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ABSTRACT

We study the validity of the bootstrap for the “plug-in” Anderson and Rubin (1949) (AR) test of

subvector hypotheses in linear IV regressions where structural parameters may not be identified.

Our analysis mainly focuses on two plug-in subset AR statistics–the first uses the restricted limited

information maximum likelihood (LIML) estimator and the second utilizes the restricted two-stage

least squares (2SLS) estimator. We provide a characterization of the asymptotic distributions of both

statistics without and with weak instruments. Our results show that the asymptotic distributions of

these statistics are non-standard when the nuisance parameters that are not specified by the subset

null hypothesis are not identified, so correction to usual asymptotic critical values are needed. For

this, we first provide a bootstrap procedure similar to that of Moreira et al. (2009). We show that

this bootstrap provides a high-order refinement of the null distributions of the statistics when the

nuisance parameters are identified, but it is inconsistent if these parameters are not identified. We

thus proposed a Bonferroni-based size adjustment that yields tests with correct asymptotic size,

even when the nuisance parameters are not identified. We present a Monte Carlo experiment that

confirms our theoretical findings.
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1. Introduction

There is now a growing interest on inference procedures for testing subset hypotheses in IV regres-

sions where structural parameters may not be identified.1 This literature falls generally into two

categories: (1) the projection method, and (2) the “plug-in” principle.

The projection method consists of inverting an identification-robust statistic2 to build confidence

regions for the full set of the structural parameters, and then uses the projection technique to ob-

tain confidence sets for the subset of parameters of interest. In addition to being robust to weak

instruments, the projection technique based on the Anderson and Rubin (1949) statistic also enjoys

robustness to instrument omission in the first-stage regression. However, it can yield a test with low

power, especially when too many instruments are used. The plug-in principle consists of replacing

the nuisance parameters that are not specified by the hypothesis of interest by estimators.3 It is

now well understood that the plug-in based method outperforms their projection counterpart, and

in addition, never over-rejects the true parameter values if the nuisance parameters not specified by

the null hypothesis of interest are identified. However, theplug-in based method does not perform

well when the corresponding plug-in estimator is inconsistent. This particularly the case when the

nuisance parameters are not identified. Recently, Guggenberger et al. (2012) and Guggenberger

and Chen (2011) show that the plug-in subset AR test is asymptotically robust to identifying as-

sumptions, while the plug-in Kleibergen (2002) (K) test is sensitive to such assumptions. However,

even though the plug-in subset AR test is asymptotically robust to weak instruments (in the sense of

level control), it can be overly conservative thus yieldinga test with low power when the nuisance

parameters are not identified; see Doko Tchatoka (2014).

In this paper, we focus on linear structural models and provide a characterization of the asymp-

totic distributions of the plug-in AR statistics based on the restricted LIML and 2SLS estimators,

without and with weak instruments. Our analysis provides some new insights and extensions of

earlier studies. In particular, we show that both AR subset statistics are asymptotically pivotal when

the nuisance parameters are identified, but they have nonstandard asymptotic distributions when

these parameters are not identified4–so correction to usual asymptotic critical values are needed.

For this, we first investigate the validity of the bootstrap similar to that of Moreira, Porter and

Suarez (2009). We show that this bootstrap provides a high-order refinement of the null distributions

of the statistics when the nuisance parameters are identified, but it is inconsistent if these parameters

are not identified. This contrasts with Moreira et al. (2009)who show that bootstrap is valid for the

AR statistic of the null hypothesis specified on the full vector of structural parameters, whether

1For example, see Stock and Wright (2000), Dufour and Jasiak (2001), Kleibergen (2004, 2008), Dufour and Taamouti
(2005, 2007), Startz, Nelson and Zivot (2006), Guggenberger and Chen (2011), Guggenberger, Kleibergen, Mavroeidis
and Chen (2012), and Kleibergen (2015).

2See Dufour (1997), Dufour and Jasiak (2001), Dufour and Taamouti (2005, 2007).
3See Stock and Wright (2000), Kleibergen (2004, 2008), and Startz et al. (2006).
4Similar to Guggenberger et al. (2012) and Doko Tchatoka (2014).
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identification is strong or weak. The inconsistency of bootstrap for subset AR statistics studied is

mainly due to its inability to mimic theconcentration factorthat characterizes the strength of the

identification of the nuisance parameters. We thus proposeda Bonferroni-based size adjustment

that yields tests with correct asymptotic size, even when the nuisance parameters are not identified.

We present a Monte Carlo experiment that confirms our theoretical findings.

This paper is organized as follows. Section 2 presents the setting, the model assumptions, and

the subset AR statistics studied. Section 3 characterizes the limiting behavior of these statistics.

Section 4 presents the proposed bootstrap method and studies its asymptotic validity. A Monte

Carlo experiment on the finite-sample performance of both the standard and bootstrap subset AR

tests is presented in Section 5, while Section 6 deals with the Bonferroni-based size adjustment.

Conclusions are drawn in Section 7. The auxiliary lemmata and proofs are provided in the appendix.

Throughout the paper,Iq stands for the identity matrix of orderq. For any full-column rank

n×mmatrixA, PA = A(A′A)−1A′ is the projection matrix on the space ofA, andMA = In−PA. The

notationvec(A) is thenm× 1 dimensional column vectorization ofA. B > 0 for a m×m squared

matrix B means thatB is positive definite, andvech(B) is the 1
2m(m+1) dimensional half-column

vectorization ofB. Convergence almost surely is symbolized by “a.s.” , “
p→” stands for convergence

in probability, while “
d→” means convergence in distribution. The usual orders of magnitude are

denoted byOp(.), op(.), O(1), ando(1). ‖U‖ denotes the usual Euclidian or Frobenius norm for

a matrixU. For any setB, ∂B is the boundary ofB and (∂B)ε is the ε-neighborhood ofB.

Finally, sup
ω ∈Ω

| f (ω)| is the supremum norm on the space of bounded continuous real functions,

with topological spaceΩ .

2. Setting

Let (yi ,Xi,Wi ,Z′
i ) , i = 1, . . . , n be a sample ofn observations, whereyi is observationi on an

outcome variable,Xi,Wi are observationsi on (possibly) endogenous regressors, andZi is a vector

of observationsi on instrumental variables. The usual linear IV regression,written in matrix form,

consists of the following structural and reduced-form equations:

y = Xβ +Wγ + ε, (2.1)

(X,W) = Z(Πx : Πw)+ (Vx,Vw), (2.2)

wherey∈R
n, X ∈R

n,W ∈R
n, andZ ∈R

n×L, (ε : Vx : Vw) ∈R
n×R

n×R
n are unobserved errors,

β ,γ ∈ R, andΠx,Πw ∈ R
L are unknown parameters. We assume thatL ≥ 2 is fixed, and denote:

Ȳ = [y,X,W] = [Ȳ1, . . . ,Ȳn]
′, X n =

{
X

′
1 , X

′
2 , . . . , X

′
n

}′

Rn = vech
(
X

′
nXn

)
= ( f1(Xn), f2(Xn), . . . , fK(Xn))

′ , (2.3)
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whereXi = (yi ,Xi,Wi ,Z′
i ) and fp(·) [p = 1, . . . , K = 1

2(L+ 2)(L+ 3)] are elements of the matrix

X ′
nXn.

We are interested in testing the subset hypothesis

H0 : β = β 0, (2.4)

whereβ 0 ∈ R is fixed andγ is a nuisance parameter. In the literature, two procedures have often

been used to assessH0 and build confidence regions forβ 0: the projection-based technique,5 and the

conventional plug-in based principle.6 It is now well known that the plug-in principle outperforms

their projection technique counterpart [for example, see Guggenberger et al. (2012)], so we only

focus on the plug-in principle in this study.

To be more specific, consider the problem of testing joint hypothesisH(β0,γ0) : β = β 0, γ = γ0

in (2.1)–(2.2). The well known Anderson and Rubin (1949) (AR) test of this joint hypothesis is

given by

ARn(β 0,γ0) =
1
L

∥∥S̄n(β 0,γ0)
∥∥2

, (2.5)

whereS̄n(β 0,γ0)= (Z′Z)−1/2Z′Ȳr̄(r̄ ′Ω̂Y r̄)−1/2, Ω̂Y = 1
n−LȲ′MZȲ, and ¯r =(1,−β 0,−γ0)

′. The plug-

in subset AR statistic forH0 in (2.4) is then defined as

ARn(β 0, γ̃) = min
γ∈R

ARn(β 0,γ), (2.6)

where γ̃ =: argminγ∈RARn(β 0,γ). It is known from the literature on simultaneous equation that

γ̃ = γ̃
LIML

in (2.6), wherẽγ
LIML

is the restricted LIML estimator ofγ underH0, i.e.

γ̃
LIML

=
[
W′(PZ − κ̄LIML MZ)W

]−1
W′ (PZ − κ̄LIML MZ)(y−Xβ0), (2.7)

κ̄LIML = κ̃LIML/(n− L) and κ̃LIML is the smallest root of the characteristic polynomial|κΩ̂W −
Ỹ(β 0)

′PZỸ(β 0)|= 0. So, the statisticARn(β 0, γ̃) in (2.6) can also be expressed as

ARn(β 0, γ̃LIML
) =

1
L

∥∥S̃n(β 0, γ̃LIML
)
∥∥2

, (2.8)

where S̃n(β 0, γ̃LIML
) = (Z′Z)−1/2Z′Ỹ(β 0)r̃LIML (r̃

′
LIML

Ω̂W r̃LIML)
−1/2, Ỹ(β 0) = [ỹ(β 0) : W], ỹ(β 0) =

y−Xβ 0, Ω̂W = 1
n−LỸ(β 0)

′MZỸ(β 0), and ˜rLIML = (1,−γ̃
LIML

)′. It is often the case that alternative

restrictedk-class estimators ofγ are used in (2.6); for example, see Startz et al. (2006). Whenγ
is identified, thesek-class estimators yield statistics that are asymptotically equivalent to the one in

5See Dufour and Jasiak (2001) and Dufour and Taamouti (2005, 2007)
6See Stock and Wright (2000), Kleibergen (2004, 2008), Startz et al. (2006), Mikusheva (2010), Guggenberger et al.

(2012), Doko Tchatoka (2014), and Kleibergen (2015).
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(2.8). However, ifγ is not identified, the behavior of these statistics can substantially differ from that

of the statistic in (2.8); for example, see Doko Tchatoka (2014) for the case of the restricted 2SLS

estimator. Therefore, it is interesting to also study the properties of these statistics, especially when

the identification ofγ is weak. In this paper, in addition to the subset AR statisticwith the restricted

LIML estimator, we also consider the one with the restricted2SLS estimator. Both statistics can be

expressed in a unified way as

ARn(β 0, γ̃ j) =
1
L

∥∥S̃n(β 0, γ̃ j)
∥∥2

, j ∈ {LIML, 2SLS} , (2.9)

whereγ̃2SLSis obtained by settinḡκ2SLS≡ κ̄LIML = 0 in (2.7).

In order to characterize the asymptotic null distributionsof the statistics in (2.9), it will be useful

to consider the following assumptions on the model variables, whereE[·] denotes the expectation

with respect to the relevant probability measure and

ΣU =

[
σ εε σ ′

Vε

σVε ΣV

]
, Σ =

[
σ εε σVwε

σVwε σVwVw

]
,

ΣV =

[
σVxVx

σVxVw

σVxVw
σVwVw

]
, σVε = (σVxε , σVwε )

′. (2.10)

Assumption 2.1 (ui ,Vxi,Vwi,Z′
i )
′ , i = 1, . . . ,n, are i.i.d. with common distribution F.

Assumption 2.2 The vectors Ui = (ui ,Vxi,Vwi)
′, i = 1, . . . , n, have zero means and the same(finite)

nonsingular covariance matrix:

E[UiU
′
i ] = ΣU > 0, i = 1, . . . , n,

whereΣU is defined in(2.10).

Assumption 2.3 E[ZiU ′
i ] = 0, E[ZiZ′

i ] =: QZ > 0, andE
[
vec(ZiU ′

i )(vec(ZiU ′
i ))

′] = ΣU ⊗QZ for

all i = 1, . . . , n.

Assumption 2.4 (i) E[‖Rn‖2+r ] < ∞ for some r> 0, and (ii) limsup‖t‖→∞ | E [exp(it ′Rn)] |< 1,

wherei=
√
−1 and Rn is defined in(2.3).

Assumption 2.5 As the sample size n converges to infinity, we have:

n−1/2vec
[
Z′(ε,Vw)

] d→ vec
[
ψZε , ψZVw

]
∼ N [0, Σ ⊗QZ] ,

whereΣ is defined in(2.10) and⊗ denotes the Kronecker product of two matrices.
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Assumption2.1 is commonly used in the IV literature; for example, see Guggenberger et al.

(2012). The distributionF may depend onn, but for convenience we writeF rather thanFn where

there is no confusion.

Assumptions2.2and2.3are also common in the IV literature. While Assumption2.2 requires

that model errors have mean zero and second finite moments, Assumption2.3 state the (usual)

orthogonality condition between the errors and IVs, along with the existence of the same (finite)

second moments for the instrument vectorZi, i = 1, . . . ,n.

Assumptions2.4-(i) and -(ii) are similar to Assumptions 2-3 in Moreira et al. (2009) withr =

s− 2 ands≥ 3. While (i) requires thatRn has second moments or greater, (ii) imposes that the

characteristic function ofRn be bounded above by 1. In particular, the second moments ofRn

exist if E(‖Xn‖
2(r+2)

) < ∞ for somer > 0. The bound on the characteristic function in (ii) is the

commonly used Cramér’s condition [see Bhattacharya and Ghosh (1978)].

Assumption2.5holds by the central limit theorem (CLT) property; for example, see Staiger and

Stock (1997), Kleibergen (2002, 2004), Guggenberger et al.(2012).

Now, let θ = (γ ,Πw,F) denote the parameters of the model underH0, where by the notation

(γ ,Πw,F) and elsewhere, we allow components of a vector, column vectors, matrices (of different

dimensions), and distributions to be tackled. Following Guggenberger et al. (2012), we define the

parameter space forθ as

Θ =
{

θ = (γ ,Πw,F) such that Assumptions2.1–2.3hold
}
. (2.11)

For a givenθ ∈ Θ , we define the finite sample null rejection probability (NRP) of the subset AR

test using̃γ j , j ∈ {LIML, 2SLS} , as:

NRPARj
= Pθ

[
ARn(β 0, γ̃ j)> χ2

L−1,1−α

]
, (2.12)

whereχ2
L−1(α) is the 1−α quantile of aχ2-distributed random variable withL− 1 degrees of

freedom, andPθ [An] denotes the probability of the eventAn. Similarly, theasymptotic sizeof this

test is defined as

AsySzARj

[
χ2

L−1(α)
]

= limsup
n→∞

sup
θ ∈Θ

Pθ
[
ARn(β 0, γ̃ j)> χ2

L−1(α)
]
, j ∈ {LIML,2SLS} . (2.13)

Under Assumptions2.2–2.3and2.5, Guggenberger et al. (2012) show thatAsySzARLIML
[χ2

L−1(α)]≤
α even whenγ is not identified butAsySzAR2SLS

[χ2
L−1(α)] > α under weak instruments. This im-

plies that the subset AR test with restricted LIML has a correct asymptotic size even under weak

instruments, while that with restricted 2SLS does not enjoythis property. Even though we have

AsySzARLIML
[χ2

L−1(α)]≤ α even whenγ is not identified, NRPARLIML
in (2.12) can be strictly less than

α in small samples whenγ is not identified, thus yielding an overly conservative testif the subset
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statisticARn(β 0, γ̃LIML) is used; see Doko Tchatoka (2014). So, correction to usual asymptotic crit-

ical values are needed. To better understand these results,it will be illuminating to summarize the

asymptotic properties of the subset AR statistics in (2.9).

3. Preliminary results

In this section, we characterize the asymptotic null distributions of the subset statistics

ARn(β 0, γ̃ j), j ∈ {LIML, 2SLS} . To do this, we find useful to distinguish the case in whichγ is

identified to the one where it is not identified. Since the setup in which γ is identified is relatively

easy to tackle, we start with that case first.

3.1. High-order approximation when γ is identified

Let GL−1(·) and gL−1(·) denote the cumulative density function (cdf) and the probability density

function (pdf), respectively, of aχ2-distributed random variable withL−1 degrees of freedom. Let

alsoFRn
denote the distribution ofRn given in (2.3). Theorem3.1provides a high-order refinement

of the distributions of the subset AR statistics underH0.

Theorem 3.1 Suppose Assumptions2.1–2.4 are satisfied. If further H0 hold andΠw 6= 0 is fixed,

then for some integer r≥ 1, we have:

sup
τ ∈R

∣∣∣Pθ [ARn(β 0, γ̃ j)≤ τ ]−GL−1(τ)−
r

∑
h=1

n
−h

ph
ARj

(τ ;FRn
,β 0,Πw, γ̃ j)gL−1(τ)

∣∣∣= o(n−r)

for all j ∈ {LIML, 2SLS} , where ph
ARj

is a polynomial inτ with coefficients depending onβ 0, Πw,

γ̃ j , and the moments of FRn
.

It is worth observing that Theorem3.1 provides a more greater accurate approximation of the

distribution ofARn(β 0, γ̃ j) underH0 than the usual first-order asymptoticχ2 approximation. In par-

ticular, the 1−α quantile of the distribution ofARn(β 0, γ̃ j) underH0 can be approximated uniformly

in ζ < α < 1−ζ for any 0< ζ < 1/2 bycARj
(α)≈ χ2

L−1
(α)+∑r

h=1 n
−h

qh
ARj

(χ2
L−1

(α)), whereqh
ARj

is

a polynomial derivable fromph
ARj

andχ2
L−1

(α) is the solution of the equationGL−1(τ) = 1−α ; see

Hall (1992). Therefore, the corresponding tests havecorrect asymptotic sizeeven if the parameter

of interestβ is not identified. However, this high-order improvement is achievable only whenγ is

identified. If γ is not identified, we show in the next section that even the first-order asymptoticχ2

approximation no longer valid for all subset statistics.
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3.2. Asymptotic distribution when γ is not identified

We now study the asymptotic behavior underH0 of the subset AR statistics whenγ is not identified.

To proceed, let{θ n = (γn,Πw,n,Fn) : n≥ 1} denote the subsequences of parameters inΘ satisfying:

n1/2(
EFn[V

2
w,i ]
)−1/2(

EFn[ZiZ
′
i ]
)1/2 Πw,n → hww ∈ R̄

L
,

(
EFn[ε

2
i ]EFn[V

2
w,i ]
)−1/2

EFn(Vw,iε i)→ hεw ∈ [−1, 1], (3.1)

where hεw =
(
σ εε σVwVw

)−1/2σVwε , EFn[·] is the expectation with respect toFn, and R̄ =: R ∪
{−∞,+∞} is the extended real line. The parameterhww in (3.1) characterizes the identification

strength ofγ , and is referred to as the “concentration factor” in the remainder of our analysis.

From (3.1), we can partition the space of the concentration factor (hww) as{hww : ‖hww‖<+∞}∪
{hww : ‖hww‖=+∞} . Note that if‖hww‖ = ∞ in (3.1), then strong instrument asymptotics apply;

for example, see Guggenberger (2012), Guggenberger and Chen (2011), and Guggenberger et al.

(2012). However, if‖hww‖ < +∞, it is the easy to see thathww = o(n1/2) andγ is not identified.7

This case is similar to theweak IV asymptoticof Staiger and Stock (1997). Guggenberger et al.

(2012) show that the asymptotic behavior ofARn(β 0, γ̃LIML
) underH0 is driven only by the subse-

quences in (3.1), hence we focus on those subsequences in ouranalysis. In addition, since strong

identification is covered in Theorem3.1, we deal only with the setup of weak identification, i.e., the

case in which‖hww‖<+∞.

To proceed, letλ n,h =: (hn,ww,hn,εw,hn,F ) be sequence of parameters such that

hn,ww =
(
EFn[V

2
w,i ]
)−1/2(

EFn[ZiZ
′
i ]
)1/2 Πw,n, (3.2)

hn,εw =
(
EFn[ε

2
i ]EFn[V

2
w,i ]
)−1/2

EFn(Vw,iε i) and hn,F = Fn. (3.3)

If ‖hww‖<+∞, we see from (3.1) that the drifting sequence(λ n,h)n≥1 in (3.2)-(3.3) satisfies:

n1/2hn,ww → hww ∈R
L, hn,εw → hεw ∈ [−1,1], andhn,F → F asn→ ∞. (3.4)

Now, define the standardized random variablesψVw
= σ−1/2

VwVw
Q−1/2

Z ψZVw
andψε = σ−1

εε Q−1/2
Z ψZε .

Under Assumptions2.2–2.3 and 2.5, we have vec[ψε ,ψVw
] ∼ N(0, Σh ⊗ QZ), where Σh =(

1 hεw

hεw 1

)
. Finally, leth=: (hww,hεw). and setΨh = hww +ψVw

. Also, define

∆h, j = (Ψ ′
hΨh−κh, j)

−1(Ψ ′
hψε −κh, jhεw), Sh, j = ψε −Ψh∆h, j , j ∈ {LIML, 2SLS} , (3.5)

whereκh,LIML is the smallest root of the determinantal equation
∣∣(ψε : Ψh)

′ (ψε : Ψh)−κhΣh
∣∣ = 0

7It worth mentioning that even if the condition‖hww‖ < ∞ is viewed as the case of weak IVs, high values of‖hww‖
may indicate that the IVs are not very weak, i.e.,γ is in the neighborhood of the identification region.
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andκh,2SLS= 0.

Theorem3.2characterizes the asymptotic distribution underH0 of the statisticsARn(β 0, γ̃ j), j ∈
{LIML, 2SLS} .

Theorem 3.2 Suppose that Assumptions2.1–2.3, and 2.5 are satisfied. If further H0 holds and

(λ n,h)n≥1 satisfies(3.2)–(3.4), then we have:

ARn(β 0, γ̃ j)
d→ ξ j(h) =

1
L

∥∥∥∥
(
1−2hεw∆h, j +∆ 2

h, j

)−1/2

Sh, j

∥∥∥∥
2

for all j ∈ {LIML, 2SLS} ,

where∆h, j and Sh, j are defined in(3.5), and h=: (hww,hεw).

Theorem3.2 shows that the limiting distribution underH0 of ARn(β 0, γ̃ j) is completely char-

acterized by the parameterh=: (hww,hεw). More interestingly, the distribution ofξ j(h) depends on

h=: (hww,hεw) only through the localized parameters‖hww‖ andhεw [see Guggenberger et al. (2012)].

Therefore, the asymptotic size of the testARn(β 0, γ̃ j) is driven only by‖hww‖ andhεw. As both‖hww‖
andhεw do not depend on the specific valueβ 0 tested, the asymptotic size of this test does not also

depend onβ 0. However, it depends onγ through the covariance endogeneity parameterhεw. More

precisely, consider the following reduced-form equationsfor both ỹ= y−Xβ0 andW underH0 :

ỹ = ZΠwγ +v1, W = ZΠw+Vw, (3.6)

wherev1 =Vwγ + ε. Under Assumptions2.1–2.3, we have:

E
[
(v1i : Vw,i)

′(v1i : Vw,i)
]
=

(
σ11 σVw1

σVw1 σVwVw

)
: σVw1 = σVwVw

γ +σVwε ,

σ11 = σ εε +2σVwε γ + γ2σVwVw
. (3.7)

Hence, we can expresshεw =
(
σ εε σVwVw

)−1/2 σVwε as:

hεw =: hεw(γ) = (σ εε σVwVw
)−1/2(σVw1 −σVwVw

γ). (3.8)

Moreover, we also haveσ εε =: σ εε(γ) = σ11− 2σVw1γ + γ2σVwVw
from (3.7), andσ εε > 0 under

Assumptions2.1–2.3. Hence the last term in the right-hand side of (3.8) is a strictly monotonic8

function ofγ .

8The partial derivative ofhεw(γ) with respect toγ is ∂hεw
∂ γ =

(σVw1)
2−σ 11σVwVw

σ1/2
VwVw (σ11−2σVw1γ+γ2σVwVw

)3/2
, which has the sign of

−
∣∣∣
σ11 σVw1

σVw1 σVwVw

∣∣∣= (σVw1)
2−σ 11σVwVw

6= 0 (under Assumptions2.1–2.3) for any value ofγ in the parameter spaceΘ .
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As the distribution ofξ j(h) depends only on‖hww‖ and hεw, it can be simulated given any

localized values of‖hww‖ and hεw. For the values of‖hww‖ and hεw in the neighborhood of their

true values, the resulting simulated distribution ofξ j(h) can produce a good approximation to the

finite-sample distribution ofARn(β 0, γ̃ j). The difficulty, however, is that neither‖hww‖ nor hεw is

known, and both cannot be consistently estimated underH0 and the subsequences in(3.2)–(3.4).

In the next section, we investigate whether bootstrapping can provide a valid approximation of the

distribution ofξ j(h).

4. Bootstrapping subset AR statistics

We adapt the bootstrap of Moreira et al. (2009) to the subset AR statistics. Our bootstrap differs

slightly from Moreira et al. (2009) in the senseH0 : β = β 0 is imposed in the resampling scheme,

while theirs uses a “ super-consistent” estimator ofβ 0. We think that there is no need to replace

β 0 by an estimator because the asymptotic distributions underH0 of the subset AR statistics do not

depend on the unknown valueβ 0 tested. Furthermore, in practice, researchers usually rely more on

reporting identification-robust confidence regions forβ 0 in this type of model, rather than a specific

pointwise test outcome. Section 4.1 describes briefly our bootstrap algorithm.

4.1. Bootstrap algorithm

Let Π̂x = (Z′Z)−1Z′X andΠ̂w = (Z′Z)−1Z′W denote the ordinary least squares (OLS) estimators of

Πx andΠw in (2.2). Let alsõγ j , j ∈ {LIML, 2SLS} , denote the restricted estimator ofγ underH0.

We suggest the following resampling scheme for our bootstrap.

1. For a givenβ 0 and the observed data, computeΠ̂x, Π̂w and γ̃ j , along with all other items

necessary to obtain the realizations of the statisticARn(β 0, γ̃ j) and the residuals from the

reduced-form equation (3.6): ˆv1 = ỹ(β 0)−ZΠ̂wγ̃ j , V̂x = X−ZΠ̂x, andV̂w =W−ZΠ̂w. Re-

centered these residuals by subtracting sample means to yield (ṽ1,Ṽx,Ṽw);

2. For each bootstrap sampleb= 1, . . . , B, generate the data following

X∗ = Z∗Π̂x+V∗
x , (4.1)

W∗ = Z∗Π̂w+V∗
w , (4.2)

y∗ = X∗β 0+Z∗Π̂wγ̃ j +v∗1, (4.3)

where (Z∗,v∗1,V
∗
x ,V

∗
w) is drawn independently from the joint empirical distribution of

(Z, ṽ1,Ṽx,Ṽw). Compute the corresponding bootstrap subset AR statisticsAR∗(b)
n (β 0, γ̃∗j ), b=

9



1, . . . , B, as

AR∗(b)
n (β 0, γ̃

∗
j ) =

1
L
‖ S̃∗

(b)

n (β 0, γ̃
∗
j ) ‖2, (4.4)

S̃∗
(b)

n (β 0, γ̃
∗
j ) = (Z∗′Z∗)−1/2Z∗′Ỹ∗(β 0)r̃

∗
j (r̃

∗′
j Ω̂ ∗

1Wr̂∗j )
−1/2

, (4.5)

whereỸ∗(β 0) = (ỹ∗(β 0) : W∗) and ˜r∗j = (1,−γ̃∗j )′;

3. The bootstrap test rejectsH0 if 1
B ∑B

b=11[AR∗(b)
n (β 0, γ̃∗j )> ARn(β 0, γ̃ j)] is less thenα .

In the reminder of the paper,̃Fn denotes the empirical distribution ofR∗
n = vech

(
X ∗′

n X ∗
n

)

conditional onX n, P
∗

is the probability under the empirical distribution function (conditional on

X n), andE
∗

its corresponding expectation operator. As in Section 3, wedeal separately with the

case whereγ is identified and the one where it is not.

4.2. Bootstrap consistency whenγ is identified

In this section, we study the validity of the bootstrap for the subset AR statistics when the nuisance

parameterγ is identified. Lemma4.1summarizes the results.

Lemma 4.1 Suppose that Assumptions2.1–2.4 are satisfied. If further H0 hold andΠw 6= 0 is fixed,

then for some integer r≥ 1, we have:

sup
τ ∈R

∣∣∣P∗ [AR∗
n(β 0, γ̃

∗
j )≤ τ

]
−GL−1(τ)−

r

∑
h=1

n
−h

ph
ARj

(τ; F̃n, γ̃ j ,Π̂w)gL−1(τ)
∣∣∣= o(n−r )

for all j ∈ {LIML, 2SLS} , ph
ARj

is a polynomial inτ with coefficients depending onγ̃ j , Π̂x, Π̂w, and

the moments of̃Fn.

The above lemma shows that the bootstrap estimate and the(r +1)-term empirical Edgeworth

expansion in Lemma3.1 are asymptotically equivalent up to theo(n−r) order underH0 whenγ is

identified. Furthermore, the bootstrap makes an error of size O(n−1) underH0, which is smaller as

n→ +∞ than bothO(n−1/2) and the error made by the first-order asymptotic approximation. The

bootstrap provides a greater accuracy than theO(n−1/2) order because each subset AR statistic in

(2.9) is a quadratic function of a symmetric pivotal statistic [see Horowitz (2001, Ch. 52, eq. 3.13)]

underH0 whenγ is identified.

Now, letc∗ARj
=: min

τ∈R

∣∣∣P∗
[AR∗

n(β 0, γ̃∗j )≤ τ ]−(1−α)
∣∣∣ denotes the 1−α quantile of the empirical

distribution ofAR∗
n(β 0, γ̃∗j ). We can state the following theorem on the high-order approximation of

the size of the subset AR tests when the bootstrap critical values are used in the inference.
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Theorem 4.2 Suppose that Assumptions2.1–2.4 are satisfied. If further H0 hold andΠw 6= 0 is

fixed, then we have:

Pθ [ARn(β 0, γ̃ j)> c∗ARj
] = α +o(n−1) for all j ∈ {LIML, 2SLS} .

Theorem4.2 shows that the bootstrap critical values underH0 yield correct level for the AR

tests throughO(n−1). Hence, the bootstrap only makes an error of sizeO(n−1) underH0 if the

nuisance parameterγ is identified. It is worth noting that the identification ofβ plays no role here,

so Theorem4.2 holds even whenΠx = 0 in (2.2)– complete non-identification ofβ– or close to

zero– weak identification ofβ .

Moreover, even though Theorem4.2 focuses on the size properties of the tests, there is no

impediment to expanding it to the power analysis. For example, we can show that ifΠw 6= 0 is fixed,

test consistency holds as long asβ is identified (i.e., ifΠx 6= 0 is fixed). However, the bootstrap tests

have low power ifβ is not identified. This proof is omitted in order to shorten the exposition of our

results.

We now study the validity of the bootstrap whenγ is not identified.

4.3. Bootstrap inconsistency whenγ is not identified

As before, we focus on the subsequences of parametersθ n = (γn,Πw,n,Fn) satisfying (3.1)–(3.4),

and we provide the characterization of the asymptotic distributions underH0 of the bootstrap subset

AR statistics in (4.4).

To ease readability, we setΨB
h =Ψh+ψVw

, ψε , j = ψε −ϖ1/2
εw

∆h, jψVw
, and define

∆ B
h, j =

(
ΨB′

h Ψ B
h −κB

h, j

)−1(
Ψ B′

ψε, j −κB
h, jhεw, j

)
, SB

h, j = ψε , j −ΨB
h ∆ B

h, j ,

hεw, j = (1−2hεw∆h, j +∆ 2
h, j)

−1/2(hεw −∆h, j), j ∈ {LIML, 2SLS} , (4.6)

where ϖ εw = σ εε σ−1
VwVw

, κB
2SLS= 0, κB

LIML is the smallest root of the determinantal equation
∣∣∣
(
ψε, j : Ψ B

h

)′ (ψε , j : Ψ B
h

)
−κΣh, j

∣∣∣= 0, andΣh, j =

(
1 hεw, j

hεw, j 1

)
. Lemma4.3presents the results.

Lemma 4.3 Suppose that Assumptions2.1–2.3, and2.5 are satisfied. Suppose also that H0 holds

and (λ n,h)n≥1 satisfies(3.2)–(3.4). If further E(‖Zi‖4+δ , ‖(ε i ,Vwi)
′‖2+δ ) < +∞ for someδ > 0,

then we have:

AR∗
n(β 0, γ̃∗j ) | X n

d→ ξ ∗
j (h,ϖ εw) =

∥∥∥∥
(

1−2hεw, j∆ B
h, j +(∆ B

h, j)
2
)−1/2

SB
h, j

∥∥∥∥
2

a.s.

for all j ∈ {LIML, 2SLS} .

First, we observe from Lemma4.3 that the bootstrap statisticsAR∗
n(β 0, γ̃∗j ), j ∈ {LIML, 2SLS} ,

do not converge to the asymptotic distributions underH0 of the standard statistics if‖hww‖ < ∞
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[see Lemma3.2]. In particular, we show in Lemma3.2 that the asymptotic distribution of of

ARn(β 0, γ̃ j) is completely characterized byh =: (hww,hεw). However, the limit of bootstrap coun-

terpart in Lemma4.3, ξ ∗
j (h,ϖ εw), depends not only onh but also on the variance ratioϖ εw. This

provides evidence of the bootstrap is inconsistent when parameterγ is not identified.

Second, we note that the inconsistency of the bootstrap is mainly due to the fact that underH0

and the subsequences of drifting parameters(θ n)n≥1 satisfying (3.1)–(3.4), replacingΠn,w with Π̂w

andγn with γ̃ j in the bootstrap DGP adds an extra noise term to the original reduced-form residuals

v̂1 andV̂w during the resampling process. For example, while(V ′
wVw/n)−1/2(Z′Z/n)−1/2Z′W/

√
n

d→
Ψh = hww+ψVw

, its bootstrap counterpart(V∗′
w V∗

w/n)−1/2(Z∗′Z∗/n)−1/2Z∗′W∗/
√

n converges almost

surely toΨB
h =Ψh+ψVw

. Hence, ifΨh < ∞ with probability one, as is the case when‖hww‖< ∞, the

bootstrap fails to mimic the asymptotic behavior of(V ′
wVw/n)−1/2(Z′Z/n)−1/2Z′W/

√
n under the

above subsequences of drifting parameters. A similar result hold for many the arguments of each

bootstrap statisticAR∗
n(β 0, γ̃∗j ) written as a function ofR∗

n.

We now examine the finite-sample performance of both the standard and bootstrap subset AR

tests through a Monte Carlo experiment.

5. Performance of the standard and bootstrap subset AR tests

We examine the performance of both the standard and bootstrap subset AR tests in a Monte Carlo

experiment. The data generating process is described by (2.1) and (2.2) wherey, X andW aren×1

vectors. The errorsε , Vx, Vw are drawn i.i.d. normal with zero mean and unit variance, andthe

correlations between them are such that set athεx = hεw = hxw, wherehεw ∈ {0,0.1,0.5,0.9} . The

L columns of the instrument matrixZ, L ∈ {3,5,10,20} , are drawn i.i.d.N(0, IL) independently

from [ε : Vx : Vw]. The true values ofβ andγ are set at 2 and−1 respectively. The reduced-form co-

efficient matrixΠx andΠw is chosen such that the concentration parametersµ2
xx

µ2
ww

which describe

the strength ofZ satisfy µ2
xx
= µ2

ww
∈ {0,0.05,1,10}, whereµ2

ww
= 0 is the setup of a complete

non-identification (irrelevant IVs),µ2
ww

= 0.05 represents weak instruments,µ2
ww

= 1 designates

moderately weak instruments, andµ2
ww

= 10 is for strong instruments. The rejection frequencies

are computed usingN = 10,000 replications for the standard subset AR tests, while those of the

bootstrap subset AR tests are obtained withN = 10,000 replications andB= 299 bootstrap pseudo-

samples of sizen= 100. The nominal level of all tests is set at 5%.

Table 1 shows the empirical rejection frequencies of the tests. The first column of the tables

contains the statistics. The second column indicates the number of instruments (L) used in the

inference. The other columns show the rejection frequencies for each value of the endogeneity

parameterhεw and the instrument qualityµ2
ww

.

First, we note that when the restricted LIML estimator is used as a plug-in estimator and the

usual asymptoticχ2 critical values are applied, the resulting subset AR test isoverly conservative
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with weak instruments (see columnsµ2
ww

∈ {0,0.05} in the table). These results are similar to those

in Doko Tchatoka (2014). However, the test has rejections close to the nominal 5% level when iden-

tification is strong (see columnsµ2
ww

= 10 in the table). Note however that the rejection frequencies

of this test are slightly greater than the nominal 5% level when both the endogeneity parameter (hεw)

and the number of instruments (L) increase (for example, withhεw = 0.9 andL = 20, the rejection

frequency is around 7%). Meanwhile, the subset AR test with the restricted 2SLS is less conser-

vative than those with LIML when IVs are weak and the asymptotic χ2 critical values are applied

(see columnsµ2
ww

∈ {0,0.05} in the second block of Table 1). This is not surprising because the

inequalityAR(β0, γ̃ 2SLS
)≥ AR(β0, γ̃ LIML

) is always true. In particular, with weak instruments, the re-

jection frequencies of this test are close to the nominal 5% level for small endogeneity (see columns

hεw ∈ {0,0.1} andµ2
ww

∈ {0,0.05} in the table), but they are greater than 5% for large endogeneity

(see columnhεw = 0.9 andµ2
ww

∈ {0,0.05,1}). We also observe that this test over-rejects sometimes

when identification is strong. For example, the rejection frequencies whenhεw = 0.9 andµ2
ww

= 10

(strong instruments) are about 8.6%, 16.7%, and 39.6% forL = 5, 10, 20 instruments, respectively.

So, while the subset AR test with the restricted 2SLS seems tooutperform the one with the re-

stricted LIML under weak instruments and small endogeneity, it over-rejects the null hypothesis

when identification is moderate or strong and the endogeneity parameter is large.

Second, we observe that bootstrapping does not improve the size properties of either test when

identification is weak, as shown in columnsµ2
ww

∈ {0, .05} of the last block of Table 1 for all values

of L and the endogeneity parametershεw. This confirms the inconsistency of the bootstrap for subset

AR tests when identification is weak (see Section 4.3). However, the bootstrap provides a better

approximation of the size of the tests than the asymptotic critical values when identification is strong

and the number of instruments is moderate, especially in thecase of restricted LIML estimator. Note

that even in the case of restricted 2SLS estimator, the bootstrap has improved the size of the test

for a moderate or large number of instruments (L = 10,20) and large endogeneity (hεw = 0.9). For

example, the rejection frequencies of the test whenµ2
ww

= 10 andhεw = 0.9 are about 5.5% and

24.7% forL = 10,20, respectively. This represents a huge drop compared withthe usual asymptotic

critical values where these rejection frequencies were 16.7%, and 39.6%, respectively.
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Table 1. Rejection frequencies (in %) at 5% nominal level,nw = 1 andB= 299

Asymptoticχ2 critical values

hεw = 0 hεw = 0.1 hεw = 0.5 hεw = 0.9
Statistics L ↓ µ2

ww
→ 0 0.05 1 10 0 0.05 1 10 0 0.05 1 10 0 0.05 1 10

Restricted LIML
AR 3 0.34 0.69 3.90 5.23 0.38 0.58 3.98 5.57 0.29 0.80 4.79 5.17 0.30 1.96 5.18 5.26
- 5 0.23 0.27 2.52 4.99 0.29 0.24 2.39 4.98 0.20 0.50 3.33 5.46 0.22 0.93 5.00 5.47
- 10 0.30 0.26 1.13 4.49 0.39 0.37 1.16 4.99 0.27 0.37 1.44 5.57 0.20 0.66 4.67 5.97
- 20 0.37 0.29 0.95 3.68 0.41 0.42 0.69 3.87 0.30 0.43 1.02 4.55 0.43 0.45 3.90 7.06

Restricted 2SLS
AR 3 2.81 2.73 4.48 5.54 2.60 2.74 4.34 5.17 3.00 3.44 6.03 5.48 2.46 11.89 10.98 6.54
- 5 3.42 3.78 4.38 5.26 3.69 3.38 4.82 5.49 3.48 4.06 7.06 6.71 3.32 11.31 19.43 8.63
- 10 4.86 4.38 5.04 6.17 4.33 4.41 5.19 5.84 4.71 4.87 8.11 8.10 4.34 9.84 34.83 16.65
- 20 6.53 6.04 6.47 7.27 6.14 6.78 6.41 7.12 6.22 6.12 9.01 11.65 6.61 8.84 45.00 39.63

Bootstrap critical values

hεw = 0 hεw = 0.1 hεw = 0.5 hεw = 0.9
Statistics L ↓ µ2

ww
→ 0 0.05 1 10 0 0.05 1 10 0 0.05 1 10 0 0.05 1 10

Restricted LIML
AR 3 0.65 1.28 7.57 4.71 1.46 0.75 2.18 5.75 0.30 1.32 3.79 4.79 1.35 4.31 6.00 3.72
- 5 0.57 0.47 6.01 4.48 1.27 0.62 2.94 3.45 0.92 0.47 3.91 2.52 0.21 0.75 8.56 5.30
- 10 0.35 0.27 1.58 3.31 0.33 0.46 1.82 2.82 0.18 0.23 1.04 3.25 0.33 0.26 5.65 5.24
- 20 0.04 0.14 0.16 2.92 0.39 0.34 0.63 2.31 0.20 0.63 0.68 3.74 0.26 0.20 2.22 4.11

Restricted 2SLS
AR 3 2.39 0.56 6.02 6.16 5.36 2.74 4.52 4.64 1.65 2.16 1.93 4.16 2.67 11.79 1.82 5.57
- 5 2.84 1.99 2.25 3.95 2.07 3.87 4.63 7.36 5.78 3.57 3.60 5.68 3.91 13.68 4.35 3.31
- 10 4.57 2.99 4.07 4.34 2.69 4.61 4.60 6.98 1.52 1.54 7.50 4.34 2.58 2.72 30.58 5.52
- 20 3.51 2.91 4.67 3.25 3.20 4.85 6.44 4.05 4.34 3.91 9.33 7.01 2.89 5.87 37.00 24.68
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6. Bonferroni-based size correction

In this section, we provide a method to compute critical values for the subset AR statistics that yield

tests with correct size uniformly over the nuisance parameters’ spaceΘ . Without loss of generality,

we focus on cases in whichγ is not identifiable, i.e., the drifting subsequence of parameters(θ n)n≥1

satisfying (3.2)–(3.4) with‖hww‖< ∞.

Let H be the space of the parameterh that characterize the distribution ofξ j(h),
9 i.e.

H =:
{

h∈ R
L : h=: (hww,hεw), ‖hww‖< ∞, |hεw| ≤ 1

}
. (6.1)

Let c j,h(α) define the(1− α)th quantile of the distribution ofξ j(h) for a givenh ∈ H . The

least favorable critical value (LFCV) of the subset testARn(β 0, γ̃ j) is defined [see Andrews and

Guggenberger (2009) and McCloskey (2015)] by

cLF, j (1−α) = sup
h∈H

c j,h(α), j ∈ {LIML, 2SLS} . (6.2)

Now, consider the test that rejectsH0 whenARn(β 0, γ̃ j)> cLF, j (α). Then, it easy to see that

limsup
n→∞

sup
θ ∈Θ

Pθ
[
ARn(β 0, γ̃ j)> cLF, j (α)

]
= limsup

n→∞
Pθ̃n

[
ARn(β 0, γ̃ j)> cLF, j (α)

]
=

lim
n→∞

Pθ̃ ωn,h

[
ARωn,h(β 0, γ̃ j)> cLF, j (α)

]
≤ lim

n→∞
Pθ̃ ωn,h

[
ARωn,h(β 0, γ̃ j)> ch, j (α)

]

= Pθ
[
ξ j(h)> ch, j (α)

]
= α , (6.3)

where
{

θ̃n : n≥ 1
}

is a sequence inΘ and{ωn,h : n≥ 1} is a subsequence of{n : n≥ 1} satisfy-

ing (3.1)–(3.4).10 Equation (6.3) clearly shows that usingcLF, j (α), j ∈ {LIML, 2SLS} , yields tests

with correct asymptotic sizeeven ifγ is not identified. However, there are two drawbacks related to

the implementation of such tests. First,cLF, j (α) must be computed over the entire parameter space

H , which represents a challenge whenL ≥ 2. Second, the computedcLF, j (α) from (6.2) can be

very large, thus yielding overly conservative tests. Therefore, there is a need to both reduce the

dimension ofH and adjustingcLF, j (α) computed from the reduced space.

6.1. Reduction of the parameters’ space and simple Bonferroni critical values

As seen in Section 3.2, the distribution ofξ j(h) depends onh =: (hww,hεw) only throughµww =

‖hww‖ andhεw. This implies that the distribution ofξ j(h) is invariance to the mapping that transforms

h =: (hww,hεw) ∈ R
L × [−1,1] into µwh =: (µww,hεw) ∈ [0,∞)× [−1,1]. So, it suffices to compute

9See Lemma3.2.
10Andrews and Guggenberger (2009) and Guggenberger et al. (2012) show that the sequences

{
θ̃n : n≥ 1

}
and{

ωn,h : n≥ 1
}

always exist.
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cLF, j (α) over the image ofH by this mapping, i.e., over the set

Hµ =:
{

µ
wh
= (µww,hεw) : µ

ww
= ‖hww‖ ≥ 0, |hεw| ≤ 1

}
. (6.4)

Clearly, in cases where the nuisance parameterγ is a scalar, findingcLF, j (α) = sup
µ

wh
∈Hµ

c j,µ
wh
(1−α)

only involves a maximization over two dimensions, no matterhow large is a number of IVs. This

obviously is less cumbersome than solving the problem (6.1), especially ifL ≥ 3.

We may even want to further reduceHµ by constructingcLF, j (α) dependently upon the data

through the (inconsistent) localization (semi)-estimated drifting sequence of parameters

µ̂n,h =: (µ̂n,wh,hn,F ) = (µ̂n,ww,hn,εw,hn,F ), (6.5)

wherehn,εw = (σ εε σVwVw
)−1/2

EFn(Vw,iε i) andhn,F are the sequences in (3.2)–(3.4),µ̂n,ww= ‖ĥn,ww‖=
‖σ̂−1/2

VwVw
(Z′Z/n)1/2Π̂w,n‖, Π̂w,n andσ̂VwVw

are consistent OLS estimators ofσVwVw
andΠw,n in (2.2).

Under the drifting subsequence of parameters(θ n)n≥1 in Θ satisfying (3.2)–(3.4), and if further

‖hww‖ < ∞, bothµww andhεw cannot be consistently estimated because IVs are weak. However, it

is easy to provide a simple confidence set forµ
ww

with a correct asymptotic coverage probability

using the (inconsistent) estimatorµ̂
hw
, while such a simple valid confidence set11 is not available

for hεw. Because of this, we focus on reducing the dimension ofHµ in the direction ofµww.

For this, consider the sequence of parameters(λ n,h)n≥1 satisfies(3.2)–(3.4). Under Assump-

tions2.1–2.3, and2.5, it is straightforward to show that the following convergence holds jointly:

(n1/2ĥn,ww,n
1/2µ̂

n,ww
,hn,εw,hn,F )

d→ (h̃ww, µ̃ww
,hεw,F), (6.6)

whereh̃ww = hww+ψVw
andµ̃

ww
= ‖h̃ww‖. This means thatn1/2µ̂

n,ww
is not consistent toµ

ww
= ‖hww‖

when‖hww‖< ∞. Nevertheless, we havẽhww ∼ N(hww, IL) and the projection-type confidence set

CIν (ĥn) = [ĥn,ww−n
−1/2

z
1−ν/2

ιL , ĥn,ww+n
−1/2

z
1−ν/2

ιL ] (6.7)

for hww has an asymptotic coverage probability equal to(1− ν) for someν ∈ (0,1), i.e.,P[hww ∈
CIν (ĥn)]→ 1−ν asn increases, whereιL is aL×1 column vector of ones andz

1−ν/2
is the(1−ν)th

quantile of the standard normally distributed random variable. We may thus endeavor to adapt the

data by maximizingc j,h(α) not over the entire spaceHµ , but only overCIν (ĥn)× [−1,1]. By the

invariance property that leads to (6.4), this also amounts to maximizingc j,µ
wh
(α) overCIν (µ̂ n,wh

)×

11This is mainly becausehεw depends on the unidentified structural parametersγ and σ εε in a complicated way as
given in (3.8), so that the usual Wald-type level confidence sets are not valid. See Doko Tchatoka and Dufour (2014) for
further details on these issues.
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[−1,1], where

CIν (µ̂n,wh
) = [max(µ̂

n,ww
−n

−1/2
z

1−ν/2
,0), µ̂

n,ww
+n

−1/2
z

1−ν/2
] (6.8)

is the(1− ν) delta-type confidence set forµ
ww

= ‖hww‖ obtained from (6.7). We then define the

simple (as opposed to adjusted) Bonferroni critical value (SBCV) as

cB−S
j (α ,α −δ , µ̂

n,wh
) = sup

µ
wh
∈CIα−δ (µ̂n,wh

)×[−1,1]
c j,µ

wh
(δ ), j ∈ {LIML, 2SLS} , (6.9)

whereν = α −δ for someδ ∈ [0,α). It will be useful to consider the following additional assump-

tions.

Assumption 6.1 For some fixedδ ∈ (0,1) : (i) c j,µ
wh
(δ ) is continuous as a function fromHµ into

R; and(ii) the distribution ofξ j(µwh
) is continuous at cj,µ

wh
(δ ) for all µ

wh
∈ Hµ .

Assumption 6.2 ∀ν ∈ [0,1] and∀µ
wh
∈ Hµ ,CIν : R

+

∞ × [−1,1] ⇒R
+

∞ is continuous and compact

valued withP[µ
ww

∈CIν (µ̃wh
)]≥ 1−ν, whereµ̃

wh
=: (µ̃

ww
,hεw) and µ̃

ww
is defined in(6.6).

We can now state the following theorem on the asymptotic sizeof the subset statistics when the

simple Bonferroni critical valuescB−S
j (α ,α −δ , µ̂

n,wh
) are used in the inference.

Theorem 6.3 Suppose that Assumptions2.1–2.3, and2.5 are satisfied. If further H0 and Assump-

tions6.1–6.2 hold withν = α −δ ∈ [0,α), then we have:

AsySzARj

[
cB−S

j (α ,α −δ , µ̂
n,wh

)
]
≤ α for all j ∈ {LIML, 2SLS} .

Theorem6.3shows that the simple Bonferroni critical values yield tests with correct asymptotic

size whetherγ is identified or not. However, they can be very large CVs so that the corresponding

tests are overly conservative, especially small values ofµww (i.e., when the identification ofγ is

very weak). In Section (6.2), we seek an adjustment of the simple Bonferroni critical values that

yields tests with better size properties in finite-sample, especial when the identification ofγ is very

weak.

6.2. Size adjusted Bonferroni critical values

Let α ∈ (0, 1) andδ ∈ [0,α). Let alsoc j,µ
wh
(δ ) denote the 1− δ quantile of the distribution of

ξ (µ
wh
) =: ξ j(hµ ) for a givenµ

wh
∈CIα−δ (µ̂n,wh

)× [−1,1]. Define the size-corrected factor

η̃ j
n = inf

{
η̃ j ∈ R : sup

µ
wh
∈CIα−δ (µ̃wh

)×[−1,1]
Pθ [ξ j(µwh

)> cB−A
j (α ,α −δ , µ̃

wh
)+ η̃ j

]≤ α
}
, (6.10)
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whereη̃ j
=: η̃ j

(µ
wh
) andcB−S

j (α ,α − δ , µ̃
wh
) is given by(6.9). As in Section 6.1, we make the

following assumptions on the behavior ofc j,·(·) andη̃ j
(·).

Assumption 6.4 For some pair(δ ∗,δ ∗) ∈ [0,α ] with 0≤ δ ∗ ≤ α −δ ∗, as a function ofµ
wh

andδ ,
c j,µ

wh
(δ ) is continuous overHµ × [δ ∗,α −δ ∗].

Assumption 6.5 (i) η̃ j
(·) : R

+

∞ × [−1,1] ⇒ R is continuous; (ii) Pθ [ξ j(µwh
) > cB−S

j (α ,ν , µ̃
wh
)+

η̃ j
(µ

wh
)]≤ α for all µ

wh
∈ Hµ .

We can now state the following theorem on the uniform validity of the subset AR tests.

Theorem 6.6 Suppose that Assumptions2.1–2.3, and2.5 are satisfied. If further H0 and Assump-

tions6.2–6.5 hold, then:

AsySzARj
[cB−A

j (α ,α −δ , µ̃
n,wh

)+ η̃ j
n]≤ α for all j ∈ {LIML, 2SLS} .

Theorem6.6 shows that the adjusted Bonferroni critical values yield tests with correct asymp-

totic size no matter how weak the identification ofγ is. In practice, we propose the following

algorithm for the computation ofcB−A
j (α ,α −δ , µ̃

n,wh
) andη̃ j

n for all j ∈ {LIML,2SLS}.

1. Choose the desired nominalα , ν andδ such that Assumptions6.2–6.5 hold, and compute

CIν (µ̂n,wh
) following (6.8).

2. Create a fine gride of the spaceCIν (µ̂ n,wh
)× [−1,1] and call itH grid

ν
.

3. For eachµ
wh
∈ H grid

ν
, simulateR draws of the asymptotic distributionξ j(µwh

) of the subset

statisticARn(β 0, γ̃ j) and:

(a) find cB−A
j (α ,α − δ , µ̂

n,wh
) = sup

µ
wh

∈H
grid

ν

c j,µ
wh
(δ ). Then set Sj

η = [−cB−A
j (α ,α −

δ , µ̂
n,wh

), cB−A
j (α ,α −δ , µ̂

n,wh
)] and create a fine gride ofSj

η : call it Sjgrid

η ;

(b) compute η̃ j
n ∈ Sjgrid

η such that supPθ [ξ j(µwh
) > cB−A

j (α ,α − δ , µ̂
n,wh

) + η̃ j
n] over

(µ
wh
, η̃ j

) ∈CIα−δ (µ̂n,wh
)× [−1,1]×Sjgrid

η is less or equal toα .

It worth noting that while in theorỹη j
n ∈ R, the simulations show the solution of (6.10) always

lies in the intervalSj
η = [−cB−A

j (α ,α −δ , µ̂
n,wh

), cB−A
j (α ,α −δ , µ̂

n,wh
)]. Therefore, the optimization

is run over a fine grid of this interval in 3.(b).

6.3. Finite-sample performance with the adjusted criticalvalues

In this section, we examine the performance of the subset AR tests when the above adjusted

Bonferroni-type critical values are applied. To do this, weconsider again the setup of the Monte
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Carlo experiment described in Section 5. The adjusted Bonferroni-type critical values are computed

following the algorithm below Theorem6.6with α = 0.05,δ = 0.025 andR= 100,000 draws.

Table 2 presents the results. Despite a relatively small sample size (n= 100), it is straightforward

to see that the subset tests with adjusted Bonferroni-type critical values outperform the ones with

standard and bootstrap critical values in Table 1, especially when the nuisance parameterγ is not

identified (i.e., whenµ2
ww

∈ {0, 0.05, 1}). More interestingly, the size adjustment works very well

even for the subset test with the restricted 2SLS estimator,as the size distortions of this test observed

in Table 1 whenµ2
ww

∈ {0, 0.05, 1} have completely disappeared in Table 2.
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Table 2. Rejection frequencies (in %) at 5% nominal level with Bonferroni-type adjusted critical values

Restricted LIML

hεw = 0 hεw = 0.1 hεw = 0.5 hεw = 0.9
Statistics L ↓ µ2

ww
→ 0 0.05 1 10 0 0.05 1 10 0 0.05 1 10 0 0.05 1 10

AR 5 3.98 4.91 4.60 4.99 2.01 3.95 4.04 4.91 2.12 3.01 3.98 3.91 2.99 3.5 4.97 4.80
- 10 4.02 4.95 4.7 5.02 4.00 4.01 4.04 5.03 3.00 3.98 3.99 4.05 3.014.01 5.11 4.99
- 20 5.14 5.01 4.85 5.1 4.91 4.71 4.67 4.96 4.50 4.75 4.91 5.01 4.014.04 4.97 5.01

Restricted 2SLS

hεw = 0 hεw = 0.1 hεw = 0.5 hεw = 0.9
Statistics L ↓ µ2

ww
→ 0 0.05 1 10 0 0.05 1 10 0 0.05 1 10 0 0.05 1 10

AR 5 3.00 3.96 4.03 5.03 3.50 4.03 4.00 4.90 4.00 3.98 4.00 4.50 3.00 4.00 4.01 4.51
- 10 4.01 4.02 4.51 5.06 4.00 4.01 3.01 5.01 4.01 4.97 4.10 3.60 2.60 4.21 4.02 4.62
- 20 4.63 4.81 5.02 5.02 4.85 4.98 4.90 5.03 4.05 5.09 4.99 4.94 4.01 4.90 5.04 5.12

20



7. Conclusions

In this paper, we study the asymptotic validity of the bootstrap for the plug-in subset AR tests

based on the restricted limited information maximum likelihood (LIML) and two-stage leas squares

(2SLS). We consider linear IV regressions where structuralparameters may not be identified, and

provide a characterization of the asymptotic distributions of both statistics without and with weak

instruments. Our results provide some new insights and extensions of earlier studies. We show that

the asymptotic distributions of these statistics are non-standard when the nuisance parameters that

are not specified by the subset null hypothesis are not identified, so correction to usual asymptotic

critical values are needed. We find that the bootstrap procedures similar to that of Moreira et al.

(2009) provide a high-order refinement of the null distributions of the statistics when the nuisance

parameters are identified, but is inconsistent if these parameters are not identified. This contrasts

with Moreira et al. (2009) who show that bootstrap is valid for the AR statistic of the null hypothesis

specified on the full vector of structural parameters, whether identification is strong or weak. The

inconsistency of bootstrap for subset AR statistics studied is mainly due to its inability to mimic the

concentration factorthat characterizes the strength of the identification of thenuisance parameters.

The inconsistency of bootstrap for subset AR statistics is mainly due to its inability to mimic the

concentration factorthat characterizes the strength of the identification of thenuisance parameters.

We thus develop a Bonferroni-based size adjustment that yields tests with correct asymptotic size,

whether the nuisance parameters are identified or not. We present a Monte Carlo experiment that

confirms our theoretical findings.

A. Appendix

We begin by presenting the supplemental lemmata in Section A.1. Section A.2 contains proofs.

A.1. Supplemental lemmata

Lemma A.1 Suppose Assumptions2.1–2.4 are satisfied. If further H0 hold andΠw 6= 0 is fixed,

then for some integer r≥ 1, we have:

sup
τ ∈R

∣∣∣Pθ [S̃n(β 0, γ̃ j)≤ τ]−Φ(τ)−
r

∑
h=1

n
−h/2

ph
Sn, j

(τ ;FRn
,β 0,Πw, γ̃ j)φ (τ)

∣∣∣= o(n−r/2)

for all j ∈ {LIML, 2SLS} , where ph
Sn, j

is a polynomial inτ with coefficients depending onβ 0, Πw,

γ̃ j , and the moments of FRn
.

Lemma A.2 Suppose that Assumptions2.1–2.3, and 2.5 are satisfied. If further H0 holds and

(λ n,h)n≥1 satisfies(3.2)–(3.4), then we have:
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(a) γ̃ j − γ0
d→ σ1/2

εε σ−1/2

VwVw
∆h, j , where∆h, j = (Ψ ′

hΨh − κh, j)
−1(Ψ ′

hψε − κh, jhεw), κh,2SLS = 0 and

κh,LIML is the smallest root of
∣∣(ψε : Ψh)

′ (ψε : Ψh)−κhΣh
∣∣= 0;

(b) r̃ ′jΩ̂Wr̃ j
d→ σ εε, j = σ εε

(
1−2hεw∆h, j +∆ 2

h, j

)
;

(c) S̃n(β 0, γ̃ j)
d→
(

1−2hεw∆h, j +∆ 2
h, j

)−1/2

Sh, j , where Sh, j = ψε −Ψh∆h, j .

where h=: (hww,hεw).

LemmaA.2 - (a) shows that both the restricted LIML and 2SLS estimatorsare inconsistent under

the sequence(λ n,h)n≥1 satisfies(3.2)–(3.4) if ‖hww‖< ∞. Under Assumptions2.1–2.3, and2.5, we

havevec(ψε ,ψVw
)∼ N(0, Σh⊗ IL) so thatψε | ψVw

∼ N
(
hεwψVw

, (1−h2
εw
)IL
)
. As a result,

γ̃
2SLS

− γ0 | ψVw
∼ N

(
hεw(Ψ

′
hΨh)

−1Ψ ′
hψVw

, (1−h2
εw
)(Ψ ′

hΨh)
−1
)
. (A.1)

We see from (A.1) that the unconditional distribution ofγ̃
2SLS

−γ0 is a mixture of Gaussian processes

with nonzero means. This is not the case for the LIML estimator. Indeed, sinceκLIML 6= 0 a.s.,̃γ
LIML

−
γ0 | ψVw

does not necessarily follow a Gaussian process. Hence,γ̃
LIML

− γ0 does not necessarily

converge to a mixture of Gaussian processes [similar to DokoTchatoka (2014)].

LemmaA.2 - (b) shows that ˜r ′jΩ̂W r̃ j converges to a random process ifγ is weakly identified.

This contrast with the case whereγ is identified so that ˜r ′jΩ̂Wr̃ j converges in probability to a pos-

itive scalar. Similarly,S̃n(β 0, γ̃ j) does not have a standard normal distribution even forj = 2SLS,

as it is the case with strong instruments [see LemmaA.2 - (c)]. While S̃n(β 0, γ̃2SLS
) follows asymp-

totically a mixture of Gaussian processes with nonzero meanunderH0, the limiting distribution of

S̃n(β 0, γ̃LIML) is nonstandard because of the presence ofκLIML in it.

Lemma A.3 Suppose Assumptions2.1–2.4 are satisfied. If further H0 hold andΠw 6= 0 is fixed,

then for some integer r≥ 1, we have:

sup
τ ∈R

∣∣P∗[S̃∗n(β 0, γ̃
∗
j )≤ τ]−Φ(τ)−

r

∑
h=1

n
−h/2

ph
S̃n, j

(τ ; F̃n, γ̃ j ,Π̂x,Π̂w)φ(τ)
∣∣= o(n−r/2)

for all j ∈ {LIML, 2SLS} , where ph
S̃n, j

is a polynomial inτ with coefficients depending oñγ j , Π̂x,

Π̂w, and the moments of̃Fn, Φ(·) and φ(·) are the cdf and pdf of a standard normally distributed

random variable.

Lemma A.4 Suppose that Assumptions2.1–2.3, and 2.5 are satisfied. If further H0 holds and

(λ n,h)n≥1 satisfies(3.2)–(3.4), then the following convergence holds jointly for j∈ {LIML, 2SLS} :

(a) E∗
[
(v∗1,i −V∗′

w,i γ̃ j)
2
]

d→ σ εε, j = σ εε(1−2hεw∆h, j +∆ 2
h, j) a.s.;
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(b) E∗
[
V∗

w,i(v
∗
1,i −V∗′

w,i γ̃ j)
]

d→ σVwε , j = σVwε −σ1/2
εε σ1/2

VwVw
∆h, j a.s.;

(c) E∗
[
V∗

w,iV
∗′
w,i

]
p→ σVwVw

a.s.

Lemma A.5 Suppose that Assumptions2.1–2.3, and2.5 are satisfied. Suppose also that H0 holds

and (λ n,h)n≥1 satisfies(3.2)–(3.4). If further E(‖Zi‖4+δ , ‖(ε i ,Vwi)
′‖2+δ ) < +∞ for someδ > 0,

then we have:




(
Z∗′Z∗

n

)−1/2
(

Z∗′ (v∗1:V∗
w)√

n

)(
Ω̂W
)−1/2

n−1/2
(

n−1M∗′
1n−n−1M′

1n

)


 | Xn →d




ψV1

ψVw

ψm


∼ N

((
I2L 0

0 Ωmm

))
a.s.,

where M= (m1, . . . ,mn), mi = vech(ZiZ∗
i ) ∈ RL(L+1)/2, Ωmm= Var(mi), and M∗ = (m∗

1, . . . ,m
∗
n),

m∗
i = vech(Z∗

i Z∗′
i ) are the bootstrap counterparts of M and m; and1n is a n×1 vector of ones.

Lemma A.6 Suppose that Assumptions2.1–2.3, and2.5 are satisfied. Suppose also that H0 holds

and (λ n,h)n≥1 satisfies(3.2)–(3.4). If further E(‖Zi‖4+δ , ‖(ε i ,Vwi)
′‖2+δ ) < +∞ for someδ > 0,

then we have:

(a) γ̃∗j − γ̃ j | Xn
d→ σ1/2

εε , jσ
−1/2

VwVw
∆ B

h, j a.s.;

(b) r̃∗
′

j Ω̂ ∗
1W r̃∗j | Xn

d→ σ εε, j

(
1−2hεw, j∆ B

h, j +(∆ B
h, j)

2
)

a.s.;

(c) Ŝ∗(β 0, γ̃∗j ) | Xn
d→
(

1−2hεw, j∆ B
h, j +(∆ B

h, j)
2
)−1/2

SB
h, j a.s.

for j ∈ {LIML, 2SLS} where∆ B
h, j =

(
Ψ B′Ψ B

h −κB
h, j

)−1(
ΨB′ψε, j −κB

h, jhεw, j

)
, whenκB

2SLS= 0

and κB
LIML is the smallest root of the determinantal equation

∣∣∣
(
ψε , j : Ψ B

h

)′ (ψε , j : Ψ B
h

)
−κΣh, j

∣∣∣ =

0, Ψ B
h =Ψ +ψVw

, ψε, j = ψV1
−ψVw

(
γ0+σ1/2

εε σ−1/2
VwVw

∆h, j

)
= ψε −σ1/2

εε σ−1/2
VwVw

∆h, jψVw
, Σh, j =

(
1 hεw, j

hεw, j

)
, hεw, j = (σ εε , jσVwVw

)
−1/2σVwε , j = (1− 2hεw∆h, j +∆ 2

h, j)
−1/2(hεw −∆h, j), σ εε, j =

σ εε(1−2hεw∆h, j +∆ 2
h, j), σVwε , j = σVwε −σ1/2

εε σ1/2
VwVw

∆h, j , SB
h, j = ψε, j −ΨB

h ∆ B
h, j , and∆h, j is given

in LemmaA.2.

The asymptotic behavior of the bootstrap statistics in Lemma A.6 (a)-(c) differ substan-

tially from those in LemmaA.2 (a)-(c) if ‖hww < ∞‖. Therefore, the bootstrap fails to mimic

the asymptotic distributions of these statistics underH0 and the subsequence of parameters

(λ n,h)n≥1 satisfying (3.2)–(3.4) when γ is not identified (i.e., when‖hww < ∞‖). For example,

while γ̃ j − γ0
d→ σ1/2

εε σ−1/2

VwVw
∆h, j in LemmaA.2-(a), we haveγ̃∗j − γ̃ j | Xn

d→ σ εε(1− 2hεw∆h, j +

∆ 2
h, j)

1/2σ1/2
εε σ−1/2

VwVw
∆ B

h, j a.s. in LemmaA.6-(a), where∆h, j 6= ∆ B
h, j with probability one if‖hww < ∞‖.
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A.2. Proofs

PROOF OF LEMMA A.1 We show the proof for the statistic̃Sn(β 0, γ̃2SLS
). The proof for

S̃n(β 0, γ̃LIML
) can be deduced similarly. First, observe that we can expressS̃n(β 0, γ̃2SLS

) underH0

asS̃n(β 0, γ̃2SLS
) =

√
nN/D, where

N =

(
Z′Z
n

)−1/2[Z′ỹ(β 0)

n
−
(

Z′W
n

)
γ̃

2SLS

]

=

(
Z′Z
n

)−1/2


Z′ε
n

−
(

Z′W
n

)[(
W′Z

n

)(
Z′Z
n

)−1(Z′W
n

)]−1(
W′Z

n

)(
Z′Z
n

)−1(Z′ε
n

)

 , (A.2)

D =
ỹ′(β0)MZỹ(β0)

n−L
−2

ỹ′(β 0)MZW
n−L

γ̃
2SLS

+
W′MZW

n−L
(γ̃

2SLS
)2, (A.3)

γ̃
2SLS

=

[(
W′Z

n

)(
Z′Z
n

)−1(Z′W
n

)]−1(
W′Z

n

)(
Z′Z
n

)−1(Z′ỹ(β0)

n

)
, and ỹ(β0) = y−Xβ 0.

So,from (A.2)-(A.3), we can writeS(β 0, γ̃2SLS
) underH0 as

S̃n(β 0, γ̃2SLS
) =

√
nH(R̄n) =

√
n[H(R̄n)−H(µ)] (A.4)

whereH(·) is a real-valued Borel measurable function onR
K with derivatives of orders≥ 3 and

lower, being continuous on the neighborhood ofµ = E(Rn) whenΠw 6= 0 is fixed, andH(µ) = 0

underH0. Note that the derivatives of orders≥ 3 and lower ofH(·) are not well-defined under the

sequences
{

Πw,n = 0 : n ≥ 1
}

and does not even exist under the sequences
{

Πw,n = Πw0cn : cn ↓
0∀n≥ 1,Πw0 ∈ R

L is fixed
}

; see Moreira et al. (2009, footnote 2) and Doko Tchatoka (2013) for

a similar result. LemmaA.1 follows by applying Bhattacharya and Ghosh (1978, Theorem 2) to

(A.4) with s−2= r.

PROOF OF THEOREM 3.1 From (2.9), we haveL×ARn(β 0, γ̃ j) =
∥∥S̃n(β 0, γ̃ j)

∥∥2
. We want to

approximatePθ [ARn(β 0, γ̃ j)≤ τ] uniformly inΘ underH0. First, we can writePθ [ARn(β 0, γ̃ j)≤ τ ]
as:

Pθ [ARn(β 0, γ̃ j)≤ τ ] = Pθ [ARn(β 0, γ̃ j) ∈ Cτ ],

whereCτ =
{

x∈ R;x2 ≤ τ
}

are convex sets. From Bhattacharya and Rao (1976, Corollary3.2),

we have sup
τ∈R

Φ((∂Cτ )
ε) ≤ d.ε for some constantd andε > 0. So, Bhattacharya and Ghosh (1978,

Theorem 1) holds withB=Cτ andWn = S̃n(β 0, γ̃ j), j ∈{2SLS,LIML} . By using the approximation

of Pθ [S̃n(β 0, γ̃ j) ≤ τ ] in LemmaA.1 and the definition ofCτ , Theorem3.1 follows directly from

the fact that the odd terms of the quadratic expansion are even.
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PROOF OFLEMMA A.2 (a) We start with the proof forj = 2SLS. We have

W′PZW
σVwVw

= σ−1
VwVw

(
Π ′

w,nZ′ZΠw,n+V′
wZΠw,n+Π ′

w,nZ′Vw+V′
wPZVw

)

=
(

n1/2σ−1/2
VwVw

Q1/2
Z Πw,n

)′
Q−1/2

Z

(
Z′Z
n

)
Q−1/2

Z

(
n1/2σ−1/2

VwVw
Q1/2

Z Πw,n

)
+

(
σ−1/2

VwVw

Z′Vw√
n

)′
Q−1/2

Z

(
n1/2σ−1/2

VwVw
Q1/2

Z Πw,n

)
+
(

n1/2σ−1/2
VwVw

Q1/2
Z Πw,n

)′
Q−1/2

Z

(
σ−1/2

VwVw

Z′Vw√
n

)

(
σ−1/2

VwVw

Z′Vw√
n

)′(Z′Z
n

)−1(
σ−1/2

VwVw

Z′Vw√
n

)

d→ h′
ww

hww +ψ ′
Vw

hww +h′
ww

ψVw
+ψ ′

Vw
ψVw

= (hww +ψVw
)′(hww +ψVw

) =Ψ ′
hΨh.

By the same token, we have

(
σ εε σVwVw

)−1/2
W′PZε =

(
σ εε σVwVw

)−1/2(Π ′
w,nZ′ε +V ′

wPZε
)

=
(

n1/2σ−1/2
VwVw

Q1/2
Z Πw,n

)′(
σ−1/2

εε Q−1/2
Z

Z′ε√
n

)

+

(
σ−1/2

VwVw

Z′Vw√
n

)′(Z′Z
n

)−1(
σ−1/2

εε
Z′ε√

n

)

d→ h′
ww

ψε +ψ ′
Vw

ψε =Ψ ′
hψε .

Because,̃γ
2SLS

− γ0 = (W′PZW)−1W′PZε, the result follows immediately.

For the case of̃γ
LIML

, we note that̃κLIML is the smallest root of the characteristic polynomial

∣∣κΩ̂W − (ỹ(β 0) : W)′ PZ (ỹ(β 0) : W)
∣∣= 0.

Observe thatPZ (ỹ(β 0) : W) = PZ

[
ZΠw,n(γ :)+ (ε : VW)

(
1 0

γ 1

)]
. Substituting this into the char-

acteristic polynomial, and pre-multiplying by

∣∣∣∣∣∣

(
1 0

−γ 1

)′∣∣∣∣∣∣
and post-multiplying by

∣∣∣∣∣

(
1 0

−γ 1

)∣∣∣∣∣
yields

∣∣κΣ̂ − (ε : ZΠw,n+VW)′ PZ (ε : ZΠw,n+VW)
∣∣= 0,

whereΣ̂ =

(
1 0

−γ 1

)′

Ω̂W

(
1 0

−γ 1

)
≡
(

σ̂ εε σ̂ εVw

σ̂Vwε Σ̂Vw

)
.

From Theorem 1(a) and Theorem 2 in Staiger and Stock (1997), we get

(
σ−1

εε σVwVw

)1/2(γ̃
LIML

− γ0

) d→ ∆h,LIML =
{

Ψ ′
hΨh−κh,LIML

}−1{Ψ ′
hψε −κh,LIML hεw

}
,
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whereκh,LIML is the smallest root of the characteristic polynomial

∣∣(ψε : Ψh)
′ (ψε : Ψh)−κhΣh

∣∣= 0, Σh =

(
1 hεw

hεw 1

)
.

Thus, the result follows.

(b) Similarly, we have

r̃ ′jΩ̂1W r̃ j = (n−L)−1(ỹ(β 0)−Wγ̃)′ MZ (ỹ(β 0)−Wγ̃)

= (n−L)−1ε ′ε − (n−k)−1(γ̃ j − γ0

)′
W′MZε − (n−L)−1ε ′MZW

(
γ̃ j − γ0

)

+(n−L)−1(γ̃ j − γ0

)′
W′MZW

(
γ̃ j − γ0

)

d→ σ εε −
(

σ1/2
εε σ−1/2

VwVw
∆h, j

)′
σVwε −σ εVW

(
σ1/2

εε σ−1/2
VwVw

∆h, j

)

+
(

σ1/2
εε σ−1/2

VwVw
∆h, j

)′
σVwVw

(
σ1/2

εε σ−1/2
VwVw

∆h, j

)

= σ εε
(
1−2hεw∆h, j +∆ 2

h, j

)

(c). First, note that̃S(β 0, γ̃ j) = (Z′Z)−1/2 Z′ (ỹ(β 0) : W) r̃ j(r̃ ′jΩ̂1Wr̃ j)
−1/2. However, we have

(
Z′Z
)−1/2

Z′ (ỹ(β 0) : W) r̃ j =

(
Z′Z
n

)−1/2 Z′ε√
n
+

(
Z′Z
n

)−1/2 Z′W√
n

(
γ0− γ̃ j

)

= σ1/2
εε

{
σ−1/2

εε

(
Z′Z
n

)−1/2 Z′ε√
n
+

(
n1/2σ−1/2

VwVw

(
Z′Z
n

)1/2

Πw,n

+σ−1/2
VwVw

(
Z′Z
n

)−1/2 Z′VW√
n

)
σ−1/2

εε σ1/2
VwVw

(
γ0− γ̃ j

)
}

d→ σ1/2
εε

{
ψε −Ψh

(
Ψ ′

hΨh−κh, j
)−1(Ψ ′

hψε −κh, jhεw

)}

= σ1/2
εε (ψε −Ψh∆h, j).

Combing this with (b), the result follows.

PROOF OFTHEOREM 3.2 The proof follows immediately from equation (2.9) and LemmaA.2.

Therefore, it is omitted.

PROOF OFLEMMA A.3 The proof follows the same steps as in Theorem 3 of Moreira et al. (2009)

and is therefore omitted.
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PROOF OFLEMMA 4.1 The proof follows the same steps as in Theorem 3 of Moreira et al. (2009)

and is therefore omitted.

PROOF OFTHEOREM 4.2 The proof is similar to that of Hall and Horowitz (1996, Theorem 3)

upon exploiting the results of Theorem3.1and Lemma4.1, hence it is omitted.

PROOF OFLEMMA A.4 (a). First, we have

E
∗
[
(v∗1,i −V∗′

W,i γ̃ j)
2
]

= n−1
n

∑
i=1

(
ṽ1,i −Ṽ ′

w,i γ̃ j

)2

= n−1ṽ′1ṽ1−2
(
n−1ṽ′1ṼW

)
γ̃ j + γ̃ j

(
n−1Ṽ ′

wṼw
)
(γ̃ j)

2

d→ σ εε
(
1−2hεw∆h, j +∆ 2

h, j

)
.

(b). Similarly to (a), we have

E
∗
[
V∗

w,i(v
∗
1,i −V∗′

w,i γ̃ j)
]

= n−1Ṽ ′
wṽ1−

(
n−1Ṽ ′

wṼw
)

γ̃ j

= n−1Ṽ ′
wṽ1−

(
n−1Ṽ ′

wṼw
)

γ0+
(
n−1Ṽ ′

wṼw
)
(γ0− γ̃ j)

d→ σVwε −σ1/2
εε σ1/2

VwVw
∆h, j .

(c). Similarly, we findE∗
(
V∗

w,iV
∗′
w,i

)
= n−1Ṽ ′

wṼw
p→ σVwVw

a.s.

PROOF OF LEMMA A.5 The proof follows closely Lemma A.2 of Moreira et al. (2009).Let

(c′,d′)′ be a nonzero vector withc= (c′1,c
′
w)

′ ∈ R
2L andd ∈ R

L(L+1)/2. Define

X∗
n,i =

{
c′ (V∗

i ⊗Z∗
i )+d′ (m∗

i − m̄)
}
/
√

n,

whereV∗
i =

(
v∗1,i ,V

∗′
w,i

)′
is the ith bootstrap draw of the (re-centered) reduced-form residuals, m̄=

n−1 ∑n
i=1 mi. We use the Cramer-Wald device to verify the condition of theLiapunov Central Limit

Theorem forX∗
n,i.

(a)E∗[X∗
n,i] = 0 follows from the independence of the bootstrap draws andE∗[V∗

i ] = 0.

(b) By noting thatE
∗
[V∗

i V∗′
i ] = Ṽ ′Ṽ/n, whereṼ = (ṽi : Ṽw), andE∗[Z∗

i Z∗′
i ] = Z′Z/n, we have

E
∗[X∗2

n,i ] = n−1{c′
[(

n−1Ṽ ′Ṽ
)
⊗
(
n−1Z′Z

)]
c+d′Ω̃mm

}
<+∞,

whereΩ̃mm= n−1 ∑n
i=1(mi − m̄)(mi − m̄)′.

(c) By using the same argument as in Lemma A.2 of Moreira et al.(2009), we have

limn→∞ ∑n
i=1E

∗
[∣∣X∗

n,i

∣∣2+δ
]
= 0 a.s. SinceE∗

[
n−1Z∗′Z∗

]
= n−1Z′Z andn−1Z∗′Z∗−n−1Z′Z |Xn

a.s.→
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0 by the Markov law of large numbers (LLN), we also haven−1Z∗′Z∗ | Xn
p→ QZ a.s. In addition,

it is easy to see that̂ΩW
p→ ΩW. Therefore, LemmaA.5 follows by applying the Liapunov Central

Limit Theorem.

PROOF OFLEMMA A.6

(a). As before, we begin with the 2SLS estimator. LetΠB
w,n = n1/2Πw,n +

(
n−1Z′Z

)−1(
n−1/2Z′Vw

)
, then

(
E
∗
[
V∗

w,iV
∗′
w,i

])−1
W∗′PZ∗W∗

=
(
E
∗
[
V∗

w,iV
∗′
w,i

])−1(
Π̂ ′

wZ∗′Z∗Π̂w+V∗′
w Z∗Π̂w+ Π̂ ′

wZ∗′V∗
w +V∗′

w PZ∗V∗
w

)

=
(
E
∗
[
V∗

w,iV
∗′
w,i

])−1
{

ΠB′
w,n

(
Z∗′Z∗

n

)
ΠB

w,n+

(
V∗′

w Z∗
√

n

)
ΠB

w,n+ΠB′
w,n

(
Z∗′V∗

w√
n

)

+

(
V∗′

w Z∗
√

n

)(
Z∗′Z∗

n

)−1(
Z∗′V∗

w√
n

)


and similarly, we have

(
E
∗ [(v∗1,i −V∗

w,i γ̃ j)
2]
E
∗
[
V∗

w,iV
∗′
w,i

])−1/2
W∗′PZ∗

(
V∗

1 −V∗
wγ̃ j

)

=
(
E
∗ [(V∗

1,i −V∗
w,i γ̃ j)

2]
E
∗
[
V∗

w,iV
∗′
w,i

])−1/2{
Π̂ ′

wZ∗′ (V∗
1 −V∗

wγ̃ j

)
+V∗′

w PZ∗
(
V∗

1 −V∗
w γ̃ j

)}

=
(
E
∗ [(V∗

1,i −V∗
w,i γ̃ j)

2]
E
∗
[
V∗

w,iV
∗′
w,i

])−1/2
{

ΠB′
w,n

(
Z∗′ (V∗

1 −V∗
wγ̃ j

)
√

n

)

+

(
V∗′

w Z∗
√

n

)(
Z∗′Z∗

n

)−1(
Z∗′ (V∗

1 −V∗
w γ̃ j

)
√

n

)
 .

Sincen−1Z∗′Z∗ | Xn
a.s.→ E(ZiZ′

i ) = QZ from LemmataA.4-A.5, we have

(
E
∗
[
V∗

w,iV
∗′
w,i

])−1
W∗′PZ∗W∗ | Xn

d→ (hww +2ψVw
)′(hww +2ψVw

)a.s.

=
(
Ψh+ψVw

)′ (Ψh+ψVw

)
≡ΨB′

h Ψ B
h

Similarly, we have

(
E
∗ [(V∗

1,i −V∗
w,i γ̃ j)

2]
E
∗
[
V∗

w,iV
∗′
w,i

])−1/2
W∗′PZ∗

(
V∗

1 −V∗
wγ̃ j

)
| Xn

d→Ψ B′
h ψε ,2SLSa.s.,

whereψε,2SLS= ψV1
−ψVw

(γ0+σ1/2
εε σ−1/2

VwVw
∆2SLS) = ψε −σ1/2

εε σ−1/2
VwVw

∆h,2SLSψVw
.
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For LIML, observe that̃κ∗
LIML is the smallest root of

∣∣∣κΣ̂ ∗
LIML −

(
V∗

1 −V∗
wγ̃

LIML
: Z∗Π̂w+V∗

w

)′
PZ∗
(
V∗

1 −V∗
wγ̃

LIML
: Z∗Π̂w+V∗

w

)∣∣∣= 0,

where we havêΣ ∗
LIML =

(
1 0

−γ̃
LIML

1

)′

Ω̂ ∗
W

(
1 0

−γ̃
LIML

1

)
.

So, by following the same steps as in the case of 2SLS and usingLemmaA.2, we get (conditionally

onXn)




E
∗
[
V∗

w,iV
∗′
w,i

]

E∗(V∗
1,i −V∗

w,i γ̃LIML
)2




1/2

(
γ̃∗

LIML
− γ̃

LIML

) d→ (Ψ B′
h Ψ B

h −κB
h, j)

−1(Ψ B′
h ψ

ε,LIML
−κB

h, jhεVw,LIML )

a.s., whereκB
h, j is the smallest root of the characteristic polynomial

∣∣∣
(
ψε ,LIML : Ψ B

h

)′ (ψε ,LIML : ΨB
h

)
−κhΣh,LIML

∣∣∣= 0, Σh,LIML =

(
1 hVwε,LIML

hVwε,LIML 1

)
.

This establishes LemmaA.6-(a).

(b) Similarly, we have

r̃∗
′

j Ω̂ ∗
1Wr̃∗j = (n−L)−1(ỹ∗(β 0)−W∗γ̃∗j

)′
MZ∗

(
ỹ∗(β 0)−W∗γ̃∗j

)

= (n−L)−1(V∗
1 −V∗

wγ̃ j

)′ (
V∗

1 −V∗
w γ̃ j

)
− (n−L)−1(γ̃∗j − γ̃ j

)′
W∗′MZ∗

(
V∗

1 −V∗
wγ̃ j

)

−(n−L)−1ε∗′MZ∗W∗ (γ̃∗j − γ̃ j

)
+(n−L)−1(γ̃∗j − γ̃ j

)′
W∗′MZ∗W∗ (γ̃∗j − γ̃ j

)
.

SinceΩ̂ ∗
1W | Xn

a.s.→ ΩW, it follows that

r̃∗
′

j Ω̂ ∗
1W r̃∗j | Xn

d→ σ εε, j
(
1−2hVwε, j ∆

B
j +(∆ B

h, j)
2) a.s.

(c) Again, we have

(
Z∗′Z∗

)−1/2
Z∗′ (ỹ∗(β 0) : W∗) r̃∗j

=

(
Z∗′Z∗

n

)−1/2
Z∗′ (V∗

1 −V∗
w γ̃ j

)
√

n
+

(
Z∗′Z∗

n

)−1/2
Z∗′W∗ (γ̃ j − γ̃∗j

)
√

n

= σ1/2
εε , j



σ−1/2

εε, j

(
Z∗′Z∗

n

)−1/2
Z∗′ (V∗

1 −V∗
wγ̃ j

)
√

n
+


σ−1/2

VwVw

(
Z∗′Z∗

n

)1/2

ΠB
w,n

+σ−1/2
VwVw

(
Z∗′Z∗

n

)−1/2
Z∗′V∗

w√
n


σ−1/2

εε, j σ1/2
VwVw

(
γ̃ j − γ̃∗j

)


+op(1).
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Thus, by proceeding as in (a) and (b), we get

(
Z∗′Z∗

)−1/2
Z∗′ (ỹ∗(β 0) : W∗) r̃∗j | Xn

d→ σ1/2
εε , j
{

ψε, j −ΨB
h ∆ B

h, j

}
a.s.,

where∆ B
h, j =

(
ΨB′

h Ψ B
h −κB

h, j

)−1(
Ψ B′

h ψε, j −κB
h, jhεw, j

)
. The final result follows from the above

limits and (b).

PROOF OFLEMMA 4.3 Lemma4.3 follows from equation (4.4) and the results of LemmaA.6.

Therefore, the proof is omitted.

PROOF OFTHEOREM 6.3 First, we can expressAsySzARj
[cB−S

j (α ,α −δ , µ̂
n,wh

)] as:

AsySzARj
[cB−S

j (α ,α −δ , µ̂
n,wh

)] =: limsup
n→∞

sup
θ ∈Θ

Pθ [ARn(β 0, γ̃ j)> cB−S
j (α ,α −δ , µ̂

n,wh
)]

= limsup
n→∞

Pθ̃n
[ARn(β 0, γ̃ j)> cB−S

j (α ,α −δ , µ̂
n,wh

)] (A.5)

= lim
n→∞

Pθ̃ ωn,h
[ARωn,h(β 0, γ̃ j)> cB−S

j (α ,α −δ , µ̂
ωn,h,wh

)]

where
{

θ̃ n : n≥ 1
}

is a sequence inΘ and{ωn,h : n≥ 1} is a subsequence of{n : n≥ 1} sat-

isfying (3.1)–(3.4). Andrews and Guggenberger (2009) showthat such sequence and subse-

quence always exists. So, it suffices to show that limsupn→∞ limn→∞ Pθ ωn,h
[ARωn,h(β 0, γ̃ j) >

cB−S
j (α ,α − δ , µ̂

ωn,h,wh
)] ≤ α for all µ

wh
∈ Hµ , subsequence{ωn,h : n≥ 1} of {n : n≥ 1} and se-

quences
{

θ ωn,h : n≥ 1
}

satisfying (3.1)–(3.4). Letc j(δ , µ̂ωn,h,wh
) be the value ofcj,µ

wh
(δ ) evaluated

at µ
wh
=: µ̂

ωn,h,wh
. Then, for anyµ

wh
∈ Hµ , we have

limsup
n→∞

Pθ ωn,h
[ARωn,h(β 0, γ̃ j)> cB−S

j (α ,α −δ , µ̂
n,wh

)] (A.6)

= lim
n→∞

Pθ̃ ωn,h
[ARωn,h(β 0, γ̃ j)> cB−S

j (α ,α −δ , µ̂
ωn,h,wh

)] = Pθ [ξ j(h)≥ cB−S
j (α ,α −δ , µ̃

wh
)]

underH0, Assumptions2.1–2.3, 2.5 and Assumptions6.1–6.2, wherecB
j (α ,α −δ , µ̃

wh
) is a random

variable becausẽµ
wh
=: (µ̃ww,hεw) andµ̃ww = ‖hww +ψVw

‖ is a random variable. Now, we have

Pθ [ξ j(h)≥ cB−S
j (α ,α −δ , µ̃

wh
)] = Pθ [ξ j(h) ≥ cB−S

j (α ,α −δ , µ̃
wh
)≥ c j,µ

wh
(δ )]

+ Pθ [ξ j(h) ≥ c j,µ
wh
(δ )≥ cB−S

j (α ,α −δ , µ̃
wh
)] (A.7)

+ Pθ [c j,µ
wh
(δ )≥ ξ j(h)≥ cB−S

j (α ,α −δ , µ̃
wh
)]

≤ Pθ [ξ j(h) ≥ c j,µ
wh
(δ )]+Pθ [c j,µ

wh
(δ )≥ cB−S

j (α ,α −δ , µ̃
wh
)]

≤ Pθ [ξ j(h) ≥ c j,µ
wh
(δ )]+Pθ [µwh

/∈CIα−δ (µ̃wh
)]

≤ δ +(α −δ ) = α .
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It follows from (A.6)–(A.8) thatAsySzARj
[cB−S

j (α ,α −δ , µ̂
n,wh

)]≤ α as stated.

PROOF OFTHEOREM 6.6 The proof is similar to those in6.3and it is omitted.

31



References

Anderson, T. W., Rubin, H., 1949. Estimation of the parameters of a single equation in a complete

system of stochastic equations. Annals of Mathematical Statistics 20, 46–63.

Andrews, D. W., Guggenberger, P., 2009. Hybrid and size-corrected subsampling methods. Econo-

metrica 77(3), 721–762.

Bhattacharya, R. N. , Ghosh, J. , 1978. On the validity of the formal Edgeworth expansion. The

Annals of Statistics 6, 434–451.

Bhattacharya, R. N., Rao, R., 1976. Normal approximation and asymptotic expansions. In: R. Bhat-

tacharya, R. Rao, eds, Normal Approximation and AsymptoticExpansions. Wiley Series in

Probability and Mathematical Analysis, New York.

Doko Tchatoka, F., 2013. On bootstrap validity for specification tests with weak instruments. Tech-

nical report, School of Economics and Finance, University of Tasmania Hobart, Australia.

Doko Tchatoka, F., 2014. Subset hypotheses testing and instrument exclusion in the linear IV re-

gression. Econometric Theory forthcoming.

Doko Tchatoka, F., Dufour, J.-M., 2014. Identification-robust inference for endogeneity parameters

in linear structural models. The Econometrics Journal 17, 165–187.

Dufour, J.-M., 1997. Some impossibility theorems in econometrics, with applications to structural

and dynamic models. Econometrica 65, 1365–1389.

Dufour, J.-M., Jasiak, J., 2001. Finite sample limited information inference methods for structural

equations and models with generated regressors. International Economic Review 42, 815–843.

Dufour, J.-M., Taamouti, M., 2005. Projection-based statistical inference in linear structural models

with possibly weak instruments. Econometrica 73(4), 1351–1365.

Dufour, J.-M., Taamouti, M., 2007. Further results on projection-based inference in IV regressions

with weak, collinear or missing instruments. Journal of Econometrics 139(1), 133–153.

Guggenberger, P., 2012. On the asymptotic size distortion of tests when instruments locally violate

the exogeneity assumption. Econometric Theory 28, 387–421.

Guggenberger, P., Chen, L., 2011. On the asymptotic size of subvector tests in the linear instrumental

variables model. Technical report, Department of Economics, UCSD.

Guggenberger, P., Kleibergen, F., Mavroeidis, S., Chen, L., 2012. On the asymptotic sizes of sub-

set anderson-rubin and lagrange multiplier tests in linearinstrumental variables regression.

Econometrica 80(6), 2649–2666.

32



Hall, P., 1992. The bootstrap and Edgeworth expansion. In: P. Hall, ed., The bootstrap and Edge-

worth expansion. Springer-Verlag New York, Inc, New York.

Hall, P., Horowitz, J. L., 1996. Bootstrap critical values for tests based on generalized-method-of-

moments estimators. Econometrica 64(4), 891–916.

Horowitz, J. L., 2001. The bootstrap. In: J. Heckman, E. E. Leamer, eds, Handbook of Econometrics.

Elsvier Science, Amsterdam, The Netherlands.

Kleibergen, F. , 2002. Pivotal statistics for testing structural parameters in instrumental variables

regression. Econometrica 70(5), 1781–1803.

Kleibergen, F., 2004. Testing subsets of structural coefficients in the IV regression model. Review

of Economics and Statistics 86, 418–423.

Kleibergen, F., 2008. Subset statistics in the linear IV regression model. Technical report, Depart-

ment of Economics, Brown University, Providence, Rhode Island Providence, Rhode Island.

Kleibergen, F., 2015. Efficient size correct subset inference in linear instrumental variables regres-

sion. Technical report, Department of Quantitative Economics, University of Amsterdam.

McCloskey, A., 2015. Instrumental varaible regressions with honestly uncertain exclusion restric-

tions. Technical report, Brown University Providence, RI.

Mikusheva, A., 2010. Robust confidence sets in the presence of weak instruments. Journal of Econo-

metrics 157, 236–247.

Moreira, M. J. , 2003. A conditional likelihood ratio test for structural models. Econometrica

71(4), 1027–1048.

Moreira, M. J., Porter, J., Suarez, G., 2009. Bootstrap validity for the score test when instruments

may be weak. Journal of Econometrics 149, 52–64.

Staiger, D., Stock, J. H., 1997. Instrumental variables regression with weak instruments. Economet-

rica 65(3), 557–586.

Startz, R., Nelson, C. R. N., Zivot, E., 2006. Improved inference in weakly identified instrumental

variables regression. In: D. Corbae, S. N. Durlauf, B. E. Hansen, eds, Econometric Theory

and Practice: Frontiers of Analysis and Applied Research. Cambridge University Press, Cam-

bridge, U.K., chapter 5.

Stock, J. H., Wright, J. H., 2000. GMM with weak identification. Econometrica 68, 1055–1096.

33


