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Abstract

We develop a simple dynamic model of a worker’s transitions between employment

and non-employment. Our model implies that a worker finds a job at an optimal

stopping time, when a Brownian motion with drift hits a barrier. The model has

structural duration dependence in the job finding rate, in the sense that the hazard rate

of finding a job changes during a non-employment spell for a given worker. In addition,

we allow for arbitrary parameter heterogeneity across workers, so dynamic selection also

affects the average job finding rate at different durations. We show that our model

has testable implications if we observe at least two completed non-employment spells

for each worker. Moreover, we can identify the distribution of a subset of our model’s

parameters using data on the duration of repeated non-employment spells and use the

estimated parameters to understand the determinants of duration dependence. We

use a large panel of social security data for Austrian workers to test and estimate

the model. Our model is not rejected by the data. Our parameter estimates indicate

that dynamic selection is critical for understanding the evolution of the aggregate job

finding rate.



1 Introduction

The hazard rate of finding a job is higher for workers who have just exited employment

than for workers who have been out of work for a long time. Economists and statisticians

have long understood that this reflects a combination of two factors: structural duration

dependence in the job finding probability for each individual worker, and changes in the

composition of workers at different non-employment durations (Cox, 1972). The goal of this

paper is develop a flexible but testable model of the job finding rate for any individual worker

and use it to provide nonparametric decompositions of these two factors. We find that most

of the observed decline in the job finding probability is due to changes in the composition of

searching workers over time.

Our analysis is built around a structural model which views finding a job as an optimal

stopping problem. One interpretation of our structural model is a classical theory of employ-

ment. All individuals always have two options, working at some wage w(t) or not working

and receiving some income and utility from leisure b(t). The difference between these values

is persistent but changes over time. If there were no cost of switching employment status, an

individual would work if and only if the wage is sufficiently high relative to the value of not

working. We add a switching cost to this simple model, so a worker starts working when the

difference between the wage and the value of leisure is sufficiently large and stops working

when the difference is sufficiently small. Given a specification of the individual’s preferences,

a level of the switching cost, and the stochastic process for the wage and non-employment

income, this theory generates a structural model of duration dependence for any individual

worker. For instance, the model allows parameters where, as in Ljungqvist and Sargent

(1998), “workers accumulate skills on the job and lose skills during unemployment”.

An alternative interpretation of our structural model is a classical theory of unemploy-

ment. According to this interpretation, a worker’s productivity p(t) and her wage w(t)

follow a stochastic process. Again, the difference is persistent but changes over time. If the

worker is unemployed, a monopsonist has the option of employing the worker, earning flow

profits p(t) − w(t), by paying a fixed cost. There may similarly be a fixed cost of firing

the worker. Given a specification of the hiring cost and the stochastic process for produc-

tivity and the wage, the theory generates the same structural duration dependence for any

individual worker.

We also allow for arbitrary individual heterogeneity in the parameters describing for

preferences, fixed costs, and stochastic processes. For example, some individuals may expect

the residual duration of their non-employment spell to increase the longer they stay out

of work while others may expect it to fall. We maintain two key restrictions: for each
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individual, the evolution of a latent variable, the net benefit from employment, follows a

geometric Brownian motion with drift during a non-employment spell; and each individual

starts working when the net benefit exceeds some fixed threshold and stops working when

it falls below some (weakly) lower threshold. In the first interpretation of our structural

model, this threshold is determined by the worker while in the second interpretation it is

determined by the firm. These assumptions imply that the duration of a non-employment

spell is given by the first passage time of a Brownian motion with drift, a random variable

with an inverse Gaussian distribution. The parameters of the inverse Gaussian distribution

are fixed over time for each individual but may vary arbitrarily across individuals.

In this environment, we ask four key questions. First, we ask whether the distribution

of unobserved heterogeneity is identified. We prove that an economist armed with data

on the joint distribution of the duration of two non-employment spells can identify the

population distribution of the parameters of the inverse Gaussian distribution, except for

the sign of the drift in the underlying Brownian motion. We discuss this important limitation

to identification and analyze how it affects the interpretation of our result.

Second we ask whether the model has testable implications. We show that an economist

armed with the same data on the joint distribution of the duration of two spells can poten-

tially reject the model. Moreover, the test has power against competing models. We prove

that if the true data generating process is one in which each individual has a constant hazard

of finding a job, the economist will always reject our model. Similarly, we prove that if the

true data generating process is one in which each individual has a log-Normal distribution

for duration, the economist will always reject our model. The same result holds if the data

generating process is a finite mixture of such models.

Third, we ask whether we can use the partial identification of the model parameters to

decompose the observed evolution of the hazard of exiting non-employment into the portion

attributable to structural duration dependence and the portion attributable to unobserved

heterogeneity. We propose a simple decomposition of both the hazard rate and of the residual

duration of a non-employment spell.

Finally, we show that we can use duration data as well as information about wage dy-

namics to infer the size of the fixed cost of switching employment status. Even small fixed

costs give rise to a large region of inaction, which in turn affects the duration of job search

spells. We show how to invert this relationship to recover the fixed costs.

We then use data from the Austrian social security registry from 1986 to 2007 to test our

model, estimate the distribution of unobserved parameters, and evaluate the decomposition.

Using data on nearly one million individuals who experience at least two non-employment

spells, we find that we cannot reject our model and we uncover substantial heterogeneity
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across individuals. Although the raw hazard rate is hump-shaped with a peak at around

13 weeks, the hazard rate for the average individual increases until about 33 weeks and

then scarcely declines. Similarly, the bulk of the increase in the residual duration of an

in-progress job-search spell is a consequence of the changing composition of the searching

population, with little of it explained by conditions getting worse for an individual as his

duration increases. We also estimate tiny fixed costs. For most individuals, the total cost of

taking a job and later leaving it are approximately equal to one hour of leisure.

There are a few other papers that use the first passage time of a Brownian motion to

model duration dependence. Lancaster (1972) examines whether such a model does a good

job of describing the duration of strikes in the United Kingdom. He creates 8 industry

groups and observes between 54 and 225 strikes per industry group. He then estimates

the parameters of the first passage time under the assumption that they are fixed within

industry group but allowed to vary arbitrarily across groups. He concludes that the model

does a good job of describing the duration of strikes, although subsequent research armed

with better data reached a different conclusion (Newby and Winterton, 1983). In contrast,

our testing and identification results require only two observations per individual and allow

for arbitrary heterogeneity across individuals.

Shimer (2008) assumes that the duration of an unemployment spell is given by the first

passage time of a Brownian motion but does not allow for any heterogeneity across indi-

viduals. The first passage time model has also been adopted in medical statistics, where

the latent variable is a patient’s health and the outcome of interest is mortality (Aalen and

Gjessing, 2001; Lee and Whitmore, 2006, 2010). For obvious reasons, such data do not allow

for multiple observations per individual, and so bio-statistical researchers have so far not

introduced unobserved individual heterogeneity into the model. These papers have also not

been particularly concerned with either testing or identification of the model.

Abbring (2012) considers a more general model than ours, allowing that the latent net

benefit from employment is spectrally negative Lévy process, e.g. the sum of a Brownian

motion with drift and a Poisson process with negative increments. On the other hand, he

assumes that individuals differ only along a single dimension, the distance between the barrier

for stopping and starting an employment spell. In contrast, we allow for two dimensions of

heterogeneity, and so our approach to identification is completely different.

Within economics, the mixed proportional hazard model (Lancaster, 1979) has received

far more attention than the first passage time model. This model assumes that the prob-

ability of finding a job at duration t is the product of three terms: a baseline hazard rate

that varies depending on the duration of non-employment, a function of observable char-

acteristics of individuals, and an unobservable characteristic. Our model neither nests the
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mixed proportional hazard model nor is it nested by that model. A large literature, starting

with Elbers and Ridder (1982) and Heckman and Singer (1984a), show that such a model is

nonparametrically identified using a single spell of non-employment and appropriate varia-

tion in the observable characteristics of individuals. Heckman and Singer (1984b) illustrates

the perils of parametric identification strategies in this context. Closer to the spirit of our

paper, Honoré (1993) shows that the mixed proportional hazard model is also nonparamet-

rically identified with data on the duration of at least two non-employment spells for each

individual.

The remainder of the paper proceeds as follows. In Section 2, we describe our structural

model and show how to use the model to address the questions of interest. We prove

that a subset of the parameters is nonparametrically identified if we observe at least two

non-employment spells for each individual, that the model has testable implications under

the same conditions, and that we can use the model to decompose changes in the hazard

of exiting non-employment and the residual duration of a non-employment spell into the

portion that is structural and the portion that is attributable to changes in the composition

of the non-employment pool. Section 4 summarizes the Austrian social security registry data.

Section 5 presents our results, including tests and estimates of the model, decomposition of

hazard rates and residual duration, and inference of the distribution of fixed costs.

2 Theory

2.1 Structural Model

We consider the problem of a risk-neutral, infinitely-lived worker with discount rate r, who

can either be employed, s(t) = e, or non-employed, s(t) = n, at each instant in continuous

time t. We describe and solve the worker’s problem in Appendix A and here focus on the

key results.

We assume an employed worker earns a wage ew(t) and a non-employed worker gets flow

utility b0 e
b(t), where b0 is a positive constant. Both w(t) and b(t) follow correlated Brownian

motions with drift, both when the worker is employed and when the worker is non-employed.

The drift and standard deviation of each may depend on the worker’s employment status.

In order for the problem to be well-behaved, we impose in Appendix A restrictions on the

drift and volatility of w(t) and b(t) both while employed and non-employed to ensure that

the worker’s value is finite.

A non-employed worker can become employed at t by paying a fixed cost ψee
b(t) for a

constant ψe ≥ 0. Likewise, an employed worker can become non-employed by paying a
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cost ψne
b(t) for a constant ψn ≥ 0. The worker must decide optimally when to change her

employment status s(t).

It will be convenient to define ω(t) ≡ w(t) − b(t). This inherits the properties of w and

b, following a random walk with state-dependent drift and volatility given by:

dω(t) = µs(t)dt+ σs(t)dB(t), (1)

where B(t) is a standard Brownian motion.

The worker’s log net benefit from employment is ω(t) − log b0. With a slight abuse of

terminology, we will refer to ω(t) alone as the net benefit from employment. We prove in

Appendix A that the worker’s employment decision depends only on her employment status

s(t) and her net benefit from employment. In particular, the worker’s optimal policy involves

a pair of thresholds. If s(t) = e and ω(t) ≥ ω, the worker remains employed, while she stops

working the first time ω(t) < ω. If s(t) = n and ω(t) ≤ ω̄, the worker remains non-employed,

while she takes a job the first time ω(t) > ω̄. Assuming the sum of the fixed costs ψe + ψn

is strictly positive, the thresholds satisfy ω̄ > ω, while the thresholds are equal if both fixed

costs are zero.

Proposition 4 in Appendix A provides an approximate characterization of the distance

between the thresholds, ω̄ − ω, as a function of the fixed costs when the fixed costs are

small for arbitrary parameter values. Here we consider a special case, where the utility from

unemployment is constant, b(t) = 0 for all t. We still allow the stochastic process for wages

to depend on a worker’s employment status. Then

(ω̄ − ω)3 ≈ 12rσ2
eσ

2
n

(µe +
√
µ2
e + 2rσ2

e)(−µn +
√
µ2
n + 2rσ2

n)

ψe + ψn
b0

(2)

An increase in the fixed costs relative to the utility of unemployment increases the distance

between the thresholds ω̄ − ω, as one would expect. An increase in the volatility of the net

benefit from employment, σn or σe, has the same effect because it raises the option value

of delay. An increase in the drift in the net benefit from employment while out of work,

µn, or a decrease in the drift in the net benefit from employment while employed, µe, also

increases the distance between the thresholds. Intuitively, an increase in µn or a reduction

in µe reduces the amount of time it takes to go between any fixed thresholds. The worker

optimally responds by increasing the distance between the thresholds.

We have so far described a model of voluntary non-employment, in the sense that a

worker optimally chooses when to work. But a simple reinterpretation of the objects in the

model turns it into a model of involuntary unemployment. In this interpretation, the wage
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is b0 e
b(t), while a worker’s productivity is ew(t). If the worker is employed by a monopsonist,

it earns flow profits ew(t)−b0e
b(t). If the worker is unemployed, a firm may hire her by paying

a fixed cost ψee
b(t), and similarly the firm must pay ψne

b(t) to fire the worker. In this case,

the firm’s optimal policy involves the same pair of thresholds. If s(t) = e and ω(t) ≥ ω, the

firm retains the worker, while she is fired the first time ω(t) < ω. If s(t) = n and ω(t) ≤ ω̄,

the worker remains unemployed, while a firm hires her the first time ω(t) > ω̄.

This structural model is similar to the one in Alvarez and Shimer (2011) and Shimer

(2008). In particular, setting the switching cost to zero (ψe = ψn = 0) gives a decision rule

with ω̄ = ω, as in the version of Alvarez and Shimer (2011) with only rest unemployment,

and with the same implication for non-employment duration as Shimer (2008). Another

difference is that here we allow the process for wages to depend on a worker’s employment

status, (µe, σe) 6= (µn, σn). The difference in the drift µe and µn allows us to capture

structural features such as those emphasized by Ljungqvist and Sargent (1998), who explain

the high duration of European unemployment by using “...a search model where workers

accumulate skills on the job and lose skills during unemployment.”

The most important difference is that this paper allows for arbitrary time-invariant worker

heterogeneity. An individual worker is described by a large number of structural parameters,

including her discount rate r, her fixed costs ψe, and ψn, and all the parameters governing

the joint stochastic processes for her potential wage and benefit, both while the worker is

employed and while she is non-employed. Our analysis allows for arbitrary distributions

of these structural parameters in the population, subject only to the constraints that the

utilities are finite.

2.2 Duration Distribution

We turn next to the determination of non-employment duration. All non-employment spells

start when an employed worker’s wage hits the lower threshold ω. The log net benefit

from employment then follows the stochastic process dω(t) = µndt + σndB(t) and the non-

employment spell ends when the worker’s log net benefit from employment hits the upper

threshold ω̄. Therefore the length of a non-employment spell is given by the first passage time

of a Brownian motion with drift. This random variable has an inverse Gaussian distribution

with density function

f(t;α, β) =
β√

2 π t3/2
e−

(α t−β)2
2 t (3)

where α ≡ µn/σn and β ≡ (ω̄ − ω)/σn. Note β ≥ 0 by assumption, while α may be positive

or negative. If α ≥ 0,
∫∞

0
f(t;α, β)dt = 1, so a worker almost surely returns to work. But if

α < 0, the probability of eventually returning to work is e2αβ < 1, so there is a probability
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the worker never finds a job. Thus a non-employed worker with α < 0 is characterized by

a severe form of long term non-employment, since with probability 1− e2αβ it stays forever

non-employed.

The inverse Gaussian is a flexible distribution but the model still imposes some restric-

tions on behavior. Assuming β > 0, the hazard rate of exiting non-employment always

starts at 0 when t = 0, achieves a maximum value at some finite time t which depends on

both α and β, and then declines to a long run limit of α2/2. If β = 0, the hazard rate

is initially infinite and declines monotonically towards its long-run limit. At the start of a

non-employment spell, the expected duration is β/α with variance β/α3. Asymptotically the

residual duration of an in-progress non-employment spell converges to 2/α2, which may be

bigger or smaller. The model is therefore consistent with both positive and negative duration

dependence in the structural exit rate from non-employment.

In our model, this structural duration dependence may be exacerbated by dynamic se-

lection. For example, take two types of workers characterized by reduced-form parameters

(α1, β1) and (α2, β2). Suppose α1 ≤ α2 and β1 ≥ β2, with at least one inequality strict.

Then type 2 workers have a higher hazard rate of finding a job at all durations t and so the

population of long-term non-employed workers is increasingly populated by type 1 workers,

those with a lower hazard of exiting non-employment. .

2.3 Magnitude of the Switching Costs

This section shows how we can use an individual’s estimated type (α, β) to infer the magni-

tude of his switching costs. We focus on the special case highlighted in equation (2), where

the utility from unemployment is constant at b0 > 0, so that b(t) = 0 for all t. Suppose we

observe a non-employed worker’s type (α, β), as well as the parameters of the wage process

when working (µe, σe), the drift of the wage when not working µn and the discount rate r.

We find that

ψe + ψn
b0

≈ (µe +
√
µ2
e + 2rσ2

e)(−α +
√
α2 + 2r)β3µ2

n

12 r α2 σ2
e

∼


µe µ2n
6σ2

e

β3

|α|3 if α > 0

µe µ2n
6σ2

e

β3

|α|3
α2

r
if α < 0

(4)

Equation (4) expresses the fixed costs as a function of four parameters, µe, σe, µn, r and α, β.1

Since the interest rate r is typically small, in (4) we derive two expressions for the limit as

r → 0, one for positive and one for negative α.2

1The sense in which we use the approximation ≈ in expression (4), as well as its derivation for the general
model, is in Proposition 4 in Appendix A.

2In 4 we use ∼ to mean that as r ↓ 0 the ratio of the two functions converge to one.
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As shown above, the magnitude of fixed costs depends also on parameters which we do

not estimate, µn, µe, σe, r. To infer the magnitude of fixed costs, we will have to choose

some value for them. Since we expect the estimated fixed costs to be small, our strategy is

going to be to choose their values to make the fixed costs as large as possible, while staying

within reasonable range for the values of µn, µe, σe, r. In Section 5.5, we then use estimated

distribution of α and β to calculate distribution of the fixed costs at positive values of r.

Equation (4) implies that for given value of α, β, higher µe, |µn| and lower σe, r increase

the fixed costs. We choose µe = 0.01, σe = 0.05 at the annual frequency. Wages of employed

workers grow at 1% per year. Estimates of the average wage growth of employed workers are

often higher than 1%, but these are for workers who choose to stay employed, thus it applies

to a selected sample. In our case we think of the parameter µe as governing the wage growth

for all workers without selection, and thus we view the choice of µe = 0.01 as a large number.

The standard deviation of log wages of 5% is rather low, typical estimates in the literature

are around 10%. The drift of latent wages when non-employed µn is not observable, but we

can infer its value relative to µe from observed completed employment and unemployment

spells. The model implies that the expected duration of completed employment and non-

employment spells are given by (ω̄ − ω)/µe and (ω̄ − ω)/|µn|, respectively, and thus |µn|/µe
determines the relative expected duration. In our sample, the average duration of non-

employment spells is 29.6 weeks, while the average duration between two non-employment

spells is 96.4 weeks, implying that |µn|/µe = 3.25. Finally, we choose a low value for r.

Since agents in the model are infinitely lived, we can think of r as being a sum of two values,

r = r̂ + δ where r̂ is worker’s discount rate and δ is the rate at which workers drop out of

the labor force. We choose r̂ = 0 and δ = 0.02, so workers do not discount and have an

expected working lifetime of 50 years.

To illustrate that the fixed costs are small, take α = 0.96, β = 0.54 at the annual fre-

quency. This choice of parameters implies that the mean and standard deviation of completed

non-employment spells is 29.6 and 40.7 weeks, respectively, as measured in the data. The

implied values of fixed cost for α < 0 is 3.4% of the annual flow value of non-employment.

For α > 0, the costs are two orders of magnitude smaller.

We can also use a simple calculation to deduce whether switching costs are necessarily

positive. If switching costs were zero, the distance between the barriers would be zero as

well, i.e. β = 0. In that limit, the duration density (17) is ill-behaved. Nevertheless, we can

compute the density condition on durations lying in some interval T = [t, t̄]:

f(t;α, β|t ∈ [t, t̄]) =
t−3/2e−

α2t
2∫ t̄

t
τ−3/2e−

α2τ
2 dτ

.
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The expected value of a random draw from this distribution is(
Φ(αt̄

1
2 )− Φ(αt

1
2 )
)
/α

Φ′(αt
1
2 )/t

1
2 − Φ′(αt̄

1
2 )/t̄

1
2 − α

(
Φ(αt̄

1
2 )− Φ(αt

1
2 )
)
)
≤
(
t t̄
) 1

2 ,

with the inequality binding when α = 0. Thus if we observe that the expected duration

conditional on duration lying in some interval [t, t̄] exceeds the geometric mean of t and t̄,

we can conclude that switching costs must be positive for at least some individuals in the

data set.

3 Duration Analysis

Suppose we have a lot of duration data, possibly generated from this model. This section

examines how we can use that data to say something about the model. We have three goals.

First, assume the data is generated by the model. We examine whether the joint distribution

of α and β in the population, G(α, β), is nonparametrically identified using non-employment

duration data. The distribution of these reduced-form parameters reflects the underlying

joint distribution of the structural parameters, but only these two reduced form parameters

affect duration and so only the distribution of these two parameters can possibly be identified

using duration data alone. The second is understand whether our model is testable. If we

allow for an arbitrary distribution of the structural parameters in the model, are there non-

employment duration data that are inconsistent with our theory? The third is to examine

how the joint distribution of α and β can be used to decompose the overall evolution of

the hazard of exiting non-employment into two components: the portion attributable to

changes in the hazard for each individual worker as non-employment duration changes, and

the portion attributable to changes in the population of non-employed workers at different

durations.

In performing this analysis, we assume that the reduced-form parameters α and β are

fixed over time for each worker, consistent with our model. In principle, variation in these

parameters across workers may reflect some time-invariant observable characteristics of the

workers or it may reflect time-invariant unobserved heterogeneity. We do not attempt to

distinguish between these two possibilities. Our analysis precludes the possibility of time-

varying heterogeneity. For example, a worker’s experience cannot affect the stochastic pro-

cess for the net benefit from employment, (µs, σs), nor can it affect the switching costs ψs,

s ∈ {e, n}. Note, however, that our model does allow for learning-by-doing, since a worker’s

wage may increase faster on average when employed than when non-employed, µe > µn.
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3.1 Nonparametric Identification

We start by examining whether our model is nonparametrically identified. With a single

non-employment spell, our model is in general not identified.3 To see this, suppose that the

true model is one in which there is a single type of worker (α, β), which gives rise to non-

employment duration density f(t;α, β), as in equation (3). This could alternatively have

been generated by an economy with many types of workers. A worker who takes d periods

to find a job has σn = 0 and µn = (ω̄ − ω)/d, which implies that both α and β converge to

infinity with β/α = d. Moreover, the distribution of this ratio differs across workers so as to

recover the empirical non-employment duration density f(t;α, β). More generally, this and

many other type distributions can fit any non-employment duration distribution, so long as

the density is strictly positive at all durations t > 0.4

Our approach to identification uses the duration of two non-employment spells. To see

how the duration of two spells can help with identification, go back to the example in the

previous paragraph. If there is a single type of worker, the correlation of the duration of two

spells is zero, while the alternative model would imply that the duration of the two spells

are equal. Thus repeated spells opens up the possibility of identification.

Now consider a population of individuals, each of whom has completed two spells. Let

G(α, β) denote the distribution of (α, β) in the population. For some of those individuals,

both spells have duration (t1, t2) ∈ T 2, where T ⊆ R+ is a set with non-empty interior. Let

φ : T 2 → R+ denote the joint distribution of the durations for this population:

φ(t1, t2) =

∫∫
f(t1;α, β)f(t2;α, β)dG(α, β)∫∫

T 2

∫∫
f(t′1;α, β)f(t′2;α, β)dG(α, β) dt′1dt

′
2

. (5)

We allow for the possibility that T is a subset of the positive reals to prove that our model

is identified even if we do not observe spells of certain durations.

Our main identification result, Theorem 1 below, is that the joint density of spell lengths

φ identifies the joint distribution of characteristics (α, β) if we know the sign of α. We prove

this result through a series of Propositions. The first shows that the partial derivatives of φ

exist at all points where t1 6= t2:

3Restricted versions of our model are identified with one spell. We describe two cases in Appendix C: in
one example, every individual has the same expected duration β/α but there is a non-degenerate distribution
of β. In the second example, there are no switching costs, ψe = ψn = 0, so β = 0. Both of these examples
reduce the unknown joint distribution of (α, β) to one dimension.

4If the density of the non-employment duration distribution is ever 0, it must be the case that α and β
are infinite for all workers. Of course, in any empirical application with a finite sample of data, the realized
density may be zero at some durations even if α and β are finite, and this approach to identification does
not seem robust.
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Proposition 1 Take any (t1, t2) ∈ T 2 with t1 > 0, t2 > 0 and t1 6= t2. The density φ is

infinitely many times differentiable at (t1, t2).

We prove this proposition in Appendix B. The proof verifies the conditions under which the

Leibniz formula for differentiation under the integral is valid. This requires us to bound the

derivatives in appropriate ways, which we accomplish by characterizing the structure of the

partial derivatives of the product of two inverse Gaussian densities. Our bound uses that

t1 6= t2. Indeed an example shows that this condition is indispensable:

Example 1 Consider the case where G is such that among all individuals with a particular

mean duration, µ̄ = β/α, the parameter β has density g(β|µ̄) = θβ−1−θ on [1,∞), a Pareto

distribution. In this case the joint density of two spells for these individuals is:

φ(t1, t2|µ̄) =
θ∆

θ
2
−1

4πt
3/2
1 t

3/2
2

Γ
(
1− θ

2
,∆
)

(6)

where ∆ ≡ 1
2

( (t1/µ̄−1)2

t1
+ (t2/µ̄−1)2

t2

)
and Γ(s, x) =

∫∞
x
zs−1e−zdz is the incomplete Gamma

function.

When either t1 6= µ̄ or t2 6= µ̄ or both, ∆ is strictly positive and hence φ(t1, t2|µ̄) is

infinitely differentiable. But when t1 = t2 = µ̄, ∆ = 0 and so both the Gamma function and

∆
θ
2
−1 can either diverge or be non-differentiable. In particular, for θ ∈ (0, 2), the right tail

of g is so thick that limt→µ̄ φ(t, t|µ̄) =∞. For θ ∈ [2, 4) the right tail of β is thick enough so

that the density is non-differentiable at t1 = t2 = µ̄. For higher values of θ, the density can

only be differentiated a finite number of times at this critical point.

The source of the non-differentiability is that for very large β, the volatility of the Brow-

nian motion vanishes, and thus the spells end with certainty at duration µ̄. Equivalently

the corresponding distribution tends to a Dirac measure concentrated at t1 = t2 = µ̄. For a

distribution with a sufficiently thick right tail of β, the same phenomenon happens, but only

at points with t1 = t2, since individuals with vanishingly small volatility in their Brownian

motion almost never have durations t1 6= t2. Instead, for values of t1 6= t2, the density

φ is well-behaved because randomness from the Brownian motion smooths out the duration

distribution, regardless of the underlying type distribution.

Finally, if for different values of µ̄ = β/α, we have a Pareto distribution of β, φ may be

non-differentiable at multiple points, each of which has t1 = t2.

For the next step, we look at the conditional distribution of (α, β) among individuals
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whose two spells last exactly (t1, t2) periods:

G̃(α, β|t1, t2) =
f(t1, α, β) f(t2, α, β) dG(α, β)∫∫
f(t1, α′, β′) f(t2, α′, β′) dG(α′, β′)

, (7)

We prove that the partial derivatives of φ uniquely identify all the even moments of G̃ for

any t1 6= t2:

Proposition 2 Take any (t1, t2) ∈ T 2 with t1 > 0, t2 > 0 and t1 6= t2, and any strictly

positive integer m. The set of partial derivatives ∂i+jφ(t1, t2)/∂ti1∂t
j
2 for all i ∈ {0, 1, . . . ,m}

and j ∈ {0, 1, . . . ,m− i} uniquely identifies the set of moments

E(α2iβ2j|t1, t2) ≡
∫∫

α2iβ2jdG̃(α, β|t1, t2) (8)

for all i ∈ {0, 1, . . . ,m} and j ∈ {0, 1, . . . ,m− i}.

Note that the statement of the proposition suggests a recursive structure, which we follow

in our proof in appendix B. In the first step, set m = 1. The two first partial deriva-

tives ∂φ(t1, t2)/∂t1 and ∂φ(t1, t2)/∂t2 determine the two first even moments, E(α2|t1, t2)

and E(β2|t1, t2). In the second step, set m = 2. The three second partial derivatives

and the results from first step then determine the three second even moments, E(α4|t1, t2),

E(α2β2|t1, t2), and E(β4|t1, t2). In the mth step, the m + 1 mth partial derivatives and the

results from the previous steps determine the m + 1 mth even moments of G̃. The proof,

which is primarily algebraic, shows how this works.

In the third step of the proof, we recover the joint distribution G̃(α, β|t1, t2) from the

moments of (α2, β2) among individuals who find jobs at durations (t1, t2). There are two

pieces to this. First, we need to know the sign of α; we assume this is either always positive

or always negative since, as we previously noted, this is not identified. Second, we need to

ensure that the moments uniquely determine the distribution function. A sufficient condition

is that the moments not grow too fast; our proof verifies that this is the case.

Proposition 3 Assume that α ≥ 0 with G-probability 1 or that α ≤ 0 with G-probability

1. Take any (t1, t2) ∈ T 2 with t1 > 0, t2 > 0 and t1 6= t2. The set of conditional moments

E(α2iβ2j|t1, t2) for i = 0, 1, . . . and j = 0, 1, . . ., defined in equation (8), uniquely identifies

the conditional distribution G̃(α, β|t1, t2).

The proof of this proposition in Appendix B.

Our main identification result follows immediately from these three propositions:

12



Theorem 1 Assume that α ≥ 0 with G-probability 1 or that α ≤ 0 with G-probability 1.

Take any function φ : T 2 → R+. There is at most one distribution function G such that

equation (5) holds.

Proof. Proposition 1 shows that φ is infinitely many times differentiable. Proposition 2

shows that for any (t1, t2) ∈ T 2, t1 6= t2, t1 > 0, and t2 > 0, there is one solution for

the moments of (α2, β2) conditional on durations (t1, t2), given all the partial derivatives of

φ at (t1, t2). Proposition 3 shows that these moments uniquely determine the distribution

function G̃(α, β|t1, t2) with the additional assumption that α ≥ 0 with G-probability 1 or

α ≤ 0 with G-probability 1. Finally, given the conditional distribution G̃(·, ·|t1, t2), we can

recover G(·, ·) using equation (7) and the known functional form of the inverse Gaussian

density f :
dG(α, β)

dG(α′, β′)
=

dG̃(α, β|t1, t2)

dG̃(α′, β′|t1, t2)

f(t1;α′, β′)f(t2;α′, β′)

f(t1;α, β)f(t2;α, β)
(9)

Our theorem states that the density φ is sufficient to recover the joint distribution G if

we know the sign of α. Our proof uses all the derivatives of φ evaluated at a point (t1, t2) to

recover all the moments of the conditional distribution G̃(·, ·|t1, t2) to recover the necessary

moments. Intuitively, if one thinks of a Taylor expansion around (t1, t2), we are indeed using

the entire empirical density φ for (t1, t2) ∈ T 2 to recover the distribution function G.

We stress that the sign of α is not identified. The basic problem is that f(t;α, β) =

e2αβf(t;−α, β) for all (α, β). Take any two distributions G1 and G2 and for simplicity

assume they have density functions, g1 and g2. Then if

g1(α, β) + e−4αβg1(−α, β) = g2(α, β) + e−4αβg2(−α, β) (10)

for all (α, β), G1 and G2 generate the same distribution of completed spells φ(t1, t2) for all

(t1, t2) ∈ T 2. It is possible to use incomplete spells to derive bounds on the fraction of the

population with the positive or negative α, as we discuss in more detail in Section 3.3.

We comment briefly on an alternative but ultimately unsuccessful proof strategy. Propo-

sition 2 establishes that we can measure E(βm|t1, t2) at almost all (t1, t2). It might seem

we could therefore integrate the conditional moments using the density φ(t1, t2) to compute

the unconditional mth moment of β. This strategy might fail, however, because the integral

need not converge. Indeed, this is the case whenever the appropriate moment of G does not

exist. We continue Example 1 to illustrate this possibility:

Example 2 Assume that β is distributed Pareto with parameter θ while µn = α/β > 0

is degenerate. The distribution G thus does not have all its moments. We turn to the
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conditional distribution G̃(β|t1, t2) for some t1 6= t2. The mth moment of the conditional

distribution is

E(βm|t1, t2) = ∆−
m
2

Γ(1 + m−θ
2
,∆)

Γ(1− θ
2
,∆)

,

where again ∆ = 1
2

( (µnt1−1)2

t1
+ (µnt2−1)2

t2

)
and Γ(s, x) =

∫∞
x
zs−1e−zdz is the incomplete

Gamma function; this follows from equation (7).

If ∆ > 0, all moments Mm ≡ E(βm|t1, t2) exist and are finite. To prove that the moments

uniquely describe a distribution, we use the D’Alembert criterium (see for example Theorem

A.5 in Coelho, Alberto, and Grilo (2005)). It suffices to show that limm→∞
1

m−1
Mm

Mm−1
is

finite:
1

m

E(βm+1|t1, t2)

E(βm|t1, t2)
=

1

m

∆−1/2Γ(1 + m+1−θ
2

,∆)

Γ(1 + m−θ
2
,∆)

,

which converges to 0 as m → ∞. Therefore, conditional moments uniquely determine the

conditional distribution G̃(β|t1, t2), even though some moments of G do not exist.

The proof of our identification theorem instead establishes only that the conditional

moments exist and are well behaved. We then use the conditional distribution to infer the

unconditional distribution without reference to its moments.

3.2 Comments on Identification with Two Spells

Identification with a finite number of types. 2 – 4 types are enough to fit the distribution

of single spell data but here the identification can be coming from the functional form.

The advantage of the multi-spell data is that its correlation structure is informative about

heterogeneity.

3.3 Long-Term Non-employment: Identifying the Sign of α

We argued that data on two completed spells cannot identify the sign of α, which in turn

determines the chances that a non-employed worker never finds a job. In this section we

argue that the fraction of incomplete spells provides some information on the sign of α.

First we note that for any distribution G+(α, β) with α ≥ 0 with G-probability 1, there

is another distribution G−(α, β) with α ≤ 0 with G-probability 1 such that both G+ and G−

imply the same joint distribution of durations φ : T 2 → R+. In particular, since f(t;−α, β) =

e−2αβf(t;α, β), equation (5) implies these distributions are related via

dG−(−α, β) =
e4αβdG+(α, β)∫ ∫
e4α′β′dG+(α′, β′)

. (11)
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The expression in the denominator of equation (11) ensures that the dG− integrates to 1.

More generally, any convex combination of G+ and G− yields the same joint distribution of

durations φ.

While the sign of α does not affect the distribution of durations of completed spells, it does

affect the fraction of the population with two completed spells with durations (t1, t2) ∈ T 2,

a statistic that we refer to as c. For any distribution φ, G+ provides an upper bound on the

fraction of the population whose first two completed spells each have duration in any set

T ⊂ R. We denote the upper bound for the fraction c by c̄ which is given by:

c ≤ c̄ =

∫∫
T 2

∫∫
f(t1;α, β)f(t2;α, β)dG+(α, β) dt1dt2. (12)

The lower bound c for c is obtained using the distribution G−,

c =

∫∫
T 2

∫∫
f(t1;α, β)f(t2;α, β)dG−(α, β) dt1dt2 =

c̄∫ ∫
e4αβdG+(α, β)

. (13)

Mixtures between these two distributions yield intermediate values of the fraction of the

population with two completed spells.

We address this lack of identification as follows. First, we use our model to estimate

the distribution function G+. We then compute c̄ and c using equations (12) and (13).

We compare these values with the empirical fraction of individuals who have at least two

completed spells, the first two with durations (t1, t2) ∈ T 2, say ĉ. If it were the case that

c̄ = ĉ, then we would conclude that the whole population has positive α. Similarly, if we

find that c = ĉ, then we conclude that the whole population has a negative α. For any

intermediate case, c < ĉ < c̄, we conclude that there are some fraction of people, call it µ−

with negative α, and it holds that 0 < µ− < 1 and moreover, the distribution with µ− has

to be such that the share workers with first two spells each in T has to be ĉ.

There are many distributions of (α, β) which are consistent with φ and imply that c =

ĉ, and each of them will imply a different value of µ−. Since the data does not contain

enough information to identify one of these distributions exactly, we find a distribution

which maximizes µ− and one which minimizes µ−. This would give us an upper and a lower

bound on the share of workers with negative α in the population. We will then use these

distributions as well as G+ to conduct the decomposition.

Let G be the distribution of (α, β) which minimizes µ−. How can this distribution be

constructed? Consider G+. This distribution has no types with α < 0 and so its µ− = 0

but at the same time it generates c which is too high compared to ĉ. The idea is then to

add a small number of types with α < 0 which have a very low probability to experience
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two spells shorter in T as this will decrease c. The lowest probability of experiencing two

completed spells is zero, and in fact, any type with α < 0 and β →∞ has a zero probability

of completing any non-employment spell. To understand why this is the case, recall that

these restrictions on α, β imply that µn < 0 and σn → 0. The process for the net benefit

from working is deterministic with a negative drift. Starting at the lower threshold ω, the

probability of reaching the upper threshold ω̄ (and thus completing the spell) is zero. We

need to add a fraction x of these workers where x solves that ĉ = (1−x)c̄+x·0, or x = 1−ĉ/c̄.
Finally, let Ḡ be the distribution for which µ− is maximized. We know that the upper

bound µ− is 1 and that this upper bound is achieved with G−, but G− implies c which is too

low compared to ĉ measured in the data. To increase c and keep µ− high, we thus need to

revert some of the types back to α positive. The most effective way of doing this is to keep

types with low |αβ| as negative types, as we show formally in Appendix D, have types with

high αβ as positive. To understand this result, let’s first think about the trade-off between

keeping a type α, β positive or turning it negative. Our constraint is that the same number

of workers have to be observed as having two completed spells (remember the constraint on

the distribution of completed spells). If the type with negative α has a low probability of

experiencing two completed spells, it has to be compensated by a large share of these types

in the population so that a given number of workers is observed with two completed spells.

But this is going to be difficult to reconcile with the constraint that c cannot be lower than

ĉ. Thus, we want to keep this types as positive. Which types tend to have a low probability

of experiencing two completed spells? As discussed in the previous paragraph, if σn is close

to zero and µn is negative, then the probability of having two completed spells are very low.

For other values of σn and µn < 0, the probability of observing two completed spells is lower

for higher |µn|/σn. This two examples justify why we want to keep types with high αβ as

positive and turn those with low αβ into negative.

3.4 Testable Implications

The stopping time model and inverse Gaussian densities are flexible, and so a natural question

is whether they can explain any data. If we observe only a single non-employment spell for

each individual, the model indeed has no testable implications. Any single-spell duration

data can be explained perfectly though an assumption that an individual who takes d periods

to find a job has σn = 0 and µn = (ω̄ − ω)/d. We focus instead on a data set that includes

two completed non-employment spells for each individual.

Our approach to identification yields the model’s overidentifying restrictions. First,

Proposition 1 tells us that the joint density φ is infinitely differentiable at any (t1, t2) ∈ T 2
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with t1 > 0, t2 > 0, and t1 6= t2. We can reject the model if this is not the case. This test is

not useful in practice, however, since φ is never differentiable in any finite data set.

Second, Proposition 2 tells us how to construct the even-powered moments of the joint

distribution function G̃(α, β|t1, t2). Even-powered moments must all be positive, and so this

prediction yields additional tests of the model.

Third, Proposition 3 tells us that we can use the moments to reconstruct the distribution

function G̃. These moments must satisfy certain restrictions in order for them to be generated

from a valid CDF. For example, Jensen’s inequality implies that

E(α2i|t1, t2)1/i ≤ E(α2j|t1, t2)1/j

for all integers 0 < i < j.

In practice, measuring higher moments can be difficult and so we focus on the simplest

restriction that comes from the model, E(α2|t1, t2) ≥ 0 and E(β2|t1, t2) ≥ 0 for all t1 6= t2.

Following the proof of Proposition 2, our model implies that these moments satisfy

E(α2|t1, t2) =
2
(
t22
∂φ(t1,t2)
∂t2

− t21 ∂φ(t1,t2)
∂t1

)
φ(t1, t2)(t21 − t22)

− 3

t1 + t2
≥ 0 (14)

and E(β2|t1, t2) = t1t2

(
2t1t2

(∂φ(t1,t2)
∂t2

− ∂φ(t1,t2)
∂t1

)
φ(t1, t2)(t21 − t22)

+
3

t1 + t2

)
≥ 0. (15)

These inequality tests have considerable power against alternative theories, as some simple

examples illustrate.

Example 3 Consider the canonical search model where the hazard of finding a job is a

constant θ and so the density of completed spells is φ(t1, t2) = θ2e−h(t1+t2). Then applying

conditions (14) and (15) gives

E(α2|t1, t2) = 2θ − 3

t1 + t2
≥ 0 and E(β2|t1, t2) =

3t1t2
t1 + t2

≥ 0.

In particular, E(α2|t1, t2) < 0 whenever t1 + t2 < 3/2θ, where 1/θ represents the mean

duration of a non-employment spell. We conclude that our model cannot generate this density

of completed spells for any joint distribution of parameters.

More generally, suppose the constant hazard θ has a population distribution G̃, with some

abuse of notation. The density of completed spells is φ(t1, t2) =
∫
θ2e−θ(t1+t2)dG̃(θ). Then

E(α2|t1, t2) = 2

∫
θ3 e−θ(t1+t2)dG̃(θ)∫
θ2 e−θ(t1+t2)dG̃(θ)

− 3

t1 + t2
≥ 0,
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while E(β2|t1, t2) is unchanged. If the ratio of the third moment of θ to the second moment is

finite—for example, if the support of the distribution G̃ is bounded—this is always negative

for sufficiently small t1 + t2 and hence the more general model is rejected.

One might think that the constant hazard model is rejected because the implied density

φ is decreasing, while the density of a random variable with an inverse Gaussian distribution

is hump-shaped. This is not the case. The next two examples illustrate this. The first looks

at a log-normal distribution

Example 4 Suppose that the density of durations is log-normally distributed with mean µ

and standard deviation σ. For each individual, we observe two draws from this distribution

and test the model using conditions (14) and (15). Then our approach implies

E(α2|t1, t2) =
2

σ2(t1 + t2)

(
t1 log t1 − t2 log t2

t1 − t2
−
(
µ+ 1

2
σ2
))
≥ 0

and E(β2|t1, t2) =
2t1t2

σ2(t1 + t2)

(
t2 log t1 − t1 log t2

t1 − t2
+
(
µ+ 1

2
σ2
))
≥ 0.

One can prove that t1 log t1−t2 log t2
t1−t2 is increasing in (t1, t2), converging to minus infinity when

t1 and t2 are sufficiently close to zero. Therefore, for any µ and σ > 0, the first condition

is violated at small values of (t1, t2). Similarly, t2 log t1−t1 log t2
t1−t2 is decreasing in t1 and t2,

converging to minus infinity when t1 and t2 are sufficiently large. Therefore, for any µ and

σ > 0, the second condition is violated at large values of (t1, t2).

The same logic implies that any mixture of log-normally distributed random variables

generates a joint density φ that is inconsistent with our model, as long as the support of

the mixing distribution is compact. Thus even though the log normal distribution generates

hump-shaped densities, the test implied by conditions (14) and (15) would never confuse a

mixture of log normal distributions with a mixture of inverse Gaussian distributions.

The final example relates our results to data generated from the proportional hazard

model, a common statistical model in duration analysis

Example 5 Each individual has a hazard rate equal to θ h(t) at times t ≥ 0, and where

h(·) is common function with unrestricted shape and θ is an individual characteristic with

distribution function again denoted by G̃. If h(t) and |h′(t)/h(t)| are both bounded as t

conveges to 0, the test will imply E(α2|t1, 0) < 0 for t1 small enough. Appendix E gives a

more detailed description and proves this result.
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3.5 Decomposition: Structure versus Heterogeneity

We turn now to the relative importance of structural duration dependence and dynamic

selection of heterogeneous individuals for the evolution of the hazard rate of exiting non-

employment. For notational convenience alone, assume that the type distribution G has a

density g.

3.5.1 Decomposition of the Hazard Rate

We decompose the aggregate hazard rate conditional on two completed spells using a Divisia

index. To start, assume α ≥ 0 with G-probability 1. Let h(t;α, β) denote the hazard rate

for type (α, β) at duration t,

h(t;α, β) =
f(t;α, β)

1− F (t;α, β)
. (16)

Also let g(t;α, β) denote the density of the type distribution among individuals who complete

two spells and whose duration exceeds t periods:

g(t;α, β) =
(1− F (t;α, β))g(α, β)∫∫

(1− F (t;α′, β′))g(α′, β′) dα′ dβ′
. (17)

The aggregate hazard rate H(t) is an average of individual hazard rates weighted by their

share among workers with duration t,

H(t) =

∫∫
f(t;α, β)g(α, β) dα dβ∫∫

(1− F (t;α′, β′))g(α′, β′) dα′ dβ′
=

∫∫
h(t;α, β)g(t;α, β) dαdβ,

as can be confirmed directly from the definitions of h(t;α, β) and g(t;α, β). Taking a deriva-

tive with respect to t, Ḣ(t) = Ḣs(t) + Ḣh(t), where

Ḣs(t) =

∫∫
ḣ(t;α, β)g(t;α, β) dαdβ (18)

Ḣh(t) =

∫∫
h(t;α, β)ġ(t;α, β) dαdβ. (19)

We interpret the term Ḣs(t) as the instantaneous contribution of structural duration de-

pendence since it is based on the change in the hazard rates of individual worker types.

Observe that if the hazard rate were constant (and thus there were no structural duration

dependence), this term would be zero. The second term Ḣh(t) captures the instantaneous

role of heterogeneity because it captures how the distribution of worker types changes with
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unemployment duration.

The sign of Ḣs(t) can be either positive or negative, but the contribution of heterogeneity

Ḣh(t) is equal to the minus the cross-sectional variance of the hazard rates:5

Ḣh(t) = −
∫∫

(h(t;α, β)−H(t))2g(t;α, β) dα dβ < 0. (20)

This result is a version of the fundamental theorem of natural selection (Fisher, 1930), which

states that “The rate of increase in fitness of any organism at any time is equal to its genetic

variance in fitness at that time.”6 Intuitively, types with a higher than average hazard rate

are always declining as a share of the population.

Now suppose α ≤ 0 with G-probability 1, but we measure and decompose hazard rates

as described here. This has two effects. First, when we fail to account for negative values

of α, we mismeasure the G distribution, effectively conditioning on a particular individual

with type (α, β) having two completed spells, an event that in truth only has probability

e4αβ. That is, the measured distribution G(α, β) is the distribution of (|α|, β) conditional on

two completed spells. Second, the hazard rate itself conditions on a completed spell. That is

h(t;α, β) is the hazard at duration t conditional on the spell ending in finite time. This leads

to general interpretation of our decomposition: it is the hazard rate of each spell conditional

on an individual completing two spells. This interpretation remains valid if α is positive for

some individuals and negative for others.

3.5.2 Hazard Rate Conditional on Realized Duration

An alternative way of showing the relative importance of heterogeneity versus structural

duration dependence is to look at the difference in the hazard rates of workers who found

jobs at different durations.

Each worker i in the dataset is characterized by the realized duration of his two nonem-

ployment spells, (ti1, t
i
2). We use the estimated distribution G(α, β) to form a posterior belief

5To prove this, first take logs and differentiate g(t;α, β):

ġ(t;α, β)

g(t;α, β)
= − f(t;α, β)

1− F (t;α, β)
+

∫∫
f(t;α′, β′)dG(α′, β′)∫∫

(1− F (t;α′, β′))dG(α′, β′)
= −h(t;α, β) +H(t).

Substituting this result into the expression for Ḣh(t) gives

Ḣh(t) = −
∫∫

h(t;α, β)(h(t;α, β)−H(t))g(α, β) dα dβ.

Since
∫∫

(h(t;α, β) −H(t))g(α, β) dα dβ = 0, we can add H(t) times this to the previous expression to get
the formula in equation (20).

6We are grateful to Jörgen Weibull for pointing out this connection to us.
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about his type, dGi(α, β) ≡ dGpost(α, β|ti1, ti2), where we the Bayes formula

dGpost(α, β|t1, t2) =
f(t1, α, β)f(t1, α, β)dG(α, β)∫
f(t2, α′, β′)f(t2, α′, β′)dG(α′, β′)

. (21)

We then split workers into groups conditional on the realized duration of their first spell. For

example, we consider workers whose first spell lasted between 0 and 13 weeks in one group,

14 to 26 weeks in another group, and so on. Defining I(t, t̄) as the set of workers whose first

spell lasted between t and t̄, I(t, t̄) ≡ i : ti1 ∈ [T1, T2], the distribution of types in I(t, t̄) is

given by

dGI(t,t̄)(α, β) =
1

NI(t,t̄)

∑
i∈I(t,t̄)

gi(α, β), (22)

where NI(t,t̄) is the number of workers in this group.

Finally, we compute the hazard rate of each group as h[T1,T2](t) as

hI(t,t̄)(t) = h(t, α, β)dGI(t,t̄)(α, β|t) (23)

4 Austrian Data

We test our theory, estimate our model, and evaluate the role of structural duration depen-

dence using data from the Austrian social security registry. The data set covers the universe

of private sector workers over the years 1986–2007 (Zweimuller, Winter-Ebmer, Lalive, Kuhn,

Wuellrich, Ruf, and Buchi, 2009). It contains information on individual’s employment, reg-

istered unemployment, maternity leave, and retirement, with the exact begin and end date

of each spell.7

The use of the Austrian data is compelling for two reasons. First, the data set contains the

complete labor market histories of the majority of workers over a 21 year period, which allows

us to construct multiple non-employment spells per individual. Second, the labor market

in Austria remains flexible despite institutional regulations, and responds only very mildly

to the business cycle. Therefore, we can treat the Austrian labor market as a stationary

environment and use the pooled data for our analysis. Figure 11 in the Appendix shows the

mean duration of in progress unemployment spells shorter than 260 weeks. One can clearly

see seasonal variation but movements driven by a business cycle is very mild.

We discuss the key regulations of the Austrian labor market. Almost all private sector

jobs are covered by collective agreements between unions and employer associations at the

region and industry level. The agreements typically determine the minimum wage and wage

7We have data available back to 1972, but can only measure registered unemployment after 1986.
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increases on the job, and do not directly restrict the hiring or firing decisions of employers.

The main firing restriction is the severance payment, with size and eligibility determined

by law. A worker becomes eligible for the severance pay after three years of tenure if he

does not quit voluntarily. The pay starts at two month salary and increases gradually with

tenure.

The unemployment insurance system in Austria is similar to the one in the U.S. The

duration of the unemployment benefits depends on the previous work history and age. If a

worker has been employed for more than a year during two years before the layoff, she is

eligible for 20 weeks of the unemployment benefits. The duration of benefits increases to 30

weeks and 39 weeks for workers with longer work history.

Temporary separations and recalls are prevalent in Austria. Around 40 percent of non-

employment spells end with an individual returning to the previous employer. Our structural

model naturally allows for this possibility.

We work with complete and incomplete non-employment spells. We define complete non-

employment spells as the time from the end of one full-time job to the start of the following

full-time job. We further impose that a worker has to be registered as unemployed for at

least one day during the non-employment spell. We drop spells involving a maternity leave.

Although in principle we could measure non-employment duration in days, disproportion-

ately many jobs start on Mondays and end on Fridays, and so we focus on weekly data. We

measure spells in calendar weeks. A calendar week starts on Monday and ends on Sunday.

If a worker starts and ends a spell in the same calendar week, we code it as duration of 0

weeks. The duration of 1 week means that the spell ended in the calendar week following

the calendar week it has started, and so on.

A non-employment spell is not complete if it does not end by a worker taking another job.

Instead, one of the following can happen: 1) the non-employment spell is still in progress

when the dataset ends, 2) a worker retires, 3) a worker goes on a maternity leave, 4) a worker

disappears from the sample. We consider any of these as incomplete spells.

We consider only individuals who were no older than 45 in 1986 and no younger than

40 in 2007, and have at least one non-employment spell which started after the age of 25.8

Imposing the age criteria guarantees that each individual has at least 15 years when he could

potentially be at work. To estimate the model, we will use information on two complete spells

shorter than 260 weeks, which means that we are choosing T = [0, 260]. We keep incomplete

spells only if they are longer than 260 weeks.

8We do this because older individuals in 1986 or younger individuals in 2007 are less likely to experience
two such spells in the data set we have available. Moreover, Theorem 1 tells us that we can identify the
type distribution G using the duration density φ(t1, t2) on any subset of durations (t1, t2) ∈ T 2. Here we set
T = [0, 260].
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starting sample 1,012,342
only one spell longer than 260 122,316
two spells, the second spell incomplete 37,456
two complete spells, but either first or second longer than 260 56,760
final sample 795,810

Table 1: Construction of the data

We further restrict our sample to workers who either have only one spell longer than 260

weeks (including incomplete), or have at least two spells (including incomplete). This is our

starting sample. There are 1,012,342 such workers, with 122,316 workers having only one

spell. There are 890,026 workers with at least two spells, but only 795,810 have first two

spells shorter than 260 weeks. Table 1 shows further details of the data construction.

Our final sample which we use for estimation consists of 795,810 workers. These workers

have 6.3 such non-employment spells on average, but we only use information on the first

two spells. We use 78.6% of the starting sample, and thus our measured ĉ = 0.786.

In this sample, the average duration of a completed non-employment spell is 29.6 weeks,

and the average employment duration between these two spells is 96.4 weeks. Figure 1

depicts the marginal distribution of non-employment spells during each of the first two non-

employment spells for all workers who experience at least two spells. The two distributions

are very similar. They rise sharply during the first five weeks, hover near four percent for

the next ten weeks, and then gradually start to decline. The density during the first spell is

slightly lower than the density during the second spell at short durations and slightly higher

at long durations, a difference we suppress in our analysis.

Figure 2 depicts the joint density φ(t1, t2) for (t1, t2) ∈ {0, . . . , 80}2. Several features of

the joint density are notable. First, it has a noticeable ridge at values of t1 ≈ t2. Many

workers experience two spells of similar durations. Second, the joint density is noisy, even

with 800,000 observations. This does not appear to be primarily due to sampling variation,

but rather reflects the fact that many jobs start during the first week of the month and end

during the last one. There are notable spikes in the marginal distribution of nonemployment

spells every fourth or fifth week and, as Figure 1 shows, these spikes persist even at long

durations.
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Figure 1: Marginal distribution of the first two non-employment spells, conditional on du-
ration less than or equal to 260 weeks.
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Figure 2: Nonemployment exit joint density during the first two non-employment spells,
conditional on duration less than or equal to 60 weeks.
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5 Results

5.1 Test of the Model

We propose a test of the model inspired by Section 3.4. We make three changes to accom-

modate the reality of our data. The first is that the data are only available with weekly

durations, and so we cannot measure the partial derivatives of the reemployment density φ.

Instead, we propose a discrete time analog of equations (14)–(15):

E(α2|t1, t2) =
t22 log

(
φ(t1,t2+1)
φ(t1,t2−1)

)
− t21 log

(
φ(t1+1,t2)
φ(t1−1,t2)

)
t21 − t22

− 3

t1 + t2
≥ 0

and E(β2|t1, t2) = t1t2

(
t1t2 log

(φ(t1,t2+1)
φ(t1,t2−1)

φ(t1−1,t2)
φ(t1+1,t2)

)
t21 − t22

+
3

t1 + t2

)
≥ 0,

where we have approximated partial derivatives using

∂φ(t1, t2)/∂t1
φ(t1, t2)

≈ 1

2
log

(
φ(t1 + 1, t2)

φ(t1 − 1, t2)

)
and

∂φ(t1, t2)/∂t2
φ(t1, t2)

≈ 1

2
log

(
φ(t1, t2 + 1)

φ(t1, t2 − 1)

)
.

The second is that the density φ is not exactly symmetric in real world data, as seen in

Figure 1. We instead estimate φ as 1
2
(φ(t1, t2) +φ(t2, t1)). The third is that the raw measure

of φ is noisy, as we discussed in the previous section. This noise is amplified when we estimate

the slope log
(φ(t1+1,t2)
φ(t1−1,t2)

)
and log

(φ(t1,t2+1)
φ(t1,t2−1)

)
. In principle, we could address this by explicitly

modeling calendar dependence in the net benefit from employment, but we believe this issue

is secondary to our main analysis. Instead, we smooth the symmetric empirical density φ

using a multidimensional Hodrick-Prescott filter and run the test on the trend φ̄.9 Since

Proposition 1 establishes that φ should be differentiable at all points except possibly along

the diagonal, we also do not impose that φ̄ is differentiable on the diagonal. See Appendix G

for more details on the filter we use.

Figure 3 displays our test results. Without any smoothing, we reject the model for over

40 percent of pairs (t1, t2) with 0 ≤ t1 < t2 ≤ 60. Setting the smoothing parameter to at least

5 reduces the rejection rate below five percent. Setting it to at least 20 reduces the rejection

rate below two percent. When we look at higher values of (t1, t2), we reject the model more

often, even in smoothed data. This may be due to a reduction in the signal-to-noise ratio in

9In practice we smooth the function log(1+φ(t1, t2)), rather than φ, where φ is the number of individuals
whose two spells have durations (t1, t2).
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Figure 3: Nonparametric test of model. The blue circles show the percent of observations in
the data with a(t1, t2) < 0 or b(t1, t2) < 0 with 0 ≤ t1 < t2 ≤ 60 for different values of the
filtering parameter. The red lines show a bootstrapped 95% confidence interval.

our data set.

To interpret the magnitude of the rejection rates, we show a bootstrapped 95% confidence

interval. To compute the standard errors of the test statistic via bootstrapping, we need to

sample under the null hypothesis, which is that the data are generated from the inverse

Gaussian model, yet still stay as close as possible to the original data. Since the best

description of our data through the lens of the model is the captured by the distribution

G estimated in the later sections, we use it to draw samples. In particular, we draw 500

samples of two nonemployment spells for 800,000 individuals, and keep individuals with two

completed spells between 0 and 260 weeks. We then proceed the same way as with the data.

We construct the empirical distribution φ(t1, t2), and smooth it with our 2-dimensional HP

filter for different values of the smoothing parameter λ. For each sample and each value of

λ, we apply our test and evaluate the fraction of pairs (t1, t2) with 0 ≤ t1 < t2 ≤ 60 with

a(t1, t2) < 0 or b(t1, t2) < 0. The rejection rate in the 95% of our samples lies within the

bands shown in red in Figure 3.

For low values of λ, our test statistic lies above the 95% confidence interval. This is

because there are two sources of noise in the data but only one in the bootstrapped samples.

The measured distribution of spells in the data is not smooth both because we have a finite

number of people, and because there is seasonality. We observe spikes in the distribution
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minimum distance estimate EM estimate
mean median st.dev. min mean median st.dev min

α 0.36 0.20 0.51 0.007 391 0.12 2776 0.0803
β 7.48 5.03 5.94 1.466 2510 6.01 15623 1.4306
µn
ω̄−ω 0.04 0.04 0.03 0.005 0.04 0.04 0.04 0.0177
σn
ω̄−ω 0.21 0.20 0.12 0.005 0.22 0.17 0.14 0.00001

Table 2: Summary statistics from estimation.

at one month, two months, three months etc., but this type of noise is not present in the

bootstrapped samples. With low values of λ, there is very little smoothing, the real data are

more noisy than the simulated one, and thus the rejection rate is higher. Higher values of λ

remove both sources of noise and the measured rejection rate lies within or even below the

95% confidence interval. We thus conclude that our data could be generated by the proposed

model and the non-zero rejection rate is due to small sample properties.

5.2 Estimation

We estimate our model in two steps. For a given type distribution G(α, β), the probability

that any individual has duration (t1, t2) ∈ T 2 is∫∫
f(t1;α, β)f(t2;α, β)dG(α, β)∫∫

T 2

∫∫
f(t1;α, β)f(t2;α, β) dG(α, β) dt1 dt2

.

We can therefore compute the likelihood function by taking the product of this object across

all the individuals in the economy. Combining individuals with the same realized duration

into a single term, we obtain that the log-likelihood of the data φ(t1, t2) is equal to

∑
(t1,t2)∈T 2

φ(t1, t2) log

( ∫∫
f(t1;α, β)f(t2;α, β)dG(α, β)∫∫

T 2

∫∫
f(t1;α, β)f(t2;α, β) dG(α, β) dt1 dt2

)
.

Our basic approach to estimation chooses a distribution function G to maximize this objec-

tive. More precisely, we follow a two-step procedure. In the first step we use a minimum

distance estimator to obtain an initial estimate of G, constraining α and β to lie on a discrete

grid. We then use the EM algorithm to perform maximum likelihood. In the second step,

we allow α and β to take on values off of the grid. See appendix H for more details.

Our parameter estimates place a positive weight on 50 different types (α, β). Table 2

summarizes our estimates. We report mean, median, minimum and standard deviation of α,

β and also µ and σ. The latter two are the drift and standard deviation of log-wages during

27



0 20 40 60 80 100 120 140 160 180 200 220 240 260

10−4

10−3

10−2

duration in weeks

d
en
si
ty

data
model

Figure 4: Marginal distribution of nonemployment spells in the data and in the model.

non-employment relative to the width of the inaction region, µ ≡ µn/(ω̄ − ω) = α/β and

σ ≡ σn/(ω̄−ω) = 1/β. Columns 2–5 summarize the estimates from the first estimation step,

the last 4 columns show results after refining the initial estimates using the EM algorithm.

The mean and standard deviation of µ and σ are similar in both cases, but statistics for

α and β differ substantially. The difference is due to the fact that there are now several types

with a small value of σ which is then reflected in a very large value of α and β. Indeed, the

EM step of our estimates reduces the smallest value of σ by two orders of magnitude, which

has a big impact on the mean of α and β. The median values of α and β remain similar.

We find that there is a considerable amount of heterogeneity. For example the cross-

sectional standard deviation of α is seven times its mean, while the cross-sectional standard

deviation of β is around six times its mean. Moreover, α and β are positively correlated in

the cross-section, with correlation 0.77 in the initial stage and 0.85 in the EM stage.

Figure 4 shows the fitted marginal distribution of spells up to 260 weeks of a non-

employment. To make the marginal distribution from the model exactly comparable to

the data, we normalize the distribution of spells between 0 and 260 weeks so that it adds

up to one. The model matches the initial increase in distribution during the first thirteen

weeks, as well as the gradual decline the subsequent five years. We miss the distribution at

the very long durations because the mass of workers at these durations is very low.

Of course, it is not surprising that we can match the univariate hazard rate, since it
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Figure 5: Nonemployment exit density: model (left) and log ratio of model to data (right)

is theoretically possible to match any univariate hazard rate with a mixture of (possibly

degenerate) inverse Gaussian distributions. More interesting is that we can also match the

joint density of the duration of the first two spells. The first panel in figure 5 shows the

theoretical analog of the joint density in Figure 2. The second panel shows the log of the

ratio of the empirical density to the theoretical density. The root mean squared error is

about 0.17 times the average value of the density φ, with the model able to match the major

features of the empirical joint density, leaving primarily the high frequency fluctuations that

we previously indicated we would not attempt to match.

Finally, we use our analysis in 3.3 to infer bounds on the fraction of the population with

a negative α. Using the estimated distribution and formulas (12) and (13), we find that for

t̄ = 260, c̄(t̄) = 0.9845 and c(t̄) ≈ 0. In the data we find that 78.6 percent of the starting

sample has first two completed spells shorted than 260 weeks, we can soundly reject that

the whole population has a negative α and conclude that majority has a positive value of α.

5.3 Robustness of estimates

Theorem 1 establishes that our model is identified using repeated spells, but this does not

necessarily imply that our maximum likelihood estimates are consistent. For example, in

Appendix H, we identify several biases that complicate our estimation procedure.10 We use

the following procedure to check if our estimator can recover the parameters if we were to have

an arbitrarily large sample. We start with the joint distribution of types that we estimate in

the previous subsection. We generate the population distribution for two consecutive non-

employment spells both with duration between 0 and 260 weeks, i.e. we use equation (5) for

10One source of bias is that duration in measured in weeks, as opposed to be measured continuously. The
other is that even the estimation a single type inverse gaussian with α close to zero has standard errors that
diverge to infinity.
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minimum distance estimate EM estimate
mean median st.dev. min mean median st.dev min

α 0.49 0.03 1.77 0.007 728 0.14 4532 0.10
β 9.04 5.18 39.5 1.299 3640 6.74 18712 1.30
µn
ω̄−ω 0.04 0.01 0.04 0.005 0.05 0.04 0.04 0.019
σn
ω̄−ω 0.22 0.20 0.14 0.001 0.21 0.15 0.14 0.00001

Table 3: Summary statistics from estimation using artificial data. The data are simulated
from our model using the estimated distribution of types, with summary statistics shown in
Table 2.

the estimated parameters to generate φ. We use our two step procedure on the distribution

of duration φ to re-estimate the type distribution G. We then compare the results with the

ones from the data generating process.

Table 3 summarizes our results. Our procedure recovers 45 types, even though the data

were generated by 50 types. Nevertheless, the moments of α, β, µ = α/β, and σ = 1/β are

largely unchanged. More importantly, the results from the decomposition exercise and our

estimates of the size of switching costs are also unchanged. We are therefore confident that

we have recovered an accurate characterization of the joint distribution G(α, β).

5.4 Decomposition

We now use our estimated type distribution to decompose the evolution of the hazard rate

and residual duration. We start with the hazard rate. Define

Hs(t) =

∫ t

0

Ḣs(s)ds and Hh(t) =

∫ t

0

Ḣh(s)ds,

so H(t) = Hs(t) + Hh(t) for all t.11 The structural hazard rate represents the evolution of

the hazard rate for the average individual at each point in time, without regards to dynamic

selection. Plugging equations (16) and (17) into equation (18) gives

Ḣs(t) =

∫∫
ḟ(t;α, β)dG(α, β)∫∫

(1− F (t;α′, β′)).dG(α′, β′)

The model tells us f(t;α, β) and F (t;α, β) for all (α, β); these are the density and cumulative

distribution of the inverse Gaussian. We use our estimate of the type distributionG to recover

the structural contribution to the hazard rate.

We consider three cases for G: G+ with all types positive, and Ḡ and G with a non-zero

11With an inverse Gaussian distribution, H(0) = 0, avoiding an additional term in this expression.
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Figure 6: Decomposition of the hazard rate for distribution G+. The blue line shows the
structural hazard rate Hs(t). The red line shows the contribution of heterogeneity, Hh(t),
which dynamically selects survivors to have a lower hazard rate. The sum of the two is the
raw hazard rate H(t), shown as a purple line. Note that these hazard rates do not conditional
on the spell ending within 260 weeks and so may continue to decline indefinitely.

fraction of types with negative α. Even though we know that G+ is not consistent with

measured ĉ, we consider this case to be a useful benchmark. The hazard rate decomposition

will be affected by the choice of distribution, mainly because the hazard rate for a type with

α, β depends on the sign of α. While in both cases the hazard rate equals 0 at t = 0 and

is hump-shaped, the hazard rate converges to an asymptote α2/2 for α > 0 and to zero for

α < 0. With α < 0, there is a positive probability of never completing a non-employment

spell, so the hazard rate has to eventually go to zero.

Figure 6 shows that for G+ structural hazard rate increases substantially, peaking at 11.1

percent after 33 weeks before falling to 10.3 percent after two years. In contrast, dynamic

selection necessarily pushes down the empirical hazard rate, as showed in (20). After two

years, this has cumulatively reduced the hazard rate by 9.8 percent. The difference, 0.5

percent, is the level of the raw hazard rate after two years. In other words, heterogeneity

pulls the peak in the hazard rate forward by about 20 weeks and wipes out more than 90

percent of the long-run increase in the hazard rate. The contribution of heterogeneity to a

declining hazard rate is substantial.

The decomposition with distributions G, Ḡ is depicted in Figure 7. The level of aggregate
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Figure 7: Decomposition of the hazard rate for distribution G+, G, Ḡ. The blue lines show
the structural hazard rate Hs(t). The red lines show the contribution of heterogeneity, Hh(t),
which dynamically selects survivors to have a lower hazard rate. The sum of the two is the
raw hazard rate H(t), shown as purple lines. Solid lines correspond to distribution G+,
dashed lines to Ḡ and dotted lines to G.

and structural hazard rate is lower than with G+, which is a consequence of having types with

negative α whose hazard rate converges to zero. However, qualitatively the decomposition

result remains unchanged, leaving us again with the conclusion that the contribution of

heterogeneity to the decreasing hazard rate is substantial during the first week of non-

employment. The differences in the decomposition using G and Ḡ are very small.

We turn next to expected residual duration. Aggregate residual duration R(t) is the

expected number of additional weeks of non-employment anticipated by the average worker

with duration t. In our estimated model, this number is huge, starting at over 236 weeks

for a worker at the start of a jobless spell and reaching nearly 1200 weeks after one year

out of work. To understand why, recall that expected duration for a newly displaced worker

with type (α, β) is 1/α, while asymptotic residual duration is 2/α2. Even a few workers

with a value of α close to zero imply a high and rapidly rising residual duration in the whole

population. Even worse, if α is less than or equal to zero, residual duration is infinite for

that worker, an issue that our analysis has assumed away.

We focus instead on discounted residual duration. For any value of δ > 0, discounted

residual duration is capped at 1/δ, even if α is negative. This downplays the unreasonable
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Figure 8: Decomposition of discounted residual duration. The blue line shows structural
discounted residual duration Rs

δ(t). The red line shows the contribution of heterogeneity,
Rh
δ (t), which generally slects survivors with higher residual duration. The sum of the two is

the discounted residual duration Rδ(t), shown as a purple line.

influence of a small number of individuals with extremely large expected residual durations.

We set the discount rate to δ = 0.0006, which implies a worker’s expected lifetime is just over

32 years. Discounting therefore has its main effect in truncating the very longest durations.

Figure 8 shows the decomposition of discounted residual duration, Rδ(t), into the com-

ponents Rs
δ(t) and Rh

δ (t), defined as

Rs
δ(t) = Rδ(0) +

∫ t

0

Ṙs
δ(s)ds and Rh

δ (t) =

∫ t

0

Ṙh
δ (s)ds.

Note that we normalize all of the initial level of residual duration to be structural but focus on

the changes in the outcomes. Expected residual duration initially falls because few workers

find a job. Heterogeneity plays little role during this period. After about ten weeks, it starts

to increase rapidly, eventually more than doubling in value to a peak of almost a year. The

bulk of this increase is a consequence of heterogeneity, with structure playing a comparatively

small role. Finally, expected residual duration declines at durations above 2.5 years. This

primarily reflects the structure of the model, with little change in the composition of job

searchers.

To reiterate the importance of heterogeneity we have recovered, we consider another

33



0 10 20 30 40 50 60 70 80 90 100 110 120 130

0

0.01

0.02

0.03

0.04

0.05

total H(t)

H̄52(t)

duration in weeks

w
ee

k
ly

h
az

ar
d

ra
te

Figure 9: Hazard rate of workers still out of work at duration of 52 weeks. The black line
shows the hazard rate of an average worker who is non-employed at 52 weeks, the purple
line is the aggregate hazard rate.

experiment. We take the distribution of types at duration of 52 weeks, dG(52;α, β), and

calculate an average hazard rate at different durations for this group, denote it H̄52(t). We

have

H̄52(t) =

∫ ∫
h(t;α, β; )dG(52;α, β). (24)

Figure 9 shows H̄52(t) together with H(t). We observe that H̄52(t) is much lower than H(t)

at short durations, reaching the highest value of 3.4 percent at duration of 12 weeks and

declining to 2.1 at 52 weeks. This indicates that prospects of an average worker out of work

for one year have not looked much better when she became nonemployed than they look

now.

5.5 Estimated Switching Costs

Section 2.3 shows that the knowledge of α, β together with other four parameters of the

model can be used to estimate the magnitude of the fixed costs. Here we use the estimated

distribution of α, β to find an upper bound on the distribution of the fixed costs in the popu-

lation. We assume that there are no costs of switching from employment to non-employment,

ψn = 0, and we focus on costs of switching from non-employment to employment, relative

to the value of leisure, ψe/b0.
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switching costs ψe/b0 × 100 standard deviation σn

mean std 10th per. 50th per. 90th per. mean std
µ∗n = +0.0325 0.06 0.07 0.0021 0.026 0.001 0.028 0.015
µ∗n = −0.0325 2.92 2.98 0.64 0.95 10 0.028 0.015

Table 4: Summary statistics for the estimated switching cost.

We choose r = 0.02, µe = 0.01, σe = 0.05, |µn| = 3.25µe. We consider both positive and

negative µn. The fixed costs are larger for µn < 0.

For both values of µn, the estimated width of the range of inaction as well as the corre-

sponding values of ψe/b0 are rather small. The costs are larger for the negative values of µn

so we focus on this case in our discussion.

The median value of the switching costs is only 2.92 percent of the annual non-employment

flow value. The costs vary a lot across types: the highest cost is 16.7, the lowest 0.18 percent

of the annual non-employment flow value. Recall that we choose values of other parameters

to make the fixed costs large, yet the median value is 3 percent, and the highest 16.7 percent.

It has been argued in the literature that even small fixed costs can generate large regions

of inaction. In our model, however, not only the fixed costs are small, but so is the region

of inaction.12 The mean width of the inaction region is 0.0194 and the median is 0.0187. To

understand how small these values are, consider a worker who has just started working and

thus her current log wage equals ω̄+ b0. The wage that induces an average worker to quit to

non-employment is merely 2 percent lower than the starting wage. By construction, these

values are the same for the positive or negative µ∗n.

Previous work by Mankiw (1985), Dixit (1991), Abel and Eberly (1994), and others has

shown that even small costs can have a large economic impact. We are unaware of other

papers which study the cost of switching between employment and non-employment at the

level of an individual worker. In other areas, empirical results on the size of fixed costs are

more mixed. Cooper and Haltiwanger (2006) find a large fixed cost of capital adjustment,

around 4 percent of the average plant-level capital stock. Nakamura and Steinsson (2010)

estimate a multisector model of menu costs and find that the annual cost of adjusting prices

is less than 1 percent of firms’ revenue. In a model of house selling, Merlo, Ortalo-Magne,

and Rust (2013) find a very small fixed cost of changing the listing price of a house, around

0.01 percent of the house value.

12On the other hand, a non-degenerate region of inaction is important for our results. If the region of
inaction were degenerate, we would be unable to match the mean duration of a spell, for the reasons we
discussed in Section 2.3.
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6 Conclusion

We develop a dynamic model of a worker’s transitions in and out of employment. Our model

features a structural duration dependence in the job finding rate, in the sense that the hazard

rate of finding a job changes during a non-employment spell for a given worker. Moreover,

the job finding rate as a function of duration varies across workers. We use the model to

answer two questions. First, what are the costs of switching between employment and non-

employment, and second, what is the relative importance of heterogeneity versus structural

duration dependence for explaining the decreasing aggregate job finding rate. We find that

the costs of switching between employment and non-employment are very small, with only

18 percent of workers having this costs larger than 1 percent of annual non-employment

flow benefit. Even though switching costs are small in magnitude, they are economically

relevant for non-employment duration, because we can soundly reject any version of the

model without switching costs. We further find that the decline in the job-finding rate is

mostly driven by changes in the composition of the pool of non-employed workers, rather

than by declines in the job-finding rate for the typical worker.
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Appendix

A Structural Model

A.1 Characterization of Thresholds

This section describes the structural model in Section 2.1 precisely and characterizes the

solution to it. We assume that b(t) and w(t) follow a state-contingent Brownian motions:

db(t) =

µb,e dt+ σb,e dBb(t) if worker is employed, s = e

µb,n dt+ σb,n dBb(t) if worker is non-employed, s = n,

dw(t) =

µw,e dt+ σw,e dBw(t) if worker is employed, s = e

µw,n dt+ σw,n dBw(t) if worker is non-employed, s = n.

Bb(t) and Bw(t) are correlated Brownian motions. We let ρs ∈ [−1, 1] be the instantaneous

correlation between dw and db in state s ∈ {e, n}:

E [dw(t) db(t)] =

σw,eσb,e ρe dt if worker is employed, s = e

σw,nσb,n ρn dt if worker is non-employed, s = n.

The state of worker’s problem is triplet (s, w, b) where s ∈ {e, n} denotes whether the

worker is employed or non-employed. Denote value function of an employed worker with

state (w, b) as Ẽ(w, b) and the value for a non-employed worker with state (w, b) by Ñ(w, b).

These satisfy:

Ẽ(w, b) = max
τe

E
[∫ τe

0

e−rtew(t)dt+ e−rτe
(
Ñ(w(τe), b(τe))− ψneb(τe)

)
|w(0) = w, b(0) = b

]
(25)

Ñ(w, b) = max
τn

E
[∫ τn

0

e−rtb0e
b(t)dt+ e−rτn

(
Ẽ(w(τn), b(τn))− ψeeb(τn)

)
|w(0) = w, b(0) = b

]
(26)

In equation (25), the employed worker chooses the stopping time τe at which to switch

to non-employment. Similarly in equation (26), the non-employed worker chooses the first

time τn at which to change his status to employment. The expectation in equation (25) and

Equation (26) is taken with respect of the law of motion for w(t) and b(t) between 0 ≤ t ≤ τe

when s = e, or 0 ≤ t ≤ τn when s = n.
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For the problem to be well-defined, we require that

r > µw,s + 1
2
σ2
w,s for s ∈ {e, n} (27)

r > µb,s + 1
2
σ2
b,s for s ∈ {e, n} (28)

The conditions in (27) guarantee that the value of being employed (non-employed) forever

is finite. Moreover, if the conditions in (28) hold, then being non-employed (employed) for

T periods and then switching to employment (non-employment) forever is also finite in the

limit as T converges to infinity.

From equation (25) and equation (26) it is immediate to show that we can restrict our

attention to functions that satisfy the following homogeneity property. For any pair (w, b)

and any constant a:

Ẽ(w + a, b+ a) = ea Ẽ(w, b),

Ñ(w + a, b+ a) = ea Ñ(w, b).

By choosing a = −b, we get

Ẽ(w, b) = eb Ẽ(w − b, 0) ≡ ebE(w − b)
Ñ(w, b) = eb Ñ(w − b, 0) ≡ ebN(w − b)

which implicitly defines E and N only as a function the scalar w − b. We define ω(t), the

log net benefit to work, as ω(t) ≡ w(t)− b(t), so

dω(t) = µsdt+ σsdB(t)

where {B} is a standard Brownian motion defined in terms of Brownian motions {Bb, Bw}.
The process for ω(t) has a drift and a diffusion coefficient for s ∈ {e, n} given by:

µs = µw,s − µb,s and σ2
s = σ2

w,s − 2σw,s σb,s ρs + σ2
b,s.

The optimal decision of switching from employment to non-employment and vice versa

is described by thresholds ω and ω̄ such that a non-employed worker chooses to become

employed if the net benefit from working is sufficiently high, ω(t) > ω̄, and an employed

worker switches to non-employment if the benefit is sufficiently low, ω(t) < ω. To see this,
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note that since switching after paying the fixed cost is feasible it must be the case that:

Ẽ(w, b) ≥ Ñ(w, b)− ebψn for all (w, b) , or E(ω) ≥ N(ω)− ψn for all ω and

Ñ(w, b) ≥ Ẽ(w, b)− ebψe for all (w, b) , or N(ω) ≥ E(ω)− ψe for all ω

with equality at the states where switching is optimal.

To solve for the thresholds, we formulate the Hamilton-Jacobi-Bellman (HJB) equation

for the worker’s problem. Start with HJB for Ẽ(w, b) and Ñ(w, b):

rẼ(w, b) = ew+Ẽ1(w, b)µw,e+Ẽ2(w, b)µb,e+Ẽ11(w, b)
σ2
w,e

2
+Ẽ22(w, b)

σ2
b,e

2
+Ẽ12(w, b)σw,eσb,eρe

for all w and b with w − b ≥ ω. Similarly, if the worker is non-employed,

rÑ(w, b) = b0e
b+N1(w, b)µw,n+Ñ2(w, b)µb,n+Ñ11(w, b)

σ2
w,n

2
+Ñ22(w, b)

σ2
b,n

2
+Ñ12(w, b)σw,nσb,nρn

for all w and b with w − b ≤ ω̄. The boundary conditions for the problem are given by

Ẽ(ω, 0) = Ñ(ω, 0)− ψn , Ẽ1(ω, 0) = Ñ1(ω, 0) , Ẽ2(ω, 0) = Ñ2(ω, 0)

Ñ(ω̄, 0) = Ẽ(ω̄, 0)− ψe , Ẽ1(ω̄, 0) = Ñ1(ω̄, 0) , Ẽ2(ω̄, 0) = Ñ2(ω̄, 0)

Thus, worker’s problem leads to two partial differential equations. These are difficult to solve

in general, and therefore we use the homogeneity property and rewrite them as a system of

second-order ordinary differential equations for E (ω) and N (ω).

We write the the derivatives of E and N in terms of Ẽ and Ñ :

Ẽ1(w, b) = ebE ′(w − b) and Ẽ2(w, b) = ebE(w − b)− ebE ′(w − b)

Differentiate again to obtain the second derivatives. The expressions for the derivatives of

N are analogous. Use these to get a second-order ODE for E(ω) and N(ω):

reE(ω) = eω + µeE
′(ω) + 1

2
σ2
e E
′′(ω) (29)

rnN(ω) = b0 + µnN
′(ω) + 1

2
σ2
nN

′′(ω) (30)
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where the parameters are

rs ≡ r − µb,s − 1
2
σ2
b,s

µs ≡ µw,s − µb,s − σ2
b,s + σw,sσb,s ρs

σ2
s ≡ σ2

w,s + σ2
b,s − 2σw,sσb,s ρs

for s ∈ {e, n}. Conditions (27) and (28) reduce to

rs > µs + 1
2
σ2
s and rs > 0 for s ∈ {e, n}. (31)

We can also rewrite the boundary conditions as

E(ω) = N(ω)− ψn and E ′(ω) = N ′(ω) (32)

N(ω̄) = E(ω̄)− ψe and N ′(ω̄) = E ′(ω̄). (33)

The solution to equation (29) and equation (30) with boundary conditions equation (32) and

equation (33) is of a form

E(ω) =
eω

re − µe − σ2
e/2

+ ce,1e
λe,1ω + ce,2e

λe2ω (34)

N(ω) =
b0

rn
+ cn,1e

λn,1ω + cn,2e
λn,2ω (35)

where

λe,1 < 0 < λe,2 and λn,1 < 0 < λn,2

are the roots of the equations re = λe (µe + λeσ
2
e/2) and rn = λn (µn + λnσ

2
n/2). Hence

we have six equations, (32)–(35), in six unknowns, (ce,1, ce,2, cn,1, cn,2, ω, ω̄). We turn to their

solution.

Two non-bubble conditions require that

lim
ω→−∞

N(ω) =
b0

rn
and (36)

lim
ω→+∞

E(ω)

eω
=

1

re − µe − σ2
e/2

(37)

Equation (36) requires that the value function for arbitrarily small ω converges to the value

of being non-employed forever. Likewise equation (37) requires that for an arbitrarily large

ω the value function converges to the value of being employed forever. These no-bubble

conditions imply that ce,2 = cn,1 = 0. Simplifying the notation, we let ce = ce,1 > 0,
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λe = λe,1 < 0, cn = cn,2 > 0, and λn = λn,2 > 0. Using this, we rewrite the value

functions (34) and (35) as:

E(ω) =
eω

re − µe − σ2
e/2

+ cee
λeω for all ω ≥ ω (38)

N(ω) =
b0

rn
+ cne

λnω for all ω ≤ ω̄ (39)

with

λe =
−µe −

√
µ2
e + 2reσ2

e

σ2
e

< −1 and λn =
−µn +

√
µ2
n + 2rnσ2

n

σ2
n

> 1. (40)

Condition (31) ensures that the roots are real and satisfy the specified inequalities.

We now have four equations, two value matching and two smooth pasting, in four un-

knowns (ce, cn, ω, ω̄). Rewrite these as

ψn +
eω

re − µe − σ2
e/2

+ cee
λeω =

b0

rn
+ cne

λnω (41)

−ψe +
eω̄

re − µe − σ2
e/2

+ cee
λeω̄ =

b0

rn
+ cne

λnω̄ (42)

eω

re − µe − σ2
e/2

+ ceλee
λeω = cnλne

λnω (43)

eω̄

re − µe − σ2
e/2

+ ceλee
λeω̄ = cnλne

λnω̄ (44)

Note that the values of ce and cn have to be positive, since it is feasible to choose to be either

employed forever or non-employed forever, and since the value of being employed forever and

non-employed forever are the obtained in equations (38) and equations (39) by setting ce = 0

and cn = 0 respectively.

Figure 10 displays an example of the value functions E(·) and N(·) for the case ψn = 0.

We plot the net benefit from employment on the horizontal axis and indicate the thresholds

ω < ω̄. The domain of the employment value function E is [ω,∞) and the domain of

the non-employment value function is (−∞, ω̄]. We also plot the value of non-employment

forever, i.e. b0/rn, and the value of employment forever, i.e. eω/(re−µe−σ2
e/2). It is readily

seen that as ω → −∞, the value function N(ω) converges to the value of non-employment

forever, and that as ω →∞, the value function E(ω) converges to the value of employment

forever. Additionally the level and slope of E and N coincide at ω, while at ω̄ the slopes

coincide, but the value of E is ψe higher than N , since a non-employed worker must pay the

fixed cost to become employed.
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Figure 10: Example of Value Functions. The parameters values are r = 0.04, µe = 0.02,
σe = 0.1, µn = 0.01, σn = 0.04, b0 = 1, µb,s = σb,s = 0, ψe = 2, and ψn = 0.

A.2 Determinants of Barriers

Our goal in this section is to understand how duration data alone can be used to infer

information about the size of switching costs. We start with a result on the units of switching

costs.

Lemma 1 Fix λn > 1, λe < −1 and re − µe − σ2
e/2 > 0. Suppose that (ce, cn, ω, ω̄) solve

the value functions for fixed cost and flow utility of non-employment (ψe, ψn, b0). Then for

any k > 0, (e′, n′, ω′, ω̄′) solve the value function for flow utility of non-employment b′0 = kb0

and fixed cost ψ′e = kψe, ψ
′
n = kψn with ω̄′ = ω̄ + log k, ω′ = ω + log k, c′e = cek

1−λe, and

n′ = nk1−λn.

To prove Lemma 1, multiply the appropriate objects in equations (41) and (42) by k and

then simplifying those equations as well as equations (43) and (44) using the expressions in

the statement of the proof. We omit the algebraic details. The lemma implies that the size

of the region of inaction, ω̄ − ω, depends only on (ψe + ψn)/b0.

We can invert this logic to express the implied size of the fixed costs (ψe + ψn)/b0 as

a function of the width of the region of inaction and other model parameters. In the first

step, solve equations (43) and (44) for ce and cn. Because λe < −1, λn > 1, and ω̄ > ω,

the equations are linearly independent and so there is a unique solution. Moreover, these
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same parameter restrictions ensure that ce > 0 > cn. Next take the difference between

equations (41) and (42) to find the sum of the fixed costs, ψ ≡ ψe + ψn, again a positive

number. Finally, let γ ≡ ψe/ψ denote the share of the fixed costs paid during employment.

Then solve equation (42) for b0 as a function of model parameters, including γ. Once again

this is positive. Finally, we take the ratio of these last two expressions to obtain ψ/b0, the

relative size of the fixed costs, as a function of model parameters (including γ) and the

barriers ω̄ and ω. Lemma 1 implies that this depends on ω̄ − ω alone.

The resulting expression is messy, but we obtain a simple approximation when the barriers

are close together:

Proposition 4 The distance between the barriers is approximately proportional to the cube

root of the size of fixed costs. More precisely,

ψ

b0

= −λeλn(ω̄ − ω)3

12rn
+ o
(
(ω̄ − ω)3

)
,

where λe and λn are given in equation (40).

We use this equation in the text to infer the size of the fixed costs from the distance between

the barriers and known values of the other parameters. Numerical simulations indicate that

this approximation is very accurate at empirically plausible values of ω̄ − ω.

B Proof of Identification

We start by proving a preliminary lemma that describes the structure of the partial deriva-

tives of the product of two inverse Gaussian distributions.

Lemma 2 Let m be a nonnegative integer and i = 0, . . . ,m. The partial derivative of the

product of two inverse Gaussian distributions at (t1, t2) is:

∂m
(
f(t1;α, β) f(t2;α, β)

)
∂ti1 ∂t

m−i
2

= f(t1;α, β) f(t2;α, β)

(
r+s≤m∑
r,s=0

κr,s(t1, t2; i,m− i)α2rβ2s

)
(45)

where κr,s(t1, t2; i,m− i) are polynomials functions of (t1, t2),

κr,s(t1, t2; i,m− i) =
2i∑
k=0

2(m−i)∑
`=0

θk,`,r,s(i,m− i)t−k1 t−`2 , (46)

and the coefficients θk,`,r,s(i,m− i) are independent of t1, t2, α, and β.
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Proof of Lemma 2. The lemma holds trivially when m = i = 0, with κ0,0(t1, t2, 0, 0) = 1.

We now proceed by induction. Assume equation (45) holds for some m ≥ 0 and all i ∈
{0, . . . ,m}. We first prove that it holds for m+ 1 and all i+ 1 ∈ {1, . . . ,m+ 1}, then verify

that it also holds for i = 0. We start by differentiating the key equation:

∂m+1
(
f(t1;α, β) f(t2;α, β)

)
∂ti+1

1 ∂tm−i2

=
∂

∂t1

(
∂m
(
f(t1;α, β) f(t2;α, β)

)
∂ti1 ∂t

m−i
2

)

= f(t1;α, β) f(t2;α, β)

(
β2

2t21
− 3

2t1
− α2

2

)(r+s≤m∑
r,s=0

κr,s(t1, t2; i,m− i)α2rβ2s

)

+ f(t1;α, β) f(t2;α, β)

(
r+s≤m∑
r,s=0

∂κr,s (t1, t2; i,m− i)
∂t1

α2rβ2s

)

or

1

f(t1;α, β) f(t2;α, β)

∂m+1
(
f(t1;α, β) f(t2;α, β)

)
∂ti+1

1 ∂tm−i2

= −1

2

r+s≤m∑
r,s=0

κr,s(t1, t2; i,m− i)α2(r+1)β2s

+
1

2t21

r+s≤m∑
r,s=0

κr,s(t1, t2; i,m− i)α2rβ2(s+1)

+

r+s≤m∑
r,s=0

(
− 3

2t1
κr,s(t1, t2; i,m− i) +

∂κr,s (t1, t2; i,m− i)
∂t1

)
α2rβ2s.

This expression defines the new functions κr,s(t1, t2; i,m+ 1− i), and it can be verified that

they are polynomial functions by induction. Finally, an analogous expression obtained by

differentiating with respect to t2 gives the result for m+ 1 and i = 0.

Proof of Proposition 1. We seek conditions under which we can apply Leibniz’s rule

and differentiate equation (5) under the integral sign:

∂mφ(t1, t2)

∂ti1∂t
m−i
2

=

∫
∂m
(
f(t1;α, β) f(t2;α, β)

)
∂ti1 ∂t

m−i
2

G(dα, dβ)

for m > 0 and i ∈ {0, . . . ,m}. Let B represent a bounded, non-empty open neighborhood

of (t1, t2) and let B̄ denote its closure. Assume that there are no points of the form (t, t),
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(t1, 0), or (0, t2) in B̄. In order to apply Leibniz’s rule, we must check two conditions:

1. The partial derivative ∂m
(
f(t1;α, β) f(t2;α, β)

)
/∂ti1 ∂t

m−i
2 exists and is a continuous

function of (t′1, t
′
2) for every (t′1, t

′
2) ∈ B and G-almost every (α, β); and

2. There is a G−integrable function hi,m−i : R2
+ → R+, i.e. a function satisfying∫

hi,m−i(α, β)G(dα, dβ) <∞

such that for every (t′1, t
′
2) ∈ B and G-almost every (α, β)∣∣∣∣∣∂m
(
f(t1;α, β) f(t2;α, β)

)
∂ti1 ∂t

m−i
2

∣∣∣∣∣ ≤ hi,m−i(α, β) .

Existence of the partial derivatives follows from Lemma 2. The bulk of our proof establishes

that the constant

hi,m−i ≡ max
(t1,t2)∈B̄

r+s≤m∑
r,s=0

2i∑
k=0

2(m−i)∑
`=0

∣∣θk,`,r,s(i,m− i)∣∣
2π

t
−k− 3

2
1 t

−`− 3
2

2

(
r + s+ 1

τ(t1, t2)

)r+s+1

e−(r+s+1),

(47)

where

τ(t1, t2) =
(t1 − t2)2

2
(
t1(1 + t2)2 + t2(1 + t1)2

) , (48)

is a suitable bound. Note that hi,m−i is well-defined and finite since it is the maximum of

a continuous function on a compact set; the exclusion of points of the form (t, t), (t1, 0),

or (0, t2) is important for this continuity. This bound on the (i,m − i) partial derivatives

ensures that the lower order partial derivatives are continuous.

We now prove that hi,m−i is an upper bound on the magnitude of the partial deriva-

tive. Using Lemma 2, the partial derivative is the product of a polynomial function and an

exponential function:

∂m
(
f(t1;α, β) f(t2;α, β)

)
∂ti1 ∂t

m−i
2

=

r+s≤m∑
r,s=0

2i∑
k=0

2(m−i)∑
`=0

θk,`,r,s(i,m− i)
2π

t
−k− 3

2
1 t

−`− 3
2

2 α2r β2(s+1)


× exp

(
−(αt1 − β)2

2t1
− (αt2 − β)2

2t2

)
.

Only the constant terms θ may be negative.
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To bound the partial derivative, first note that for any nonnegative numbers α and β, r,

and s,

(α + β)2(r+s+1) ≥ α2r β2(s+1). (49)

To prove this, observe that the inequality holds when r = s = 0, and the difference between

the right hand side and left hand side is increasing in r and s whenever the two sides are

equal; therefore it holds at all nonnegative r and s. Next note that

exp
(
−(α + β)2τ(t1, t2)

)
≥ exp

(
−(αt1 − β)2

2t1
− (αt2 − β)2

2t2

)
. (50)

This can be verified by finding a maximum of the right hand side of (50) with respect to

α, β subject to the constraint that α + β = K for some K > 0. Next, consider the function

ax exp(−ay) for a and x nonnegative and y strictly positive. This is a single-peaked function

of a for fixed x and y, achieving its maximum value at a = x/y. Letting (α + β)2 play the

role of a, this implies in particular that(
r + s+ 1

τ(t1, t2)

)r+s+1

e−(r+s+1) ≥ (α + β)2(r+s+1) exp
(
−(α + β)2τ(t1, t2)

)
(51)

for all nonnegative r, s, α, and β, as long as τ(t1, t2) 6= 0, i.e. t1 6= t2. Finally, combine

inequalities (49)–(51) to verify the bound on the partial derivative,

hi,m−i ≥
∣∣∣∣∣∂m

(
f(t1;α, β) f(t2;α, β)

)
∂ti1 ∂t

m−i
2

∣∣∣∣∣ ,
where hi,m−i is defined in equation (47).

Proof of Proposition 2. Start with m = 1. Using the functional form of f(t;α, β) in

equation (3), the partial derivatives satisfy

∂φ(t1, t2)

∂ti
=

∫∫ (
β2

2t2i
− 3

2ti
− α2

2

)
f(t1;α, β)f(t2;α, β)dG(α, β)∫∫

T 2

∫∫
f(t1;α, β)f(t2;α, β)dG(α, β) dt1dt2

or
2t2i

φ(t1, t2)

∂φ(t1, t2)

∂ti
= E(β2|t1, t2)− 3ti − t2iE(α2|t1, t2),

where

E(α2|t1, t2) ≡
∫∫

α2dG̃(α, β|t1, t2) and E(β2|t1, t2) ≡
∫∫

β2dG̃(α, β|t1, t2).
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For any t1 6= t2, we can solve these equations for these two expected values as functions of

φ(t1, t2) and its first partial derivatives.

For higher moments, the approach is conceptually unchanged. First express the (i, j)th

partial derivatives of φ(t1, t2) as

2i+jt2i1 t
2j
2

φ(t1, t2)

∂i+jφ(t1, t2)

∂ti1∂t
j
2

= E
(
(β2 − α2t21)i(β2 − α2t22)j|t1, t2

)
+ vij(t1, t2)

=

i+j∑
x=0

min{x,i}∑
y=max{0,x−j}

i!j!(−t1)y(−t2)x−yE(α2xβ2(i+j−x)|t1, t2)

y!(x− y)!(i− y)!(j − x+ y)!
+ vij(t1, t2), (52)

where vij depends only on lower moments of the conditional expectation. The first line can be

established by induction. Express ∂i+jφ(t1,t2)

∂ti1∂t
j
2

from the first line and differentiate with respect

to t1. One can realize that all terms except one contain conditional expected moments of

order lower than i + j and thus could be grouped into the term vi+1,j. The only term of

order m + 1 has a form E
(
(β2 − α2t21)i+1(β2 − α2t22)j|t1, t2

)
which follows directly from the

derivative of f(t1, α, β) with respect to t1. The second line of (52) follows from the first by

expanding the power functions.

Now let i = {0, . . . ,m} and j = m − i. As we vary i, equation (52) gives a system of

m + 1 equations in the m + 1 mth moments of the joint distribution of α2 and β2 among

workers who find jobs at durations (t1, t2), as well as lower moments of the joint distribution.

These functions are linearly independent, which we show by expressing them using an LU

decomposition:

2mt2m1
φ(t1,t2)

∂mφ(t1,t2)
∂tm1

2mt
2(m−1)
1 t22
φ(t1,t2)

∂mφ(t1,t2)

∂tm−1
1 ∂t2

2mt
2(m−2)
1 t42
φ(t1,t2)

∂mφ(t1,t2)

∂tm−2
1 ∂t22

...
2mt2m2
φ(t1,t2)

∂mφ(t1,t2)
∂tm2


= L(t1, t2) · U(t1, t2) ·



E(α2m|t1, t2)

E(α2(m−1)β2|t1, t2)

E(α2(m−2)β4|t1, t2)
...

E(β2m|t1, t2)


+ vm(t1, t2), (53)

where L(t1, t2) is a (m + 1) × (m + 1) lower triangular matrix with element (i + 1, j + 1)

equal to

Lij(t1, t2) = (m−j)!
(m−i)!(i−j)!(−t2)2(i−j)(t22 − t21)j/2
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for 0 ≤ j ≤ i ≤ m and Lij(t1, t2) = 0 for 0 ≤ i < j ≤ m; U(t1, t2) is a (m + 1) × (m + 1)

upper triangular matrix with element (i+ 1, j + 1) equal to

Uij(t1, t2) = j!
i!(j−i)!(t

2
2 − t21)i/2

for 0 ≤ i ≤ j ≤ m and Uij(t1, t2) = 0 for 0 ≤ j < i ≤ m; and vm(t1, t2) is a vector that

depends only on (m − 1)st and lower moments of the joint distribution, each of which we

have found in previous steps.13 It is easy to verify that the diagonal elements of L and U are

nonzero if and only if t1 6= t2. This proves that the mth moments of the joint distribution

are uniquely determined by the mth and lower partial derivatives. The result follows by

induction.

Before proving Proposition 3, we state a preliminary lemma, which establishes sufficient

conditions for the moments of a function of two variables to uniquely identify the function.

Our proof of Proposition 3 shows that these conditions hold in our environment.

Lemma 3 Let Ĝ(α, β) denote the cumulative distribution of a pair of nonnegative random

variables and let E(α2iβ2j) ≡
∫∫

α2iβ2jdĜ(α, β) denote its (i, j)th even moment. For any

m ∈ {1, 2, . . .}, define

Mm = max
i=0,...,m

E(α2iβ2(m−i)). (54)

Assume that

lim
m→∞

[Mm ]
1

2m

2m
= λ <∞ . (55)

Then all the moments of the form E (α2iβ2j), (i, j) ∈ {0, 1, . . .}2 uniquely determine Ĝ.

Proof of Lemma 3. First recall the sufficient condition for uniqueness in the Hamburger

moment problem. For a random variable u ∈ R, its distribution is uniquely determined by

its moments {E [ |u|m ]}∞m=1 if the following condition holds:

lim sup
m→∞

(E [ |u|m ] )
1
m

m
≡ λ′ <∞, (56)

13If t2 > t1, the elements of L and U are real, while if t1 > t2, some elements are imaginary. Nevertheless,
L.U is always a real matrix. Moreover, we can write a similar real-valued LU decomposition for the case
where t1 > t2. Alternatively, we can observe that G̃(α, β|t1, t2) = G̃(α, β|t2, t1) for all (t1, t2), and so we
may without loss of generality assume t2 ≥ t1 throughout this proof.
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as shown in the Appendix of Feller (1966) chapter XV.4. We will, however, use an analogous

condition but for even moments only,

lim
m→∞

(E [u2m ] )
1

2m

2m
≡ λ <∞ . (57)

Note that if condition (57) holds, then condition (56) holds as well. To prove this, assume

that λ′ = ∞ and λ < ∞. Then there must be an odd integer m which very large, and in

particular

(E [ |u|m ] )
1
m

m
> (1 + ε)

m+ 1

m
λ, (58)

where ε > 0 is any number. For any positive number m, as shown in Loeve (1977) Section

9.3.e′, it holds that (E [ |u|m ] )
1
m < (E [ |u|m+1 ] )

1
m+1 , and thus

(E [ |u|m ] )
1
m

m
≤ m+ 1

m

(E [ |u|m+1 ] )
1

m+1

m+ 1
≤ m+ 1

m
λ(1 + ε), (59)

which is a contradiction with (58).

We combine this result with the Cramér-Wold theorem, stating that the distribution of a

random vector, say (α, β), is determined by all its one-dimensional projections. In particular,

the distribution of the sequence of random vectors (αm, βm) converges to the distribution of

the random vector (α∗, β∗) if and only if the distribution of the scalar x1αm+x2βm converges

to the distribution of the scalar x1α∗ + x2β∗ for all vectors (x1, x2) ∈ R2.

Thus we want to ensure that for any (x1, x2) the distribution of (x1α+x2β) is determined

by its moments. For this we want to check the condition in Equation (57) for u(x) ≡
(x1α + x2β). We note that:

E
[
u(x)2m

]
= E

(
(x1α + x2β)2m) =

2m∑
i=0

2m!

i!(2m− i)!x
i
1 x

2m−i
2 E

(
α2iβ2(m−i))

≤
2m∑
i=0

2m!

i!(2m− i)! |x1|i |x2|2m−i E
(
α2iβ2(m−i)) ≤Mm

m∑
i=0

m!

i!(m− i)! |x1|i |x2|m−i

= Mm (|x1|+ |x2|)2m

where we use the (α, β) are non-negative random variables, and where Mm is defined in

equation (54) in the statement of lemma 3.
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Now we check that the limit in equation (57) is satisfied given our the assumptions in

equation (54) and equation (55), i.e.:

(E [u(x)2m])
1

2m

2m
≤ [Mm ]

1
2m

2m

Hence, since the distribution of each linear combination is determined, the joint distribution

is determined.

Proof of Proposition 3. Write the conditional moments as

E(α2iβ2(m−i)|t1, t2) =

∫∫
q(α, β, i,m; t1, t2)dG(α, β)∫∫
f(t1;α, β)f(t2;α, β)dG(α, β)

,

where

q(α, β, i,m; t1, t2) ≡ α2iβ2(m−i)f(t1;α, β)f(t2;α, β).

Using the definition of f , we have

q(α, β, i,m; t1, t2) =
α2iβ2(m+1−i)

2πt
3/2
1 t

3/2
2

exp

(
−(αt1 − β)2

2t1
− (αt2 − β)2

2t2

)
≤ 1

2πt
3/2
1 t

3/2
2

(
m+ 1

τ(t1, t2)

)m+1

exp(−(m+ 1)),

where τ(t1, t2) is defined in equation (48) and the inequality uses the same steps as Propo-

sition 1 to bound the function. In the language of Lemma 3, this implies

Mm =
((m+ 1)/τ(t1, t2))m+1 exp(−(m+ 1))

2πt
3/2
1 t

3/2
2

∫∫
f(t1;α, β)f(t2;α, β)dG(α, β)

. (60)

We use this to verify condition (55) in Lemma 3.

Taking the log transformation of (1/2m) (Mm)1/2m and using the expression (60) we get:

log

(
[Mm]

1
2m

2m

)
= 1

2m
ϕ(t1, t2)− 1+m

2m
log (τ(t1, t2))

+1+m
2m

log (m+ 1)− 1+m
2m
− log(m)
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where ϕ is independent of m. We argue that the limit of this expression as m→∞ diverges

to −∞, or that (1/2m) (Mm)1/2m → 0 as m→∞. To see this

log

(
[Mm]

1
2m

2m

)
=

1

2m
ϕ(t1, t2)− 1 +m

2m
log (τ(t1, t2))

+
1

2m
log (m+ 1) +

1

2
[log(m+ 1)− log(m)]− 1 +m

2m
− 1

2
log(m)

Note that log(1 +m) ≤ log(m) + 1/m and log(1 +m) ≤ m thus taking limits we obtain the

desired result.

C Identification with One Spell

Special cases of our model are identified with one spell. We discuss two of them. First, we

consider an economy where every worker has the same expected duration of unemployment

1/µ. Second, we consider the case of no switching costs ψe = ψn = 0. These special cases

reduce the dimensionality of the unknown parameters. In the first case, the distribution of α

is just a scaled version of the distribution of β. In the second case, the distribution of β = 0

and we are after recovering the distribution of α.

C.1 Identifying the Distribution of β with a Fixed µ

Consider the case where every individual has the same expected unemployment duration

and thus the same value of µn, µin = µn for all i, and σn is distributed according to some

non-degenerate distribution. In our notation, we have that α = µnβ for some fixed µn and

β is distributed according to g(β). We argue that we can identify µn and all moments of the

distribution g from data on one spell. The distribution of spells in the population is then

given by

φ(t) =

∫
f(t;µnβ, β) g(β) dβ. (61)

Since the expected duration is 1/µ,

1

µn
=

∫ ∞
0

tf (t;µnβ, β) g (β) dβdt =

∫ ∞
0

tφ(t)dt,

which we can use to identify µn.

Let’s now identify the moments of g. Our approach is based on relating the kth moment

of the distribution φ(t) to the expected values of β2k. Let M(k) and m(k, µnβ, β) be the kth
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moment of the distribution φ(t) and f(t;µnβ, β), respectively,

m(k, µnβ, β) ≡
∫ ∞

0

tk f(t;µnβ, β)dt (62)

M(k) ≡
∫ ∞

0

tkφ(t)dt =

∫ [∫ ∞
0

tk f(t;µnβ, β) dt

]
g(β) dβ (63)

=

∫
m(k, µnβ, β)g(β) dβ (64)

Lemeshko, Lemeshko, Akushkina, Nikulin, and Saaidia (2010) show that the kth moment

of the inverse Gaussian distribution m(k, α, β) can be written as

m (k, α, β) =

(
β

α

)k k−1∑
i=0

(k − 1 + i)!

i! (k − 1− i)! (2αβ)−i .

Specialize it to our case with α = µnβ to get

m (k, µnβ, β) =
k−1∑
i=0

a (k, i, µn) β−2i

a (k, i, µn) ≡ 2−i
(k − 1 + i)!

i! (k − 1− i)!

(
1

µn

)k+i

Then the kth moment of the distribution φ is

M (k) =

∫ k−1∑
i=0

a (k, i, µn) β−2ig (β) dβ

=
k−1∑
i=0

a (k, i, µn)E
[
β−2i

]
(65)

Note that since µn is known, the values of a(k, i, µn) are known for all k, i ≥ 0. For

k = 2, equation (65) can be solved to find E [β−2]. By induction, if E [β−2i] are known for

i = 1, . . . , k − 1, then equation (65) for M(k) can be used to find E
[
β−2k

]
.

C.2 The Case of Zero Switching Costs

Consider now the special case of no switching costs, ψe = ψn = 0. The region of inaction

is degenerate, ω̄ = ω and hence β = 0. The distribution of spells for any given type is

described by a single parameter α distributed according to density g(α). For any given α,

55



the distribution of spells is again given by the inverse Gaussian distribution

f(t;α, 0) =
1

σn
√

2πt3/2
exp

(
−1

2
α2t

)
. (66)

and thus the distribution of spells in the population is

φ(t) =

∫
f(t;α, 0) g(α)dα. (67)

We argue that the derivatives of φ can be used to identify even moments of the distribution

of g.

Let start by deriving the kth derivative of f(t;α, 0). Use the Leibniz formula for the

derivative of a product to get

∂mf (t;α, 0)

∂tm
=

1√
2π

m∑
s=0

(
m

s

)
∂s

∂ts
(
t−3/2

) ∂m−s
∂tm−s

exp

(
−1

2
α2t

)
.

Observe that

∂s

∂ts
(
t−3/2

)
= t−3/2

s∏
i=0

(
−3

2
− i
)

∂m−s

∂tm−s
exp

(
−1

2
α2t

)
= exp

(
−1

2
α2t

)(
−1

2
α2

)r−s
,

and thus we can write an equation for the mth derivative of φ,

∂mφ(t)

∂tm
=

∫
∂mf (t;α, 0)

∂tm
g (α) dα

=

∫
f (t;α, 0)

m∑
s=0

(
m

s

)
t−s

s∏
i=0

(
−3

2
− i
)(
−1

2
α2

)r−s
g (α) dα.

Finally, rearrange the terms

∂mφ(t)

∂tm
=

m∑
s=0

(
m

s

)
t−s

s∏
i=0

(
−3

2
− i
)(
−1

2

)r−s
E
[(
α2
)r−s |t] ,

to find the mth derivative of φ as a sum of mth and lower moments of α2.
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D Deriving Distribution Ḡ

We want to find a distribution of (α, β) which maximizes the fraction of workers with neg-

ative α subject to a constraint that the distribution is consistent with the distribution of

completed spells φ and implies that c = ĉ . We start from the distribution G+ estimated

under assumption that α > 0 for all types. For each type (α, β), we will turn a fraction

x (α, β) ∈ [0, 1] of the type to (−α, β), and leave the fraction (1− x (α, β)) with a positive

α.

As we already argued before, in order for a distribution with negative types to be con-

sistent with φ, the share of (−α, β) types has to be proportional to e4αβg+ (α, β). Thus, our

new distribution is of a form

g (−α, β) =
(1− x (α, β)) e4αβdG+ (α, β)

Z
, g (α, β) =

x (α, β) dG+ (α, β)

Z
,

where Z is the defined as

Z ≡
∫ (

1− x (α, β) + x (α, β) e4αβ
)
dG+ (α, β) ,

and guarantees that the density integrates to one.

We wish to solve the following maximization problem

max
{x(α,β)}

∫
(1− x (α, β)) e4αβdG+ (α, β)

Z

s.t. ĉ ≤ 1

Z

∫ [
g (α, β)F 2 (T, α, β) + g (−α, β)F 2 (T,−α, β)

]
d (α, β)

x (α, β) ≥ 0 ∀ (α, β)

x (α, β) ≤ 1 ∀ (α, β)

After some algebra, it can be shown that the constraint simplifies to∫ [
g (α, β)F 2 (T, α, β) + g (−α, β)F 2 (T,−α, β)

]
d (α, β) =

1

Z

∫ [
g+ (α, β)F 2 (T, α, β)

]
d (α, β) =

c̄

Z

where c̄ is defined as in the main text, the upper bound.
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So we have a maximization problem

max
{x(α,β)}

∫
(1− x (α, β)) e4αβg+ (α, β) d (α, β)

Z

s.t. Z ≤ c̄

ĉ
x (α, β) ≥ 0 ∀ (α, β)

x (α, β) ≤ 1 ∀ (α, β)

Recall that Z also depends on the choice of x (α, β). Let λ be the lagrange multiplier on

the first constraint. Also, let λ0 (α, β) and λ1 (α, β) be the multipliers on the other two

constraints, which now depend on (α, β). The first order condition is

c̄

ĉ
· e4αβ

e4αβ − 1
=

1

(c̄/ĉ)2Z − λ− (λ0 (α, β)− λ1 (α, β)) ,

which implies that we have a cutoff rule. In particular, there will be only one type for which

λ0 (α, β) = λ1 (α, β) = 0 and the 0 < x (α, β) < 1. The FOC in this case becomes

c̄

ĉ
· e4αβ

e4αβ − 1
=

1

(c̄/ĉ)2Z − λ,

and since the right-hand side of this equation does not depend on α, β but the left-hand

side does, there can be only one such a type. For all other types will have a corner so-

lution, with either x (α, β) = 0 or x (α, β) = 1. Since the left-hand side of the first

order condition is decreasing in αβ, it will be the case that for αβ larger than the cut-

off, λ0 (α, β) > 0, λ1 (α, β) = 0 and x (α, β) = 0 while for αβ smaller than the cutoff,

λ1 (α, β) > 0, λ0 (α, β) = 0 and x (α, β) = 1.

E Power of the First Moment Test

We consider two interesting specification of the data generating mechanism which fail our test

for the first moments of (α2, β2). Both cases are elaborations around examples introduced in

Section 3.4. In both cases we obtain that if the data is generated according to these models,

the test for E[α2|t1, t2] fails for t2 = 0 and t1 sufficiently small. We also note that the first

example has the property that φ is not differentiable at points where t1 = t2.

First, consider an extension of a canonical search model where an unemployed individual

starts actively searching for a job only after τ periods, after which she finds a job at the rate

θ. Thus, the hazard rate of exiting unemployment is zero for t ≤ τ , and θ for t ≥ τ . Each
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worker is thus described by a pair (θ, τ), which are distributed in the population according

to cumulative distribution function G. The joint density of the two spells is given by:

φ(t1, t2) =

∫ ∞
0

∫ min {t1,t2}

0

θ2 e−θ (t1+t2−2τ) dG(θ, τ)

Suppose we apply our test to this model. If t1 > t2, then

E(α2|t1, t2) =
2 t22

t21 − t22

∫
θ2e−θ(t1−t2)dG(θ|t2)∫
θ2e−θ(t1+t2−2τ)dG(θ, τ)

+ 2

∫
θ3e−θ(t1+t2−2τ)dG(θ, τ)∫
θ2e−θ(t1+t2−2τ)dG(θ, τ)

− 3

t1 + t2
,

E(β2|t1, t2) = t1t2

(
2t1t2

(t21 − t22)

∫
θ2e−θ(t1−t2)dG(θ|t2)∫
θ2e−θ(t1+t2−2τ)dG(θ, τ)

+
3

t1 + t2

)
≥ 0.

Assume that the following regularity conditions hold:∫
θ3e−θ(t1−2τ)dG̃(θ|t2)∫
θ2e−θ(t1−2τ)dG̃(θ, τ)

<∞ and

∫
θ2e−θt1dG̃(θ|0)∫

θ2e−θ(t1−2τ)dG̃(θ, τ)
<∞

Setting t2 = 0, the term E(α2|t1, t2) becomes

E(α2|t1, t2) = 2

∫
θ3e−θ(t1−2τ)dG(θ, τ)∫
θ2e−θ(t1−2τ)dG(θ, τ)

− 3

t1
.

For t1 small enough, the negative term 3
t1

will dominate and the test fails, i.e. E(α2|t1, 0) < 0.

The second example is a version of the multiplicative hazard rate model, with a baseline

hazard rate h(t) and a multiplicative constant θ distributed according to G. The distribution

of two spells t1, t2 is given by

φ(t1, t2) =

∫ ∞
0

θ2 h(t1)h(t2) e−θ (
∫ t1
0 h(s)ds+

∫ t2
0 h(s)ds) dG(θ) (68)

Differentiate with respect to ith spell

φi(t1, t2) =

∫ ∞
0

[
h′(ti)

h(ti)
− θ h(ti)

]
θ2 h(t1)h(t2) e−θ (

∫ t1
0 h(s)ds+

∫ t2
0 h(s)ds) dG(θ)

and thus:

φi(t1, t2)

φ(t1, t2)
=
h′(ti)

h(ti)
− h(ti)E [θ | t1, t2] where

E [θ | t1, t2] ≡
∫∞

0
θ3 h(t1)h(t2) e−θ (

∫ t1
0 h(s)ds+

∫ t2
0 h(s)ds) dG(θ)∫∞

0
θ2 h(t1)h(t2) e−θ (

∫ t1
0 h(s)ds+

∫ t2
0 h(s)ds) dG(θ)
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We thus have:

E(α2|t1, t2) =
2

t21 − t22

[
t22
h′(t2)

h(t2)
− t21

h′(t1)

h(t1)
+ E [θ | t1, t2]

[
t21 h(t1)− t22 h(t2)

]]
− 3

t1 + t2
,

E(β2|t1, t2) = t1t2

[
2 t1t2
t21 − t22

(
h′(t2)

h(t2)
− h′(t1)

h(t1)
+ E [θ | t1, t2] [h(t1)− h(t2)]

)
+

3

t1 + t2

]
≥ 0.

Assume that the baseline hazard rate h is bounded and has bounded derivative around

t = 0, so that |h′(t1)/h(t1)| ≤ b and |h(t1)| < B for two constants B, b. Set t2 = 0 in which

case we have:

E(α2|t1, 0) = 2

[
−h

′(t1)

h(t1)
+ E [θ | t1, 0] h(t1)

]
− 3

t1
≥ 0

Then the test fails, i.e. E(α2|t1, 0) < 0, for t1 small enough because the negative term −3/t1

will dominate.

F Austrian Data

During the analyzed period, the business cycle in Austria is very mild and the labor market

does not respond to it. To document this, we plot the mean of the in progress unemployment

spells, conditional on them being shorter than 5 years. We make this restriction for two

reasons. First, it is the same restriction as we impose on the data which we use for estimation.

Second, looking at the unconditional mean of in progress unemployment spell would show a

hump-shaped profile, simply due to sampling scheme. Our data start in 1986 hence we start

the measurement in year 1991.

G Multidimensional Smoothing

We start with a data set that defines the density on a subset of the nonnegative integers,

say ψ : {0, 1, . . . , T}2 7→ R. We treat this data set as the sum of two terms, ψ(t1, t2) ≡
ψ̄(t1, t2) + ψ̃(t1, t2), where ψ̄ is a smooth “trend” and ψ̃ is the residual. According to our

model, the trend is smooth except possibly at points with t1 = t2 (Proposition 1). We

therefore define a separate trend on each side of this “diagonal.”

The spirit of our definition of the trend follows Hodrick and Prescott (1997), but extended

to a two dimensional space. For any value of the smoothing parameter λ, we find ψ̄(t1, t2)
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Figure 11: Mean in-progress unemployment spells.

at t2 ≥ t1 to solve

min
{ψ̄(t1,t2)}

(
T∑

t1=1

T∑
t2=t1

(ψ(t1, t2)− ψ̄(t1, t2))2+

λ
T∑

t2=3

t2−1∑
t1=2

(ψ̄(t1 + 1, t2)− 2ψ̄(t1, t2) + ψ̄(t1 − 1, t2))2+

λ
T−2∑
t1=1

T−1∑
t2=t1+1

(ψ̄(t1, t2 + 1)− 2ψ̄(t1, t2) + ψ̄(t1, t2 − 1))2

)
.

The first line penalizes the deviation between ψ and its trend at all points with t2 ≥ t1. The

remaining lines penalize changes in the trend along both dimensions, with weight λ attached

to the penalty. If λ = 0, the trend is equal to the original series, while as λ converges to

infinity, the trend is a plane in (t1, t2) space. More generally, the first order conditions to

this problem define ψ̄ as a linear function of ψ and so can be readily solved.

The optimization problem for (t1, t2) with t1 ≤ t2 is analogous. If ψ is symmetric,

ψ(t1, t2) = ψ(t2, t1) for all (t1, t2), the trend will be symmetric as well.
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H Estimation

The link between the model and the data is given by equation (17). Our goal is to find the

distribution G(α, β) using the data on the distribution of two non-employment spells. We

do so in two steps. In the first step, we discretize equation (17) and solve it by minimizing

the sum of squared errors between the data and the model-implied distribution of spells. In

the second step, we refine these estimates by applying the expectation-maximization (EM)

algorithm.

Each method has advantages and disadvantages. The advantage of the first step is that

it is a global optimizer. The disadvantage is that we optimize only on a fixed grid for (α, β).

The EM method does not require to specify bounds on the parameter space, but needs a

good initial guess because it is a local method.

It also turns out that the maximum likelihood method suffers from two potential biases:

one inherited from inverse Gaussian distribution, and one from working with discrete rather

than continuous durations. We elaborate on these issues in our detailed discussion of the

EM algorithm below.

H.1 Step 1: Minimum Distance Estimator

To discretize equation (17), we view φ(t1, t2) and g(α, β) as vectors in finite dimensional

spaces. We consider a set T ⊂ R2
+ of duration pairs (t1, t2), and refer to its typical elements

as (t1(i), t2(i)) ∈ T with i = 1, . . . , I. Guided by our data selection and the fact that

the model is symmetric, we choose T to be the set of all integer pairs (t1, t2) satisfying

0 ≤ t1 ≤ t2 ≤ 260. We also replace φ(t1, t2) with the average of φ(t1, t2) and φ(t2, t1) to take

advantage of the fact that our model is symmetric.

For the pairs of (α, β) we choose a set Θ ⊂ R2
+ and again refer to its typical element

(α(k), β(k)) ∈ Θ with k = 1, . . . , K.14 The distribution of types is then represented by

g(k), k = 1, . . . K such that g(k) ≥ 0 and
∑K

k=1 g(k) = 1. Naturally, β(k) > 0 for all k.

Given the limitation of our identification, we choose α(k) > 0 for all k.

Equation (17) in the discretized form is

φ =
F g

H′g
,

where φ is a vector φ(t1, t2), (t1, t2) ∈ T, g is K× 1 vector of g(k), F is a T ×K matrix with

14We experiment with different square grids on Θ both on equally spaced values on levels and in logs. We
also set the grid in terms of σn/(ω̄ − ω) = 1/β and µn/(ω̄ − ω) = α/β.
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elements Fi,j, and H is a K × 1 vector with element Hj defined below

Fi,j = f(t1(i), α(j), β(j))f(t2(i), α(j), β(j))

Hj =
∑

(t1,t2)∈T2

f(t1, α(j), β(j))f(t2, α(j), β(j)).

In the first stage, we solve the minimization problem

min
g

((F− φH′) g)
′
((F− φH′) g)

s.t. g ≥ 0,
K∑
k=1

g(k) = 1.

In practice, this problem is ill-posed. The kernel f(t1;α, β)f(t2;α, β) which maps the distri-

bution g(α, β) into the joint distribution of spells φ(t1, t2) is very smooth, and dampens any

high-frequency components of g. Thus, when solving the inverted problem of going from the

data φ to the distribution g, high-frequency components of φ get amplified. This is partic-

ularly problematic when data are noisy, as is our case, since standard numerical methods

lead to an extremely noisy estimate of g. Moreover, the solution of ill-posed problems is

very sensitive to small perturbation in φ. In order to stabilize the solution and eliminate

the noise, we do two things: first, we use smoothed rather than raw data as a vector φ,

and second, we stabilize the solution by replacing F̃ ≡ F − φH′ with F̃ + λI where λ is a

parameter of choice. This effectively adds a penalty λ on the norm of g, and one minimizes

||F̃g||2 + λ||g||2 subject to the same constraints as above. We use the so-called L-curve to

determine the optimal choice of λ.15

We apply the EM method in the second stage. This is an iterative method for finding

maximum likelihood estimates of parameters α,β

log `(t;α,β,g) =
∑

(t1,t2)∈T
φ(t1, t2) log

(
K∑
k=1

f(t1;α(k), β(k))f(t2;α(k), β(k))

(1− F (t̄;α(k), β(k)))2
g(k)

)
,

where F (t;α, β is the cumulative distribution function of the inverse Gaussian distribution

with parameters α, β, and t̄ = 260 is the maximum measured duration. The mth iteration

step of the EM has two parts. In the first part, the E step, we use estimates from (m− 1)st

iteration to calculate probabilities that ith pair of spells t1(i), t2(i) comes from each of the

15The L-curve is a graphical representation of the tradeoff between || (Fg − φ) ||2 and |g||2. When plotted
in the log-log scale, it has the L shape, hence its name. We choose value of λ which corresponds to the
”corner” of the L-curve because it is a compromise between fitting the data and smoothing the solution.

63



type k. In the second part, the M step, we use these probabilities to find new values of

α(k), β(k), g(k) from the first order conditions of the maximum likelihood problem.

H.2 Step 2: Maximum Likelihood using the EM algorithm

The EM algorithm is an iterative procedure to solve a maximum likelihood problem. To

simplify the notation, denote data as xi = (t1i, t2i) , i = 1, . . . N and parameter θk = (αk, βk)

and gk for k = 1, . . . K. Also, let x = {xi}Ni=1, θ = {θk}Kk=1, g = {gk}Kk=1. The likelihood is

l(x;θ,g) =
N∏
i=1

[
K∑
k=1

h(xi, θk) gk

]

where we use the following notation

h(xi, θk) =
f(t1i, αk, βk)f(t2i, αk, βk)

(F (t̄, αk, βk)− F (t, αk, βk))
2 .

Here, t and t̄ are the bounds on t. In our case, t = 0 and t̄ = 260. The log-likelihood is then

given by

log `(x;θ,g) =
N∑
i=1

log

(
K∑
k=1

h(xi, θk) gk

)
, (69)

which we want to maximize by choosing θ,g.

This problem has first order conditions:

0 =
∂ log `(x; θ, g)

∂θk
=

N∑
i=1

h(xi, θk) gk∑K
k′=1 h(xi, θk′) gk′

∂ log h(xi, θk)

∂θk

0 =
∂ log `(x; θ, g)

∂gk
=

N∑
i=1

h(xi, θk)∑K
k′=1 h(xi, θk′) gk′

Define zk,i as the probability that the ith pair of spells comes from the type k, for all i =

1, ..., N and k = 1, ..., K, as

zk,i (xi; θ, g) ≡ h(xi, θk) gk∑K
k′=1 h(xi, θk′) g′k

. (70)

Notice that for all i = 1, ..., N , we have
∑K

k=1 zk,i = 1. We can write the first order conditions
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using z as follows:

0 =
N∑
i=1

zk,i (xi; θ, g)
∂ log h(xi, θk)

∂θk
(71)

gk =

∑N
i=1 zk,i (xi; θ, g)∑K

k′=1

∑N
i=1 zk′,i (xi; θ, g)

(72)

This is a system of (3 + N)K equations in (3 + N)K unknowns, namely {αk, βk, gk} and

{zk,i}. These equations are not recursive; for instance g enters in all of them.

The EM algorithm is a way of computing the solution to the above system iteratively.

It can be shown that this procedure converges to a local maximum of the log-likelihood

function. Given {θm,gm} we obtain new values {θm+1,gm+1} as follows:

1. (E-step) For each i = 1, .., N compute the weights zmk,i as :

zmk,i =
h(xi, θ

m
k ) gmk∑K

k′=1 h(xi, θmk′ ) g
m
k′

for all k = 1, ..., K . (73)

2. (M-step) For each k = 1, ..., K define θm+1
k as the solution to:

0 =
N∑
i=1

zmk,i
∂ log h(xi, θ

m+1
k )

∂θk
, (74)

for all k = 1, ..., K.

3. (M-step) For each k = 1, ..., K let gm+1
k as :

gm+1
k =

∑N
i=1 z

m
k,i∑K

k′=1

∑N
i=1 z

m
k′,i

. (75)

H.3 Potential Biases in ML Estimation

There are two biases in the maximum likelihood estimation, one related to estimation of µ,

and one related to estimation of σ. These then lead to biases in estimation of α and β.

It is instructive to derive the maximum likelihood estimators for µ and σ in a simple

case, where data on (single spell) duration t(i), i = 1, . . . N come from an inverse Gaussian

distribution. Straightforward algebra leads to

µ̂MLE =
1

N

N∑
i=1

t(i) = E[t], σ̂2
MLE =

1

N

N∑
i=1

1

t(i)
− 1

N

N∑
i=1

t(i) = E[
1

t
]− E[t]. (76)
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Figure 12: Maximum likelihood estimates of µ̂, relative to the true value of µ.

Notice that E[t] and E[1/t] are sufficient statistics.

The bias in µ is inherited from the inverse Gaussian distribution. In particular, it is

very difficult to estimate µ precisely if µ is close to zero, which can be seen from the Fisher

information matrix. This is given by, see for example Lemeshko, Lemeshko, Akushkina,

Nikulin, and Saaidia (2010),

I(µ, σ) =

(
µ3/σ2 0

0 1
2
σ4

)

and thus the lower bound on any unbiased estimate of µ is proportional to 1/µ3. This

diverges to infinity as µ approaches zero. Therefore, any estimate of µ, and thus also any

estimate of α, will have a high variance for small µ (α). To illustrate this point, we generate

1,000,000 unemployment spells from a single inverse Gaussian distribution with parameters

µ, σ, assuming that µ ∈ [0.01, 0.08] and σ ∈ [0.02, 1.2]. For different combinations of µ and

σ, we find the maximum likelihood estimates µ̂ and σ̂, and plot µ̂ relative to true value of µ

in Figure 12. The left panel shows this ratio as a function of µ, the right panel as a function

of σ. The estimate of µ has a high variance for small µ and thus is likely to be further away

from the true value. This bias is somewhat worse for a larger value of σ, in line with the

lower bound on the variance σ2/µ3, which is higher for smaller µ and larger σ.

To illustrate the performance of the ML estimator, we worked with continuous data. The

real-world data differ from simulated in terms of measurement, as these can be measured

only in discrete times. In particular, anybody with duration between, say 12 and 13 weeks,

will be used in our estimation as having duration of 12.5 weeks. We study what bias this

66



0.2 0.4 0.6 0.8 1 1.2
0.6

0.8

1

σ

ra
ti
o
σ̂
/σ

µ = 0.01
µ = 0.0.3
µ = 0.05
µ = 0.07

0.2 0.4 0.6 0.8 1 1.2
0.6

0.8

1

σ

ra
ti
o
of
E
[1
/t
]/
E
[1
/t
]

µ = 0.01
µ = 0.03
µ = 0.05
µ = 0.07

Figure 13: Maximum likelihood estimates of σ (left panel) and of the mean of 1/t (right
panel) using discretized data, relative to their true values. The ratios are plotted as a
function of σ, each line corresponds to one value of µ.

measurement introduces by by treating the simulated data as if they were measured in

discrete times too. We find that this measurement affects estimates of σ, see the left panel

of Figure 13, and the bias comes through the bias in estimating E[1/t], see the right panel

of the same figure. The bias in estimation of µ is small for values of σ < 0.6, which the

range we estimate in the Austrian data. The magnitude of the bias for estimation of σ does

not depend on the value of µ, but is also larger for larger values of σ, see the right panel of

Figure 13. Discretization affects the mean of t only very mildly, and thus it does not affect

estimation of µ. However, the mean of 1/t is sensitive to discretization. Since the mean

of t is very similar for discretized and real values of t, this suggests that the distribution

of spells between t and t + 1 is not very different from symmetric. If this distribution was

uniform, the bias in E[1/t] can be mitigated by using a different estimator for E[1/t]. For

example, noticing that log(t + 1) − log(t) =
∫ t+1

t
1/tdt, one can use the sample average of

log(t + 1) − log(t) to measure E[1/t]. In practice, we find that this estimator reduces the

bias in E[1/t] if spells are measured at some starting duration t larger than 0, say 2 weeks.

However, if spells are measured starting at zero, the bias is worse.
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