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Abstract

We construct a structural model of on-the-job search in which workers differ

in skills along several dimensions (cognitive, manual, interpersonal...) and sort

themselves into jobs with heterogeneous skill requirements along those same

dimensions. We further allow for skills to be accumulated when used, and

eroded away when not used. We estimate the model using occupation-level

measures of skill requirements based on O*NET data, combined with a worker-

level panel from the NLSY79. We use the estimated model to shed light on the

origins and costs of mismatch along the cognitive, manual, and interpersonal

skill dimensions.
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1 Introduction

The traditional approach to studying wage and employment inequality, as emphasised

by Acemoglu and Autor (2011), relies on a view of labor markets where each worker

is endowed with a certain level of “human capital” that rigidly dictates the type of job

they are able to hold. This view has gradually evolved into one of labor markets as

institutions mediating the endogenous allocation of workers with heterogeneous skills

into tasks with heterogeneous skill requirements: any worker can now potentially

perform any job, with their skills determining how good they are at any given job,

while the market determines the assignment of skills to tasks. This more general

view of labor markets has afforded great progress in our understanding of wage and

employment inequality.1

A subsisting limitation of this approach, however, is that it routinely models skill

and task heterogeneity as one-dimensional: workers have more or less of one catch-

all “skill”, and jobs differ in their requirements for that skill. This representation is

at odds with intuition: if one worker is very good at abstract problem-solving but

inept at manual work, while another excels in manual tasks but struggles with ab-

stract reasoning, how does one decide which worker is more “skilled”? It is also at

odds with the perception of statistical agencies and practitioners of human resources,

which maintain and use data describing workers and occupations along many different

and imperfectly correlated dimensions such as years and field of education, training,

health, aptitude and psychometric test scores, etc., or the occupational skill require-

ments descriptors available from the O*NET program discussed below. Moreover, it

is likely that workers improve the skills that they use regularly and tend to lose some

of those they do not use so much, a pattern that a scalar representation of human

capital is bound to miss altogether.

The alternative view that workers are endowed with bundles of different skills used

in different proportions depending on the task they perform has some history in labor

economics (Sanders and Taber, 2012). But at present, few quantitative modeling tools

1It shed light on secular trends such as the “polarization” of wages and employment (the simulta-
neous growth in wages and employment shares of both high-and low-skill workers, at the expense of
the middle part of the skill distribution - Acemoglu and Autor, 2011). It contributed to explaining
business-cycle fluctuations in aggregate output and employment (Lise and Robin, 2016). It gave
substance to the intuitive notion of “skill mismatch” and helped make sense of patterns of worker
turnover (Lise, Meghir, and Robin, 2016). It helped clarify the informational content of wage data
(Eeckhout and Kircher, 2011).
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exist that fully exploit the wealth of information on heterogeneous, multidimensional

worker skills and job skill requirements available in the data in a description of labor

market equilibrium.

In this paper, we contribute to filling this gap: we extend an otherwise standard

and well-tested search-theoretic model of individual careers to allow for multidimen-

sional skills and on-the-job learning. We estimate the model using occupation-level

measures of skill requirements based on O*NET data, combined with a worker-level

panel (NLSY79). We use the estimated model to shed light on the origins and costs of

mismatch along three dimensions of skills: cognitive, manual, and interpersonal2. We

then proceed to showing that the equilibrium allocation of workers into jobs gener-

ically differs from the allocation that a Planner would choose, and investigate the

nature and magnitude of the resulting inefficiencies based on our estimated struc-

tural model.

Our main findings are the following. The model sees cognitive, manual and inter-

personal skills as very different productive attributes. Manual skills have moderate

returns and adjust quickly (i.e., they are easily accumulated on the job, and rela-

tively easily lost when left unused). Cognitive skills have much higher returns, but

are much slower to adjust. Interpersonal skills have moderate returns, and are essen-

tially fixed over a worker’s lifetime. Next, the cost of skill mismatch (modeled as the

combination of an output loss and a loss of worker utility caused by skill mismatch)

is very high for cognitive skills, an order of magnitude greater than for manual or

interpersonal skills. Moreover, this cost is asymmetric: employing a worker who is

under-qualified in cognitive skills (i.e. has a level of skills that falls short of the job’s

skill requirements) is several orders of magnitude more costly than employing an over-

qualified worker. Those important differences between various skill dimensions are

missed when subsuming worker productive heterogeneity into one single scalar index.

The paper is organized as follows. Section 2 provides a brief discussion of some

of the related literature. Section 3 lays out the formal model, Section 4 describes

the data used for estimation, with some emphasis on O*NET, Section 5 explains

the simulation/estimation protocol, Section 6 presents the estimation results and dis-

cusses some of the model’s predictions on skill mismatch and sorting, and Section

7 shows results from counterfactual experiments aiming to quantify the distance be-

2What we term interpersonal skills are sometimes referred to as non-cognitive or personality
traits (Heckman, Stixrud, and Urzua, 2006; Borghans, Duckworth, Heckman, and ter Weel, 2008)
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tween the model’s decentralized equilibrium and the allocation that a Planner would

select, as well as the social cost of various aspects of skill mismatch. Finally, Section

8 concludes.

2 Related Literature

This paper is related to the vast empirical literature on the returns to firm and

occupation tenure and to more recent work on task-specific human capital. Those

literatures, and the connections between them are covered in the excellent survey

paper by Sanders and Taber (2012).3 As a preamble to their review of the empirical

literature, Sanders and Taber (2012) offer an elegant theoretical model of job search

and investment in multi-dimensional skills which, on many aspects, can be seen as

a special case of the model in this paper.4 However, they only use their model to

provide intuition and highlight key qualitative predictions of the theory, and do not

bring it to the data.

In a more structural vein, attempts to model the allocation and pricing of het-

erogeneous supply and demand of indivisible and multi-dimensional bundles dates

back at least to Tinbergen (1956) and the hedonic model of Rosen (1974). Generic

non-parametric identification of the hedonic model is established in Ekeland, Heck-

man, and Nesheim (2004) and Heckman, Matzkin, and Nesheim (2010). Recently

Lindenlaub (2014) estimates the quadratic-normal assignment model of Tinbergen

(1956) along two dimensions of skills (manual and cognitive) for two different cohorts

using the same combination of O*NET and NLSY data as we do in this paper. She

finds an interesting pattern of technological change: the complementarity between

her measures of cognitive worker skills and cognitive job skill requirements increased

substantially during the 1990s, while the complementarity between manual job and

worker attributes decreased. She then analyzes the consequences of that technological

shift for sorting and wage inequality.

While Lindenlaub’s analysis brings about many valuable new insights, it assumes

away market imperfections which limits its applicability to empirical and quantitative

3We thank John Kennan for bringing this particular reference to our attention.
4Sanders and Taber (2012) model individual skill accumulation as the outcome of endogenous

investment decisions (in the spirit of Ben-Porath (1967)), whereas we consider (occupation-specific)
learning-by-doing. While the conceptual differences between those two models are important, they
are notoriously difficult to tell apart empirically.
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policy analysis. First, it is difficult to define a meaningful notion of unemployment

or of skill mismatch in a Walrasian (frictionless) world where, given the economy’s

primitives (i.e. the production technology and the distributions of job and worker

attributes), equilibrium is by construction efficient. By contrast, allowing for mar-

ket imperfections creates scope for welfare-improving policy intervention. Second,

frictionless matching and assignment models, including Rosen’s hedonic model, are

static.5 As such, they are largely silent on questions relating to a worker’s life cycle,

such as the cost of skill mismatch throughout a worker’s career, the way in which

individual skills evolve over a career, how this skill accumulation is priced in the

market, or the reasons why workers switch occupations as often as they do.6

Next, following in the tradition of Heckman and Sedlacek (1985), Keane and

Wolpin (1997), and Lee and Wolpin (2006), the important contribution by Yamaguchi

(2012) provides the first estimation of a Roy-type model of task-specific human capital

accumulation and occupation choices over the life cycle based on the combination of

the NLSY with data on occupation-level attributes, interpreted as “task complexity”,

from the Dictionary of Occupational Titles (DOT, the predecessor of O*NET). The

broad approach is the same as in the present paper: each occupation is character-

ized by the vector of weights (the degree of task complexity) it places on a limited

number of different skill dimensions, as in Lazear’s (2009) skill-weights approach.

Worker skills are not directly observed, but their accumulation is modeled as a hid-

den Markov chain, the parameters of which are identified from observed choices of

occupations with different task contents (observed from the DOT data), using the

model’s structure. Yamaguchi’s findings suggest that higher task complexity is asso-

ciated with higher wage returns to, and faster growth of the skills relevant to the task.

A wage variance decomposition further suggests that both cognitive and motor skills

(the two skill dimensions considered by Yamaguchi) are important determinants of

cross-sectional log wage variance. A decomposition of wage growth shows that cog-

5See Chiappori and Salanié (2016) for a recent survey of the econometrics of static, frictionless
matching models.

6Models of experimentation and learning following on from Jovanovic (1979) such as Neal (1999);
Pavan (2011); Golan and Antonovics (2012) have been useful to make sense of the patterns of between
and within occupation switches in the NLSY. They cannot, however, easily rationalize the frequent
transitions in and out of unemployment observed in the same data. Lindenlaub and Postel-Vinay
(2016) extend Lindelaub’s frictionless model to a frictional environment using a basic framework
that has much in common with our model. However, Lindenlaub and Postel-Vinay (2016) is a
theoretical exercise focusing on conditions under which specific sorting patterns emerge in steady-
state equilibrium, and their model does not feature human capital accumulation.
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nitive skills account for all of the wage growth of high-school and college graduates,

while motor skills account for about half of the wage growth of high-school dropouts.

While clearly related in spirit, our model differs from Yamaguchi (2012) in several

important ways. First, Yamaguchi (2012) is a frictionless model in which occupation

mobility is largely governed by unobserved shocks to an exogenously posited wage

function, to workers’ skills, and to workers’ preferences for any given type of job.7

We propose a more parsimonious random search model, in which the only shocks are

the receipt of job offers by workers. Wages and mobility decisions are then endoge-

nously determined through between-employer competition for labor services. Our less

flexible, but more transparent and readily interpretable specification offers a remark-

ably good fit to the data. Second, the only engine of wage growth in Yamaguchi’s

model is skill accumulation. Other sources of wage growth, such as job-shopping or

learning, are therefore partly picked up by skills in that model, which may lead to

an overstatement of the role of skills. Our model also ignores learning, but explic-

itly models job-shopping as an additional source of wage dynamics.8 Adding search

frictions allows us to address issues related to unemployment and skill mismatch.9

Two recent papers are particularly related. Taber and Vejlin (2016) estimate a

model which allows for search, Roy-type selection, human capital accumulation and

non wage amenities. Workers are modeled as having a time invariant relative ability

at each job-type in the economy. In the absence of frictions they would choose a

single job-type and remain indefinitely. Human capital is assumed to be general and

accumulated while working. Job mobility is informative about the degree of search

frictions, and wage cuts are informative about non wage amenities. Taber and Vejlin

(2016) model relative ability between jobs/occupations as an unobserved vector with

dimension equal to the number of job-types in the economy. We take a substantially

more parsimonious approach: a worker’s relative productivity across jobs/occupations

depends on the amount of skills (cognitive, manual, interpersonal. . . ) they currently

possess and whether or not they are a good fit for the demands of a particular job.

7One immediately apparent drawback of this frictionless approach is that, taken literally, it
predicts that workers should change occupations continuously (or in every period, in Yamaguchi’s
discrete-time model), which is obviously at odds with observation.

8Sanders (2012) considers learning in a model otherwise similar to Yamaguchi’s.
9Moscarini (2001) combines a two-sector Roy model into an equilibrium matching model and

analyzes the partially directed search patterns arising in equilibrium and governing equilibrium
selection of skill bundles into sectors. His setup has great descriptive appeal, but remains far too
stylized to be taken directly to the data.
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Rather than treating these skills as unobserved, we use a large set of premarket

measurements to estimate a worker’s initial endowment, and a similar large set of

measurements on occupations to estimate the skill requirements of jobs. A second

notable modeling difference is that we allow these skills to evolve differentially de-

pending on the extent to which they are being used in a particular job/occupation.

We are particularly interested in the the differential returns to these skills, and the

extent to which each type of skill can be learned on the job.

From an empirical perspective, perhaps the closest paper is Guvenen, Kuruscu,

Tanaka, and Wiczer (2016). They use the same combination of NLSY and O*NET

data as we do to construct a summary index of multidimensional skill mismatch which

they use to assess the impact of skill mismatch on wages and patterns of occupational

switching. They produce a rich set of empirical results, a rough summary of which is

that both current and past mismatch strongly impact wages (negatively), the proba-

bility of switching occupations (positively), and the direction of said switching.

Their index of skill mismatch is derived from a model of occupation choice with

workers learning about their own ability. Mismatch arises in this model, not because

of search frictions, but because workers have imperfect information about their own

skills and sort into occupations that are optimal for their perceived skill bundle (which

differs from their true one). As they gradually learn about their true skills (about

which they observe a sequence of noisy signals over time), workers switch occupations.

This model gives rise to an intuitive summary mismatch measure that is based on

the distance between a worker’s skill bundle and the set of skills required by their

occupation, which the authors then use as a regressor in Mincer-type wage equations

and in statistical models of occupation switching.

While our paper shares some of its basic objectives with Guvenen et al. (2016)

(chiefly, an assessment of the production/wage cost of skill mismatch in various di-

mensions), the two contributions differ in terms of both approach and focus. Aside

from substantive differences in modeling choices, Guvenen et al. use their theory

as a guide for intuition and specification of reduced-form statistical models rather

than as an actual structure for estimation. More importantly, they provide detailed

results on the impact of mismatch on the probability and direction of occupational

switching, whereas we focus (1) on differences between skill categories in the speed

of human capital accumulation or decay and (2) on the social cost of various forms

of mismatch. Our structural approach is especially useful to address the latter broad
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question, which we do by means of counterfactual simulations.

3 Job Search with Multi-dimensional Job and Worker

Attributes

3.1 The Model

The Environment. Workers are characterized by general and specialized skills.

The market productivity of specialized skills will depend on the technology of a par-

ticular firm, while general skills have a common effect on output, independent of

the particular firm technology a worker is currently matched with. Match output is

f(x,y), where x ∈ X ⊂ R
K describes the worker’s set of skills, and y ∈ Y ⊂ R

L

describes the firm’s technology, with L ≤ K. The first L worker skills are specialized

with the remaining K−L being general skills. The firm’s technology is fixed, but the

worker’s skills gradually adjust to the firm’s technology as follows:

ẋ = g(x,y),

where g : R
K × R

L → R
K is a continuous function. Just as in production, the

adjustment of specialized skills differs depending on the firm technology, while the

adjustment of general skills depends only on experience.

Time is continuous. Upon entering the labor market, workers draw their initial

skill vectors from an exogenous distribution N(·) [with density ν(·)]. Workers can be

matched to a firm or unemployed. If matched, they lose their job at rate δ, and they

sample alternate job offers from the fixed sampling distribution Υ(y) [with density

υ(y)] at rate λ1. Unemployed workers sample job offers from the same sampling

distribution at rate λ0. Workers exit the market at rate µ. All four transition rates

(λ0, λ1, δ, µ) are exogenous.

All agents have linear preferences over income and discount the future at rate r. A

type-x worker’s flow utility from working in a type-y job for a wage w is w− c(x,y),

where c(x,y) is disutility from work, which depends on the type of the match, (x,y).

A type-x unemployed worker receives a flow income b(x) and has no disutility of being

unemployed.
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Firm, worker, and match values. We denote the total private value (i.e. the

value to the firm-worker pair) of a match between a type-x worker and a type-y firm

by P (x,y). Under linear preferences over wages, this value is independent of the

way in which it is shared between the two parties in the match, and only depends on

match attributes (x,y). We further denote the value of unemployment by U(x), and

the worker’s value of his current wage contract by W , where W ≥ U(x) (otherwise

the worker would quit into unemployment), and W ≤ P (x,y) (otherwise the firm

would fire the worker). Assuming that the employer’s value of a job vacancy is zero

(which would arise under free entry and exit of vacancies on the search market), the

total surplus generated by a type-(x,y) match is P (x,y) − U(x), and the worker’s

share of that surplus is (W − U(x)) / (P (x,y)− U(x)).

Rent sharing and wages. Wage contracts are renegotiated sequentially by mutual

agreement, as in the sequential auction model of Postel-Vinay and Robin (2002).

Workers have the possibility of playing off their current employer against any firm

from which they receive an outside offer. If they do so, the current and outside

employers Bertrand-compete over the worker’s services.

Consider a type-x worker employed at a type-y firm and assume that the worker

receives an outside offer from a firm of type y′. Bertrand competition between the

type-y and type-y′ employers implies that the worker ends up in the match that

has higher total value — that is, he stays in his initial job if P (x,y) ≥ P (x,y′)

and moves to the type-y′ job otherwise — with a new wage contract worth W ′ =

min {P (x,y), P (x,y′)}.
Suppose, for the sake of argument, that P (x,y) ≥ P (x,y′) > W . In this case,

the outcome of the renegotiation is such that the worker stays with his initial type-y

employer under a new contract with value W ′ = P (x,y′).10 The worker’s renegotiated

share of the match surplus, denoted σ(x,y,y′), is therefore:

σ(x,y,y′) =
P (x,y′)− U(x)

P (x,y)− U(x)
∈ [0, 1]. (1)

To pin down the way in which the value W ′ = P (x,y′) = U(x)+σ(x,y,y′) [P (x,y)− U(x)]

is delivered over time by the firm to the worker, we assume that the surplus share

10Obviously, renegotiation only takes place if P (x,y′) > W , as otherwise the type-y′ employer is
unable to make a (profitable) offer that improves on the worker’s initial value W , and the worker’s
threat of accepting an offer from that employer is not credible.
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σ, negotiated at the time the worker receives an outside offer from the type-y′ job,

stays constant until the following renegotiation. Put differently, while the worker’s

skill bundle x and, as a consequence, the match surplus P (x,y)− U(x) evolve over

the course of his tenure in the type-y job, the share of that surplus transferred to the

worker stays constant between negotiations and is determined as per equation (1) by

the best outside offer previously received by the worker. The particular way in which

the type-y employer delivers the value P (x,y′) to the worker only affects the time

profile of wage payments and the timing of renegotiation. It makes no difference to

the allocation of workers into jobs, as mobility decisions are only based on compar-

isons of total match values, which, under linear preferences, are independent of the

time profile of wage payments.11

Value functions and wage equation. The total private value of a match between

a type-x worker and a type-y firm, P (x,y), solves:12

(r + µ+ δ)P (x,y) = f(x,y)− c (x,y) + δU(x) + g(x,y) · ∇xP (x,y). (2)

Note that the frequency at which the worker collects offers, λ1, does not affect P (x,y).

Upon receiving an outside offer, the worker either stays in his initial match, in which

case the continuation value for that match is P (x,y), or he accepts the offer, in

which case he extracts a value of P (x,y) from the poacher (as a result of Bertrand

competition) and leaves his initial employer with a vacant job worth 0. Either way,

the joint continuation value for the partners in the initial match equals P (x,y).

This is a key implication of Bertrand competition between employers: from a social

perspective, cases where the worker accepts the outside offer and moves to a match

with higher value P (x,y′) are associated with a net surplus gain of P (x,y′)−P (x,y).

Yet none of the social gains associated with future job mobility are internalized by

private agents, as those gains accrue to a third party (the worker’s future employer).

We discuss some of the consequences of this property in Section 7.1.

11Common alternative assumptions about the way in which firms deliver value to workers include
a constant wage or a constant share of match output (a piece rate). Our assumption of a constant
surplus share has the merit of simplifying computations considerably. Note that the wages produced
by the constant wage, constant piece rate or constant surplus share assumptions are exactly identical
if the worker’s skills stay constant over time (ẋ ≡ 0).

12The dot (“ ·”) denotes the outer product and ∇ denotes the gradient.
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The value of unemployment, U(x), solves:

(r + µ)U(x) = b(x) + g(x, 0) · ∇U(x), (3)

where by convention the employer type is set to y = 0L for an unemployed worker. For

reasons similar to those just discussed about P (x,y), the worker fails to internalize

the gain in surplus associated with him accepting a job offer, and the private value

of unemployment is independent of the frequency at which those offers arrive.

The worker receives an endogenous share σ of the match surplus P (x,y)− U(x),

which he values at W (x,y, σ) = (1− σ)U(x) + σP (x,y). The wage w(x,y, σ) imple-

menting that value solves:

(r + δ + µ)W (x,y, σ) = w(x,y, σ)− c(x,y) + δU(x)

+ λ1Emax {0,min {P (x,y), P (x,y′)} −W (x,y, σ)}+ g(x,y) · ∇xW (x,y, σ), (4)

where the expectation is taken over the sampling distribution, y′ ∼ Υ.

Combining 2, (3) and (4) (using W (x,y, σ) = (1 − σ)U(x) + σP (x,y)) further

yields the following wage equation:

w(x,y, σ) = σf(x,y) + (1− σ)b(x) + (1− σ)c(x,y)

− λ1Emax {0,min {P (x,y′)− P (x,y), 0}+ (1− σ) (P (x,y)− U(x))}
− (1− σ) (g(x,y)− g(x, 0)) · ∇U(x). (5)

The first term σf(x,y) + (1 − σ)b(x) + (1 − σ)c(x,y) reflects static sharing of the

match surplus flow, in shares (σ, 1− σ) resulting from the worker’s history of outside

job offers. Note that the worker always has to be compensated for a share (1 − σ)

of his disutility of work c(x,y). The next (expectation) term reflects value of future

outside offers, which the worker pays for by accepting a lower starting wage. The

final term reflects the fact that an employed worker’s skill bundle evolves towards

the job’s skill requirements y, whereas those skills would erode towards 0L if the

worker was unemployed. This, in general, benefits the worker in the event he becomes

unemployed, and therefore affects the wage negatively.13

13As mentioned in Section 2, the model in Sanders and Taber (2012) is close to a special case
of our model where f(x,y) = x · y and where workers always receive a fixed share of the match
surplus (i.e. σ is a fixed constant). Predicted wages differ between our model and theirs, but the
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3.2 Model Analysis

A fully closed-form case. Full closed-form solutions can be obtained under spe-

cific functional form assumptions. We now give an example, which we will use in our

empirical specification below.

We first restrict the dimensionality of worker and job attributes, both for simplicity

of exposition and because those restrictions are relevant to the empirical application

below (nothing in the theory depends on those particular restrictions). We think

of a typical worker’s skill bundle x = (xC , xM , xI , xT ) as capturing (i) the worker’s

cognitive skills xC , (ii) the worker’s manual skills xM , (ii) the worker’s interpersonal

skills xI , and (iv) capture the worker’s “general efficiency” xT . Jobs are likewise

characterized by a three-dimensional bundle y = (yC , yM , yI) capturing measures of

the job’s requirements in cognitive, manual, and interpersonal skills. All three job

attributes are fixed over time, whereas a worker’s cognitive, manual, and interpersonal

skills (xC , xM , xI) are allowed to adjust over time to the requirements of the particular

job the worker holds (learning by doing).

The key functional form assumption is to assume a linear adjustment for skills.

In particular, we assume that a worker’s specialized (i.e. cognitive, manual, and

interpersonal) skills adjust linearly to his/her job’s skill requirements, i.e. we specify

the function g(x,y) as:

g(x,y) =




ẋC

ẋM

ẋI

ẋT




=




γu
C max {yC − xC , 0}+ γo

C min {yC − xC , 0}
γu
M max {yM − xM , 0}+ γo

M min {yM − xM , 0}
γu
I max {yI − xI , 0}+ γo

I min {yI − xI , 0}
gxT




, (6)

where the γ
u/o
k ’s are all positive constants governing the speed at which worker skills

adjust to a job’s requirements. Note that we allow that speed to differ between

upward and downward adjustments (γu
k vs γo

k for k = C,M, I, where “u” stands for

“under-qualified” and “o” stands for “over-qualified”), and between skill types (γ
u/o
C vs

γ
u/o
M vs γ

u/o
I ). In this case, (13) solves as:

xk(s) = yk − e−γ
u/o
k (s−t) (yk − xk(t)) , (7)

worker-job allocation for given distributions of x and y is identical. As already mentioned, the two
models further differ in the specific assumption regarding skill accumulation (endogenous investment
decisions vs. learning-by-doing).
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where the adjustment speed γ
u/o
k that applies depends on whether k = C,M or I

and whether xk(t) ≷ yk. Over time a worker’s specialized skills will adjust to the

requirements of the job. Finally, a worker’s general efficiency simply grows at a

constant rate: xT (t) = xT (0) × egt, independently of the worker’s cognitive/manual

skills or of the worker’s employment status. This very simple specification will help

the model capture the wage/experience trend observed in the data.

The production function is then specified as follows:

f(x,y) = xT ×
[
ϕ(y)−

∑

k=C,M,I

κu
k min {xk − yk, 0}2

]
. (8)

The function ϕ(y) is assumed increasing in all components of y, implying that jobs

with higher requirements in any of cognitive, manual or interpersonal skills are inher-

ently more productive, regardless of the worker they are matched with. The terms

−κu
k min {xk − yk, 0}2, k = C,M, I capture the idea that a worker with a shortage

of skills x compared to the job’s skill requirement level y in any dimension (cogni-

tive, manual, or interpersonal) causes a loss of output (assuming that all κk’s are

non-negative). We allow for the output loss caused by skill mismatch to differ de-

pending on which skills the worker is deficient in. Note that specification (8) carries

the implicit assumption that an over-qualified worker (such that xk > yk) produces

the same output as a worker whose skills are a perfect match for the job: over-

qualification causes neither a direct gain, nor a loss of output. We will return to this

shortly. General efficiency, xT , acts to scale up or down output, conditional on x and

y. In estimation we will allow xT to be correlated with x0, allowing for the possibility

that workers with, for example, high cognitive skills also have high general skills.

Finally, we simply specify unemployment income as depending on general skill only,

b(x) = bxT , with b a positive constant, so that U(x) = bxT /(r+µ−g) is independent

of the specialized skills (xC , xM , xI).

The last object we need to specify is the flow disutility of work:

c(x,y) = xT ×
∑

k=C,M,I

κo
k max {xk − yk, 0}2 . (9)

According to this specification, disutility of work is only positive if the worker is over-

qualified for her/his job in some skill dimension. We interpret this as a utility cost of
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being under-matched. This assumption brings about some comments. As is arguably

intuitively natural, the production function (8) only allows for a shortage of worker

cognitive, manual, or interpersonal skills compared to the job’s requirements to cause

a loss of output (and hence of match value). Yet it is important that we also allow

for an excess of skills to cause a loss of match value. We assume that this loss takes

the form of a utility cost of being under-matched. This utility cost is the only cost

of over-qualification that is internalized by the match parties. To see this, consider

a match in which the worker is over-qualified in all dimensions, i.e. xk > yk for all

k = C,M, I. If all of the κo
k’s were equal to zero, then the value of that match would be

the same (given equal general skills xT ) regardless of the amount by which the worker

is over qualified, even though a “more” over-qualified worker stands to lose more skills

than a “less” over-qualified one when taking up this job. So long as the worker is

over-qualified, a marginal change in the worker’s cognitive or manual skills affects

neither match output (8) nor the value of unemployment (as b(x) is independent of

(xC , xM , xI)). In that case, any loss of skills only changes the surplus in the worker’s

future matches, which, because of Bertrand competition, do not affect the surplus

from the current match (as discussed in Subsection 3.1). Conversely, with positive

κo
k’s, a match with an over-qualified worker has lower value, the further the worker’s

skills are above the job’s skill requirements. Finally, the specific functional form (9) of

c(x,y) echoes the cost of mismatch (of under-qualification) in the production function

(8), mostly for analytical convenience and simplicity.14

With those specifications, equations (2) and (3) imply (see Appendix A.1):

P (x(t),y)− U(x) = xT (t)×
{

ϕ (y)− b

r + δ + µ− g

−
∑

k=C,M,I

(
κu
k min {xk(t)− yk, 0}2
r + δ + µ− g + 2γu

k

+
κo
k max {xk(t)− yk, 0}2
r + δ + µ− g + 2γo

k

)}
. (10)

The first term in the equation defining match surplus P (x(t),y)−U(x) is the (max-

imum, given y) surplus achieved if the worker’s skills are perfectly matched to the

job’s requirements - i.e. if (xC(t), xM(t), xI(t)) = (yC , yM , yI). The remaining terms

reflect the (private surplus) cost of initial cognitive, manual, and interpersonal skill

mismatch. This cost obviously depends on the weights of cognitive, manual and in-

14See Appendix A.2 for an alternative specification.
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terpersonal mismatch in the technology and utility function, but also on the speed of

skill adjustment: if adjustment is instantaneous (γ
u/o
k → +∞), the cost of mismatch

becomes negligible.

4 Data

Our estimation sample is a panel of worker-level data from the 1979 National Lon-

gitudinal Survey of Youth (NLSY79) combined with occupation-level data on skill

requirements from the O*NET program (www.onetcenter.org). We describe both

data sets and the way we combine them before turning to a description of the esti-

mation sample itself.15

4.1 Construction of the Estimation Sample

Data sources. The NLSY79 is well known and requires little description. Our

extract from that data set is a weekly unbalanced panel of workers whom we follow

from first entry into the labor market. For each worker in the panel, time is set to

zero at the first week they cease to be in full-time education. We focus on males

from the main sample who were never in the military,16 and retain all individual

histories until the first occurrence of a non-employment spell of 18 months or more:

we consider individuals experiencing such a long spell of non-employment as losing

their attachment to the labor force, which we treat as attrition from the sample. We

retain information on labor force status and transitions, weekly earnings, occupation

of current job (Census codes), education (highest grade completed), performance in

a battery of ten aptitude tests called the Armed Services Vocational Aptitude Battery

(ASVAB), measures of anti-social behavior, measures of health, and scores in two

psychometric tests measuring social skills. Education, ASVAB scores, and measures

of social skills and health will be used as measures of the initial skill bundles x of

those workers (more below).

15We are not the first authors to combine these data sources. A non-exhaustive list includes
Autor, Levy, and Murnane (2003), Acemoglu and Autor (2011), Autor and Dorn (2013), Yamaguchi
(2012), Sanders (2012), Lindenlaub (2014), and Guvenen et al. (2016), who all use combinations of
the NLSY with occupation data from O*NET or from its predecessor, the Dictionary of Occupational

Titles.
16The NLSY over-samples ethnic minorities, people in the military, and the poor. We drop all

such over-sampled observations.
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To obtain measures of the skill requirements y attached to the occupations ob-

served in the NLSY sample, we combine the latter with data from the O*NET pro-

gram. O*NET, a.k.a. the Occupational Information Network, is a database describing

occupations in terms of skill and knowledge requirements, work practices, and work

settings.17 It comes as a list of 277 descriptors, with ratings of importance, level,

relevance or extent, for over 970 different occupations. O*NET descriptors are or-

ganized into nine broad categories: skills, abilities, knowledge, work activities, work

context, experience/education levels required, job interests, work values, and work

styles. O*NET ratings come from two different sources: a survey of workers, who are

asked to rate their own occupation in terms of a subset of the O*NET descriptors,

and a survey of “occupation analysts” who are asked to rate other descriptors in the

O*NET set.

We retain descriptors from the skills, abilities, knowledge, work activities, and

work context O*NET files, as descriptors contained in the other files (job interests,

work values, and work styles) are less directly interpretable in terms of skill require-

ments, and merge those files with our NLSY sample, based on occupation codes.18

Job skill requirements. Our selection from the O*NET database leaves us with

over 200 different descriptors, which we take as measures of the underlying skill

requirements. We reduce this large set of descriptors to three dimensions, which

we interpret as “cognitive”, “manual”, and “interpersonal” skill requirements, using

the following procedure.19 First, we run Principal Component Analysis (PCA) on

our large set of O*NET measures and keep the first three principal components.

We then recover our cognitive, manual, and interpersonal skill requirement indices by

recombining those three principal components (which by default are constructed to be

orthonormal) in such a way that they satisfy the following three exclusion restrictions:

(1) the mathematics score only reflects cognitive skill requirements; (2) the mechanical

17O*NET is developed by the North Carolina Department of Commerce and sponsored by the US
Department of Labor. Its initial purpose was to replace the old Dictionary of Occupational Titles.
More information is available on www.onetcenter.org, or on the related Department of Labor site
www.doleta.gov/programs/onet/eta_default.cfm.

18The NLSY79 uses 1970, 1980 and 2000 Census codes for occupation, whereas O*NET uses 2009
SOC codes. Crosswalks exists between those different nomenclatures. The crosswalks we use were
kindly provided to us by Carl Sanders, whose help is gratefully acknowledged. Using those, over
92% of occupation codes records in the NLSY sample have a match in the O*NET data.

19Technical details of the construction of our job skill requirement and worker skill bundles are
given in Appendix A.5.
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knowledge score only reflects manual skill requirements; (3) the social perceptiveness

score only reflects interpersonal skill requirements). Interpretation of the three skill

requirement indices thus obtained as cognitive, manual and interpersonal therefore

relies on those exclusion restrictions. Finally, we rescale our skill requirement indices

so that they lie in [0, 1].20

Worker skill bundles. Finally, we need to construct a distribution of initial worker

skill bundles, i.e. the distribution N(x) of cognitive, interpersonal and manual skills

among labor market entrants. For this we follow a similar procedure as for the dis-

tribution of skill requirements, using PCA and exclusion restrictions. We use the

following sets of measures: the ten ASVAB scores that are directly available from the

NLSY sample, individual scores on the Rotter locus-of-control scale and the Rosen-

berg self-esteem scale tests,21 three measures of criminal and anti-social behavior, two

measures of health (BMI and weight), and an O*NET-based measure of cognitive,

manual, and interpersonal skills attached to the level of education attained by each

NLSY sample member. The latter is constructed using the “experience/education

requirements” file from O*NET, which informs about the education requirements of

each occupation in O*NET, and from which we take the average value, for each edu-

cation level, of the cognitive, manual and interpersonal scores constructed above. As

exclusion restriction we assume that (1) the ASVAB mathematics knowledge score

only reflects cognitive skills; (2) the ASVAB automotive and shop information score

only reflects manual skills; (3) the Rosenberg self-esteem score only reflects inter-

personal skills. Those particular exclusion restrictions were chosen for their intuitive

consistency with the exclusion restrictions used in the construction of job skill re-

quirements, so as to ensure that worker skill indices are reasonably well “aligned”

with the corresponding skill requirement indices in all three dimensions. Yet in the

estimation, we will allow for the possibility of less-than-perfect alignment between

worker skill and job skill requirement scores (see below).

Our final estimation sample consists of an initial cross-section of 1,770 males whom

20We do this using linear transforms (rather than by converting the initial indices to ranks, as
has been done elsewhere in the literature), because we expect there to be useful information in
the distance between two different occupations in terms of cognitive, manual, or interpersonal skill
requirements. Linear rescaling preserves relative distances, whereas conversion into ranks renders
all occupations equidistant.

21See https://www.nlsinfo.org/content/cohorts/nlsy79/topical-guide/attitudes for a
description of those two tests.
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we follow over up to 30 years. This sample is described in detail in Appendix A.4.

5 Estimation

We estimate the model by indirect inference. To this end, the first step is to simulate

a panel that mimics our estimation sample. We first describe the simulation protocol,

then discuss the moments we choose to match in the estimation as well as identification

of the model.

5.1 Simulation

Solution method. The model has a convenient recursive structure. Equations (2)

and (3) can be solved jointly for U(x) and P (x,y) in a first step. Wages are then

obtained from the combination of (4) and the assumption of Bertrand competition:

the surplus share σ(x,y,y′) obtained by a type-x worker playing off employers y and

y′ (with P (x,y) > P (x,y′)) against each other solves (1), and the wages that follow

from that renegotiation solve (5). Finally, given those value functions, a cohort of

workers can be simulated as we now describe.

Simulation protocol. We simulate a cohort of N workers (indexed by i = 1, · · · , N)

over T = 300 months (indexed t = 0, · · · , T − 1) using a discrete-time approximation

of our model. All workers start out in period t = 0 endowed with an initial skill

bundle xi0 = (xC,i0, xM,i0, xI,i0, xT,i0) drawn from the distribution ν(·), and in an ini-

tial labor market state (unemployed or employed in a job with attributes yi1 under

some initial labor contract giving him a share σi1 of the surplus associated with his

job) determined as described below. In each subsequent period t = 1, · · · , T − 1, we

update each worker’s skill bundle iteratively using the solution to ẋis = g(xis,yi,t−1)

over s ∈ [t−1, t] given the initial condition xi,t−1, and where yi,t−1 is the skill require-

ment vector of the worker’s current job (normalized to zero for unemployed workers).

We then let any employed worker be randomly hit by a job destruction shock (prob-

ability δ) or an outside offer (probability λ1). Any employed worker hit by a job

destruction shock starts the following period as unemployed. Any employed worker

receiving an outside offer draws job attributes y′ from the sampling distribution Υ(·)
and, depending on the comparison between the value of his current job P (xit,yi,t−1)
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and that of his outside offer P (xit,y
′), either accepts the offer (in which case their

job attribute vector gets updated to yit = y′), or stays in his job, with or without

a contract renegotiation. In each case, the worker’s period-t wage wi,t is updated

according to equation (5). Symmetrically, we let any unemployed worker draw a job

offer (probability λ0) with job attributes y′ ∼ Υ(·), which the worker accepts if and

only if P (xit,y
′) ≥ U(xit). Again, the worker’s wage is updated.22

To set the initial (t = 0) condition, we simulate the model over a “pre-sampling”

period, starting from a situation where all workers are unemployed. We then run the

simulation as described above, shutting down skill updating and layoffs. We stop the

pre-sampling simulation when the simulated nonemployment rate reaches a value of

35% (the observed nonemployment rate in our NLSY sample), and take the current

state of the sample at that point as the initial condition.

Each simulation thus produces an N × T (balanced) panel of worker data with

the same format as our estimation sample. The simulated sample keeps track of each

worker’s employment status, labor market transitions, wages wit, skill bundle xit, and

job attributes yit.

Model parameterization. We use the specification introduced in Subsection (3.2)

which, because it affords closed-form solutions, considerably reduces the computa-

tional burden. The skill adjustment, production, and disutility of work functions are

specified as in (6), (8), and (9) respectively, with the following additional parameter-

ization:

ϕ(y) = αT + αCyC + αMyM + αIyI .

We further impose αk > 0, k = C,M, I to ensure that ϕ(·) is an increasing function.

We interpret (xC , xM , xI) and (yC , yM , yI) as the model counterparts of the cog-

nitive and manual skill indices we constructed from out combination of O*NET and

NLSY data as explained in the previous section. The joint distribution of initial cog-

nitive, manual, and interpersonal worker skills (xC(0), xM(0), xI(0)) is fully observed

in the data, and requires no parameterization. General worker efficiency grows along

with potential experience t at a constant rate g. In addition, we allow it to be cor-

related in an unrestricted way with initial cognitive, manual and interpersonal skills

22Note that, in the simulation, we shut down sample attrition (which in the model occurs at rate
µ). Attrition is random in the model, the only impact would be to reduce the simulated sample size,
which we can usefully avoid.
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(xC(0), xM(0), xI(0)), as well as education:

xT (t) = exp (g · t+ ζS ·YEARS_OF_SCHOOLING + ζCxC(0) + ζMxM (0) + ζIxI(0) + ε0) ,

where the ζ ’s are coefficients and ε0 is an uncorrelated unobserved heterogeneity term

such that the mean of eε0 is normalized to 1. Given the model’s structure, this makes

eε0 an uncorrelated mixing variable that multiplies all individual wages and values.

In particular, observed log-wages lnw are such that lnw
d
= ln w|ε0=0 + ε0, where

d
= denotes equality in distributions, and w|ε0=0 denote simulated wages under the

assumption that all workers have ε0 = 0. We can thus estimate the model abstracting

from this particular heterogeneity (i.e. assuming ε0 = 0 for all workers), then retrieve

the distribution of ε0 by deconvolution.

Finally, we specify the skill requirements (yC , yM , yI) as simple transforms of the

skill requirement indices (ỹC , ỹM , ỹI) constructed from the O*NET data as described

in Section 4. This is to allow for the possibility that our constructed ỹ’s might not

be exactly aligned with our measured worker skills x (see the discussion in Section

4). Specifically, we assume that yk = ỹξkk , with ξk > 0, thus ensuring that yk is an

increasing transformation of ỹk that stays in the unit interval. We then approximate

the joint sampling distributions of job attributes Υ(y) using a Gaussian copula and

Pareto marginals (this means assuming that the marginal sampling density of skill

requirement yk, k = C,M, I is proportional to (1− yk)
βk−1). The rank correlation

parameters (ρCM , ρCI , ρMI) of the Gaussian copula are to be estimated, together with

the parameters (βC , βM , βI) of the three marginals. This specification proves flexible

enough to offer a good fit.

5.2 Targeted Moments

The specification of our model laid out in Subsection 5.1 involves the parameter

vector described earlier in this paper and summarized in Appendix A.3. Among those

parameters, we fix the discount rate r and the sample attrition rate µ to “standard”

values (the monthly equivalent of 10% per annum for r, and 0.002 for µ, implying an

average working life of 42 years). As explained before, the joint distribution of initial

cognitive, manual, and interpersonal worker skills (xC(0), xM(0), xI(0)) is observed in

the initial cross-section of our estimation panel. Finally, the job destruction rate δ
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has a direct empirical counterpart, namely the sample average job loss (“E2U”) rate.23

With this subset of parameters estimated - or calibrated - in a preliminary step, we

are left with a 32-dimensional parameter vector to estimate (summarized in Appendix

A.3). We estimate these parameters by matching the following set of moments: (i)

sample mean U2E rate, (ii) mean E2E rate profile (summarized by average E2E

rates over six consecutive equal-length subsets of the observation window), (iii) mean

and standard deviation of the marginal cross-sectional distributions of current job

attributes ỹit among employed workers at a selection of sampling dates,24 (iv) pairwise

correlations of skill requirements, corr(ỹk,it, ỹk′,it), k
′ 6= k, (k, k′) ∈ {C,M, I}2 among

jobs held by employed workers at a selection of sampling dates (v) correlations of

initial worker cognitive, manual and interpersonal skills and the skill requirements of

jobs held, corr(xk,i0, ỹk,it), k = C,M, I at a selection of sampling dates (vi) coefficients

of a regression of log wages lnwit on initial skills xi0, current job attributes ỹit, tenure,

experience, and years of schooling (i.e. the regression in Table 5). We drop the first

simulated wage out of unemployment for the wage regression.25 The model-based

moments are computed from simulated samples of N = 35, 400 workers - twenty

replicas of the initial NLSY cross-section.

5.3 Identification

Appendix A.6 formally discusses identification of the model laid out in Section 3

(given the parameterization described in 3.2) from a data set with the structure and

contents described in Section 4. In this Subsection we summarize the main sources

of information that identify the various components of our model.

The levels of wages conditional on education, experience, initial skills and (ob-

served) job skill requirements identify the returns to education and initial skills (the

parameters ζS, ζC, ζM and ζI), the wage trend (the parameter g), and the baseline

returns to job skill requirements (the function ϕ(y)). The (production/utility) costs

23Figure 6 suggests that the job loss rate is not exactly constant over a worker’s life cycle. We
abstract from this feature of the data.

24In practice, we compute those moments at six dates corresponding to 2.5, 5, 7.5, 10, 12.5 and
15 years into the sample.

25In this version of the sequential auction model, in which workers are risk-neutral and have no
bargaining power, workers tend to accept very low wages upon exiting unemployment, to “buy their
way” onto the job ladder. As soon as a worker receives her first outside offer the wage will jump.
We drop the initial wage out of unemployment so as not to bias our estimate of human capital
accumulation due to the large wage change at the very beginning of an employment spell.
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of mismatch and the speed of human capital accumulation or decay (parameters κ
u/o
k

and γ
u/o
k , k = C,M, I) are identified from comparisons of the sets of job types y that

are acceptable to workers with equal initial skills x(0), but have experienced different

employment histories. Knowledge of any worker’s initial skill bundle x(0) and full

labor market spell history, combined with the knowledge of the skill adjustment pro-

cess (parameters γ
u/o
k ) then enables us to construct the full path of skill bundles x(t)

for all workers in the sample. The set of job offers accepted by unemployed workers

with given skill bundle x then identifies the sampling distribution Υ(y) over the set

{y :P (x,y) ≥ U}, so that Υ(y) is identified over the union of all such sets for all skill

bundles x observed in the sample (that is, Υ(y) is identified at all skill requirement

levels y that are acceptable by at least some worker types). Finally, the offer arrival

rates λ0 and λ1 are identified, conditionally on the rest of the model, from sample

U2E and E2E transition probabilities.

Although the exact arguments used in Appendix A.6 to establish identification are

not literally taken up in the practical estimation protocol, the information contained

in the moments we use for estimation (listed in Subsection 5.2) does echo those

arguments. In particular, the cross-section wage regression coefficients that we seek

to replicate contain the information needed to identify the parameters of ϕ(y), ζ ,

and g. Moreover, the various moments of the joint distribution of initial worker

skills and current job skill requirements convey information about the set of matches

that are acceptable to a given worker type, which is used to identify κ
u/o
k , γ

u/o
k ,

and ultimately the sampling distribution Υ(·). In practice, our chosen moments

ensure precise “local” identification of the model’s parameters, in the sense that the

distance between data-based model-predicted moments has a clear local minimum at

the estimated parameter value.

6 Results

6.1 Model Fit

Figure 1 illustrates various aspects of the fit. All time series on Figure 1 are plotted

over a period of 15 years (180 months, i.e. the sample window used for estimation).

Table 1 further shows the fit in terms of the descriptive wage regression discussed in

Section 4.
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Table 1: Fit to wage regression coefficients

data model data model

ỹC 0.664 0.646 xI0 0.270 0.270
ỹM 0.246 0.240 years of schooling 0.026 0.0256
ỹI 0.378 0.371 experience 2.24e − 3 2.16e − 3
xC0 0.363 0.363 tenure 1.98e− 3 4.99e− 3
xM0 −0.101 −0.101 constant 4.455 4.455

The model fits both the nonemployment exit rate (Figure 1a, left scale) and the

job-to-job (E2E) transition rate (Figure 1a, right scale) reasonably well. The decline

of E2E rates with experience is correctly captured by the model (it occurs as a conse-

quence of workers gradually settling into jobs to which their skills are better suited,

both because they sort into better matches over time and because their skills adjust

to whatever job they are in at any given time), even though it overstates both the

initial speed of that decline and the level of the E2E rate at high levels of experience.

The fit to the U2E rate is good, although the model does not capture the mild upward

trend in that rate. All of the discrepancies between data and model in Figure 1a are

largely due to our restriction to experience-invariant contact rates, λ0 and λ1.

The sample average wage/experience profile is shown on Figure 1b and is reason-

ably well captured by the model, despite a tendency to overstate its concavity.

Figures 1c through f show the time-profiles of various fitted cross-sectional mo-

ments of the joint distribution of workers’ initial skills (xC,i0, xM,i0, xI,i0) and current

job attributes (ỹC,it, ỹM,it, ỹI,it) in the population of employed workers, at a selection

of experience levels. The model offers a good fit to all targeted moments: it captures

the rise in average cognitive and interpersonal job attributes (although is does not

fully replicate the magnitude of the changes over the first four years), as well as the

near constancy of average manual job attributes. The average levels of manual and

interpersonal skill requirements are mildly understated, and the standard deviation

of manual skill requirements is slightly overstated by the model.

We next turn to the model’s ability to replicate the pooled cross-section wage

regression shown in Table 1. The model correctly predicts a much stronger cross-

section correlation of log wages with the cognitive skill requirement index ỹC than
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with the manual (ỹM) or interpersonal (ỹI) skill requirement indices. Coefficients

on “conventional” regressors (schooling, experience, and tenure) are well captured by

the model (despite a tendency to overstate the returns to job tenure), and so is the

conditional correlation between wages and initial worker skills.26

6.2 Parameter Estimates

Table 2 shows point estimates of the model parameters. Asymptotic standard errors

are reported in parentheses, below each point estimate.27 There is little to say about

the offer arrival and job destruction rates, apart maybe from the fact that the esti-

mated relative search intensity of employed workers, λ1/λ0, is in the region of 0.45,

which is on the high side, although not completely outside of the set of standard esti-

mates on US data. Overall job productivity ϕ(y) is increasing in all cognitive, manual

and interpersonal skill requirements, with the loading on cognitive skills about twice

as large as the ones on manual and interpersonal skills. This is consistent with the

lower coefficients on ỹM and ỹI than on ỹC in the wage regression shown in Table 1.

Overall worker efficiency xT is positively associated with a high initial endowment

in cognitive and (to a lesser extent) in interpersonal skills (ζC > ζI > 0), while initial

manual skills are negatively correlated with xT (ζM < 0). One additional year of

education increases efficiency by 2.4 percent (ζS). However one should bear in mind

that education is positively correlated with initial cognitive and interpersonal skills

and (weakly) negatively correlated with initial manual skills in the sample. The value

of ζS taken in isolation therefore understates the overall returns to education.

The employment of an under-qualified worker in any skill dimension is costly in

terms of output, yet the output loss caused by this type of mismatch by far most

severe in the cognitive dimension and least severe in the interpersonal dimension.

The utility cost of being under-matched - i.e. the surplus cost of the worker being

over -qualified worker - is positive in all dimensions, but generally much smaller than

26See Appendix A.7 for additional details on the cross-sectional fit to wages with and with and
without unobserved heterogeneity ε0.

27The covariance matrix of the parameter vector is estimated as
(
G⊤G

)−1
G⊤ΩG

(
G⊤G

)−1
, where

G = E
[
∂m/∂Θ⊤

]
, the (expectation of the) Jacobian matrix of the moment function m (Θ), is

obtained by numerical differentiation and where Ω, the covariance matrix of the moment function, is
estimated by resampling the data 500 times, repeating the construction of job and worker attributes
each time. Reported standard errors therefore account for the fact that x and ỹ are estimated in a
preliminary step.
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Table 2: Parameter estimates

production function⋆ disutility of work⋆ un. inc.
αT αC αM αI κu

C κu
M κu

I κo
C κo

M κo
I b

108.4
(21.0)

119.6
(15.1)

54.0
(4.50)

54.2
(8.56)

3, 188.5
(492.9)

474.2
(109.3)

178.8
(47.9)

42.7
(8.33)

207.5
(58.1)

66.5
(13.7)

108.4
(21.7)

(128.8) (14.9) (8.3) (2.1) (7.0) (3.3)

skill accumulation function⋆⋆ general efficiency
γu
C γo

C γu
M γo

M γu
I γo

I g ζS ζC ζM ζI
0.008
(.001)

0.004
(.001)

0.034
(.008)

0.031
(.004)

0.001
(.006)

5.8e− 7
(.002)

0.002
(9e−4)

0.029
(.023)

0.59
(.238)

−0.12
(.201)

0.34
(.208)

(7.54 ) (16.6 ) (1.70 ) (1.88 ) (55.8 ) (99,424 )

sampling distribution⋆⋆⋆ transition rates
ξC ξM ξI ρCM ρCI ρIM βC βM βI λ0 λ1 δ⋆⋆⋆⋆

1.00
(.044)

0.79
(.072)

0.86
(.056)

0.13
(.021)

0.70
(.015)

−0.47
(.019)

2.55
(.109)

1.21
(.117)

3.04
(.261)

0.33
(.014)

0.17
(.003)

0.02
(.001)

(0.16 ) (0.67 ) (−0.42 ) (0.29 ) (0.46 ) (0.25 )

⋆percent surplus loss caused by deviating from ideal match by 1 SD of Υ at mean y in italics;
⋆⋆ half-life in years in italics ; ⋆⋆⋆ implied correlations and means in italics ; ⋆⋆⋆⋆ estimated in first step
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the corresponding surplus (production) cost of under -qualification. To give a sense

of the orders of magnitude involved, the numbers in italics below the estimates of the

various κ parameters give the percentage flow-surplus cost of deviating from the ideal

match at the mean sampled y by one standard deviation of the sampling distribution

Υ.28

The correlation patterns between skill requirements in the sampling distribution

(ρCM > 0, ρCI > 0, ρIM < 0) suggests that jobs requiring high levels of cognitive

skills also tend to require high levels of skills in at least one of the other two dimen-

sions, particularly interpersonal. Jobs with a high manual content, however, tend

to have low interpersonal requirements. The next section offers a more complete

interpretation of the sampling distribution.

The pattern of skill adjustment differs vastly between cognitive and manual skills.

Manual skills adjust much faster than cognitive skills. Cognitive skills are very per-

sistent (i.e. not easily accumulated or lost) with a half-life of 7.6 years to learn and

17.5 years to forget. The half-life of manual skills is much shorter, about 16 months

to acquire and two years to lose. Interpersonal skills essentially do not adjust over a

worker’s typical horizon and can, to a good approximation, be treated as fixed worker

traits.

Perhaps the clearest message from those estimates is that the model sees cognitive,

manual and interpersonal skills as very different productive attributes. Manual skills

have relatively low returns and adjust quickly in both directions, cognitive skills

have much higher returns, but are much slower to adjust. Interpersonal skills have

lower returns than cognitive skills, but higher than manual skills (especially through

their effect on overall worker efficiency), and are essentially fixed over a worker’s

lifetime. Finally, skill mismatch is most costly in the cognitive dimension and in the

“underskilled” direction (i.e. when the worker has lower skills than the job requires).

6.3 Skill Mismatch, Skill Changes, and Sorting

Distributions of skills and skill requirements. The broad question of skill

mismatch can be understood in many different ways. One aspect of that question

is the alignment (or lack thereof) between the skills that workers are equipped with

28For example, denoting the mean of Υ as y
m = (ymC , ymM , ymI ) and the standard deviations of the

marginals of Υ as (σC , σM , σI), the percentage reported in italics below the estimate of κu
C in Table

2 is 100×
[
1− P (ym+(σC ,0,0),ym)−U(ym+(σC ,0,0))

P (ym,ym)−U(ym)

]
.

26



when they leave education - the distribution N(·) of initial worker skill bundles x(0),

in the parlance of the model - and the firms’ skill requirements - the model counterpart

of which is the sampling distribution Υ(y).

The obvious common features of those two distributions are the negative cor-

relation between manual skills and both other skill dimensions, and the concen-

tration around the “corners” of the skill spectrum, particularly around (xC , xM) or

(yC , yM) = (1, 0) on one hand, and (xC , xM) or (yC , yM) = (0, 1) on the other (see

Figures 2a, b and c). This strongly suggests that employers are looking for “specialist”

workers, endowed with a high amount of either cognitive or manual skills, rather than

“generalists” who would have average skills in both dimensions. Figures 2d, e and f

also suggest that the distribution of skills among labor market entrants reflects this

demand for specialists to an extent. However, those skill distributions look somewhat

different from the sampling distribution of job skill requirements. In particular, the

distribution of initial worker skills has more mass toward the high cognitive skill end

of the skill spectrum than the distribution of job offers: employers seem to demand

fewer cognitive skills than are available in the population of labor market entrants.29

The same is true, to a somewhat lesser extent, of the other two skill types: the distri-

bution of skills among labor market entrants is more concentrated around “middling”

skills than the sampling distribution is.

Figures 2g-l next shows how the distribution of worker skills changes as the cohort

of workers accumulates experience. The evolution is clearly towards workers gaining

cognitive skills and losing manual skills on average (while, as we saw earlier, inter-

personal skills hardly change over a worker’s lifetime). This can be explained by the

fact that jobs with high cognitive skill requirements are intrinsically more productive

(the estimated weight on yC in the production function, αC , is an order of magnitude

larger than the weights on yM and yI), inducing workers to accept jobs with the high-

est cognitive content compatible with their level of cognitive skills, even if it means

ending up severely overskilled in the manual dimension. Because jobs with higher

cognitive skill requirements tend to have relatively low manual skill requirements (as

yC and yM are strongly negatively correlated in the job offer sampling distribution),

29Those differences are not entirely surprising: the population of workers whose skills are repre-
sented on Figures 2d, e and f is a cohort of relatively young workers. As such, their skills may not
be representative of those in the entire active workforce. By contrast, at least under random search,
the sampling distribution addresses all workers, the majority of which are from older cohorts among
which the skill distribution may be quite different.
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(a) Sampling density, CM (b) Sampling density, CI (c) Sampling density, MI

(d) Initial worker skill dist., CM (e) Initial worker skill dist., CI (f) Initial worker skill dist., MI

(g) 5 years of experience, CM (h) 5 years of experience, CI (i) 5 years of experience, MI

(j) 15 years of experience, CM (k) 15 years of experience, CI (l) 15 years of experience, MI

Figure 2: Distribution of skill requirements and evolution of worker skills with expe-
rience
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by following this strategy workers tend to maintain or gradually acquire cognitive

skills and lose manual skills (which they do relatively fast, given the high estimated

adjustment speed of manual skills, γ
u/o
M ). A second striking feature of Figures 2 is

that, although the typical worker’s skills tend to migrate toward more cognitive skills

and less manual skills on average, the already limited degree of specialization appar-

ent in the initial skill distribution (Figure 2a) regresses even further as workers gain

experience.

Skill sorting and mismatch. We next examine the joint distribution of worker

skill bundles and job skill requirements among ongoing matches. Figure 3 shows

two examples of those joint distributions, among workers who are one year into their

careers (panels a, c and e), and among workers with fifteen years of experience (panels

b, d and f). Simply eyeballing these histograms gives a distinct impression of positive

sorting in all skill dimensions, even at early stages of the working life. Moreover, the

“strength” of this positive sorting - as measured by the (inverse of the) conditional

dispersion in worker skills for a given level of skill requirement - clearly increases

as workers accumulate experience. This results from the combination of workers

gradually sorting themselves into jobs for which their skills are better suited, and

adjusting their initial skills to their job’s requirements: as can be seen from Figure

3, sorting at 15 years of experience is strongest in the manual dimension (as manual

skills adjust quickly), and weakest in the interpersonal dimension (as interpersonal

skills do not adjust).

Concerning early-career skill mismatch, inspection of Figures 3a and 3c suggests

that it is stronger in the manual than in the cognitive dimension.30 This echoes a

remark made before, that workers tend to prioritize a good match in the cognitive

dimension, sometimes to the detriment of match quality in the other skill dimensions.

A final feature of Figure 3 is that, while there is largely positive sorting in all skill

dimensions, a substantial mass of workers appear “under-matched” in the cognitive

dimension, in the sense that their job’s cognitive skill requirement is lower than their

own cognitive skill level. By contrast, very few workers are “over-matched” in the

cognitive dimension (and those who are are so by a small margin). The tradeoff from

the perspective of a worker contemplating a job is between the job’s overall produc-

30This corroborates the descriptive evidence in Table 4 which showed that the correlation between
a worker’s skill level and the corresponding requirement in their first job is much stronger in the
cognitive than in the manual or interpersonal dimension.
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(a) Cognitive skills, one year of
exp.

(b) Manual skills, one year of
exp.

(c) Interpersonal skills, one year
of exp.

(d) Cognitive skills, 15 years of
exp.

(e) Manual skills, 15 years of
exp.

(f) Interpersonal skills, 15 years
of exp.

Figure 3: Sorting

tivity (the ϕ(y) term in the production function), and any cost of being mismatched.

In the case of cognitive skills, the cost of being “over-matched” (or “under-skilled”),

measured by κu
C , is prohibitively high, even accounting for the fact that ϕ(y) increases

much more steeply with yC than with yM or yI (see Table 2).

7 Counterfactual Experiments

We now use our structural model to run three different counterfactual experiments.

In the first experiment, we ask how distant the estimated market allocation is from

the constrained efficient allocation, by which we mean the allocation that a benevo-

lent Planner would select for given job contact and job destruction rates, (λ0, λ1, δ).

In other words, we are investigating the efficiency of job acceptance and rejection

decisions, given the estimated rates at which workers receive offers. In the second

experiment, we offer a decomposition of the aggregate output cost of frictions. In the

third experiment, we focus on the cost of early-career mismatch.
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7.1 Comparison with the Constrained Efficient Allocation

As discussed in Section 3, a consequence of Bertrand competition as a rent-sharing

mechanism is that private firm-worker collectives do not internalize the extra surplus

that is created when the worker moves to a competing job for which her/his skills

are better suited, as that extra surplus is captured by a third party, namely the

worker’s future employer. Similarly, unemployed workers fail to internalize the surplus

associated with them finding a job, as that surplus is entirely captured by their future

employer. As a consequence, neither the private value of a match (2) nor the private

value of unemployment (3) depend on the job contact rates (λ0, λ1).

By contrast, the social value of a match, or that of unemployed search (both

denoted with stars in what follows) do internalize the surplus generated in future

matches. Those values solve:

(r + δ + µ)P ∗(x,y) = f(x,y)− c(x,y) + δU∗(x) + g(x,y) · ∇xP
∗(x,y)

+ λ1Emax {P ∗(x,y′)− P ∗(x,y), 0} (11)

and:

(r + µ)U∗(x) = b(x) + g(x, 0) · ∇U∗(x) + λ0Emax {P ∗(x,y′)− U∗(x), 0} (12)

where, in both cases, the last (expectation) term captures the expected surplus gains

from future matches. Those social values [P ∗(x,y), U∗(x)] differ from their private

counterparts [P (x,y), U(x)] (given by (2) and (3)) precisely because of those expec-

tation terms. We now look at the nature of those discrepancies, starting with the

simpler case without human capital accumulation (g(x,y) ≡ 0).

The no-human-capital-accumulation benchmark: g(x,y) ≡ 0. In the case

without human capital accumulation, job-to-job reallocation is efficient (for given job

contact rates) but nonemployment-to-employment reallocation is not. To see this,

observe that a combination of equations (2) and (11) when g(x,y) ≡ 0 produces, for

any (y1,y2):

(r + δ + µ) [P ∗(x,y2)− P ∗(x,y1)] = (r + δ + µ) [P (x,y2)− P (x,y1)]

+ λ1E [max {P ∗(x,y′)− P ∗(x,y2), 0} −max {P ∗(x,y′)− P ∗(x,y1), 0}] .
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This latter equation implies that P (x,y2) > P (x,y1) ⇐⇒ P ∗(x,y2) > P ∗(x,y1),

which in turn implies that job-to-job reallocation is efficient in the decentralized

economy: workers move from job y1 to job y2 iff. P (x,y2) > P (x,y1) i.e. iff

P ∗(x,y2) > P ∗(x,y1), which would be the Planner’s criterion for reallocation.

Things are different at the employment/nonemployment margin. Workers in the

decentralized economy move from nonemployment to job y iff. P (x,y) > U(x).

Combining (2)-(3) and (11)-(12):

(r + δ + µ) [P ∗(x,y)− U∗(x)] = (r + δ + µ) [P (x,y)− U(x)]

− λ0Emax {P ∗(x,y′)− U∗(x), 0}+ λ1Emax {P ∗(x,y′)− P ∗(x,y), 0} .

Assuming that λ0 > λ1 as found in the estimation (the converse assumption is easily

investigated), the latter equation implies:

(r + δ + µ) [P (x,y)− U(x)] > (r + δ + µ) [P ∗(x,y)− U∗(x)]

− λ0 [Emax {P ∗(x,y′)− U∗(x), 0} − Emax {P ∗(x,y′)− P ∗(x,y), 0}] .

In this situation, P ∗(x,y) ≥ U∗(x) =⇒ P (x,y) > U(x), but the converse implication

is not true. Thus, the decentralized economy has too high an unemployment exit

rate: some matches are accepted which would be better rejected from a social point

of view. The reason is that private agents do not internalize the loss of search efficiency

entailed by a move from non-employment into employment.31

Reintroducing human capital accumulation. Job-specific human capital accu-

mulation adds a layer of complexity to the problem: human capital is now accumu-

lated at different speeds in different matches, which affects the relative social value

of potential matches, in a way that is not fully internalized by private agents. Once

again, private agents do not internalize the expected surplus created in future matches,

part of which arises from the fact that workers will accumulate more skills, and there-

fore gain access to even better jobs, if they move to a job with higher skill require-

ments. This phenomenon is particularly glaring at the employment/nonemployment

margin, where a nonemployed worker contemplating a job fails to internalize the fact

31It is easy to show along the same lines that unemployment exit is inefficiently low in the decen-
tralized economy if λ0 < λ1, and is efficient if λ0 = λ1.
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Figure 4: Comparison of market and constrained-efficient allocations

that, should she take the job, her skills will stop atrophying (or at least stop atro-

phying as fast) as they would if she stayed unemployed. The failure to internalize

this gain in terms of skill accumulation tends to induce nonemployed individuals to

reject too many job offers, thus balancing their tendency (highlighted in the previous

paragraph) to accept too many such jobs as a result of their failure to internalize the

loss of job search efficiency associated with a move into employment.

Unfortunately, the combined net effect of heterogeneity in skill accumulation

across potential matches and a different search technology between employment and

nonemployment is too complex to make any generic theoretical statement about the

direction of the inefficiencies arising in equilibrium. Is the nonemployment rate too

high or too low in equilibrium? Is the turnover rate too high or too low? We now

address these questions at the estimated parameter values, by comparing our model’s

simulated equilibrium to a simulated “Planner’s solution”. We obtain the latter by

simulating the model using the exact same protocol as described in Sub-section (5.1),

except that the criterion used for job acceptance hinges on the comparison of social

values [P ∗(x,y), U∗(x)] rather than private ones [P (x,y), U(x)].32

Figure 4 shows, by experience level, comparisons of the Planner’s average U2E

and E2E transition rates (Panel a), as well as the percentage difference in aggregate

net output between the Planner’s and the market allocation (Panel b). Aggregate

net output is defined as the sum of total output produced by employed workers

net of possible utility costs of under-qualification, plus total output produced by

nonemployed workers.

Figure 4a shows that the Planner’s hiring rate from unemployment is consistently

and markedly lower than the market’s. In other words, similar to what the model

32Unlike (2) and (3), equations (11) and (12) cannot be solved in closed form even under the
functional forms used in this paper. We thus solve (11) and (12) for P ∗(x,y) and U∗(x) numerically
using projections of P ∗(x,y) and U∗(x) on complete sets of polynomials.
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without human capital accumulation would predict, the market moves too many

workers out of nonemployment even in the presence of human capital accumulation:

the cost in terms of human capital loss of keeping a worker in unemployment, which

the market fails to internalize, mitigates but does not dominate the higher efficiency

of nonemployed over employed job search.

Interestingly, the market’s average E2E transition rate is also higher than the

Planner’s at all experience levels. One way to see this is that the private agents’

failure to internalize the impact of human capital accumulation in their current match

on the surplus they will generate in future matches makes them too eager to take up

jobs with high short-term gain but limited scope for further learning. As a result, the

decentralized economy features excess worker turnover and too little unemployment.

Finally, Figure 4b suggests that, while the Planner’s solution produces higher sur-

plus for the cohort under study, the improvement brought about by the Planner is very

limited (in the order of one to two percentage points), and concentrated around early

stages of workers’ careers (which is when worker reallocation is mostly from nonem-

ployment to employment). This improvement can be viewed as an upper bound on

the potential gain achievable through policy intervention since we are comparing the

case where worker-firm matches do not internalize any of the effect of the current

match on future matches with the Planner’s solution that fully internalizes these ef-

fects. In a model where workers have some bargaining power (Cahuc, Postel-Vinay,

and Robin, 2006) they would internalize part of this externality. Indeed, our decen-

tralized economy would correspond to the case in which firms have all the bargaining

power and the Planner’s solution corresponds to the case in which workers have all

the bargaining power. In a model where firms do not have all the bargaining power,

the decentralized solution would be closer to our Planner’s solution, leaving even less

scope for policies which improve aggregate output. However it is important to recall

at this point that this efficiency analysis is only partial in that it is conducted under

constant job offer arrival rates. As such, it ignores any distortion in labor demand

induced by the discrepancies between private and social match values.

7.2 The Cost of Frictions

In the previous subsection we looked at the difference between the market outcome

and the allocations chosen by a Planner who is constrained by the same frictions as
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the market. We now examine the costs of those frictions. The frictions in the model

restrict both the frequency and direction of worker mobility. We consider the costs

of those frictions in two steps.

First, we keep the frequency of job contacts constant, but allow the worker to

be allocated to the most appropriate job when an opportunity arrives. In this ex-

periment, a worker given an opportunity to pick a new job (which happens, as in

the baseline case, at flow rates λ0 and λ1) will choose a job whose attributes yield

maximum surplus P (x,y)− U(x) given her current skills x.33

This first exercise eliminates mismatch upon job change, but keeps workers in a

job longer than they would like if they were not constrained by search frictions. In a

second exercise, we eliminate frictions altogether and solve the problem of optimally

moving each worker between jobs to maximize the present value of output less the

disutility of work. In this case we are trading off maximizing current output and

human capital accumulation of workers. The friction-free problem is presented in

detail in Appendix A.8.

Figure 5a shows, as a function of the cohort’s labor market experience, the per-

centage difference in aggregate output between the decentralized benchmark and,

respectively, a “mismatch-free” economy (first exercise, blue line) and a frictionless

economy (second exercise, red line). The model estimates the overall cost of frictions

to be very large: removing all frictions from the economy would increase the cohort’s

long-run output flow by about 40% (red line on Figure 5a). What the blue line on

Figure 5a further reveals is that most of this cost arises from frictions restricting the

direction (rather than the frequency) of reallocation: allowing workers to reallocate

freely, although infrequently, would already increase long-run output by about 35%.34

33This chosen job type (say, y
⋆) is obtained by maximization of (10) w.r.t. y: y⋆k =

min
{
xk +

αk

2κu

k

r+δ+µ−g+2γu

k

r+δ+µ−g , 1
}
. Note that the worker will systematically choose a job for which

s/he is slightly underskilled, due to the intrinsic returns of job attributes (αk > 0). Also note that
we consider the private worker’s surplus in this exercise, as opposed to the Planner’s surplus. The
latter would internalize the surplus gain in future matches from human capital accumulation in the
current match, as explained in the previous subsection. Implementing the Planner’s rather than
the private worker’s solution complicates computations considerably and makes little quantitative
difference.

34“Infrequently” in the context of this analysis should be understood as “not continuously”, but
still much more frequently than in the decentralized equilibrium. Indeed, this counterfactual exercise
assumes that the job contact rate λ1 is equal to its estimated value from Table 2, the same as in
the decentralized equilibrium. Yet in the counterfactual, workers switch jobs each time they receive
an opportunity to do so (since they are allowed to freely choose their preferred job upon being hit
by a λ1-shock), whereas they reject a substantial fraction of the randomly drawn offers they receive
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Figure 5

7.3 The Cost of Early Career Mismatch

In this final counterfactual experiment, we assess the social gain that would be brought

about if workers could initially (i.e., as they enter the labor market) be placed in

their preferred job, after which they are left to behave as they do in the decentralized

equilibrium. We measure this gain in terms of the expected present discounted sum

of future output produced by labor market entrants (the “career output” of entrants),

namely

Q(x0) = E

{
ˆ +∞

0

(ℓt [f(x(t),y(t))− c(x(t),y(t))] + (1− ℓt)b) e
−rtdt | x(0) = x0

}

where ℓt ∈ {0, 1} indicates the worker being employed at date t. Specifically, Figure

5b plots the ratio QCF (x0)/Q
DC(x0)−1, where QDC(x0) is the average career output

of type-x0 entrants in the decentralized equilibrium and QCF (x0) is the career output

of a type-x0 entrant who is allocated to her surplus-maximizing job upon entering the

labor market.35 The ratio is plotted on Figure 5b against deciles of (xC , xM), for three

different values of xI , the blue, green, and red surface corresponding, respectively, to

the 1st, 5th, and 9th deciles of initial interpersonal skills.

The cost of early career mismatch thus measured is large: depending on initial

worker skills, career output would be 8 to 22% higher if workers could be assigned to

their preferred job upon entering the labor market. The mean cost E
[
QCF (x0)/Q

DC(x0)− 1
]

where the expectation is taken over the observed distribution of x0 is 13.8%. A small

share of this cost can be put down to initial unemployment (arguably the worst form

in the decentralized equilibrium. As a consequence, the conterfactual E2E rate is much higher than
the observed (decentralized-equilibrium) one.

35CF stands for “counterfactual”. The decentralized QDC (x0) is computed under the assumption
that workers start their career (at t = 0) in the same initial conditions as are estimated from the
data. Note that the aggregate nonemployment rate amongst labor market entrants is around 30%
in the data (whereas it is zero by design in the counterfactual).
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of mismatch): recall that around 30% of labor market entrants are nonemployed in

the decentralized equilibrium, whereas none are, by construction, in the counterfac-

tual. The cost increases in the initial level of manual and interpersonal skills and,

surprisingly, does not vary monotonically with initial cognitive skills. A useful com-

parison for our estimated costs come from the literature measuring the long-term

wage costs associated with graduating from college during bad vs good times. Kahn

(2010) finds substantial variation in wage losses, ranging from 1 to 20% each year

for workers graduating in the worst relative to best economic conditions in the US.

Oreopoulos, von Wachter, and Heisz (2012), using Canadian data, estimate an aver-

age cumulative wage loss of 5% after 10 years for individuals graduating from college

in a typical recession. Our counterfactual should be viewed as an upper bound on

the cost of early career mismatch since it measures the expected difference in output

between an average career and a career beginning with the ideal starting job. Even

when the economy is booming the ideal starting job will be substantially better than

the average starting job.

8 Conclusion

In this paper we extend an otherwise standard and well-tested search-theoretic model

of individual careers to allow for multidimensional skills and on-the-job learning. We

estimate the model using occupation-level measures of skill requirements based on

O*NET data, combined with a worker-level panel (NLSY79). We use the estimated

model to shed light on the origins and costs of mismatch along three dimensions

of skills: cognitive, manual, and interpersonal. We then proceed to show that the

equilibrium allocation of workers into jobs generically differs from the allocation that

a Planner would choose, and investigate the nature and magnitude of the resulting

inefficiencies based on our estimated structural model.

Our main findings are the following. The model sees cognitive, manual and inter-

personal skills as very different productive attributes. Manual skills have moderate

returns and adjust quickly (i.e., they are easily accumulated on the job, and rela-

tively easily lost when left unused). Cognitive skills have much higher returns, but

are much slower to adjust. Interpersonal skills have moderate returns, and are very

slow to adjust over a worker’s lifetime. Next, the cost of skill mismatch (modeled as

the combination of an output loss and a loss of worker utility caused by skill mis-
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match) is very high for cognitive skills, an order of magnitude greater than for manual

or interpersonal skills. Moreover, this cost is asymmetric: employing a worker who

is under-qualified in cognitive skills (i.e. has a level of skills that falls short of the

job’s skill requirements) is several orders of magnitude more costly than employing an

over-qualified worker. Those important differences between various skill dimensions

are missed when subsuming worker productive heterogeneity into one single scalar

index.
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A Web Appendix For Online Publication

A.1 Solving for the value functions.

The value functions can be solved for in quasi-closed form. We first focus on the
match value P (x,y), taking the value of unemployment U(x) as given. To solve for
P (x,y), it is convenient to parameterize P and x as a function of the worker’s tenure,
say t, in the job under consideration. The solution to the first-order linear PDE (2)
is then characterized by the following system of K + 1 ODEs:

dxk

dt
= gk (x(t),y) k = 1, · · · , K (13)

dz

dt
= (r + µ+ δ)z − [f (x(t),y)− c (x(t),y)]− δU (x(t)) (14)

which are indeed the characteristic equations of (2). Match value is then the solution
to P (x(t),y) = z(t). Initial conditions for the first K equations (13) are given by
the worker’s skill vector x(0) at the point of hire. The last initial condition, z(0), is
unknown, but we can impose the boundary condition z(t) exp [− (r + µ+ δ) t] → 0
as t → +∞ to pin down a unique solution to (14).

To be more explicit, let us denote by X (t;y,x0) the solution to (13) given initial
condition x0 and job type y (possibly equal to 0L if the worker is unemployed). The
date-t value of a match between a job with attributes y and a worker with current
skill bundle x(t) is then given by the solution to (14):

P (x(t),y)

=

ˆ +∞

t

[f (X (s;y,x(t)) ,y)− c (X (s;y,x(t)) ,y) + δU (X (s;y,x(t)))] e−(r+µ+δ)(s−t)ds.

The value of unemployment U (x(t)) =
´ +∞

t
b (X (s; 0,x(t))) e−(r+µ)(s−t)ds is solved

for in a similar fashion, and the surplus associated with a typical match is obtained
by subtraction:

P (x(t),y)− U (x(t)) =

=

ˆ +∞

t

[f (X (s;y,x(t)) ,y)− c (X (s;y,x(t)) ,y)− b (X (s;y,x(t)))] e−(r+µ+δ)(s−t)ds.

(15)

A.2 Alternative Specification for Over-qualification

A possible alternative to our assumption that over-qualification entails a utility
cost that would also allow for over-qualification to be costly in terms of match surplus
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would be to assume that over-qualification causes a loss of output (and does not cause
any disutility of work). Formally, this would mean specifying the production function

as falt(x,y) = f(x,y)−c(x,y) and the worker’s flow utility function as simply equal
to the wage w. This alternative specification would yield exactly the same match
values (and therefore the same worker-job allocation pattern) as our utility cost of
being under-matched version of the model. Where the two models would differ,
though, would be in terms of predicted wages. Under our utility-cost assumption,
an over qualified worker produces the same output as an ideally-qualified worker,
but suffers an extra cost of working in that match. The over-qualified worker will
therefore receive a higher wage in compensation for that cost. Under the alternative
production-cost assumption, the over-qualified worker just produces less output than
the ideally-suited worker, and will therefore earn a lower wage, even though s/he has
more skills.

A.3 Parameter Summary

Offer arrival rates: (λ0, λ1)

Job destruction rate: δ Estimated as sample
mean E2U rate

Unemployment income: b

Production function f : (αT , αC , αM , αI

κu
C , κ

u
M , κu

I )

Utility cost of (κo
C , κ

o
M , κo

I)
over-qualification c:

Skill accumulation (γu
C , γ

u
M , γu

I

function g: γo
C , γ

o
M , γo

I , g)

Joint distribution of Observed from initial
initial worker skills: sample cross section

General worker (ζS, ζC , ζM , ζI , ε0) Distribution of ε0
efficiency xT : estimated by decon-

volution in final step

Sampling distribution (ξC, ξM , ξI , ρCM , Gaussian copula with
of job attributes Υ: ρCI , ρMI , βC , βM , βI) Pareto marginals

Attrition and discount rates: (r, µ) Calibrated
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Figure 6: Sample description

A.4 Data Details

Our final estimation sample consists of an initial cross-section of 1,840 males whom
we follow over up to 30 years. There is, however, a substantial amount of attrition,
which we comment on in the next paragraph.

Figure 6 describes our sample in terms of a set of times series about worker stocks,
labor market transition rates, and average wages over the full 30-year sample window.
The horizontal-axis variable is time, measured in months since labor market entry.

Figure 6a shows the pattern of attrition from our sample. Attrition is initially
very gradual, with the sample cross-section size declining by about 30 percent over
the initial twenty years. Past that point, attrition accelerates considerably. This
is partly a consequence of the fact that we follow a cohort of individuals from the
date they leave full-time education, resetting time to zero on the week they enter the
labor market. Individuals having spent more time at school enter the labor market
later, and are therefore observed for fewer years than less educated individuals. This
causes the composition of the sample to shift toward less educated individuals as
one approaches the end of the observation window. To circumvent this problem, we
restrict our estimation sample to the first 15 years (180 months) of the initial sample.
This 180-month cutoff is materialized by a thick vertical black line on all panels of
Figure 6.

Figure 6b shows the nonemployment rate among sample members. As one would
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Table 3: Examples of skill requirement scores

Skill requirements:

Occupation title Cognitive Manual Interpersonal

Physicists 1 0.755 0.692
Graders and Sorters, Agricultural Products 0 0.138 0.058
Aircraft Mechanics and Service Technicians 0.613 1 0.318
Telemarketers 0.147 0 0.330
Preventive Medicine Physicians 0.658 0.410 1
Molding, Coremaking, and Casting Machine

0.302 0.641 0
Setters, Operators, and Tenders, Metal and Plastic
Source: O*NET and authors’ calculations

expect, this rate declines monotonically over time, until it reaches a steady level
slightly under 5 percent. It rises again slightly after about 20/25 years, likely as a
result of the compositional shift discussed above. Perhaps slightly more surprising is
the long time it takes for the nonemployment rate to reach this steady state (roughly
ten years). Figure 6c shows the rates of transition between labor market states. The
nonemployment exit rate is roughly stable at around 25 percent per month, while the
transition rates from job to job and into nonemployment decline smoothly over the
sample window. Finally, Figure 6d plots average log wages among employed sample
members which, again as one would expect, increase monotonically over time until
they reach a point where, mirroring the nonemployment rate, they start declining,
again a likely consequence of non-random attrition from the sample.

Table 3 lists some examples of the cognitive, manual and interpersonal skill re-
quirement scores we constructed for a few occupations. We denote those scores by
ỹ = (ỹC, ỹM , ỹI) and will use them as empirical measures of the model’s job at-
tributes y. Examples in Table 3 include the occupations with the highest cognitive
(Physicist), manual (Aircraft Mechanics and Service Technicians), and interpersonal
(Preventive Medicine Physicians) skill requirements in the sample, and the occupa-
tions with the lowest cognitive (Graders and Sorters, Agricultural Products), manual
(Telemarketers), and interpersonal (Molding, Coremaking, and Casting Machine Set-
ters, Operators, and Tenders, Metal and Plastic) skill requirements.

The correlation pattern of workers’ initial skills and the skill requirements of the
first jobs they are observed in is described in Table 4, where workers’ initial cog-
nitive, manual, and interpersonal skill indices are denoted by (xC0, xM0, xI0) , while
(ỹC , ỹM , ỹI) refer to the empirical measures of job skill requirements in a worker’s first
job. This correlation pattern reveals several features of the data. First, (xC0, xM0, xI0)
are positively correlated in our cross-section of workers. Even though those correlation
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Table 4: Correlation pattern of initial skills and skill requirements in first job

xC0 xM0 xI0 ỹC ỹM ỹI
xC0 1
xM0 0.46 1
xI0 0.39 0.31 1
ỹC 0.48 0.15 0.23 1
ỹM −0.18 0.18 0.01 0.32 1
ỹI 0.55 −0.01 0.27 0.64 −0.34 1

coefficients are far below one, they suggest that workers with high skills in one di-
mension tend to have high skills in the other two. Cognitive and manual skills appear
slightly more strongly associated with each other than either is with interpersonal
skills. Second, ỹC is positively correlated with both ỹM and ỹI in the cross section of
workers’ first jobs. Even though there is obviously some selection here (as the set of
jobs a worker will take up depends on their own skill bundle x), this suggests that
jobs requiring high levels of cognitive skills also tend to require high skill levels in
one of the manual or interpersonal dimensions. While manual and interpersonal skill
requirements are both positively correlated with cognitive skill requirements, they
are negatively correlated with each other. Third, (xC0, ỹC), (xM0, ỹM), and (xI0, ỹI)
are positively correlated (as expected), and so are (xC0, ỹI), (xM0, ỹC), (xI0, ỹM),
(xI0, ỹC). By contrast, (xC0, ỹM) and (xM0, ỹI) are negatively correlated, suggesting
that workers select themselves into either manual or non-manual jobs, as fits their
skill bundles.

Table 5 shows results from an OLS regression of log weekly earnings on worker
initial skill and job skill requirement indices, with additional controls for experience,
tenure, and schooling. All skill requirements are positively associated with wages in
the cross-section, the effect of cognitive skills being 3.25 times larger than that of
manual skills and 1.66 times larger than interpersonal skills. Workers’ initial levels of
cognitive and interpersonal skills are positively correlated with wages (interpersonal
skills less so), while initial manual skill levels come out with a negative sign. This
latter result may be caused by an extra, unobserved worker productive attribute (xT

in the model) which is negatively associated with initial manual skills.

A.5 Construction of skill measures

The data sets from which we construct worker skill and job skill requirement scores
both consist of a set of P different measures observed for N individuals (workers in
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Table 5: Descriptive earnings regression

coeff. std. err. coeff. std. err.

ỹC 0.664 (.010) xI0 0.270 (.006)
ỹM 0.246 (.008) years of schooling 0.026 (.001)
ỹI 0.378 (.009) experience 2.24e − 3 (.000)
xC0 0.363 (.014) tenure 1.98e− 3 (.000)
xM0 −0.101 (.011) constant 4.455 (.014)

R2 0.371
Observations 232,303

the case of the NLSY, and occupations in the case of O*NET). We denote the N ×P
matrix of all observations by M. PCA decomposes the matrix M as M = FL, where
F is the orthonormal N × P matrix of principal eigenvectors of M⊤M and L is a
P × P matrix of factor loadings. We consider the first 3 principal components only,
i.e. we consider the decomposition M = F3L3 + U, where F3 is the N × 3 matrix
formed by taking the first 3 columns of F and L3 is the 3×P matrix formed by taking
the first 3 rows of L.

For any invertible 3×3 matrix T, the above decomposition of M can be rewritten
as M = (F3T) (T−1L3) + U, which is an alternative decomposition of M into new
(linearly recombined) factors F3T with loadings T−1L3. We choose T such that our
decomposition of M satisfies our chosen exclusion restrictions. Taking the case of
O*NET as an example, we order the measures such that measure 1 (the first column
of M) is the score on mathematics knowledge, measure 2 is the score on mechanical
knowledge, and measure 3 is the score on social perceptiveness, then define T = L3,3

where L3,3 is the 3× 3 matrix made up of the first three columns of L3.
It should be emphasized that our method of constructing worker skill and job skill

requirement scores differs slightly from the approach usually taken in the related lit-
erature. The conventional approach consists of assigning each of the P data measures
(of skills or skill requirements, as the case may be) to one of K different bins, where
K is the number of skill dimensions relevant to the model (three, in our case), and
set the score in skill dimension k as the average of all measures in bin k.

The conventional method therefore assumes that any given measure is only rel-
evant to one single skill dimension. Which skill dimension a measure is relevant to
must be decided a priori. In our case, this would mean deciding for every NLSY
or O*NET descriptor whether it relates to cognitive, manual, or interpersonal skills.
While this decision may seem relatively straightforward, at least on an intuitive level,
for some measures (for instance the six measures on which we impose exclusion re-
strictions), it is far from clear-cut for most measures, which can easily be argued to
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be relevant for two or more skill dimensions. We therefore choose to minimize the
number of exclusion restrictions we impose on the data. We believe that our approach
offers a good compromise between interpretability, parsimony, and ability to capture
the covariance patterns between skills and skill requirement dimensions.

A.6 Identification

This appendix contains a formal discussion of identification. Identification is, in
large part, parametric, in that many of the arguments below make use of the specific
functional forms assumed in the main text.

The job loss rate δ is directly observed in the data. We assume that so is the
population distribution of initial skill bundles. Moreover, we discuss identification
conditional on knowledge of the discount rate r and the sample attrition rate µ.

The wage equation (5) can be written as:

w(x,y, σ) = σf(x,y) + (1− σ)b(x) + (1− σ)c(x,y)

− λ1(1− σ) [P (x,y)− U ]

ˆ

Y

1 {P (x,y′) ≥ P (x,y)} dΥ(y′)

− λ1

ˆ

Y

[1 {P (x,y′) ≥ σP (x,y) + (1− σ)U} − 1 {P (x,y′) ≥ P (x,y)}]×

[P (x,y′)− σP (x,y)− (1− σ)U ] dΥ(y′). (16)

A first important implication of (16) is that the maximum wage given (x,y) is f(x,y),
implying in turn that the maximum wage given y is f (y,y) = xTϕ(y). Because y

is observed for all employed workers, the function ϕ(·) is (non-parametrically) iden-
tified, up to xT .36 But xT is itself a function of observables (up to the uncorrelated
heterogeneity term ε0), namely the worker’s education, initial skill bundle and expe-
rience, which is therefore also identified. This proves identification of the parameters
αT , αC , αM , αI , g, ζS, ζC, ζM , ζI .

Next, consider the set of workers with initial skill bundle x exiting nonemployment
at any experience level. The (observed) set of job types y that those workers accept
is the set {y :P (x,y) ≥ U}, and its boundary is the set {y :P (x,y) = U}. This
latter set is therefore identified, conditional on knowledge of x. We now show that
this latter fact allows identification of the parameters of the match value function
P (x,y) = U .

First, from the expression of the match surplus (10), one can show that joint obser-
vation of x and the set {y :P (x,y) = U} allows separate identification of the param-

eters of P (x,y), i.e. the composite parameters κ
u/o
k /

(
r + δ + µ− g + 2γ

u/o
k

)
, k =

36What is, in fact, observed, is not directly y but rather its empirical counterpart ỹ. With our
functional form assumptions ϕ(y) = αT + αCyC + αMyM + αIyI and yk = ỹξkk , k = C,M, I, the
maximum wage given y jointly identifies the α’s and the ξ’s.
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C,M, I.37 Now, the issue is that we do not directly observe worker skills at all levels of
experience: rather, we only observe workers’ initial skill bundles. However, consider a
worker with (observed) initial skill bundle x(0) starting his working life in unemploy-
ment, and who finds a job after an initial unemployment spell of duration d(1). From
the human capital accumulation function (6), we know that this worker’s skill bundle

by the time s/he finds a job is x
(
d(1)
)
=
(
xC(0)e

−γo
Cd(1) , xM(0)e−γo

Md(1) , xI(0)e
−γo

Id
(1)
)
.

Identification of the parameters of P (x,y), κ
u/o
k /

(
r + δ + µ− g + 2γ

u/o
k

)
, is thus ob-

tained from the set of initially unemployed workers whose initial unemployment spell
duration d(1) → 0. Furthermore, once the parameters of P (x,y) are known, observa-

tion of the set {y :P (x,y) = U} given x =
(
xC(0)e

−γo
Cd(1) , xM(0)e−γo

Md(1) , xI(0)e
−γo

I d
(1)
)

with x(0) observed identifies γo
k for k = C,M, I. Combining those results, we now

have separate identification of γo
k, κ

o
k, and κu

k/ (r + δ + µ− g + 2γu
k ), and still need to

separate κu
k from γu

k in the latter composite parameter. This can be done by repeat-
ing the latter argument for workers who are initially employed in matches with skill
requirements y(1) for which they are under -qualified, i.e. such that xk(0) < y

(1)
k for

k = C,M, I, become unemployed after an initial spell duration of d(1), then find a job
again after an unemployment spell of duration d(2). From the human capital accumu-
lation function (6), those workers’ skill bundles when they find their second job (at ex-

perience d(1)+d(2) is given by xk

(
d(1) + d(2)

)
= e−γo

kd
(2)
[
y
(1)
k − e−γu

k d
(1)
(
y
(1)
k − xk(0)

)]
.

The only unknown parameter in this expression is γu
k , which is then again identified

from the set {y : P (x,y) = U}.
The full set of production, utility, and human capital accumulation parameters is

thus identified. Note that, while the arguments laid out above rely on the specific
functional forms assumed in the main text, the background source of identification
for the cost of mismatch and the speed of human capital accumulation (or decay) is a
comparison of the set of job types y that are acceptable to workers with equal initial
skills x(0), but have experienced different employment histories.

Once the parameters of the human capital accumulation function g(x,y) are
known, we can construct any worker’s full path of skill bundles x: consider a worker
in his nth spell (which could be a spell of unemployment). Denote the skill re-

quirements in that spell by y(n) =
(
y
(n)
C , y

(n)
M , y

(n)
I

)
(both equal to 0 if the spell is

one of unemployment), the worker’s skill bundle at the beginning of that spell by

x(n) =
(
x
(n)
C , x

(n)
M , x

(n)
I

)
, and the duration of that spell by d(n). Spell duration d(n)

and the vector y(n) are observed in all spells, while x(n) is only observed in the ini-
tial spell, n = 1, where it equals x(0). Then, using the skill accumulation equation

37One way to see this is to realize from (10) that the set {y :P (x,y) = U} is the union of four
quarter-ellipses, the centers and axes of which can be expressed as simple functions of x and the

parameter combinations κ
u/o
k /

(
r + δ + µ− g + 2γ

u/o
k

)
. Observation of x and y for this set identifies

these centers and axes.
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ẋ = g (x,y), we have that x(n+1) = X
(
d(n);y(n+1),x(n)

)
, where X(·) denotes the

solution to (13) as explained in the main text. Using backward substitution, we can
then construct x(n) for any spell as a function of the history of durations and skill
requirements of past spells and the worker’s initial skill level x(1) = x(0).

Next, the set of job offers accepted by unemployed workers with skills x identifies
the sampling distribution Υ(y) over the set {y :P (x,y) ≥ U}. Υ(y) is thus (non-
parametrically, conditionally on the rest of the model) identified over the union of all
such sets for all skill bundles x observed in the sample. That is, Υ(y) is identified at
all skill requirement levels y that are acceptable by at least some worker types.

Finally, the offer arrival rates λ0 and λ1 are identified, conditionally on the rest of
the model, from sample U2E and E2E transition probabilities, and the flow value of
nonemployment, b(x), is identified from the wage of workers exiting nonemployment:
applying (16) to workers just exiting nonemployment (σ = 0) yields:

w(x,y, 0) = b(x)+c(x,y)+λ1

ˆ

Y

1 {P (x,y′) ≥ P (x,y)} [P (x,y′)− P (x,y)] dΥ(y′)

− λ1

ˆ

Y

1 {P (x,y′) ≥ U} [P (x,y′)− U ] dΥ(y′),

which equals b(x) + c(x,y) on the (known) set of y’s such that P (x,y) = U .

A.7 Unobserved Heterogeneity and the Fit to theWage Dis-

tribution

The black line in Figure 7 shows a kernel density estimate of log wages in the
final period of the simulation still assuming away unobserved worker heterogeneity,
i.e. that ε0 = 0 for all workers. The underlying histogram shows the corresponding
empirical distribution. The simulated distribution is slightly more concentrated than
the empirical one, and has a long left tail and a short right tail. Those are again
standard predictions of the sequential auction model with linear preferences and no
unobserved worker heterogeneity: the long left tail reflects the low wages accepted
by workers hired out of unemployment. Adding in permanent worker heterogeneity
(heterogeneity in ε0) results in the unconditional wage distribution being a mixture
of distributions like the one represented by the black line on Figure 7. To illustrate
this, the red line on 7 shows a kernel density estimate of the sum of simulated wages
and an uncorrelated normal random variable (which can be interpreted as the sum
of measurement error and permanent worker heterogeneity ε0) with a variance set
to match the empirical wage variance. Even this very simple form of unobserved
heterogeneity improves the fit to the tails of the wage distribution.
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Figure 7: Log wage density

A.8 The friction-free Planner’s problem

We first define the following convenient notation: s(x,y) = [f(x,y)− c(x,y)] /xT .
Absent any frictions, the worker’s problem can be expressed as follows:

max
{yt,ℓt}

ˆ +∞

0

[ℓts(xt,yt) + (1− ℓt)b] e
−(r+µ−g)tdt

subject to ẋt = ℓtg(xt,yt) + (1− ℓt)g(xt, 0), ℓt ∈ [0, 1], x0 given

where ℓt stands for within-period labor supply of the worker under consideration.
Denoting this problem’s Hamiltonian by H and the costate vector by ξ, the first-
order and Euler conditions are, for k = C,M, I:

∂H
∂ℓt

= s(xt,yt)− b+ ξ · [g(xt,yt)− g(xt, 0)]

∂H
∂ykt

= ℓt

{
∂s(xt,yt)

∂ykt
+ ξ · ∂g(xt,yt)

∂ykt

}

ξ̇kt = (r + µ− g)ξkt −
∂s(xt,yt)

∂xkt
− ξ ·

[
ℓt
∂g(xt,yt)

∂xkt
+ (1− ℓt)

∂g(xt,yt)

∂xkt

]
,

to which the transversality condition ξte
−(r+µ−g)t → 0 as t → +∞ must be added.

Assuming ℓt = 1, and using the functional forms in the main text, the latter two sets
of conditions solve as ξkt ≡ αk/(r + µ− g) and:

ykt = min

{
xkt +

αk

2κu
k

(
1 +

γu
k

r + µ− g

)
, 1

}
,

implying that it is always optimal to assign workers to jobs for which they are slightly
under qualified in all skill dimensions to benefit from on-the-job learning. One can
then check that ℓt = 1 is indeed the optimal choice for all x and t if the condition
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b ≤
∑

k=C,M,I

(
αk(r+µ−g+γu

k )
2(r+µ−g)

√
κu
k

)2

holds, which is the case at our parameter estimates.
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