
in the chain including (Bn(τf )−f , Bk∗+1), (with k∗ = min{k ≥ n(τ f )
s.t. there exists an edge (Bn(τf )−f , Bk+1)}), whose index is the index of
its parent plus one or, if such a block does not exist, to Bk∗+1.

Note that if all miners follow σ∗, their behaviour on the equilibrium path
is as described in Proposition 2. To prove that this is a Markov perfect
equilibrium, we need to prove that a miner does not have a profitable one
shot deviation from σ∗. We hereafter consider the three cases a), b) and c)
in turn.

a) Before the fork : Bearing in mind that miner’s actions don’t affect the
occurrence of the sunspot, at all times before τ f the proof of a) operates
along the same line as the proof of Proposition 1.

b) At the fork inception: Compare m’s expected gain if he follows the
equilibrium strategy (chaining his block to Bn(τf )−f ) to his expected gain
from deviating once by chaining his block to B̃ 6= Bn(τf )−f and then reverting
to the equilibrium strategy. As earlier, the only relevant case is when the
next event is that m solves Bn(τ)+1. If he had chained Bn(τ)+1 to B̃, then
he expects that at later stages no miner (including himself) will chain any
block to Bn(τ)+1, since he anticipates the equilibrium strategy to be followed.
Consequently, his reward for mining Bn(τ)+1 attached to B̃ is 0 (and therefore
less than his gain if he had followed the equilibrium). Moreover, as before, his
expected payoff from previously solved blocks as well as from future blocks,
is unaffected by which block he has just mined.
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c) After the fork: The proof follows the same arguments as in cases a)
and b).

QED

Proof of Proposition 3:
Preliminary steps
As mentioned in the text, we call “new chain” the chain created by

the fork. Formally, for every τ > τ f , the new chain, if it exists, is the
chain containing (Bn(τf )−f , Bk∗+1) that preexists all other chains containing
(Bn(τf )−f , Bk∗+1), where k∗ ≡ min{k ≥ n(τ f ), (Bn(τf )−f , Bk+1) ∈ ωτ}. We let
vn(m, τ) denote miners’ vested interest in that chain, that is, the number of
blocks solved by m on the new chain after τ f .

To define our equilibrium strategies, we need to introduce the following
condition, which we will derive explicitly in the proof:

Condition 2 For τ ≥ τ f , ωτ is such that for m > K

vo(m, τ)(G(M −K)−G(M −K − 1))− vn(m, τ)(G(K + 1)−G(K)) ≥
Pr(Nm(τ ′)−Nm(τ) = 1)

Pr(zm = τ ′)
(G(K)−G(M −K)),(11)

while for m ≤ K

vo(m, τ)(G(M −K + 1)−G(M −K))− vn(m, τ)(G(K)−G(K − 1)) ≤
Pr(Nm(τ ′)−Nm(τ) = 1)

Pr(zm = τ ′)
(G(K)−G(M −K)).(12)

We turn now to our candidate equilibrium strategy profile, σ∗, which
specifies the following:

a) Before the fork: If τ < τ f , miners chain their block to the last block
on the original chain.

b) At the fork inception: If τ = τ f , or if τ > τ f , Condition 2 holds
and the new chain does not exist, miners m ≤ K chain their block to
Bn(τf )−f , while miners m > K chain their block to the last block on
the original chain.
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c) After the fork: If τ > τ f , Condition 2 holds and the new chain exists,
then miners m ≤ K chain their block to the last block on the new
chain, while miners m > K chain their block to the last block on the
original chain.

d) After the fork off-path: Suppose τ > τ f and Condition 2 does not
hold. Let ∆ω ≡ ωτ \ ωτf (i.e., ∆ω contains the history of the game
between τ f and τ). Then for every τ ′ ≥ τ , all miners play the strategy
prescribed after history ωτ ′ \∆ω that is defined in b) and c). In playing
strategies defined in b) and c), miners consider that the original and
the new chain are defined with respect to history ωτ ′ \∆ω.17

As will become explicit below, the specification of the equilibrium strategy
in states described in d) is useful to rule out certain types of deviations.

We need to prove that a miner does not have a profitable one shot devi-
ation from σ∗. We hereafter consider each of the cases above in turn.

a) Before the fork :
If miner m goes for a one shot deviation from equilibrium at time τ < τ f

it has two effects on his expected payoff. First, m’s deviation can affect the
distribution of vested interests on the original chain at future times τ such
that rτ > 1− ε. Second, as in the proof for Proposition 2, it can impact the
value of the block m chooses to mine. These two effects materialise only if
the next event is that m solves his block.

Consider the first effect. The occurrence of a fork reduces the payoff that
participants receive from the block they will mine after τ f , as well as some
of the blocks they have mined before τ f , namely, the f blocks between the
last block solved before the sunspot, Bn(τf ) and the first block on the original
chain after the fork, Bn(τf )−f+1 (or in other words, the miners’ vested interests
in the original chain). For each of these blocks, as well as for the blocks solved
after τ f , the maximal loss for miner m is G(M). In addition m’s deviation
has an impact on the materialisation of this loss only if the sunspot occurs
before m’s liquidity shock when m plays the equilibrium strategy. Hence,
an upper bound on this loss, or equivalently, on the gain from reducing the
likelihood of a fork via a deviation is

Pr(τ f < zm|ωτ )[f +
θm
λm

]G(M).

17In words, miners play as if the blocks solved between τf and τ do not exist.
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Now,

Pr(τ f < zm|ωτ ) =

∫ ∞
zm=τ

(P (τ f < zm|ωτ , zm))λme
−λmzmdzm.

Observe that

Pr(τ f < zm|ωτ , zm) < Pr(∃τ < zm, r
τ > 1−ε|ωτ , zm) = 1−Pr(∀τ < zm, r

τ ≤ 1−ε|ωτ , zm).

Moreover,

Pr(∀τ < zm, r
τ ≤ 1− ε|ωτ , zm) = E[(1− ε)ν(τ,zm)|ωτ , zm],

where ν(τ, zm) is the number of stopping times between τ and zm. Now, for
small ε, a Taylor expansion yields

(1− ε)ν(τ,zm) ≈ 1− ν(τ, zm)ε.

Hence, for small ε,

Pr(∀τ < zm, r
τ ≤ 1− ε|ωτ , zm) ≈ 1− E[ν(τ, zm)]ε.

Hence, one can set ε so that Pr(τ f < zm|ωτ , zm), and correspondingly the
gain from reducing the likelihood of a fork via a deviation, is arbitrarily close
to 0.

Next consider the second effect. If miner m solves Bn(τ)+1 but this block
is not on the original chain, no further block will be chained to it, since all
miners henceforth will follow σ∗. Hence the expected payoff for this block
is 0. If instead m was following the equilibrium strategy when he solved
Bn(τ)+1, the expected payoff from this block is strictly positive.

Overall, the first effect, which reflects the maximum gain from a one shot
deviation can be set arbitrarily close to 0, while the second effect, which
reflects the cost of a one shot deviation, is bounded away from 0. Hence,
there is no profitable one shot deviation.

b) c) At or after the fork:

1) Consider first a deviation by a miner m > K.
Any deviation other than chaining to the last block on the new chain is

ruled out by similar arguments as in Proposition 1. Hence we just have to
check that m prefers to chain his block to the last block on the original chain,
rather than to the last block on the new chain. As in the previous proofs,
this one shot deviation affects m’s payoff only if the next stopping time τ ′,
corresponding to two possible events: either m solves his block, or zm occurs.
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(i) Suppose miner m solves a block at τ ′, i.e., Nm(τ ′) − Nm(τ) = 1. If
Condition 2 is still true at τ ′, since every miner, including m, reverts to
the equilibrium strategy from τ ′ on, the only impact of the deviation
is that m earns G(K) for block Bn(τ ′) instead of G(M −K) under the
equilibrium strategy. If Condition 2 is not true at τ ′, the only impact
of the deviation is that m earns 0 for block Bn(τ ′) instead of G(M −K)
under the equilibrium strategy. Indeed both under the equilibrium
strategy and the deviation, his expected payoff at τ ′ is his expected
payoff at τ plus the reward he receives for block Bn(τ ′), which is 0
under the deviation when Condition 2 does not hold since from d) no
miner will ever chain a block to Bn(τ ′).

(ii) Suppose miner m is hit by a liquidity shock at τ ′, i.e., zm = τ ′. Then
his payoff under the deviation is

vo(m, τ)G(M −K − 1) + vn(m, τ)G(K + 1) +Nm(τ(Bn(τf )−f ))G(M)

instead of

vo(m, τ)G(M −K) + vn(m, τ)G(K) +Nm(τ(Bn(τf )−f ))G(M)

under the equilibrium strategy.18 It follows that there is no profitable
deviation if

Pr(Nm(τ ′)−Nm(τ) = 1)(G(K)−G(M −K)) ≤
Pr(zm = τ ′)(vo(m, τ)(G(M −K)−G(M −K − 1))− vn(m, τ)(G(K + 1)−G(K))),

which is exactly inequality (11) in Condition 2.

2) Consider next a deviation by a miner m ≤ K. A symmetric reasoning
yields that there is no profitable deviation if

Pr(Nm(τ ′)−Nm(τ) = 1)(G(K)−G(M −K)) ≥
Pr(zm = τ ′)(vo(m, τ)(G(M −K + 1)−G(M −K))− vn(m, τ)(G(K)−G(K − 1))),

which is exactly (12) in Condition 2.
18Note that we used the assumption that ∀K, G(M) = G(M − K) + G(K) to write

down miner m’s payoff from blocks solved before τ(Bn(τf )−f )).
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Next, see that at τ = τ f , vn(m, τ f ) = 0 for all miners. Inequality (11) is
then written:

Pr(Nm(τ ′)−Nm(τ f ) = 1)

Pr(zm = τ ′)
(G(K)−G(M−K)) < vo(m, τ f )(G(M−K)−G(M−K−1)),

which is exactly inequality (2) in Condition 1. Similarly, inequality (12) is
then written:

Pr(Nm(τ ′)−Nm(τ) = 1)

Pr(zm = τ ′)
(G(K)−G(M−K)) > vo(m, τ)(G(M−K+1)−G(M−K))

which is exactly inequality (3) in Condition 1.
Furthermore, if miners adhere to the equilibrium strategy, then miners

m ≤ K always mine the new chain so that inequality (3) in Condition 1
implies that inequality (12) in Condition 2 is true at any τ ≥ τ f . Symmet-
rically, given that miners m > K stick to the original chain, Condition 2 is
always verified after τ f . Hence, given that Condition 1 holds at τ f , then for
τ > τ f , Condition 2 holds on the equilibrium path.

Last, see that inequality (1) in Condition 1 guarantees that (2) and (3)
cannot be satisfied jointly for the same miner m.

d) After the fork off-path

Suppose ωτ is as described in d). Then given that all other players play
the equilibrium, m’s payoff from adhering to the equilibrium strategy is as
in b) and c) above. Following the same logic as in the proof of b) and c),
other deviations can be ruled out. QED

Proof of Proposition 4: Statement of equilibrium strategies:
A) If a miner solved a block outside the original chain thereby creating a

one-block-long fork as long as the original chain, that miner chains his next
block to the block he just solved.

B) Otherwise, each miner chains his current block to the last block solved
on the original chain, except if there is a fork starting with two blocks con-
secutively solved by the same miner, longer than the original chain. In that
case, each miner chains his block to the longest chain, which miners consider
to be the original chain from that point on.19

19This is to define equilibrium strategies if a second fork occurs off the equilibrium path.
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Equilibrium strategies imply that there can be a transient fork created
by one miner who did not observe in time the actual state of the original
chain. If another miner is hit by a liquidity shock precisely when the fork
is being formed, the blocks previously solved by that other miner, which
with certainty will not become orphaned, are worth at the time of the fork
G(M − 1) + G(1). The same blocks will be worth G(M) just after the fork
is resolved. To simplify the analysis, we assume that these blocks have the
same value at and after the fork, that is, G(M − 1) + G(1) = G(M). We
specify below when this assumption is used.

Proof of A): Denote by Bn the last block solved on the original chain.
Consider the strategy of miner m who has just created a one-block-long fork
as long as the original chain, i.e. who has just solved Bk+1, with k ≥ n
chained to the parent of Bn, denoted p(Bn).20

Following the same reasoning as above, the relevant choice for m is be-
tween chaining his next block to Bk+1 (which is the equilibrium strategy) and
chaining it to Bn (which is the only relevant deviation). After the miner made
this choice, three events can take place, whose probabilities are independent
of the miners’ actions:

• The first case is when the next event is zm: In that case, if m deviated
and chained his block to Bn his payoff is

G(0) +N o
m(τBn)G(M),

where G(0) is his reward for block Bk+1 (since no miner, even himself
is chaining to that block), while N o

m(τBn) is the number of blocks he
solved up to τBn on the original chain, and G(M) is the reward for
each of these blocks, reflecting that the other miners are following the
equilibrium strategy. If, instead, m followed the equilibrium strategy
and chained his block to Bk+1 his payoff is

G(1)+N o
m(τp(Bn))[G(M−1)+G(1)]+(N o

m(τBn)−N o
m(τp(Bn)))G(M−1),

where G(1) is his reward for block Bk+1 (because he is the only one
who chains to Bk+1), while N o

m(τp(Bn))[G(M − 1) +G(1)] is his reward
20Since the equilibrium strategies are defined for all states, including those which are

not on the equilibrium path, we cannot exclude that out of equilibrium, some blocks are
solved outside the original chain before or after Bn is solved: p(Bn) is not necessarily
Bn−1, and Bk+1 is not necessarily Bn+1.
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for the blocks he solved up to τp(Bn) on the original chain (because
the value of these blocks reflects that there is a fork with one miner
chaining to Bk+1 and M − 1 miners chaining to Bn), and the last term
is the reward for Bn. Since by assumption G(M − 1) + G(1) = G(M)
and G(1) = 0, the deviation is not strictly profitable.

• The second case is when the next event is that a block is solved by
another miner than m. Then, again, which block m chose as a parent
block is irrelevant.

• The third case is when the next event is that m solves Bk+2.

a) In that case, if m had chained his block to Bn, all miners chain their
blocks to the original chain, which includes Bn and Bk+2, so that Bk+1

becomes orphaned. From that point on, m’s expected gain is

N o
m(τBn)G(M)+G(M)+E[

∫ zm

τBk+2

dNm(t)G(M)dt|zm ≥ τBk+2
]−L(τBk+2

),

where the first term is the reward for the blocks he solved up to τBn

on the original chain, the second term is the reward for Bk+2, and the
last terms reflect the continuation value of the miner. The conditional
expectation is his expected reward for the blocks solved after τBk+2

if
no block becomes orphaned.21 L(τBk+2

) is the expected loss due to
one of the blocks solved by m after τBk+2

becoming orphaned. On the
equilibrium path, orphaned blocks occur iff a miner observes a block
with delay and creates a successful fork.

b) If instead m had chained his block to Bk+1, the chain including Bk+1

and Bk+2 becomes the longest one, and all miners hereafter chain their
blocks to it. Thus m’s expected gain is

N o
m(τp(Bn))G(M)+2G(M)+E[

∫ zm

τBk+2

dNm(t)G(M)dt|zm ≥ τBk+2
]−L(τBk+2

),

where the second term is the reward for Bk+1 and Bk+2.

Note that N o
m(τBn) − N o

m(τp(Bn)) ≤ 1, and that the continuation payoff
of m after τBk+2

is the same whether m chose the equilibrium strategy or
deviated. Therefore, m prefers to chain his block to Bk+1.

21As before, if zm occurs when a fork starts, these previously solved blocks are worth
G(M − 1) +G(1) which is equal to G(M) by assumption in that case.
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Proof of B):
Denote by Bk the last block solved and by Bn with n ≤ k the last block

solved on the original chain.
1) First consider the case in which there is no fork of two consecutive

blocks solved by the same miner and longer than the original chain. For
any miner m (who has not started a fork), the only two relevant choices are
i) to follow the equilibrium strategy, i.e. to chain his block to Bn, and ii)
to try to create a fork by solving two blocks in a row (the other deviations
are ruled out by the same reasoning as in Proposition 1.) As above there
are three possible cases: i) The next event is that m is hit by a liquidity
shock. ii) The next event is that another miner solves his block. iii) The
next event is that m solves his block. As above, in case ii) m’s strategy
does not affect his payoff. In case i), if m followed the equilibrium strategy,
his payoff is N o

m(zm)G(M) (if there is no fork), or N o
m(zm)(G(M − 1) +

G(1)) = N o
m(zm)G(M) (if a fork has started). If m deviated, his payoff is

at most equal to N o
m(zm)G(M): precisely, if there is no fork, m’s payoff is

smaller than or equal to N o
m(zm)G(M) (depending on which assumption is

made from Footnote 11). If there is already a fork, m’s payoff is at most
N o
m(zm)(G(M − 2) +G(2)), which is lower than N o

m(zm)G(M).
In case iii) (in which m solves Bk+1), there are two possible continu-

ations: Either another miner does not observe that m solved Bk+1 or all
miners observe that m solved Bk+1. The probabilities of these two events are
independent of m’s action. We consider the two cases in turn.

a) If all miners observe that m solved Bk+1, m’s expected gain if he
followed the equilibrium strategy, i.e., chained Bk+1 to Bn, is:

(N o
m(τBn) + 1)G(M) + E[

∫ zm

τBk+1

dNm(t)G(M)dt|zm ≥ τBk+1
]− L(τBk+1

).

The first term is the reward for blocks solved up to τBn plus the reward for
mining Bk+1 when the latter remains on the original chain. The conditional
expectation is m’s expected reward for solving blocks after τBk+1

. The last
term (L(τBk+1

)) is the expected loss due to one of m’s blocks solved after
τBk+1

becoming orphaned (which on the equilibrium path happens iff a miner
observed a block with delay and created a successful fork). m’s expected gain
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if he deviated and started a fork by chaining Bk+1 to p(Bn) is:22(
N o
m(τp(Bn)) + (N o

m(τBn)−N o
m(τp(Bn))) Pr(Bn = p(Bk+2)) + Pr(m = m(Bk+2))

)
G(M)

+E[
∫ zm
τBk+1

dNm(t)G(M)dt|zm ≥ τBk+1
]− L(τBk+1

).

The first term reflects that m earns

• a reward G(M) on all blocks solved on the original chain up to τp(Bn),

• a reward for Bn if he solved that block and it remains on the active
chain (that is, Bk+2 is attached to Bn),

• and a reward for Bk+1 if it is included in the active chain. The latter
can happen only if m solves Bk+2.23

The second term is the continuation payoff for all blocks solved after Bk+1

if they are not orphaned afterwards. That term does not depend on which
block m chains Bk+1 to. The third term is the expected loss due to one of
m’s blocks solved after τBk+1

becoming orphaned. This expected loss does
not depend on which block m chained Bk+1 to. See that

N o
m(τBn) ≥ N o

m(τp(Bn)) + (N o
m(τBn)−N o

m(τp(Bn))) Pr(Bn = p(Bk+2)).

Hence, if all miners observe that m solved Bk+1, m’s expected payoff is larger
if he followed the equilibrium strategy than if he deviated.

b) If one miner (m′) did not observe that m solved Bk+1, m’s expected
gain if he followed the equilibrium strategy is:

(N o
m(τBn)+1−Pr(m′ = m(Bk+2) = m(Bk+3)))G(M)+E[

∫ zm

τBk+1

dNm(t)G(M)dt|zm ≥ τBk+1
].

The first term ism’s expected reward for solving blocks up to Bk+1, reflecting
the risk that Bk+1 become orphaned if m′ solves Bk+2 and Bk+3. The second

22Clearly, this is the only relevant deviation since m cannot obtain more if he chained
Bk+1 to Bk if Bk started a fork: Bk+1 will never be on the active chain given the equilib-
rium strategies, even if m solves Bk+2. A fortiori, m cannot obtain more if he decides to
chain Bk+1 to any block Bi with i < k outside the original chain.

23A fork can happen if one miner does not observe Bk+2, but even in that case Bk+1,
as well as all previously solved blocks, will be on the active chain and yield G(M) or
G(M + 1) +G(1) = G(M) depending on when zm occurs.
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term ism’s continuation payoff, reflecting thatm will be mining on the single
active chain (be it the original one or a fork that becomes the consensus).
If m deviated by chaining Bk+1 to p(Bn),24 to earn his reward on Bk+1, m
needs to solve Bk+2 so his expected gain is(
N o
m(τp(Bn)) + (N o

m(τBn)−N o
m(τp(Bn))) Pr(Bn = p(Bk+2)) + Pr(m = m(Bk+2))

)
G(M)

+E[
∫ zm
τBk+1

dNm(t)G(M)dt|zm ≥ τBk+1
].

As above

N o
m(τBn) ≥ N o

m(τp(Bn)) + (N o
m(τBn)−N o

m(τp(Bn))) Pr(Bn = p(Bk+2)).

Consequently, there is no profitable deviation if

1− Pr(m′ = m(Bk+2) = m(Bk+3)) ≥ Pr(m = m(Bk+2)).

That is

1 ≥ Pr(m = m(Bk+2)) + Pr(m′ = m(Bk+2) = m(Bk+3)),

which holds because

1 ≥ Pr(m = m(Bk+2)) + Pr(m′ = m(Bk+2)) ≥
Pr(m = m(Bk+2)) + Pr(m′ = m(Bk+2) = m(Bk+3)).

This completes the first part of the proof of the optimality of the strategy
stated in B).

2) Second, consider the case in which there is a fork starting with two
blocks consecutively solved by the same miner and longer than the original
chain. We now prove that, in that case, each miner finds it optimal to chain
his block to the longest chain.

If that fork occurred because one miner observed a block with delay, we
are in the same situation as in Proposition 1, and there is no profitable
deviation from mining the longest chain.

Off the equilibrium path, however, that fork could have occurred for other
reasons, and a new fork could still occur because of a delay in the future. In
that case there is no profitable deviation (in particular, trying to create a fork
by solving two blocks in a row is dominated by the equilibrium strategy), as
shown in the first part of B).

QED
24As above, this is the only relevant deviation.
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Proof of Proposition 5: Statement of equilibrium strategies:
A) If a miner solved a block outside the original chain thereby creating a

one-block-long fork as long as the original chain, all miners chain their next
block to the fork, which miners consider to be the original chain from that
point on.

B) Otherwise, each miner chains his current block to the last block solved
on the original chain.

Proof of A): Denote by Bn the last block solved on the original chain,
and suppose that block Bk+1 with k ≥ n, is chained to p(Bn). Consider
the strategy of any miner m. Following the same reasoning as above, the
relevant choice for m is between chaining his next block to Bk+1 (which is
the equilibrium strategy) and chaining it to Bn (which is the only relevant
deviation). After the miner made this choice, three events can take place,
whose probabilities are independent of the miners’ actions:

• The first case is when the next event is zm: In that case, if m deviated
and chained his block to Bn his payoff is

1{m=m(Bk+1)}G(M − 1) + 1{m=m(Bn)}G(1) +N o
m(τp(Bn))G(M),

where G(M − 1) is his reward if he solved block Bk+1, and G(1) his
reward if he solved Bn. If, instead, m followed the equilibrium strategy
and chained his block to Bk+1 his payoff is

1{m=m(Bk+1)}G(M) + 1{m=m(Bn)}G(0) +N o
m(τp(Bn))G(M).

Since by assumptionG(M−1) ≤ G(M) andG(1) = G(0), the deviation
is not strictly profitable.

• The second case is when the next event is that a block is solved by
another miner than m. Then, again, which block m chose as a parent
block is irrelevant.

• The third case is when the next event is that m solves Bk+2.
a) In that case, if m had chained his block to Bn, given equilibrium
strategies, Bk+2 becomes orphaned. From that point on, m’s expected
gain is

N o
m(τp(Bn))G(M) + 1{m=m(Bk+1)}G(M) + 1{m=m(Bn)}G(0) +G(0)

+E[

∫ zm

τBk+2

dNm(t)G(M)dt|zm ≥ τBk+2
]− L(τBk+2

),
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since blocks Bn and Bk+2 are orphaned and earn G(0). As before,
L(τBk+2

) is the expected loss due to one of the blocks solved by m after
τBk+2

becoming orphaned.

b) If instead m had chained his block to Bk+1, m’s expected gain is

N o
m(τp(Bn))G(M) + 1{m=m(Bk+1)}G(M) + 1{m=m(Bn)}G(0) +G(M)

+E[

∫ zm

τBk+2

dNm(t)G(M)dt|zm ≥ τBk+2
]− L(τBk+2

),

since now m earns G(M) for solving Bk+2.

Clearly, any miner m prefers to chain his block to Bk+1.
Proof of B): Denote by Bn the last block solved on the original chain,

and Bk, k ≥ n, the last block solved. Assume that there is no one-block-long
fork of the same length as the original chain. The only relevant deviation to
consider is for miner m to try and start a one-block-long fork by chaining
his current block to p(Bn). Again if zm occurs, or if another miner solves
the next block, m’s payoff is not affected by which block he currently mines.
The only case to consider is if m solves the next block, Bk+1. If m chained
Bk+1 to p(Bn), his payoff is:

N o
m(τp(Bn))G(M) +G(M) +E[

∫ zm

τBk+1

dNm(t)G(M)dt|zm ≥ τBk+1
]−L(τBk+1

),

since all miners chain their future blocks to the chain that contains Bk+1:
therefore m earns G(M) for Bk+1. Clearly, if m chained Bk+1 to Bn, he
obtains the same payoff, since he earns G(M) for Bk+1 as well. Therefore
there is no profitable deviation.
QED

Proof of Proposition 6: Statement of equilibrium strategies:
A) If a miner has the opportunity to double spend, he mines a block

chained to the parent of the last block solved on the original chain.
B) If a miner solves a block that creates a one-block-long fork as long

as the original chain, that miner chains his next block to the block he just
solved, except if he spots an opportunity to double-spend, in which case in
plays according to A).
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C) Otherwise, each miner chains his current block to the last block solved
on the original chain, except if there is a fork starting with two blocks con-
secutively solved by the same miner, longer than the original chain. In that
case, each miner chains his block to the longest chain, which miners consider
to be the original chain from that point on.

As before, if a miner is hit by a liquidity shock precisely when the fork
is being formed, his previously mined blocks are worth as much as after
the fork is resolved: G(M − 1) + G(1) = G(M). We also clarify that the
miner who earns the reward S is the one who completes a double-spending
fork before being hit by his liquidity shock zm. In particular, a miner who
initiates a double-spending fork but is hit by a liquidity shock before the fork
is resolved does not earn S. By contrast, a miner who successfully completes
a double-spending fork initiated by the miner he replaced does earn S.

Proof of A):
Denote by Bn the last block solved on the original chain, and by Bk with

k ≥ n the last block solved. Consider the strategy of miner m who spots the
opportunity to double spend.

Following the same reasoning as above, the relevant choice for m is be-
tween chaining his next block to p(Bn) (the equilibrium strategy) and chain-
ing it to Bn (the only relevant deviation). After the miner made this choice,
three events can take place, whose probabilities are independent of the min-
ers’ actions:
• The first case is when the next event is zm: In that case, if m deviated and
chained his block to Bn his payoff is N o

m(τBn)G(M). If, instead, m followed
the equilibrium strategy and chained his block to p(Bn) his payoff is

N o
m(τp(Bn))[G(M − 1) +G(1)] + (N o

m(τBn)−N o
m(τp(Bn)))G(M − 1),

where N o
m(τp(Bn))[G(M − 1) +G(1)] is his reward for the blocks he solved up

to τp(Bn) on the original chain, and the last term is the reward for Bn. Since
by assumption G(M − 1) +G(1) = G(M) and G(1) = 0, the deviation is not
strictly profitable.
• The second case is when the next event is that a block is solved by an-
other miner than m. Then, again, which block m chose as a parent block is
irrelevant.
• The third case is when the next event is that m solves Bk+1.

To analyse this case, it is useful to condition the payoffs on event F =
(zm > τBk+2

) ∩ (m = m(Bk+2)), which probability is independent from m’s
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strategy. If m follows the equilibrium strategy, then m earns S if and only if
F is true, that is, if m solves Bk+2 before being hit by a liquidity shock.

1. Suppose F is true.

If m deviated by chaining his block to Bn, his payoff is

N o
m(τBn)G(M) + 2G(M) + E[

∫ zm

τBk+2

dNm(t)G(M)dt|zm ≥ τBk+2
].

m earns G(M) for all the blocks solved on the original chain up to τBn .
m earns G(M) for solving Bk+1 and Bk+2 which belong to the original
chain, and for all the future blocks solved after τBk+2

, since m knows
that on the equilibrium path, no other double spending opportunity
will be spotted.

If m played the equilibrium strategy by chaining Bk+1 to p(Bn), his
payoff is

N o
m(τp(Bn))G(M) + 2G(M) +E[

∫ zm

τBk+2

dNm(t)G(M)dt|zm ≥ τBk+2
] + S.

m earns G(M) for all the blocks he solved before the fork (up to p(Bn)),
G(M) for Bk+1 and for Bk+2, and for all the future blocks solved after
τBk+2

, since on the equilibrium path all miners chain their new blocks
to Bk+2. In addition, m earns S from double-spending.

Hence, the net benefit of following the equilibrium strategy rather than
deviating is S − 1{m=m(Bn)}G(M).

2. Suppose F is not true: either zm occurs before τ(Bk+2) or zm occurs
after τBk+2

but m does not solve Bk+2. To write m’s payoff, we will
distinguish the two events when needed.

If m deviated by chaining his block to Bn, his payoff is

N o
m(τBn)G(M)+G(M)+Pr(zm > τBk+2

)E[

∫ zm

τBk+2

dNm(t)G(M)dt|zm ≥ τBk+2
].

(13)
m earns G(M) for all the blocks solved up to τBn , for Bk+1 (since Bk+1

is on the original chain), and for blocks solved after τBk+2
if zm > τBk+2

.
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(Note that if F is not true,m never solves Bk+2 before the next liquidity
shock zm.)

If m played the equilibrium strategy by chaining Bk+1 to p(Bn), his
payoff is

• if zm occurs first:

N o
m(τp(Bn))(G(M − 1) +G(1)) + 1{m=m(Bn)}G(M − 1) +G(1).

In that case, m has created a one-block-long fork as long as the
original chain when he is hit by his liquidity shock. Therefore, he
earns G(M − 1) +G(1) for all the blocks he solved on the original
chain up to τ(p(Bn)). He also earns G(M) for Bn if he solved it
and G(1) for Bk+1.

• if Bk+2 is solved by another miner before zm:

N o
m(τBn)G(M) +G(0) + E[

∫ zm

τBk+2

dNm(t)G(M)dt|zm ≥ τBk+2
].

In that case, m’s fork fails. Therefore, he earns G(M) for all the
blocks he solved on the original chain up to τ(Bn) and for the
blocs solved after τBk+2.

To streamline the exposition, we assume that G(M − 1) = G(M).25

As a result, gains earned by m on all blocks solved up to τ(Bn) are
the same in the two events above. Hence m’s payoff if he played the
equilibrium strategy when F is not true is:

N o
m(τBn)G(M) + Pr(zm > τBk+2

)E[

∫ zm

τBk+2

dNm(t)G(M)dt|zm ≥ τBk+2
].

(14)

Hence, the net benefit of following the equilibrium strategy rather than
deviating when F is not true is the difference between (14) and (13),
that is, −G(M).

25Allowing for G(M−1) < G(M) only makes the condition under which the equilibrium
exists more intricate.
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Overall, m always follows the equilibrium strategy (including when he
solved Bn) iff

p(F )[S −G(M)]− (1− p(F ))G(M) > 0⇔ S >
G(M)

p(F )

Proof of B):

Suppose miner m built a fork (p(Bn), Bk+1) as long as the original chain,
where Bn is the last block on the original chain, and Bk+1 is the last block
solved. Suppose also that m has not spotted a double spending opportunity
after Bk+1 was solved. The reasoning is analogous to the proof of Proposition
4, part A, hence we only sketch it here.

As earlier, the relevant choice for m is between chaining his next block
to Bk+1 (the equilibrium strategy) and chaining it to Bn (the only relevant
deviation).

• Suppose the next event is zm.

If m deviated and chained his block to Bn, the original chain remains
the only active chain and m’s payoff is

G(0) +N o
m(τBn)G(M),

where the first term is the reward for Bk+1.

If, instead, m followed the equilibrium strategy and chained his block
to Bk+1 his payoff is

G(1)+N o
m(τp(Bn))[G(M−1)+G(1)]+(N o

m(τBn)−N o
m(τp(Bn)))G(M−1),

where the first term is again, the reward for Bk+1. The assumptions
G(M − 1) + G(1) = G(M) and G(1) = 0 imply this deviation is not
strictly profitable.

• Suppose the next event is that a block is solved by another miner than
m. Then which block m chose as a parent block is irrelevant.

• Suppose the next event is that m solves Bk+2.

If m chains his block to Bn, the original chain remains the only active
chain and Bk+1 becomes orphaned. Therefore, m’s expected payoff is

N o
m(τBn)G(M)+G(M)+E[

∫ zm

τBk+2

dNm(t)G(M)dt|zm ≥ τBk+2
]+S(τBk+2

)−L(τBk+2
),
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where the second term is the reward for Bk+2. As earlier, L(τBk+2
), is

the expected loss due to one of m’s blocks solved after τBk+2
becoming

orphaned. S(τBk+2
) is the expected benefit from m spotting a double-

spending opportunity after τBk+2
. Note that both L(τBk+2

) and S(τBk+2
)

are conditional on m’s information at τBk+1
. For instane, if m already

had a double-spending opportunity, then L(τBk+2
) = S(τBk+2

) = 0

If instead m had chained his block to Bk+1, the chain including Bk+1

and Bk+2 becomes the longest one, and all miners hereafter chain their
blocks to it. Thus m expected payoff is at least equal to

N o
m(τp(Bn))G(M)+2G(M)+E[

∫ zm

τBk+2

dNm(t)G(M)dt|zm ≥ τBk+2
]+S(τBk+2

)−L(τBk+2
)

where the second term is the reward for Bk+1 and Bk+2. This payoff is
higher by S if m has the double-spending opportunity (the only case
on the equilibrium path).

Since N o
m(τBn) − N o

m(τp(Bn)) ≤ 1, m prefers following the equilibrium
strategy.

Proof of C):

The reasoning is analogous to the proof of Proposition 4, part B, we only
sketch it here. Denote by Bk the last block solved and by Bn with n ≤ k the
last block solved on the original chain.

1) First consider the case in which there is no fork of two consecutive
blocks solved by the same miner and longer than the original chain. For any
miner m who does not have the double-spending opportunity, the only two
relevant choices are i) to follow the equilibrium strategy by chaining his block
to Bn, and ii) to try to create a fork by solving two blocks in a row:

• Suppose the next event is that m is hit by a liquidity shock. If m
followed the equilibrium strategy, his payoff is N o

m(zm)G(M) (if there
is no fork), or N o

m(zm)(G(M−1)+G(1)) = N o
m(zm)G(M) (if a fork has

started). If m deviated, his payoff is at most equal to N o
m(zm)G(M).

• Suppose the next event is that another miner solves a block. Then
which block m was mining is irrelevant.
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• Suppose the next event is that m solves Bk+1

If m followed the equilibrium strategy, i.e., chained Bk+1 to Bn, his
expected payoff is

(N o
m(τBn)+1)G(M)+E[

∫ zm

τBk+1

dNm(t)G(M)dt|zm ≥ τBk+1
]+S(τBk+1

)−L(τBk+1
),

m’s expected gain if he deviated and started a fork by chaining Bk+1

to p(Bn) is(
N o
m(τp(Bn)) + (N o

m(τBn)−N o
m(τp(Bn))) Pr(Bn = p(Bk+2)) + Pr(m = m(Bk+2))

)
G(M)

+E[
∫ zm
τBk+1

dNm(t)G(M)dt|zm ≥ τBk+1
] + S(τBk+1

)− L(τBk+1
).

Since

N o
m(τBn) ≥ N o

m(τp(Bn)) + (N o
m(τBn)−N o

m(τp(Bn))) Pr(Bn = p(Bk+2)),

m’s expected payoff is larger if he followed the equilibrium strategy
than if he deviated.

2) Consider the case in which there is a fork starting with two blocks
consecutively solved by the same miner and longer than the original chain.
If that fork occurred because one miner exploited a double-spending oppor-
tunity, we are in the same situation as in Proposition 1, and there is no
profitable deviation from mining the longest chain.

If that fork occurred for other reasons (off the equilibrium path), a new
fork could still occur because of a delay in the future. In that case there is
no profitable deviation (in particular, trying to create a fork by solving two
blocks in a row is dominated by the equilibrium strategy), as shown in C).

QED
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