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Abstract

Empirical research on social and economic networks has been constrained by the limited availability
of data regarding such networks. This paper develops a method that does not rely on network data to
estimate network effects. The proposed method also estimates the probability that pairs of individuals form
connections, which may depend on exogenous factors such as common gender. The method may incorporate
imperfect network data, such as with self-reported data, with the dual purpose of refining the estimates and
testing whether the reported connections positively affect the probability that a link is formed. To achieve
those goals, I derive a maximum likelihood estimator for network effects that is not conditional on network
observation. Networks are treated as a source of unobserved heterogeneity and eliminated based on data
collected from observing many groups. This is accomplished with recourse to a spatial econometric model
with unobserved and stochastic networks. I then apply the model to estimate network effects in the context
of a program evaluation. I demonstrate theoretically and empirically that including network effects has
important implications for policy assessments.
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1 Introduction

Personal interconnectedness is an important and pervasive feature of human life. Social and economic networks
enhance learning in classrooms (Angrist and Lang, 2004; Ammermuller and Pischke, 2009), influence decisions
regarding technology adoption (Foster and Rosenzweig, 1995; Conley and Udry, 2010) and serve as mechanisms
for informal contractual enforcement (Ambrus et al., 2014). In recent years, the many ways in which social
networks affect choices and behavior have been the subject of extensive research (Jackson, 2010). However,
incorporating these mechanisms in applied research remains challenging because of the limited availability of
network data. Even when networks are able to be observed, these observations are often imperfect, such as when
data are self-reported or subject to measurement errors.

This paper develops a method for estimating network effects when network data are either unobserved
or imperfectly observed. The method does not rely on network data and derives network effects using only
individuals’ dependent and explanatory variables data. I specifically propose an estimator that accomplishes
three objectives. First, I estimate network spillovers – the difference between expected outcomes when networks
are and are not relevant – without network data.1 Spillovers also capture the extent to which social networks
amplify the effect of explanatory variables on outcomes (Miguel and Kremer, 2004). Second, I illuminate
structural mechanisms that give rise to network spillovers. I separately identify and estimate Manski’s (1993)
endogenous effects (the dependence of one’s own choices on the choices of others) from exogenous effects (the
dependence of one’s own choices on the exogenous variables of others), controlling for correlated effects (the
similarity of peers in terms of unobservable characteristics).2 The method also estimates and predicts the
probability that pairs of individuals form a connection, which is allowed to depend on exogenous factors such
as common gender. Third, I incorporate imperfect network data, such as self-reported network data, with the
dual purpose of refining the estimates and providing a test for whether reported connections positively affect the
probability that a connection is formed. Rejection of the null demonstrates self-reported network data validity.

To achieve these goals, I propose a spatial econometric model with unobserved and stochastic networks
that is coupled with a model for random network formation. I derive a likelihood for the model which is not
conditional on network. This likelihood is equivalent to integrating the likelihood conditonal on observing the
true network with respect to the probability density function of the stochastic network. Observation of data on
individuals’ outcomes and explanatory variables in many self-contained groups, such as classrooms in a school,
then provides the identifying condition to estimate the model that serves as a substitute for network observation.
In essence, networks are treated as a source of unobserved heterogeneity. I allow for time and fixed effects at
the individual or group level when panel data are available and when networks are invariant over time.

The estimator for network spillovers is consistent and asymptotically normally distributed under weak iden-
tification assumptions because in this case it is not necessary to separately identify endogenous and exogenous
effects. In other words, the parameters of the model are identified up to a set and, as I will show, the network

1This is also important because OLS estimates are often inconsistent for individual reaction parameters when networks are
irrelevant if network spillovers are not included in the regression, and the size of inconsistency depends on the unobserved network.

2Endogenous effects are the autoregressive component of a spatial model. Exogenous effects is exogenous component of a spatial
model. Correlated effects are captured by fixed effects at the individual level. These are precisely defined with recourse to the
model in Section 2. The reflection problem is solved if there are asymmetries in the expected network (Kelejian and Prucha (1998),
Bramoullé et al. (2009) and De Giorgi et al. (2010) explore similar assumptions when networks are observed) or observation of
groups with distinct sizes is available (see also Lee, 2007).
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spillovers are constant if evaluated at a parameter that belongs to the identified set. Consistency and confidence
regions for the structural parameters are provided making use of the set identification framework.3 To provide
point identification for structural parameters of the model, I explore the difference between observed second
moments of the data and those implied by the model. I utilize the fact that the presence of social interactions
creates dispersion in average outcomes across groups that cannot be explained by independent variables or peer
group heterogeneity alone. Such "excess" variance is explored to build an additional moment restriction and to
solve a Generalized Method of Moments (GMM) problem which also includes the score conditions implied by the
maximizing the likelihood. This completes the requirements for point identification and consistent estimatation
of the structural parameters of the model.4

To illustrate how this method can be applied in practice, I employ the estimator developed herein to inves-
tigate treatment effects both on treated and their peers in a setting potentially conducive to spillovers. The
randomized intervention of Bandiera et al. (2013)5 studies the effect on the treated of the provision of livestock
and training to low-income households in Bangladesh and finds that the lack of capital and skills is a strong
determinant of the occupational choices of the poor. Targeted households begin new livestock-rearing businesses,
increase self-employment hours and reduce wage hours. Due to village-level randomization, a large portion of
the individuals in the selected villages are treated, which raises the possibility that network effects are important
in determining these outcomes, particularly for peers of those who are treated.

Without using network data, I first demonstrate that network spillovers are economically and statistically
significant in determining certain outcomes, especially food expenditure and food security. In these cases,
spillovers amount to half of the original treatment for both treated households and their peers. Spillovers of
occupational choice and livestock are either insignificant or of a small magnitude. To analyze the structural
mechanisms that lead to these results, I then decompose spillovers into exogenous and exogenous effects. I
demonstrate that, regarding occupational choice and assets, a marginal connection to a treated household has an
effect in opposite direction to the effect on the treated: an additional connection decreases self-employment hours,
increases wage hours and decreases livestock value.6 On the other hand, a marginal connection to the treated
increases food per capita expenditure and food security to a significant extent. These results are consistent
with the phenomenon in which peers of treated households partially fill the vacancies left by those who begin
new livestock-rearing businesses and suggests a specialization at the village level, where treated households gain
comparative advantage in livestock rearing. Estimating the network structure also demonstrates that network
densities are fairly low in the majority of cases, suggesting local interactions via personal contacts as opposed to
changes in prices in village-level markets. Finally, inclusion of self-reported network data indicates that family
links convey meaningful interactions between households, whereas economic (i.e., non-family) links are much
less capable of explaining these social dynamics. This result thus reinforces the idea that families are natural
loci for sharing information and conducting business.

The methods developed in this paper contribute to the spatial econometrics literature, which has to date
3Chernozhukov et al. (2007), Bugni (2010) and Romano and Shaikh (2010).
4Graham (2008) uses a similar idea in the context where networks are observed, within the linear-in-means model.
5I thank the authors for sharing data.
6The magnitudes of the estimates imply that peers of treated households compensate around 25-30% of the reduction in treated

households’ wage hours due to exogenous effects. Endogenous effects move in opposite direction reducing the size of the overall
spillover effects. Additional details can be found in Section 5.
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considered estimation only when networks are observed, non-stochastic and measured without error. The role of
randomness in network formation has also received scant attention in spatial models, despite its importance in
social networks (Diestel, 2010). The dependence of existing methods on acquiring knowledge of true networks
has been stressed as a limitation of the previous literature (Anselin, 2010; Plümper and Neumayer, 2010).7

Representative papers in the spatial econometrics literature include those by Anselin (1988) and Kelejian and
Prucha (1998, 1999, 2001, 2010). Lee (2004, 2007) and Lee et al. (2010) also consider a maximum likelihood
estimator. The case in which networks are not observed is explored by Lam and Souza (2013a, b, 2014) and
Manresa (2013), who consider the estimation of networks when one group is observed for many periods of time
and, as a consequence, clearly suit different applications. It is useful to highlight that the latter papers estimate
networks as a collection of pairwise links. In contrast, the current paper is concerned with the probability that
a link is formed and the role of exogenous factors therein. The identification results reported by Manski (1993),
Graham (2008), Bramoullé et al. (2009) and De Giorgi et al. (2010) are also derived under the assumption
that networks are observed. In another strand of the literature, stochastic network formation models, such as
those described by Holland and Leinhardt (1981), Frank and Strauss (1986) and Strauss and Ikeda (1990), also
consider the estimation of network structure only when network observations are available.

Beyond its contribution to the spatial econometric literature, this paper provides a method for systemati-
cally investigating network effects, with potential applications in many fields, such as peer effects in education
(Sacerdote, 2001; Angrist and Lang, 2004; Ammermuller and Pischke, 2009; Bramoullé et al., 2009; De Giorgi
et al., 2010), information diffusion and technology adoption (Foster and Rosenzweig, 1995; Bandiera and Rasul,
2006; Conley and Udry, 2010), social networks and labor outcomes (Rees, 1966; Granovetter, 1973; Montgomery
(1991); Conley and Topa, 2002; Munshi, 2003; Pellizzari, 2004; Calvó-Armengol and Jackson, 2004) and crime
and delinquent behavior (Glaeser et al., 1996; Dell, 2012). In the macroeconomic and trade literature, these
methods can be used to study networks as sources of aggregate fluctuations (Acemoglu et al., 2012) and to es-
timate parameters of gravity equations (Anderson and van Wincoop, 2003). These approaches are particularly
relevant when obtaining data on networks is difficult, time-consuming or expensive, which frequently occurs
with social network data because reported links are frequently subjective and prone to behavioral biases.

The remainder of the paper is structured as follows. In Section 2, I introduce the model, define network
spillovers and illustrate the inconsistencies that arise when networks are not accounted for. In Section 3, I present
the estimator for network effects in the absence of network data and explore its asymptotic properties. Section
4 provides a simulation to validate the performance of the estimator in small samples. Section 5 compares the
methods in this paper with existing alternatives for estimating spillovers. It also provides an application to
treatment spillovers based on the study of Bandiera et al. (2013). Section 6 concludes.

7Plümper and Neumayer (2010) show that misspecification of the networks causes serious bias in parameters of the model, which
should be a particular concern for the study of social interactions, where these issues frequently appear. Another facet of the same
problem emerges in estimation techniques that proposes using peers of peers’ exogenous variables as instruments for one’s own
endogenous variable, such as Kelejian and Prucha (1998, 1999), Bramoullé et al. (2009) and De Giorgi et al. (2010). To the extent
that network data suffers from measurement errors, one risks violating relevance or validity assumptions without awareness.
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2 Model

The model consists of two parts: a model for stochastic network formation and, given a network, a spatial
econometric model that connects explanatory variables to outcomes. The former is sufficiently flexible to allow
the probability link formation to depend on exogenous characteristics, such as sharing race or gender or the
distance between households.8 This model may also incorporate individual-level characteristics that attract
links or, conversely, that make an individual more inclined to form links with others. In this Section, I assume
a simple Bernoulli model for network formation; a full account is provided in Appendix B.9 Given a network,
the spatial econometric model has been extensively considered in the literature, such as by Anselin (1988), Lee
(2004), Bramoullé et al. (2009), Lee et al. (2010) and De Giorgi et al. (2010); however, in contrast to previous
papers, I consider the estimation of network effects in the absence of network data.

I assume that data are available for groups j = 1, . . . , v and individuals i = 1, . . . , nj . Individuals interact
within groups with observed boundaries, but data with respect to networks within groups are not available. For
example, information is available on classes that students belong to but information regarding intra-classroom
networks is not available; households are known to be located in villages, but the researcher does not have
information regarding the pattern of interaction between households.

For each group j, a network is described with a directed graph Gj , an unordered collection of ordered pairs of
individuals among nj individuals. This set lists links along with their associated directions: {i, k} 2 Gj implies
individual i affects individual k in group j. For example, if individual 1 affects 2, 2 affects 3 and 3 affects 2, then
Gj = {{1, 2}, {2, 3}, {3, 2}}. As noted by Wasserman and Faust (1994, Ch. 4), Diestel (2010, Ch. 1), Jackson
(2010, Ch. 2), Ballobás (2013, Ch. 1) and others, this representation is quite general. For example, Figure 1
portrays estimated links between United States senators, as described by Lam and Souza (2014), based on their
2013 voting records. It is also convenient to express the graph with a so-called neighboring or spatial matrix
Wj , of nj ⇥ nj dimensions, a representation of Gj with {Wj}ik = 1 if {i, k} 2 Gj and {Wj}ik = 0 otherwise. It
is assumed that no individual affects him or herself; thus {Wj}ii = 0, for all i 2 {1, . . . , nj}.10

Network formation is random with a probability law, indexed by parameters of interest ✓g. I use a simple
model for clarity of explanation only. Suppose a link between individuals is formed with probability �

1

when
the pair shares a characteristic and �

0

otherwise. To write the probability distribution function, allow nj ⇥ nj

matrix Qj to register the commonality of this individual characteristic. If i and k have the same gender, for
example, let the elements of the matrix {Qj}ik = {Qj}ki = 1 and zero otherwise. Matrix Qj could also capture
if i self-reported a connection with k. In these cases, P{{Wj}ik = 1|{Qj}ik} = �

0

(1 � {Qj}ik) + �
1

{Qj}ik.
The vector of parameters of interest, carried to estimation, is ✓g = (�

1

, �
0

)

0. Under the assumptions that link
formation is homogenous and independent across pairs of individuals, the probability distribution function is

P{Wj = wj |Qj} =

Y

i,k<n
j
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j

}
ik

1

�
1�{Q

j

}
ik

0

)

{W
j

}
ik

((1� �
1

)

{Q
j

}
ik

(1� �
0

)

1�{Q
j

}
ik

)

1�{W
j

}
ik . (1)

8The model also falls into the Exponential Random Markovian Graphs category. See Holland and Leinhardt (1981), Frank and
Strauss (1986) and Strauss and Ikeda (1990).

9See also Wasserman and Faust (1994) and Jackson (2010).
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Figure 1: Graph example from Lam and Souza (2014).

Note: Red nodes are Senators that belong to the Republican party, blue are Democrats and white are independents.

Model (1) is a simple but arguably truthful representation of situations where differential patterns of associations
dominates coalition or strategic behavior, cases in which independence of link formation is violated. A classroom
divided along gender or racial lines is possibly an example that satisfies assumption above.

Given a network, it remains to describe a model linking explanatory variables to outcomes. Denote W 0

j and
M0

j as two random and unobserved realizations of a network-generating process, such as the one introduced
above. This network is embedded is a spatial econometric model, which incorporates dependence of one’s
own outcome variable on others’ outcome variables and others’ exogenous variables. For a particular group
j = 1, . . . , v composed of nj individuals, the model is given by

yj = �
0

W 0

j yj + xj�10 +W 0

j xj�20 + vj (2)

where yj is a column vector of dimension nj⇥1, xj is nj⇥k, and vj is the nj⇥1 disturbance vector. Disturbance
term vj is assumed to follow a structure that allows for spatial dependence, vj = ⇢

0

M0

j vj + ✏j , where ✏j is nj ⇥1,
independent and normally distributed with variance �2

0

. As a particular example, this includes group-level
clustering and heteroskedasticity that arises from heterogeneous exposure to disturbances of others.

In Manski’s (1993) taxonomy, the term W 0

j yj corresponds to the endogenous effects, or the dependence of
one’s own behavior on the behavior of others through link strength scalar parameter �

0

. Parameter �
1

, of
dimension k ⇥ 1, captures the direct effect of one’s own exogenous variables on one’s own dependent variables.
Parameter �

2

, of the same dimension, describes the effects of others’ exogenous variables on one’s own dependent
variable. Thus, W 0

j xj is denoted as contextual or exogenous effects. Correlated effects are represented by the
error vj = ⇢

0

M0

j vj + ✏j and fixed effects, which I describe in Section 3.4. This model is similar to the model
in Bramoullé et al. (2009) and Lee et al. (2010), among other studies, and is known as the "mixed regressive-
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spatial autoregressive model" in the spatial econometrics literature (Anselin, 1988). I am then interested in the
estimation of usual spatial parameters ✓s = (�

0

,�0
10

,�0
20

, ⇢
0

,�2

0

)

0 and ✓g. Hence, the complete set of structural
parameters of interest is ✓ = (✓0s, ✓0g)

0.
Dependence of one’s own outcomes on other’s outcomes and exogenous variables often means that the overall

response to exogenous variation exceeds �
10

. As a consequence, to the extent that individual network spillovers
depend on one’s own exogenous variation, estimators for �

10

that do not account for network spillovers are
frequently inconsistent, as I demonstrate immediately below.

Using the series decomposition11
(In

j

� �
0

W 0

j )
�1

=

P1
s=0

�s
0

(W 0

j )
s to obtain the reduced-form model, the

expected outcomes are separated into two components: the individual reaction or elasticity with respect to xj

and its effect through the network,

Eyj = xj�10 +W 0

j xj�20 +
1X

s=1

�
�
0

W 0

j

�s �
xj�10 +W 0

j xj�20
�
. (3)

The term xj�10 is understood as the individual-level elasticity with respect to xj if networks were irrelevant,
whereas the second and third terms jointly denote network spillovers, the additional effect on the mean exclusively
due to individual interconnectedness:

' (xj , ✓0) ⌘ W 0

j xj�20 +
1X

s=1

�
�
0

W 0

j

�s �
xj�10 +W 0

j xj�20
�

=

1X

s=1

�s�1

0

�
W 0

j

�s
xj (�0

�
10

+ �
20

) . (4)

Clearly, if �
0

= 0 and �
20

= 0k⇥1

, or �
1

= �
0

= 0, then ' (xj , ✓0) = 0. Spillover '(xj , ✓0) is a nj ⇥ 1 vector
because each individual accrues his or her own spillover.

Separate identification of the individual reaction and network spillovers is relevant in at least two scenarios.
Provided that the ultimate goal is to consistently estimate �

10

, ' (xj , ✓0) is a confounding factor. As shown in
Subsection 2.1, when networks are unaccounted for, consistent estimating �

10

requires an underlying network
structure such that one’s own network spillovers are independent of one’s own exogenous variation, a condition
that breaks down in simple counterexamples.

Moreover, network spillovers are of interest in their own right, as shown by the plethora of examples in
the literature. Glaeser et al. (1996) argue that social interactions explain petty criminal behavior very well,
but are also of moderate importance in explaining more serious offenses. Hence, crime prevention policies have
indirects effects by reducing of others’ proclivity toward criminal activity, and the effect’s magnitude then shapes
and informs the public policy debate. In another example, Foster and Rosenzweig (1995) reason that farmers’
decision to adopt high-yielding seed varieties depends on other farmers’ decisions regarding adoption and their
accrued profit; consequently, a single farmer’s adoption decision multiplies itself by inducing others to adopt
also. Finally, note that parameter ' (xj , ✓) can be explored to optimize treatment effects under a given budget
of resources. To the extent that network spillovers are prevalent and positive, often average treatment effects
can frequently be maximized by concentrating treatment in fewer groups.

Remark 1. Panel or spatiotemporal models can be naturally introduced from equation (2). Index explanatory
11Conditions for existence of this decomposition are derived in Section 3.
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variables and outcomes at time t = 1, . . . , T and the complete model reads

yjt = �
0

W 0

j yjt + xjt�10 +W 0

j xjt�20 + ↵j + �t + vjt (5)

where ↵j is a vector of nj ⇥ 1 time-invariant coefficients (but allowed to vary at the group or individual levels),
which are also denoted, folllowing Manski (1993), as correlated effects. The vector �t represents time effects.
Under the invariance of networks with respect to time, I propose a data transformation that eliminates these
nuisance parameters in Subsection 3.4. When xjt is a treatment indicator, model (5) can be described as a
differences-in-differences estimator supplemented with a network component. In the absence of network effects
(�

0

= 0 and �
20

= 0k⇥1

), the model is reduced to a standard differences-in-differences. In this context, the
terms �

0

W 0

j and W 0

j xjt�20 measure the treatment spillovers through the network.

2.1 Inconsistency when Networks are Unaccounted for

Equations (3) and (4) immediately imply that the aggregate group response to a shock is the sum of one’s own
variation in the absence of networks (�

10

) and network spillovers ('),

yj = xj�10 + '(xj , ✓0) + ✏j . (6)

On the one hand, disentangling the two components provides insights into the mechanisms that determine the
responses to the shock. In particular, the role of networks is separated from the response in its absence; this
construct is useful for example to provide external validity to randomized controlled trials prior to reimplemen-
tation in settings in which networks might differ. On the other hand, the omission of '(xj , ✓0) biases OLS
estimates when one’s own spillover is not orthogonal to one’s own shock.

Consistency for �
10

requires that E('(xj , ✓0)|xj) = 0 for all i = 1, . . . , nj , the case in which the researcher
would be oblivious to network spillovers. At the other extreme, only under perfect correlation between xj

and '(xj , ✓0) the OLS estimates are consistent for the sum of �
10

and full spillovers. In general, however,
independence is not generally attained, failing in particular under reciprocated networks or correlation between
xij and xkj for i 6= k12. In this case, the biasing term (x0jxj)

�1x0jE('(xj , ✓0)|xj) depends on the network
structure, which is unknown; thus, the size and presence of bias are also unknown. I now provide some examples.

Example 1. (Classrooms and the linear-in-means model). Manski (1993) proposes the linear-in-means network
model in which individuals interact with all others in a given classroom and

W 0

j =

2

66664

0

1

n�1

· · · 1

n�1

1

n�1

0 · · · 1

n�1

...
... . . . ...

1

n�1

1

n�1

· · · 0

3

77775
=

1

n� 1

◆n◆
0
n � 1

n� 1

In

12This type of violation would occur in the case in which individuals who are eligible for a treatment are also more likely to
have other eligible individuals in their social networks. Snowballing a treatment is another clear example of violation of the no
self-spillover condition E('(x

j

, ✓0)|xj

) = 0.
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where In is the n⇥ n identity matrix and ◆n is the n⇥ 1 vector of ones. Suppose xj is a treatment dummy and
↵ is the proportion of the individuals in the group that were treated. The expectation of response conditional
on treatment is obtained via the reduced-form model

yj =
�
S0

j

��1

xj�10 +
�
S0

j

��1

W 0

j xj�20 +
�
S0

j

��1

�
R0

j

��1

✏j

where Sj = In��
0

W 0

j , (S0

j )
�1

=

n�1

n�1+�0
In+

�0
(n�1+�0)(1��0)

◆n◆
0
n and (S0

j )
�1W 0

j = � 1

n�1+�0
In+

1+�0
(n�1+�0)(1��0)

◆n◆
0
n.

The expectation of the outcome of individual i in group j, conditional on not receiving a treatment, is

E [yij |xij = 0] = ↵n
�
0

�
10

+ (1 + �
0

)�
20

(n� 1 + �
0

) (1� �
0

)

and describes the network spillovers to untreated individuals. Conditioned on receiving a treatment,

E [yij |xij = 1] =

(n� 1)�
10

� �
20

n� 1 + �
0

+ ↵n
�
0

�
10

+ (1 + �
0

)�
20

(n� 1 + �
0

) (1� �
0

)

(7)

thus, in general, the population difference E[yij |xij = 1] � E[yij |xij = 0] is approximately �
10

for a typical
classroom size, such as n = 25. This result implies that OLS estimates are consistent for �

10

and oblivious to
network spillovers.

Example 2. (Households and local interaction). Households typically interact with few others, and relations
are generally reciprocated. For the sake of example, suppose a network is consists of isolated subgroups of five
households, in which interaction across subgroups is negligible in comparison with interactions within. In this
setting, W 0

j is a block-diagonal matrix with n
5

blocks13, or W 0

j = In

5
⌦ (

1

4

◆
5

◆0
5

� 1

4

I
5

). Suppose a proportion
↵ receive a treatment. In contrast to the previous example, the difference E[yij |xij = 1] � E[yij |xij = 0]

is no longer approximately �
10

, which can be shown by replacing n = 5 in equation (7). As a consequence,
OLS estimates are biased for �

10

and capture the portion of one’s own spillovers that correlate with one’s own
treatment status.

Generally, OLS is only consistent for �
10

in particular network structures. When networks remain unbserved,
the implementation of such a strategy depends on hypotheses that rule out feedback mechanisms. In Section
3, I provide a method for consistently estimating '(xj , ✓) under few identifying assumptions that address both
motivating elements. The method is based on a maximum likelihood integrated with respect to unobserved
networks, resulting in a likelihood that is independent of network observation. In essence, I deal with the
networks as unobserved heterogeneity. As will be shown, although the point identification of ✓ is not obtained
without additional assumptions, spillover ' (x, ✓) is constant within the identified set and thus point-identified.
Section (3.3) uses additional identifying information to sort through the identified set and reestablish point
identification for the structural parameters.

13For simplicity, assume n is a multiple of 5.
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3 Estimation of Network Effects

Spatial econometric models dealt with the case of known W
0

and M
0

. Under certain conditions, including
network observation, Lee (2004) and Lee et al. (2010) show consistency and asymptotic normality of a quasi-
maximum likelihood estimator for ✓s. In this scenario, accounting for network effects would not pose a challenge.
However, these results are of no use if W

0

and M
0

are unobserved or imperfectly observed, such as when there
are measurement errors14 or data are self-reported.

In contrast, I deal with networks as a form of unobserved heterogeneity. Networks are randomly formed with
certain probability law, homogenous across groups, and observation of many groups is available. More formally,
I propose an integrated likelihood approach. The likelihood unconditional on network observation is the integral
of the likelihood given a network (from a spatial model soon introduced) with respect to the probability density
function for a stochastic network model:

lnL (✓| yn, xn, Qn) =

Z
lnL (✓| yn, xn,Wn,Mn) dP (Wn,Mn|Qn, xn, ✓) (8)

where yn = (y0
1

, . . . , , y0v)
0, xn = (x0

1

, . . . , x0v)
0, Wn and Mn are a random block matrix with W

1

, . . . ,Wv and
M

1

, . . . ,Mv along the main diagonal. Therefore Wn and Mn have dimension n ⇥ n, n =

Pv
j=1

nj . Likelihood
lnL (✓| yn, xn,Wn,Mn) is derived from a spatial model and for simplicity it is assumed independent of Qn. The
probability density function of networks, P (Wn,Mn|Qn, xn, ✓), depends on exogenous variables Qn and xn and
parameters ✓. In this way, the probability that peers form a link is affected by individual characteristics Qn

which do not directly affect the mean and exogenous variables xn. For example, connections may depend on a
treatment status dummy15.

Since there is a finite number of possible graphs, labelled s = 1, . . . , gnv, with gnv = 2

P

v

j=1 nj

(n
j

�1), the full
likelihood can be exactly approximated by

lnL (✓| yn, xn, Qn) =

g
nvX

s=1

lnL (✓| yn, xn,W s
n)P (W s

n|Qn, xn, ✓) . (9)

Even for relatively small numbers of nj and v, gnv is an enormous number. Taking v = 5 and nj = 10

for j = 1, . . . , v, the total of number of graphs gnv exceeds 10

135. Therefore, evaluation of this integral is
computationally costly and burdensome.

I propose a modification that implements a computationally efficient estimator. I substitute W
0

and M
0

for their expected values16 W e
n (Qn, ✓) =

R
WndP (Wn|Qn, xn, ✓) and M e

n (Qn, ✓) =

R
MndP (Mn|Qn, xn, ✓).

Estimation of network spillovers and structural parameters is based on the likelihood of the model

yj = �W e
j (Qj , ✓) yj + xj�1 +W e

j (Qj , ✓)xj�2 + vej (10)

14Observation of networks with measurement errors constitute a challenge for methods that are, directly or indirectly, based on
network-generated instruments, as validity assumptions are often violated. This is the case of Kelejian and Prucha (1998, 1999),
Bramoullé et al. (2009) and others. Also see Plümper and Neumayer (2010).

15I rule out endogeneity with respect to outcomes y

n

. This is the topic of a future extension to the current paper.
16For simplicity of explanation, momentarily assuming ˜

W and ˜

M are independent, which does not hold for the rest of the paper.
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with vej (Qj , ✓) = ⇢M e
j (Qj , ✓)vj + ✏j . The term "pseudo-likelihood" is used to distinguish the likelihood of this

model from the likelihood of the model with known networks.
Model (10) is equivalent to the model if networks were observed in addition to mispecification terms that

are close17 to zero when ✓ = ✓
0

,

yj = �W 0

j yj + xj�10 +W 0

j xj�20 + �
�
W e

j (Qj , ✓)�W 0

j

 
yj +

�
W e

j (Qj , ✓)�W 0

j

 
xj�20 + vej . (11)

Intuitively, the misspecification terms containing {W e
j (Qj , ✓) �W 0

j } are of small relevance when a large num-
ber of groups is observed. This point is best exemplified if group sizes are constant, condition that is not
carried for the remainder of the paper. Under certain conditions, a Law of Large Numbers ensures that
v�1

Pv
j=1

W 0

j
p�! W e

j (Qj , ✓). Averaging the model across groups then implies that misspecification terms
are small when v �! 1.

The substitution of true networks for expected networks has two consequences. First, the fact that model
is inherently misspecified implies that the equality between information matrix and expected hessian does not
hold, which will have implications for the expression of the asymptotic variance. Second, the introduction of
expected networks implies that pointwise identification of parameters ✓ is generally not achieved. There are
multiple combinations of �, ✓ and �

2

such that the model (10) is observationally equivalent.
Subsections 3.1 to 3.3 discuss identification in three scenarios. In Subsection 3.1, I show that knowledge

of one parameter (I arbitrarily focus the discussion on �
0

) restores identification under the mild additional
assumption that there are at least three distinct group sizes. I will show that variation in group sizes allows me
to separately identify endogenous and exogenous effects.18 Knowledge of �

0

separately identifies the case of a
weak connections with high probability (low �, high �

0

and �
1

) from the case of strong connections with low
probability (high �, low �

0

and �
1

). This is then sufficiently to fully identify the model.
In Subsection 3.2 considers the estimation of ✓ when �

0

is unknown and no additional information is provided.
In this case, the true parameter ✓

0

is identified up to a set ⇥

0

. Importantly, I demonstrate that parameters
in the identified set yield network spillovers equal to the spillovers evaluated at the true parameter. That is,
for all ✓ 2 ⇥

0

, '(xj , ✓) = '(xj , ✓0). Hence, network spillovers are point-identified. I provide the set estimator
and confidence regions for the parameters. In the interest of generality, the test for network data validity is
also proposed in this context. I adapt the ideas of Chernozhukov et al. (2007), Romano and Shaikh (2010) and
Bugni (2010) to provide confidence regions for the structural parameter ✓.

The problem with unknown �
0

can be analogously interpreted as an under-identified Generalized Method of
Moments (GMM) problem in which moment conditions are given by the score of the likelihood. The previous
non-identification result manifests itself as the absence of one moment condition relative to the number of
parameters. In Subsection 3.3, I then make full use of the model to obtain one additional moment condition
which restores point identification of ✓.

Earlier work on identification of social interactions observed that the presence of social interactions generates
17Comparison between likelihood computed with expected network and true networks can be found in Tables 7 and 8 in the

Appendix.
18As also shown by Lee (2007) for the case in which networks are known. Asymmetries in the network, such as those considered

by Kelejian and Prucha (1998,1999), Bramoullé et al. (2009) and De Giorgi et al. (2010) could also be used to provide identification.
These would in turn require asymmetries in Q

n

.
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dispersion of average group outcomes beyond what can be explained by variance of explanatory variables of peer
group heterogeneity alone (Glaeser et al., 1996; Graham, 2008). I implement this idea in the case where networks
are unknown. This introduces an additional moment condition: the difference between observed and model-
implied across-group outcome variance. As I will show, this restores identification. Consistency and asymptotic
normality of the GMM estimator follows. Before proceeding, I formally derive the likelihood.

Define Se
j (Q, ✓) ⌘ I � �W e

j (Qj , ✓), S0

j (�) ⌘ I � �W 0

j , S0

j ⌘ S0

j (�0

), Re
j (✓) ⌘ I � ⇢M e

j (Qj , ✓), R0

j (⇢) ⌘
I�⇢M0

j , R0

j ⌘ R0

j (⇢0), Ze
j (Qj , ✓c) = (xj ,W

e
j (Qj , ✓c)xj) and the block matrices W 0

n (Qn, ✓c) = diag(W 0

1

(Q
1

, ✓c) ,

. . . ,W 0

v (Qv, ✓c)), W e
n (Qn, ✓c) = diag(W e

1

(Q
1

, ✓c) , . . . , W e
v (Qv, ✓c)), M e

n (Qn, ✓c) = diag(M e
1

(Q
1

, ✓c) , . . . ,

M e
v (Qv, ✓c)), Se

n (Qn, ✓c) = diag (Se
1

(Q
1

, ✓c) , . . . , S
e
v (Q1

, ✓c)), and Ze
n (Qn, ✓c) = (Ze0

1

(Q
1

, ✓c) , . . . , Z
e0
v (Qv, ✓c))

0.
Model (2) can be denoted yn = �

0

W 0

nyn+xn�10+W 0

nxn�20+vn, where vn = (v0
1

, . . . , v0v)
0. The pseudo-likelihood

is

lnLe
n (✓| y, x,Q) = �n

2

ln

�
2⇡�2

�
+ ln |Se

n (Qn, ✓)|+ ln |Re
n (Qn, ✓)|� 1

2�2

✏e
0
n (Qn, ✓) ✏

e
n (Qn, ✓) (12)

with ✏en (Qn, ✓) = Re
n (Qn, ✓) (S

e
n (Qn, ✓) yn � Ze

n (Qn, ✓)�) for � = (�0
1

,�0
2

)

0. Parameters � and �2 are con-
centrated out of the likelihood, simplifying derivations and implementation. Denote ✓c = ✓ \ ��,�2

 
the

non-concentrated parameters. At each ✓c, the closed-form solutions for the concentrated parameters are

ˆ� (Q, ✓c) = (Ze0
n (Qn, ✓c)R

e0
n (Qn, ✓c)R

e
n (Qn, ✓c)Z

e
n (Qn, ✓c))

�1Ze0
n (Qn, ✓c)R

e0
n (Qn, ✓c)R

e
n (Qn, ✓c)S

e
n (Qn, ✓c) yn

and

�̂2

(Q, ✓c) =

1

n
(Se

n (Qn, ✓c) yn � Ze
n (Qn, ✓c) ˆ� (✓c))

0Re0
n (Qn, ✓c)R

e
n (Qn, ✓c) (S

e
n (Qn, ✓c) yn � Ze

n (Qn, ✓c) ˆ� (✓c))

=

1

n
y0nS

e0
n (Qn, ✓c)R

e0
n (Qn, ✓c)P

e
n (Q, ✓c)R

e
n (Qn, ✓c)S

e
n (Qn, ✓c) yn

where P e
n is the projection matrix P e

n (Qn, ✓c) = In�Re
n (Qn, ✓c)Z

e
n (Qn, ✓c) (Z

e0
n (Qn, ✓c)R

e0
n (Qn, ✓c)R

e
n (Qn, ✓c)

Ze
n (Qn, ✓c))

�1Ze0
n (Qn, ✓c)R

e0
n (Qn, ✓c) and P e

n ⌘ P e
�
Qn, ✓

0

c

�
. The final form for the concentrated pseudo-

likelihood brought to maximization is

lnLc
n (✓c| yn, xn, Qn) = �n

2

(ln (2⇡) + 1)� n

2

ln �̂2

(Qn, ✓c) + |Se
n (Qn, ✓c)|+ |Re

(Qn, ✓c)| . (13)

The final estimator is ˆ✓ = (

ˆ✓0c, ˆ�(ˆ✓c)
0, �̂2

(

ˆ✓c))
0, where ˆ✓c ⌘ argmax✓2⇥

c

lnLc
n (✓c| yn, xn, Qn). I now lay formal

hypothesis to guarantee asymptotic properties of the estimator.

3.1 Pointwise identification of ✓ when �
0

is known

In this subsection, I present the basic assumptions for consistent estimation and pointwise identification of the
parameters in the model. Identification Assumption 6, required for pointwise identification of ✓, holds only if
�
0

is known to the researcher19. Assumptions 1-5 are maintained throughout the remaning subsections.
19In fact, Assumption 6 holds in the case where one parameter among �0, �20 and ✓

0
g

is known. For simplicity, I arbitrarily focus
the argument on �0.
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The first assumption defines the true model, properties of the networks and homogeneity of the probability
law that generates (unobserved) networks across groups. The zero main diagonal is essentially an identification
condition and implies that no individual affects him or herself. The independence of P with respect to � and �2

allows me to concentrate these parameters, as described previously, and is taken for simplicity only as results
do not depend crucially on it.

Assumption 1. For each group j = 1, . . . , v, data are generated according to the model

yj = �
0

W 0

j yj + xj�10 +W 0

j xj�20 + vj

with vj = ⇢
0

M0

j vj + ✏j and ✏j ⇠ N
�
0,�2I

�
. The elements of xn and Qn are uniformly bounded constants.

Let matn
j

({0, 1}) denote the space of nj-by-nj-by-2 matrices with entries in {0, 1} and zero main diagonal, a
(⌦,F , P ) be a probability space with F as �-algebra of subsets of ⌦ and P as probability measure. {W 0

j ,M
0

j } is
particular realization from a random matrix20, a measurable map from (⌦,F) to matn

j

({0, 1}), with probability
distribution function P (Wj ,Mj | ✓, xj) with common functional form across groups. P does not depend on � or
�2.

In some applications, it is customary to conduct a row-sum normalization of Wj , the operation consisting
of replacing Wj by a W ⇤

j with {W ⇤
j }ik = {Wj}ik/

Pn
j

s=1

{Wj}is (Anselin, 1988, Kelejian and Prucha, 1998, 1999,
2001, 2010, Lee, 2004, 2007, Lee et al., 2010). This implies that all individuals in the group are affected by and
affect others to the same extent: row sums of W ⇤

j add to one. This assumption is avoided here on the basis
of anectodal observation that individuals are generally not homogenous in terms of their connection to others
in the group. In classrooms, for example, some students may be more affected by peers than others. I leave
networks to be, more simply, a collection of binary numbers.

It well-known that under row-sum normalization condition, |�
0

| < 1 suffices for uniform boundedness of W 0

j

and (S0

j )
�1, with S0

j ⌘ In
j

� �
0

W 0

j (Anselin, 1988). In the current setting, I propose the following notion of
boundedness: let maxi |�0

Pn
k=1

{W 0

j }ik|  1, and so no row multiplied by �
0

in absolute value exceeds one.
This includes row-sum normalization as a special case; for constant row sums W 0

j across rows, �
0

Pn
k=1

{W 0

j }ik =

�⇤
0

Pn
k=1

{W ⇤0
j }ik with �⇤

0

= �
0

Pn
j

s=1

{Wj}
1s. In this case, it is clear that letting W 0

j as a collection of binary
numbers and |�

0

| closer to zero is only a normalization option. Formally,

Assumption 2. The sequence of n-by-n realized matrices �
0

W 0

n and (S0

n)
�1 and of expected matrices �W e

n (Qn, ✓)

and (Se
n(Qn, ✓))

�1 are uniformly bounded. W e
n(Qn, ✓) exists for all ✓ 2 ⇥.

The next assumption guarantees yj has an equilibrium and its mean and variance are well defined.

Assumption 3. For all j = 1, . . . , v, the eigenvalues of the realized matrix S0

j are smaller than one in absolute
value.

Asymptotics on v and nj , without any specific order of divergence, is necessary to guarantee that the
misspecification term goes to zero asymptotically and variance terms are consistently estimated in the limit.

20In fact, {W 0
j

,M

0
j

} are arrays and full notation should include respective dimensions, {W 0
n

j

,j

,M

0
n

j

,j

}. This is supressed for
simplicity.
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Assumption 4. n ! 1 where n =

Pv
j=1

nj.

As a minor technical point, it is only necessary that non-concentrated parameters belong to a compact
parameter set ⇥c.

Assumption 5. The parameter set ⇥c is compact and the true parameter ✓0c 2 ⇥

0

c .

Next, I lay out the identification condition required for point identification of parameters, followed by im-
mediately by easy-to-interpret sufficient conditions as demonstrated in Proposition 1.

Assumption 6. (Identification). Define

� (Qn, ✓c) =

1

n
E{�0

0

Z0

0
n (S0

0
n )

�1

˜P e
n (Qn, ✓c) (S

0

n)
�1Z0

n�0}

with ˜P e
n (Qn, ✓c) = Se0

n (Qn, ✓c)R
e0
n (Qn, ✓c)P

e
n (Qn, ✓c)R

e
n (Qn, ✓c)S

e
n (Qn, ✓c). For every point ✓c 2 ⇥c, the con-

dition � (Qn, ✓c) > 0 holds.

The reduced-form of the model evaluated at the true vector of parameter ✓
0

is

y =

�
Se
n

�
Qn, ✓

0

c

���1

Ze
n

�
Qn, ✓

0

c

�
�
0

+

�
Se
n

�
Qn, ✓

0

c

���1

�
Re

n

�
Qn, ✓

0

c

���1

✏en. (14)

As
�
Se
n

�
Qn, ✓

0

c

���1

= In + �
0

Ge
n

�
Qn, ✓

0

c

�
, where Ge

n

�
Qn, ✓

0

c

� ⌘ W e
n

�
Qn, ✓

0

c

� �
Se
n

�
Qn, ✓

0

c

���1, the expression
above can also be written as

yn = Ze
n

�
Qn, ✓

0

c

�
�
0

+ �
0

Ge
n

�
Qn, ✓

0

c

�
Ze
n

�
Qn, ✓

0

c

�
�
0

+

�
Se
n

�
Qn, ✓

0

c

���1

�
Re

n

�
Qn, ✓

0

c

���1

✏en. (15)

For separate identification of �
0

and �
0

= (�0
10

,�0
20

)

0, it is necessary to guarantee that matrices Ze
n

�
Qn, ✓

0

c

�
and

Ge
n

�
Qn, ✓

0

c

�
Ze
n

�
Qn, ✓

0

c

�
�
0

= W e
n

�
Qn, ✓

0

c

�
(Se

n

�
Qn, ✓

0

c

�
)

�1Ze
n

�
Qn, ✓

0

c

�
�
0

are not dependent asymptotically. In
turn, asymptotic independence of the concerned matrices is a necessary and sufficient condition for Assumption
6, as I now show. Following Lemma 3, � (Qn, ✓c) is well approximated by �e (Qn, ✓c), where

�e (Qn, ✓c) =

1

n
�0
0

Ze0
n

�
Qn, ✓

0

c

�
(Se0

n

�
Qn, ✓

0

c

�
)

�1

˜P e
n (Qn, ✓c) (S

e
n

�
Qn, ✓

0

c

�
)

�1Ze
n

�
Qn, ✓

0

c

�
�
0

.

Given that ˜P e
n (Qn, ✓c) = Se0

n (Qn, ✓c)R
e0
n (Qn, ✓c)P

e
n (Qn, ✓c)R

e
n (Qn, ✓c)S

e
n (Qn, ✓c) is positive definite, then

� (Qn, ✓c) = 0 if, and only if,
�
Se
n

�
Qn, ✓

0

c

���1

Ze
n

�
Qn, ✓

0

c

�
�
0

= 0, which is equivalent to Ze
n

�
Qn, ✓

0

c

�
�
0

+

�
0

Ge
n

�
Qn, ✓

0

c

�
Ze
n

�
Qn, ✓

0

c

�
�
0

= 0 using
�
Se
n

�
Qn, ✓

0

c

���1

= In + �
0

Ge
n

�
Qn, ✓

0

c

�
or, essentially, that Ze

n

�
Qn, ✓

0

c

�

and Ge
n

�
Qn, ✓

0

c

�
Ze
n

�
Qn, ✓

0

c

�
�
0

are asymptotically independent. The next Proposition, which resemble similar
results of Bramoullé et al. (2009) and Lee et al. (2010), states the desired conditions.

Proposition 1. If �
0

is known, �
20

6= �
0

�
10

, x, W e
n

�
Qn, ✓

0

c

�
xn and

�
W e

n

�
Qn, ✓

0

c

��
2

xn are linearly independent,
then Ze

n

�
Qn, ✓

0

c

�
and Ge

n

�
Qn, ✓

0

c

�
Ze
n

�
Qn, ✓

0

c

�
�
0

are asymptotically independent, and therefore Assumption 6
holds.

It is useful to note that variation in group sizes is often sufficient to assure independence between xn,
W e

n

�
Qn, ✓

0

c

�
xn and

�
W e

n

�
Qn, ✓

0

c

��
2

xn. This is also seen in the subgroup model of Lee (2007) where indi-
viduals are sorted in many groups. In particular, let the probabilistic model for network formation be the
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pure Bernoulli, where links are formed with probability �
0

, independent of exogenous characteristic. Then
W e

j (Qj , ✓
0

c ) = �
0

(◆n
j

◆0n
j

� In
j

) and (W e
j (Qj , ✓

0

c ))
2

= �2
0

(nj � 2)(◆n
j

◆0n
j

+ In
j

). With at least three distinct values
of nj , independence condition in the previous Proposition is guaranteed21.

Under the conditions introduced above, I present the basic Theorem. Proofs are found in the Appendix D.

Theorem 1. Under assumptions 1-6, ˆ✓ is a consistent estimator for ✓
0

, i.e., ˆ✓
p�!✓

0

.

Asymptotic distribution can be obtained from a Taylor expansion around the point @ lnLe

(

ˆ✓|y
n

,x
n

,Q
n

)

@✓ = 0.
For a point ˜✓ between ˆ✓ and ✓

0

,

p
n
⇣
ˆ✓ � ✓

0

⌘
=

2

4 1

n

@ lnLe
(

˜✓
��� yn, xn, Qn)

@✓@✓0

3

5
�1

1p
n

@ lnLe
(✓

0

| yn, xn, Qn)

@✓
. (16)

The variance matrix of the score vector is ⌃n(�0

) ⌘ E[ 1p
n
@ lnLe

( ✓0|yn,xn

,Q
n

)

@✓ · 1p
n
@ lnLe

( ✓0|yn,xn

,Q
n

)

@✓0 ]. In the limit,
ˆ✓

p�!✓
0

, which implies ˜✓
p�!✓

0

and so the Hessian matrix converges to ⌦n(�0

) = E[ 1n
@ lnLe

( ✓0|yn,xn

,Q
n

)

@✓@✓0 ]. As the
model is inherently misspecified, the Hessian is not equal to the expected outer product of the gradient. The
asymptotic variance-covariance matrix converges instead to the usual sandwich estimator. That is,

Theorem 2. Under assumptions 1-5,
p
n(ˆ✓�✓

0

)

p�!N(0,⌃�1

(�
0

)⌦(�
0

)⌃

�1

(�
0

)), where ⌃(�
0

) = limn!1⌃n(�0

)

and ⌦(�
0

) = limn!1⌦n(�0

).

3.2 Set identification of ✓ when �
0

is unknown

There is one simple way asymptotic independence of the matrices is violated. Any path {�
+

,�
2+

, ✓+c } such that
W e

n (Qn, ✓
+

c )xn�2+ = W e
n

�
Qn, ✓

0

c

�
xn�20 and �

+

W e
n (Qn, ✓

+

c ) = �
0

W e
n

�
Qn, ✓

0

c

�
results in a similar reduced-form,

constituting a breakdown of Assumption 6. Parameters are not individually identified, which is compatible
with the difficulty in separately identifying a large number of weak connections from a small number of strong
connections. I now turn to the problem of estimation and inference on the identified set.

Using assumptions 1-5 only, I employ methods of estimation and inference on set-identified models of Cher-
nozhukov et al. (2007), Romano and Shaikh (2010) and Bugni (2010) to establish desired results. The point of de-
parture from classic asymptotic analysis is the observation that the identified set ⇥

0

= {˜✓ 2 ⇥ : Fn(
˜✓) = Fn(✓0)},

for Fn (✓) = E lnLe
n (✓), and the estimated set ˆ

⇥ = {˜✓ 2 ⇥ : lnLe
n(
˜✓) = inf✓2⇥ lnLe

n (✓)} are not singletons.
In the current case, the identified set is of considerable importance because for any ✓ 2 ⇥

0

, network spillovers
are constant and equal to network spillovers evaluated at the true parameter vector, ' (xn, ✓0). In order to
establish this result, define the subset � (✓| yn, xn) ✓ ⇥ as the parameters such that spillovers are equal to
'(xn, ✓), that is,

� (✓| yn, xn) = {✓+ 2 ⇥ : �
+

W e
n(Qn, ✓

+

c ) = �W e
n (Qn, ✓c) ,W

e
n(Qn, ✓

+

c )xn�
+

2

= W e
n (Qn, ✓c)xn�2}. (17)

The next Proposition states that ✓
0

belongs to the identified set ⇥

0

and that it is fully characterized by the
subset of ⇥ such that spillovers are equal to '(xn, ✓0).

21That is, if there are three distinct values of n

j

, the only conformable vectors c1, c2 and c3 such that xc1 +

�0(diag(◆
n1 ◆

0
n1

, . . . , ◆

n

j

◆

0
n

j

)� I

n

)xc2 + (diag((n1 � 2)◆

n1 ◆
0
n1

, . . . , (n

j

� 2)◆

n

j

◆

0
n

j

) + I

n

)

2
xc3 = 0 are c1 = c2 = c3 = 0.
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Proposition 2. For any ✓ 2 �(✓0
�� yn, xn), the network spillovers evaluated at ✓ are equal to network spillovers

evaluated at ✓
0

, ' (xn, ✓) = ' (xn, ✓0). Also, this is the identified set, �(✓0
�� yn, xn) = ⇥

0

.

The objective then is to produce a sequence of sets such that: (i) in the limit, they are consistent estimates
of ⇥

0

, in a sense that the Hausdorff set distance metric22 dh converges to zero in probability, and (ii) select a
set ˆ

⇥↵ such that the coverage probability is asymptotically controlled, that is, limn!1 P{⇥
0

✓ ˆ

⇥↵}) = 1 � ↵

for ↵ 2 [0, 1].
These objectives can be fulfilled with the definition of contour sets of the rescaled likelihood Ln (✓| yn, xn, Qn)

= �n�1

[lnLe
n (✓| yn, xn, Qn) � inf✓2⇥ lnLe

n (✓| yn, xn, Qn)] and ˆ

⇥ (cn) = {✓ 2 ⇥ : Ln (✓| yn, xn, Qn)  cn}. The
next Theorem proves that the estimator ˆ

⇥ =

ˆ

⇥ (0) is consistent for ⇥

0

, i.e, dh( ˆ⇥,⇥
0

)

p�!0. In fact, this result
can be obtained if any sequence cn such that n�1cn

p�!0 is used to produce an alternative estimator ˆ

⇥(cn).
For the construction of a set that covers ⇥

0

with probability ↵, it is necessary to select cn = ĉn (↵) such that
ˆ

⇥ (ĉn (↵)) possesses the desired property.
Notice the event {⇥

0

✓ ˆ

⇥ (cn)} is equivalent to the event {sup✓2⇥0
Ln (✓| yn, xn, Qn)  cn}, and hence, in

order to build coverage regions for the identified set ⇥

0

with predetermined probability ↵, it suffices to input
a cn = ĉn (↵) such that ĉ↵ consistently estimates the ↵-quantile of the test statistic sup✓2⇥0

Ln (✓| yn, xn, Qn).
That is, for any set K ✓ ⇥, use

ĉn (↵) = inf

⇢
c̃ : P

⇢
sup

✓2K
Ln (✓| yn, xn, Qn)  c̃

�
� 1� ↵

�
.

Given the probability is not known, I will use a bootstrap algorithm to produce usable estimates of ĉn (↵). For
the moment, assume ĉn (↵) is known. The next Theorem shows asymptotic properties of the estimated contour
sets ˆ

⇥ (cn) for the various choices of cn.

Theorem 3. Let cn be such that n�1cn
p�!0. (1) Under Assumptions 1-5, if ⇥

0

6= ⇥ and ⇥ compact, ⇥
0

✓ ˆ

⇥ (cn)

with probability approaching one, dh( ˆ⇥ (cn) ,⇥0

) = op (1) and dh( ˆ⇥ (cn) ,⇥0

) = Op(n
� 1

2
). (2) For c = ĉn (↵)

consistent estimator of the ↵-quantile of sup✓2⇥0
Ln (✓| yn, xn, Qn), limn!1 P{⇥

0

✓ ˆ

⇥ (ĉn (↵))}) = 1� ↵. (3)
Given Proposition 2, the network spillover is point-identified. (4) Point-identification for �

10

and �2

0

is obtained
and (

ˆ�
1

, �̂2

)

p�!(�
10

,�2

0

).

Obtaining confidence regions for known functions of the identified set is important at least in two circum-
stances. First, it provides confidence regions for the network spillovers, i.e., confidence regions for �

0

, the image
of ⇥

0

under the known function ' (x, ✓) for given ✓ 2 ⇥

0

. Second, I will show it provides a framework for
validation of network data, when it is available. I now develop these points.

Following Romano and Shaikh (2010), in general terms, let f be a known function with f : ⇥ ! ⌥, with
⌥

f
0

being the image of ⇥
0

under f , and also let f�1

(�) = {� 2 ⌥ : f (✓) = �}. This suggests a modification
of the inferential test statistic in the following way: note � 2 ⌥

f
0

if, and only if, there exists some ✓ 2 f�1

(�)

22The Hausdorff set distance metric is defined

d

h

(A,B) = max

⇢
sup

a2A

d (a,B) , sup

b2B

d (b, A)

�

with d (b, A) = inf

a2A

kb� ak and d

h

(A,B) = 1 if A or B are empty.
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subject to Qn (✓) = 0, which in turn implies that inf✓2f�1
(�)Qn (✓) = 0. As before, the objective is to construct

a set ˆ

⌥↵ such that coverage probability is 1 � ↵, i.e., limn!1 P{⌥
0

✓ ˆ

⌥↵} = 1 � ↵ and, in analogy to the
previous case, this set can be defined by selecting cfn (↵) such that the event {⌥f

0

✓ ˆ

⌥↵} is equivalent to
{sup

�2⌥f

0
inf✓2f�1

(�) Ln (✓)  cfn (↵)}.
Again, if the ↵-quantiles of the test statistic sup

�2⌥f

0
inf✓2f�1

(�) Ln (✓) were available, coverage region with
asymptotically controlled error probability ↵ would be obtained directly. Appendix E details a bootstrap algo-
rithm for obtaining consistent estimates ĉfn (↵) of cfn (↵). For the moment, I now describe the two important
applications of this procedure for the context of inference on the network spillovers and network effects.

Remark 2. (Confidence region for network spillovers). The procedure above can be applied directly replacing
function f with known function ' (x; ✓). In this case, because ' (xn; ✓) is a function from ⇥ to R1, and given
Proposition 2 states the network spillovers are constant in the identified set, the image ⌥

'
0

is a scalar in R and
the confidence region is actually a confidence interval, a subset of R1.

Remark 3. (Testing for reported network connections). Introduce reporting of network data with recourse to
matrix Qj , making {Qj}ik = 1 if individual i in group j reports a link with individual k in the same group,
through which it is believed that i affects k. In this case, a reasonable network model is given by a collection of
Bernoulli trials with probability link formation depending on link observed reports, that is, model (1) with Qn as
described above. In this setting, structural parameter �

1

is the the estimated probability given observation of link
reports, and �

0

otherwise. The null hypothesis of interest is H
0

: �
1

� �
0

= 0, with alternative HA : �
1

� �
0

6= 0.
In the setting above, suffices to take ˜f : ⇥ ! R1 as ˜f (✓) = �

1

��
0

and build appropriate confidence intervals.

3.3 Pointwise identification when �
0

is unknown using outcome dispersion

In the previous subsection, I showed that parameters of interest are identified up to a set and network spillovers
are constant within the identified set. A theoretically feasible restriction to fully identify the model is to assume
�
0

is known: under certain conditions, Theorem 1 proves consistency. Nevertheless, this assumption is unlikely
to be satisfied in practice, as �

0

is rarely observed. In this Section, I increment the problem with one additional
restriction which restores point identification, selecting a parameter in the identified set.

This restriction is derived from matching the observed to the model-implied variance of the group-average
outcome. The intuition is straightforward. When social interactions are not present, sufficiently large group
sizes implies that group averages should be relatively close to population averages conditional on observables.
Introduction of social interactions affects dispersion in the following way. Since individuals mirror the choices of
the others, outcomes within a group positively correlate. In other words, a positive shock to the group affects
individuals not only through individual decision, but also through peer composition. As a consequence, average
of group outcome increases to greater extent than in the counterfactual in which social interactions are irrelavant.
A similar reasoning applies to a bad shock. It follows that average outcome across groups are more disperse
relative to the case in which social interactions are irrelevant.

It has been observed elsewhere23 that group outcomes are substantially dispersed across groups even when
similar along observable characteristics. This anecdotal observation has been denoted as "excess variance" and

23Hanushek (1971), Rivkin et al. (2005), Glaeser et al. (1996).
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used to provide identification when networks are known (Graham, 2008). Other papers have contributed to
identification using covariance restrictions in the context of social interactions, such as in the survey paper by
Blume et al. (2011, p. 872) and references therein.

Since network formation depends on a model described in Section 2, the dispersion across groups provides a
restriction that includes link strength, probability of link formation and dependence on exogenous characteristics
of the others. The relation is usually non-linear and I will show it is sufficient to provide identification. The
main idea is that, accounting for variance originating from explanatory variables and the individual or group
heterogeneity, the remaining variance can only be explained by social interactions and pattern of association
therein. Define, from the outset, the within and between group variance,

VW,j(yn) = n�1

j

n
jX

i=1

(yij � ȳj)
2

; VB,j(yn) = (ȳj � ȳ)2

where ȳj = n�1

j

Pn
j

i=1

yij and ȳ = v�1

Pv
j=1

ȳj . It is useful to derive the expectation of these quantities
in terms of the variance of outcomes as predicted by the model. Then, EVW,j(y) = n�1

j

Pn
j

i=1

[V(yj)]ii and
EVB,j (y) = n�2

j ◆0n
j

V(yj)◆n
j

. From the reduced-form of model (2), the covariance matrix of outcomes for group
j is given by24

V(yj) = E(sjxj�10�
0
10

x0js
0
j + 2s⇤jxj�10�

0
20

x0js
0
j + s⇤jxj�20�

0
20

x0js
⇤0
j ) + E((S0

j )
�1✏j✏

0
j(S

0

j )
�1

0
) (18)

for sj = (S0

j )
�1 � E((S0

j )
�1

) and s⇤j = (S0

j )
�1W 0

j � E((S0

j )
�1W 0

j ). In absence of networks, sj = In
j

and
s⇤j = 0n

j

⇥n
j

and, therefore, outcome variance is increased when social interactions are considered. As pointed
out above, in applications it is usually the case that the latter is larger than the former in the positive semi-
definite sense although the reverse relation is theoretically possible for certain parameters. The distance between
variances VB,j and VW,j and their theoretical expected counterparts as implied by the model, EVB,j(yn) and
EVW,j(yn), is used to distinguish between competing parameters that belong to the identified set. Given VB,j

and VW,j are observed from data, we only need to generate predictions from the model (18). Naturally, this
strategy depends on the thorectical calculation of V(yj), which are often difficult to evaluate analytically but
straightforward to compute. I now introduce one particular example where identification is throughoutly proven
only with between-variance of outcomes.

Example 3. (Bernoulli network model). In a simple setting where link formation is independent and equal to �
1

,
I conduct a Series Expansion and take a first-order approximation. That is, (S0

j )
�1�E(S0

j )
�1

= �
0

(W 0

j �EW 0

j )+

· · · which is approximately �
0

(W 0

j � EW 0

j ) as remaining terms decay in exponential rates. Using independence
of the Bernoulli trials that generate links, equation (18) simplifies to

V {yj} = diag
�
V {Wj}

�
�2diag

�
x11j

�
+ 2�diag

�
x12j

�
+ �2�2◆n

j

��
+ �2In

j

(19)

where V{W 0

j } is the variance of W 0

j , x11j = diag(xj�10�
0
10

x0j), x12j = diag(xj�10�
0
20

x0j) and x22j = diag(xj�20�
0
20

x0j)
extracts the main diagonal of a matrix into a column vector or vice-versa, as appropriate. Off-diagonal terms

24For the panel data with fixed effects, proceed as described in Subsection 3.4. In this Section, for simplicity I assume ⇢0 = 0.
This is not substantial as all results are maintained in the more general case.
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are zero. In the Bernoulli model without dependence on exogenous characteristics, V{Wj} = �
1

(1 � �
1

)◆n
j

◆0n
j

and, in this case,

V {yj} = diag
⇣
�
1

(1� �
1

)◆n
j

◆0n
j

�
�2diag

�
x11j

�
+ 2�diag

�
x12j

�
+ diag

�
x22j

�
+ �2�2◆n

j

�⌘
+ �2In

j

= �
1

(1� �
1

)

⇣
�2◆0n

j

diag
�
x11j

�
+ 2�◆0n

j

diag
�
x12j

�
+ diag

�
x22j

�
+ nj�

2�2

⌘
In

j

+ �2In
j

and the between-group variance is

VB,j = n�1

j �
1

(1� �
1

)

⇣
�2◆0n

j

diag
�
x11j

�
+ 2�◆0n

j

diag
�
x12j

�
+ ◆0n

j

diag
�
x22j

�
+ nj�

2�2

⌘
+ n�1

j �2.

This provides the additional restriction required for the identification of ✓. Formally, the Jacobian of the matrix
formed by stacking restrictions, including those originating from reduced-form estimation, has full rank, and
then Theorem 6 of Rothenberg (1971, p. 585) is applied. Proofs can be found in Appendix D.8.

The approach suggests a Genaralized Method of Moments estimator with moment conditions given by
q
1,j(yj , xj , ✓) = EVB,j(yj , xj , ✓) � VB,j(yj , xj , ✓) and q

2,j(yj , xj , ✓) = EVW,j(yj , xj , ✓) � VW,j(yj , xj , ✓) minimized
on the estimated set ˆ

⇥,

ˆ✓ = argmin

✓2ˆ

⇥

0

@
vX

j=1

qj(yj , xj , ✓)

1

A
0

⌦

0

@
vX

j=1

qj(yj , xj , ✓)

1

A

where qj(yj , xj , ✓) = [q
1,j(yj , xj , ✓), q2,j(yj , xj , ✓)]

0 and 2⇥ 2 weight matrix ⌦. It is equally possible to estimate
the same GMM problem on the unrestricted parameter set ⇥ and introduce score conditions given by the solution
of the pseudo-likelihood and assigning arbitrarily large weights to them. Unfortunately, the expected variances
are generally difficult to compute. Even in simple examples, one has to rely on very crude approximations of
to obtain the expectation of (S0

j )
�1. Next, I outline a general procedure for simulating the moment conditions

(Gouriéroux and Monfort, 1997) and prove the desired asymptotic properties, including consistency for ˆ✓. The
final estimator is the solution to

ˆ✓ = argmin

✓2ˆ

⇥

0

@
vX

j=1

S�1

SX

s=1

qs,j(yj , xj , ✓)

1

A

0

⌦

0

@
vX

j=1

S�1

SX

s=1

qs,j(yj , xj , ✓)

1

A (20)

where qs,j(yj , xj , ✓) = [VB,j(yj , xj , ✓)� VB,j(ŷj,s, xj , ✓);VW,j(yj , xj , ✓)� VB,j(ŷj,s, xj , ✓)] with ŷj,s = (Ss
j )

�1

(xj�1

+W s
j xj�2 + esj), Ss

= (In
j

� �W s
j )

�1, W s
j sampled from the distribution of the network-generating model with

parameters ✓ and ✏sj is sampled from a normal distribution with variance �2. If the simulator is unbiased, one
can expect that S�1

PS
s=1

qs,j(yj)
p�!qj(yj) as S �! 1 and asymptotic properties follow. In addition, given ˆ

⇥

is
p
n-consistent for ⇥

0

on the Hausdorff metric, one might expect minimizing on the set ˆ

⇥ is asymptotically
equivalent to minimizing on the identified set ⇥

0

.

Theorem 4. If parameters are identified, (i) estimator (20), minimized on the estimated set ˆ

⇥, as defined in
Section 3.2, is consistent for ✓

0

, ˆ✓
p�!✓

0

, and (ii) if S ! 1 sufficiently fast,
p
n(ˆ✓ � ✓

0

)

d�!N(0,⌃⇤
), where

⌃

⇤
= (G0

(⌦

⇤
)

�1G)

�1, G = Er✓qn(yn, xn, ✓0) and ⌦

⇤
= (Eqn(yn, xn, ✓0)qn(yn, xn, ✓0)0)�1 with optimal choice of
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weight matrix ⌦

⇤ and qn(yn, xn, ✓0) =
Pv

j=1

qj(yj , xj , ✓0).

3.4 Fixed and Time Effects

In this subsection, I propose a data transformation to eliminate fixed effects, along with corresponding treatment
of the variance-covariance matrix induced by this transformation. This is of considerable importance given that
explanatory variables xj may correlate with unobserved components that vary at the group or individual-level,
for example an unobserved "good teacher" shock in a classroom or unobserved peer characteristic that may
affect learning.

Bramoullé et al. (2009) and Lee (2007) propose eliminating fixed effects subtracting average of connected
peers (local differencing) or average of all individuals in a group in a given time period, regardless of connection
status (global differencing). Neither approach is available in the current setting: by definition of the problem in
the current paper, networks are unobserved, and hence local differencing is not defined. Yet, global differencing
cannot be applied in the absence of row-sum normalization. Group fixed effects with the row-sum normalization
condition implies that all individuals are affected to the same degree by network spillovers originating for
them. When the row-sum normalization condition is removed, heterogeneity of individual responses to fixed
effects through networks implies that no data manipulation possibly removes them in the absence of network
observation.

For this purpose, I introduce time dimension and time-difference data in order to remove fixed effects. This
approach also has the advantage of allowing for individual fixed effects. Let the spatio-temporal model be, for
t = 1, . . . , T ,

yjt = �Wjyjt + xjt�1 +Wjxjt�2 + ↵j + �t + vjt (21)

where vjt = ⇢Mjvjt+ ✏jt. Here, ↵j represents a nj ⇥ 1 vector of individual or group fixed effects, or both. In the
classical fixed effects case, ↵j is allowed to vary over individuals; the group effect case is when ↵j = ↵̇j◆n

j

, with
constant scalar ↵̇j throughout individuals in group j and does not vary over time. Notation is left sufficiently
general to incorporate both cases. Group effects, in Manski’s (1993) terminology, are denominated correlated
effects.

Define ẏjt = yjt � ȳj·, ȳj· = T�1

PT
t=1

yjt , ẋjt = xjt � x̄j·, x̄j· = T�1

PT
t=1

xjt, �̄t = �t � �̇· and �̄· =
T�1

PT
t=1

�t. The transformed model is

ẏjt = �Wj ẏjt + ẋjt�1 +Wj ẋjt�2 + �̇t + v̇jt. (22)

which is a consequence of (21) because the time-differenced Wjyjt is equal to Wj ẏjt, and similarly for the Wj ẋjt�,
under the hypothesis of invariance of the network over time. Explicitly, the k-th line of the time-differenced
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Wjyjt is

n
jX

i=1

{Wj}ki {yjt}i � T�1

TX

t=1

n
jX

i=1

{Wj}ki {yjt}i =

n
jX

i=1

{Wj}ki {yjt}i �
n
jX

i=1

{Wj}ki T�1

TX

t=1

{yjt}i

=

n
jX

i=1

{Wj}ki
�{yjt}i � {ȳj·}i

�
(23)

Letting ẏnT = (ẏ0
11

, . . . ẏ0
1T , . . . , ẏ

0
v1, . . . , ẏ

0
vT )

0 and ẋnT = (ẋ0
11

, . . . , ẋ0
1T , . . . , ẋ

0
v1, . . . , ẋ

0
vT )

0, and similarly for v̇

and �̇, the full model can be rewritten ẏnT = �WnT ẏnT + ẋnT�1 + WnT ẋnT�2 + �̇T + v̇nT , where WnT =

diag {IT ⌦W
1

, . . . , IT ⌦Wv}. Remaining matrices are defined in a similar way and carry the subscript nT

for clarity. The variance-covariance matrix of v̇nT is E (v̇nT v̇
0
nT ) = �2

0

(R0

nT )
�1

˙

⌃nT (R
0

0
nT )

�1, where ˙

⌃nT =

�2

0

InT � �2

0

T�1 · diag(◆T ◆0T ⌦ In1 , . . . , ◆T ◆
0
T ⌦ In

v

). This more complicated form recognizes the dependence in v̇nT

introduced by time-average subtraction. Finally, likelihood (12) is adjusted to

lnLe
nT (✓| ynT , xnT , QnT ) = �nT

2

ln

�
2⇡�2

�
+ ln |Se

nT (QnT , ✓)|+ ln |Re
nT (QnT , ✓)|

� 1

2�2

✏enT (QnT , ✓)
0
˙

⌃nT ✏
e
nT (QnT , ✓) (24)

where ✏enT (QnT , ✓) = Re
nT (QnT , ✓) (ẏnT ��W e

nT (QnT , ✓) ẏnT � ẋnT�1�W e
nT (QnT , ✓) ẋnT�2� �̇) = Re

nT (QnT , ✓)

(Se
nT (QnT , ✓) ẏnT � ˙Ze

nT (QnT , ✓) ˜�) and ˙Ze
nT (QnT , ✓) now also incorporate time effects: ˙Ze

jt (Qj , ✓) = (xjt,

W e
j (Qj , ✓)xjt,1 {t = 1} ◆n

j

, . . . ,1 {t = T} ◆n
j

) and ˜� = (�0, �
1

, . . . , �T )
0. In fact, any variable not subject to

exogenous effects can be incorporated by adding columns to ˙Ze
jt(QnT , ✓). The concentrators are now

ˆ

˜� (QnT , ✓) = (Ze0
nT (QnT , ✓) ¨⌃nTZ

e
nT (QnT , ✓))

�1Ze0
nT (QnT , ✓) ¨⌃nTS

e
nT (QnT , ✓) ynT

ˆ�̃2

(QnT , ✓) =

1

n
(Se

nT (QnT , ✓) y � Ze
nT (QnT , ✓)

ˆ

˜�)¨⌃nT (S
e
nT (QnT , ✓) ynT � Ze

nT (QnT , ✓)
ˆ

˜�)

where ¨

⌃nT = Re0
nT (QnT , ✓) ˙

⌃nTR
e
nT (QnT , ✓). Concentrated likelihood (12) remains unchanged with �̂2

(QnT , ✓)

substituted for ˆ�̃2

(QnT , ✓). Preceding theorems are applied with obvious modifications.

4 Simulations and Implementation

In this Section, I conduct a simulation exercise to demonstrate the small-sample empirical properties of the
estimator. MATLAB codes are available upon request25. The algorithms are presented in Appendix E.

Four simulations sets are performed: purely cross-sectional model (2), under T = 1 and absence of fixed
effects; the panel (5) with T = 5 and fixed effects but no time effects; with time effects but no fixed effects;
and, finally, with both time and fixed effects. Sample sizes are (n = 25, v = 250), (n = 100, v = 250),
(n = 25, v = 1000) and (n = 100, v = 1000). Simulations with smaller n and v can be found in Appendix F.1.
In every case, I allow for heterogeneity in group sizes, by sampling nj from a standard normal distribution with
mean n and standard error 5, rounded to the nearest integer.

25STATA codes will soon be available.
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True parameters are ✓s = (0.0125, 1, 1, 0.04, 0.04, 1)0 and ✓g = (0.75, 0.30)0 . In a row-normalized model and
with this combination of parameters, � = 0.0125 would roughly correspond to an autoregressive parameter of
0.16 for n = 25, 0.32 for n = 50 and 0.65 for n = 75. The probability of common exogenous characteristic is
50%. Finally, x and ✏ are drawn from a normal distribution with mean 0 and variance 1. The simulation is
composed of 500 repetitions. The average of the estimated standard errors, following the procedure outlined in
3.2, is shown in parentheses, while standard deviations of the point estimates computed across replications is
shown in square brackets. Simulations are conducted in the absence of information on �

0

.
Simulated results are largely satisfactory in all cases. Convergence to spatial parameters and those that

underpin the randomness in networks, is observed, even with small n = 25 and v = 25. Moreover, the network
spillover is correctly estimated. In Table 9 of Appendix F.1, I show that OLS estimates would be inconsistent
at averages ˆ�OLS = 1.0670 for n = 25 and ˆ�OLS = 1.1127 for n = 50. This bias is eliminated with the
proposed method. Introduction of time dimension and fixed effects do not change the results, despite the fact
that estimates of �2 now take into account that cross-section and time variation has been eliminated as the
consequence of data transformation (Subsection 3.4). For the case without time and fixed effects, estimates
of disturbance variance is, in most cases, larger than the true value, but this is expected as it captures the
misspecification component due to the fact that the observed model is considered under expected networks –
naturally different from the true networks. It is also noteworthy that estimated standard errors are very close
in most cases to standard errors of point estimates across iterations, demonstrating good performance of the
hypothesis testing procedure.

I also show results on three additional cases in Appendix F.1. Tables 10 and 11 shows the performance of
the estimator with very low sample sizes. It shows that even with small samples up to n = 25 and v = 50,
estimates are acceptably close to true parameters and confidence intervals are correctly estimated. Then, I
introduce across-group connections by randomly assigning value 1 to off-block elements of matrix W 0

j with
probability �A. Although not explicitly incorporated in theory, it is shown that a small amount of violation
from the isolated-group assumption does not deteriorate empirical performance of the estimator. Performace
was good up to �A = 0.05 or �A = 0.075. Finally I conduct estimation and hypothesis testing when �

0

is known
but misspecified, shown in Table 13 of Appendix F.1. I assume incorrectly � = 0.0250, twice the true value.
As expected, I observe halved ˆ�

1

and ˆ�
0

and ˆ�
2

estimated twice the true parameter. Associated standard errors
followed the same expected pattern.

I also implement the multivariate network model described in example 4 of Subsection B, where probability
of link formation is described by

P {{Wj}ik = 1|Qj} = Q1

jik�1 +Q0

jik�0

where Q1

jik is the distance between individuals i and k who belong to group j, and respectively for Q0

jik.
Distances are sampled from a uniform distribution between �2.5 and 2.5, and probabilities are cut such they do
not exceed 1 or fall below 0. True values �

1

= 0.25 and �
0

= 0.50, and remaining parameters remain unchanged
from previous setting. Results are shown in Table 14 of Appendix F.1 and are also satisfactory with convergence
to true parameters and standard errors also being observed at small values of n and v. Estimation of � using
second moments is also satisfactory.
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Table 1: Simulations.

T = 1. T = 5, fixed effects.
(1) (2) (3) (4) (1) (2) (3) (4)

n 25 100 25 100 25 100 25 100
v 250 250 1000 1000 250 250 1000 1000

ˆ�

0.0117 0.0122 0.0126 0.0119 0.0119 0.0120 0.0118 0.0119
(0.002) (0.006) (0.002) (0.001) (0.004) (0.001) (0.001) (0.000)

[0.002] [0.005] [0.002] [0.001] [0.003] [0.001] [0.000] [0.000]

ˆ�
1

0.9999 1.0001 0.9998 0.9999 1.0006 1.0000 1.0002 0.9999
(0.009) (0.005) (0.005) (0.003) (0.004) (0.003) (0.002) (0.001)

[0.009] [0.005] [0.005] [0.003] [0.004] [0.002] [0.002] [0.001]

ˆ�
2

0.0461 0.0402 0.0400 0.0401 0.0428 0.0398 0.0408 0.0400
(0.018) (0.003) (0.008) (0.001) (0.008) (0.001) (0.003) (0.001)

[0.018] [0.003] [0.006] [0.002] [0.007] [0.001] [0.003] [0.001]

ˆ�
1

0.7166 0.7497 0.7605 0.7492 0.7247 0.7510 0.7389 0.7499
(0.164) (0.024) (0.097) (0.012) (0.085) (0.012) (0.031) (0.004)

[0.162] [0.025] [0.081] [0.013] [0.073] [0.011] [0.036] [0.006]

ˆ�
0

0.2892 0.2995 0.3015 0.2992 0.2918 0.3010 0.2966 0.3002
(0.062) (0.007) (0.031) (0.004) (0.032) (0.003) (0.015) (0.002)

[0.063] [0.007] [0.030] [0.004] [0.027] [0.003] [0.014] [0.002]

�̂2

1.0571 1.2199 1.0547 1.2228 0.8421 0.9778 0.8451 0.9774
(0.018) (0.003) (0.008) (0.002) (0.008) (0.001) (0.003) (0.001)

[0.019] [0.011] [0.009] [0.006] [0.007] [0.004] [0.003] [0.002]

-0.0007 0.0137 0.0007 -0.0099 0.0008 -0.0096 0.0005 0.0020
'(x, ˆ✓) (0.023) (0.092) (0.008) (0.048) (0.009) (0.050) (0.006) (0.020)

[0.006] [0.007] [0.001] [0.002] [0.001] [0.001] [0.000] [0.000]

Note: True parameters are �1 = 1, �2 = 0.04, �1 = 0.75, �0 = 0.30, �2
= 1 and ' (x, ✓) = 0.
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5 Application

Empirical research has led to substantial interest in evaluating the effects of randomized policies on targeted
individuals. Much less progress has been made on evaluating the spillovers related to those policies, possibly
because of problems associated with observing and defining interactions among people. The method developed
in the present paper provides a comprehensive evaluation of programs when networks are unknown or unreliable,
and information on a large number of groups is available and network effects are suspected.

The importance of assessing spillovers is further highlighted when a large proportion of individuals are
subject to a shock. This effect raises the possibility that spillovers or externalities play a key role in overall
program results (Angelucci et al., 2010). As an example of this setting, I analyze the effect of a randomized
intervention in which a large proportion of individuals was simultaneously targeted. This example also illustrates
that randomization in treatment variables can be used to estimate network effects, as opposed to randomization
in the group formation (Sacerdote, 2001).

I employ data for a large-scale randomized intervention, which provided compelling evidence that occupa-
tional choice of the world’s poor is determined by a lack of capital and skills (Bandiera et al., 2013). The
intervention consisted of the assignment of livestock and skills training, both relevant in terms of the outlay (at
approximately USD $140) and duration (training lasted for two years). The authors found significant changes
in the occupational choices of the poor, who moved from wage jobs toward self-employment associated with
livestock rearing. The program was instituted in 1409 communities, which consisted of clusters of 84 households
on average. In each community, households belonging to the bottom quintile of the wealth distribution were
identified, and all were eligible for treatment, with certain exceptions. In total, 7953 beneficiaries were surveyed,
and all eligible households in the randomly selected communities were treated.

The baseline results comparing the treatment group in selected villages against the treatment group in
non-selected villages indicate a dramatic change in the occupational status of targeted households. Four years
after treatment, poor women dedicated 92% additional hours to self-employment running their livestock-rearing
businesses and moved away from wage hours that were frequently insecure and temporary. This lasting change
in occupational status was also associated with higher earnings, higher per capita expenditure, better general
wellbeing and higher measures of life satisfaction. After treatment, poor households were classified between
near-poor and middle class according to a host of economic indicators.

With recourse to the estimation method developed in this paper, and without network data, I supplement
these results with several network-dependent findings. I show that specific program effects are not contained to
targeted individuals. Network spillovers affect food expenditure and food security at magnitude around half of
the original treatment, but are either insignificant or small determinants of occupational choice and livestock
assets. I also shed light on the underlying network structural mechanisms that give rise to these externalities.
By separately identifying endogenous and exogenous effects, I am able to estimate the marginal effects of a
connection to treated households. I find that the occupational choice of peers of the treated households move
in an opposite direction to the treated households: a marginal connection to treated households reduces self-
working hours, increases wage hours and decreases livestock value. The magnitudes of the effects are such that
exogenous effects counteract 25-30% of the reduction in treated households’ wage hours.26 However, connections

26This is the ratio between the increase of wage hours due to exogenous effects and the direct effect of reduction of wage hours.
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to the treated households strongly increase food expenditure and food security. These results are consistent
with the interpretation that the treated households gained comparative advantage in livestock rearing, which
partially changed the occupational choices of their peers. Overall, network effects are shown to form an integral
component of the program evaluation.

There is wide consensus that capital, opportunities, income, information and choices affect the outcomes of
peers (Jackson, 2010). In fact, the opportunities of others have been regarded as a form of social capital (Glaeser
et al., 2002). In this way, a shock to one’s peers can be interpreted in the same fashion as a shock to one’s
self, and the example described here provides evidence of this mechanism. Now, I turn to a description of the
program, followed by the identification strategy and the results.

5.1 Program Description

Selection of targeted individuals proceeded in stages. In collaboration with BRAC, a local non-profit organi-
zation, the most vulnerable districts were selected based on food-security measures, as described by the World
Food Program. Second, BRAC employees selected the poorest communities within each district. Finally, within
each community, a combination of a participatory rural appraisal exercise and survey data were used to allo-
cate households to one of five wealth bins. Households belonging to the poorest wealth bins were selected as a
potential beneficiary if other eligibility criteria were met, such as not participating as microfinance borrowers
and owning no productive assets. Randomization was conducted at the local BRAC branch level, among its 40
offices in Bangladesh, and stratified at the subdistrict level to ensure balance between treated and control groups.
Within each subdistrict, one branch was randomly allocated to treatment and another to the control group, and
asset transfer was conducted for all selected individuals within the communities covered by the treated BRAC
branches. Consequently, a substantial fraction of the community population was treated, raising the possibility
that aggregate community-level effects are substantially larger than the sum of isolated individual treatment
effects, including, for example, as a consequence of learning, insurance and informal skills reinforcement from
neighbors, who in turn may or may not be in the treatment group themselves. If eligible and selected through
the randomization process, households received a transfer of live animals (valued at approximately USD $140)
and subsequent skills training for two years that were specifically designed for the chosen asset. Program ben-
eficiaries could select among cows, goats or chickens that added up to the same face value; the large majority
chose cows. Participants were required to keep possession of the asset for a minimum of two years, but in
practice there were no sanctions in case of noncompliance. All potential beneficiaries of the program and a
sample of households across the village wealth distribution were surveyed just before the intervention in 2007
and in two additional waves in 2009 and 2011. The comprehensive survey consisted of household members’
sociodemographic characteristics, business assets and activities, land holdings and transfers, financial assets
and liabilities, non-business assets, homestead ownership status and improvements, women’s empowerment and
vulnerability (such as earnings seasonality and food security), and a health module. Network self-reported links
were registered when applicable, and data included family outside the household, their business activities, land
transfers (through inheritance, mortgage, rent, share, received as dowry or gift, bought or sold), business as-

These are numbers are averages across all individuals in treated villages, considering the number of treated households in each
village and the network parameters which affect the number of expected connections. In this case, endogenous effects counteract
exogenous effects which combined produce spillovers of smaller magnitudes. See also Subsection 5.2.1.
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set transfers (same possibilities as above), finance links (loans, outstanding lending or transfers) and letting of
house ownerships. The questionnaire was applied to all selected and a sample of nonselected households in both
treatment and control groups.

5.2 Evaluation and Identification Strategies

Treatment effects on the treated could be evaluated comparing the change before and after treatment in the
outcomes of selected households who live in a treated village against similar changes in the outcomes of selected
households who live in nontreated villages. However, this approach would be unsuitable for estimating the
network effects due to two reasons.

First, exclusion of nontreated households in treated and control villages prevents wider evaluation of policy
for those groups. Second, as I showed in Subsection 2.1, the outcome of the differences-in-differences estimator is
unclear when network effects are present because it may or may not capture network spillovers ('). The extent
to which the spillovers are estimated depends on the degree of reciprocation in the network, which is unobserved.
When reciprocation is not present or interaction groups are large enough, Example 1 shows that the estimator is
consistent for the individual elasticity in the counterfactual in which households are unconnected (�

10

). On the
other hand, separately estimating network-independent �

10

from network-dependent ' is also important when
the researcher desires to evaluate the policy impact in a setting where networks might considerably differ.

To tackle these issues, I consider a triple differences-in-differences with all households in treated and non-
treated villages regardless of selection status. Momentarily ignoring network effects, one could specify a double
differences-in-differences which would compare changes in outcomes of the selected households before and after
treatment against similar changes in outcomes of the nonselected households. However, this strategy would
not be sufficient because randomization was conducted at the village level: selection of potential beneficiaries
within the villages was determined according to wealth at the baseline. I take two remedial actions. I introduce
household fixed effects and I use the control villages to account for different trends in absence of treatment.
The third difference eliminates the change before and after treatment in the outcomes of selected households
who live in a nontreated village against similar changes in outcomes of nonselected households who also live in
nontreated villages.

The final model is then a triple differences-in-differences with household fixed effects. The identification
assumption is that trends as observed in the nontreated villages are a good counterfactuals for trends in treated
villages. I denote Sij = 1 if individual i of village j was selected as a potential beneficiary of the program and
Tij = 1 if village j was randomly selected for treatment. The model without networks is

yijt =

3X

s=2

�
1sSijTij1{s = t}+

3X

s=2

⌘
1sSij1{s = t}+

3X

s=2

⌘
2sTij1{s = t}+ �t + ↵ij + ✏ijt (25)

where yijt represents the outcome for individual i in village j at time t, s = 2 and 3 are the second and third
survey wave (two and four years after treatment, respectively), ↵ij is a fixed effect at the individual level, �t is
a full set of time effects, 1 {·} is an indicator function, and ✏ijt is the disturbance term, clustered at the village
level. The program impact on the treated in the counterfactual in which households are unconnected are �

12

and �
13

.
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I next introduce network spillovers, which take the form of two additional network-dependent terms attached
to equation (25). Identification in the network setting follows after identification of the treatment effects on the
treated, as introduced above, with added assumptions on variability of group sizes and moment condition based
on outcome dispersion, as explained in Section 3. The full model in vector notation is

yjt = �W 0

j yjt +
3X

s=2

�
1sSTj1{s = t}+

3X

s=2

W 0

j STj1{s = t}�
2s +

+

3X

s=2

⌘
1sSj1{s = t}+

3X

s=2

⌘
2sTj1{s = t}+ �t + ↵j + ✏jt (26)

where W 0

j is the unobserved household-level network and STj is a column vector with the ith line indicating
whether individual i was selected and lives in treated village j. Vector ↵j = [↵

1j , . . . ,↵n
j

j ] are household-level
fixed effects. The term �W 0

j yjt represents the endogenous effects – the fact that one’s own choice depends on
others’ choices – and W 0

j STj1{s = t}�
2s represents exogenous effects, i.e., the dependence of one’s own choices

on others’ treatment status. As explained in Subsection 3.4, the correlated effects are captured by the fixed
effects and eliminated via the subtraction of time averages. Coefficients �

22

and �
23

are interpreted as the
marginal effect of treating a peer. Finally, I average network spillovers '(xjt, ˆ✓) for treated individuals after two
and four years (denoted '̂T,2 and '̂T,4, respectively) and similarly for nontreated individuals (denoted as '̂NT,2

and '̂NT,4, respectively). It is notable that the overall treatment effect for the treated individuals is the sum of
the program effect and spillovers. The construction of the confidence intervals and standard errors is described
in Subsection 3.2.

5.2.1 Alternative Methods for Estimating Network Effects

There are a variety of methods in the literature to estimate network effects. For example, a possibility in
the current setting is to compare nonselected households in treated villages against nonselected households in
control villages. Other alternatives explored in the literature introduce variation in the fraction of the population
assigned to treatment across groups (Crépon et al., 2012). There are two reasons why the current method
improves on these approaches.

The first reason is related to precision of the estimates. Consider two polar cases: general equilibrium
effects in which social interactions are intermediated solely by the markets (decrease in the supply of wage hours
increases wage in the market) and local interactions (wage jobs left by treated households are occupied through
network acquaintances). General equilibrium effects means that all individuals are affected to a small extent by
the decisions of others. Networks are dense with weak links. In contrast, local interactions imply strong network
spillovers only for those connected to treated households and null for unconnected individuals. The latter case
generates large variation in individual outcome which then affects the precision of the estimates.

Second, comparison of nonselected households estimates network spillovers only, which can originate from a
combination of endogenous and exogenous effects. In the current setting, for instance, the marginal effect of a
connection requires separately identifying endogenous and exogenous effects, which is not possible by comparing
nonselected households in treated villages against nonselected households in nontreated villages.
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5.3 Empirical Results

I consider four sets of outcomes: occupational choice indicators (self-working hours, wage employment hours
and specialization in self-employment in Table 3), earnings and seasonality (household earnings, in thousands of
Bangladeshi Takas, share of income originating from seasonal and regular activities in Table 4), livestock assets
(number of cows, poultry and livestock value in thousands of Takas in Table 5) and per capita expenditures
(nonfood and food items and food security in Table 6). As an indicator of differential patterns of association,
I allow the probability of link formation to depend on the proximity of household identifiers, registered as
Qij = 1 and zero otherwise. It has been anecdotally observed that identifiers were allocated while field surveyors
followed local streets and roads, and therefore serve as a proxy for geographical distance. This pattern is
only a generalization from the purely naive network in which the probability of link formation is constant and
independent of any variable.27

For each outcome, I show the triple differences-in-differences estimates of the program effects for the treated
households ignoring networks, as in equation (25). These are shown in odd numbered columns in Tables 3-6.
For example, column 1 of Table 3 indicates that treated increased self-working hours in 468.9 and 465.1 hours
per year, two and four years after treatment respectively, and these results are significant at the 1% confidence
level. Even columns display the results of the triple differences-in-differences augmented with the network
module, as in equation (26). For example, column 2 of Table 3 also indicates treated increased self-working
hours in 469.8 and 460.0 hours per year, two and four years after treatment respectively. These numbers are not
significantly different from the cases in which networks were ignored in column 1. Therefore, in this particular
case, inconsistency due to omission of networks was not a relevant problem.

The following four rows display the results for the network spillovers. Results in this case are not significant
at 10% level two years after treatment for treated and nontreated, and point estimates are -6.3 and -3.2 hours
per year. However, spillovers are positive and significant four years after treatment at 28.8 and 14.7 self-working
hours per year for treated and nontreated respectively, indicating a slight increase in the supply of self-working
hours due to spillovers for both types of households. The estimates for the program effect on treated and
spillovers, as discussed above, does not depend on separately identifying endogenous and exogenous effects and,
hence, do not rely on the presence of group size asymmetries and the moment condition based on outcome
dispersion.

Breaking down spillovers in endogenous and exogenous effects then allows me to estimate the marginal effect
of the connection to a treated household. These rows are labelled "Link to T". A marginal connection reduces
working hours in 24.6 and 17.9 hours per year two and four years after treatment respectively, and are significant
at the 1% confidence level. The probabilities of link formation are very high, at 98.3% if individuals live in close
vicinity, and 39.6% otherwise indicating that, in this case, network effects operate via general equilibrium. The
hypothesis that these numbers are equal is rejected at the 1% level.

I present the remaining results in three stages. First, I describe the results for network spillovers for all
outcomes. These are followed by the estimates of the network structure and the marginal effect of a connection

27Estimation with naive model for probability of link formation is conducted as a robustness in Table 19 in Appendix F.2. In
addition, estimation without fixed effects, time effects and both are also shown to highlight that in their absence network estimates
are highly biased.
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to a treated household. Finally, I incorporate network data directly into the procedure and demonstrate that the
main conclusions remain unchanged. I also show that family self-reported links convey meaningful interaction
and mixed results for economic (non-family) links.

5.3.1 Network Spillovers.

As shown in Subsection 3.2, it is not necessary to identify the parameters that underpin network formation or
those that link explanatory variables to outcomes in a given network, and it is also not necessary to separate
endogenous and exogenous effects. It is sufficient that Proposition 2 ensures that spillovers are constant within
the identified set.

The current application shows that spillovers on treated and non-treated individuals determined outcomes
to a relevant degree. The effect of spillovers was particularly salient in explaining food per capita expenditures.
For example, spillovers amounted to 207.0 Takas per year for non-treated individuals after two years, compared
with an estimated program effect of 423.9 Takas for treated individuals over the same period. This difference
corresponds to a 6.9% increase on top of baseline levels of consumption, or 48.8% of the treatment effect on the
treated individuals. The spillover effect is even larger for the treated subpopulation. After two years, spillovers
from the treated households to themselves were responsible for an expenditure increase of 380.0 Takas, or 89.6%
of the treatment effects. Notably, column 3 of Table 3 shows that estimates of treatment effects when networks
are not included in the analysis are approximately 40% higher. This difference is attributed to the fact that
OLS estimates, as presented in Subsection 2.1, may be inconsistent when networks effects are not accounted for.

This result is further confirmed by estimates of food security that are measured by respondents that reported
having at least two meals on most days, indicating a positive effect for both the treated and the non-treated
groups, across two and four years, ranging from 2.7 percentage points for the non-treated group two years after
treatment to 7.1 percentage points for the treated group at the same time. The direct program effect is estimated
at 16.9 and 7.6 percentage points (after two years and four years, respectively). Nonfood expenditures are either
constant or exhibit a slight increase for the treated group, whereas the non-treated group reduced nonfood
consumption after four years. As discussed below, this result can be explained by the reduction in productive
assets following the specialization of the peers of the treated group in terms of wage labor.

Spillovers were significant to a small extent in determining self-employment and wage hours, specialization
in self-employment, the share of seasonal and regular activities and asset holdings. As discussed above, network
spillovers are reduced-form estimates that consist of endogenous effects, or the fact that one’s own choice depends
on others’ choices, and exogenous effects, the fact that one’s own choices depend on the treatment of others.
Disentangling these structural mechanisms is useful in shedding light on the causes of these results, and this is
undertaken in the next Subsection.

5.3.2 Endogenous and Exogenous Effects (or Marginal Value of Connections to the Treated)

I now provide point estimates of structural parameters. Given a network, its full set consists of link strength (�),
one’s own response to one’s own treatment after two and four years (�

11

and �
12

) and exogenous effects (or, in the
current setting, the effect of one additional connection to a treated individual, �

21

and �
22

). The parameters that
capture the network link are the probability of link formation if households are located in close proximity (�

1

),
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such that Qij = 1 if the difference in household identifiers is less than two28, and if households are not in close
proximity (�

0

). These parameters discriminate between the polar cases in which interactions occur on a localized
scale, through personal interconnections and without intermediation of the markets (equivalent to low-density
networks, or low �

0

and �
1

) or through general equilibrium effects in which one’s own choices affect all others to
a small degree and result in dense networks (high �

0

and �
1

). As demonstrated in Theorem 4, identification is
achieved using the comparison between observed and theoretical across-group dispersion of outcomes as implied
by the model. In a social setting, the across-group variation of outcomes cannot be explained by outcome
dispersion, peer group heterogeneity or disturbance variance alone. This indicates a moment condition and
suggests the use of a GMM criterion that is capable of sorting among structural parameters within the identified
set.

In the current application, the estimates show that, whereas treated individuals reduced wage hours (113.5
and 141.9 hours per year, two and four years after treatment, respectively) and increased self-employment hours
(469.8 and 460.0 hours per year) associated with livestock rearing, a marginal connection to a treated household
had the opposite effect, increasing wage hours (24.6 and 17.9 hours per year for each treated peer) and decreasing
self-working hours (13.9 and 13.0 hours per year for each treated peer). Treated individuals specialize in self-
employment, and connected peers modestly decrease specialization. Individuals who received treatment left
vacancies on wage jobs that were partially filled by individuals located in close geographic proximity29. The
density of estimated networks is high only for self-employment and wage hours; above 90% for households that
live in close proximity and approximately 40% otherwise. The interaction patterns of all other outcomes are
much more localized, with densities of approximately 20% or lower in most cases.

The results demonstrate that treated individuals increased their livestock assets by more than the original
treatment. Meanwhile, non-treated individuals reduced their stock of assets. This outcome was not observed
for poultry, which is consistent with the low takeover rate of this type of asset. Livestock value followed the
same pattern for both groups. Since the treatment also consisted of skills training – specifically targeted for the
type of assets provided – and was of long duration (2 years), treated individuals were endowed with a stronger
comparative advantage in livestock rearing, whereas connected peers tended to specialize in wage jobs instead.

The final component of the analysis involves the food staples. A marginal connection to a treated peer signif-
icantly increases food consumption per capita and food security. In fact, one connection may be responsible for
an effect on food expenditures that is equivalent to the direct effect of treatment on the treated individual (443.6
versus 423.9 Takas) and a 9.6 percentage point increase in food security. This finding shows that comovements
of occupational choices of the treated and their peers were largely beneficial to all.

5.3.3 Including Network Data

Finally, I make use of network data collected in the survey to reassess the conclusions obtained in their absence.
Inclusion of network data serves two primary purposes. First, I show that the main conclusions summarized
above remain unchanged (Tables 15 to 18 of Appendix F.2). Second, allowing link formation to depend on

28Robusteness checks are conducted in Table 19 of Appendix F.2.
29The null hypothesis of no differential association is rejected at the 5% level for all specifications, as shown in Tables (3)-(6).

Given the estimated parameters and the number of treated households in each households, a simple simulation exercise shows that
exogenous effects counterbalanced 25-30% of the reduction in wage hours of treated households.
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link reporting enables me to test whether the associated coefficient is significant, which constitutes as a test of

Table 3: Occupational Choice.

(1) (2) (3) (4) (5) (6)

Outcome Self hours. Wage hours. Self emp. only.
Method OLS. Network. OLS. Network. OLS. Network.

N
ot

fu
nc

ti
on

of
ˆ �
.

Program effect 468.928⇤⇤⇤ 469.774⇤⇤⇤ �110.799⇤⇤⇤ �113.531⇤⇤⇤ 0.107⇤⇤⇤ 0.114⇤⇤⇤

after 2 years (ˆ�11). (28.62) (23.20) (31.07) (10.61) (0.02) (0.01)

Program effect 465.075⇤⇤⇤ 460.039⇤⇤⇤ �137.255⇤⇤⇤ �141.918⇤⇤⇤ 0.112⇤⇤⇤ 0.120⇤⇤⇤

after 4 years (ˆ�12). (31.32) (23.21) (34.10) (8.63) (0.02) (0.01)

Spillover on T — �6.347 — 26.855⇤⇤⇤ — �0.032⇤⇤⇤

after 2 years ('̂
T,2). (10.55) (8.45) (0.01)

Spillover on T — 28.847⇤⇤⇤ — 19.369⇤⇤ — �0.025⇤⇤⇤

after 4 years ('̂
T,4). (9.68) (8.54) (0.00)

Spillover on NT — �3.229 — 14.491⇤⇤⇤ — �0.018⇤⇤⇤

after 2 years ('̂
NT,2). (5.37) (4.55) (0.00)

Spillover on NT — 14.676⇤⇤⇤ — 10.452⇤⇤⇤ — �0.013⇤⇤⇤

after 4 years ('̂
NT,4). (1.09) (0.75) (0.00)

Fu
nc

ti
on

of
ˆ �
.

Link to T — �24.604⇤⇤⇤ — 13.904⇤⇤⇤ — �0.050⇤⇤⇤

after 2 years (ˆ�21). (2.76) (2.52) (0.01)

Link to T — �17.932⇤⇤⇤ — 13.030⇤⇤⇤ — �0.043⇤⇤⇤

after 4 years (ˆ�22). (2.76) (1.59) (0.01)

Link probability — 0.983⇤⇤⇤ — 0.639⇤⇤⇤ — 0.192⇤⇤⇤

if Q
ij

= 1 (ˆ�1). (0.03) (0.03) (0.01)

Link probability — 0.396⇤⇤⇤ — 0.331⇤⇤⇤ — 0.106⇤⇤⇤

if Q
ij

= 0 (ˆ�0). (0.01) (0.01) (0.00)

Link strength — 0.05⇤⇤⇤ — 0.05⇤⇤⇤ — 0.15⇤⇤⇤

(ˆ�). (0.01) (0.00) (0.01)

p-value HNV . — < 0.001 — < 0.001 — < 0.001

Avg treated outcome. 421.8 421.8 646.7 646.7 0.303 0.303
Individuals (n). 23029 23029 23029 23029 23029 23029

Villages (v). 1409 1409 1409 1409 1409 1409
Survey waves (T ). 3 3 3 3 3 3

Notes: *, ** and *** indicates significance at 10%, 5% and 1% levels. All regressions have household fixed effects. Standard errors clustered at

the village level. "Spillover on T" refers to the average '(x
t

, ✓̂) on the treated only. "Spillovers on NT" refers to equivalent calculation on the

non-treated only. "Link to T" refers to the marginal effect of a connection to a treated individual. "Avg treated outcome" refers to the mean

outcome of treated at the baseline. "p-value H
NV

" is the p-value of testing the null hypothesis that household proximity does not affect the

probability of link formation. Estimates dependent on the identification strategy for �̂ are denoted under the tab "Function of �̂". "Self hours"

refers to self-working hours per year. "Wage hours" refers to wage working hours per year. "Self emp. only" is a dummy variable if individual

is specialized in self-employment.
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Table 4: Earnings and Seasonality.

(1) (2) (3) (4) (5) (6)

Outcome Earnings. Share Seas. Share Reg.
Method OLS. Network. OLS. Network. OLS. Network.

N
ot

fu
nc

ti
on

of
ˆ �
.

Program effect 0.475 0.506⇤⇤⇤ 0.012 �0.028⇤⇤⇤ 0.201⇤⇤⇤ 0.181⇤⇤⇤

after 2 years (ˆ�11). (0.46) (0.12) (0.02) (0.01) (0.02) (0.01)

Program effect 2.598⇤⇤⇤ 2.729⇤⇤⇤ �0.089⇤⇤⇤ �0.074⇤⇤⇤ 0.191⇤⇤⇤ 0.165⇤⇤⇤

after 4 years (ˆ�12). (0.54) (0.31) (0.02) (0.01) (0.02) (0.01)

Spillover on T — �0.045 — �0.051⇤⇤⇤ — 0.023⇤⇤

after 2 years ('̂
T,2). (0.10) (0.02) (0.01)

Spillover on T — 0.008 — �0.005 — 0.029⇤⇤

after 4 years ('̂
T,4). (0.11) (0.02) (0.01)

Spillover on NT — �0.025 — �0.023⇤⇤⇤ — 0.012⇤⇤

after 2 years ('̂
NT,2). (0.06) (0.01) (0.00)

Spillover on NT — 0.004 — �0.002 — 0.015⇤⇤⇤

after 4 years ('̂
NT,4). (0.09) (0.01) (0.00)

Fu
nc

ti
on

of
ˆ �
.

Link to T — �0.447 — �0.010⇤⇤⇤ — �0.022⇤⇤⇤

after 2 years (ˆ�21). (0.46) (0.01) (0.01)

Link to T — �0.326 — �0.016⇤⇤⇤ — �0.015⇤⇤

after 4 years (ˆ�22). (0.29) (0.01) (0.00)

Link probability — 0.075⇤⇤⇤ — 0.272⇤⇤⇤ — 0.238⇤⇤⇤

if Q
ij

= 1 (ˆ�1). (0.00) (0.01) (0.00)

Link probability — 0.023⇤⇤⇤ — 0.136⇤⇤⇤ — 0.106⇤⇤⇤

if Q
ij

= 0 (ˆ�0). (0.00) (0.00) (0.00)

Link strength — 0.50⇤⇤⇤ — 0.20⇤⇤⇤ — 0.20⇤⇤⇤

(ˆ�). (0.17) (0.08) (0.05)

p-value HNV . — < 0.001 — < 0.001 — < 0.001

Avg treated outcome. 4.607 4.607 0.674 0.674 0.478 0.478
Individuals (n). 23029 23029 23029 23029 23029 23029

Villages (v). 1409 1409 1409 1409 1409 1409
Survey waves (T ). 3 3 3 3 3 3

Notes: Earnings in thousand of Takas per year. "Share Seas." refers to the share of seasonal earnings relative to total earnings. "Share Reg."

refers to share of regular earnings, as reported by the respondent, relative to total earnings. See also Table 3.

network data validity. I combine network reports into two categories: family and economic (non-family) links.
Non-family links include an ensemble of many categories of self-reported links, such as business and labor
relationships, financial assets and liabilities and household ownership. The null hypothesis of no network validity
was rejected at the 1% level for all specifications regarding occupational choice, earnings and seasonality. The
results for livestock holding and expenditures are more nuanced. Whereas for most specifications, the null of
no validity was rejected for family links, economic links are much less capable of conveying interactions that
influence the outcomes of others. This result suggests that families are natural loci that favor asset transactions,
particularly when those transactions involve cows, and through which food consumption and expenditures flow.
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Table 5: Livestock.

(1) (2) (3) (4) (5) (6)

Outcome Cows. Poultry. Livestock Value.
Method OLS. Network. OLS. Network. OLS. Network.

N
ot

fu
nc

ti
on

of
ˆ �
.

Program effect 1.119⇤⇤⇤ 1.131⇤⇤⇤ 2.147⇤⇤⇤ 2.120⇤⇤⇤ 10.326⇤⇤⇤ 10.417⇤⇤⇤

after 2 years (ˆ�11). (0.04) (0.03) (0.42) (0.50) (0.56) (0.39)

Program effect 1.078⇤⇤⇤ 1.102⇤⇤⇤ 1.294⇤⇤ 1.326⇤⇤⇤ 10.984⇤⇤⇤ 11.175⇤⇤⇤

after 4 years (ˆ�12). (0.03) (0.03) (0.62) (0.50) (0.64) (0.40)

Spillover on T — �0.033⇤⇤⇤ — 0.099 — �0.221⇤⇤⇤

after 2 years ('̂
T,2). (0.01) (0.17) (0.07)

Spillover on T — �0.057⇤⇤⇤ — �0.087 — �0.459⇤⇤⇤

after 4 years ('̂
T,4). (0.00) (0.20) (0.07)

Spillover on NT — �0.020⇤⇤⇤ — 0.059 — �0.132⇤⇤⇤

after 2 years ('̂
NT,2). (0.01) (0.10) (0.04)

Spillover on NT — �0.033⇤⇤⇤ — �0.052 — �0.274⇤⇤⇤

after 4 years ('̂
NT,4). (0.01) (0.08) (0.04)

F
un

ct
io

n
of

ˆ �
.

Link to T — �0.996⇤⇤⇤ — 1.277 — �10.456⇤⇤⇤

after 2 years (ˆ�21). (0.16) (4.12) (1.90)

Link to T — �1.285⇤⇤⇤ — �2.725 — �16.464⇤⇤⇤

after 4 years (ˆ�22). (0.17) (4.11) (2.33)

Link probability — 0.024⇤⇤⇤ — 0.007⇤⇤ — 0.013⇤⇤⇤

if Q
ij

= 1 (ˆ�1). (0.00) (0.00) (0.00)

Link probability — 0.012⇤⇤⇤ — 0.009⇤⇤⇤ — 0.007⇤⇤⇤

if Q
ij

= 0 (ˆ�0). (0.00) (0.00) (0.00)

Link strength — 0.50⇤⇤⇤ — 0.50 — 0.50⇤⇤⇤

(ˆ�). (0.03) (0.38) (0.16)

p-value HNV . — < 0.001 — < 0.001 — < 0.001

Avg treated outcome. 0.083 0.083 1.79 1.79 0.940 0.940
Individuals (n). 23029 23029 23029 23029 23029 23029

Villages (v). 1409 1409 1409 1409 1409 1409
Survey waves (T ). 3 3 3 3 3 3

Notes: "Cows" refers to the number of cows held by the household, and similarly for poultry. Livestock value evaluates in thousands of Takas at

market value. See also Table 3.
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Table 6: Expenditures.

(1) (2) (3) (4) (5) (6)

Outcome Nonfood PCE. Food PCE. Food Security.
Method OLS. Network. OLS. Network. OLS. Network.

N
ot

fu
nc

ti
on

of
ˆ �
.

Program effect �242.239 �220.509 585.304⇤⇤ 423.929⇤⇤⇤ 0.189⇤⇤⇤ 0.169⇤⇤⇤

after 2 years (ˆ�11). (293.34) (164.53) (247.19) (134.22) (0.03) (0.01)

Program effect 175.022 278.277 585.415⇤⇤⇤ 445.063⇤⇤⇤ 0.010⇤⇤⇤ 0.076⇤⇤⇤

after 4 years (ˆ�12). (375.16) (174.72) (227.38) (134.27) (0.03) (0.01)

Spillover on T — �8.526 — 380.002⇤⇤⇤ — 0.017⇤⇤⇤

after 2 years ('̂
T,2). (68.25) (55.82) (0.00)

Spillover on T — �171.985⇤⇤ — 243.172⇤⇤⇤ — 0.071⇤⇤⇤

after 4 years ('̂
T,4). (68.15) (56.88) (0.02)

Spillover on NT — �5.039 — 206.992⇤⇤⇤ — 0.027⇤⇤⇤

after 2 years ('̂
NT,2). (40.34) (30.14) (0.00)

Spillover on NT — �101.655⇤ — 132.459⇤⇤⇤ — 0.032⇤⇤⇤

after 4 years ('̂
NT,4). (52.65) (40.73) (0.01)

Fu
nc

ti
on

of
ˆ �
.

Link to T — �14.185 — 443.619⇤⇤⇤ — 0.096⇤⇤⇤

after 2 years (ˆ�21). (988.46) (85.36) (0.01)

Link to T — �2649.43⇤⇤⇤ — 249.126⇤⇤⇤ — 0.087⇤⇤⇤

after 4 years (ˆ�22). (980.96) (84.79) (0.01)

Link probability — 0.032⇤⇤⇤ — 0.132⇤⇤⇤ — 0.128⇤⇤⇤

if Q
ij

= 1 (ˆ�1). (0.00) (0.01) (0.00)

Link probability — 0.009⇤⇤⇤ — 0.080⇤⇤⇤ — 0.052⇤⇤⇤

if Q
ij

= 0 (ˆ�0). (0.00) (0.00) (0.00)

Link strength — 0.50⇤⇤⇤ — 0.20⇤⇤ — 0.50⇤⇤

(ˆ�). (0.14) (0.11) (0.21)

p-value HNV . — < 0.001 — < 0.001 — < 0.001

Avg treated outcome. 1054.5 1054.5 2953.7 2953.7 0.457 0.457
Individuals (n). 23029 23029 23029 23029 23029 23029

Villages (v). 1409 1409 1409 1409 1409 1409
Survey waves (T ). 3 3 3 3 3 3

Notes: "Nonfood PCE" refers to non-food per capita expenditure in thousands of Takas per year, and similarly for food per capita expenditures.

Food security is a dummy equal to one if households have at least two meals in most days. Estimates of the program impact on nonfood per capita

expenditure on the treated using the triple differences model (column 1) was the only case which does not match well the estimates obtained from

the double differences which compares the selected individuals in treated villages against selected in nontreated villages. See Bandiera et al. (2013)

and Table 3.
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6 Conclusion

Social and economic networks are useful for understanding many aspects of individual choice, decisions and
behavior. Although there has recently been substantial progress on the theoretical underpinnings of network
formation, empirical research frequently remains constrained by the availability of network data. The contribu-
tion of this paper is then to provide a method for estimating network effects in the absence of network data.
The method also estimates the probability that pairs of individuals form a connection based on individual char-
acteristics such as common gender. I also incorporate imperfect network data with the dual purpose of refining
the estimates and providing a test for its validity.

The key contribution of the paper was to derive a maximum likelihood estimator that is not conditional on
network data. It is obtained by integrating a likelihood conditional on networks which originates from a spatial
econometric model with respect to the probability density function of the stochastic network. In this setting, I
showed how the observation of outcomes and explanatory variables for many groups such as classrooms serves as
a substitute for the network observation. This approach then offers a procedure for estimating network effects
using datasets that were previously not suited for this purpose.

Empirical research has led to substantial interest in evaluating the effects of randomized policies on targeted
individuals. Much less progress has been made on evaluating the spillovers related to those policies. To illustrate
how the method can be applied in practice, I employed the estimator to investigate the impact of a large-scale
randomized intervention on the peers of those who were treated. This is the intervention of Bandiera et al.
(2013), which consisted of the provision of livestock and skill training to low-income households in Bangladesh.

The proposed estimator met three objectives and yielded useful insights on the wider effects of the policy.
The first objective was to provide – in the absence of network data – a consistent and asymptotically normal
estimator of network spillovers. In the application, I found that network spillovers were economically and
statistically significant in determining some outcomes, especially food per capita expenditure and food security.
Network spillovers were responsible for an increase of 206.9 Takas in yearly food per capita expenditure compared
with a treatment effect of 423.9 Takas on the treated.30

The second objective of the paper was to elucidate the structural mechanisms that gave rise to these spillovers.
I derived a method to separately identify endogenous and exogenous effects, controlling for correlated effects, in
the absence of network data by using the variability in group sizes. I further solved the problem of separately
identifying a few strong links from a large number of weak links by using the "excess" outcome variance that
cannot be explained by independent variables or peer group heterogeneity alone.31 For this purpose, I reinter-
preted the estimator as the solution of a Generalized Method of Moments problem in which moment conditions
were given by the score of the likelihood. In this case, the earlier identification difficulty originated from the
absence of one moment condition relative to the number of parameters. I then explored the difference between
observed second moments of the outcomes and those implied by the model to provide an additional restriction
which completes the identification requirements. I am then able to show that the solution of this problem is a
consistent and asymptotically normal estimator to the structural parameters of the model.

30Respectively an 14% and 7% increase relative to food consumption levels at the baseline.
31These are similiar in essence to the identification ideas in Lee (2007) and Graham (2008), which explore the case in which

networks are observed.
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In the application studied herein, I found that a marginal connection to the treated led to effects in opposite
direction to the treatment effect on the treated. Regarding occupational choice and livestock value, one additional
connection to a treated household decreased self-employment by 24.6 hours per year, added 13.9 wage hours per
year and decreased livestock value by 10.4 thousand Takas. Treated households increased their self-employment
hours, decreased their wage hours and increased the value of their livestock. In constrast, regarding food per
capita expenditure and food security, a marginal connection to the treated was in the same direction to the
treatment effect on the treated, and often of strong magnitudes. A marginal connection to the treated increased
food per capita expenditure by 443.6 Takas per year and increased food security by 9.6 percentage points,
compared with direct treatment effects of, respectively, 424.0 Takas per year and 16.9 percentage points. With
the exception of self-employment and wage hours, I also found that network densities were fairly low, which
suggested local interactions through personal contacts rather than through prices and markets. These results are
consistent with the interpretation that treated individuals gained comparative advantage in livestock rearing.
The randomized policy then generated a village-level occupational specialization in which treated households
were employed in rearing the livestock, partially changing the occupational choice and well-being of their peers
as measured by food consumption.

The third objective of this paper was to incorporate imperfect network data, such as when data are self-
reported, with the dual purpose of refining the estimates and proposing a test for whether reported connections
positively affect the estimated connection probability. In the application, I found that reported family links have
a greater effect than the reported economic (non-family) links in determining the outcomes of others. The test
rejected the null hypothesis that family links do not influence the number of cows but failed to reject the similar
influence of economic links. The same holds true for livestock value, indicating that family ties facilitated asset
transactions.

The method developed in the present paper contributes to the spatial econometrics literature that has to
date considered only models for which networks are accurately known (Anselin (2010) and references therein).
Similarly, the literature on the identification of network models addressed a number of techniques only when
networks could be observed (Manski (1993), Bramoullé et al. (2009), De Giorgi et al. (2010) and others). This
novel method can be applied in many fields, from peer effects (Ammermuller and Pischke, 2009), crime and
delinquent behavior (Glaeser et al., 1996) to the estimation of parameters of gravity equations (Anderson and
van Wincoop, 2003).

The interest in networks to this date has not been matched with availability of network data, possibly because
of problems associated with observing and defining interactions among people. The method developed in the
present paper provided a systematic procedure for estimating network effects when networks are unknown or
unreliable and information on a large number of groups is available. This ability has shown to be particularly
relevant in estimating effects of exogenous variation policy through randomized controlled trials both on treated
and their peers. In this way, the paper demonstrated both theoretically and empirically that including network
effects may have important implications for policy assessments. Estimating network spillovers and distinguishing
among endogenous, exogenous and correlated effects in the absence of network data is certainly a useful empirical
tool for future applied research.
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µ [A] and ⌃ [A] denote the expectation and variance-covariance matrix of vector A.

B Alternative network models.

I previously described the probability of link formation as dependent on a dummy for sharing exogenous characteristic with independence

link formation. I now expand the classes of models in two different directions: I first allow the probability of link formation to depend on a

continuous measure, such as distance between households location. Because many modes of social interactions can occur in parallel, it is also

important to allow for a multivariate network formation model. In second place, I drop link independence assumption with recourse to the

Exponential Random Markovian Graphs (ERMG) family of models, as introduced by Frank and Strauss (1986) and expanded by Wasserman

and Pattison (1996). These are presented in form of examples.

Example 4. (Multivariate network model). Several forms of relations coexist; arguably, a truthful representation of the probability of link

formation will then depend on a number of factors. Allow then QI

ji

as 1 ⇥ kI to be a matrix of individual’s i characteristics that underpin
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probability of link formation and depend exclusively on individual, non-relational, characteristics. For example, this may encompass testing

whether males may tend to form more connections than the rest of the population, or personal income may have a relation to social interactions.

Let QR

jk

be characteristics of the potential recipient of the link that may generate attraction, of dimension 1⇥ kR and, finally, QB

jik

common,

shared characteristics, such as belonging to the same gender, or continuous geographic distance between households, with dimension 1 ⇥ kB .

Coefficients are captured with recourse to ✓I
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Because probabilities should stay in the range [0, 1], it is plausible to use, instead, P
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the equivalent probit version. It is important to note that, even without using the second moments to provide identification, it is still possible

to conduct hypothesis testing in the partial identification framework, as long as there is no collinearity among QI
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, QR
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and QB

jik

for all i, k

and j. More specifically, suppose one is interested in whether race commonality affects the probability of link formation. The researcher can

then test H0 : ✓B
g

= 0, with the procedure outlined in Subsection 3.2, although it will not be possible to identify the magnitude of the effect

unless as a solution to equation (20) is provided.

Example 5. (ERMG family). Models of statistic network formation have a long tradition in the literature of estimation of network structure

given observations from random graphs generators (Holland and Leinhardt (1981), Frank and Strauss (1986), Strauss and Ikeda (1990) and

Snijders (2011)) and are of considerable generality, including the case where link formation are not independent. In particular, Frank and

Strauss (1986) proved that, if the graph is such that edges without common nodes are independent conditional on all remaining edges (that is,

the graph is Markovian32) and homogeneous33, and all isomorphic graphs have same probability,

P {W
j

= w
j

} =

1

(✓
g

)

· exp
(

✓0
g

T (w
j

) +

n�1
X

s=1

✓s
g

S
s

(w
j

)

)

(28)

where T (w
j

) =

P

i,k,l

{w
j

}
ik

{w
j

}
kl

{w
j

}
li

is the number of triangles, and S
s

(w
j

) is the number of s-stars in w
j

. (✓
g

) is a normalization

constant that depends on parameters ✓
g

= (✓0
g

, ✓1
g

, . . . , ✓n�1
g

)

0. The Markovian assumption is a relatively mild hypothesis and states that,

although dependence between the existence of edges may happen, this cannot be so for edges which do not possess a common node. This

formulation is particularly appealing as it provides a probability law for network formation under minimal hypothesis, along with its sufficient

statistics. Wasserman and Pattison (1996) expand the class of models to incorporate any set of sufficient statistics Z(w
j

), such that
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Note that, as a consequence of homogeneity, edges have equal probability of being formed with expected network W e
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This is the same expectation as the one obtained in the simple Bernoulli model. The class of models considered in when using this expectation

in equations (10) and likelihood (13) is much larger than might initially appear.

32Let D be a graph whose nodes are all possible edges of G, that is, all pairs of nodes of G, containing therefore n! (n� 1) !

nodes. If the existence of an edge between {a, b} in G depends on the existence of an edge between {c, d}, conditional on all rest of
the graph, then {a, b} and {c, d} are neighbours in D. The Markovian assumption means, therefore, that all {s, t} and {u, v} are
nonneighbours for different s, t, u and v.

33That is, nodes are a priori indistinguishible.
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C Score Vector and Hessian Matrix.
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and so are omitted here.

D Proofs.

D.1 Useful Lemmas.

Lemmas without proofs can be found in Kelejian and Prucha (2001), Lee (2004) or Lee et al. (2010).
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D.2 Derivation of pdf of networks.
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D.3 Proposition 1.
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D.4 Theorem 1.
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(Asymptotic distribution). Given existence of higher order moments of ✏
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, the Central Limit Theorem in Kelejian and Prucha (2001)
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D.6 Proposition 2.
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D.7 Theorem 3.

Proof. For parts (1) and (2), see Theorem 3.2 and Lemma 3.1 of Chernozhukov et al. (2007). By construction, and uniform convergence of

Theorem 1 conditions C.1 with a
n

= n, degeneracy property C.3 and condition C.4 therein are satisfied. Condition C.2 is guaranteed by

uniform convergence and boundness of the objective function on a compact set ⇥. Parts (3) and (4) are immediate corollaries.
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�10 and �2
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Identification is guarateed with rank (J (✓)) = K, where K is the number of parameters in the structural model. Given �2
0 is identified,

the last equation gives a solution for �1 and �. Linear independence is guaranteed if the only column vector c that satisfies J (✓) c = 0

is c = 0. For the case of one exogenous covariate, this immediately implies c2 = c5 = 0. We then have c1� + c4� = 0, �c1���2
+

c3��1
= 0 and c1J

K1 (✓) + c3J
K3 (✓) + c4J

K4 (✓) = 0. Substituting out c1 and c3 in the third equation, one obtains the condition that

c4
⇥����1J

K1 (✓)� ���1�J
K3 (✓) + J

K4 (✓)
⇤

= 0. If � 6= 0, it is equivalent to ����1J
K1 (✓) � ���1�J

K3 (✓) + J
K4 (✓) 6= 0 at ✓0. This

condition is empirically testable for all ✓ 2 ⇥0, which is sufficient as ✓0 2 ⇥0.

D.9 Theorem 4.

Proof. (Consistency). Because ˆ

⇥ converges to ⇥0 in the Hausdorff metric, ˆ

⇥ ✓ ⇥

✏

0 for ⇥

✏

0 = {✓ 2 ⇥ : d (✓,⇥0)  ✏} with ✏ = o (1) and ✏ � 0.

It follows that

ˆ✓ = arg min

✓2⇥0

0
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When S and v are going to infinity,
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0
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where E
W,e

is the conditional expectation taken with respect to the distribution of W and e, given y and x and E0
y

is the expectation with respect

to the true distribution of y, given x. Given that
�

E0
y

E
W,e

q
s,j

(y, ✓)
�0

⌦

�

E0
y

E
W,e

q
s,j

(y, ✓)
�

=

�

E0
y

q
j

(y, ✓)
�0

⌦

�

E0
y

q
j

(y, ✓)
�

and E0
y

q
j

(y, ✓0) = 0

only at ✓0, consistency follows.

(Asymptotic normality). In the cases where S ! 1 fast enough, results follow from standard asymptotic theory and Gouriéroux and

Monfort (1997, Ch. 2).
p
n(ˆ✓ � ✓0)

d�! N (0,⌃⇤
), where ⌃

n

= (G0
n

⌦

n

G
n

)

�1 G0
n

⌦

n

O
n

⌦

n

G
n

(G0
n

⌦

n

G
n

)

�1, G
n

= Er
✓

q
j

(y
n

, ✓0), O
n

=

Eq
j

(y
n

, ✓0)q
j

(y
n

, ✓0)
0 and ⌃ = lim

n!1 ⌃

n

. Optimal weight matrix is ⌦

⇤
n

= O�1
n

and, in this case, ⌃

⇤
n

= (G0
n

(⌦

⇤
n

)

�1G
n

)

�1 and ⌃

⇤
=

lim

n!1 ⌃

⇤
n

. When it can be shown that the local maximum is unique, the estimator can also be seen as the solution to

ˆ✓? = argmin

✓2⇥

0

@

v

X

j=1

S�1
S

X

s=1

q?
s,j

(y, ✓)

1

A

0

⌦

?

0

@

v

X

j=1

S�1
S

X

s=1

q?
s,j

(y, ✓)

1

A

where q?
s,j

(y, ✓) = [r
✓

lnLe

(✓) q
s,j

(y, ✓)]0 and ⌦

? is a weight matrix of comformable dimensions with possibly arbitrary large weights for

the first-order conditions, so that the restriction ✓ 2 ˆ

⇥ is implemented. In the case where S ! 1 fast enough, given identification,
p
n(ˆ✓ �

✓0)
d�! N (0,⌃?⇤

), where ⌃

?

n
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0
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⌦
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n
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)
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= Er
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, ✓0), O?

= Eq?
j

(y, ✓0)q?
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(y, ✓0)
0 and q?

j

(y, ✓0) =

lim

S!1 S�1PS

s=1 q
?

s,j

(y, ✓0) and ⌃

?

= lim

n!1 ⌃

?

n

. Using optimal matrix ⌦

?⇤
n

= (O?

n

)

�1 , ⌃?⇤
n

= (G?

0
n

(⌦

?⇤
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)

�1 G?
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)

�1, lim
n!1 ⌃

?⇤
n

.

E Algorithms.

E.1 Bootstrap for cn (↵) and cfn (↵)

In the case of i.i.d. data, Bugni (2010) proposes a bootstrap algorithm correction consistent for c
n

(↵) and adaptable to cf
n

(↵). In the current

case, spatial dependence or social interactions in groups prevents immediate application of methods described therein. Instead, I propose

bootstrapping at the group-level j, while maintaining within-group observations i = 1, . . . , n
j

. In this way, dependence of observed data is

preserved. Apart from the straightforward modification proposed here, proofs can be found in the aforementioned paper.

Algorithm 1. (Bugni (2010) bootstrap). In order to produce confidence regions with coverage probability 1 � ↵, ↵ 2 (0, 1), for ⇥0, denoted
ˆ

⇥

B

↵

for a bootstrapped sample of arbitrary size B, follow the steps:

Step 1. Estimate the identified set ˆ

⇥ = {✓ 2 ⇥ : L
n

( ✓| y
n

, x
n

, Q
n

) = 0}.
Step 2. Define the bootstrapped sample b = 1, . . . , B, sampling v groups with replacement from the data and denote bootstrapped sample

{yb
n

, xb

n

, Qb

n

}. Compute

ĉb
n

= sup

✓2⇥̂

p
n
⇣

L
n

( ✓| yb
n

, xb

n

, Qb

n

)� L
n

( ✓| y
n

, x
n

, Q
n

)

⌘

.

Step 3. Let ĉB
n

(↵) be the ↵ quantile of the empirical distribution of {ĉ1
n

, . . . , ĉB
n

}. The (1� ↵) confidence set for the identified set is

ˆ

⇥

B

↵

=

n

✓ 2 ⇥ :

p
nL ( ✓| y

n

, x
n

, Q
n

)  ĉB
n

(1� ↵)
o

Next, I produce an adaptation of the algorithm to be able to generate confidence regions for the image of the identified set under known

function f , hence completing the statistical toolkit necessary for implementation of remarks 2 and 3.
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Algorithm 2. (Adaptation of Bugni (2010) bootstrap for projection under f). The modified algorithm to produce confidence regions with

probability 1� ↵, ↵ 2 (0, 1), for the projection of ⇥0 under known function f , ⌥f

0 , denoted ˆ

⌥

B

↵

, for a bootstrapped sample of arbitrary size B

is:

Step 1. Estimate the projection of the identified set ˆ

⌥ =

n

� 2 ⌥ : inf

✓2f

�1(�) Ln

( ✓| y
n

, x
n

, Q
n

) = 0

o

.

Step 2. Define the bootstrapped sample b = 1, . . . , B, sampling v groups with replacement from the data and denote bootstrapped sample

{yb
n

, xb

n

, Qb

n

}. Compute

ĉf,b
n

= sup

�2⌥̂

inf

✓2f

�1(�)

p
n
⇣

L
n

( ✓| yb
n

, xb

n

, Qb

n

)� L
n

( ✓| y
n

, x
n

, Q
n

)

⌘

.

Step 3. Let ĉf,B
n

(↵) be the ↵ quantile of the empirical distribution of {ĉf,1
n

, . . . , ĉf,B
n

}. The (1� ↵) confidence set for the projected

identified set ⌥0 is

ˆ

⌥

f,B

↵

=

(

� 2 ⌥ : inf

✓2f

�1(�)

p
nL ( ✓| y

n

, x
n

, Q
n

)  ĉf,B
n

(1� ↵)

)

.

E.2 Main algorithms

Algorithm 3. If �0 is known and there are at least three distinct group sizes n
j

, follow the steps:

Step 1. Maximize the concentrated pseudo-likelihood

lnLc

n

( ✓
c

| y
n

, x
n

, Q
n

) = �n

2

(ln (2⇡) + 1)� n

2

ln �̂2
(Q

n

, ✓
c

) + |Se

n

(Q
n

, ✓
c

)|+ |Re

(Q
n

, ✓
c

)|

with respect to ✓
g

, where

�̂2
(Q

n

, ✓
c

) =

1

n
y0
n

Se

0
n

(Q
n

, ✓
c

)Re

0
n

(Q
n

, ✓
c

)P e

n

(Q
n

, ✓
c

)Re

n

(Q
n

, ✓
c

)Se

n

(Q
n

, ✓
c

)y
n

and P e

n

(Q
n

, ✓
c

) = I
n

�Re

n

(Q
n

, ✓
c

)Ze

n

(Q
n

, ✓
c

)(Ze

0
n

(Q
n

, ✓
c

)Re

0
n

(Q
n

, ✓
c

)Re

n

(Q
n

, ✓
c

)Ze

n

(Q
n

, ✓
c

))

�1Ze

0
n

(Q
n

, ✓
c

)Re

0
n

(Q
n

, ✓
c

). Obtain the full solution
ˆ✓ = (

ˆ✓0
c

, ˆ�(ˆ✓
c

)

0, �̂2
(

ˆ✓
c

))

0, where ˆ✓
c

⌘ argmax

✓2⇥
c

lnLc

n

( ✓
c

| y
n

, x
n

, Q
n

) and

ˆ�(ˆ✓
c

) = (Ze

0
n

(Q
n

, ✓
c

)Re

0
n

(Q
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c

)Re

n

(Q
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�1Ze

0
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(Q
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, ✓
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0
n

(Q
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, ✓
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)Re

n

(Q
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, ✓
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)Se
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(Q
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, ✓
c

)y
n

.

Calculate and store the expected network ˆW e

n

= W e

n

(Q
n

, ˆ✓).

Step 2. (C.I. of structural parameters). Calculate the asymptotic variance given by Theorem 1. The full expressions of the Jacobian and

Hessian are given in Appendix C or can be numerically approximated.

Step 3. (Network spillovers). Network spillovers are calculated as

'(x
n

, ˆ✓) =

ˆW e

n

x
n

ˆ�2 +

s

max

X

s=1

(�0 ˆW
n

)

s

(x
n

ˆ�1 +

ˆW
n

x
j

ˆ�2).

In practice, s
max

= 25 has been shown to provide a good approximation to the case where s
max

! 1. Confidence intervals follow from a

simple Delta Method,
p
n⇤

('(x
n

, ˆ✓)� '(x
n

, ✓0))
d�! N(0,r'(x

n

, ✓0)⌃�1
(�0)⌦(�0)⌃

�1
(�0)r'(x

n

, ✓0)).

Step 4. (Network data validity). When network data are available, a Delta Method also is employed to provide confidence intervals for

the null hypothesis H0 : �1 � �0 = 0.

Algorithm 4. The following algorithm generalizes for the case in which �0 is unknown. If there are at least three distinct group sizes n
j

,

follow the steps:

Step 1. Select a candidate �0.
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Step 2. Maximize the concentrated pseudo-likelihood

lnLc

n

( ✓
c

| y
n

, x
n

, Q
n

) = �n

2

(ln (2⇡) + 1)� n

2
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(Q

n

, ✓
c

) + |Se

n

(Q
n

, ✓
c

)|+ |Re
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n

, ✓
c

)|

with respect to ✓
g

and obtain the set of solution ˆ✓ = (

ˆ✓0
c

, ˆ�(ˆ✓
c

)

0, �̂2
(

ˆ✓
c

))

0 such that ˆ✓
c

⌘ argmax

✓2⇥
c

lnLc

n

( ✓
c

| y
n

, x
n

, Q
n

). Denote this set ˆ

⇥.

Full expressions for the concentrated parameters ˆ�(ˆ✓
c

) and �̂2
(

ˆ✓
c

) are given in Step 1 of Algorithm 3.

Step 3. Check if probability of peers forming link is in the [0, 1] range. Otherwise, go back to Step 1 and adjust �0 accordingly.

Step 4. (C.I. of structural parameters). Obtain confidence regions for ✓
g

following the bootstrap Algorithm 1.

Step 5. (Network spillovers). Take any point ˆ✓⇤ in the identified ˆ

⇥. Network spillovers are calculated as

'(x
n

, ˆ✓⇤) =

ˆW e

n

x
n

ˆ�⇤
2 +

s

max

X

s=1

(�0 ˆW ⇤
n

)

s

(x
n

ˆ�⇤
1 +

ˆW ⇤
n

x
j

ˆ�⇤
2 ).

Where ˆW e⇤
n

= W e

n

(Q
n

, ˆ✓⇤). Again, s
max

= 25 has been shown to provide a good approximation to the case where s
max

! 1. Confidence

intervals are calculated following Algorithm 2.

Step 6. (Network data validity). When network data are available, Algorithm 2 is reemployed to provide confidence intervals for the null

hypothesis H0 : �1 � �0 = 0.

Step 7. (Identifying �). Solve the GMM problem

ˆ✓ = argmin
✓2⇥̂

0

@

v

X

j=1

S�1
S

X

s=1

q
s,j

(y
j

, x
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, ✓)
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A

0

⌦

0

@

v

X

j=1

S�1
S

X

s=1

q
s,j

(y
j

, x
j

, ✓)

1

A

where q
s,j

(y
j

, x
j

, ✓) = [V
B,j

(y
j

, x
j

, ✓) � V
B,j

(ŷ
j

, x
j

, ✓);V
W,j

(y
j

, x
j

, ✓) � V
W,j

(ŷ
j

, x
j

, ✓)]0 with ŷ
j,s

= (Ss

j

)

�1
(x

j

�1 + W s

j

x
j

�2 + es
j

) and Ss

=

(I
n

j

� �W s

j

)

�1. W s

j

is sampled from the distribution of the network-generating model and es
j

is sampled from a normal distribution with

variance �2. Confidence intervals are given in Theorem 4.
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F Additional figures and tables.

F.1 Estimator and simulations.

Table 7: Likelihood as a function of �
1

.

N = 250 N = 500
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Note: Rescaled additive inverse of likelihood as a function of �1, with all other parameters at the true value.

True �10 = 1. Solid line represents likelihood computed with expected network W

e = W

e (Q, ✓0), and dashed

with real network W

0
. True networks are realizations from the stochastic generating process.

Table 8: Likelihood as a function of �
1

.

N = 250 N = 500

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95
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Student Version of MATLAB

Note: Rescaled additive inverse of likelihood as a function of �1, with all other parameters at the true value. True

�10 = 0.75. Solid line represents likelihood computed with expected network W

e = W

e (Q, ✓0) and underlying

networks are realization from the stochastic generating process. Dashed line W

0 = W

e(✓0) is the likelihood where

true network is equal to expected network.
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F.2 Application.

Table 15: Occupational Choice.

(1) (2) (3) (4) (5) (6)

Outcome Self hours. Wage hours. Self emp. only.
Method Network. Network. Network. Network. Network. Network.

Family. Economic. Family. Economic. Family. Economic.

N
ot

fu
nc

ti
on

of
ˆ �
.

Program effect 473.219⇤⇤⇤ 473.581⇤⇤⇤ �113.002⇤⇤⇤ �113.146⇤⇤⇤ 0.113⇤⇤⇤ 0.114⇤⇤⇤

after 2 years (ˆ�11). (12.99) (13.89) (8.33) (8.33) (0.01) (0.01)

Program effect 464.069⇤⇤⇤ 463.441⇤⇤⇤ �142.755⇤⇤⇤ �143.009⇤⇤⇤ 0.120⇤⇤⇤ 0.121⇤⇤⇤

after 4 years (ˆ�12). (13.07) (5.10) (8.53) (8.25) (0.01) (0.01)

Spillover on T �20.438⇤⇤⇤ �23.097⇤⇤⇤ 24.394⇤⇤⇤ 26.933⇤⇤⇤ �0.029⇤⇤⇤ �0.034⇤⇤⇤

after 2 years ('̂
T,2). (7.01) (6.95) (8.50) (9.21) (0.01) (0.01)

Spillover on T 17.396⇤⇤⇤ 14.734⇤⇤ 19.805⇤⇤ 22.105⇤⇤ �0.023⇤⇤⇤ �0.027⇤⇤

after 4 years ('̂
T,4). (6.41) (7.04) (8.37) (10.30) (0.00) (0.01)

Spillover on NT �9.771⇤⇤⇤ �11.346⇤⇤⇤ 12.692⇤⇤⇤ 14.259⇤⇤⇤ �0.015⇤⇤⇤ �0.018⇤⇤⇤

after 2 years ('̂
NT,2). (3.35) (3.42) (4.41) (4.87) (0.00) (0.00)

Spillover on NT 8.317⇤⇤ 7.237⇤⇤⇤ 10.304⇤⇤ 11.703 �0.012⇤⇤⇤ �0.014⇤⇤⇤

after 4 years ('̂
NT,4). (3.28) (1.88) (5.21) (13.28) (0.01) (0.00)

Fu
nc

ti
on

of
ˆ �
.

Link to T �40.247⇤⇤⇤ �27.635⇤⇤⇤ 12.794⇤⇤⇤ 13.663⇤⇤⇤ �0.045⇤⇤⇤ �0.051⇤⇤⇤

after 2 years (ˆ�21). (1.99) (1.42) (2.48) (2.72) (0.01) (0.01)

Link to T �30.758⇤⇤⇤ �20.648⇤⇤⇤ 12.938⇤⇤⇤ 13.721⇤⇤⇤ �0.040⇤⇤⇤ �0.045⇤⇤⇤

after 4 years (ˆ�22). (1.53) (1.77) (1.57) (2.73) (0.01) (0.01)

Link probability 0.776⇤⇤⇤ 0.759⇤⇤⇤ 0.985⇤⇤⇤ 0.726⇤⇤⇤ 0.336⇤⇤⇤ 0.196⇤⇤⇤

if Q
ij

= 1 (ˆ�1). (0.05) (0.05) (0.08) (0.05) (0.03) (0.02)

Link probability 0.317⇤⇤⇤ 0.464⇤⇤⇤ 0.364⇤⇤⇤ 0.362⇤⇤⇤ 0.115⇤⇤⇤ 0.116⇤⇤⇤

if Q
ij

= 0 (ˆ�0). (0.00) (0.01) (0.01) (0.01) (0.00) (0.00)

ˆ� 0.075 0.05 0.05 0.05 0.15 0.15

p-value HNV . < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Avg treated outcome. 421.8 421.8 646.7 646.7 0.303 646.7
Individuals (n). 23029 23029 23029 23029 23029 23029

Villages (v). 1409 1409 1409 1409 1409 1409
Survey waves (T ). 3 3 3 3 3 3

Notes as in Table 3.
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Table 16: Earnings and Seasonality.

(1) (2) (3) (4) (5) (6)

Outcome Earnings. Share Seas. Share Reg.
Method Network. Network. Network. Network. Network. Network.

Family. Economic. Family. Economic. Family. Economic.

N
ot

fu
nc

ti
on

of
ˆ �
.

Program effect 0.562⇤⇤⇤ 0.556⇤⇤⇤ �0.029⇤⇤⇤ �0.029⇤⇤⇤ 0.181⇤⇤⇤ 0.182⇤⇤⇤

after 2 years (ˆ�11). (0.207) (0.148) (0.01) (0.01) (0.01) (0.01)

Program effect 2.726⇤⇤⇤ 2.806⇤⇤⇤ �0.075⇤⇤⇤ �0.075⇤⇤⇤ 0.166⇤⇤⇤ 0.166⇤⇤⇤

after 4 years (ˆ�12). (0.196) (0.108) (0.01) (0.01) (0.01) (0.01)

Spillover on T �0.258⇤⇤ �0.187⇤ �0.063⇤⇤⇤ �0.062⇤⇤⇤ 0.037⇤⇤⇤ 0.030⇤⇤⇤

after 2 years ('̂
T,2). (0.116) (0.113) (0.02) (0.02) (0.01) (0.01)

Spillover on T �0.098 �0.188⇤ �0.016⇤ �0.016 0.044⇤⇤⇤ 0.035⇤⇤⇤

after 4 years ('̂
T,4). (0.117) (0.112) (0.01) (0.02) (0.02) (0.01)

Spillover on NT �0.133⇤⇤ �0.102⇤ �0.026⇤⇤⇤ �0.026⇤⇤⇤ 0.017⇤⇤⇤ 0.014⇤⇤⇤

after 2 years ('̂
NT,2). (0.060) (0.062) (0.01) (0.01) (0.01) (0.01)

Spillover on NT �0.051 �0.103 �0.002 �0.007 0.020⇤⇤ 0.017⇤⇤

after 4 years ('̂
NT,4). (0.057) (0.78) (0.01) (0.01) (0.01) (0.00)

Fu
nc

ti
on

of
ˆ �
.

Link to T �0.236 �0.245 �0.023⇤⇤⇤ �0.017⇤⇤⇤ �0.051⇤⇤⇤ �0.053⇤⇤⇤

after 2 years (ˆ�21). (0.456) (0.478) (0.02) (0.00) (0.01) (0.01)

Link to T �0.740 �0.375 �0.019⇤⇤⇤ �0.014⇤⇤⇤ �0.037⇤⇤⇤ �0.039⇤⇤⇤

after 4 years (ˆ�22). (0.541) (0.596) (0.01) (0.00) (0.01) (0.01)

Link probability 0.155⇤⇤⇤ 0.064⇤⇤⇤ 0.234⇤⇤⇤ 0.236⇤⇤⇤ 0.100⇤⇤⇤ 0.077⇤⇤⇤

if Q
ij

= 1 (ˆ�1). (0.01) (0.00) (0.02) (0.01) (0.01) (0.00)

Link probability 0.030⇤⇤⇤ 0.030⇤⇤⇤ 0.152⇤⇤⇤ 0.203⇤⇤⇤ 0.054⇤⇤⇤ 0.051⇤⇤⇤

if Q
ij

= 0 (ˆ�0). (0.00) (0.00) (0.00) (0.00) (0.00) (0.01)

ˆ� 0.50 0.50 0.20 0.15 0.50 0.50

p-value HNV . < 0.001 < 0.001 < 0.001 0.022 < 0.001 < 0.001

Avg treated outcome. 4.607 4.607 0.674 0.674 0.478 0.478
Individuals (n). 23029 23029 23029 23029 23029 23029

Villages (v). 1409 1409 1409 1409 1409 1409
Survey waves (T ). 3 3 3 3 3 3

Notes as in Table 3.
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Table 17: Livestock.

(1) (2) (3) (4) (5) (6)

Outcome Cows. Poultry. Livestock Value.
Method Network. Network. Network. Network. Network. Network.

Family. Economic. Family. Economic. Family. Economic.

N
ot

fu
nc

ti
on

of
ˆ �
.

Program effect 1.132⇤⇤⇤ 1.132⇤⇤⇤ 2.116⇤⇤⇤ 2.117⇤⇤⇤ 10.412⇤⇤⇤ 10.420⇤⇤⇤

after 2 years (ˆ�11). (0.03) (0.03) (0.50) (0.50) (365.41) (0.45)

Program effect 1.103⇤⇤⇤ 1.101⇤⇤⇤ 1.296⇤⇤⇤ 1.330⇤⇤⇤ 11.175⇤⇤⇤ 11.173⇤⇤⇤

after 4 years (ˆ�12). (0.03) (0.03) (0.50) (0.50) (459.21) (0.44)

Spillover on T �0.032⇤⇤⇤ �0.033⇤⇤⇤ 0.039 0.107 �0.184⇤⇤⇤ �0.230⇤⇤⇤

after 2 years ('̂
T,2). (0.01) (0.01) (0.11) (0.18) (0.07) (0.06)

Spillover on T �0.055⇤⇤⇤ �0.055⇤⇤⇤ 0.029 �0.095 �0.407⇤⇤⇤ �0.456⇤⇤⇤

after 4 years ('̂
T,4). (0.02) (0.02) (0.12) (0.21) (0.11) (0.06)

Spillover on NT �0.018⇤⇤⇤ �0.020⇤⇤⇤ 0.014 0.064 �0.106⇤⇤⇤ �0.137⇤⇤⇤

after 2 years ('̂
NT,2). (0.01) (0.01) (0.06) (0.11) (0.04) (0.04)

Spillover on NT �0.031⇤⇤⇤ �0.032⇤⇤⇤ 0.011 �0.056 �0.234⇤⇤⇤ �0.272⇤⇤⇤

after 4 years ('̂
NT,4). (0.01) (0.01) (0.10) (0.08) (0.08) (0.03)

F
un

ct
io

n
of

ˆ �
.

Link to T �0.965⇤⇤⇤ �0.996⇤⇤⇤ 9.169 1.495 �9.251⇤⇤⇤ �10.634⇤⇤⇤

after 2 years (ˆ�21). (0.15) (0.15) (19.65) (4.22) (2.64) (1.22)

Link to T �1.227⇤⇤⇤ �1.256⇤⇤⇤ 6.975 �2.914 �14.504⇤⇤⇤ �16.332⇤⇤⇤

after 4 years (ˆ�22). (0.16) (0.16) (21.05) (4.21) (2.30) (2.07)

Link probability 0.039⇤⇤⇤ 0.019⇤⇤⇤ 0.020⇤⇤ 0.008 0.029⇤⇤⇤ 0.010⇤⇤

if Q
ij

= 1 (ˆ�1). (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Link probability 0.014⇤⇤⇤ 0.014⇤⇤⇤ 0.011 0.008⇤⇤⇤ 0.008⇤⇤⇤ 0.008⇤⇤⇤

if Q
ij

= 0 (ˆ�0). (0.00) (0.00) (0.01) (0.00) (0.00) (0.00)

ˆ� 0.50 0.50 0.50 0.50 0.50 0.50

p-value HNV . 0.003 0.300 0.045 1.000 0.024 0.764

Avg treated outcome. 0.083 0.083 1.79 1.79 0.940 0.940
Individuals (n). 23029 23029 23029 23029 23029 23029

Villages (v). 1409 1409 1409 1409 1409 1409
Survey waves (T ). 3 3 3 3 3 3

Notes as in Table 3.
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Table 18: Expenditures.

(1) (2) (3) (4) (5) (6)

Outcome Nonfood PCE. Food PCE. Food Security.
Method Network. Network. Network. Network. Network. Network.

Family. Economic. Family. Economic. Family. Economic.

N
ot

fu
nc

ti
on

of
ˆ �
.

Program effect �208.803 �208.049 421.741⇤⇤⇤ 424.602⇤⇤⇤ 0.169⇤⇤⇤ 0.169⇤⇤⇤

after 2 years (ˆ�11). (160.98) (160.05) (133.67) (133.61) (0.01) (0.01)

Program effect 280.309⇤ 279.158 444.980⇤⇤⇤ 447.736⇤⇤⇤ 0.075⇤⇤⇤ 0.076⇤⇤⇤

after 4 years (ˆ�12). (145.11) (178.65) (133.66) (133.61) (0.01) (0.01)

Spillover on T �29.966 �32.452 401.713⇤⇤⇤ 387.106⇤⇤⇤ 0.028⇤⇤⇤ 0.083⇤⇤⇤

after 2 years ('̂
T,2). (70.13) (69.80) (56.88) (56.47) (0.01) (0.03)

Spillover on T �161.955⇤⇤ �161.161⇤⇤ 253.726⇤⇤⇤ 242.561⇤⇤⇤ 0.080⇤⇤ 0.163⇤⇤⇤

after 4 years ('̂
T,4). (71.28) (69.72) (59.58) (55.82) (0.03) (0.05)

Spillover on NT �17.507 �19.103 215.298⇤⇤⇤ 208.075⇤⇤⇤ 0.012⇤⇤⇤ 0.033⇤⇤⇤

after 2 years ('̂
NT,2). (40.98) (41.09) (30.18) (30.97) (0.00) (0.01)

Spillover on NT �94.620⇤⇤⇤ �94.869⇤⇤ 135.984⇤⇤⇤ 130.380⇤⇤⇤ 0.033⇤⇤⇤ 0.065⇤⇤⇤

after 4 years ('̂
NT,4). (26.64) (39.08) (51.07) (29.85) (0.00) (0.02)

Fu
nc

ti
on

of
ˆ �
.

Link to T �311.329 �349.080 343.343⇤⇤⇤ 438.309⇤⇤⇤ 0.102⇤⇤⇤ 0.123⇤⇤⇤

after 2 years (ˆ�21). (966.77) (968.78) (62.93) (83.73) (0.01) (0.01)

Link to T �2386.991⇤⇤ �2389.737⇤⇤ 190.068⇤⇤⇤ 238.308⇤⇤⇤ 0.088⇤⇤⇤ 0.113⇤⇤⇤

after 4 years (ˆ�22). (959.21) (962.22) (62.48) (83.19) (0.01) (0.01)

Link probability 0.020⇤⇤ 0.014⇤⇤ 0.158⇤⇤⇤ 0.132⇤⇤⇤ 0.184⇤⇤⇤ 0.092⇤⇤⇤

if Q
ij

= 1 (ˆ�1). (0.01) (0.01) (0.03) (0.01) (0.00) (0.00)

Link probability 0.013⇤⇤⇤ 0.013⇤⇤⇤ 0.118⇤⇤⇤ 0.087⇤⇤⇤ 0.059⇤⇤⇤ 0.065⇤⇤⇤

if Q
ij

= 0 (ˆ�0). (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

ˆ� 0.50 0.50 0.15 0.20 0.50 0.50

p-value HNV . 0.389 0.835 0.002 0.159 < 0.001 < 0.001

Avg treated outcome. 1054.5 1054.5 2953.7 2953.7 0.457 0.457
Individuals (n). 23029 23029 23029 23029 23029 23029

Villages (v). 1409 1409 1409 1409 1409 1409
Survey waves (T ). 3 3 3 3 3 3

Notes as in Table 3.
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Table 19: Occupational Choice, Bernoulli model.

(1) (2) (3)

Outcome Self hours.
Wage
hours.

Self emp.
only.

Method Network. Network. Network.
N

ot
fu

nc
ti

on
of

ˆ �
.

Program effect 474.153⇤⇤⇤ �112.859⇤⇤⇤ 0.114⇤⇤⇤

after 2 years (ˆ�11). (14.55) (8.34) (0.01)

Program effect 464.304⇤⇤⇤ �143.481⇤⇤⇤ 0.121⇤⇤⇤

after 4 years (ˆ�12). (9.50) (8.47) (0.01)

Spillover on T �26.577⇤⇤⇤ 25.865⇤⇤⇤ �0.033⇤⇤⇤

after 2 years ('̂
T,2). (7.92) (6.55) (0.01)

Spillover on T 13.148 22.082⇤⇤⇤ �0.027⇤⇤⇤

after 4 years ('̂
T,4). (9.59) (7.06) (0.01)

Spillover on NT �12.862⇤⇤ 13.714⇤⇤⇤ �0.018⇤⇤⇤

after 2 years ('̂
NT,2). (6.56) (3.77) (0.00)

Spillover on NT 6.363 11.708⇤⇤⇤ �0.015⇤⇤⇤

after 4 years ('̂
NT,4). (4.58) (1.97) (0.00)

Fu
nc

ti
on

of
ˆ �
. Link to T �27.891⇤⇤⇤ 13.355⇤⇤⇤ �0.050⇤⇤⇤

after 2 years (ˆ�21). (1.38) (2.50) (0.01)

Link to T �12.862⇤⇤⇤ 13.758⇤⇤⇤ �0.045⇤⇤⇤

after 4 years (ˆ�22). (1.63) (1.59) (0.01)

Link probability 0.492⇤⇤⇤ 0.380⇤⇤⇤ 0.120⇤⇤⇤

(ˆ�1). (0.03) (0.03) (0.00)

ˆ� 0.05 0.05 0.15

Avg treated outcome. 421.8 646.7 646.7
Individuals (n). 23029 23029 23029

Villages (v). 1409 1409 1409
Survey waves (T ). 3 3 3

Notes as in Table 3.
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