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Abstract

This paper introduces a new con�dence interval (CI) for the autoregressive pa-
rameter (AR) in an AR(1) model that allows for conditional heteroskedasticity of
general form and AR parameters that are less than or equal to unity. The CI is a
modi�cation of Mikusheva�s (2007a) modi�cation of Stock�s (1991) CI that employs
the least squares estimator and a heteroskedasticity-robust variance estimator. The
CI is shown to have correct asymptotic size and to be asymptotically similar (in a
uniform sense). It does not require any tuning parameters. No existing procedures
have these properties. Monte Carlo simulations show that the CI performs well in
�nite samples in terms of coverage probability and average length, for innovations
with and without conditional heteroskedasticity.

Keywords: Asymptotically similar, asymptotic size, autoregressive model, conditional
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1 Introduction

We consider con�dence intervals (CI�s) for the autoregressive parameter (AR) �
in a conditionally heteroskedastic AR(1) model in which � may be close to, or equal
to, one. The observed time series fYi : i = 0; :::; ng is based on a latent no-intercept
AR(1) time series fY �

i : i = 0; :::; ng:

Yi = �+ Y �
i ;

Y �
i = �Y �

i�1 + Ui for i = 1; :::; n; (1.1)

where � 2 [�1 + "; 1] for some 0 < " < 2; fUi : i = :::; 0; 1; :::g are stationary
and ergodic under the distribution F; with conditional mean 0 given a �-�eld Gi�1 for
which Uj 2 Gi for all j � i; conditional variance �2i = EF (U

2
i jGi�1); and unconditional

variance �2U 2 (0;1): The distribution of Y �
0 is the distribution that yields strict

stationarity for fY �
i : i � ng when � < 1: That is, Y �

0 =
P1

j=0 �
jU�jwhen � < 1:

When � = 1; Y �
0 is arbitrary.

Models of this sort are applicable to exchange rate and commodity and stock
prices, e.g., see Kim and Schmidt (1993). Simulations in Mikusheva (2007b, Table
II) show that CI�s not designed to handle conditional heteroskedasticity may per-
form poorly in terms of coverage probabilities when conditional heteroskedasticity is
present. In fact, most have incorrect asymptotic size in this case.1

For the case of conditional homoskedasticity, several CI�s with correct asymptotic
size have been introduced, including those in Stock (1991), Andrews (1993), Andrews
and Chen (1994), Nankervitz and Savin (1996), Hansen (1999), Elliot and Stock
(2001), Romano and Wolf (2001), Chen and Deo (2007), and Mikusheva (2007a).2 Of
these CI�s the only one that has correct asymptotic size in the presence of conditional
heteroskedasticity is the symmetric two-sided subsampling CI of Romano and Wolf
(2001).3 The latter CI has the disadvantages that it is not asymptotically similar,
requires a tuning parameter (the subsample size), and is far from being equal-tailed
when � is near one.4

The �rst CI�s that were shown to have correct asymptotic size under conditional
heteroskedasticity and an AR parameter close to unity were introduced in Andrews

1Throughout this paper we use the term �asymptotic size� to mean the limit as n ! 1 of
the �nite-sample size. Uniformity in the asymptotics is built into this de�nition because �nite-
sample size is a uniform concept. By the de�nition of asymptotic size, the in�mum of the coverage
probability over di¤erent values of � and di¤erent innovation distributions is taken before the limit
as n!1 is taken.

2The CI of Stock (1991) needs to be modi�ed as in Mikusheva (2007a) to have correct asymptotic
size.

3The correct asymptotic size of this CI is established in the Supplemental Appendix. The equal-
tailed subsampling CI of Romano and Wolf (2001) does not have correct asymptotic size under ho-
moskedasticity or heteroskedasticity, see Mikusheva (2007a) and Andrews and Guggenberger (2009).

4Lack of asymptotic similarity implies that the CI over-covers asymptotically for some sequences
of � values. This may yield a longer CI than is possible.
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and Guggenberger (2009) (AG09).5 These CI�s are based on inverting a t statis-
tic constructed using a feasible quasi-generalized least squares (FQGLS) estimator
of �: AG09 shows that equal-tailed and symmetric two-sided CI�s based on hybrid
(�xed/subsampling) critical values have correct asymptotic size.6 These CI�s are
robust to misspeci�cation of the form of the conditional heteroskedasticity. How-
ever, they are not asymptotically similar and require the speci�cation of a tuning
parameter� the subsample size.
The contribution of this note is to introduce a CI that (i) has correct asymptotic

size for a parameter space that allows for general forms of conditional heteroskedas-
ticity and for an AR parameter close to, or equal to, unity, (ii) is asymptotically
similar, and (iii) does not require any tuning parameters.
The CI is constructed by inverting tests constructed using a t statistic based

on the LS estimator of � and a heteroskedasticity consistent (HC) variance matrix
estimator. For the latter, we use a variant of the HC3 version de�ned in MacKinnon
and White (1985), which we call HC4. It employs an adjustment that improves
the �nite-sample coverage probabilities. This t statistic is asymptotically nuisance
parameter-free under the null hypothesis under drifting sequences of null parameters
�; whether or not these parameters are local to unity. In consequence, critical values
can be obtained by matching the given null value of � and sample size n with a local-to-
unity parameter h = n(1� �): Then, one uses the quantile(s) from the corresponding
local-to-unity asymptotic distribution which depends on h: This method is employed
by Stock (1991), Andrews and Chen (1994, Sec. 4), and Mikusheva (2007a) (in her
modi�cation of Stock�s CI).7 The resulting CI is the same as Mikusheva�s (2007a)
modi�cation of Stock�s (1991) CI applied to the LS estimator of �; except that we use
the HC4 variance estimator in place of the homoskedastic variance estimator and we
use a stationary initial condition rather than a zero initial condition.8 ;9We refer to the
new CI as the CHR CI (which abbreviates �conditional-heteroskedasticity-robust�).
The use of the LS estimator, rather than the FQGLS estimator, is important

because the latter has an asymptotic distribution in the local-to-unity case that is

5Gonçalves and Kilian (2007) also consider inference in autoregressive models with conditional
heteroskedasticity but do not allow for unit roots or roots near unity.

6AG09 also introduces several other CI�s that have correct asymptotic size under conditional
heteroskedasticity using size-corrected �xed critical values and size-corrected subsampling critical
values (for equal-tailed CI�s). The performance of these CI�s is not as good as that of the FQGLS-
based hybrid CI, so we do not discuss these CI�s further here.

7As in Mikusheva�s (2007a) modi�cation of Stock�s CI, we invert the t statistic that is designed
for a given value of �; not the t statistic for testing H0 : � = 1 which is employed in Stock (1991).
This is necessary to obtain correct asymptotic coverage when � is not O(n�1) local to unity.

8Mikusheva�s (2007a) results do not cover the new CI because (i) she does not consider innovations
that have conditional heteroskedasticity and (ii) even in the i.i.d. innovation case the t statistic
considered here does not lie in the class of test statistics that she considers.

9The use of a stationary intial condition when � < 1; rather than a zero initial condition, is not
crucial to obtaining robustness to conditional heteroskedasticity. Our results also apply to the case
of a zero initial condition, in which case the second component of I�h(r) in (2.4) below is deleted.
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a convex combination of a random variable with a unit-root distribution and an
independent standard normal random variable with coe¢ cients that depend on the
strength of the conditional heteroskedasticity, see Seo (1999), Guo and Phillips (2001),
and Andrews and Guggenberger (2011). Hence, a nuisance parameter appears in the
asymptotic distribution of the FQGLS estimator that does not appear with the LS
estimator. This yields a trade-o¤ when constructing a CI between using a more
e¢ cient estimator (FQGLS) combined with critical values that do not lead to an
asymptotically similar CI and using a less e¢ cient estimator (LS) with critical values
that yield an asymptotically similar CI.
The use of an HC variance matrix estimator with the new CHR CI is important

to obtain a (nuisance-parameter free) standard normal asymptotic distribution of the
t statistic when the sequence of true � parameters converges to a value less than one
as n ! 1 and conditional heteroskedasticity is present. It is not needed to yield a
nuisance parameter-free asymptotic distribution when � converges to unity (either at
a O(n�1) rate or more slowly).10 This follows from results in Giraitis and Phillips
(2006) and Andrews and Guggenberger (2011).
Simulations indicate that the CHR CI has good �nite-sample coverage probabil-

ities and has shorter average lengths� often noticeably shorter� than the hybrid CI
of AG09 (based on the FQGLS estimator) for a variety of GARCH(1; 1) processes
whose parametrizations are empirically relevant. When no conditional heterskedas-
ticity is present, the CHR CI performs very well in �nite samples relative to CI�s that
are designed for the i.i.d. innovation case. Hence, there is little cost to achieving
robustness to conditional heteroskedasticity.
The asymptotic size and similarity results for the new CI are obtained rather easily

by employing the asymptotic results of Andrews and Guggenberger (2011) for FQGLS
estimators under drifting sequence of distributions, which include LS estimators as a
special case, combined with the generic uniformity results in Andrews, Cheng, and
Guggenberger (2009).
The CHR CI yields a unit root test that is robust to conditional heteroskedas-

ticity. One rejects a unit root if the CI does not include unity. Seo (1999) and
Guo and Phillips (2001) also provide unit root tests that are robust to conditional
heteroskedasticity.
The CHR CI for � can be extended to give a CI for the sum of the AR coe¢ cients

in an AR(k) model when all but one root is bounded away from the unit circle, e.g.,
as in Andrews and Chen (1994, Sec. 4) and Mikusheva (2007a), and to models with
a linear time trend. In the former case, the asymptotic distributions (and hence the
CHR critical values) are unchanged and in the latter case the asymptotic distributions
are given in (7.7) of Andrews and Guggenberger (2009) with h2;7 = 1: Extending the
proof of Theorem 1 below for these cases requires additional detailed analysis, e.g.,
as in Mikusheva (2007a, Sec. 7). For brevity, we do not provide such proofs here.

10That is, when � converges to unity, one obtains the same asymptotic distribution whether an
HC or a homoskedastic variance estimator is employed.
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The note is structured as follows. Section 2 de�nes the new CI and establishes
its large sample properties. Section 3 contains a Monte Carlo study. The Supple-
mental Appendix provides: (i) tables of critical values, (ii) the local asymptotic false
coverage probabilities of the CHR CI, (iii) asymptotic and �nite-sample assessments
of the price the CHR CI pays in the i.i.d. case for obtaining robustness to condi-
tional heteroskedasticity, (iv) probabilities of obtaining disconnected CHR CI�s, (v)
simulation results for several symmetric two-sided CI�s, (vi) details concerning the
simulations, (vii) proofs of the asymptotic results for the CHR CI, and (viii) a proof
that the symmetric two-sided subsampling CI of Romano and Wolf (2001) has correct
asymptotic size under conditional heteroskedasticity.

2 The CHR CI for the AR parameter

For the exposition of the theory, we focus on equal-tailed two-sided CI�s for �:11 ;12

The CI is obtained by inverting a test of the null hypothesis that the true value is
�: The model (1.1) can be rewritten as Yi = e� + �Yi�1 + Ui; where e� = �(1� �) for
i = 1; :::; n: We use the t statistic

Tn(�) =
n1=2(b�n � �)b�n ; (2.1)

where b�n is the LS estimator from the regression of Yi on Yi�1 and 1 and b�2n is the
(1; 1) element of the HC4 heteroskedasticity-robust variance estimator, de�ned below,
for the LS estimator in the preceding regression. More explicitly, let Y; U; X1; and
X2 be n-vectors with ith elements given by Yi; Ui; Yi�1; and 1; respectively. Let
X = [X1 : X2]; PX = X(X 0X)�1X 0; and MX = In � PX : Let bUi denote the ith
element of the residual vector MXY: Let pii denote the ith diagonal element of PX :
Let p�ii = minfpii; n�1=2g: Let � be the diagonal n � n matrix with ith diagonal
element given by bUi=(1� p�ii):

13 Then, the LS estimator of � and the HC4 estimator
of its variance areb�n = (X 0

1MX2X1)
�1
X 0
1MX2Y; and (2.2)b�2n = �n�1X 0

1MX2X1

��1 �
n�1X 0

1MX2�
2MX2X1

� �
n�1X 0

1MX2X1

��1
:

11Symmetric two-sided and one-sided CI�s can be handled in a similar fashion, see the Supple-
mental Appendix for details.
12We prefer equal-tailed CI�s over symmetric CI�s in the AR(1) context because the latter can

have quite unequal coverage probabilities for missing the true value above and below when � is near
unity, which is a form of biasedness, due to the lack of symmetry of the near-unit root distributions.
13The quantity p�ii used in HC4 is a �nite-sample adjustment to the standard HC variance estima-

tor. In contrast, the HC3 variance estimator uses pii in the de�nition of �: The use of p�ii guarantees
that the �nite-sample adjustment does not a¤ect the asymptotics. When n(1� �n)! h <1; it is
straightforward to show that the use of pii is valid asymptotically. In other cases, it is more di¢ cult
to do so. However, the �nite-sample results reported below are essentially the same whether p�ii or
pii is used. Note that the asymptotic results given in the paper hold if one sets p�ii = 0; which yields
the standard HC variance estimator.
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The parameter space for (�; F ) is given by

� = f� = (�; F ) : � 2 [�1 + "; 1]; fUi : i = 0;�1;�2; :::g are stationary
and strong mixing under F with EF (UijGi�1) = 0 a.s., EF (U2i jGi�1) = �2i a.s.,

where Gi is some non-decreasing sequence of �-�elds for i = :::; 1; 2; ::: for

which Uj 2 Gi for all j � i; the strong-mixing numbers f�F (m) : m � 1g
satisfy �F (m) � Cm�3�=(��3) 8m � 1; sup

i;s;t;u;v;A
EF j

Q
a2A aj� �M; where

0 � i; s; t; u; v <1; and A is any non-empty subset of fUi�s; Ui�t; U2i+1; U�u;
U�v; U

2
1g; and EFU21 � �g; (2.3)

for some constants 0 < " < 2; � > 3; C <1; and � > 0:
Next, we de�ne the critical values used in the construction of the CI. They are

based on the asymptotic distributions of the test statistic under drifting sequences
f�n = (�n; Fn) : n � 1g of AR parameters �n and distributions Fn; when n(1��n)!
h 2 [0;1): When Fn depends on n; fUi : i � ng for n � 1 form a triangular array of
random variables and Ui = Un;i: To describe the asymptotic distribution, let W (�) be
a standard Brownian motion on [0; 1]: Let Z1 be a standard normal random variable
that is independent of W (�): De�ne

Ih(r) =
rR
0

exp(�(r � s)h)dW (s); I�h(r) = Ih(r) +
1p
2h
exp(�hr)Z1 for h > 0;

I�h(r) = W (r) for h = 0; and I�D;h(r) = I�h(r)�
1R
0

I�h(s)ds: (2.4)

Andrews and Guggenberger (2011, Theorem 1) (with a minor adjustment for the p�ii
term in �) shows that, under any sequence �n = (�n; Fn) 2 � such that n(1� �n)!
h 2 [0;1];

Tn(�n)!d Jh; (2.5)

where Jh is de�ned as follows. For h = 1; Jh is the N(0; 1) distribution, and for
h 2 [0;1); Jh is the distribution of

1R
0

I�D;h(r)dW (r)=

�
1R
0

I�D;h(r)
2dr

�1=2
: (2.6)

For � 2 (0; 1); let ch(1��) denote the (1��)-quantile of Jh: The second component
of I�h(r) in (2.4) is due to the stationary start-up of the AR(1) process when � < 1; as
in Elliott (1999), Elliott and Stock (2001), Müller and Elliott (2003), and Andrews
and Guggenberger (2009, 2011). Giraitis and Phillips (2006) provide similar results
for the LS estimator for the case h =1:
The new nominal 1� � equal-tailed two-sided CHR CI for � is

CICHR;n = f� 2 [�1+"; 1] : ch(�=2) � Tn(�) � ch(1��=2) for h = n(1��)g: (2.7)
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The CI CICHR;n can be calculated by taking a �ne grid of values � 2 [�1 + "; 1] and
comparing Tn(�) to ch(�=2) and ch(1 � �=2); where h = n(1 � �): Tables of values
of ch(�=2) and ch(1 � �=2) are given in the Supplemental Appendix. Given these
values, calculation of CICHR;n is simple and fast.14 ;15

The main theoretical result of this note shows that CICHR;n has correct asymptotic
size for the parameter space � and is asymptotically similar. Let P� denote probability
under � = (�; F ) 2 �:

Theorem 1 Let � 2 (0; 1): For the parameter space �; the nominal 1�� con�dence
interval CICHR;n for the AR parameter � satis�es

AsySz � lim inf
n!1

inf
�=(�;F )2�

P�(� 2 CICHR;n) = 1� �:

Furthermore, CICHR;n is asymptotically similar, that is,

lim inf
n!1

inf
�=(�;F )2�

P�(� 2 CICHR;n) = lim sup
n!1

sup
�=(�;F )2�

P�(� 2 CICHR;n):

Theorem 2 in the Supplemental Appendix establishes the local asymptotic false
coverage probabilities of the CHR CI, which are directly related to their length.

3 Finite-Sample Simulation Results

Here we compare the �nite-sample coverage probabilities (CP�s) and average
lengths of the new CHR CI and the hybrid CI of AG09.16 ;17 For brevity, we focus on
nominal 95% equal-tailed two-sided CI�s. Results for symmetric CI�s, including the
symmetric subsampling CI of Romano and Wolf (2001), are provided in the Supple-
mental Appendix.
We consider a wide range of � values: :99; :9; :5; :0;�:9: The innovations are

of the form Ui = �i"i; where f"i : i � 1g are i.i.d. standard normal and �i is
the multiplicative conditional heteroskedasticity. Let GARCH-(ma; ar; ) denote a
GARCH(1; 1) process with MA, AR, and intercept parameters (ma; ar; ) and let
ARCH-(ar1; :::; ar4; ) denote an ARCH(4) process with AR parameters (ar1; :::; ar4)
and intercept  : We consider �ve speci�cations for the conditional heteroskedastic-
ity of the innovations: (i) GARCH-(:05; :9; :001); (ii) GARCH-(:15; :8; :2); (iii) i.i.d.,

14The Supplemental Appendix also gives tables of critical values for symmetric two-sided and
one-sided CHR CI�s.
15Note that it is possible for CICHR;n to consist of two disconnected intervals of the form [a; b] [

[c; 1]; where �1 + " � a < b < c � 1: This occurs with very low probability in most cases, and low
probability in all cases, see the Supplemental Appendix for details.
16See MacKinnon and White (1985) and Long and Ervin (2000) for simulation results concerning

the properties of the HC3 estimator in the standard linear regression model with i.i.d. observations.
17The hybrid CI is de�ned as in AG09 using the standard HC variance estimator with p�ii = 0;

not the HC4 estimator.
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(iv) GARCH-(:25; :7; :2); and (v) ARCH-(:3; :2; :2; :2; :2): Speci�cations (i)-(iii) are
the most relevant ones empirically.18 Speci�cations (iv) and (v) are included for
purposes of robustness. They exhibit stronger conditional heteroskedasticity than in
cases (i)-(iii). In cases (i)-(iv), the hybrid CI has an unfair advantage over the CHR
CI, because it uses a GARCH(1; 1) model which is correctly speci�ed in these cases.
The results are invariant to the choice of �:
We consider a sample size of n = 130: The hybrid CI is based on a GARCH(1; 1)

speci�cation.19 The hybrid critical values use subsamples of size b = 12; as in Andrews
and Guggenberger (2009).
We report average lengths of �CP-corrected�CI�s. A CP-corrected CI equals the

actual nominal 95% CI if its CP is at least :95 (for the given data-generating process),
but otherwise equals the CI implemented at a nominal CP that makes the �nite-
sample CP equal to :95:20 All simulation results are based on 30; 000 simulation
repetitions.
Table I reports the results. CHR denotes the CI in (2.7). Hyb denotes the hybrid

CI of AG09. The new CHR CI has very good �nite-sample coverage probabilities.
Speci�cally, its CP�s are in the range [94:1; 94:8] for all values of � in cases (i)-
(iii). For cases (iv) and (v), the range is [93:2; 94:5]: The hybrid CI has CP�s in the
range [94:2; 98:5] for cases (i)-(iii) and [93:9; 98:5] for cases (iv) and (v). These CP�s
re�ect the fact that the hybrid CI is not asymptotically similar due to its reliance on
subsampling.
The average length results of Table I (CP-corrected) show that the CHR CI is

shorter than the hybrid CI for all values of � in cases (i)-(iv). The greatest length
reductions are for � = :5; :0; where the CHR CI is from :69 to :83 times the length of
the hybrid CI in cases (i)-(iii). For � = :99; :9; it is from :86 to :91 times the length
of the hybrid CI in cases (i)-(iii). In cases (iv) and (v), the CHR and hybrid CI�s
have similar lengths for � = :99; :9: In cases (iv) and (v), for � = :5; :0; the CHR CI is
from :82 to :98 times the length of the hybrid CI. In conclusion, in an overall sense,
the CHR CI out-performs the hybrid CI in terms of average length by a noticeable
margin in the cases considered.21

18For example, see Bollerslev (1987), Engle, Ng, and Rothschild (1990), and, for more references,
Ma, Nelson, and Startz (2007).
19See the Supplemental Appendix for more details concerning the de�nition and computation of

the hybrid CI. Note that the hybrid CI has correct asymptotic size whether or not the GARCH(1,
1) speci�cation is correct.
20When calculating the average length of a CI, we restrict the CI to the interval [�1; 1]: The

search to �nd the nominal size such that the actual �nite-sample CP (�100) equals 95:0 is done
with stepsize :025: In the case of a disconnected CI, the �gap�in the CI is not included in its length.
21The CHR CI also out-performs the hybrid CI based on the infeasible QGLS estimator, see the

Supplemental Appendix. The CP (�100) results of Table I using pii; rather than p�ii; are the same
in all cases except case (i) � = :99; case (iv) � = :5; :0; and case (v) � = :99; where the di¤erences
are :1% (e.g., 94:2% versus 94:3%), and case (v) � = :5; :0; where the di¤erences are :2% and :3%;
respectively. There are no di¤erences in the average lengths. For the symmetric two-sided CHR
CI, the CP results and the average length results compared to the hybrid CI are similar to those in
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Simulations for the symmetric two-sided subsampling CI of Romano and Wolf
(2001) given in the Supplemental Appendix show that the latter CI under-covers
substantially in some cases (e.g., its CP (�100) is 88:9; 88:3; 86:7 for b = 8; 12; 16
in case (ii) with � = :0). It is longer than the symmetric and equal-tailed CHR CI�s
when � = :99 in cases (i)-(v) and has similar average length (CP-corrected) in other
cases. Hence, the CHR CI�s out-perform the Romano and Wolf (2001) CI in the
�nite-sample cases considered.
Results reported in the Supplemental Appendix compare the CHR CI in the i.i.d.

case with the analogous CI that employs the homoskedastic variance estimator.22

The use of the HC4 variance matrix estimator increases the deviations of the CP�s
from 95:0 compared to the homoskedastic variance estimator somewhat, but even so,
the deviations for the equal-tailed CI�s are only equal to :3 on average over the �ve
� values. It has no impact on the average lengths except when � = :99; in which
case the impact is very small (8:3 for the equal-tailed CHR CI versus 8:1 for the
equal-tailed homoskedastic variance CI). Hence, the CHR CI pays a very small price
in the i.i.d. case for its robustness to conditional heteroskedasticity.

Table I. Coverage Probabilities and (CP-Corrected) Average Lengths of Nominal
95% Equal-Tailed Two-Sided CI�s: CHR and Hybrid

Average Lengths (�100)
Coverage Probabilities (�100) (CP-Corrected)

Innovations CI �: .99 .9 .5 .0 -.9 .99 .9 .5 .0 -.9

(i) GARCH(1; 1)- CHR 94.2 94.7 94.8 94.5 94.4 8.5 19 33 37 17
(.05,.9;.001) Hyb 98.5 98.3 96.5 95.2 95.6 9.6 21 46 47 19

(ii) GARCH(1; 1)- CHR 94.2 94.6 94.7 94.1 94.2 8.8 20 37 43 18
(.15,.8;.2) Hyb 98.0 97.9 96.0 94.3 95.0 9.8 22 49 52 21

(iii) I.i.d. CHR 94.5 94.7 94.8 94.7 94.6 8.3 18 31 35 16
Hyb 97.7 97.6 95.7 94.2 94.8 9.6 21 45 48 19

(iv) GARCH(1; 1)- CHR 94.3 94.5 94.4 93.7 94.1 9.2 21 42 49 20
(.25,.7;.2) Hyb 98.4 98.3 95.9 94.8 95.1 9.5 22 51 54 21

(v) ARCH(4)- CHR 94.5 94.3 93.9 93.2 94.0 9.6 23 48 56 22
(.3,.2,.2,.2;.2) Hyb 98.5 98.2 95.9 94.2 95.4 9.1 22 53 57 21

Table I, although slightly better in both dimensions, see the Supplemental Appendix.
22The latter CI is Mikusheva�s (2007a) modi�cation of Stock�s (1991) CI applied to the LS esti-

mator of �; but with a stationary initial condition when � < 1; rather than a zero initial condition.
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4 Outline

The Supplemental Appendix is organized as follows: Section 5 provides tables
with the quantiles ch(�) used to compute equal-tailed, symmetric, and one-sided
CHR con�dence intervals (CI�s). Section 6 establishes the asymptotic false coverage
probabilities (FCP�s) of the equal-tailed CHR CI under local alternatives to the true
values. Section 7 assesses the asymptotic and �nite-sample price the CHR CI pays in
the i.i.d. innovation case for its robustness to conditional heteroskedasticity. Section
8 provides the probabilities of obtaining disconnected CHR CI�s. Section 9 de�nes
symmetric two-sided CHR CI�s and provides simulation results for symmetric two-
sided con�dence intervals, including the CHR CI, the hybrid and subsampling CI�s
of Andrews and Guggenberger (2009a), and the subsampling CI of Romano and
Wolf (2001). Section 10 provides details regarding the implementation of the Monte
Carlo simulations in the paper and the Supplement. Section 11 provides the proof
of Theorem 1. Section 12 gives the proof of the asymptotic FCP result that is
stated in Section 6. Section 13 provides a proof of the correct asymptotic size in the
presence of conditional heteroskedasticity of Romano and Wolf�s (2001) symmetric
two-sided subsampling CI, which is based on a least squares (LS) based t statistic
with a homoskedastic variance estimator (designed for the i.i.d. innovations case).

5 Tables of Critical Values

Table S-I reports the quantiles ch(:025) and ch(:975) (for a broad range of values
of h) which are used to calculate 95% equal-tailed CHR CI�s. Table S-II reports
analogous quantiles used to calculate 90% equal-tailed CHR CI�s. These tables also
can be used for 97:5% and 95% lower and upper one-sided CI�s. Tables S-III to S-V
report csymh (1 � �) for � = :05; :01; :1; respectively, and a range of h values, which
are used to calculate 95%; 99%; and 90% symmetric two-sided CHR CI�s (de�ned in
(9.8) below).
For given �; ch(�) (the �-quantile of Jh in (2.5)) is simulated by simulating the

asymptotic distribution Jh: To do so, 300; 000 independent AR(1) sequences are gen-
erated from the model in (1.1) with innovations Ui � iid N(0; 1); � = 0; stationary
startup, n = 25; 000; and �h = 1 � h=n: For each sequence, the test statistic Tn(�h)
(de�ned in (2.1) but using the homoskedastic variance estimator) is calculated. Then,
the simulated estimate of ch(�) is the �-quantile of the empirical distribution of the
300; 000 realizations of the test statistic.
In Table S-I, the critical values do not reach the h =1 values of �1:96 and 1:96

for h = 500: Larger values of h; which would be needed only in very large samples,
yield the following: c1;000(:025) = �2:02; c5;000(:025) = �1:98; c10;000(:025) = �1:97;
c1;000(:975) = 1:90; c5;000(:975) = 1:93; c10;000(:975) = 1:94:
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Table S-I(a). Values of ch(:025); the :025 Quantile of Jh; for Use with 95% Equal-
Tailed Two-Sided Con�dence Intervals

h 0 .2 .4 .6 .8 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8
ch -3.13 -3.09 -3.06 -3.03 -3.00 -2.98 -2.93 -2.89 -2.85 -2.83 -2.80 -2.77 -2.75
h 4.2 4.6 5.0 6.0 7.0 8.0 9.0 10 11 12 13 14 15
ch -2.73 -2.71 -2.69 -2.65 -2.62 -2.59 -2.56 -2.54 -2.52 -2.50 -2.48 -2.47 -2.45
h 20 25 30 40 50 60 70 80 90 100 200 300 500
ch -2.39 -2.35 -2.32 -2.28 -2.24 -2.23 -2.21 -2.19 -2.18 -2.17 -2.11 -2.08 -2.05

Table S-I(b). Values of ch(:975); the :975 Quantile of Jh; for Use with 95% Equal-
Tailed Two-Sided Con�dence Intervals

h 0 .2 .4 .6 .8 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8
ch(:975) .24 .31 .36 .41 .45 .50 .57 .64 .69 .74 .79 .84 .88

h 4.2 4.6 5.0 6.0 7.0 8.0 9.0 10 11 12 13 14 15
ch(:975) .92 .95 .99 1.06 1.12 1.17 1.21 1.25 1.29 1.32 1.34 1.37 1.39

h 20 25 30 40 50 60 70 80 90 100 200 300 500
ch(:975) 1.47 1.51 1.55 1.61 1.65 1.67 1.69 1.71 1.73 1.74 1.81 1.83 1.86

Table S-II(a). Values of ch(:05); the :05 Quantile of Jh; for Use with 90% Equal-
Tailed Two-Sided Con�dence Intervals

h 0 .2 .4 .6 .8 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8
ch -2.87 -2.83 -2.79 -2.76 -2.73 -2.70 -2.65 -2.61 -2.57 -2.54 -2.51 -2.48 -2.46
h 4.2 4.6 5.0 6.0 7.0 8.0 9.0 10 11 12 13 14 15
ch -2.44 -2.42 -2.39 -2.35 -2.32 -2.29 -2.26 -2.23 -2.21 -2.19 -2.18 -2.16 -2.14
h 20 25 30 40 50 60 70 80 90 100 200 300 500
ch -2.09 -2.05 -2.01 -1.97 -1.93 -1.91 -1.89 -1.87 -1.86 -1.85 -1.79 -1.76 -1.74

Table S-II(b). Values of ch(:95); the :95 Quantile of Jh; for Use with 90% Equal-
Tailed Two-Sided Con�dence Intervals

h 0 .2 .4 .6 .8 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8
ch(:95) -.07 -.02 .04 .08 .13 .17 .25 .31 .37 .43 .48 .52 .57

h 4.2 4.6 5.0 6.0 7.0 8.0 9.0 10 11 12 13 14 15
ch(:95) .61 .64 .68 .75 .81 .87 .91 .95 .98 1.01 1.03 1.05 1.08

h 20 25 30 40 50 60 70 80 90 100 200 300 500
ch(:95) 1.15 1.20 1.24 1.30 1.34 1.36 1.39 1.40 1.42 1.43 1.49 1.52 1.55
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Table S-III. Values of csymh (:95); the :95 Quantile of jJhj; for Use with 95% Sym-
metric Two-Sided Con�dence Intervals

h 0 .2 .4 .6 .8 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8
csymh (:95) 2.87 2.83 2.79 2.76 2.73 2.70 2.65 2.61 2.57 2.54 2.51 2.49 2.46

h 4.2 4.6 5.0 6.0 7.0 8.0 9.0 10 11 12 13 14 15
csymh (:95) 2.44 2.42 2.40 2.36 2.32 2.30 2.27 2.25 2.23 2.21 2.20 2.19 2.17

h 20 25 30 40 50 60 70 80 90 100 200 300 500
csymh (:95) 2.13 2.10 2.08 2.05 2.03 2.02 2.01 2.01 2.00 2.00 1.98 1.97 1.96

Table S-IV. Values of csymh (:99); the :99 Quantile of jJhj; for Use with 99% Sym-
metric Two-Sided Con�dence Intervals

h 0 .2 .4 .6 .8 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8
csymh (:99) 3.44 3.40 3.38 3.35 3.32 3.30 3.26 3.22 3.19 3.16 3.14 3.11 3.09

h 4.2 4.6 5.0 6.0 7.0 8.0 9.0 10 11 12 13 14 15
csymh (:99) 3.07 3.05 3.03 3.00 2.97 2.94 2.92 2.90 2.88 2.87 2.85 2.84 2.82

h 20 25 30 40 50 60 70 80 90 100 200 300 500
csymh (:99) 2.77 2.74 2.72 2.68 2.66 2.65 2.64 2.63 2.62 2.61 2.59 2.58 2.57

Table S-V. Values of csymh (:90); the :90 Quantile of jJhj; for Use with 90% Sym-
metric Two-Sided Con�dence Intervals

h 0 .2 .4 .6 .8 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8
csymh (:9) 2.57 2.53 2.49 2.45 2.42 2.39 2.34 2.30 2.26 2.22 2.19 2.16 2.13

h 4.2 4.6 5.0 6.0 7.0 8.0 9.0 10 11 12 13 14 15
csymh (:9) 2.11 2.09 2.07 2.02 1.98 1.95 1.93 1.91 1.89 1.87 1.86 1.85 1.83

h 20 25 30 40 50 60 70 80 90 100 200 300 500
csymh (:9) 1.79 1.77 1.75 1.72 1.70 1.69 1.69 1.68 1.68 1.67 1.66 1.65 1.65

6 Local Asymptotic False Coverage Probabilities
of the CHR CI

In this section, we determine the asymptotic FCP�s of the CHR CI for sequences
of local alternatives f��n : n � 1g to the true parameters f�n : n � 1g: We provide
results for the full spectrum of cases in which n(1� �n) ! h for (i) 0 � h < 1; (ii)
h = 1 and �n ! 1; and (iii) h = 1 and �n ! �1 < 1: Asymptotic results of this
sort are not available currently for any of the CI�s in the literature under conditional
homoskedasticity or conditional heteroskedasticity.
Theorem 1 of Andrews and Guggenberger (2011) shows that under sequences

f(�n; Fn) 2 � : n � 1g for which n(1 � �n) ! h 2 [0;1] the LS estimator b�n; the
HC4 variance estimator b�2n; and the corresponding t statistic Tn(�) = n1=2(b�n��)=b�n
satisfy:

(n1=2dn(b�n � �n); dnb�n; Tn(�n))0 !d (Nh; Sh; Th): (6.1)
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The result of Andrews and Guggenberger (2011) actually is for the HC variance
estimator with 0 in place of p�ii: Because maxi�n p

�
ii � n�1=2 ! 0; the proofs go

through with b�2n being the HC4 variance estimator.
In (6.1), (i) fdn : n � 1g is a sequence of constants de�ned below, (ii) Th = Nh=Sh;

(iii) when h =1; Nh � N(0; 1) and Sh = 1; and (iv) when 0 � h <1;

Nh =
1R
0

I�D;h(r)dW (r)=
1R
0

I�D;h(r)
2dr and Sh =

�
1R
0

I�D;h(r)
2dr

��1=2
; (6.2)

where W (�) and I�D;h(�) are de�ned in (2.4) of the paper.23
The constants fdn : n � 1g depend on (�n; Fn); although their order of magnitude

only depends on �n: When 0 � h <1; dn = n1=2: When h =1;

dn = EFnY
�2
n;i�1=(EFnY

�2
n;i�1U

2
n;i)

1=2; (6.3)

where by stationarity dn does not depend on i:
The result in (6.1) shows that the local alternatives for which the CHR CI has

non-trivial asymptotic FCP�s (i.e., asymptotic FCP�s less than 1��) are of the form:

��n = �n �
�n

n1=2dn
(6.4)

for any sequence of constants f�n : n � 1g such that �n ! � 2 R and h + � � 0 if
0 � h <1:
If 0 � h < 1; then the local alternatives f��n : n � 1g are n�1-local alternatives

from the true values f�n : n � 1g because n1=2dn = n:
If h =1; �n ! �1 < 1; and limn!1 dn = d1 2 (0;1); then

��n = �n � (�d�11 =n1=2)(1 + o(1)): (6.5)

In this case, f��n : n � 1g are n�1=2-local alternatives from f�n : n � 1g: Note that
the condition on dn is not stringent. For example, it holds if (�n; Fn) does not depend
on n and EF (Y �

i � EFY
�
i )
2U2i 2 (0;1):

If h =1 and �n ! 1; then

dn = (1� �2n)
�1=2(1 + o(1)) (6.6)

by equation (11) of Andrews and Guggenberger (2011) and the �rst two results of
Lemma 6 in Andrews and Guggenberger (2011). The n1=2(1 � �2n)

�1=2 rate of con-
vergence of the LS estimator in this case was �rst obtained by Giraitis and Phillips
(2006). In the present case, the local alternatives are of the form

��n = �n �
�(1� �2n)

1=2

n1=2
(1 + o(1)); (6.7)

23When b�n is the LS estimator, then (in the notation of Andrews and Guggenberger (2011))b�n;i = �n;i = 1 8i � n and the constants in Thm. 1 of Andrews and Guggenberger (2011)
simplify: h2;1 = h2;2 = limn!1EFnU

2
i and h2;5 = h2;7 = 1: This yields the form of the asymptotic

distributions in (6.1) and (6.2).
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which constitute deviations that are smaller than O(n�1=2) and larger than O(n�1):
By de�nition, let h+ � =1 if h =1 and � 2 R:
We have the following asymptotic FCP result.

Theorem 2 Let � 2 (0; 1): Let f(�n; Fn) 2 � : n � 1g be any sequence of true
parameters and distributions for which n(1 � �n) ! h 2 [0;1]; �n ! �1 2 (�1; 1];
and n1=2dn !1 if �1 < 1: Let f��n : n � 1g be any sequence of alternative parameters
that satis�es ��n = �n � �n=(n

1=2dn); where �n ! � 2 R and h+ � � 0 if 0 � h <1:
Then, the equal-tailed nominal 1�� con�dence interval CICHR;n for the AR parameter
� satis�es

lim
n!1

P�n(�
�
n 2 CICHR;n) = P (ch+�(�=2) � Th + �=Sh � ch+�(1� �=2)):

Comments. 1. If h = 1; then h + � = 1; ch+�(�=2) = �z1��=2; ch+�(1 � �=2) =
z1��=2; Th � N(0; 1); Sh = 1; and the limit FCP in the result of Theorem 2 equals
P (jTh + �j � z1��=2); which is less than 1� � for all � 6= 0: This result holds even if
�n ! 1 provided n(1 � �n) ! 1: In this case, the distance of the local alternatives
from the true values depends on how fast �n goes to one via 1� �2n; as in (6.7), but
the form of the asymptotic FCP is the same as when �n ! �1 < 1: If 0 � h < 1;
then the limit FCP in the result of Theorem 2 is not a standard quantity, but it can
be simulated quite easily.
2. Using the results of Andrews and Guggenberger (2011), one could establish

analogous results to those in Theorem 2 for the hybrid CI of Andrews and Guggen-
berger (2009a) and the symmetric subsampling CI of Romano and Wolf (2001). For
brevity, we do not do so here.

7 Price for Robustness of the CHR CI

This section assesses the price the CHR CI pays, in terms of asymptotic FCP�s
and �nite-sample average lengths, in the i.i.d. innovation case to obtain robustness
to conditional heteroskedasticity.
First, we show that the asymptotic price (to �rst order) is zero. Consider the CHR

CI and the same CI but constructed with the homoskedastic variance estimator in
place of the heteroskedasticity-consistent variance estimator. The latter CI is referred
to as the MSS CI, because it is the same as Mikusheva�s (2007) modi�cation of Stock�s
(1991) CI applied to the LS estimator of �; but with a stationary initial condition
when � < 1; rather than a zero initial condition. The latter a¤ects the asymptotic
distribution of the t statistic and hence the de�nition of the critical values. Under
i.i.d. innovations, these two CI�s have the same asymptotic FCP�s (and CP�s).24 The
asymptotic FCP�s of the CHR CI are given in Theorem 2. Identical results for the

24Note that the MSS CI does not have correct asymptotic size when conditionally heteroskedastic
innovation distributions are included in the parameter space. This is because the MSS t statistic
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MSS CI under i.i.d. innovations hold because the two test statistics have the same
asymptotic distributions in this case both when �n ! 1 and when �n ! �1 < 1:When
�n ! 1 this holds by the proof given in Section 13 below of the correct asymptotic
size of Romano and Wolf�s (2001) symmetric subsampling CI. When �n ! �1 < 1
and the innovations are i.i.d., it holds by standard results because the two variance
estimators have the same probability limit.
Next, because the asymptotic price is zero, we use simulations to assess the �nite-

sample price. The data generating process considered is the i.i.d. standard normal
innovation case (i.e., case (iii) in the paper). The sample size is n = 130:
Table S-VI reports CP and (CP-corrected) average lengths for the CHR and MSS

CI�s. Results are given for both equal-tailed and symmetric two-sided CI�s.
Table S-VI shows that the use of the HC4 variance matrix estimator increases

the deviations of the CP�s (�100) from 95:0 slightly compared to the homoskedastic
variance estimator. It has no impact on average length except when � = :99; in which
case the impact is very small. Thus, the CHR CI pays a very small price in the i.i.d.
case for its robustness to conditional heteroskedasticity.
Note that CI�s analogous to the CHR CI�s (equal-tailed, symmetric, and one-

sided) based on the HC4 variance estimator can be de�ned with other versions of
the HC variance matrix, such as the HC, HC1, HC2, and HC3 estimators de�ned
in MacKinnon and White (1985), but we �nd that the HC4 variance estimator gives
the best �nite-sample CP�s and the choice has very little e¤ect on the (CP-corrected)
average lengths. As noted in a footnote in Section 3 of the paper, the HC4 estimator
and the HC3 (without the (n � 1)=n term) estimator have almost the same �nite-
sample properties for the cases in Table I.
Next, we brie�y discuss simulation comparisons between the (equal-tailed) CHR

CI and the infeasible hybrid CI which is based on the infeasible QGLS estimator.
By de�nition, the infeasible QGLS estimator takes the GARCH(1; 1) (or ARCH(4))
speci�cation as known and its parameter values as known. Simulations for the hybrid
CI based on the infeasible QGLS estimator (not reported) show that it over-covers
in many cases and its CP�s exceed those of the FQGLS hybrid CI in almost all cases.
In consequence, its average lengths are the same or slightly longer than those of the
FQGLS hybrid CI in cases (i)-(iv) and only slightly shorter in case (v), reported in
Table I of the paper. Hence, the CHR CI out-performs the infeasible QGLS hybrid
CI, as well as the FQGLS hybrid CI in the cases considered.

has an asymptotic distribution that depends on the form of the conditional heteroskedasticity and
is not standard normal when �n ! �1 < 1; but the critical value is taken from the i.i.d. innovation
case which is a standard normal quantile when �n ! �1 < 1:
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Table S-VI. Coverage Probabilities and (CP-Corrected) Average Lengths of
Nominal 95% Two-Sided CI�s with I.i.d. Innovations: CHR and MSS

Average Lengths (�100)
Coverage Probabilities (�100) (CP-Corrected)

CI-Type CI �: .99 .9 .5 .0 -.9 .99 .9 .5 .0 -.9

Equal-tailed CHR 94.5 94.7 94.8 94.7 94.6 8.3 18 31 35 16
MSS 95.0 94.9 95.1 94.9 94.6 8.1 18 31 35 16

Symmetric CHR 94.5 95.2 95.1 94.8 95.6 10.6 19 31 35 16
MSS 95.1 95.2 95.4 95.2 95.4 10.4 19 31 35 16

8 Disconnected CHR Con�dence Intervals

It is possible for CHRCI�s to consist of two disjoint intervals of the form [a; b][[c; 1]
for �1+" � a < b < c � 1:25 To see why, consider the nominal 95% equal-tailed CHR
CI. The critical values ch(:025) and ch(:975) are increasing and concave as functions of
h; see Tables S-I and S-II above. Thus, cn(1��)(:025) and cn(1��)(:975) are decreasing
concave functions of �: Viewed as a function of � on [�1; 1]; the critical value functions
are essentially �at and take values close to �1:96 and 1:96; respectively, for most of
[�1; 1] and dip down to the values �3:13 and :24 as � approaches one.
The test statistic is a linear function of � with negative slope. The test statistic

takes the value 0 for the value of � equal to b�n: The CI consists of all values � where the
linear test statistic function lies between the mostly horizontal critical value curves.
Drawing the corresponding picture, one can see that disconnected CI�s can occur if
the linear test statistic line cuts across the lower critical value curve as it dips near
one and intersects with it at two places. This only occurs for a very small range of
values of n1=2; b�n; and b�n:
No such disconnected CI feature occurs if the test statistic line intersects the upper

critical value curve in two places because � values between the two intersection points
are in the CI, not excluded from it, in this case.
Table S-VII provides simulated values of the probability that the CHR equal-tailed

and symmetric CI�s are disconnected for the �ve cases considered in Table I of the
paper.26 The sample size is n = 130: In cases (i)-(iii) except for � = :9 and in cases (iv)
and (v) except for � = :9; :5; the probability of a disconnected CI is essentially zero.
For � = :9 in cases (i)-(iii) the probability is still quite small (� 5=1000): For � = :9; :5
in cases (iv) and (v), which are the stronger and less realistic forms of conditional
heteroskedasticity, the probabilities are larger, but still small (� 19=1000):
25The same is true of Mikusheva�s (2007) modi�cation of Stock�s (1991) CI.
26These results are based on 30; 000 simulation repetitions with the asymptotic critical values

computed using 100; 000 repetitions and n = 30; 000:
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Table S-VII. Probabilities of Obtaining Disconnected CHR CI�s
Probability of

Disconnected CHR CI
Innovations CI �: .99 .9 .5 .0 -.9

(i) GARCH(1; 1)- eq-tail .0001 .0008 .0000 .0000 .0000
(.05,.9;.001) sym .0001 .0028 .0000 .0000 .0000

(ii) GARCH(1; 1)- eq-tail .0001 .0023 .0020 .0000 .0000
(.15,.8;.2) sym .0002 .0050 .0011 .0000 .0000

(iii) I.i.d. eq-tail .0000 .0008 .0000 .0000 .0000
sym .0002 .0014 .0000 .0000 .0000

(iv) GARCH(1; 1)- eq-tail .0001 .0035 .0089 .0002 .0000
(.25,.7;.2) sym .0010 .0074 .0054 .0002 .0000

(v) ARCH(4)- eq-tail .0003 .0054 .0190 .0020 .0000
(.3,.2,.2,.2;.2) sym .0008 .0102 .0170 .0016 .0000

9 Simulation Results for Symmetric Two-Sided
Con�dence Intervals

Let CIsymCHR;n denote the symmetric two-sided nominal 1 � � CHR CI that is
analogous to the equal-tailed CHR CI introduced in the paper. It is de�ned as
follows:

CIsymCHR;n = f� 2 [�1 + "; 1] : jTn(�)j � csymh (1� �) for h = n(1� �)g; (9.8)

where csymh (1��) is the 1�� quantile of the asymptotic distribution jJhj of jTn(�)j:
Under the conditions of Theorem 1, the symmetric two-sided nominal 1�� CHR

CI has asymptotic size equal to 1 � � and is asymptotically similar. Under the
conditions of Theorem 2, the FCP�s of the symmetric two-sided CHR CI satisfy

lim
n!1

P�n(�
�
n 2 CICHR;n) = P (jTh + �=Shj � csymh+�(1� �)): (9.9)

(The proofs of these results are analogous to those given for the equal-tailed CHR CI
in Sections 11 and 12 below.)
Table S-VIII reports simulation results analogous to those in Table I except for

symmetric two-sided CI�s, rather than equal-tailed CI�s. It reports results for the
symmetric CHR, hybrid, and FQGLS subsampling (SubGLS) CI�s. The hybrid and
SubGLS CI�s are proposed in AG09a. They are based on the FQGLS estimator with
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Table S-VIII. Coverage Probabilities and (CP-Corrected) Average Lengths of
Nominal 95% Symmetric Two-Sided CI�s: CHR, Hybrid, and SubGLS

Average Lengths (�100)
Coverage Probabilities (�100) (CP-Corrected)

Innovations CI �: .99 .9 .5 .0 -.9 .99 .9 .5 .0 -.9

(i) GARCH(1; 1)- CHR 94.6 95.2 95.1 94.8 95.4 11 20 33 37 16
(.05,.9;.001) Hyb 95.9 98.0 97.2 96.1 95.8 15 28 46 45 19

SubGLS 95.9 98.0 97.0 95.6 95.0 15 28 45 44 18

(ii) GARCH(1; 1)- CHR 94.9 95.3 95.0 94.5 95.3 11 21 37 42 18
(.15,.8;.2) Hyb 96.0 97.8 97.0 96.0 95.7 15 29 49 49 20

SubGLS 96.0 97.8 96.8 95.4 95.1 15 29 49 48 20

(iii) I.i.d. CHR 94.5 95.2 95.1 94.8 95.6 11 19 31 35 16
Hyb 95.3 97.4 96.8 95.6 95.2 15 27 45 45 19
SubGLS 95.3 97.4 96.6 95.1 94.5 15 27 45 44 19

(iv) GARCH(1; 1)- CHR 95.3 95.4 94.8 94.1 95.2 11 23 41 48 19
(.25,.7;.2) Hyb 96.5 98.0 97.2 96.2 95.9 15 30 51 51 20

SubGLS 96.5 98.0 97.0 95.6 95.4 15 30 51 50 20

(v) ARCH(4)- CHR 95.8 95.5 94.4 93.6 95.0 12 24 47 55 21
(.3,.2,.2,.2;.2) Hyb 96.9 98.1 97.2 96.0 96.4 15 30 53 53 21

SubGLS 96.9 98.1 96.9 95.5 95.9 15 30 53 52 21

standard heteroskedasticity-consistent variance estimator (as in Table I), coupled with
hybrid (�xed/subsampling) and subsampling critical values, respectively, see Section
10 for more details. The sample size is n = 130 and the subsample size is b = 12:
The results in Table S-VIII are similar to those in Table I, but the CHR CI

performs slightly better in terms coverage probabilities (CP�s) and in terms of average
length compared to the hybrid CI. The hybrid and SubGLS CI�s have very similar
�nite-sample properties (which is expected because they have the same asymptotic
properties in terms of CP�s and FCP�s).
Next, Table S-IX reports results analogous to those of Table I but for the sym-

metric two-sided CHR and symmetric two-sided subsampling CI of Romano and Wolf
(2001) (SubRW ). The SubRW CI is based on the LS estimator and the homoskedastic
variance matrix estimator. For the SubRW CI, we compute results for subsample sizes
b = 8; 12; 16; 20: In Table S-IX, we report results for b = 8; 12; because they provide
the best results in terms of CP�s and average lengths.
We discuss the results for SubRW CI with b = 8 because they are better than those

for b = 12 in terms of CP�s. Table S-IX shows that the SubRW CI exhibits problems
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Table S-IX. Coverage Probabilities and (CP-Corrected) Average Lengths of
Nominal 95% Symmetric Two-Sided CI�s: CHR and the Romano and Wolf (2001)
Subsampling CI (SubRW ) with Subsample Sizes b = 8 and b = 12

Average Lengths (�100)
Coverage Probabilities (�100) (CP-Corrected)

Innovations CI �: .99 .9 .5 .0 -.9 .99 .9 .5 .0 -.9

(i) GARCH(1; 1)- CHR 94.6 95.2 95.1 94.8 95.4 11 20 33 37 16
(.05,.9;.001) SubRW b=8 95.3 97.3 95.2 91.8 93.4 14 23 34 39 14

SubRW b=12 93.4 96.1 93.6 90.8 91.8 15 22 35 40 15

(ii) GARCH(1; 1)- CHR 94.9 95.3 95.0 94.5 95.3 11 21 37 42 18
(.15,.8;.2) SubRW b=8 94.7 96.5 93.0 88.9 92.2 15 23 38 45 15

SubRW b=12 93.0 95.2 91.5 88.3 90.6 15 22 40 45 17

(iii) I.i.d. CHR 94.5 95.2 95.1 94.8 95.6 11 19 31 35 16
SubRW b=8 95.6 97.6 95.8 92.8 93.8 14 23 34 36 13
SubRW b=12 93.7 96.4 94.2 91.6 92.3 15 22 34 37 15

(iv) GARCH(1; 1)- CHR 95.3 95.4 94.8 94.1 95.2 11 23 41 48 19
(.25,.7;.2) SubRW b=8 94.2 95.4 90.5 85.9 91.3 15 23 43 52 16

SubRW b=12 92.6 94.1 89.2 85.6 90.0 15 23 45 47 17

(v) ARCH(4)- CHR 95.8 95.5 94.4 93.6 95.0 12 24 47 55 21
(.3,.2,.2,.2;.2) SubRW b=8 93.8 93.8 87.4 82.5 90.5 16 25 52 54 17

SubRW b=12 92.4 92.5 86.2 82.9 89.5 17 26 46 49 18

with under-coverage in some cases. For example, when � = :0; its CP�s (�100) in the
�ve cases considered lie in the interval [82:5; 92:8]; whereas those of the CHR CI lie in
[93:6; 94:8]:When � = :5; the CP�s of the SubRW CI in the �ve cases lie in [87:4; 95:8];
whereas those of the CHR CI lie in [94:4; 95:1]: The average (CP-corrected) lengths
of the SubRW CI�s are noticeably longer than those of the CHR CI for � = :99 (for all
�ve speci�cations of the conditional heteroskedasticity), but similar for most other
parameter values.
In sum, the symmetric two-sided subsampling CI of Romano and Wolf (2001) does

not perform as well as the symmetric CHR CI due its noticeable under-coverage in
some cases.
Comparing the results of the SubGLS and SubRW CI�s in Tables S-VIII and S-IX,

it is clear that the use of the feasible FQGLS estimator of � combined with a HC
variance matrix estimator, compared to the LS estimator of � combined with the
homoskedastic variance estimator, improves the �nite-sample coverage probabilities
of the subsampling CI�s noticeably.
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Additional simulations show that much of the di¤erence is due to the use of the HC
variance matrix estimator (even though the latter is not necessary to obtain correct
asymptotic size). Speci�cally, we computed CP�s for the symmetric subsampling CI
based on the LS estimator combined with the standard heteroskedasticity consistent
variance estimator, denoted SubLS;Het; which di¤ers from SubRW only in the choice
of the variance matrix estimator. For i.i.d. innovations, n = 130; b = 12; and
� = :99; :9; :5; :0;�:9; the SubRW and SubLS;Het CI�s have CP�s (�100): (93:7; 98:7);
(96:4; 99:1); (94:2; 98:4); (91:6; 97:3); (92:3; 96:6): Hence, even in the i.i.d. innovations
case, there are substantial di¤erences between the n = 130 �nite-sample CP�s of the
SubRW and SubLS;Het CI�s.

10 Monte Carlo Details

The hybrid and SubGLS CI�s reported in Tables I and S-VIII are based on a t
statistic constructed using a FQGLS estimator of � that employs estimators fb�2n;i : i �
ng of the conditional variances f�2i : i � ng: The studentized t statistic is TGLS;n(�) =
n1=2(b�GLS;n��)=b�GLS;n; where b�GLS;n is the LS estimator from the regression of Yi=b�i
on Yi�1=b�i and 1=b�i for i = 1; :::; n and b�2GLS;n is the (1; 1) element of the standard
heteroskedasticity-robust variance estimator for the LS estimator in the preceding
regression (which does not employ the HC4 adjustment factor 1=(1� p�ii)):

The estimators fb�2n;i : i � ng are based on a GARCH(1; 1) parametric speci�cation
of the conditional heteroskedasticity. The GARCH(1; 1) model is estimated using the
closed-form estimator of Kristensen and Linton (2006) applied to the LS residuals.
This estimator is employed in the simulations because it is very quick to compute.
More precisely, we use two Newton-Raphson iterations (see Kristensen and Linton�s
(2006) equation (17)), and we initialize the iteration using their closed-form estimator
(see their equation (10) on p. 326) implemented with w1 = w2 = w3 = 1=3 and with
their b�Winsorized to the interval [:001; :999]: In each iteration step, we initialize theb�2k;t (see their p. 329, line 5 from the bottom) by setting it equal to the squared �rst
data observation.27

In the simulations using an ARCH(4) data generating process, the GARCH(1; 1)
speci�cation is incorrect. Nevertheless, the hybrid and SubGLS CI�s still have correct
asymptotic size, see Andrews and Guggenberger (2009a).
The asymptotic distribution of the FQGLS estimator in the n�1-local to unity case

depends on the parameter h2;7 = Corr(Ui; Ui=�
2
i ); where �

2
i is the conditional variance

of the innovations based on the GARCH(1; 1) speci�cation (which may or may not be
correctly speci�ed), with GARCH(1; 1) parameter values evaluated at the probability
limit of the GARCH parameter estimators, see Andrews and Guggenberger (2011).

27For simplicity, this estimator is not discretized and the GARCH(1, 1) process is not truncated
to conform to the theoretical results given in the Section 3.4 of Andrews and Guggenberger (2011)
for the asymptotic equivalence of feasible and infeasible QGLS statistics.

11



For the �ve processes considered in the simulations, h2;7 equals :98; :86; 1:00; :74; and
:54; respectively.
For the equal-tailed two-sided nominal 1�� hybrid CI, the upper critical value is

the maximum of the subsampling critical value for 1� �=2 and the standard normal
quantile z1��=2: The lower critical value is the minimum of the subsampling critical
value for �=2 and z�=2: For the symmetric two-sided nominal 1� � subsampling CI,
i.e., SubGLS; the test statistic is the absolute value of TGLS;n(�) and the critical value
is the 1� � sample quantile of the absolute values of the subsample t statistics. For
the symmetric hybrid CI, the test statistic is the same, but the critical value is the
maximum of the latter subsampling critical value and z1��=2:
The subsample FQGLS t statistics use the full-sample estimator of the conditional

heteroskedasticity fb�n;i : i � ng; which is justi�ed because the feasible QGLS and
infeasible QGLS t statistics are asymptotically equivalent in the full sample and in
subsamples. In addition, the subsample FQGLS t statistics are de�ned with the full-
sample FQGLS estimators b�GLS;n in place of the null value � in the expression for
TGLS;n(�): That is, the subsample t statistic is of the form: b1=2(b�GLS;b�b�GLS;n)=b�GLS;b;
where b�GLS;b and b�GLS;b are the estimators based on the subsample of size b:
The SubRW CI reported in Table S-IX is based on the LS estimator and the

homoskedastic variance estimator, as in Romano andWolf (2001). The SubRW critical
values are based on subsample statistics that are de�ned analogously to those for
SubGLS except that b�GLS;n; b�GLS;b; and b�GLS;b are replaced by the full-sample and
subsample LS estimators and the subsample homoskedastic standard error estimator,
respectively.
The sample size, subsample size, and number of subsamples (for the subsampling

and hybrid CI�s) employed are 130; 12; and 119: For the SubRW CI we also consider
results for subsample sizes b = 8; 16; 20 (with n� b+ 1 = 131� b subsamples in each
case).
To mitigate the e¤ect of the initialization on the (G)ARCH processes, we simulate

time series of innovations of length 1130 and eliminate the �rst 1000 observations.
The CHR CP and (CP-corrected) average length results in Tables I, S-VI, S-VIII,

and S-IX are computed in two steps. First, we simulate the asymptotic critical values
using 30; 000 repetitions, n = 25; 000; and standard normal innovations. Then, using
these critical values, we simulate the CP�s and (CP-corrected) average lengths using
30; 000 repetitions and n = 130: To compute CP�s, all we need to consider are the true
� values of interest: :99; :9; :5; :0;�:9 and one or two quantiles, such as ch(�=2) and
ch(1��=2); where h = n(1��); for equal-tailed CHR CI�s. However, to compute the
average lengths we need to determine which values of � are in the CI. To do this, we
consider 401 equally spaced grid points for � in [�1; 1] and we determine whether each
of these points is in the CI or not. This requires computing the appropriate quantiles
for each of the 401 � values, such as ch(�=2) and ch(1 � �=2) for h = n(1 � �) and
n = 130: Furthermore, to carry out CP-correction of the average lengths, we need to
determine the value �0 such that the nominal 1��0 CI has �nite-sample CP equal to
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the desired value 1� � for the data generating process being considered. To do this,
we need to compute the asymptotic critical values not only for one or two quantiles,
but rather, for a broad range of potential values of 1 � �0: Hence, when computing
the asymptotic critical values in the �rst step, we consider a grid of 3; 200 values of
100�� (taking values in [20; 99:999] with a step size of :025) and 401 values of � and
we compute ch(�) for h = n(1 � �) for all of these values. Given this 3200 by 401
dimensional matrix of ch(�) values, we compute the CP�s and (CP-corrected) average
lengths of the CHR CI in the second step.
For the subsampling and hybrid CI�s, we use the same grid of 401 � values and

3; 200 values of 100� � when computing the CP-corrected average lengths.

11 Proof of Theorem 1

The proof of Theorem 1 relies heavily on Theorem 1 of Andrews and Guggenberger
(2011), which provides the asymptotic distribution of the t statistic under certain
drifting sequences of distribution, as speci�ed in (2.5) of the paper. As noted above,
the proofs in Andrews and Guggenberger (2011) need to be adjusted slightly because
of the p�ii term in the HC4 variance estimator, which does not appear in the variance
estimator in Andrews and Guggenberger (2011). Because maxi�n p�ii � n�1=2 ! 0;
the adjustment is simple. Theorem 1 of Andrews and Guggenberger (2011) applies
because the restrictions imposed in the de�nition of � include those imposed in As-
sumption INNOV in Andrews and Guggenberger (2011) simpli�ed to the case where
�n;i = 1 in that paper.

28

The asymptotic results in (2.5) are su¢ cient to determine the asymptotic size
of the CHR CI and to show that it is asymptotically similar using Theorem 2.1 of
Andrews, Cheng, and Guggenberger (2009) (ACG).
To describe the result in that paper, using general terminology, let fCSn : n � 1g

be a sequence of con�dence sets for a parameter r(�); where � indexes the true
distribution of the observations. The parameter space for � is denoted by �: Let
CPn(�) denote the coverage probability of CSn under �: The asymptotic size of CSn
is de�ned as

AsySz = lim inf
n!1

inf
�2�

CPn(�): (11.10)

28Note that Assumption INNOV(v) in Andrews and Guggenberger (2011) is only needed for the
asymptotic results in the case where �n ! 1: Assumption INNOV(v) in the case where �n;i = 1
reduces to the smaller eigenvalue of the 2� 2 matrix with diagonal elements EFnY �20 U21 and EFnU

2
1

and o¤-diagonal element equal to EFnY
�
0 U

2
1 being larger than � for all n su¢ ciently large. By

Lemma 6 in Andrews and Guggenberger (2011) EFnY
�2
0 U21 ! 1 and EFnY

�
0 U

2
1 = O(1) when

�n ! 1: Assuming EFnU
2
1 � � then ensures that the smaller eigenvalue of the matrix above is

not smaller than � for all large enough n: This can be seen by straightforward calculations using
l�Hôpital�s rule.
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We say a sequence fCSn : n � 1g is asymptotically similar (in a uniform sense) if

lim inf
n!1

inf
�2�

CPn(�) = lim sup
n!1

sup
�2�

CPn(�): (11.11)

Corollary 2.1(c) of ACG shows that under Assumptions B1� and B2, stated below,
fCSn : n � 1g is asymptotically similar and satis�es AsySz = CP: Let fhn(�) : n �
1g be a sequence of functions on �; where hn(�) = (hn;1(�); :::; hn;J(�); hn;J+1(�))

0;
hn;j(�) 2 R 8j � J; and hn;J+1(�) 2 T for some compact pseudo-metric space T :
Assumption B1�: For any sequence f�n 2 � : n � 1g for which hn(�n) ! h 2 H;
CPn(�n)! CP for some constant CP 2 [0; 1] and some index set H:
Assumption B2. For any subsequence fpng of fng and any sequence f�pn 2 � :
n � 1g for which hpn(�pn) ! h 2 H; there exists a sequence f��n 2 � : n � 1g such
that hn(�

�
n)! h 2 H and ��pn = �pn 8n � 1:

To prove Theorem 1, it is su¢ cient to verify Assumptions B1� and B2 for CSn =
CICHR;n: In the present case � = (�; F ); r(�) = �; hn(�) = n(1��) 2 R; H = [0;1];
and the parameter space � is de�ned in (2.3). Thus, J = 1 and there is no (J + 1)-
st component in hn(�): For Assumption B1�, consider a sequence f�n = (�n; Fn) 2
� : n � 1g for which hn(�n) ! h 2 H; i.e., �n = 1 � hn=n and hn ! h 2 [0;1]:
We have CPn(�n) = P�n(�n 2 CICHR;n) = P�n(chn(�=2) � Tn(�n) � chn(1 � �=2)):
By (2.5) of the paper, we have Tn(�n) !d Jh under f�n 2 � : n � 1g: In addition,
chn(�)! ch(�) for � = �=2; 1��=2: To obtain the latter result, we apply Lemma 5(a)
in Andrews and Guggenberger (2010) noting that Jh is increasing at its �-quantile
ch(�) for � 2 (0; 1): By the de�nition of convergence in distribution and continuity of
Jh; it follows that CPn(�n)! 1��: Assumption B1� therefore holds with CP = 1��
for all h 2 H:
For Assumption B2, assume we are given f�pn 2 � : n � 1g for a subsequence

fpng of fng such that hpn(�pn) ! h 2 H: De�ne f��n : n � 1g by (i) ��pn = �pn
8n � 1; (ii) when h < 1 and m 6= pn; de�ne �

�
m = (1 � h=m;F �); and (iii) when

h = 1 and m 6= pn; de�ne �
�
m = (0; F �); where F � is the distribution such that

fUi : i = 0;�1;�2; :::g are i.i.d., standard normal. Then, ��n 2 � for all n � 1 and by
construction hn(�

�
n)! h 2 H: This veri�es Assumption B2 and completes the proof.

�

12 Proof of Theorem 2

By the result of Theorem 1 of Andrews and Guggenberger (2011) stated in (6.1),
we have

Tn(�
�
n) = Tn(�n) + �n=(dnb�n)!d Th + �=Sh (12.12)

under sequences f(�n; Fn) 2 � : n � 1g for which n(1� �n)! h:
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We show now that f��n : n � 1g satis�es

n(1� ��n)! h+ � 2 [0;1]: (12.13)

First, suppose 0 � h < 1: Then, dn = n1=2; ��n = �n � �n=n; and n(1 � ��n) =
n(1 � �n) + �n ! h + � 2 [0;1): Second, suppose h = 1 and �n ! �1 < 1:
Then, ��n = �n � �n=(n

1=2dn) ! �1 < 1 and n(1 � ��n) ! 1 = h + �: Third,
suppose h = 1 and �n ! 1: Then, dn = (1 � �2n)

�1=2(1 + o(1)) by (6.6). Note that
n(1� �2n) = (1 + �n)n(1� �n) = 2n(1� �n)(1 + o(1)): Hence, we have

n(1� ��n) = n(1� �n) + n1=2�n=dn

= n(1� �n) + �(n(1� �2n))
1=2(1 + o(1))

= n(1� �n) + �21=2(n(1� �n))
1=2(1 + o(1))

= n(1� �n)[1 + �2
1=2(n(1� �n))

�1=2(1 + o(1))]

! 1 = h+ �: (12.14)

Hence, (12.13) is established.
Given (12.13), we have cn(1���n)(�) ! ch+�(�) for all � 2 (0; 1) by the same

argument as in the proof of Theorem 1 with (��n; h+�) in place of (�n; h): Using these
results and the de�nition of the CHR CI, we obtain

P�n(�
�
n 2 CICHR;n)

= P�n(cn(1���n)(�=2) � Tn(�
�
n) � cn(1���n)(1� �=2))

! P (ch+�(�=2) � Th + �=Sh � ch+�(1� �=2)); (12.15)

where the convergence holds by the de�nition of convergence in distribution and the
continuity of the distribution of Th + �=Sh: �

13 Asymptotic Validity of Romano and Wolf�s
(2001) Symmetric Subsampling CI

In this section, we show that the symmetric two-sided subsampling CI of Ro-
mano and Wolf (2001) (RW), denoted SubRW above, has asymptotic size equal to
its nominal size for the parameter space � de�ned in (2.3), which allows for condi-
tional heteroskedasticity. The derivations below also imply that the lower one-sided
version of this CI has correct asymptotic size. The CI in RW is based on a t statistic
that employs the LS estimator of �; a homoskedastic standard error estimator, and
subsampling critical values.
RW demonstrate that this CI is pointwise asymptotically valid, while Andrews

and Guggenberger (2007, Sections 9, 15) show that it has correct asymptotic size for
a parameter space that imposes conditional homoskedasticity. (However, the equal-
tailed two-sided and upper one-sided versions of this CI do not have asymptotically
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correct size under homoskedasticity or conditional heteroskedasticity, see Mikusheva
(2007) and Andrews and Guggenberger (2007).)
Note that Andrews and Guggenberger (2009a) (AG09a) also analyze a CI based on

a t statistic and subsampling critical values, denoted by SubGLS above. They consider
a di¤erent test statistic than RW. Speci�cally, they consider a t statistic based on a
FQGLS estimator that employs estimators fb�2n;i : i � ng of the conditional variances
f�2i : i � ng; combined with a heteroskedasticity-consistent standard error estimator,
see Section 10 above for more details. AG09a prove that the resulting symmetric two-
sided subsampling CI has asymptotic size equal to its nominal size for a parameter
space that is comparable to � but with some additional restrictions on the quantities
f�2n;i : i � ng that fb�2n;i : i � ng estimate.
The CI in RW is based on a studentized t statistic

jTHom;n(�)j = j
n1=2(b�n � �)b�Hom;n j; (13.16)

where b�n is the LS estimator de�ned in (2.2) and b�2Hom;n is the (1; 1) element of
the standard variance estimator for the LS estimator under the assumption of ho-
moskedasticity. More explicitly,

b�2Hom;n = �n�1X 0
1MX2X1

��1 �
n�1Y 0MXY

�
: (13.17)

RW use subsampling critical values, denoted here by cn;b(1� �); where b denotes
the subsample size that satis�es b ! 1 and b=n ! 0; and 1 � � is the nominal
size. The critical value is the (1 � �)-quantile of the empirical distribution of the
subsample test statistics over the q = n � b + 1 subsamples of data consisting of b
consecutive observations from the original data set. The subsample test statistics
jTHom;n;b;s(b�n)j for s = 1; :::; q are de�ned in the same way as the full-sample statistic
jTHom;n(�)j except that only the b observations in the s-th subsample are used and
the hypothesized parameter � is replaced by the full-sample LS estimator b�n:
The symmetric two-sided CI in RW is given by the collection of all � (2 [�1+"; 1]

for some " > 0) that satisfy

jTHom;n(�)j � cn;b(1� �): (13.18)

Equivalently, the RW CI can be written as

[b�n � n�1=2cn;b(1� �)b�Hom;n;b�n + n�1=2cn;b(1� �)b�Hom;n]: (13.19)

We now show that this subsampling CI has correct asymptotic size. The proof is
quite similar to that for the symmetric subsampling CI based on the FQGLS estimator
in Sec. 7 of AG09a and Sec. S10 of Andrews and Guggenberger (2009b) (AG09b).
A special case of the FQGLS estimator obtained by taking b�n;i = 1 8i � n is the LS
estimator. In this case, the only di¤erence between the test statistics considered in
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RW and AG09a,b is that the former uses the homoskedasticity variance estimator,
whereas the latter uses the standard heteroskedasticity-consistent variance estimator.
The asymptotic size calculations given in AG09a,b depend on the limit as n!1

of CP�s of the CI under sequences f�n = (�n; Fn) 2 � : n � 1g for which �n =
1�hn=n; hn ! h 2 [0;1]; �n ! �1 for some �1+" � �1 � 1; EFnU2n;i ! �2U;1 > 0;
and bn(1 � �n) ! g 2 [0;1] for g � h (where b = bn is the subsample size).29

Provided we show that the limit of the CP�s of the RW symmetric two-sided CI is
greater than or equal to the nominal size 1� � for all such sequences, the remainder
of the proof of the correct asymptotic size for the RW CI is almost the same as that
given in AG09a,b.
When �n ! �1 < 1; the subsample and the full-sample t statistic jTHom;n(�n)j

have the same limiting distribution, a zero mean normal with a sandwich variance
expression, and no asymptotic discontinuity arises. Hence, by standard arguments,
e.g., see AG09b, the limit of the CP of the RW CI in this case equals the nominal
size 1� �:
Below we show: when �n ! 1 the asymptotic distribution of the RW statistic

jTHom;n(�n)j is the same as the asymptotic distribution of the AG09a,b t statistic
jTn(�n)j =

��n1=2(b�n � �n)=b�n�� (de�ned in (2.1) of the paper) based on the LS estimator
and a heteroskedasticity-consistent variance estimator. Given this, by the arguments
in AG09b, the limit of the CP�s of the RW CI when �n ! 1 equals that of the
AG09a,b CI, which is greater than or equal to the nominal size 1��: Hence, the RW
CI has correct asymptotic size.
It remains to show the result stated in the previous paragraph. Without loss of

generality, we can assume that � = 0; because both b�n� �n and b�Hom;n are invariant
to the choice of �: All limits below are taken as n!1:
First, suppose �n ! 1 and h <1: By Theorem 1 of Andrews and Guggenberger

(2011) (AG11), we have

n(b�n � �n)!d

R 1
0
I�D;h(r)dW (r)R 1
0
I�D;h(r)

2dr
; (13.20)

where the right-hand side expression uses the fact that the quantities h2;1; h2;2; h2;5;
and h2;7 in AG11 equal h2;1 = h2;2 = �2U;1 (= limn!1EFnU

2
i ); h2;5 = 1; and h2;7 = 1

when b�n is the LS estimator (which corresponds to b�n;i = �n;i = 1): From eqn. (28)
in AG11, it follows that jointly with (13.20) we have

n�2X 0
1MX2X1 !d �2U;1(

1R
0

I�h(r)
2dr � (

1R
0

I�h(r)dr)
2) = �2U;1

1R
0

I�D;h(r)
2dr: (13.21)

Next, Lemma 5(c)-(d) and 5(f)-(h) in AG11 implies that when 0 < h <1;

n�1Y 0MXY

�2U;1
=
n�1U 0MXU

�2U;1
=
n�1U 0U

�2U;1
� n�1U 0PXU

�2U;1
!p 1: (13.22)

29In AG09a,b, h and g are denoted by h1 and g1:
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When h = 0; the same result holds by Lemma 5(l) and the arguments in (35) and
(36) of AG11 by writing the projection matrix PX equivalently as the projection
matrix PX� ; where X� = [X1 � Y

�
�1;n1n : 1n]; where 1n = (1; :::; 1)0 2 Rn and

Y
�
�1;n = n�1

Pn
i=1 Y

�
n;i�1 (= n�110nX1):

Combining (13.20), (13.21), and (13.22), it follows that the asymptotic distribu-
tion of jTHom;n(�n)j is

j
1R
0

I�D;h(r)dW (r)j=(
1R
0

I�D;h(r)
2dr)1=2; (13.23)

which is the same as that of jTn(�n)j; see Theorem 1(a) in AG11 with h2;7 = 1 (or
(2.6) of the present paper).
Next, suppose �n ! 1 and h = 1: By Theorem 1(b) and the de�nition of an in

eqn. (11) in AG11, we have

n1=2
EFnY

�2
n;0

(EFnY
�2
n;0U

2
n;1)

1=2
(b�n � �n)!d N(0; 1): (13.24)

By (40) of AG11,
n�1X 0

1MX2X1

EFnY
�2
n;0

!p 1: (13.25)

We also have

n�1Y 0MXY

�2U;1
=
n�1U 0MXU

�2U;1
=
n�1U 0U

�2U;1
� n�1U 0PXU

�2U;1
!p 1 (13.26)

by a law of large numbers and

n�1U 0PXU !p 0: (13.27)

When �n ! 1 and h =1; (13.27) holds by the following calculations:

n�1U 0PXU = U
0
X(X 0X)�1(n�1X 0X)(X 0X)�1X 0U = v0n(n

�1X 0X)vn = op(1);
(13.28)

where vn = (X 0X)�1X 0U = (Op((1 � �n)
1=2n�1=2); Op(n

�1=2))0 by Lemma 8(d) in
AG11, the �rst equality holds because PX = PXPX ; the second equality holds by
the de�nition of vn; and the third equality holds by the properties of vn and the
result that the (1; 1); (1; 2); and (2; 2) components of n�1X 0X are Op((1 � �n)

�1);
Op((1� �n)

�1=2); and O(1); respectively, by the �rst result of Lemma 6 and Lemma
8(a) and (b) in AG11. Hence, (13.27) and (13.26) both hold.
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Note that when �n ! 1 and hn !1; then from the �rst two results in Lemma 6
of AG11, we have

EFnY
�2
n;0U

2
n;1

EFnY
�2
n;0EFnU

2
n;1

=
(1� �2n)

�1(EFnU
2
n;1)

2 +O(1)

((1� �2n)
�1(EFnU

2
n;1) +O(1))(EFnU

2
n;1)

=
(EFnU

2
n;1)

2 + o(1)

((EFnU
2
n;1) + o(1))(EFnU

2
n;1)

= 1 + o(1): (13.29)

Combining (13.24), (13.25), (13.26), and (13.29), it follows that the asymptotic
distribution jN(0; 1)j of jTHom;n(�n)j is the same as that of jTn(�n)j; see Theorem 1(b)
in AG11. This completes the proof.
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