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Abstract

The paper deals with the optimal mechanism design for selling to buyers who have

commonly known budget constraints. With unequal budgets, our problem is that of

asymmetric optimal mechanism design. We derive and characterize the optimal mech-

anism. It belongs to one of two classes. When the budget differences are small, the

mechanism discriminates only between high-valuation buyers for whom the budget con-

straint is binding. All low valuations buyers are treated symmetrically despite budget

differences. When budget differences are sufficiently large, the optimal mechanism dis-

criminates in favor of buyers with small budgets when the valuations are low, and in

favor of buyers with larger budgets when the valuations are high.
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1 Introduction

Buyers often face budget constraints that restrict their ability to pay for the goods that

they want to purchase. For example, in the keyword search auctions run by the internet

search engines such as Google and Bing the advertisers typically have budget limits set by

senior management. Most households have limited savings and incomes. Therefore, when

they participate in consumer good auctions such as car auctions, eBay auctions, etc., they

face budgets limits that may be lower than their valuations for the goods, especially big-

ticket items. Budget constraints faced by bidders were an important practical matter in

spectrum auctions. Rothkopf (2007) provides an example of a spectrum auction in which a

bidder valued the asset at $85 million, but was only able to finance a bid of $65 million, and

therefore stopped bidding when the price reached $65 million.

Therefore, it is natural that the economic analysis of trading mechanisms and institutions

should take the budget constraints into account. Yet, with some notable exceptions discussed

below, the literature on mechanism design and auctions had for most part focussed on the

situations where budget constraints are absent.

In this paper we study an environment in which a number of buyers compete for a sin-

gle good and the seller acts as a mechanism designer. The buyers have private values and

commonly known and asymmetric/unequal budgets. We focus on deriving an optimal mech-

anism for the seller. Importantly, the asymmetry of the budget constraints implies that our

problem is that of asymmetric mechanism design, which is significantly more complex than a

mechanism in which all participants are ex-ante symmetric. In a symmetric situation -such

as, for example, when all budgets are equal and the bidders’ valuations are drawn from the

same distribution- a mechanism designer has to construct a single allocation profile (prob-

ability of trading and transfer function) which is offered to every participant. This affords

a significant simplification in the analysis and characterization of the optimal mechanism.

Yet, in the asymmetric environment, such as the one we study, the designer has to design

ex-ante asymmetric allocation profiles, one for each buyer, and do so in a consistent way.

The optimal mechanism that we derive has a number of interesting and novel qualitative

properties. First, we show that it belongs to one of the two classes, depending on the profile
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of budgets1 If the budget differences across the bidders are sufficiently small (in the sense

made precise below), the optimal mechanism is a so-called “top-auction.” It is characterized

by a common threshold valuation x̄t at which the budget constraint of each bidder becomes

binding, so any bidder with valuation exceeding x̄t pays a transfer equal to her budget, and

the probability of getting the good is the same for all types of a particular bidder in [x̄t, 1].

Thus, in the top auction all buyers whose types exceed x̄t are tied. The tie-breaking

rule determining the probabilities with which the good is allocated to different bidders with

valuations exceeding x̄t plays an important role in this mechanism. In fact, these probabilities

are the only instrument used by the seller to discriminate between different bidders. A richer

bidder with valuation exceeding x̄t gets the good with a higher probability to compensate

her for the higher transfer, equal to her budget, that she pays to the seller.

All the buyers with valuations below x̄t are treated symmetrically in the “top auction:”

each of them gets the good when she has the highest valuation, and pays a transfer derived

by the standard envelope result. Thus, the top auction necessarily involves discontinuity in

the allocation rule: the probability of getting the good increases discontinuously at x̄t, and

the sizes of these jumps are positively correlated with the budget levels.

The reserve price in the top-auction is a function of the threshold valuation x̄t reflecting

the fact that virtual valuations of the buyers depend on x̄t, and is lower than in the standard

case. Thus, the inefficiency in the top auction takes two forms. First, there is the inefficiency

in choosing between the buyers at the top: since all bidders with valuation above x̄t are tied,

the one with a lower valuation among them may be awarded the good. Second, there is also

an inefficiency associated with a positive reserve price. However, this inefficiency is smaller

in magnitude than in the standard case due to a lower reserve price.

When the buyers’ budgets are sufficiently different, the “top auction” is no longer feasible

because the seller can no longer achieve the necessary differentiation between the buyers with

different budgets by discriminating only “at the top.” In particular, it becomes impossible

to allocate the good to the buyers with valuations exceeding the (endogenous) threshold x̄t

1We assume that each bidder’s budget is sufficiently small so that it becomes binding at higher valuations

in the optimal mechanism. An exogenous condition guaranteeing this is that each budget is less than a

monopoly price set by a seller facing a single bidder.
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in such a way that the budget constraint of every buyer is binding. Therefore, a different

kind of mechanism which we call a “budget-handicap auction” and in which the seller uses

other instruments of discrimination between the buyers, becomes optimal. Specifically, the

seller sets different thresholds for different buyers or groups of buyers. Not surprisingly,

richer buyers have higher thresholds. Not all thresholds have to be different: there may

be clusters of buyers who share the same threshold. But there is more than one threshold

across bidders. The allocation rule between the buyers in the same cluster with valuations

above the corresponding threshold follows the same principle as in the “top auction:” the

probabilities of awarding the good to them are chosen so that their budget constraints bind.

Importantly, in the budget-handicap auction the seller starts discriminating between the

buyers also when they have low valuations. In particular, consider two buyers whose valua-

tions are equal and are below their respective thresholds. Then the buyer with the smaller

budget gets the good with a higher probability than the buyer with a higher budget. The

buyers with lower budgets also have lower reserve prices than the buyers with higher budgets.

Thus, the seller handicaps the buyers with high budgets at lower valuations. This introduces

an additional inefficiency into the mechanism compared to the top auction. However, this

“handicap” on the high-budget bidders at low valuations creates more competition for them

from low-budget bidders. This allows the seller to extract more surplus from higher-budget

bidders and increases her profits.

Our main results and, in particular, Theorem 3 provide necessary and sufficient conditions

characterizing unique optimal mechanism. Interestingly, as the discussion following Theorem

3 highlights, the optimality conditions for a profile of thresholds are essentially the feasibility

conditions ensuring consistency between the allocation probabilities defined optimally for a

given profile of thresholds (as specified in Lemma 4) and the binding budget constraints at

the thresholds. Theorem 5 builds on these results to specify the conditions under which

the “top auction” is optimal. Naturally, the “budget-handicap” auction is optimal in the

complementary case, when the conditions of Theorem 5 fail.

A natural question that arises in our model is how the variability of budgets among the

bidders affects the seller’s profits. It turns out that this question has a simple answer. The

seller prefers less budget variability and, with a fixed aggregate budget, she gets the highest
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expected profits when each bidder has the same budget (Lemma 8).

On the computational side, it is fairly straightforward to check the conditions of Theorem

5 and compute the “top auction” when these conditions hold. The most challenging part in

computing the “budget-handicap” auction is determining the “clusters” of bidders who share

the same threshold. This problem does not present analytical difficulties as it only involves

checking whether the conditions of Theorem 3 hold or not. However, one may have to go

through all possible configurations of clusters which is a combinatorial problem that can be

solved computationally. We provide an illustration by computing the optimal mechanism

with two and three bidders, the latter - under uniform type distribution. The example with

three bidders is particularly telling about the budget handicap auction as it shows that every

possible configuration of clusters is optimal for a set of budget profiles of a positive measure.

Technically, our paper contains a number of interesting aspects. Among them - the char-

acterization of the virtual values in the optimal mechanism and, in particular, the virtual

value for an endogenous “atom” of types above the threshold all of whom get the same allo-

cation (see expression (15)). Another interesting aspect is the uncovered strong connection

between these thresholds and the Lagrange multipliers associated with budget constraints.

Not only there is a one-to-one relationship between these two sets of variables, as demon-

strated by Theorem 2, but also the strong duality property between them ultimately allows

us to complete the solution to the optimal mechanism design problem.

In the related literature, the paper closest to ours is Laffont and Robert (1996) who

consider a similar environment with commonly known but equal budgets among the bidders.

They derive an optimal mechanism which is a special case of our top auction. Their optimal

mechanism is symmetric and does not allow to understand what the seller should do when

the buyers have different budgets, and hence are asymmetric from the ex-ante point of view.

Maskin (2000) studies efficient mechanism design in the same environment as Laffont and

Robert (1996). Thus, our results confirm the robustness of the optimal auction of Laffont and

Robert (1996) to budget asymmetry, when budget differences are sufficiently small across

the bidders. However, a qualitatively different mechanism - the “budget-handicap auction”-

becomes optimal when budget differences become large.

Malakhov and Vohra (2008) derive optimal dominant strategy mechanism for two buyers
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one of whom faces no budget constraint and the other has a known fixed budget, and whose

valuations are distributed over a discrete support. Their mechanism is similar to the one

that we derive in the extension of our example with two bidders one of whom has a small

budget and the budget of the other is larger than the “monopoly” price that the seller would

set for a single bidder. Pai and Vohra (2014) study an optimal mechanism when the bidders’

budgets and valuations are private information, with identical distributions of budgets and

values across the bidders. Hence, unlike in our model, their bidders are ex-ante symmetric.

They assume that the budgets and valuations are distributed over a finite support, with a

continuous distribution of types considered in an extension.

Thus, an important difference between our paper and Laffont and Robert (1996) and Pai

and Vohra (2014) is that we allow for any profile of commonly known budgets and solve an

asymmetric mechanism design problem, while these authors focus on equal budgets among

the bidders and hence consider a symmetric mechanism design problem. In a symmetric

mechanism design one has to derive a single allocation profile (probabilities of trading and

transfers) which is offered to each buyer. In contrast, under asymmetric mechanism design

which we are dealing with, all allocation profiles are different, and the mechanism designer

has to ensure that they are consistent with each other.

In the related literature, Che and Gale (1998) and (1996) were the earlier contributions

studying auctions with budget constraints. Che and Gale (1998) compare the performance

of first- and second-price auctions when the buyers have privately known budgets and val-

uations. They conclude that the first-price auction yields higher expected social surplus

and expected revenue. Che and Gale (1996) show that the all-pay auction performs better

than the first-price auction under common value and private budgets. Che and Gale (2000)

explore optimal nonlinear pricing for a buyer with privately known valuation and budget.

Hafalir, Ravi and Sayedi (2012) study a Vickrey auction with budget-constraint bidders, and

focus on ex-post Nash equilibrium in it. In their framework, the bidders have different and

essentially known budgets. Although their mechanism is not optimal, it has good efficiency

properties and is “nearly” Pareto optimal.

The rest of the paper is organized as follows. Section 2 develops the model and prelimi-

nary results. Section 3 contains the central analysis of the problem. Section 4 presents the
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optimal mechanisms and their qualitative properties. Section 5 is devoted to the examples.

Section 6 concludes. The proofs are relegated to the Appendix.

2 Model and Preliminaries

A single seller wants to sell one unit of the good to n bidders. Bidder i ∈ {1, ..., n} has

privately known valuation xi for the good which is drawn from the common knowledge

distribution F (.), with a continuous positive density function f(.). Without loss of generality,

we assume that the support of F (.) is [0, 1]. Additionally, bidder i has budget mi, so that his

payment in the mechanism can never exceed mi. The budgets are commonly known and will

be assumed to be sufficiently small. Plainly, we focus on the situation in which the range of

possible valuations -normalized to [0, 1]- is large compared to the limited financial resources

of each bidder. As we will see below, a sufficient condition for all budget constraints to be

binding in the optimal mechanism is that maximi ≤ arg max p(1 − F (p)) i.e., the highest

budget is below the monopoly price set in a situation with a single buyer. With multiple

bidders, competition causes a bidder’s budget constraint to be binding even if her budget

exceeds this threshold.

We will impose a standard assumption on the distribution F (.):

Assumption 1 Increasing Hazard rate:

f(x)

1− F (x)
is increasing in x for all x ∈ [0, 1] (1)

In fact, a weaker assumption that x − 1−F (x)
f(x)

is increasing is sufficient, and we make the

increasing hazard rate assumption mainly for the sake of conformity with the literature. 2

Bidder i with valuation xi gets a payoff equal to xiqi − ti if she gets the good with

probability qi and makes a payment ti to the seller. The seller has zero value for the good, so

2Pai and Vohra (2014) claim that a stronger assumption that f(x) is nonincreasing is necessary in this

setting because bidder i’s virtual valuation s equal to x − 1−F (x)−λi

f(x) , where λi is a Lagrange multiplier

associated with the budget constraint of bidder i. However, as we show below, λi ≤ 1 − F (x). Therefore,

the monotonicity of x− 1−F (x)
f(x) guarantees the monotonicity of x− 1−F (x)−λi

f(x) .
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her payoff is simply the sum of the payments that she receives from the buyers,
∑

i=1,..,n ti.

All the bidders and the seller are risk-neutral and strive to maximize their expected utilities.

The seller has all bargaining power in our environment and acts as a mechanism designer

to maximize her expected payoff from the mechanism. Thus, we will focus on the optimal

expected revenue-maximizing mechanism.

By the Revelation principle (Myerson 1979) we can restrict attention to direct truthful

mechanisms which specify the probabilities of trading and the payments as the functions of

the buyers’ announced valuations. Accordingly, the mechanism offered by the seller to the

buyers can be represented by a tuple (Q1(x̂1, ..., x̂n), ..., Qn(x̂1, ..., x̂n), T1(x̂1, ..., x̂n), ..., Tn(x̂1, ..., x̂n)),

where (x̂1, ..., x̂n) is the profile of the valuations (types) announced by the bidders; Qi(x̂n, ..., x̂n)

is the probability that the buyer i gets the good and Ti(x̂1, ..., x̂n) is the transfer that the

buyer i pays to the seller when the profile of types (x̂n, ..., x̂n) is announced by the buyers.

Let us also define the expected probability of getting the good and the expected transfer.

Specifically, let qi(xi) =
∫
x−i∈[0,1]n−1 Qi(xi, x−i)d

∏
j 6=i F (xj) be the expected probability that

bidder i gets the good when she announces type xi and all other bidders announce their types

truthfully. Also, let ti(xi) =
∫
x−i∈[0,1]n−1 Ti(xi, x−i)d

∏
j 6=i F (xj) be the expected payment by

bidder i to the seller when bidder i announces type xi and all other bidders announce their

types truthfully.

The optimal mechanism (Q1(x1, ..., xn), ..., Qn(x1, ..., xn), T1(x1, ..., xn), ..., Tn(x1, ..., xn))

solves the following seller’s maximization problem:

max
∑

i=1,...,n

∫
(x1,...,xn)∈[0,1]n

Ti(x1, ..., xn)d
∏

i=1,...,n

f(xi) (2)

subject to the following constraints:

(i) the buyers announce their types truthfully i.e., the following interim incentive constraints

hold for all (xi, x̂i) ∈ [0, 1]2 and all i:

xi

∫
x−i∈[0,1]n−1

(Qi(xi, x−i)− Ti(xi, x−i)) d
∏
j 6=i

F (xj) ≡ xiqi(xi)− ti(xi) ≥

xi

∫
x−i∈[0,1]n−1

(Qi(x̂i, x−i)− Ti(x̂i, x−i)) d
∏
j 6=i

F (xj) ≡ xiqi(x̂i)− ti(x̂i) (3)
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(ii) the individual rationality constraints hold for all i and xi ∈ [0, 1]:

xi

∫
x−i∈[0,1]n−1

(Qi(xi, x−i)− Ti(xi, x−i)) d
∏
j 6=i

F (xj) ≡ xiqi(xi)− ti(xi) ≥ 0 (4)

(iii) Budget constraint of every bidder type holds i.e.,

Ti(xi, x−i) ≤ mi for all i, x ∈ [0, 1], x−i ∈ [0, 1]n−1. (5)

(iv) The mechanism is feasible:

Q1(x1, ..., xn) ≥ 0, (6)∑
i

Qi(x1, ..., xn) ≤ 1 for all (x1, ..., xn) ∈ [0, 1]n. (7)

Our first result establishes the existence and uniqueness of the optimal mechanism.

Theorem 1 There exists an optimal mechanism (Q1(x1, ..., xn), ..., Qn(x1, ..., xn),

T1(x1, ..., xn), ..., Tn(x1, ..., xn)) that solves the problem (2) subject to the constraints (3)-(7).

Proof of Theorem 1: The objective for our maximization problem in (2) is a continuous

linear functional in the Hilbert space L2([0, 1]n). It is easy to see that its admissible set

specified by constraints (3)-(7) is convex. Therefore, by Theorem 2.6.1 in Balakrishnan

(1993) the solution to our problem exists. The uniqueness almost everywhere follows by

standard arguments, in particular, the linearity of the objective and the convexity of the

constraints. Q.E.D.

Next, let Ui(xi) denote the net expected payoff of buyer i of type xi in the optimal

mechanism i.e.,

Ui(xi) ≡ qi(xi)xi − ti(xi)

The following result is standard and is left without proof:

Lemma 1 The mechanism (Q1(x1, ..., xn), ..., Qn(x1, ..., xn), t1(x1, ..., xn), ..., tn(x1, ..., xn))

is incentive compatible and individually rational if any only if the expected trading proba-

bility qi(xi) is nondecreasing in xi for all i and xi ∈ [0, 1], and:

Ui(xi) =

∫ xi

0

qi(s)ds+ ci for some ci ∈ R+ (8)
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The individual rationality requires the constant ci to be nonnegative. The optimality of the

mechanism then implies that the mechanism designer should set ci = 0. We will assume the

latter in the sequel and drop ci altogether from the analysis. Combining the definition of

Ui(xi) with (8) yields the following expression for the expected transfer by bidder i:

ti(xi) = xiqi(xi)−
∫ xi

0

qi(s)ds (9)

Consider now the budget constraints. First, we can replace the ex-post budget constraint

in (5) with the interim one, ti(xi) ≤ mi for all i and xi. Indeed, the interim budget constraints

obviously hold when (5) holds. In the opposite directions, if ti(xi) ≤ mi for all i and xi, then

we can ensure that (5) holds by setting Ti(xi, x−i) = ti(xi) for all i and xi. This modification

changes neither the value of the seller’s objective nor the incentive or individual rationality

constraints, because all of these depend only on the expected transfers ti(.), but it potentially

relaxes the budget constraint in some states of the world since the maximal payment by

bidder i weakly decreases.

Next, let us establish the following simple but useful result:

Lemma 2 Let x̄i ∈ [0, 1] be defined as follows:

x̄i = sup{xi ∈ [0, 1]|ti(xi) < mi} (10)

If x̄i < 1, then ti(xi) = mi for all xi ∈ [x̄i, 1]

Proof of Lemma 2: Since by Lemma 1 qi(xi) must be increasing in xi, the expected

transfer ti(xi) must also be increasing in xi, for otherwise the mechanism will not be incentive

compatible. Therefore, if ti(xi) = mi, then ti(x
′
i) = mi for all x′i ∈ [xi, 1]. Q.E.D.

The threshold values x̄i play an important role in our analysis as the key choice variables

which ultimately determine the whole mechanism. Lemma 2 and equation (9) imply that

whenever x̄i < 1, the budget constraint condition ti(xi) ≤ mi can be replaced with the

following two conditions:

mi = x̄iqi(x̄i)−
∫ x̄i

0

qi(s)ds (11)

qi(x) = qi(x̄i) for all xi ∈ [x̄i, 1] (12)
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Applying standard methodology, let us now substitute the expression (9) for the transfers

into the objective (2). Then using (12) and integrating by parts yields the modified objective:

n∑
i=1

∫ 1

0

ti(xi)dF (xi) =
n∑
i=1

∫ 1

0

(
qi(xi)xi −

∫ xi

0

qi(x)dx

)
dF (xi) =

n∑
i=1

∫ 1

0

qi(xi)

(
xi −

1− F (xi)

f(xi)

)
dF (xi)

=
n∑
i=1

∫ x̄i

0

qi(xi)

(
xi −

1− F (xi)

f(xi)

)
dF (xi) +

n∑
i=1

∫ 1

x̄i

qi(x̄i)x̄idF (xi) (13)

By Lemma 1, the incentive constraints (3) and the individual rationality constraints (4)

can now be omitted and replaced with the condition that qi(xi) is increasing in xi for all

i. Following standard approach, we will consider a relaxed program omitting the latter

condition. In our relaxed program we will also omit condition (10) replacing it with condition

(11) that the budget constraint is binding for type x̄i. Since we have already imposed

constraint (12) on the objective explicitly, this will be sufficient to guarantee that the budget

constraint is also binding for any type xi ∈ (x̄i, 1]. When qi(.) is increasing, (11) guarantees

that the budget constraint holds for any type xi ∈ [0, x̄i).

Having solved the relaxed program, we will check that our solution is such that qi(.) is

increasing and is strictly increasing at x̄i from the left. The latter condition guarantees that

(10) holds i.e., x̄i is the lowest type for whom the budget constraint is binding. This would

imply that the solution to the relaxed problem does, in fact, solve the full unrelaxed problem.

Finally, we will take care of the feasibility constraints (6) and (7) by imposing them directly

on the probabilities of trading.

3 Analysis

Imposing the constraint (11) on the objective (13) yields the following Lagrangian of our

relaxed program:

L(Q, x̄, λ) =
n∑
i=1

∫ x̄i

0
qi(xi)

(
xi −

1− F (xi)

f(xi)

)
dF (xi) +

1∫
x̄i

qi(x̄i)x̄idF (xi)− λi
(
qi(xi)xi −

∫ xi

0
qi(x)dx−mi

)

=
n∑
i=1

∫ x̄i

0
qi(xi)

(
xi −

1− λi − F (xi)

f(xi)

)
dF (xi) +

1∫
x̄i

qi(x̄i)

(
x̄i −

λixi
1− F (x̄i)

)
dF (xi) + λimi


(14)
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where λi is a Lagrange multiplier associated with bidder i’s budget constraint (11).

Let us define function γi (xi) for i = 1, ..., n as follows:

γi (xi) =

 xi − 1−λi−F (xi)
f(xi)

, if xi < xi,

xi − λixi
1−F (xi)

, if xi ≥ xi.
(15)

As one can see from (14), γi (.) plays the role of the virtual value of player i. It depends on

Lagrange multiplier λi, as well as bidder i’s type xi if xi < x̄i and the threshold x̄i if xi ≥ x̄i.

In the optimal mechanism without budget constraints, bidder i’s virtual is xi − 1−F (xi)
f(xi)

,

and so the budget constraint causes the latter to change. For a type xi ∈ [0, xi), the virtual

value becomes larger in proportion to the Lagrange multiplier. Intuitively, this change reflects

that higher types above x̄i face a binding budget constraint and hence the seller’s ability to

extract their informational rents is limited. Therefore, increasing the probability with which

lower types get the good has less of a negative effect on the seller’s profits. Further, all types

in [xi, 1] experience a binding budget constraint and have the same probability of trading

q(xi) and pay the same transfer, mi. Thus, the set of types [xi, 1] constitute an endogenously

chosen atom. Reflecting that all of them have the same virtual value, xi − λixi
1−F (xi)

.

Using (15) and replacing qi(xi) with
∫
x−i∈[0,1]n−1 Q(xi, x−i)d

∏
j 6=i F (xj) in (14), and then

changing the order of summation and integration allows us to rewrite (14) as follows:

L(Q, x̄, λ) =

∫
(x1,...,xn)∈[0,1]n

n∑
i=1

Qi(x1, ..., xn)γi(xi)d
∏

i=1,...,n

F (xi) +
n∑
i=1

λimi. (16)

Inspection of (16) yields the following Lemma:

Lemma 3 For any bidder i ∈ {1, 2, ..., n} and any (xi, x−i) ∈ [0, x̄i]
n, the optimal Qi(.) is

such that:

1. Qi(xi, x−i) = 1 if γi(xi) > max{0,maxj 6=i γj(xj)};

2. Qi(xi, x−i) ∈ [0, 1] if γi(xi) = max{0,maxj 6=i γj(xj)};

3. Qi(xi, x−i) = 0 if γi(xi) < max{0,maxj 6=i γj(xj)}.

4.
∑n

i=1 Qi(x1, ..., xn) = 1 if mini γi(xi) > 0.
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According to this Lemma, the profile of virtual values (γ1(x1), ..., γn(xn)) determines the

trading probabilities (Qi(x), ..., Qn(x)) uniquely except when there are ties i.e., when two

or more bidders have the highest virtual value. The ties that have zero probability can be

ignored, as the designer can resolve them arbitrarily without affecting her expected profits.

For this reason, we can ignore ties that involve a bidder type xi such that xi < x̄i.

However, all bidder types xi, xi ≥ x̄i, have the same virtual value γi(x̄i) and essentially

constitute an atom of probability 1 − F (x̄i). If γi(x̄i) = γj(x̄j) for some j 6= i, then any

bidder type xi ∈ [x̄i, 1] is tied with any bidder type xj ∈ [x̄j, 1]. Such a tie has a positive

probability. As we will see below, under certain conditions there will, in fact, exist clusters

of bidders sharing the same threshold x̄ and the same virtual values γ(x̄), even if they have

unequal budgets.3 Tie-breaking rules between the bidders in a cluster have to be constructed

judiciously as part of the optimal design.

Then using Lemma 3 we obtain the following Lemma characterizing the expected prob-

abilities of trading, qi(xi) =
∫
x−i∈[0,1]n−1 Qi(xi, x−i)d

∏
j 6=i F (xj):

Lemma 4 If xi < x̄i or xi = x̄i and γ(x̄i) 6= γ(x̄j) for all j, j 6= i, then the expected trading

probability qi(xi) is given by:

qi(xi) =

∫
x−i∈[0,1]n−1:γi(xi)>max{0,maxj 6=i γj(xj)}

d
∏
j 6=i

F (xj) = Iγi(xi)>0

∏
j 6=i

∫
x−i∈[0,1]n−1:γi(xi)>γj(xj)

d
∏
j 6=i

F (xj)

(17)

where Iγi(xi)>0 is an indicator function equal to 1 if γi(xi) > 0 and zero otherwise.

If γi(x̄i) = γj(x̄j) for some j 6= i, then:∫
x−i∈[0,1]n−1:γi(x̄i)>max{0,maxj 6=i γj(xj)}

d
∏
j 6=i

F (xj) ≤ qi(x̄i) ≤
∫
x−i∈[0,1]n−1:γi(x̄i)≥max{0,maxj 6=i γj(xj)}

d
∏
j 6=i

F (xj)

(18)

Lemma 3 implies that in the optimal mechanism
∑n

i=1Qi(x1, ..., xn)γi(xi) = max{0,maxi γi(xi)}

for all x = (x1, ..., xn) ∈ [0, 1]n. Using this, we will now proceed to replace the La-

grangian (16) of our relaxed program with the one that only depends on x̄ = (x̄1, ..., x̄n)

3A cluster of bidders at threshold x̄C is defined as C(x̄C) ≡ {i|x̄i = x̄C}. Plainly, a cluster must have at

least two bidders in it.
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and λ = (λ1, ..., λn). Particularly, let

L(x̄, λ) = max
Q: 0≤Qi(x)≤1,

∑
iQi(x)≤1

L (Q, x, λ) =

∫
x∈[0,1]n

max{0, max
i=1,...,n

γi(xi)}d
∏
i

F (xi)+
n∑
i=1

λimi.

(19)

Now we are in a position to prove the following important Theorem. Note that the

right-side and left-side limits of γi(xi) at x̄i are given by:

lim
xi↓x̄i

γi(xi) = γi(x̄i) = xi −
λixi

1− F (xi)
,

lim
xi↑x̄i

γi(xi) ≡ γ−i (x̄i) = x̄i −
1− λi − F (x̄i)

f(x̄i)
. (20)

Then we have:

Theorem 2 1. For all i ∈ {1, ..., n} s.t. x̄i ≤ x̄j for some j 6= i, λi = (1−F (xi))
2

(1−F (xi)+xif(xi))
or,

equivalently, γi(xi) is continuous at xi = x̄i.

2. For bidder î such that x̄î > x̄j for all j 6= î, we have:

λî = 1−F (xî)−f(xî)

(
xî −max

j 6=î
γj(x̄j)

)
≡ 1−F (xî)−f(xî)

(
xî −max

j 6=i

(
x̄2
jf(xj)

1− F (xj) + xjf(xj)

))
,

and so γî(x̄î) > γ−
î

(x̄î) = maxj 6=î γj(x̄j).

Theorem 2 establishes a one-to-one relationship between the Lagrange multipliers (λ1, ..., λn)

and the profile of the threshold values (x̄1, ..., x̄n).

Substituting λi = (1−F (xi))
2

(1−F (xi)+xif(xi))
into (15) yields the following for any i s.t. x̄i ≤ x̄j

for some j: γi(xi) = xi −
1− (1−F(xi))

2

(1−F(xi)+xif(xi))
−F (xi)

f(xi)
for xi ≤ x̄i which is decreasing in x̄i; while

γi(x̄i) =
x̄2
i f(xi)

1−F (xi)+xif(xi)
, which is increasing in x̄i.

By part (2) of Theorem 2, for î such that x̄î > maxj 6=i x̄j we have: γî(xî) = xî −
F (xî)+f(xî)(xî−maxj 6=î γj(x̄j))−F (xî)

f(xî)
for xî ≤ x̄î, and γî(x̄î) > γ−

î
(x̄î) = maxj 6=î γj(x̄j). The latter

implies that qî(xî) = 1.

Now we can verify that the solution to our relaxed program does, in fact, solve the full

unrelaxed program:

Lemma 5 The solution to the Lagrangian problem 19 is such that γi(xi) and qi(xi) are

strictly increasing on [0, x̄i] for all i. Therefore, the solution to the relaxed program also

solves the full unrelaxed program.
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Theorem 2 also allows us to establish the following intuitive relationship between the

budgets and thresholds:

Lemma 6 If mi > mj for some i, j ∈ {1, ..., n}, then x̄i ≥ x̄j.

An immediate implication of this Lemma is that bidder î with the highest threshold x̄î is,

in fact, the highest-budget bidder 1.

Now we can also compute the “reservation values” ri = inf{xi ∈ [0, 1]|qi(xi) > 0}. First,

by Lemma 4, ri = inf{xi ∈ [0, 1]|γi(xi) > 0} and hence ri is implicitly defined by the equation

ri(x̄i)− 1−F (ri(x̄i))−λi
f(ri(x̄i))

= 0. Then by Theorem 2, for i ∈ {2, ..., n}, we have:

ri(x̄i) =
1− F (ri(x̄i))− (1−F (x̄i))

2

1−F (x̄i)+x̄if(x̄i)

f(ri(x̄i))
. (21)

Note that ri(x̄i) is well-defined and increasing in x̄i, with ri(x̄i) ∈ (0, x̄i) by the Increasing

Hazard Rate Assumption and because (1−F (x̄i))
2

1−F (x̄i)+x̄if(x̄i)
is less than 1−F (x̄i) and is decreasing

in x̄i.

Part (2) of Theorem 2 implies that the reservation value of bidder 1 is a function of x̄1

and x̄2 = maxj: j>1 x̄j. So, we denote it by r1(x̄1, x̄2). Particularly, given the value of λ1 in

part 2 of Theorem 2, r1(x̄1, x̄2) can be found as a solution in r1 to the following equation:

r1 −
F (x1) + f(x̄1)

(
x̄1 − x̄2 + x̄2(1−F (x2))

1−F (x2)+x2f(x2)

)
− F (r1)

f(r1)
= 0. (22)

Next, to complete the derivation of the optimal mechanism and solve (19), we will use the

Lagrangian duality theory (see e.g. Boyd and Vandenberghe (2009) and Bertsekas (2001)).

To this end, let x̄i(λi) be the inverse of the function λi = (1−F (xi))
2

(1−F (xi)+xif(xi))
for i ≥ 2, which is

well-defined since λi is monotone decreasing in x̄i. Also, let x̄1(λ1, λ2) be the solution for x̄1

of the equation in part (2) of Theorem 2. To see that x̄1(λ1, λ2) is well-defined rewrite this

equation as follows:

x̄1 −
1− F (x̄1)− λ1

f(x̄1)
=

(x̄2(λ2))2f(x̄2(λ2))

1− F (x̄2(λ2)) + x̄2(λ2)f(x̄2(λ2))

The left-hand side of this equation is increasing in x̄1 (by monotone hazard rate property

and because λ1 ≤ 1− F (x̄1)) and increasing in λ1, while its right-hand side is decreasing in

λ2. Therefore, x̄1(λ1, λ2) is well-defined and is decreasing in both λ1 and λ2.
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Next, let g(λ) be Lagrange dual function (Boyd and Vandenberghe (2009), p. 215) i.e.:

g(λ) ≡ L(λ, x̄(λ)) = max
x̄
L(λ, x̄) (23)

By Danskin’s Theorem (Bertsekas (2001), Ch. 1, p. 131), g(λ) is convex and therefore has

a unique minimum characterized by the corresponding first-order conditions. Importantly,

the next Lemma establishes the strong duality property for our problem implying that its

solution is obtained by minimizing g(λ).

Lemma 7 The problem of maximizing (19) 4 has strong duality property i.e.,

max
x̄

min
λ
L(x̄, λ) = min

λ
max
x̄
L(x̄, λ)

Using Lemma 7 we will now complete the solution to our problem by minimizing the

Lagrange dual function g(λ). This solution is provided in the next Theorem. To state

is, let us introduce the following notation. For any set J ⊆ {1, ..., n} s.t. i 6∈ J , let

Prob.[γi(xi) > maxj∈J γj] =
∏

j∈J
∫
xj∈[0,1]: γi(xi)>γj(xj)

dF (xj). Then we have:

Theorem 3 The optimal profile of threshold values (x̄1, ..., x̄n) is unique and is characterized

by the following necessary and sufficient conditions.

If i is such that x̄i 6= x̄j, j 6= i, we have:

mi = x̄iqi(x̄i)−
∫ x̄i

0

qi(s)ds (24)

i.e., budget constraint (11) holds.

If {k1, ..., kl} ⊂ {1, ..., n} is such that x̄k1 = ... = x̄kl = x̄c 6= x̄j for any j 6∈ {k1, ..., kl},

4It is well know that the primal problem of maximizing (19), maxx̄ L(x̄, λ), is equivalent to the following

one: maxx̄ minλ L(x̄, λ).
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then:5,6 ∑
h∈{1,...,l}

mkh = x̄c
1− F (x̄c)l

1− F (x̄c)
Prob.[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj ]− l

∫ x̄c

0
qk1(s)ds (25)

Also, for all r ∈ {2, ..., l − 1} we have:

mk1 + ...+mkr

r
−
mkr+1 + ...+mkl

l − r
≤

x̄c
(

1− F (x̄c)r

r(1− F (x̄c))
− F (x̄c)r

1− F (x̄c)l−r

(l − r)(1− F (x̄c))

)
Prob.[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj ] (26)

It is important to understand the significance of Theorem 3. The conditions (24)-(26) are

the necessary and sufficient conditions for the minimization of the dual Lagrange function

g(λ) ≡ L(λ, x̄∗(λ)). Since g(λ) is convex, the solution to the system (24)-(26) is unique and

completes the derivation of the solution to our optimal mechanism design problem.

Although condition (26) may appear non-transparent, it has a clear an intuitive inter-

pretation. Its’ left-hand side is the difference between the average budget of the richest r

bidders and the average budget of the poorest l − r bidders in the cluster. For the clus-

ter to exist, this difference cannot be too large, for otherwise all budget constraints cannot

hold at the cluster threshold x̄c. Precisely, it cannot exceed the largest possible difference

between the average transfers paid by these two groups. The latter difference is equal to

the maximal difference between the average expected surpluses of these two groups which

is the right-hand side of (26). Indeed, the maximal average surplus of the richest r bidders

is equal to the threshold value x̄c times the maximal average probability of trading in this

group. The latter is a product of the probability Prob.[γk1(x̄c) > maxj 6∈{k1,...,kl} γj] that no

bidder outside the cluster has a virtual value exceeding the virtual value of a cluster member

of type x̄c, γk1(x̄c), and the average probability that at least one among r bidders has a type

5Note that without loss of generality we may assume here that indexes k1, ..., kl are ordered according to

the budgets i.e., k1 < k2... < kl−1 < kl and mk1 ≥ mk2 ... ≥ mkl−1
≥ mkl . This is so because when (25)

holds for this ordering, it also holds for any alternative ordering.

6 Note that the integrand in the last term of (25) is qk1(.). Yet, every bidder in the cluster {k1, ..., kl},

to which (25) pertains, has the same threshold x̄c and hence, by Theorem 2, the same λ and γ, we have

qk1(x) = ...qkl(x) for all x in the range [0, x̄c] of this integral.
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of at least x̄c, 1−F (x̄c)r

r(1−F (x̄c))
. Similarly, the minimal average surplus of the poorest l − r bidders

is equal to the threshold value x̄c times the minimal average probability of trading in that

group, and the latter probability is a product of Prob.[γk1(x̄c) > maxj 6∈{k1,...,kl} γj] and the

average probability that at least one among l − r bidders has a type of at least x̄c and the

other r bidders have types below x̄c, F (x̄c)r 1−F (x̄c)l−r

(l−r)(1−F (x̄c))
.

Theorem 3 does not explicitly identify the probability of trading qkj(x̄
c) for a buyer kj in

cluster C(x̄c) with the threshold x̄c. Yet, it is straightforward to compute it. First, given the

profile of threshold values satisfying the conditions of Theorem 3, Theorem 2 and Lemma

4 allow us to explicitly compute the trading probability functions qi(xi) for all i = 1, ..., n

and xi < x̄i. Then, the probability of trading qkj(x̄
c) for any j = 1, ..., l in cluster C(x̄c) =

{k1, ..., kl} is uniquely defined by the budget constraint mkj = x̄cqkj(x̄
c)−

∫ x̄c
0
qkj(s)ds.

We need to confirm that the vector (qk1(x̄c), ..., qkl(x̄
c)) defined in this way is feasible.

There are two feasibility conditions that need to be satisfied. The first one is the upper

bound condition from Theorem 3 in Border (2007):∑
j=1,...,h

qkj(x̄
c) ≤ 1− F (x̄c)h

1− F (x̄c)
Prob.[γk1(x̄c) > max

i 6∈{k1,...,kl}
γi] for all h ∈ {1, ..., l} (27)

Intuitively, this condition requires that the probability of assigning the good to any subset of

bidders from the cluster does not exceed the probability that a bidder from this subset has

value in [x̄c, 1] and the bidders outside the cluster have lower virtual values than γkj(x̄
c) for

k ∈ {1, ..., l}. Although this condition has to hold for every subset of bidders in a cluster of

size h ∈ {1, ..., l}, it is sufficient that it holds for the subset consisting of the bidders with h

highest budgets k1, ..., kh since these bidders have higher trading probabilities in the cluster

i.e., qk1(x̄c) ≥ ... ≥ qkl(x̄
c)).

The second feasibility condition establishes the lower bound on the probability of as-

signing the good to any subset of bidders in a cluster. It requires that the good should

be assigned for sure to a bidder from this subset if some bidder in this subset has value in

[x̄c, 1], the rest of the bidders in the cluster have values below x̄c, and the bidders outside

the cluster have lower virtual values than γkj(x̄
c). Clearly, it is sufficient that this condition

hold for the subsets of every size composed of the bidders with the lowest budgets because

17



they have lower probabilities of trading qCkj((x̄
c)). Thus, we require:

∑
j=h,...,l

qkj(x̄
c) ≥ F (x̄c)h−1 1− F (x̄c)l−h+1

1− F (x̄c)
Prob.[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj] for all h ∈ {1, ..., l}

(28)

Significantly, the feasibility conditions (27) and (28) are equivalent to the first-order

conditions (63) and (64) derived in the proof of Theorem 3 which, in turn, are equivalent

to the conditions (24)-(26) in the statement of Theorem 3, as shown in the proof of the

Theorem. Hence, the optimality conditions of Theorem 3 are equivalent to the feasibility

conditions.

The equivalence of the optimality and the feasibility conditions for the solution to the

dual problem minλ g(λ) which we have just confirmed, combined with the uniqueness of the

solution imply that there is a unique mechanism satisfying conditions (25) and (26) i.e., a

unique feasible mechanism which therefore is optimal. Combining this conclusion with the

results of Theorem 2 and Lemma 4, we can state the following:

Corollary 1 There is a unique profile of threshold values (x̄1, ..., x̄n) that satisfies the con-

ditions of Theorem 2, conditions (17) and (18) in Lemma 4, and (24)-(26) in Theorem 3.

This profile is a unique solution to the optimal mechanism design problem.

Corollary 1 summarizes the set of necessary and sufficient conditions which the optimal

profile of threshold values (x̄1, ..., x̄n) has to satisfy. Our results so far do not provide a

method to compute (x̄1, ..., x̄n) from these conditions. This task could potentially be compu-

tationally intensive. In particular, this concerns computing the clusters of bidders with the

same thresholds. Lemma 6 implies that any cluster with more than one bidder has to contain

“adjacent” bidders. That is, for a cluster C(x̄c) = {k1, ..., kl} we must have kh+1 = kh+1 for

all h ∈ {2, ...l}. Then the number of potential clusters equals 2n − 1 and, in the worst case,

one may have to go over all possibilities i.e., all non-trivial subsets of {1, ..., n} to find the

unique feasible/optimal set of clusters. In the next section, we make progress towards sim-

plifying this problem, characterizing the optimal mechanisms qualitatively and identifying

the structure of the clusters.
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4 Top and Budget-Handicap Auctions

In this section, we focus on the qualitative properties of the optimal mechanism and demon-

strate how these properties depend on the profile of budgets m1, ...,mn and, in particular,

on the variability of the budgets among the bidders.

Qualitatively, we will distinguish between two kinds of optimal mechanisms. A mecha-

nism of the first kind is called a “top auction.” In a top auction all thresholds are equal i.e.,

x̄1 = ... = x̄n = x̄t, so all bidders belong to the same cluster. Therefore, all bidders with

valuations below x̄t are treated symmetrically: every bidder with valuation x ∈ [0, x̄t) pays

the same transfer and has the same expected probability of trading equal to F n−1(x): she

gets the good when she has the highest valuation. But, because the bidders have unequal

budgets, the seller discriminates between them “at the top” by treating asymmetrically dif-

ferent bidders with valuations above x̄t: richer high valuation bidders get the good with a

higher probability and pay a higher transfer than poorer high valuation bidders. So, we

have: q1(x̄t) ≥ ... ≥ qn(x̄t), with qi(x̄
t) > qj(x̄

t) if and only if mi > mj.

The mechanisms of the second kind are called “budget-handicap auctions.” In a “budget-

handicap auction” not all thresholds are equal: the mechanism designer sets different thresh-

olds for different bidders, or for different groups of bidders. There may still exist clusters

of bidders with the same threshold, but not all bidders belong to the same cluster. In this

mechanism, there are two types of price discrimination. First, a higher-budget bidder with

a value above her threshold has a higher probability of trading than a poorer bidder with a

value above her respective threshold. So, this type of price discrimination applies to any two

bidders with different budgets, irrespectively of whether they belong to the same cluster or

different clusters.

The second type of price discrimination works in the opposite direction. A poorer bidder

with a low value (below her threshold) has a higher probability of trading and pays a higher

transfer than a richer bidder with the same value. This motivates the use of the term

“budget-handicap.” Higher-budget bidder are handicapped, and lower-budget bidders are

given an advantage in the form of a lower reserve price and a higher probability of trading

at lower valuations.
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As we show below, which mechanism is offered by the designer - a top auction or a

budget-handicap auction- is ultimately dictated by the feasibility conditions. The designer

offers a top auction whenever it is feasible, namely, when the budget differences across buyers

are not too large. However, when these differences are large, price-discrimination only at

the “top” is no longer feasible: all budget constraints cannot be made binding at the same

threshold by constructing a “lottery” among the bidders with valuations that exceed that

threshold. Therefore, different thresholds have to be set across bidders, and the seller has to

discriminate between the bidders with low valuations in favor of those with low budgets.

We will start our characterization of the optimal mechanism with the “top auction.”

First, let us define x̄t as the unique solution to the following equation:7

∑
i=1,...,n

mi = x̄t
1− F (x̄t)n

1− F (x̄t)
− n

∫ x̄t

rt:rt=
1−F (rt)−

(1−F (x̄t))2

1−F (x̄t)+x̄tf(x̄t)
f(rt)

.

F (s)n−1ds (29)

We will assume that the budgets are sufficiently small so that x̄t < 1.

Definition 1 A “top auction” for n bidders with budgets m1, ...mn, with mi ≥ mi+1 for all

i = 1, .., n − 1, is a mechanism with a common threshold x̄t = x̄1 = ...x̄n uniquely solving

(29), reservation values r1 = ... = rn = rt defined by rt =
1−F (rt)− (1−F (x̄t))2

1−F (x̄t)+x̄tf(x̄t)

f(rt)
, and trading

probabilities qi(xi) = F (xi)
n−1 for all xi ∈ [r, x̄t) and qi(x̄

t) satisfying:

mi = x̄tqi(x̄
t)−

∫ x̄t

rt

F (s)n−1ds (30)∑
i=1,...,n

qi(x̄
t) =

1− F (x̄t)n

1− F (x̄t)
(31)

This Definition is consistent with the definition of x̄t in (29): summing up (30) over i

and substituting (31) into the result yields (29). Note that condition (31) says that with

7The solution to (29) is unique because its right-hand side: (i) is increasing in xt. Indeed, its derivative is

equal to 1−F (x̄t)n

1−F (x̄t) + xf(x̄t)

(1−F (x̄t))2
(1+(n−1)F (x̄t)n−nF (x̄t)n−1)−nF (x̄t)n−1 +nF (r(x̄t))n−1 dr(x̄

t)
dx̄t . It is easy to

ascertain that this expression is positive, in particular, because dr(x̄t)
dx̄t > 0; (ii) is equal to zero when xt = 0;

(iii) exceeds
∑
imi when xt = 1. The latter holds because by assumption m1 ≤ 1−

∫ 1

r:r− 1−F (r)
f(r)

=0
Fn−1(x)dx.
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probability 1 the good is allocated to some bidder whose value is at least x̄t, whenever there

is at least one such bidder.

Our next result shows that the “top auction” is optimal whenever it is feasible i.e., when-

ever there exists a profile of trading probabilities “at the top,” (q1(x̄t), ..., qn(x̄t)) that satisfies

conditions (30) and (31) as well as the familiar reduced-form (interim) implementability con-

ditions (27) and (28) adapted to the current case. This result presented in the next Theorem

is a direct consequence of Theorem 3.

Theorem 4 Suppose that for a profile of bidders with budgets m1, ...,mn, with mi ≥ mi+1

for all i = 1, ..., n− 1, the threshold x̄t uniquely solving (29) is such that x̄t < 1.

The unique optimal mechanism is a “top auction” with a common threshold x̄t if and only

if for every k = 1, 2, ..., n− 1 we have:

m1 + ...+mk

k
− mk+1 + ...+mn

n− k
≤

x̄t
(

1− F (x̄t)k

k(1− F (x̄t))
− F (x̄t)k

1− F (x̄t)n−k

(n− k)(1− F (x̄t))

)
(32)

Condition (32) is equivalent to condition (26) in Theorem 3 for the case of the top auction.

As the discussion following that Theorem points out, it says that the difference between the

average budget of the richest k bidders and the average budget of the poorest n − k ones

does not exceed the maximal difference between the average expected surpluses of these two

groups.

The distinguishing feature of the top auction is that it allocates the good efficiently when

the buyers’ valuations lie in [r, x̄]. The only additional inefficiency compared to the standard

optimal auction happens at the “top:” when several buyers have valuations above x̄, the

good is allocated randomly among them, with probabilities increasing in their budgets. So a

bidder with a lower value in [x̄, 1] may end up getting the good despite there being another

bidder with a higher value in [x̄, 1].

However, when the feasibility condition for the top auction (32) fails, the seller has to

use additional tools to discriminate between the bidders and, in particular, set different

thresholds for them. Naturally, lower-budget bidders have lower thresholds (see Lemma 6),
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although there may still exist some clusters of bidders sharing the same threshold. The richer

bidders with valuations above their higher thresholds have higher probabilities of trading and

pay higher transfers than poorer bidders with valuations above their lower thresholds.

Significantly, there is another type of price discrimination in this second kind of mecha-

nism, the “budget handicap auction:” a poorer bidder with a low value has a higher prob-

ability of trading and pays a higher transfer than a richer bidder with the same value. To

ascertain that, consider two bidders i and j such that mi > mj and x̄i > x̄j. Recall that by

Theorem 2 λi < λj, and γi(x) < γj(x) for x ∈ [0, x̄j]. Therefore by Lemma 4 qi(x) < qj(x) on

this interval. Particularly, the reservation values are such that ri > rj. This handicapping

of higher-budget bidders creates a stronger competition for them from lower-budget bidders,

and extracts higher transfers from the former when they have high values. This additional

type of price discrimination increases inefficiency, but is unavoidable when budget differences

are sufficiently large. Formally, we have:

Theorem 5 Suppose that (32) fails for some k. Then the optimal auction is a “budget

handicap auction” which is uniquely defined by a vector of threshold values (x̄1, ..., x̄n) s.t.

x̄i ≥ x̄i+1 for all i ∈ {1, .., n− 1}, with strict inequality for at least some i.

By Corollary 1, the vector of thresholds (x̄1, ..., x̄n) is uniquely defined by conditions (24)-

(26) in Theorem 3, the conditions of Theorem 2, and conditions (17) and (18) in Lemma 4.

The probabilities of trading qi(xi) are defined by (17) in Lemma 4 for all i and xi < x̄i, and

qi(x̄i) is determined by the binding budget constraint of that bidder.

The most challenging part in computing the optimal “budget handicap” auction is to

determine which groups of bidders constitute clusters with common thresholds. In the next

section we consider several examples and, in particular, provide conditions for the existence

of various clusters.

As a final result of this section, we will establish that the seller’s expected payoff function

is concave in the bidders’ budgets and explore the implications of this. Recall that By Lemma

7 (strong duality), the seller’s expected profit in the optimal mechanism is given by the mini-

mum of the dual Lagrange function g(λ) = L(λ, x̄(λ)) =
∫
x∈[0,1]n

max{0,maxi=1,...,n γi(xi)}dF (x)+∑n
i=1 λimi. Therefore, the seller’s expected payoff written as a function of the vector of bud-
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gets m = (m1, ...,mn) is given by:

π(m1, ...,mn) = min
λ

{∫
x∈[0,1]n

max{0, max
i=1,...,n

γi(xi, λ)}dF (x) +
n∑
i=1

λimi

}
. (33)

Since π(m1, ...,mn) is a pointwise minimum in λ of a function affine in (m1, ..mn), π(m1, ...,mn)

is concave in the vector (m1, ...,mn).8

Now consider a situation in which the aggregate budget
∑

imi is fixed. Then the seller

is better off when each bidder has an equal share of the aggregate budget.

Lemma 8 Suppose that the aggregate budget of all bidders is fixed i.e.
∑

imi = M9

Then the seller gets a maximal payoff in the optimal mechanism when all bidders’ budgets

are equal i.e., mi = M
n

for all i = 1, ..., n.

More generally, given the aggregate budget M , the seller’s revenue decreases as the

variability of budgets increases across the bidders. We leave this assertion without proof, as

it is a straightforward extension of the proof of Lemma 8.

5 Examples

In this section we compute the optimal mechanism in several special cases. First we look at

the case with two bidders. Then we consider mechanisms under uniform distribution of the

bidders’ types.

5.1 Two-bidder Mechanism.

Consider a mechanism with two bidders, 1 and 2, with m1 ≥ m2. Suppose that m1 ≤

arg maxp p(1−F (p)). This condition says that bidder 1’s budget is smaller than the price that

the seller would set when facing a single bidder, which guarantees that the budget constraint

of bidder 1 would be binding even if m2 is very small. This condition is sufficient but not

8Note that this is true even if some bidder i’s budget constraint is not binding. In this case we have

λi = 0 and π(m1, ...,mn) does not depend on mi.

9To make this result non-trivial M has to be sufficiently small. In particular, we will assume that

M ≤ npm where pm is a monopoly price i.e., pm = arg maxp F (p)(1− p).

23



necessary for both budget constraints to be binding in the optimal mechanism. In particular,

as we will see below, the following condition is sufficient for both budget constraints to bind

when the conditions for the top auction hold: m1 < 1−
∫ 1

r′:r′= 1−F (r′)
f(r′)

F (x)dx.

Next, let x̄t be the unique solution to:

m1 +m2 = x̄t
(
1 + F (x̄t)

)
− 2

∫ x̄t

r:r=
1−F (r)− (1−F (x̄t))2

1−F (x̄t)+x̄tf(x̄t)
f(r)

F (x)dx (34)

If m1 −m2 ≤ x̄t(1 − F (x̄t)), then conditions (25) and (26) of Theorem 3 hold for x̄1 =

x̄2 = x̄t, and the optimal mechanism is a “top auction” with threshold x̄t, and the following

trading probabilities for i ∈ {1, 2} and j 6= i:

qi(x) =


1+F (x̄t)

2
+

mi−mj
2x̄t

, if x ≥ x̄t,

F (x) if x ∈ [r, x̄t), where r =
1−F (r)− (1−F (x̄t))2

1−F (x̄t)+x̄tf(x̄t)

f(r)
.

0 if x < r.

Note that to compute q1(x̄t) and q2(x̄t) we use the binding budget constraints i.e., mi =

x̄tqi(x̄
t)−

∫ x̄t
r
F (s)ds for i ∈ {1, 2} and equation (34).

For illustration purposes we also provide the ex-post probabilities of trading Qi(xi, xj):

Qi(xi, xj) =



1
2

+
mi−mj

2x̄(1−F (x̄))
if (xi, xj) ∈ [x̄t, 1]× [x̄t, 1],

1 if (xi, xj) ∈ [x̄t, 1]× [0, x̄t),

1 if xi ∈ [r, xt), xj < xi,

0 otherwise

If m1−m2 > x̄t(1−F (x̄t)) then condition (26) fails, and the top auction is infeasible. So,

by Theorem 3 the optimal mechanism is a “handicap auction” with thresholds that satisfy

x̄1 > x̄2. To solve for this mechanism, first recall that γ2(x2) = x2 −
1−F (x2)− (1−F (x2))2

(1−F (x2)+x2f(x2))

f(x2)

for x2 ∈ [0, x̄2), γ1(x1) = x1 −
F (x1)+f(x̄1)

(
x̄1−x̄2+

x̄2(1−F (x2))
1−F (x2)+x2f(x2)

)
−F (x1)

f(x1)
for x1 ∈ [0, x̄1). Also,

γ2(x̄2) = x̄2 − x̄2(1−F (x2))
1−F (x2)+x2f(x2)

= γ−2 (x̄2) = γ−1 (x̄1) < γ1(x̄1). The last inequality implies, in

particular, that q1(x̄1) = 1 and the equality before it implies that q2(x̄2) = F (x̄1).

Then the trading probabilities in the optimal handicap auction are as follows:

q1(x1) =


1, if x1 ≥ x̄1,∫

s:γ1(x1)>γ2(s)
dF (s) if x1 ∈ [r1, x̄1), where r1 =

F (x1)+f(x̄1)
(
x̄1−x̄2+

x̄2(1−F (x2))
1−F (x2)+x2f(x2)

)
−F (r1)

f(r1)
.

0 if x1 < r1.
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q2(x2) =


F (x̄1), if x2 ≥ x̄2,∫

s:γ2(x2)>γ1(s)
dF (s) if x2 ∈ [r2, x̄2), where r2 =

1−F (r2)− (1−F (x2))2

(1−F (x2)+x2f(x2))

f(r2)
.

0 if x2 < r2.

Finally, x̄1 and x̄2 can be solved for from the budget constraints:

m1 = x̄1 −
∫ x̄1

0

q1(s)ds (35)

m2 = x̄2F (x̄1)−
∫ x̄2

0

q2(s)ds (36)

The solution for x̄1 and x̄2 exists, is unique, and satisfies 1 ≥ x̄1 > x̄2 > 0. This follows from

the uniqueness of the optimal mechanism and the optimality conditions established above.10

This example illustrates the general properties of the ‘handicap’ auctions. Importantly,

bidder 2 with a lower budget has a lower threshold than the richer buyer 1 i.e., x̄2 < x̄1. This

has a number of implications. First, bidder 1’s probability of trading jumps discontinuously

from F (x̄2) to 1 as his value reaches the threshold x̄1. In contrast, the probability of trading

of the poorer bidder 2 raises continuously to F (x̄1) as her value reaches the threshold x̄2.

However, the reservation value of the second bidder r2 is lower than the reservation value

r1 of the first bidder, and for all x ∈ [r2, x̄2) bidder 2 has a higher probability of trading i.e.,

q2(x) > q1(x). This property motivates the term “budget-handicap” auction. A high-budget

bidder is handicapped and a lower-budget bidder is given an advantage. The latter is favored

over the higher-budget bidder and given the good with a higher probability in a range of low

valuations. The seller does so in order to intensify the competition for the higher-budget

bidder 1 and extract a higher payment from her. The expected probabilities of trading in

this mechanisms are depicted in Figure 1.

5.2 Optimal Mechanism Under the Uniform Type Distribution.

In this section, we assume that types are distributed uniformly over [0, 1]. That allows us to

compute the optimal mechanism in a closed form in some cases. In particular, the virtual

valuations are given by γi(xi) = 2xi − 2x̄i + x̄2
i for i ≥ 2 and xi ≤ x̄i. Hence, the bidders’

10For illustration purposes, we also provide a fixed point argument of the existence of the equilibrium for

this case in the online Appendix available at www.severinov.com/fixedpointbudget2.
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Figure 1: Expected Probabilities of Trading in The Handicap Auction with Two Players

(m1 > m2).
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reservation values are ri = x̄i− x̄2
i

2
for i ∈ {2, ..., n}. For bidder 1, we have: γ1 = 2x1−2x̄1+x̄2

2

for x1 ≤ x̄1 and hence r1 = x̄1 − x̄2
2

2
.

5.2.1 Two Bidders.

When n = 2 (two bidders), equation (29) defining the threshold value in the top auction

becomes:

m1 +m2 = x̄t +
(
x̄t
)2 −

(
x̄t
)3

+
(x̄t)

4

4

Also, the condition (32) for the optimality/feasibility of the top auction simplifies to m1 −

m2 ≤ x̄t(1 − x̄t). If this condition holds, then x̄1 = x̄2 = x̄t. The expected probabilities of

trading are easily computed as follows given that γ1(x) = γ2(x) for x < x̄t and ri = x̄t− (x̄t)
2

2
:

qi(xi) =


0, if xi < x̄t − (x̄t)

2

2
,

xi if xi ∈ [x̄t − (x̄t)
2

2
, x̄t),

1+x̄t

2
+

mi−mj
2

if xi ≥ x̄t.

Note that both q1(x) and q2(x) jump discontinuously at x = x̄t, except in the borderline

situation where m1 −m2 = x̄t(1− x̄t). In the latter case q1(x) jumps from F (x̄t) = x̄t to 1

at x̄t and q2(x) remains continuous with q2(x̄t) = F (x̄t) = x̄t.

If m1−m2 > x̄t(1− x̄t), then by Theorem 5 the top auction is infeasible and the optimal

mechanism is a“handicap auction” with different thresholds x̄1 and x̄2. To compute it, note

the following: γ2(x2) = x2 − x̄2 +
x̄2

2

2
for x2 ∈ [0, x̄2), γ1(x1) = x1 − x̄1 +

x̄2
2

2
for x1 ∈ [0, x̄1),

γ2(x̄2) = γ−2 (x̄2) = γ−1 (x̄1) =
x̄2

2

2
< γ1(x̄1), r1 = x̄1 − x̄2

2

2
, r2 = x̄2 − x̄2

2

2
.

Then x̄1 and x̄2 solve the following equations:

m1 = x̄1 −
∫ x̄1

r1

∫
γ(x1)>γ(x2)

dx2dx1 = x̄1 −
∫ x̄1

x̄1−
x̄2
2
2

∫
x1−x̄1>x2−x̄2

dx2dx1 =

x̄1 −
∫ x̄1

x̄1−
x̄2
2
2

∫ x1−x̄1+x̄2

0

dx2dx1 = x̄1 −
∫ x̄1

x̄1−
x̄2
2
2

x1 − x̄1 + x̄2dx1 = x̄1 −
x̄3

2

2
+
x̄4

2

8
(37)

m2 = x̄2F (x̄1)−
∫ x̄2

r2

∫
γ(x2)>γ(x1)

dx1dx2 = x̄2x̄1 −
∫ x̄2

x̄2−
x̄2
2
2

∫
x2−x̄2>x1−x̄1

dx1dx2 =

x̄2x̄1 −
∫ x̄2

x̄2−
x̄2
2
2

x2 − x̄2 + x̄1dx2 = x̄1x̄2 − x̄1
x̄2

2

2
+
x̄4

2

8
(38)

Note that by Lemma 6, x̄1 > x̄2 since m1 > m2.
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Under the condition m1 ≤ 1
2
, which we have imposed, the Lagrange multipliers are

positive and so both budget constraints are binding. Indeed, recall that by Theorem 2,

λ2 = (1 − x̄2)2 and λ1 = 1 − 2x̄1 + x̄2
2. Thus, λ1 ≥ 0 if and only if the solutions to (37)

and (38) are such that x̄1 ≤ 1+x̄2
2

2
. Substituting x̄1 =

1+x̄2
2

2
into (37) yields the inequality

m1 ≤ 1+x̄2
2

2
− x̄3

2

2
+

x̄4
2

8
, which holds when m1 ≤ 1

2
. So, the solution has to satisfy x̄1 ≤ 1+x̄2

2

2
.

Next, consider the expected trading probabilities q1(x1) and q2(x2). As shown above,

q1(x̄1) = 1 and q2(x̄2) = F (x̄1) = x1. The reservation values are given by r1 = x̄1 − x̄2
2

2
and

r2 = x̄2 − x̄2
2

2
, and so q1(x1) = 0 if x1 < x̄1 − x̄2

2

2
and q2(x2) = 0 if x2 < x̄2 − x̄2

2

2
. Finally, for

x1 ∈ [x̄1 − x̄2
2

2
, x̄1) and x2 ∈ [x̄2 − x̄2

2

2
, x̄2), we have:

q1(x1) =

∫
γ1(x1)>γ2(s)

ds =

∫
x1−x̄1>s−x̄2

ds = x1 − x̄1 + x̄2

q2(x2) =

∫
γ2(x2)>γ1(s)

ds =

∫
x2−x̄2>s−x̄1

ds = x2 − x̄2 + x̄1

Thus, the higher-budget bidder 1’s probability of trading q1(x1) increases continuously on

the interval [x̄1 − x̄2
2

2
, x̄1] and jumps at x̄1 from x̄2 to 1. Bidder 2’s probability of trading

q2(x2) increases continuously on the interval [x̄2− x̄2
2

2
, x̄2] to x̄1 and is flat at x̄1 when x2 ≥ x̄2.

Note that q1(x) − q2(x) = 2(x̄2 − x̄1) < 0 for x ∈ [x̄1 − x̄2
2

2
, x̄2]. So buyer 1 is, indeed,

handicapped and has a lower probability of trading on the intermediate range of valuations.

We can also compute the seller’s expected profits using the formula (13):

2∑
i=1

∫ 1

0

ti(xi)dxi =
2∑
i=1

∫ x̄i

0

qi(xi) (2xi − 1) dxi +
2∑
i=1

∫ 1

x̄i

qi(x̄i)x̄idxi =

2∑
i=1

∫ x̄i

0

qi(xi) (2xi − x̄i) dxi +
2∑
i=1

(1− x̄i)
(
qi(x̄i)x̄i −

∫ x̄i

0

qi(xi)dxi

)
=∫ x̄1

x̄1−
x̄2
2
2

(2x− x̄1)(x− x̄1 + x̄2)dx+

∫ x̄2

x̄2−
x̄2
2
2

(2x− x̄2)(x− x̄2 + x̄1)dx+
∑
i=1,2

mi(1− x̄i) =

∫ 0

−
x̄2
2
2

(2y + x̄1)(y + x̄2)dy +

∫ 0

−
x̄2
2
2

(2y + x̄2)(y + x̄1)dy +
∑
i=1,2

mi(1− x̄i)

=
x̄1x̄

2
2 + x̄3

2

2
+ x̄1x̄

3
2 −

x̄4
2

2
(1 + x̄1 + x̄2) +

x̄6
2

12
+
∑
i=1,2

mi(1− x̄i)

This expression illustrates that the seller’s payoff increases in both m1 and m2 since x̄1 and

x̄2 are increasing in the budgets.
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To conclude with this example, let us relax the assumption that m1 ≤ 1
2

and characterize

the optimal mechanism when only bidder 2’s budget constraint is binding. Recall from the

earlier analysis, and, in particular, part (2) of Theorem 2, that the budget constraint of

bidder 1 is not binding in the optimal mechanism if the solution to (37) and (38) is such

that x̄1 >
1+x̄2

2

2
. Then the Lagrange multipliers are such that λ1 = 0 and λ2 = (1 − x̄2)2.

Consequently, γ1(x1) = 2x1 − 1, γ2(x2) = 2x2 − 2x̄2 + x̄2
2, r1 = 1

2
, and r2 = x̄2 − x̄2

2

2
. So the

probabilities of trading q1(.) and q2(.) are easily derived as follows: q1(x1) = 0 if x1 <
1
2
;

q1(x1) = x1 − 1
2

+ x̄2 − x̄2
2

2
if x1 ∈

[
1
2
,

1+x̄2
2

2

)
; and q1(x1) = 1 if x1 ≥ 1+x̄2

2

2
, while q2(x2) = 0 if

x2 < x̄2 − x̄2
2

2
; q2(x2) = x2 − x̄2 +

1+x̄2
2

2
if x2 ∈

[
x̄2 − x̄2

2

2
, x̄2

)
; and q2(x̄2) =

1+x̄2
2

2
if x2 ≥ x̄2.

Then equation (38) becomes m2 =
1+x̄2

2

2

(
x̄2 − x̄2

2

2

)
+

x̄4
2

8
, which uniquely defines x̄2. Note

that x̄2 converges to zero when m2 becomes small. Although the budget constraint of bidder

1 is no longer binding, the right-hand side of (37) with x̄1 =
1+x̄2

2

2
gives the transfer of all

types of bidder 1 with value x1 ∈ [
1+x̄2

2

2
, 1] i.e., t1(x1) =

1+x̄2
2

2
− x̄3

2

2
+

x̄4
2

8
< m1.

Note that if bidder 1’s value belongs to [1
2
,

1+x̄2
2

2
), she competes with bidder 2 with bidder

1 handicapped in this competition i.e., q1(x) < q2(x) for x in this interval.

5.2.2 Three-Bidder Mechanism Under the Uniform Distribution

First, we characterize the conditions for the optimality of the “top auction” with threshold

x̄t. In the top auction, γi(x) = 2x − 2x̄t + (x̄t)
2

for x ∈ [0, x̄t], ri = x̄t − (x̄t)
2

2
, qi(x) = x2

for all x ∈
[
x̄t − (x̄t)

2

2
, x̄t
)

, and qi(x̄
t) set to satisfy the budget constraint of bidder i for

i ∈ {1, 2, 3}. The conditions (29) and (32) simplify to:

3∑
i=1

mi = x̄t(1 + x̄t) +

(
x̄t − (x̄t)

2

2

)3

m1 −
m2 +m3

2
≤ x̄t

(
1− x̄t1 + x̄t

2

)
m1 +m2

2
−m3 ≤ x̄t

(
1 + x̄t

2
−
(
x̄t
)2
)

(39)

When the system (39) has a solution, then the optimal mechanism is a top auction with

threshold x̄t. If the system (39) does not have a solution, then the optimal mechanism is a

“budget-handicap auction” in which at least two bidders have different thresholds. There

are three possible kinds of “budget-handicap auctions:”
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• “top cluster:” x̄1 = x̄2 > x̄3.

• “lower cluster:” x̄1 > x̄2 = x̄3.

• “no clusters:” x̄1 > x̄2 > x̄3.

Below, we will derive conditions for these three kinds of the “budget-handicap auction.”

5.2.3 Top cluster

Since x̄1 = x̄2 in the top cluster, we will simplify the notation and let x̄1 denote the threshold

of bidders 1 and 2 in the rest of this subsection. So, we have x̄1 > x̄3, γ1(x) = γ2(x) =

2x−2x̄1 + x̄2
1 for x < x̄1, γ1(x̄1) = γ2(x̄1) = x̄2

1; γ3(x) = 2x−2x̄3 + x̄2
3 for x < x̄3, γ3(x̄3) = x̄2

3.

The bidders’ reservation values are given by r1 = r2 = x̄1 − x̄2
1

2
, r3 = x̄3 − x̄2

3

2
.

Then by Lemma 4 for i ∈ {1, 2}, qi(x) = 0 for x < x̄1− x̄2
1

2
, qi(x) = x(x− x̄1 +

x̄2
1

2
+ x̄3− x̄2

3

2
)

for x ∈ (x̄1 − x̄2
1

2
, x̄1 − x̄2

1

2
+

x̄2
3

2
], and qi(x) = x for x ∈ (x̄1 − x̄2

1

2
+

x̄2
3

2
, x̄1). The values of q1(x̄1)

and q2(x̄1) are determined by the budget constraints of bidders 1 and 2.

For bidder 3, we have q3(x) = 0 for x < x̄3 − x̄2
3

2
, q3(x) =

(
x− x̄3 +

x̄2
3

2
+ x̄1 − x̄2

1

2

)2

for

x ∈ (x̄3 − x̄2
3

2
, x̄3), and q3(x̄) =

(
x̄2

3

2
+ x̄1 − x̄2

1

2

)2

.

Note that while q3(x) is continuous everywhere above r3, q1(x) and q2(x) experience two

jumps. First, there is a jump at x̄1− x̄2
1

2
+

x̄2
3

2
, as bidders 1 and 2 with values above this level

no longer face the competition from bidder 3 because γ1(x̄1− x̄2
1

2
+

x̄2
3

2
) = γ3(x̄3). The second

jump happens at the threshold x̄1, since limx→x̄− q1(x) + q2(x) = 2x̄ < 1 + x̄ = q1(x̄) + q2(x̄).

By Theorem 3 (conditions (24)-(26)), the budget-handicap auction with a top cluster is

optimal if the following system of two equations and one inequality has a solution:

m3 = x̄3q3(x̄3)−
∫ x̄3

x̄3−
x̄2
3
2

q3(x3)dx3 (40)

m1 +m2 = (1 + x̄1)− 2

∫ x̄1

x̄1−
x̄2
1
2

q1(x1)dx1 (41)

m1 −m2 ≤ x̄1(1− x̄1).
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Using the expressions for qi(x), i ∈ {1, 2, 3} in (40) and (41) yields:

m3 = x̄3

(
x̄1 +

x̄2
3

2
− x̄2

1

2

)2

−
∫ x̄3

x̄3−
x̄2
3
2

(
s− x̄3 + x̄1 +

x̄2
3

2
− x̄2

1

2

)2

ds = x̄3

(
x̄1 +

x̄2
3

2
− x̄2

1

2

)2

−(
x̄1 +

x̄2
3

2
− x̄2

1

2

)3

3
+

(
x̄1 − x̄2

1

2

)3

3
= − x̄

6
3

24
+
x̄5

3

4
+ x̄3

3

(
1− x̄3

4

)(
x̄1 −

x̄2
1

2

)
+

(
x̄3 −

x̄2
3

2

)(
x̄1 −

x̄2
1

2

)2

(42)

m1 +m2 = x̄1(1 + x̄1)− 2

∫ x̄1

x̄1+
x̄2
3
2
−
x̄2
1
2

ydy − 2

∫ x̄1+
x̄2
3
2
− x̄

2
1
2

x̄1−
x̄2
1
2

y

(
y − x̄1 + x̄3 +

x̄2
1

2
− x̄2

3

2

)
)dy

= x̄1(1 + x̄1) +
x̄4

3

4

(
1− x̄3 +

x̄2
3

6

)
− x̄3

1

(
1− x̄1

4

)
+

(
x̄1 −

x̄2
1

2

)
x̄2

3

(
1− x̄3

2

)2

(43)

Equations (42) and (43) implicitly define x̄1 and x̄3 and can be easily solved numerically.

If the solution is such that m1−m2 ≤ x̄1(1− x̄1), then the optimal mechanism is a handicap

auction with a “top cluster.”

5.2.4 Lower cluster

Next, consider the case of the “lower cluster” with x̄1 > x̄2 = x̄3. To simplify the presenta-

tion, we let x̄2 denote the threshold of bidders 2 and 3 and drop x̄3 from the notation.

Then we have: γ1(x1) = 2x−2x̄1 + x̄2
2 for x1 < x̄1, γ1(x̄1) > γ−1 (x̄1) =

x̄2
2

2
, γ2(x) = γ3(x) =

2x− 2x̄2 + x̄2
2 for x < x̄2, γ2(x̄2) = γ3(x̄2) = x̄2

2. The reservation values are r1 = x̄1 − x̄2
2

2
and

r2 = r3 = x̄2 − x̄2
2

2
.

The probabilities of trading are given by: q1(x1) = 0 for x1 < x̄1 − x̄2
2

2
, q1(x1) =

(x1 − x̄1 + x̄2)2 for x1 ∈
[
x̄1 − x̄2

2

2
, x̄1

)
, q1(x̄1) = 1. For i ∈ {2, 3}, qi(x) = 0 for x < x̄2 − x̄2

2

2
,

and qi(x) = x (x− x̄2 + x̄1) for x ∈
[
x̄2 − x̄2

2

2
, x̄2

)
. Finally, q2(x̄2) and q3(x̄2) are determined

by the budget constraints of bidders 2 and 3, correspondingly.

By Theorem 3, condition (24) must hold for bidder 1 and conditions (25) and (26) must
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hold for bidders 2 and 3 i.e.:

m1 = x̄1 −
∫ x̄1

x̄1−
x̄2
2
2

(s− x̄1 + x̄2)2 ds = x̄1 −
x̄3

2

3
+

(
x̄2 − x̄2

2

2

)3

3

= x̄1 −
x̄2

2

6

(
x̄2

2 + x̄2

(
x̄2 −

x̄2
2

2

)
+

(
x̄2 −

x̄2
2

2

)2
)

= x̄1 −
x̄4

2

2

(
1− x̄2

2
+
x̄2

2

12

)
(44)

m2 +m3 = x̄2x̄1(1 + x̄2)− 2

∫ x̄2

x̄2−
x̄2
2
2

s (s− x̄2 + x̄1) ds = x̄1x̄2(1 + x̄2)− 2x̄3
2

3
+

2
(
x̄2 − x̄2

2

2

)3

3

− (x̄1 − x̄2)

(
x̄2

2 −
(
x̄2 −

x̄2
2

2

)2
)

= x̄1x̄2(1 + x̄2) +
x̄5

2

4

(
1− x̄2

3

)
− x̄3

2x̄1

(
1− x̄2

4

)
(45)

m2 −m3 ≤ x̄2(1− x̄2)x̄1 (46)

Equations (44) and (45) implicitly define x̄1 and x̄2. If the solution satisfies (46), the optimal

mechanism is the handicap auction with the lower cluster and thresholds x̄1 and x̄2 = x̄3.

5.2.5 No Clusters.

Finally, we consider the case with no clusters i.e., x̄1 > x̄2 > x̄3.

In this case, γ1(x1) = 2x−2x̄1+x̄2
2 for x1 < x̄1, γ1(x̄1) > γ−1 (x̄1) =

x̄2
2

2
, γ2(x) = 2x−2x̄2+x̄2

2

for x < x̄2, γ2(x̄2) = x̄2
2, γ3(x) = 2x − 2x̄3 + x̄3

3 for x < x̄3, γ3(x̄3) = x̄2
3. The reservation

values are r1 = x̄1 − x̄2
2

2
, r2 = x̄2 − x̄2

2

2
, and r3 = x̄3 − x̄2

3

2
.

Therefore, the probabilities of trading of bidder 1 are as follows: q1(x) = 0 for x <

x̄1 − x̄2
2

2
, q1(x) = (x − x̄1 + x̄2)

(
x− x̄1 + x̄3 +

x̄2
2

2
− x̄2

3

2

)
for x ∈

[
x̄1 − x̄2

2

2
, x̄1 +

x̄2
3

2
− x̄2

2

2

]
,

q1(x) = x− x̄1 + x̄2 for x ∈
(
x̄1 +

x̄2
3

2
− x̄2

2

2
, x̄1

)
, and q1(x̄1) = 1.

For bidder 2, q2(x) = 0 for x < x̄2 − x̄2
2

2
, q2(x) = (x − x̄2 + x̄1)

(
x− x̄2 + x̄3 +

x̄2
2

2
− x̄2

3

2

)
for x ∈

[
x̄2 − x̄2

2

2
, x̄2 +

x̄2
3

2
− x̄2

2

2

]
, q2(x) = x− x̄2 + x̄1 for x ∈

(
x̄2 +

x̄2
3

2
− x̄2

2

2
, x̄2

)
, q2(x̄2) = x̄1.

Finally, for bidder 3, q3(x) = 0 for x < x̄3− x̄2
3

2
, q3(x) =

(
x− x̄3 + x̄1 +

x̄2
3

2
− x̄2

2

2

)(
x− x̄3 + x̄2 +

x̄2
3

2
− x̄2

2

2

)
for x ∈

[
x̄3 − x̄2

3

2
, x̄3

)
, and q3(x̄3) = (x̄2 +

x̄2
3

2
− x̄2

2

2
)(x̄1 +

x̄2
3

2
− x̄2

2

2
).

By Theorem 3, in the “no cluster” case the necessary and sufficient conditions charac-

terizing the optimal thresholds x̄1, x̄2 and x̄3 are the budget constraints (24) i.e., mi =

x̄iqi(x̄i) −
∫ x̄i
ri
qi(s)ds for i = 1, 2, 3. If the solution to this system of three equations exists

and is such that 1 ≥ x̄1 > x̄2 > x̄3 ≥ 0, then we have an optimal mechanism with no clusters.
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In the rest of this subsection, we will exhibit the system of three equations mi = x̄iqi(x̄i)−∫ x̄i
ri
qi(s)ds for i = 1, 2, 3 explicitly using the expressions for qi(.) above and then replace it

with a simpler system. First, consider i = 1. We have:

m1 = x̄1 −
∫ x̄1+

x̄2
3
2
− x̄

2
2
2

x̄1−
x̄2
2
2

(x− x̄1 + x̄2)

(
x− x̄1 + x̄3 +

x̄2
2

2
− x̄2

3

2

)
dx−

∫ x̄1

x̄1+
x̄2
3
2
−
x̄2
2
2

x− x̄1 + x̄2ds =

x̄1 −

(
x̄2 +

x̄2
3

2
− x̄2

2

2

)3

3
+

(
x̄2 − x̄2

2

2

)3

3
+

(
x̄2 − x̄3 − x̄2

2

2
+

x̄2
3

2

)
2

((
x̄2 +

x̄2
3

2
− x̄2

2

2

)2

−
(
x̄2 −

x̄2
2

2

)2
)

− x̄2
2

2
+

(
x̄2 +

x̄2
3

2
− x̄2

2

2

)2

2
= x̄1 +

x̄4
3

8

(
1− x̄3 +

x̄2
3

6

)
− x̄3

2

2

(
1− x̄2

4

)
+

(
x̄2 −

x̄2
2

2

)
x̄2

3

2

(
1− x̄3

2

)2

(47)

Second, using the expressions for q2(.) and q3(.) derived above, we obtain:

m2 = x̄2x̄1 −
∫ x̄2+

x̄2
3
2
− x̄

2
2
2

x̄2−
x̄2
2
2

(x− x̄2 + x̄1)

(
x− x̄2 + x̄3 +

x̄2
2

2
− x̄2

3

2

)
dx−

∫ x̄2

x̄2+
x̄2
3
2
−
x̄2
2
2

x− x̄2 + x̄1ds

(48)

m3 = x̄3

(
x̄2 +

x̄2
3

2
− x̄2

2

2

)(
x̄1 +

x̄2
3

2
− x̄2

2

2

)
−
∫ x̄3

x̄3−
x̄2
3
2

(x− x̄3 + x̄1 +
x̄2

3

2
− x̄2

2

2
)(x− x̄3 + x̄2 +

x̄2
3

2
− x̄2

2

2
)dx

(49)

Next, we replace (48) and (49) with the equations for m1−m2 and m2−m3 as follows. First,

subtracting (48) from (47) we obtain:

m1 −m2 = x̄1(1− x̄2) +

∫ x̄2+
x̄2
3
2
− x̄

2
2
2

x̄2−
x̄2
2
2

(x̄1 − x̄2)(x− x̄2 + x̄3 +
x̄2

2

2
− x̄2

3

2
)dx+

∫ x̄2

x̄2+
x̄2
3
2
−
x̄2
2
2

x̄1 − x̄2ds

= x̄1(1− x̄2) +
x̄1 − x̄2

2

(
x̄2

2 −
(
x̄3 −

x̄2
3

2

)2
)
. (50)

Finally, we perform a change of variable of integration in the second term of (48) to y =
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x− x̄2 +
x̄2

2

2
+ x̄3 − x̄2

3

2
and subtract (49) from the result to obtain:

m2 −m3 = x̄1x̄2 −
x̄2

1

2
+

(
x̄1 +

x̄2
3

2
− x̄2

2

2

)2

2
− x̄3

(
x̄2 +

x̄2
3

2
− x̄2

2

2

)(
x̄1 +

x̄2
3

2
− x̄2

2

2

)
+

∫ x̄3

x̄3−
x̄2
3
2

(
x− x̄3 + x̄1 +

x̄2
3

2
− x̄2

2

2

)(
x̄2 −

x̄2
2

2
− x̄3 +

x̄2
3

2

)
dx =

x̄1x̄2 + (x̄2x̄3 − x̄1(1− x̄3))
x̄2

2 − x̄2
3

2
+

(
1

2
− x̄3

)(
x̄2

2

2
− x̄2

3

2

)2

+
x̄2

3

2

(
x̄2 −

x̄2
2

2
− x̄3 +

x̄2
3

2

)(
x̄1 +

x̄2
3

4
− x̄2

2

2

)
.

(51)

To conclude, when the solution to the system (47), (50) and (51) satisfies x̄1 > x̄2 > x̄3, we

have no clusters in the optimal mechanism.

6 Conclusions

In this paper, we have derived an optimal mechanism for a seller facing bidders who have

commonly known and unequal budgets. We have shown that when the differences between

the budgets are not too large, the seller uses a “top auction” mechanism in which all bidders

are treated symmetrically when their valuation do not exceed a certain threshold valuation.

At that threshold all budget constraints become binding, and the richer bidders are given

the good with a higher probability.

When the differences between the budgets are sufficiently large, then the seller uses a

“budget-handicap” auction in which the valuation thresholds at which budget constraints be-

come binding differ across the bidders. Budget-handicap auction also discriminates between

the bidders at low valuations favoring low-budget bidders, who have higher probabilities of

trading at low valuations and lower reserve prices. The seller does so to create a stronger

competition for higher-budget bidders and extract more surplus from them. The latter result

can be interpreted as providing justification for favoring smaller or minority-owned businesses

in public procurement and other allocation mechanisms, such as spectrum auctions.

Our mechanisms have the nature of an all-pay auction, since a bidder always pays her bid.

It would be interesting to consider a modification of our set-up and consider mechanisms in

which a bidder pays only when (s)he gets the good. We leave this issue for future research.

34



Another interesting qualitative property of the optimal mechanism emerges from our

analysis of the two bidder case. There, we show that when one bidder has a significantly

larger budget than the other, a mechanism with “buy-it-now” features is optimal. Precisely,

a rich bidder is given an option to either participate in an auction, where she competes with

the not-so-rich bidder, or to purchase the good immediately at a higher price. Generalizing

this result to a more general set-up with many bidders is another extension which we leave

for future research.

7 Appendix

Proof of Theorem 2: The proof of the Theorem consists of two parts. In Part I, we

explore the first-order conditions of the optimization problem (19) to restrict the set of

possible values of the profile of {γ−(x̄i), γ(x̄i)}ni=1. In Part II, we use the results of part I to

establish the statements of the Theorem.

Part I. First, note that by the definition of γi(.) in (15), it is continuous at xi = x̄i if

and only if λi = (1−F (xi))
2

(1−F (xi)+xif(xi))
.

To characterize optimal x̄i we derive the first-order conditions involving derivatives of

the Lagrangian L in (19). Although it may not possess a derivative with respect to xi at

xi = x̄i because its second term contains a max operator, it does however, possess left- and

right- derivatives at x̄i which we denote by ∂−L
∂x̄i

and ∂+L
∂x̄i

, respectively. If x̄i is interior in

(0, 1), then we have the following conditions for optimality: ∂+L
∂x̄i

is nonpositive and ∂−L
∂x̄i

is

nonnegative. If x̄i = 1 then ∂−L
∂x̄i
≥ 0. Note that x̄i = 0 cannot be optimal because in this

case ti(xi) = qi(xi) = 0 for all xi ∈ [0, 1].

Now let us compute the left- and right-derivatives, ∂−L
∂x̄i

and ∂+L
∂x̄i

. Using the notation in

(20) we have:

∂+L
∂x̄i

= f(x̄i)

∫
x−i∈[0,1]n−1

(
max{0, γ−i (x̄i),max

j 6=i
γj(xj)} −max{0, γi(x̄i),max

j 6=i
γj(xj)}

)
dF (x−i)+∫

x∈[0,1]n

∂+ max{0,maxj=1,...,n γj(xj)}
∂x̄i

dF (x) (52)

The first term in (52) arises because the range of integration in (19) over xi includes the point

x̄i at which the integrand may be discontinuous. The second term comes from differentiating
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the integrand of L.

Note that the left-derivative ∂−L
∂x̄i

is obtained from (52) by replacing the right-sided deriva-

tive
∂+ max{0,maxj:j 6=i γj(xj)}

∂x̄i
with the left-sided derivative

∂−max{0,maxj:j 6=i γj(xj)}
∂x̄i

in the integrand

of the second term+

We will need to consider two cases: (a) λi >
(1−F (xi))

2

1−F (xi)+xif(xi)
; (b) λi <

(1−F (xi))
2

1−F (xi)+xif(xi)
.

First, let us focus on the case (a). Then γ−i (xi) > max{0, γi(xi)}. Without loss if

generality we can focus on the situations when γi(x̄i) ≥ 0, since otherwise the first term in

(52) is strictly positive and the second term is zero, and so ∂+L
∂x̄i

> 0, which cannot hold at

the optimum. So, without loss, we consider that case (a) is where γ−i (xi) > γi(xi). Then the

first term in (52) can be computed as follows:

f(x̄i)

∫
x−i∈[0,1]n−1:maxj 6=i γj(xj)<γ

−
i (x̄i)

(
γ−i (x̄i)−max{0, γi(x̄i),max

j 6=i
γj(xj)}

)
dF (x−i) =

f(x̄i)

∫
x−i∈[0,1]n−1:maxj 6=i γj(xj)<γi(x̄i)

γ−i (x̄i)− γi(x̄i)dF (x−i)+

f(x̄i)

∫
x−i∈[0,1]n−1:γi(x̄i)≤maxj 6=i γj(xj)<γ

−
i (x̄i)

(
γ−i (x̄i)−max

j 6=i
γj(xj)

)
dF (x−i) (53)

To simplify (53), note that by(15) we have
∂γj(xj)

∂x̄i
= 0 for j 6= i, and

∂+γi(xi)

∂xi
=

 0, if xi < xi,

1− λi
(1−F (xi))

2 (1− F (xi) + xif (xi)) , if xi ≥ x̄i,
(54)

In the current case (a) we have λi >
(1−F (xi))

2

1−F (xi)+xif(xi)
, and so ∂+γi(x̄i)

∂xi
< 0. Therefore, the

second term in (52) is equal to:∫
x∈[0,1]n

∂+ max{0,maxj=1,...,n γj(xj)}
∂x̄i

dF (x) =

∫
x: xi∈[x̄i,1]:maxj 6=i γj(xj)<γi(x̄i)

∂+γi(x̄i)

∂xi
dF (x) =

= (1− F (x̄i))

∫
x−i:maxj 6=i γj(xj)<γi(x̄i)

(
1− λi

(1− F (xi))
2 (1− F (xi) + xif (xi))

)
dF (x) =

f(x̄i)

∫
x−i∈[0,1]n−1:maxj 6=i γj(xj)<γi(x̄i)

γi(x̄i)− γ−i (x̄i)dF (x−i) (55)

Summing (53) and (55) yields:

∂+L
∂x̄i

= f(x̄i)

∫
x−i∈[0,1]n−1:γi(x̄i)≤maxj 6=i γj(xj)<γ

−
i (x̄i)

(
γ−i (x̄i)−max

j 6=i
γj(xj)

)
dF (x−i) (56)
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From (56) it follows that ∂+L
∂x̄i

> 0 if the set {x−i ∈ [0, 1]n−1 : γi(x̄i) ≤ maxj 6=i γj(xj) < γ−i (x̄i)}

has a positive measure. We refer to this situation as subcase (a)-(i). Obviously, subcase (a)-

(i) can be ruled out as part of the solution as it would be optimal to raise x̄i.

Also, note that subcase (a)-(i) is equivalent to the following: either γi(x̄i) < min{γ−j (x̄j), γ
−
i (x̄i)}

for some j 6= i, or γi(x̄i) ≤ γj(x̄j) < γ−i (x̄i) for some j 6= i s.t. x̄j < 1. Thus, there are

two remaining subcases of case (a). In subcase (a)-(ii), maxj 6=i γ
−
j (x̄j) ≤ γi(x̄i) < γ−i (x̄i) and

maxj 6=i γj(x̄j) < γi(x̄i). In subcase (a)-(iii) maxj 6=i γ
−
j (x̄j) ≤ γi(x̄i) < γ−i (x̄i) ≤ maxj 6=i γj(x̄j)

and γj(x̄j) 6∈ [γi(x̄i), γ
−
i (x̄i)) for all j 6= i. This, in subcase (a)-(iii) there exists a bidder h

with x̄h < 1 such that γ−h (x̄h) ≤ γi(x̄i) < γ−i (x̄i) ≤ γh(x̄h).
11 Based on this condition, we

will rule out subcase (a)-(iii) below when we consider Case (b).

Now, let us consider Case (b) where λi <
(1−F (xi))

2

1−F (xi)+xif(xi)
, and so γi(xi) > max{0, γ−i (xi)}

and ∂+γi(x̄i)
∂xi

> 0. Then the first term in (52) is equal to:

f(x̄i)

∫
x−i∈[0,1]n−1:maxj 6=i γj(xj)≤γi(x̄i)

(
max{0, γ−i (x̄i),max

j 6=i
γj(xj)} − γi(x̄i)

)
dF (x−i) (57)

Next, since ∂+γi(x̄i)
∂xi

> 0, the second term in (52) is equal to:∫
x∈[0,1]n

∂+ max{0,maxj=1,...,n γj(xj)}
∂x̄i

dF (x) =

∫
x: xi∈[x̄i,1];maxj 6=i γj(xj)≤γi(x̄i)

∂+γi(x̄i)

∂xi
dF (x) =

= (1− F (x̄i))

∫
x−i:maxj 6=i γj(xj)≤γi(x̄i)

∂+γi(x̄i)

∂xi
dF (x) =

= (1− F (x̄i))

∫
x−i:maxj 6=i γj(xj)≤γi(x̄i)

(
1− λi

(1− F (xi))
2 (1− F (xi) + xif (xi))

)
dF (x) =

f(x̄i)

∫
x−i∈[0,1]n−1:maxj 6=i γj(xj)≤γi(x̄i)

γi(x̄i)− γ−i (x̄i)dF (x−i) (58)

Combining (57) and (58) yields:

∂+L
∂x̄i

= f(x̄i)

∫
x−i∈[0,1]n−1:maxj 6=i γj(xj)≤γi(x̄i)

max{0, γ−i (x̄i),max
j 6=i

γj(xj)} − γ−i (x̄i)dF (x−i)

(59)

Now we can rule out the following subcase (b)-(i): min{γ−j (x̄j), γi(x̄i)} > γ−i (x̄i) or γi(x̄i) ≥

γj(x̄j) > γ−i (x̄i) for some j, j 6= i. In this subcase, (59) implies that ∂+L
∂x̄i

> 0 which cannot

hold at the optimal x̄i.

11This immediately implies that x̄h < 1 for otherwise we would have γ−h (x̄h) ≥ γh(x̄h). Therefore, in this

subcase and any subcase with γ−h (x̄h) < γh(x̄h) for some h, so we can drop the qualifier x̄h < 1.

37



Note that ruling out subcase (b)-(i) also rules out subcase (a)-(iii) as the latter is en-

compassed by the first alternative of case (b)-(i) i.e., min{γ−j (x̄j), γi(x̄i)} > γ−i (x̄i) for some

j 6= i. To see this, recall that subcase (a)-(iii) implies the existence of a bidder h such that

γh(x̄h) ≥ γ−i (x̄i) > γi(x̄i) ≥ γ−h (x̄h). Now, simply relabel the bidders i and h in the latter

condition as j and i, respectively, to rewrite it as follows: γi(x̄i) ≥ γ−j (x̄j) > γj(x̄j) ≥ γ−i (x̄i),

which makes it obvious that (a)-(iii) is encompassed by (b)-(i).

There remain two other subcases of Case (b). In subcase (b)-(ii) we have:

maxj 6=i max{γ−j (x̄j), γj(x̄j)} ≤ γ−i (x̄i) < γi(x̄i). This case will not be ruled out.

In subcase (b)-(iii) we have: maxj 6=i γ
−
j (x̄j) ≤ γ−i (x̄i) < γi(x̄i) < maxj 6=i γj(x̄j) and

γj(x̄j) 6∈ (γ−i (x̄i), γi(x̄i)] for all j 6= i. In this subcase, there exists k, k 6= i, s.t. γk(x̄k) >

γi(x̄i) > γ−i (x̄i) ≥ γ−k (x̄k). We can rewrite this conditions as follows by relabelling k and i as

i as j, respectively: γi(x̄i) > γj(x̄j) > γ−j (x̄j) ≥ γ−i (x̄i). The latter condition is encompassed

by subcase (b)-(i) which we have ruled out. Therefore, subcase (b)-(iii) is also ruled out.

This completes Part I of the proof.

Part II. In this part, we will use the results of Part I, in particular, the impossibility of

the subcases (a)-(i), (a)-(iii), (b)-(i) and (b)-(iii), to establish the statements of the Theorem.

Let us start by proving statement 1 of the Theorem. So suppose that there exists h 6= i

such that x̄h ≥ x̄i. Let us show that γ−i (x̄i) = γi(x̄i).

If γ−i (x̄i) < γ−h (x̄h), then since subcases (a)-(i) and (b)-(i) are ruled out, we must have

γ−i (x̄i) = γi(x̄i).

Next, suppose that γ−i (x̄i) > γ−h (x̄h). Then again, since subcases (a)-(i) and (b)-(i)

have been ruled out, we must have γ−h (x̄h) = γh(x̄h) = x̄h − x̄h(1−F (xh))
1−F (xh)+xhf(xh)

or, equivalently,

λh = (1−F (xh))2

(1−F (xh)+xhf(xh))
. The inequalities x̄h ≥ x̄i, and γ−i (x̄i) > γ−h (x̄h) together imply that

λi >
(1−F (xi))

2

(1−F (xi)+xif(xi))
. Using the latter inequality and x̄h > x̄i we obtain that

γi(x̄i) < x̄i −
x̄i(1− F (xi))

1− F (xi) + xif(xi)
≤ x̄h −

x̄h(1− F (xh))

1− F (xh) + xhf(xh)
= γ−h (x̄h) = γh(x̄h).

But this configuration belongs to case (a)-(i) which had been ruled out.

It remains to consider the case γ−i (x̄i) = γ−h (x̄h). As cases (a)-(i) and (b)-(i) have been

ruled out, it follows that min{γi(x̄i), γh(x̄h)} = γ−i (x̄i) = γ−h (x̄h). So, to complete the proof

that γ−i (x̄i) = γi(x̄i), we only need to rule out γi(x̄i) > γh(x̄h) = γ−i (x̄i) = γ−h (x̄h). To
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argue by contradiction, suppose that this is the case. Then we have γ−h (x̄h) = γh(x̄h) =

x̄h − x̄h(1−F (xh))
1−F (xh)+xhf(xh)

or, equivalently, λh = (1−F (xh))2

(1−F (xh)+xhf(xh))
. Note the inequality x̄h ≥ x̄i

together with γ−i (x̄i) = γ−h (x̄h) imply that λi ≥ (1−F (xi))
2

(1−F (xi)+xif(xi))
. As we have shown above,

the latter inequality and x̄h ≥ x̄i imply that

γi(x̄i) ≤ x̄i −
x̄i(1− F (xi))

1− F (xi) + xif(xi)
≤ x̄h −

x̄h(1− F (xh))

1− F (xh) + xhf(xh)
= γ−h (x̄h) = γh(x̄h).

But this contradicts our assumption that γi(x̄i) > γh(x̄h).

Finally, suppose that there exists a bidder î such that x̄î > x̄j for all j 6= î. By part

(i) of the Theorem, it follows that γj(x̄j) = γ−j (x̄j) for all j 6= î. Also, we must have

min{γî(x̄î), γ
−
î

(x̄î)} ≥ γj(x̄j) = γ−j (x̄j) for any j 6= î. For, if this inequality does not

hold then subcases (a)-(i) and (b)-(i) imply that γj(x̄j) = γ−j (x̄j) = x̄j − x̄j(1−F (xj))

1−F (xj)+xjf(xj)
>

γî(x̄î) = γ−
î

(x̄î) = x̄î −
x̄î(1−F (xî))

1−F (xî)+xîf(xî)
, and the latter inequality cannot hold because x̄î > x̄j.

We must also have max{γî(x̄î), γ
−
î

(x̄î)} > γj(x̄j) = γ−j (x̄j) for any j 6= î. Otherwise we

would have γî(x̄î) = γ−
î

(x̄î) = γî(x̄î) = γ−
î

(x̄î) = x̄î −
x̄î(1−F (xî))

1−F (xî)+xîf(xî)
= γj(x̄j) = γ−j (x̄j) =

x̄j − x̄j(1−F (xj))

1−F (xj)+xjf(xj)
. But the latter cannot hold because x̄î > x̄j for all j 6= î. Also, note that

the configuration γ−
î

(x̄î) > γî(x̄î) = γj(x̄j) = γ−j (x̄j) for some j is ruled out as it belongs to

subcase (a)-(i).

Thus, we either have γî(x̄î) > γ−
î

(x̄î) = γj(x̄j) = γ−j (x̄j) for some j or min{γî(x̄î), γ
−
î

(x̄î)} >

γj(x̄j) = γ−j (x̄j) for any j 6= i, which are both encompassed by subcases (a)-(ii) and (b)-(ii).

In either case, by Lemma 3 we have qî(xî) = 1 for all xî > x̆î where x̆î is such that x̆î ≤ x̄i

and satisfies x̆î −
1−λî−F (x̆î)

f(x̆î)
= maxj 6=i γj(x̄j).

Lemma 3 establishes that the mechanism is completely determined by the profile of the

functions (virtual values) γj(xj) defined in (15) for j ∈ {1, ..., n} and xj ∈ [0, 1] and which

by definition depend only on the profile of the thresholds x̄j and Lagrange multipliers λj for

j ∈ {1, .., n}. So, to complete the proof of the Theorem, let us show that the two profiles sat-

isfying the already established optimal properties, ({x̄j, λj}j 6=î, x̄î, λî) and ({x̄j, λj}j 6=î, x̆î, λî),

induce the same probabilities of trading (q1(.), ..., qn(.)). . Note that the only difference be-

tween the two profiles is that the threshold value of bidder î it taken to be x̆î in the latter,

instead of x̄î in the former.

Indeed, note that changing bidder î’s threshold to x̆î from x̄î does not affect the virtual

39



value of any player j 6= î and also does not affect the virtual value of player î of type xî ∈

[0, x̆î). However, the virtual value of player î of type xî ∈ [x̆î, x̄î) changes from xî−
1−λî−F (xî)

f(xî)

to x̆î−
λîx̆î

1−F (x̆î)
, while the virtual value of player î of type xî ∈ [x̄î, 1] changes from x̄î−

λîx̄î
1−F (x̄î)

to x̆î −
λîx̆î

1−F (x̆î)
.

Recall that when player î’s threshold is equal to x̄î, we have qî(xî) = 1 for all xî > x̆î. So

to complete the proof, we only need to show that the new virtual value of any type xî s.t.

xi > x̆i is strictly greater than maxj 6=î γj(x̄j) i.e., x̆î −
λîx̆î

1−F (x̆î)
> maxj 6=i γj(x̄j).

The argument depends on the value of λî. If λî ≥
(1−F (xî))

2

1−F (xî)+xîf(xî)
, then for all xî ≤ x̄î we

have:
∂

(
xî−

λ
î
x
î

1−F (x
î
)

)
∂xî

= 1− λî

(1−F(xî))
2 (1− F (xî) + xîf (xî)) ≤ 1− (1−F (xî))

2(1−F(xî)+xîf(xî))
(1−F(xî))

2
(1−F (xî)+xîf(xî))

<

0, where the last inequality relies on the increasing hazard rate assumption. Therefore,

x̂î −
λîx̂î

1−F (x̂î)
> x̄î −

λix̄î
1−F (x̄î)

≥ maxj 6=î γj(x̄j), as required.

Finally, if λî <
(1−F (xî))

2

1−F (xî)+xîf(xî)
, then the fact that x̆î < x̄î and the increasing hazard rate

assumption imply that λî <
(1−F (x̆î))

2

1−F (x̆î)+x̆îf(x̆î)
. The last inequality is equivalent to

1−λ−F (x̆î)

f(x̆î)
>

λx̆î
1−F (x̆î)

, which again implies the desired result, as we have: x̆î −
λîx̆î

1−F (x̆î)
> x̄î −

λîx̄î
1−F (x̄î)

≥

maxj 6=i γj(x̄j).

Finally, note that the solution with the threshold value x̆î for player î is the appropriate

one because it satisfies x̆î = inf{xî|t̂i(xî) = mî}. Q.E.D.

Proof of Lemma 5: By Theorem 2, λi satisfies 0 < λi < 1 − F (x̄i) for all i. Since

γi(xi) = xi− 1−λ−F (xi)
f(xi

for xi < x̄i, it is immediate that γ′i(xi) > 0 if f ′(xi) ≥ 0. If f ′(xi) < 0,

then γ′i(xi) >
d
(
xi−

1−F (xi)

f(xi)

)
dxi

≥ 0. The last inequality holds by the monotone hazard rate

property. So, γi(xi) is increasing in xi, and since by Lemma 4 qi(xi) is increasing in γi(xi),

it follows that qi(xi) is increasing in xi. Finally, qi(x̄i) > qi(xi) for all xi < x̄i because

γi(x̄i) > γi(xi). Q.E.D.

Proof of Lemma 6: To prove the Lemma we argue by contradiction, so suppose that

x̄j > x̄i. Recall that the binding budget constraints of types x̄i and x̄j imply the following:

mi = x̄iqi(x̄i) −
∫ x̄i

0
qi(s)ds and mj = x̄jqj(x̄j) −

∫ x̄j
0
qj(s)ds. Using the above equations we
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have:

mj = x̄jqj(x̄j)−
∫ x̄j

0

qj(s)ds = x̄iqj(x̄j) +

∫ x̄j

x̄i

(qj(x̄j)− qj(s))ds−
∫ x̄i

0

qj(s)ds ≥ x̄iqj(x̄j)−
∫ x̄i

0

qj(s)ds

(60)

Note that the inequality in (60) follows from
∫ x̄j
x̄i

(qj(x̄j)− qj(s))ds ≥ 0, and the latter holds

because qj(s) is nondecreasing in s. So we will have established a contradiction to mi > mj

if we can show both of the following: (a) qj(x̄j) ≥ qi(x̄i); (b) qj(s) ≤ qi(s) for all s ∈ [0, x̄i].

Now, (a) holds because, as established in Theorem 2, x̄j > x̄i implies that γj(x̄j) > γi(x̄i).

In turn, the latter implies that qj(x̄j) > qi(x̄i) by Lemma 4.

Finally, to establish that qj(s) ≤ qi(s) for all s ∈ [0, x̄i], note that by Theorem 2, x̄j > x̄i

implies that λj < λi. Therefore, γj(x) < γi(x), and hence by Lemma 4 qj(x) ≤ qi(x) for all

x ∈ [0, x̄i]. Q.E.D.

Proof of Lemma 7: It is well-known (see e.g. Proposition 1.3.7, page 76, Chapter 1

in Bertsekas (2001)) that the strong duality property holds and (x∗, λ∗) is the solution to

both the primal problem, maxx minλ L(x̄, λ), and the dual problem, minλ maxx L(x̄, λ), if

and only if (x∗, λ∗) is a saddle point of the Lagrangian (19) i.e.,

L(x, λ∗) ≤ L(x∗, λ∗) ≤ L(x∗, λ) (61)

To establish the existence of a saddle point, we will make use of the Lagrange dual function

g(λ) ≡ maxx̄∈[0,1]n L(λ, x̄). The solution x̄(λ) to the problem maxx̄∈[0,1]n L(λ, x̄) is charac-

terized in Theorem 2. In particular, x̄(λ) is the inverse of the function λ(x̄) given in the

statement of Theorem 2. So, g(λ) = L(λ, x̄(λ)).

By Danskin’s Theorem (Bertsekas (2001), Ch. 1, p. 131), the Lagrange dual function

g(λ) is convex and hence has a unique minimizer which we denote by λ∗. Define x∗ = x̄(λ∗).

Let us show that the saddle-point property (61) holds for the pair (x∗, λ∗).

Since x∗ = x̄(λ∗), the first inequality in (61), L(x, λ∗) ≤ L(x∗, λ∗), holds for all x ∈ [0, 1]n

by Theorem 2.

To show that L(x̄(λ∗), λ∗) ≤ L(x̄(λ∗), λ) we start by arguing that L(x̄, λ) is convex

in λ for fixed x̄. To see this, note that by definition (15), the virtual value function
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γi(xi) is linear in λi. Since max{0,maxi{γi(xi)}} is convex in (γ1(x1), ..., γn(xn)), it fol-

lows that max{0,maxi{γi(xi)}} is also convex in (λ1, ..., λn). The integration operator

over x preserves convexity of the integrand max{0,maxi{γi(xi)}}
∏

i f(xi) in the parameters

(λ1, ..., λn). Therefore, the Lagrangian L (x, λ) is convex in (λ1, ..., λn).

The convexity of L(x̄(λ∗), λ) in λ implies that it has a unique minimum which can be

found as a unique solution to the first-order conditions ∂L(x̄(λ∗),λ+εh)
∂h ε=0

≥ 0 for all h ∈ Rn.

Again by Danskin’s Theorem (Bertsekas (2001), Ch. 1, p. 131), ∂L(x̄(λ),λ+εh)
∂h ε=0

= ∂g(λ+εh)
∂h ε=0

for all λ, h. Since by definition λ∗ = arg minλ g(λ), we have ∂g(λ∗+εh)
∂h ε=0

≥ 0. So, λ∗ =

arg minλ L(x̄(λ∗), λ), and hence the second inequality in (61) holds for (x∗, λ∗). This com-

pletes the proof that (x∗, λ∗) is a saddle point. Q.E.D.

Proof of Theorem 3: Since our problem has strong duality property, its solution can

be obtained by minimizing the dual Lagrange function g(λ) ≡ L(λ, x̄∗(λ)) with respect to λ.

Since the function g(λ) is convex in the vector λ (by Danskin’s Theorem (Bertsekas

(2001), Ch. 1, p.131; see also Boyd and Vandenberghe (2009), p. 216), and so the minimum

of g(λ) is unique and is attained at such λ where the the first-order conditions g′(λ;h) ≡
∂L(λ+εh,x̄(λ))

∂ε ε=0
≥ 0 hold for any “direction” h ∈ Rn. In the rest of the proof we focus on

these first-order conditions.

To begin with, consider i such that x̄i 6= x̄j for any j 6= i. In this case, the only variation

h in the vector λ that we need to consider to characterize the optimal λi involves a change

in λi only. So we have the following regular first-order condition:

∂g(λ)

∂λi
= mi − x̄i

∫
x−i∈[0,1]n−1:γi(x̄i)>maxj 6=i γj(xj)

d
∏
j 6=i

F (xj)

+

∫ x̄i

0

∫
x−i∈[0,1]n−1:γi(s)>max{0,maxj 6=i γj(xj)}

d
∏
j 6=i

F (xj)ds = mi − x̄iqi(x̄i) +

∫ x̄i

0
qi(s)ds (62)

The second equality in (62) holds by Lemma 4. Namely, for almost all s ∈ [0, x̄i), the

set of x−i such that γi(s) = maxj 6=i γj(xj) has measure zero. The same is true for s =

x̄i since x̄i 6= x̄j for any j 6= i. Therefore by Lemma 4 for all s ∈ [0, x̄i], qi(s) =∫
x−i∈[0,1]n−1:γi(s)≥max{0,maxj 6=i γj(xj)}

dF (x−i) =
∫
x−i∈[0,1]n−1:γi(s)>max{0,maxj 6=i γj(xj)}

dF (x−i). Sub-

stituting this into (62) yields (24).

42



Next suppose that there is a “cluster” {k1, ..., kl} ⊂ {1, ..., n}, with l ∈ {2, ..., n}, such

that x̄k1 = ... = x̄kl = x̄c 6= x̄j for any j 6∈ {k1, ..., kl}. Since the threshold x̄c, the corre-

sponding λc and the set of bidders in the cluster are all chosen optimally, no variation from it

should decrease the value of the Lagrange dual function g(λ). Formally, we have to consider

all variations of the vector λ of the form ε×IJ where J ∈ {k1, ..., kl} is some subset of bidders

in the “cluster” and IJ is an n-vector with entries corresponding to bidders in J equal to

1 and the rest of the entries equal to zero. Then the following first-order conditions have

to hold for any J : ∂g(λ+εIJ )
∂ε ε=0+

≥ 0 and ∂g(λ+εIJ )
∂ε ε=0− ≤ 0. Although there are 2l − 1 such

subsets J ∈ {k1, ..., kl}, it will be sufficient to establish only 2l of such first-order conditions,

as we will see below.

So, let J = {k′1, ..., k′r} ⊂ {k1, ..., kl}. Then we have: ∂g(λ+ε×IJ )
∂ε |ε=0+

=

∑
h=1,...,r

mk′h
+

∫
x: maxh∈{1,...,r} γk′

h
(xk′

h
)>max{0,maxj 6∈{k′1,...,k

′
r}
γj(xj)}

∂maxh=1,...,r γk′h(xk′
h

)

∂λk′h |λk′
h

=λc

d
∏
i

F (xi)

=
∑

h=1,...,r

mk′h
+

∫ x̄c

0

∫
x−k′

h
:γk′

h
(s)>max{0,maxj 6=k′

h
γj(xj)}

∂γk′h(s)

∂λk′h |λk′
h

=λc

f(s)d
∏
j 6=k′h

F (xj)ds


+ F (x̄c)l−r

1− F (x̄c)r

1− F (x̄c)

∫ 1

x̄c

∫
x−k1...−kl∈[0,1]n−l:γk′1

(x̄c)>maxj 6∈{k1,...,kl} γj(xj))

∂γk′1(s)

∂λk′1 |λk′1
=λc

f(s)d
∏

j 6∈{xk1
,...,xkl}

F (xj)ds =

=
∑

h=1,...,r

mk′h
+

∑
h=1,...,r

∫ x̄c

0

∫
x−k′

h
∈[0,1]n−1:γk′

h
(s)>max{0,maxj 6=k′

h
γj(xj)}

d
∏
j 6=k′h

F (xj)ds

− x̄cF (x̄c)l−r
1− F (x̄c)r

1− F (x̄c)

∫
x−k1...−kl∈[0,1]n−l:γk′1

(x̄c)>maxj 6∈{k1,...,kl} γj(xj)
d

∏
j 6∈{xk1

,...,xkl}

F (xj)ds

=
∑

h=1,...,r

mk′h
+ r

∫ x̄c

0
qk′1(s)ds− x̄cF (x̄c)l−r

1− F (x̄c)r

1− F (x̄c)
Prob[γk′1(x̄c) > max

j 6∈{k1,...,kl}
γj(xj)] (63)

Note that the first equality in (63) holds by definition.

The factor 1−F (x̄c)r in the last term after the second equality reflects conditioning on the event

that at least one of the bidders in J = {k′1, ..., k′r} has a value above x̄c, and the factor F (x̄c)l−r

reflects conditioning on the event that the bidders in C(x̄c)\J have values below x̄c. We use γk′1(s)

as the integrand in this term, because γk′1(s) = γk′h(s) for all h ∈ {1, ..., r}.

To obtain the third equality we use the definition (15) and, in particular,
∂γk′1

(s)

∂λk′1
= 1

f(x̄c) if

s < x̄c and
∂γk′1

(s)

∂λk′1
= − x̄c

1−F (x̄c) if s > x̄c. The final equality uses Lemma 4.
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By a similar computation, we obtain: ∂g(λ+ε×IJ )
∂ε |ε=0− =

∑
h=1,...,r

mk′h
+

∫
x: maxh∈{1,...,r} γk′

h
(xk′

h
)≥max{0,maxj 6∈{k′1,...,k

′
r}
γj(xj)}

∂maxh=1,...,r γk′h(xk′
h

)

∂λk′h |λk′
h

=λc

d
∏
i

F (xi)

=
∑

h=1,...,r

mk′h
+

∫ x̄c

0

∫
x−k′

h
:γk′

h
(s)≥max{0,maxj 6=k′

h
γj(xj)}

∂γk′h(s)

∂λk′h |λk′
h

=λc

f(s)d
∏
j 6=k′h

F (xj)ds


+

1− F (x̄c)r

1− F (x̄c)

∫ 1

x̄c

∫
x−k1...−kl∈[0,1]n−l:γk′1

(x̄c)≥maxj 6∈{k1,...,kl} γj(xj))

∂γk′1(s)

∂λk′1 |λk′1
=λc

f(s)d
∏

j 6∈{xk1
,...,xkl}

F (xj)ds =

=
∑

h=1,...,r

mk′h
+

∑
h=1,...,r

∫ x̄c

0

∫
x−k′

h
∈[0,1]n−1:γk′

h
(s)≥max{0,maxj 6=k′

h
γj(xj)}

d
∏
j 6=k′h

F (xj)ds

− x̄c 1− F (x̄c)r

1− F (x̄c)

∫
x−k1...−kl∈[0,1]n−l:γk′1

(x̄c)≥maxj 6∈{k1,...,kl} γj(xj)
d

∏
j 6∈{xk1

,...,xkl}

F (xj)ds

=
∑

h=1,...,r

mk′h
+ r

∫ x̄c

0
qk′1(s)ds− x̄c 1− F (x̄c)r

1− F (x̄c)
Prob[γk′1(x̄c) > max

j 6∈{k1,...,kl}
γj(xj)] (64)

The only difference between ∂g(λ+ε×IJ )
∂ε |ε=0− in (64) and ∂g(λ+ε×IJ )

∂ε |ε=0+
in (63) is that the

factor F (x̄c)l−r in the very last term of ∂g(λ+ε×IJ )
∂ε |ε=0+

does not appear in the corresponding

term of ∂g(λ+ε×IJ )
∂ε |ε=0− in (64). This is due to the fact that a negative variation (ε < 0) in λc

does increase the value of γk′h(x) for x > x̄c, and so maxh∈{1,...,l} γkh(x) changes irrespective of

whether the maximal value among the l− r bidders in the cluster C(x̄c) who are not in set J

is above or below x̄c. On the other hand, a positive variation (ε > 0) in λc does decrease the

value of γk′h(x) for x > x̄c, and so the maxh∈{1,...,l} γkh(x) changes only if the maximal value

among the other l − r bidders in the cluster is below x̄c. The latter occurs with probability

F (x̄c)l−r, the factor in the very last term of ∂g(λ+ε×IJ )
∂ε |ε=0+

.

Note that the last equality in both (63) and (64) uses the expression for qk′h(x) in (17) in

Lemma 4. Namely, for almost all s ∈ [0, x̄c), the set of x−k′h such that γk′h(s) = maxj 6=k′h γj(xj)

has measure zero. Therefore, for all h ∈ {1, ..., r} we have: qk′h(s) = qk′1(s) =∫
x−k′

h
∈[0,1]n−1:γk′

h
(s)≥max{0,maxj 6=k′

h
γj(xj)} dF (x−k′h) =

∫
x−k′

h
∈[0,1]n−1:γk′

h
(s)>max{0,maxj 6=k′−h γj(xj)}

dF (x−k′h).

Likewise, Prob[γk′1(x̄c) > maxj 6∈{k1,...,kl} γj(xj)] = Prob[γk′1(x̄c) ≥ maxj 6∈{k1,...,kl} γj(xj)].

Next, we need to consider all possible subsets J of the cluster C(x̄c) = {k1, ..., kl}, since

the first-order conditions ∂g(λ+εIJ )
∂ε ε=0+

≥ 0 and ∂g(λ+εIJ )
∂ε ε=0− ≤ 0 have to hold for any J .

First, suppose that J = {k1, ..., kl}. In this case (63) and (64) are equal to each other
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and so we have:

∂g(λ+ ε× I{k1,...,kl}))

∂ε |ε=0+
=
∂g(λ+ ε× I{k1,...,kl}))

∂ε |ε=0−
=∑

h=1,...,l

mkh + l

∫ x̄c

0

qk1(s)ds− x̄c1− F (x̄c)l

1− F (x̄c)
Prob[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj(xj)] = 0

This yields equation (25).

To obtain (26), note that by (63)
∂g(λ+ε×I{kr+1,...,kl}))

∂ε |ε=0+
≥ 0 can be rewritten as:

mkr+1 + ...+mkl

l − r
− x̄cF (x̄c)r

l − r
1− F (x̄c)l−r

1− F (x̄c)
Prob[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj(xj)] ≥ −

∫ x̄c

0

qk1(s)ds,

while by (64)
∂g(λ+ε×I{k1,...,kr}))

∂ε |ε=0− ≤ 0 can be rewritten as follows:

mk1 + ...+mkr

r
− x̄c1

r

1− F (x̄c)r

1− F (x̄c)
Prob[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj(xj)] ≤ −

∫ x̄c

0

qk1(s)ds.

Combining the last two inequalities yields (26) for any r ∈ {2, ..., l − 1}.

To complete the proof let us show that (25) and (26) together imply (63) and (64). Let us

fix the size #J = r of J . By inspection of (63), if ∂g(λ+ε×IJ ))
∂ε |ε=0+

≥ 0 for J = {kl−r+1, ..., kl}

i.e., J including r lowest-budget bidders from C(x̄c), then this condition also holds for any

other J of size r. Likewise, by inspection of (64), if ∂g(λ+ε×IJ ))
∂ε |ε=0− ≤ 0 for J = {k1, ..., kr}

i.e., J including r highest-budget bidders from C(x̄c), then this condition also holds for any

other J of size r.

Therefore, it is sufficient to show that (63) holds for the subsets J of C(x̄c) of size

r ∈ {2, ..., l−1} consisting of the lowest-budget bidders i.e. for J = {kl−r+1, ..., kl},. Similarly,

it is sufficient to show that (64) holds for the subsets J consisting of l− r bidders k1, ..., kl−r

who have the highest budgets in the cluster k1, ..., kl.

To obtain (63), we use (25) and (26) to yield:(
mkl−r+1

+ ...+mkl

)
l

l − r
≥ − x̄c

1− F (x̄c)

(
1− F (x̄c)r − rF (x̄c)r

1− F (x̄c)l−r

l − r

)
Prob.[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj]

+
∑

j=1,...,l

mkj = − x̄c

1− F (x̄c)

(
1− F (x̄c)r − rF (x̄c)r

1− F (x̄c)l−r

l − r

)
Prob.[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj]

+ x̄c
1− F (x̄c)l

1− F (x̄c)
Prob.[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj]− l

∫ x̄c

0

qk1(s)ds =

=
l

l − r
x̄cF (x̄c)r

1− F (x̄c)l−r

1− F (x̄c)
Prob.[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj]− l

∫ x̄c

0

qk1(s)ds (65)
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The inequality in (65) holds by (26), the first equality holds by (25), the second equality

holds by rearrangement and implies that (63) holds.

Similarly, we have:

(mk1 + ...+mkr) l

r
≤ x̄c

(
(l − r) 1− F (x̄c)r

(1− F (x̄c)) r
−
F (x̄c)r

(
1− F (x̄c)l−r

)
(1− F (x̄c))

)
Prob.[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj]

+
∑

j=1,...,l

mkj =
x̄c

1− F (x̄c)

(
(l − r)1− F (x̄c)r

r
− F (x̄c)r

(
1− F (x̄c)l−r

))
Prob.[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj]

+ x̄c
1− F (x̄c)l

1− F (x̄c)
Prob.[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj]− l

∫ x̄c

0

qk1(s)ds =

=
l

r
x̄c

1− F (x̄c)r

1− F (x̄c)
Prob.[γk1(x̄c) > max

j 6∈{k1,...,kl}
γj]− l

∫ x̄c

0

qk1(s)ds (66)

The inequality in (66) holds by (26). The first equality holds by (25). The second equality

holds by rearrangement and implies that (64) holds. Q.E.D.

Proof of Theorem 4: “Only if” Part (Necessity): Suppose that the optimal mechanism

is a top auction with threshold x̄1 = ...x̄n = x̄t and reservation value rt. By Theorem 3, the

top auction has to satisfy condition (26).

By Definition 1, in the top auction we have: qi(s) = 0 for xi < rt, qi(xi) = F n−1(xi) for

xi ∈ [rt, x̄
t), and (29), (30) and (31) hold. Substituting this into (26) we obtain (32).

“If” Part (Sufficiency): Suppose that condition (32) holds for all k ∈ {1, ..., n − 1}

and x̄t defined by (29). By inspection (29) is equivalent to (25) and (32) is equivalent to (26)

in Theorem 3 when x̄c = x̄t and the number of bidders in the cluster l is equal to n. Since

conditions (25) and (26) are necessary and sufficient for the optimality of a mechanism, we

conclude that the top auction is optimal. Q.E.D.

Proof of Theorem 5:

Theorem 2 shows that the optimal mechanism is uniquely defined by the vector of thresh-

olds (x̄1, ..., x̄n). By Theorem 4, the failure of (32) implies that we cannot have x̄1 = ... = x̄n

in the optimal mechanism. By Lemma 6, x̄1 ≥ x̄2 ≥ ... ≥ x̄n, which establishes the ordering

of the thresholds and the fact that x̄i > x̄i+1 for some i.

By Theorem 3, this vector of thresholds is uniquely defined by conditions (24), (25) and

(26) in which the probabilities of trading qi(xi) are given by (17) in Lemma 4 for xi ∈ [0, x̄i]
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when x̄i 6= x̄j for all j 6= i, and for xi ∈ [0, x̄i) when x̄i = x̄j for some j 6= i, with γi(x) given

by (15) and λi characterized in Theorem 2. Q.E.D.

Proof of Lemma 8: Since the bidder’s valuations are identically distributed, the seller’s

revenue function π(m1, ...,mn) is exchangeable i.e. π(m1, ...,mn) = π(P (m1, ...,mn)) where

P (m1, ...,mn) is a permutation of (m1, ...,mn). Let the set of the permutations of (m1, ...,mn)

be denoted by PMm. Its cardinality (the total number of permutations) is equal to n!.

Fixing some budget profile (m1, ...,mn) such that
∑

imi = M , by concavity of π(.) we

obtain:

π

(
1

M
, ...,

1

M

)
≥

∑
P∈PMm

π(P )

#PMm
= π(m1, ...,mn)

Q.E.D.
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Online Appendix

Fixed-Point Proof of the Existence of a Budget-Handicap Auction

Mechanism with Two Bidders.

Let us show that the system of two equations (35) and (36) has a solution

(x̄1, x̄2). First, let x̂1 be the unique solution in x to:

m1 = x−
∫ x

r:r=

(
1−F (r)+

(1−F (x))2

1−F (x)+xf(x)

)
f(r)

F (s)ds (67)

Such x̂1 exists, is unique and lies in (x̄t, 1). This follows from three facts: (i)

the right-hand side of (67) is increasing in x, (ii) equation (34) and m1−m2 >

x̄(1 − F (x̄)) imply that m1 > x̄t −
∫ x̄t
r:r=

1−F (r)− (1−F (x̄))2

1−F (x̄t)+x̄tf(x̄t)
f(r)

F (x)dx; and (iii)

m1 < 1−
∫ 1

r′:r′= 1−F (r′)
f(r′)

F (x)dx by asssumption.

Next, let us construct a mapping (x̃1(.), x̃2)(.)) : {(x1, x2)|x1 ∈ [m1, x̂1], x2 ∈

[m2, x1]} 7→ {(x1, x2)|x1 ∈ [m1, x̂1], x2 ∈ [m2, x1]} as follows:

x̃1(x1, x2) = m1 +

∫ x1

0

∫
y−

F (x1)+f(x̄1)(x̄1−x̄2+
x̄2(1−F (x2))

1−F (x2)+x2f(x2))−F (y)

f(y) ≥max

0,s−
1−F (s)− (1−F (x2))2

(1−F (x2)+x2f(x2))
f(s)


dF (s)dy

(68)

x̃2(x1, x2) = min{x̃1(x1, x2), z(x1, x2)} where

z(x1, x2) =
1

F (x1)
m2 +

∫ x2

0

∫
s−

1−F (s)− (1−F (x2))2

(1−F (x2)+x2f(x2))
f(s) ≥max

{
0,y−

F (x1)+f(x̄1)(x̄1−x̄2+
x̄2(1−F (x2))

1−F (x2)+x2f(x2))−F (y)

f(y)

} dF (y)ds

(69)

The right-hand side of (68) is increasing in x2 and, since x2 ≤ x1, does not

exceed x̂1 defined in (67). Hence, x̃1(x1, x2) ∈ [m1, x̂1] for all (x1, x2) ∈

[m1, x̂1]× [m2, x1]. Also, by (69), x̃2(x1, x2) ∈ [m2, x̂1(x1, x2)] for all (x1, x2) ∈

[m1, x̂1]× [m2, x1]. Since the right-hand sides of (68) and (69) are continuous

1



in (x1, x2), by Brower’s fixed point theorem there exists (x̄1, x̄2) such that

x̄1 = x̃1(x̄1, x̄2), x̄2 = x̃2(x̄1, x̄2).

Finally, let us show that x̄2 < x̄1 and so x̄2 = z(x̄1, x̄2). Suppose otherwise

i.e., x̄2 = x̄1. In this case, x̄1 has to solve (67) for x, so we obtain x̄2 = x̄1 = x̂1.

Then (69) becomes

m2 = z(x̂1, x̂1)F (x̂1)−
∫ x̂1

r:r=
1−F (r)

(1−F (x̂1))2

1−F (x̂1)+x̂1f(x̂1)
f(r)

F (s)ds (70)

Using equation (70), let us show that z(x̂1, x̂1) < x̂1. To see this, first note

that m2 < x̄tF (x̄t) −
∫ x̄t
r:r=

1−F (r)− (1−F (x̄t))2

1−F (x̄t)+x̄tf(x̄t)
f(r)

F (x)dx. This follow from m1 −

m2 > x̄t(1 − F (x̄t)) and the fact that x̄t satisfies (34). Further, because

x̂1 > x̄t and xF (x)−
∫ x
r:r=

1−F (r)− (1−F (x))2

1−F (x)+xf(x)
f(r)

F (s)ds is increasing in x, we obtain:

m2 < x̂1F (x̂1)−
∫ x̂1

r:r=
1−F (r)− (1−F (x̂1))2

1−F (x̂1)+x̂1f(x̂1)
f(r)

F (s)ds.

The last inequality implies that z(x̂1, x̂1) < x̂1. So, (x̂1, x̂1) is not a fixed

point, and hence the fixed point solving the system of equations (35) and

(36) satisfies x̄2 < x̄1 and so x̄2 = z(x̄1, x̄2). Q.E.D.
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