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Abstract. Applied researchers often need to calculate con�dence sets for

functions of parameters, such as the e¤ects of counterfactual policy changes. If the

function is continuously di¤erentiable and has non-zero and bounded derivatives,

then they can use the delta method. However, if the function is nondi¤erentiable

(as in the case of simulating functions with zero-one outcomes), has zero derivatives,

or unbounded derivatives, then researchers usually use the nonparametric bootstrap

or sample from the asymptotic distribution of the estimated parameter vector. Re-

searchers also use these bootstrap approaches when the function is well-behaved

but complicated. Indeed, these approaches are advocated by two very in�uential

published articles. We �rst show that both of these bootstrap methods can produce

con�dence sets whose asymptotic coverage is less than advertised, i.e. con�dence sets

that are too small. We then propose two procedures that provide correct coverage

asymptotically. In applications, we �nd that the bootstrap approaches mentioned

above produce con�dence sets that are signi�cantly smaller than their consistent

counterparts, suggesting that previous empirical work is likely to have been overly

optimistic in terms of the precision of estimated counterfactual e¤ects.
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1. Introduction

We propose procedures to calculate confidence sets for functions of parameters

without restricting the derivatives of the functions and without requiring the functions to

be continuous. These are the �rst procedures for these cases that have consistency proofs.

The need for such procedures follows from applied work. Applied researchers often calcu-

late con�dence sets for functions of estimated parameters, e.g. to carry out counterfactual

policy analysis. If the function is di¤erentiable and has non-zero and bounded derivatives,

then researchers can use the delta method,1 although they are often reluctant to use it

for complex, nonlinear functions whose derivatives satisfy these properties.

However, if the function has zero or unbounded derivatives, or is discontinuous, as

in the case of simulating functions with zero-one outcomes, then the delta method is in-

appropriate. Krinsky and Robb (1986) propose the following approach as an alternative

to the delta method to obtain a (1 � �) con�dence set for a function evaluated at the

parameter estimates: i) take a large number of draws from the asymptotic (normal) dis-

tribution of the parameter estimates; ii) calculate the function value for each draw; and

iii) trim (�=2) from each tail of the resulting distribution of the function values. Their

approach has been widely used in empirical work to obtain con�dence sets for com-

plex, nonlinear, di¤erentiable functions of the estimated parameters, such as consumer

demand elasticities, the expected duration of unemployment and impulse functions2 , as

well as for nondi¤erentiable functions of the estimated parameters.3 Finally, two promi-

nent textbooks4 also recommend this approach, and the �wtp�and �wtpcikr�commands

in Stata (the leading software package used by applied economists) are based on Krinsky

and Robb (1986). Although this procedure of sampling from the asymptotic distribution

is sometimes called the parametric bootstrap, this term has more than one meaning in

1See, e.g., Weisberg (2005) for a description of the delta method.
2See Krinsky and Robb (1986) and Fitzenberger, Osikominu and Paul (2010) for applications to

demand elasticities and unemployment duration respectively. Further, see Inoue and Kilian (2013) for
a recent overview of the impulse response function literature. A simple Google search lists forty-four
published papers that refer to Krinsky and Robb (1986).

3A few (of many possible) examples are Gaure, Røed and Westlie (2010), Ham, Mountain and Chan
(1997), Hitsch, Hortacsu and Ariely (2010), Merlo and Wolpin (2009) and Røed and Westlie (2011). Its
use is advocated, but not implemented, by Eberwein, Ham and LaLonde (2002). A review of the literature
indicates that many studies either i) do not give a con�dence set for the simulated results or ii) give a
con�dence set for the simulated results but do not state how they construct it.

4See Greene (2012, page 610) and Wooldridge (2010, page 441).



Con�dence Sets for Continuous and Discontinuous Functions of Parameters 3

the literature, so instead we will refer to it as the Asymptotic Distribution bootstrap or

AD-bootstrap.

Runkle (1987) recommends the following alternative to the Krinsky-Robb procedure to

obtain a (1��) con�dence set for a function evaluated at the parameter estimates: i) draw

a bootstrap sample of the data, reestimate the model, and use the resulting parameter

estimates to calculate the function; ii) repeat i) many times and trim (�=2) from each tail

of the resulting distribution of function values. Runkle�s article has been very in�uential;

in fact, it was included in the issue that commemorated the twentieth anniversary of the

Journal of Business and Economics Statistics as one of the ten most in�uential papers in

the history of the journal (Ghysels and Hall 2002, page 1). Moreover, Runkle�s approach is

endorsed by three prominent graduate econometrics textbooks.5 We refer to this approach

as the ADR-bootstrap. It is �rst order equivalent to the AD-bootstrap for cases where

the version of the bootstrap used in Runkle�s (1987) procedure estimates the asymptotic

distribution of the parameters consistently.

We �rst give four important examples in which the widely used AD-bootstrap and

ADR-bootstrap fail, including one that mimics how researchers construct con�dence sets

for counterfactual policy analysis via simulation of structural or nonlinear models. We

then provide a method of obtaining con�dence sets that works in all of these situations

under relatively mild conditions (that are likely to be satis�ed in empirical work). We also

provide a modi�cation of our approach that o¤ers potential e¢ ciency gains in principle

and in practice; this second method is asymptotically equivalent to the delta method

when the latter is valid. Thus, our proposed procedure is valid under weaker conditions

than the delta method but involves no e¢ ciency loss. Therefore, our approach should be

very useful in all of the cases where researchers have previously used the AD-bootstrap

or the ADR-bootstrap, as well as in the case of di¤erentiable functions where it is unclear

whether the (generally numerical) derivatives actually are nonzero and bounded.6

5Hamilton (1994, page 337), Cameron and Trivedi (2005, page 363) and Wooldridge (2010, page 439);
see also Cameron and Trivedi (2010, page 434). Examples of the use of the Runkle (1987) method in
applied work are Chaudhuri, Goldberg, and Jia (2006) and Ryan (2012), who use it to obtain con�dence
intervals for the e¤ects of counterfactual policy changes, and Hoderlein and Mihaleva (2008), who use it
to calculate con�dence intervals for price elasticities.

6Hall (1995) provides a bootstrap procedure for calculating standard errors of functions of estimated
parameters. However, like the delta method, it does not apply to discontinuous or non-di¤erentiable
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To implement our �rst procedure, the researcher obtains a (1 � �) con�dence set for

the function of interest by: i) sampling from the asymptotic distribution of the parameter

estimator using the bootstrap or using a normal approximation; ii) keeping the draw only

if it is in the (1 � �) con�dence set for the estimated parameters; iii) calculating the

function value for each draw; and iv) using all function values to construct the con�dence

set for the function. This procedure di¤ers from the AD-bootstrap and ADR-bootstrap

in that they trim the extreme values of the function that come from both �reasonable�

values and �unreasonable�(extreme) values of the parameter vector, while our approach

deletes only function values that arise from �unreasonable�values of the parameters.7 We

refer to our procedure as the con�dence set bootstrap or CS-bootstrap. We also provide a

modi�cation that o¤ers potential e¢ ciency gains over the CS-bootstrap, and refer to it as

the weighted con�dence set bootstrap or the WCS-bootstrap. The substantial conditions

that are necessary to apply our approach are: i) that one can sample from the asymptotic

distribution of the estimators of the parameters and ii) that the set of points at which

the function is discontinuous is small. For example, if the function is a scalar, then the

second requirement is that the number of discontinuity points is �nite.

We also apply our method to an estimator considered by Andrews (2000). Andrews

showed that no version of the bootstrap can consistently estimate the distribution of his

maximum likelihood estimator. An example involving a function of a parameter yields

the same maximum likelihood estimator as in Andrews (2000). Our proposed procedures

also work for this example, suggesting that it might be more fruitful to focus on the

construction of con�dence sets, rather than on the distributions of various versions of the

bootstrap.

A paper related to ours is Hirano and Porter (2012). They show that if the target

object is not di¤erentiable in the parameters of the data distribution, then there exists no

estimator sequences that is locally asymptotically unbiased or �-quantile unbiased. They

note that this places strong limits on estimators, bias correction methods, and inference

procedures. Our paper complements this paper in the sense that our method still works

functions bootstrap, but requires stronger assumptions than those necessary for the delta method. Hence
we view Hall�s procedure as dominated by the delta method and do not consider it further in our paper.

7We formalize this notion of �reasonable�values in Lemma 1.
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for a class of models where the function of the parameters is not di¤erentiable in the

parameters of the data distribution. Horowitz (2002) states the consistency conditions

for the regular bootstrap including the condition that the function of the parameters is

di¤erentiable in the parameters of the data distribution. He also gives examples in which

this conditions fails.

We use the empirical work from two papers to obtain evidence demonstrating the dif-

ference between the procedures in practice. First, we consider work from Ham, Li and

Shore-Sheppard (2011, hereafter HLSS), who construct both relatively simple di¤eren-

tiable functions, and relatively complicated nondi¤erentiable functions, of their parame-

ter estimates describing the labor market dynamics of disadvantaged women in the U.S.

Second, we consider con�dence sets for complex di¤erentiable functions of estimated para-

meters from a rich model of dating and marriage that Lee and Ham (2012, hereafter LH)

use to evaluate the e¢ cacy of di¤erent matching mechanisms for online dating. We �nd

�rst that for HLSS�simple di¤erentiable functions, the AD-bootstrap produces somewhat

smaller con�dence sets than the (appropriate) delta method. Second, we �nd that the

AD-bootstrap produces much smaller con�dence sets than those from the (appropriate)

CS-bootstrap for LH�s complicated di¤erentiable functions and HLSS�nondi¤erentiable

functions. Additionally, we �nd that the WCS-bootstrap o¤ers substantial e¢ ciency gains

over the CS-bootstrap in the case of relatively simple di¤erentiable functions. The upshot

is that the size of many estimated con�dence sets in the literature may be substantially

biased downwards.

We proceed as follows. In section 2 we show that, in several important examples, the

AD-bootstrap and ADR-bootstrap fail to provide a con�dence set with the correct asymp-

totic coverage. In section 3 we show that the CS-bootstrap and the WCS-bootstrap pro-

vide consistent con�dence sets for both nondi¤erentiable and discontinuous functions. In

section 4 we provide evidence on the di¤erence between the CS, WCS and AD-bootstraps

in practice, and we conclude in section 5.
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2. Failures of the Delta Method and the AD-bootstrap when
Calculating Confidence Sets for Functions of Parameters

We examine the performance of the delta method, the AD-bootstrap, and the ADR-

bootstrap in four important examples in this section. However, since the AD-bootstrap

and ADR-bootstrap are equivalent asymptotically, for expositional ease in what follows

we simply refer to the AD-bootstrap with the understanding that the ADR-bootstrap

will behave in exactly the same way as the AD-bootstrap. In Example 1, both the delta

method and the AD-bootstrap fail. In Example 2, the AD-bootstrap fails. In Example

3, the delta method is infeasible and no version of the bootstrap consistently estimates

the asymptotic distribution of the function of the estimator; however, we show below that

the CS-bootstrap can be used to construct a valid con�dence set. Example 4 will be of

most interest to applied researchers, since it mimics how researchers construct con�dence

sets for counterfactual policy analysis where outcomes are discrete and policy e¤ects are

obtained via simulation of structural or nonlinear models. However, it is also our most

complicated example, and our �rst three examples, while somewhat more theoretical in

nature, should prove useful to even very applied researchers. The outcomes here are

discontinuous functions of the data, and researchers have turned to the AD bootstrap

because the delta method is not applicable. However, we show that the AD bootstrap

again fails in this very important application.

Example 1: The Delta Method and the AD-bootstrap Fail

Suppose we observe a random sample, X1; :::; XN ; from a normal distribution with mean �

and variance 1; and let �̂ = �XN =
1
N

X
i

Xi: Let E(X) = �0 = 0 and consider h(�) =
p
j�j:

The delta method yields the following symmetric 95% con�dence interval with probability

one: "q
j �XN j �

1:96

2
p
N
p
j �XN j

;
q
j �XN j+

1:96

2
p
N
p
j �XN j

#
:

The probability that the true value is inside this con�dence interval is about 0.67 (in

repeated samples) for any N . Fortunately, our method gives a con�dence interval with

the correct coverage probability of 95%.

In Example 1, the delta method fails because the derivative does not exist at one
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point. The failure is easy to spot here. However, such problems may be much harder to

spot in more realistic applications such as the two empirical applications that we consider

below, both of which involve estimating more than one hundred parameters. In example

1, the AD-bootstrap also fails. In particular, it yields a con�dence set with a coverage

probability of 0% for any N . The reason for this is that the true value, h(� = 0) = 0; is the

minimum of the function. Let G(:) denote the distribution function of h(�̂): Applying the

AD-bootstrap and using the interval between the 2.5 and 97.5 percentiles of the function

values, [G(0:025); G(0:975)]; yields a con�dence set that does not cover the true value, so

the coverage probability is 0%.

Example 2: A Probit Model

Suppose that one is interested in the function h(�; ) = 1
2�(�) +

1
2�
�
�2 �

p
2 ln(2)

�
where the true values of the parameters are zero, i.e. �0 = 0 = 0: Let the estimator

(�̂; ̂) have a normal distribution with mean zero and a known variance-covariance matrix�
1 �
� 1

�
: The delta method cannot be used since the function has a zero derivative at

the true value of the parameters if � = 1. The AD-bootstrap samples from the normal

distribution with mean (�̂; ̂) and covariance matrix
�
1 �
� 1

�
in order to construct the

distribution of h(�̂; ̂): Let G(:) denote this distribution function of h(�̂; ̂): Applying the

AD-bootstrap and using the interval between the 2.5 and 97.5 percentiles of the function

values, [G(0:025); G(0:975)]; does not yield a con�dence set with 95% coverage for many

values of �. For example, the coverage is 0% for the AD-bootstrap if � = 1; 90% for � = 0:5;

and 93% for � = 0:8 Thus, the AD-bootstrap does not produce a con�dence set with the

correct coverage.9 We also note that the AD-bootstrap con�dence set coincides with the

Bayesian credible interval (with �at priors) in this case, so the Bayesian procedure also

fails here. Note that the extreme failure of the AD-bootstrap for � = 1 occurs because

h(�0 = 0; 0 = 0) = 0 is the minimum value of the function.10 Just as in example 1, this

is the case even if the variance of the estimators is arbitrarily small. We observe that the

continuity of the coverage as a function of the true values of the parameters also causes
8See the Appendix for details.
9Correct coverage of a con�dence set means that the coverage probability is no smaller than its nominal

probability, see Andrews and Cheng (2012 and 2013).
10Thus, sampling from the asymptotic distribution yields values of the function that are larger than

the minimum (and true value) with probability one, ensuring failure of the AD-bootstrap.
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the AD-bootstrap to fail for � close to one: Finally, we note that using the AD-bootstrap

to calculate standard errors for average partial e¤ects can also fail in this type of situation.

Example 3: Andrews (2000), Inconsistency of the Bootstrap

Suppose we observe a random sample, X1; :::; XN ; from a normal distribution with mean

� and variance 1 (denoted as N(�; 1)) and suppose that � is restricted to be nonnega-

tive. Andrews (2000) considers the maximum likelihood estimator �̂ = max( �XN ; 0) where

�XN =
1
N

X
i

Xi: He shows that the nonparametric bootstrap fails to consistently estimate

the distribution of �̂ if � = 0; and that it is impossible to consistently estimate the dis-

tribution of �̂ using any bootstrap method if � = cp
N
for any c > 0: A related problem is

deriving a con�dence set for the function h() = max(; 0) where  = E(X) and we ob-

serve a random sample, X1; :::; XN ; from a normal distribution with mean  and variance

1: Note that  can be negative and let ̂ = �XN : The estimator h(̂) = max( �XN ; ; 0) is

the identical to Andrews�(2000) estimator and it follows from the reasoning of Andrews

(2000) that no version of the bootstrap can estimate the distribution of h(̂) if  = cp
N

for any c > 0: We show that in this case the CS-bootstrap can consistently estimate the

con�dence set for h():

The last example considers a case that uses simulations to estimate the function of

interest.

Example 4: An Ordered Probit Model

Suppose that a �rm o¤ers three products, A, B, and C, where product B is more

luxurious than product A; but less luxurious than product C: Let consumer i make the

following choice:

Ai = 1 if � 2 � Xi� + "i < 0 and Ai = 0 otherwise,

Bi = 1 if 0 � Xi� + "i � 2 and Bi = 0 otherwise, and

Ci = 1 if Xi� + "i > 2 and Ci = 0 otherwise,

where Xi equals one if the consumer lives in a market where the �rm is advertising

and "ijXi has a standard normal distribution. Note that consumer i does not make a
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purchase if Xi� + "i < �2: Suppose that the �rm conducted an advertising campaign

in one market to encourage customers to buy a more luxurious product and that the

�rm estimated �. Next, an econometrician�s objective is to predict how the demand for

product B responds to such advertising in another market, including a con�dence set

for this response. Suppose that the true value of � equals one and that the estimator

for � is normally distributed with mean 1 and variance �2� = 1. In such a case, it is

natural to estimate the change in the demand for product B using simulations. This

is a case where the AD-bootstrap fails. In particular, we used simulated data on 1000

individuals and simulated 100 draws from the distribution of " for each individual.11 We

then drew 1; 000 times from the distribution of the estimator and calculated the change in

the probability of buying good B: The resulting AD-bootstrap 95% con�dence set covered

only the true value of this change, 0:2054; in 36% of the cases.12 Simulating data to form

con�dence sets often yields non-di¤erentiable functions, as in this example. Therefore,

the delta method cannot be used, while the AD-bootstrap may yield inconsistent results.

Our applied section presents more complicated examples that use simulations.

Note that subsampling, as proposed by Politis and Romano (1994), does not yield

con�dence sets with asymptotically correct coverage in the examples above. Of course,

there are examples where the AD-bootstrap will have correct asymptotic coverage, but it

is di¢ cult to ascertain in general when this will be the case.13 In particular, Hirano and

Porter (2012) show that if the target object is not di¤erentiable in the parameters of the

data distribution, then there exist no estimator sequences that are locally asymptotically

unbiased or �-quantile unbiased. They then note �Since no regular estimator exists, the

usual arguments for the validity of standard approaches to inference, such as Wald-type

procedures, will not be valid.�The examples above show that it can be di¢ cult to see

11Some readers may question the need to use the AD bootstrap, since with a very large number of
simulations the outcome may approach a continuously di¤erentiable function and researchers should be
able to use the delta method. However, our example is a toy model, and using a very large number of
simulations in a function evaluation is not feasible for the structural models used for counterfactual policy
analysis.
12Also, the coverage probability remained well below 95%, even for much smaller values of �2� :
13For example, it is straightforward to show that if � and h(�) are scalars, then a su¢ cient condition

for the AD-bootstrap to work is for h(�) to be monotonic. However, example 2 shows that this does not
generalize to the case where the parameter is of dimension two and the function is monotonic in its �rst
and second argument.
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whether the �target object� is di¤erentiable in the parameters of the data distribution

so that it is desirable to have a procedure that yields valid con�dence sets even if this

di¤erentiability is violated.

3. Main result

In this section we provide a method of obtaining con�dence sets that is valid under

reasonable assumptions that are likely to be satis�ed in empirical work. We begin by

discussing the CS-bootstrap and then consider the WCS-bootstrap. The latter has the

advantage that it is asymptotically equivalent to the delta method when the delta method

is valid. For both of these approaches, we consider using the asymptotic distribution and

the bootstrap approximation.

Let the dimension of � be equal to K and let h(�) have dimension H: Note that

allowing for H > 1 is important, since it allows one to obtain a joint con�dence set for

multiple counterfactual outcomes. For example, in a structural model with human capital

accumulation (Eckstein and Wolpin 1999, Keane and Wolpin 2000), one can look at the

e¤ect of a policy change on both completed schooling and work experience (at any point

in the life cycle). Alternatively, in a model of labor market dynamics (Eberwein, Ham

and LaLonde 1997), it would be helpful to have a joint con�dence set for the e¤ect of

participating in a training program on the expected duration of employment and the

expected duration of unemployment.

Suppose that the estimator for �; denoted by �̂; is asymptotically normally distributed

and consider the following con�dence set for the parameter �:

CS�1�� = f� 2 �jN � (�̂ � �)0(
̂)�1(�̂ � �) � �21��(K)g; (1)

where 
̂ is the asymptotic variance-covariance matrix for �̂ and �21��(K) is the (1 � �)

percentile of the �2 distribution with K degrees of freedom. Next, let CSh(�)1�� denote the

set of values that we obtain if we apply the function h(�) to every element of CS�1��:

More precisely,

CS
h(�)
1�� = f� 2 RH j� = h(�) for some � 2 CS�1��g: (2)
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Suppose that the researcher draws M� times from the asymptotic distribution of �̂:

Let ~�1; :::; ~�M� denote these draws. The researcher then keeps the draws that satisfy

~�m 2 CS�1��; m = 1; :::;M�:: Let ~�1; :::; ~�M denote retained these draws. We now es-

timate the con�dence set for the function of the parameters, CSh(�)1��; by applying the

function h(:) to the draws ~�1; :::; ~�M : In particular, let
\
CS

h(�)
1�� be the set of all points in

the image of h(�); � 2 �; that are no farther than the Euclidian distance � > 0 away from

h(~�1); :::; h(~�M�1); or h(~�M ):14 The con�dence set
\
CS

h(�)
1�� is what arises from using what

we described heuristically above as the CS-bootstrap.

We brie�y note why the AD-bootstrap can fail for the case where h(�) is a scalar.

The AD-bootstrap samples from the entire asymptotic distribution of �̂ and forms the

con�dence set of h(�) by trimming the extreme (1��)=2 values from the upper and lower

tails of the resulting distribution for h(�). Note that the extreme values of h(�) that the

AD-bootstrap trims can arise from i) an extreme draw from the asymptotic distribution

of � or ii) a �reasonable�draw for � that results in an extreme value of h(�):15 The CS-

bootstrap instead samples from the (1 � �) con�dence set of � and includes all of the

resulting values of h(�) in its (1 � �) con�dence set, and thus does not trim h(�) for

a �reasonable� draw of �. Moreover, note that constructing a con�dence set using the

CS-bootstrap is no more di¢ cult than constructing one using the AD-bootstrap.

A similar procedure can be used if the researcher draws J bootstrap samples to obtain

the distribution of �̂. Let ~�1; :::; ~�J denote the bootstrap sample estimates and 
̂ the

variance-covariance matrix of the bootstrap samples. For each estimate, we calculate

Bj = (�̂� ~�j)0
̂�1(�̂� ~�j); j = 1; :::; J: We then select the (1� �) � J bootstrap estimates

that have the smallest values of Bj ; and call this set B: Let ~�1; :::; ~�M denote these draws.

As before, we estimate the con�dence set by applying the function h(:) to the draws

~�1; :::; ~�M : That is,
\
CS

h(�)
1�� is the set of all points in the image of h(�); � 2 �; that are no

farther than the Euclidian distance � > 0 away from h(~�1); :::; h(~�M�1); or h(~�M ):

14Let �h be the image of h(�); � 2 �: If ~�s 2 CS�1�� is sampled, then any h 2 �h for which

jjh(~�s) � hjj2 � � is included in the (1 � �) con�dence set for h(�): If CSh(�)1�� is convex then it may be
possible to calculate the set directly without using �; e.g. h(�) is a scalar and {h

¯
=min h(�) : � 2 CS1��g

and {h̄=max h(�) : � 2 CS1��g can be calculated so that CSh(�)1�� = [h¯
,h̄]:

15 In the lemma that follows, we formalize the notion that values that are closer to �̂ are likely to be
closer to the true value �0 as well (compared to values that are further away from �̂):
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We next consider the case where the asymptotic distribution of �̂ is unknown but one

can construct a con�dence set for it. For example, CS�1�� is derived using bounds.
16 Note

that one cannot calculate h(�) for every � 2 CS�1��: Therefore, we use a grid that has M

points to approximate CS�1��: We then calculate h(�) for each of these M grid points.17

Next, let the con�dence set
\
CS

h(�)
1�� be the set of all points in the image of h(�); � 2 �;

that are no farther than the Euclidian distance � > 0 away from h(~�1); :::; h(~�M�1); or

h(~�M ):

We state our �rst assumption in terms of properties of CS�1��: Later on, when we

discuss the weighted CS-bootstrap, we use properties of the asymptotic distribution as

primitives in the assumptions, since the weighting may depend on this asymptotic distri-

bution. Let N denote the sample size. Also, let P be the data generating process and

let P be a space of probability distributions. Our �rst assumption requires the true value

of the parameter, �0(P ); to be an element of CS�1�� with probability of at least (1� �);

uniformly over P:

Assumption 1

Let (i) �0(P ) 2 �; which is compact; and (ii)

lim
N!1

inf
P2P

Prf�0(P ) 2 CS�1��g � 1� �

for any � 2 (0; 1):

While the true parameter, �0(P ); is of course a function of the data generating process,

for expositional ease we often write it as �0: Note that Assumption 1 simply says that

the con�dence set for the parameter contains the true parameter value with probability

(1 � �) in the limit, uniformly over P. This will certainly hold for any estimator that

is uniformly asymptotically normally distributed, as well as for the subsampling and

bootstrap con�dence sets for � under appropriate regularity conditions (see Romano and

Shaikh 2010, and Andrews and Guggenberger 2010).

16E.g. the con�dence set is derived using the techniques proposed by Imbens and Manski (2004),
Chernozhukov, Hong, and Tamer (2007), or Stoye (2009).
17One can use equally spaced grids, Halton sequences, Halton (1964), or Sobol sequences, Sobol (1967).

All these grids are dense in CS�1�� as M increases.
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Assumption 2

Let h(�) be bounded over the domain �: Let there exist a partitioning of the parameter

space such that �1 [ �2::: [ �R = �; where R < 1; let �1;�2; :::;�R�1 and �R have

nonzero Lebesgue measure; and let h(�) be uniformly continuous18 for all � 2 �r; r =

1; :::; R:

The second assumption allows h(�) to be discontinuous. For example, if � is a scalar,

then Assumption 2 requires that the number of discontinuities is �nite. In general, the

parameter space is partitioned into R subsets, and h(�) is assumed to be uniformly con-

tinuous on each of these sets. The restriction is that R is �nite. This condition is weaker

than the conditions needed for the delta method.

Next, we propose a modi�ed version of our procedure. This modi�ed procedure uses

weights and usually yields a smaller con�dence set than the CS-bootstrap. The idea is

to use a weighted average of the elements of the parameter vector �: These weights are

comparable to the weights used in the general method of moments (GMM) procedure,

in the sense that the reason to use them is to reduce variation or spread. For example,

consider the function h(�) = �(�1 + 2�2); then the researcher could use a con�dence set

for �1 + 2�2 rather than the con�dence set for (�1; �2): That is, the researcher could use

a con�dence set for a weighted average. In general, let �̂ be asymptotically normally

distributed and let 
̂ denote a consistent estimator for its asymptotic variance-covariance

matrix. De�ne the vector w = (w1; w2; :::; wK)0; where w1; w2; :::; wK are scalars if h(�) is

a scalar and column vectors with length H otherwise. Consider the following con�dence

set for w0�:

WCS�1�� = f� 2 �jN � (�̂ � �)0w(w0
̂w)�1w0(�̂ � �) � �21�(H)

and N � (�̂ � �)0
̂�1(�̂ � �) � �21� 
5
(K)g:

If h(�) is a scalar, as in the applications reviewed in the Introduction, then H = 1. Let

WCS
h(�)
1�� denote the set of values that we obtain if we apply the function h(�) to every

18The vector-function h(�) is uniformly continuous on �j if for any � > 0 there is an " > 0 such that
jjh(�1)� h(�2)jj < � for all �1; �2 2 �j with jj�1 � �2jj < " where jj.jj is the Euclidean norm:
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element of WCS�1��: That is,

WCS
h(�)
1�� = f� 2 RH j� = h(�) for some � 2WCS�1��g: (3)

We estimate WCSh(�)1�� by drawing M� times from the asymptotic distribution of �̂;

and keeping the draws that are elements of WCS�1�� (i.e. draws that satisfy N � (�̂ �

�)0w(w0
̂w)�1w0(�̂��) � �21�(H) and N �(�̂��)0
̂�1(�̂��) � �21� 
5
(K)g). Let ~�1; :::; ~�M

denote these retained draws. We now estimate this con�dence set by applying the func-

tion h(:) to the draws ~�1; :::; ~�M : In particular, let
\

WCS
h(�)
1�� be the set of all points in the

image of h(�); � 2 �; that are no farther than the Euclidian distance � > 0 away from

h(~�1); :::; h(~�M�1); or h(~�M ):

A similar procedure can be used if the researcher uses the bootstrap for the distribution

of �̂. Again, let ~�1; :::; ~�J denote the bootstrap sample estimates and 
̂ the variance-

covariance matrix of the bootstrap samples. For each estimate, we calculate ~Bj = (�̂ �

~�j)
0w(w0
̂w)�1w0(�̂ � ~�j); j = 1; :::; J: We then select the (1� ) � J bootstrap estimates

that have the smallest values of ~Bj and call this set ~B: Next we select the (1 � �) � J

bootstrap estimates that have the smallest values of �Bj = (�̂� ~�j)0
̂�1(�̂� ~�j); j = 1; :::; J:

and call this set �B:Let ~�1; :::; ~�M denote these draws. As before, we estimate the con�dence

set by applying the function h(:) to the draws ~�1; :::; ~�M : That is,
\

WCS
h(�)
1�� is the set of

all points in the image of h(�); � 2 �; that are no farther than the Euclidian distance

� > 0 away from h(~�1); :::; h(~�M�1); or h(~�M ):

In applications, the weights w will often be estimated. One may estimate w by using

numerical derivatives of h(�) around the estimate �̂: The numerical derivatives provide

simple estimates for the weights, ŵ; and then one replaces w by ŵ in forming \WCS�1��

and ~B to obtain con�dence sets for h(�): Furthermore, we suggest limiting the ratio of the

weights so that mink(jŵkjg)=maxk(jŵkj) � 1=100: The WCS-bootstrap yields con�dence

sets with the correct asymptotic coverage for h(�); even if some of the partial derivatives

of h(�) are in�nite (as in Example 1) or zero, while of course this is not true for the delta

method. Since the WCS-bootstrap is asymptotically equivalent to the delta method when

the latter is valid (see the Appendix), the WCS-bootstrap is safer to use than the delta

method but involves no loss of e¢ ciency.
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A somewhat more complicated procedure that avoids numerical di¤erentiation is the

following. First, consider the case where the researcher samples from the asymptotic

distribution. In that case, we propose letting the initial con�dence set be all values of

� 2 � for which N � (�̂ � �)0
̂�1(�̂ � �) � �21��(K): We then use the values of this initial

con�dence set to estimate a linear approximation to the function h(�): In particular, we

use the asymptotic distribution to draw M values of the parameter that satisfy

N � (�̂ � �)0
̂�1(�̂ � �) � �21��(K). Let ~�1; :::; ~�M denote these points. We then calcu-

late h(~�1); :::; h(~�M ) and regress {h(~�1); :::; h(~�M )g on {~�1; :::; ~�Mg: Let ŵ denote the least

squares estimator and use the elements of ŵ as weights. Note that ŵ0� is just the best

linear predictor and that again h(�) is not required to be continuous. Next, construct a

con�dence set for h(�) by again replacing w with ŵ:

A similar procedure can be used to estimate weights if the researcher uses the boot-

strap. Once again, let ~�1; :::; ~�J denote the bootstrap sample estimates and 
̂ the variance-

covariance matrix of the bootstrap samples. As in the case of the CS-bootstrap, we cal-

culate ~Aj = (�̂ � ~�j)0
̂�1(�̂ � ~�j); j = 1; :::; J: We then select the (1 � �) � J bootstrap

estimates that have the smallest values of ~Aj and call this set ~A: Next, we regress h(~�j)

on ~�j using all j 2 ~A: This yields the weights ŵ: Next, construct a con�dence set for h(�)

by again replacing w with ŵ:

Besides Assumption 2, we also need Assumption 3 for the WCS-bootstrap when we

construct
\

WCS
h(�)
1�� (i.e. sample from the asymptotic distribution of �̂):

Assumption 3

Let (i) � 2 �; which is compact; (ii) for all k; wk 6= 0; ŵk 6= 0; sup
P2P

jŵk � wkj = op(1);

(iii)
p
N(�̂ � �0)

d! N(0;
) uniformly in P 2 P, and the estimator 
̂ converges to 


uniformly in P 2 P; where 
 and w0
w have full rank; (iv) � 2 (0; 1):

If the researcher uses the bootstrap to obtain the con�dence set for �, then we need an

additional assumption for
\

WCS
h(�)
1��. In particular, we require that the weighted average,

ŵ0�0; is in the con�dence set WCS�1�� with a probability that is equal to or larger than

(1��); uniformly in P 2 P. Romano and Shaikh (2010) give uniform convergence results

for the bootstrap (and subsampling).
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Assumption 4

If a version of the bootstrap is used, then

lim
N!1

inf
P2P

Pr(ŵ0�0 2WCS�1��) � 1� �:

Before stating our theorem, intuition for our result can be obtained by continuing our

consideration of example 3.

Example 3 (Continuation):

Consider h() = max(; 0) where  = E(X) and ̂ = �XN : It follows from Andrews

that the nonparametric bootstrap fails to consistently estimate the distribution of �̂ if

� = 0: Further, he demonstrates that it is impossible to consistently estimate (using any

version of the bootstrap) the distribution of ̂ if  = cp
N
for any c > 0: However, the

CS-bootstrap can be used to calculate a 95% con�dence set (or a (1 � �) con�dence

set) for h() in spite of the absence of a consistent estimator of the asymptotic distri-

bution. In particular, let � = h() = max(; 0): The symmetric 95% con�dence set for

� is
h
max

�
0; �XN � 1:96p

N

�
;max

�
0; �XN +

1:96p
N

�i
, which contains � with probability 0:95;

including the case where � = cp
N
for any c > 0:19

We now state our theorem.

Theorem

Let Assumptions 1-2 hold. Then the CS-bootstrap yields

lim
M!1

lim
N!1

inf
P2P

Pr

�
h(�0) 2

\
CS

h(�)
1��

�
� 1� �.

Let Assumptions 2-3 hold. Then sampling from the asymptotic distribution and using the

WCS-bootstrap yields

lim
M!1

lim
N!1

inf
P2P

Pr

�
h(�0) 2

\
WCS

h(�)
1��

�
� 1� �.

Let Assumptions 2-4 hold. Then using a bootstrap procedure for �̂ and the WCS-bootstrap

yields

lim
M!1

lim
N!1

inf
P2P

Pr

�
h(�0) 2

\
WCS

h(�)
1��

�
� 1� �.

19This example also illustrates that one should perhaps not focus exclusively on the distribution of
the bootstrap when the goal is to derive a con�dence set. Also, Hirano and Porter (2012) derive more
impossibility results.
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Proof: See Appendix.

If one relaxes the uniformity requirements20 in Assumption 1, 3, or 4, then the theorem

holds without the uniformity property. Speci�cally, if we replace Assumption 1 by (i)

�0 2 �; which is compact; and (ii)

lim
N!1

Pr(�0 2 CS�1��) � 1� �;

then the theorem holds without the uniformity result, i.e.

lim
M!1

lim
N!1

Pr

�
h(�0) 2

\
CS

h(�)
1��

�
� 1� �:

Also, Assumption 3 puts only mild restrictions on the weights. In particular, one could use

other estimators for the weights. For example, if the function h(�) has a single index, then

one also could calculate the weights using semiparametric least squares, as in Ichimura

(1993), or one of the single-index estimators reviewed by Horowitz (1998). In general,

our weighting is analogous to the use of a weighting matrix when applying the method of

moments estimator. In particular, using a weighting matrix that does not converge to the

e¢ cient weighting matrix does not, in general, cause the method of moments estimator

to be inconsistent, see Hansen (1982) and Newey and McFadden (1994). The same is

true here for the choice of weights, ŵk; k = 1; :::;K: Choosing an e¢ cient weighting

matrix is, in general, a good idea and here we suggest using the WCS-bootstrap with

nonzero weights rather than the CS-bootstrap. Using nonzero weights is analogous to the

approach of Newey and West (1987) and Andrews (1991), who advocate using estimates

of the variance-covariance matrix that are positive semi-de�nite.

The main di¤erence between the CS and WCS-bootstrap on the one hand and the

AD-bootstrap on the other hand is that the CS and WCS-bootstrap use values of � that

are close to �̂; while the AD-bootstrap does not have this property. In particular, the

AD-bootstrap trims extreme values of h(�) rather than extreme values of �: This explains

why the AD-bootstrap yields an inconsistent con�dence set in Example 2. We formalize

the notion that values of � that are closer to �̂ also are likely to be closer to the true value

�0 in the following lemma.
20Andrews (1987) emphasizes the importance of uniform convergence.
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Lemma

Let �; v; and w be scalars. Let (�̂ � �0) � N(0; �2); �2 > 0; and v2 < w2: Then

P (j�̂ + v � �0j � u) > P (j�̂ + w � �0j � u) for any u > 0:

Proof: See appendix.

The lemma states that �̂ + v is closer to the true value than �̂ + w in the sense of

�rst order stochastic dominance. Thus, values close to the estimated parameter value

are more likely to be close to the true value than values that are further away. The CS-

bootstrap uses only the values that are close to the estimated parameter value, while the

AD-bootstrap also uses the values that are further away. This gives an intuition as to

why the CS-bootstrap yields con�dence sets that are consistent in cases where the AD-

bootstrap does not yield such sets. Note that most of the discussion of con�dence sets in

the literature is about the coverage probability and about the length of the con�dence set.

This lemma and our examples add another consideration to the discussion of con�dence

sets in general. We now turn to investigating the di¤erences between the AD-bootstrap

and the CS-bootstrap within the context of two empirical studies.

4. A Comparison of the Confidence Sets Produced by the AD-bootstrap
and the CS-bootstrap in Two Empirical Studies

In this section we use the parameter estimates and data from two empirical studies to

compare the length of the con�dence sets produced by the di¤erent methods discussed

above. We �rst use results and data from Ham, Li and Shore-Sheppard (2011, hereafter

HLSS). They estimate a model of the employment dynamics of disadvantaged mothers (i.e.

single mothers with a high school degree or less) for the U.S. Speci�cally, they estimate

hazard functions for these women for i) nonemployment spells in progress at the start of

the sample, i.e. left censored nonemployment spells, ii) employment spells in progress at

the start of the sample, i.e. left censored employment spells, iii) nonemployment spells that

begin after the start of the sample, i.e. fresh nonemployment spells and iv) employment

spells that begin after the start of the sample, i.e. fresh employment spells.21

21They also estimate the joint distribution of the (correlated) unobserved heterogeneity components in
each hazard function.
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HLSS �rst consider the e¤ect of a change in an independent variable on the expected

duration of each type of spell. Since the expected duration is a relatively simple di¤eren-

tiable function of the estimated parameters, they use the delta method to calculate con-

�dence sets. In Table 1, we compare the con�dence sets produced by the delta method,

the AD-bootstrap, the CS-bootstrap and the WCS-bootstrap for these expected dura-

tions. Of these methods, only the AD-bootstrap may be inconsistent in the sense that no

consistency proof exists. The �rst panel presents (for each type of spell) the con�dence

sets for the sample average of the individual expected durations for each spell type. The

remaining panels show the analogous con�dence sets (produced by each method for each

type of spell) of the e¤ect on the expected durations of i) having more schooling, ii) be-

ing African-American versus being white, iii) being Hispanic versus being white, and iv)

having a child under 6 years versus not having a child under 6 years. For ease of viewing,

in each panel we also report the ratio of the con�dence interval lengths produced by: i)

the AD-bootstrap relative to the delta method, ii) the CS-bootstrap relative to the delta

method, and iii) the WCS-bootstrap relative to the delta method. From Table 1 we con-

clude that: i) the inconsistent AD-bootstrap produces somewhat shorter con�dence sets

than the delta method, ii) the CS-bootstrap produces substantially larger con�dence sets

than the delta method, and iii) the WCS-bootstrap produces, on average, con�dence sets

that are somewhat larger than those produced using the delta method but considerably

smaller than those produced by the CS-bootstrap.

HLSS also consider the e¤ect of the change in an independent variable on the estimated

fraction of time a woman will spend in employment 3 years, 6 years, and 10 years after the

change, which depends on the parameters from all the hazard functions. This function

is nondi¤erentiable, so the delta method is no longer applicable and the CS-bootstrap

or WCS-bootstrap should be used for calculating con�dence sets.22 The �rst panel of

22For example, if a woman starts the sample in nonemployment, they calculate her hazard function for
month 1 of a left censored nonemployment spell, and draw a uniform random number from [0,1]. Suppose
the random number is less than the hazard. Then, she moves to employment and a 1 is registered for this
month of her simulated employment history. In the next month, they calculate her hazard for month 1
of a fresh employment spell, and again draw a random number. If this random number is less than the
hazard, a 0 is registered for the second month of her simulated employment history as she moves back
to unemployment; otherwise, a 1 is registered for this month of her employment history as she stays in
employment. This simulation is comparable to those used in structural modelling to estimate the e¤ect
of counterfactual policy changes.
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Table 2 shows con�dence sets for the baseline fraction of time spent in employment at 3

years, 6 years, and 10 years after the start of the sample. In the remaining panels, we

show the respective con�dence sets for the e¤ects of changes in the demographic variables

considered above on the fraction of time employed 3, 6, and 10 years after the change.

In each case we also show the ratio of the con�dence interval lengths produced by i) the

AD-bootstrap relative to the CS-bootstrap and ii) the AD-bootstrap relative to the WCS-

bootstrap. Table 2 shows that the CS and WCS-bootstrap con�dence sets are basically

identical, while the AD-bootstrap produces substantially smaller con�dence sets than the

consistent WCS-bootstrap and CS-bootstrap.

Finally, Lee and Ham (2012, here after LH) use data from an online dating service that

proposes (opposite gender) matches to its individual members. The data indicate whether

the man and woman agree to the date proposed by the company, and, if not, whether the

man, the woman, or both turned down the date. The data set also contains information

on whether, conditional on a �rst date, the couple goes on a second date, and, if not,

whether the man, the woman, or both turned down the second date. Finally, the data

also indicate whether the couple marries. Denote the outcome that individual i of gender j

(j =M;F ) accepts (refuses) date d (d = 1; 2) as Y jd=1 (Y
j
d=0), and let the outcome where

the couple marries (does not marry) be denoted by Y 3=1 (Y 3=0). LH estimate a fairly

rich model of marriage and dating, and then simulate their estimated model to measure

the relative e¢ ciency of di¤erent possible matching algorithms that the dating company

could use. Here we focus on the baseline probabilities of acceptance for the algorithm that

the company actually uses. These probabilities are complicated di¤erentiable functions of

the estimated parameters, so it is sensible to use the CS-bootstrap to calculate con�dence

sets the baseline probabilities. In Table 3, we contrast these con�dence sets with those

produced by the AD-bootstrap. We �nd that the con�dence sets produced by the AD-

bootstrap are about half the length of those produced by the CS-bootstrap, but that the

CS-bootstrap still produces quite narrow con�dence sets for the baseline probabilities.

Thus, our results suggest that previous work is likely to have substantially overstated

the precision of their counterfactual policy e¤ects, and that there may well be a signi�cant
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e¢ ciency gain from moving from the CS-bootstrap to the WCS-bootstrap.

5. Conclusion

Applied researchers often need to calculate con�dence sets for functions of parameters

that are nondi¤erentiable, or have unbounded or zero derivatives. Currently, they use the

(nonparametric) bootstrap or sample from the asymptotic distribution of the estimators,

since the delta method is not appropriate in these settings. Researchers also frequently use

these procedures to obtain con�dence sets for well-behaved, but complicated, functions.

Indeed, two heavily cited articles and four prominent graduate econometrics textbooks

recommend one or both of these approaches. Further, one of these approaches can be

implemented using pre-programmed commands in the widely used Stata software package.

We �rst show that both of these procedures produce con�dence sets that can be

incorrect in the sense that the asymptotic coverage is less than intended, i.e. they produce

con�dence sets that are too small. We then propose two procedures that have correct

coverage asymptotically under relatively weak conditions. In particular, our procedures

are the �rst to give con�dence sets for functions of parameters without restricting the

derivatives of the functions and without requiring the functions to be continuous. We

use data and parameter estimates from two empirical studies to compare our approach

to the traditional one, and �nd that the procedures currently used produce substantially

downward biased con�dence sets.

Further, Andrews (2000) gives an example in which all versions of the bootstrap fail to

consistently estimate the distribution of the maximum likelihood estimator. An example

involving a function of a parameter yields the same maximum likelihood estimator as

Andrews (2000). Our proposed procedures also work for this example, suggesting that

it might be more fruitful to focus on the construction of con�dence sets, rather than on

the distributions of various versions of the bootstrap. Also, our methods yield con�dence

sets with asymptotically correct coverage for a class of models where the function of the

parameters is not di¤erentiable in the parameters of the data distribution, so that we

complement the negative results of Hirano and Porter (2012).

Finally, one of our procedures (the WCS-bootstrap) produces asymptotically the same
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con�dence set as the delta method if the linear approximation holds, so in principle there

is no e¢ ciency loss in using the WCS-bootstrap in any application. Moreover, we �nd

that in practice this procedure produces con�dence sets similar to the delta method in a

situation where the latter is likely to be used.
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6. Appendix

Example 1:

Note that the true value of � is zero. Consider
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Example 2

Consider � = 1. In that case �̂ = ̂; so that h(�̂; ̂) = h(�̂; �̂): Therefore, we can de�ne a

new function that has just one scalar as its argument. In particular, de�ne

h(�) =
1

2
�(�) +

1

2
�
�
�2� �

p
2 ln(2)

�
; and its derivative,

h0(�) =
1

2
�(�)� �

�
�2� �

p
2 ln(2)

�
:

Note that

h0(� = 0) =
1

2
�(0)� �

�
�
p
2 ln(2)

�
=
1

2

1p
2�
� 1p

2�
exp

�
�1
2

n
�
p
2 ln(2)

o2�
=
1

2

1p
2�
� 1p

2�
expf� ln(2)g = 0:

Checking the second order conditions and the limits yields that h(0) is the minimum.

Thus, h(�) > h(0) for any � 6= 0: Therefore, the true value h(0) = 1
4 +

1
2�
�
�
p
2 ln(2)

�
is outside any two-sided AD-con�dence interval of h(�): Thus, the coverage probability is

zero in this case. Hence, the coverage probability is also zero for the function h(�; ) =

1
2�(�) +

1
2�
�
�2 �

p
2 ln(2)

�
if � = 1: Note that the coverage probability is continuous

in � so that the coverage probability is also too low for some � < 1: In the simulations,

based on 100,000 repetitions, the coverage probability was still too low for � = 0:5:
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Example 3:

Note that
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Notice that P
�
� �XN > �� �XN

�
= 0 since � � 0: Thus

P
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�
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�
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since
p
N( �XN��) has a standard normal distribution. This holds for any � � 0; including

� = cp
N
:

Proof of Theorem:

Consider a uniformly continuous function f(�) and let f([0; 1]) denote the set of values of

f(�) where � 2 [0; 1]; i.e.

f([0; 1]) = f� 2 Rj� = f(�) for some � 2 [0; 1]g:

Next, consider approximating this function on the interval � 2 [0; 1] by evaluating the

function at all the values of the M grid points, GM = f 1M ; :::;
M�1
M ; MM g; and including all

values that are no farther than � > 0 from f( 1M ); :::; f(
M�1
M ); or f(MM ): The next lemma

proves that this approximation contains the set f([0; 1]):
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Lemma A1:

Let f : R! R be uniformly continuous. Let � 2 [0; 1]; and � > 0. Then

f([0; 1]) � lim
M!1

[Mi=1[f(i=M)� �; f(i=M) + �]:

Proof: By construction, since � is �xed and h(�) is uniformly continuous, there exists an

r > 0 such that y 2 Br(i=M) implies that jf(y) � f(i=M)j < � where Br denotes a ball

with radius r: Thus, f(Br(i=M)) � [f(i=M) � �; [f(i=M) + �]: Next, let M > 1
r so that

[Mi=1Br(i=M) = [0; 1]: Finally, f([0; 1]) � [Mi=1f(Br(i=M)) � [Mi=1[f(i=M)� �; [f(i=M) +

�]:

Note that this lemma can easily be generalized to � 2 [0; 1]2 as well as � 2 [0; 1]K or � 2 �;

which is compact. Using this lemma, we now turn to the assumptions of the theorem.

We �rst consider the case where Assumptions 1-2 hold and we use the CS-bootstrap. The

vector-function h(�) is uniformly continuous on �r; r = 1; :::; R; so that for any � > 0 there

is an " > 0 such that jjh(�1)�h(�2)jj < � for all �1; �2 2 �r with jj�1� �2jj < " where jj.jj

is the Euclidean norm: Therefore, we can partition the con�dence set CS�1�� into Q sets,

CS�1��(1); CS
�
1��(2); :::; CS

�
1��(Q) such that (i) if �a 2 CS�1��(q) and �b 2 CS�1��(q) for

some q; then jjh(�a)�h(�b)jj < �; and (ii) CS�1��(1)[CS�1��(2):::[CS�1��(Q) = CS�1��

where Q <1: Note that such a partition is possible since � is compact. Also note that,

without loss of generality, CS�1��(1); CS
�
1��(2); :::; CS

�
1��(Q) have a nonzero Lebesgue

measure. Thus, for any M � M0; where M0 < 1; we have that every set CS�1��(1);

CS�1��(2); :::; CS
�
1��(Q) has one or more of the grid point as its elements since the grid is

dense in CS�1��: Thus, calculating h(�1); :::; h(�M ) and including every point in the image

of h(�); � 2 �; that are no farther than � > 0 away from h(�1); :::; h(�M�1); or h(�M )

gives CSh(�)1�� �
\
CS

h(�)
1�� for any M �M0: Note that M0 does not depend on N: Therefore,

the requirement in Assumption 1,

lim
N!1

inf
P2P

Pr(�0 2 CS�1��) � 1� �;

yields

lim
M!1

lim
N!1

inf
P2P

Pr(h(�) 2 \
CS

h(�)
1��) � 1� �:
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Next, consider the case where Assumptions 2-3 hold and the researcher uses the WCS-

bootstrap and samples from the asymptotic distribution of �̂: Note that by Assumption

3 wk 6= 0; ŵk 6= 0; sup
P2P

jŵk � wkj = op(1): Also note that

WCS�1�� = f� 2 �jN � (�̂ � �)0ŵ(ŵ0
̂ŵ)�1ŵ0(�̂ � �) � �21��(H)g:

Just as we could partition CS�1��, we can also partition WCS
�
1�� (since � is compact):

Thus, we partition the con�dence set WCS�1�� in Q sets,

WCS�1��(1); WCS
�
1��(2); :::;WCS

�
1��(Q) such that (i) if �a 2 WCS�1��(q) and �b 2

WCS�1��(q) for some q; then jjh(�a)�h(�b)jj < �; and (ii) WCS�1��(1)[WCS�1��(2):::[

WCS�1��(Q) = WCS�1�� where Q < 1: Also note that, without loss of generality,

WCS�1��(1); WCS
�
1��(2); :::;WCS

�
1��(Q) have a nonzero Lebesgue measure. Next, note

that
p
N(�̂ � �0)

d! N(0;
) uniformly in P 2 P so that a value of each of the Q sub-

sets is sampled with probability approaching one as M ! 1: Therefore, calculating

h(~�1); :::; h(~�M ) and including every point in the image of h(�); � 2 �; that are no far-

ther than � > 0 away from h(~�1); :::; h(~�M�1); or h(~�M ) gives WCS
h(�)
1�� �

\
WCS

h(�)
1�� with

probability approaching one as M ! 1: This yields the result for sampling from the

asymptotic distribution.

Finally, consider the case where Assumptions 2-4 hold. In this case, one can use any

version of the bootstrap as long as Assumption 4 is satis�ed, i.e.

lim
N!1

inf
P2P

Pr(ŵ0�0 2WCS�1��) � 1� �:

Using the same reasoning as for sampling from the asymptotic distribution concludes the

proof of the theorem.

Proof of Lemma:

Note that v is a constant. Thus, if �; v; and w are scalars, then

P (j�̂ + v � �0j � ") = P (jZ� + vj � ");

where Z is a realization from a standard normal distribution. Note that this probability

remains the same if v is replaced by (�v): Similarly, P (j�̂+w��0j � ") remains the same
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if w is replaced by (�w): Thus, without loss of generality, we assume that 0 � v < w:

This gives

P (j�̂ + v � �0j � ") = P (�" � Z� + v � ")

= P (�"+ v
�

� Z � "� v
�

) =

Z ("�v)=�

(�"�v)=�
�(z)dz:

Similarly,

P (j�̂ + w � �0j � ") =
Z ("�w)=�

(�"�w)=�
�(z)dz:

This gives

P (j�̂ + v � �0j � ")� P (j�̂ + w � �0j � ") =
Z ("�v)=�

(�"�v)=�
�(z)dz �

Z ("�w)=�

(�"�w)=�
�(z)dz

=

Z ("�v)=�

("�w)=�
�(z)dz �

Z (�"�v)=�

(�"�w)=�
�(z)dz

using 0 � v < w: Note that the last equation holds, even if "� w < �"� v: Thus

P (j�̂ + v � �0j � ")� P (j�̂ + w � �0j � ") =
Z �v=�

�w=�
�(z + ")dz �

Z �v=�

�w=�
�(z � ")dz

=

Z �v=�

�w=�
f�(z + ")� �(z � ")gdz:

Note that 0 � v < w so that z 2 [�w=�;�v=�) is negative: Also note that " > 0 so that

�(z + ")� �(z � ") > 0 for any z 2 [�w=�;�v=�]: Therefore,

P (j�̂ + v � �0j � ")� P (j�̂ + w � �0j � ") > 0: This completes the proof:

WCS-bootstrap and the delta method

Here we show that the WCS-bootstrap and the delta method are asymptotically equivalent

under the standard assumptions of the delta method. The standard assumptions23 of the

delta method are (i)
p
N(�̂� �0)

d! N(0;
); (ii) 
̂ = 
+ op(1); (iii) h(�) is continuously

di¤erentiable in a neighborhood of �0; let hDer(�) denote this derivative and let hDer =

hDer(�0): Let all elements of hDer be nonzero. Let

CSDelta1�� = fh 2 RH jh = h(�) for some � for which

N � fh(�̂)� hg0fhDer(�̂)0
̂hDer(�̂)g�1fh(�̂)� hg � �21��(H)g:
23See, for example, Greene (2012, page 1084).
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The coverage of this con�dence set converges to (1 � �) under the assumptions stated

above. We now show that the WCS-bootstrap yields the same con�dence set asymptoti-

cally. Consider the con�dence set for the WCS-bootstrap as M !1;

\
WCS

h(�)
1�� = fh 2 RH jh = h(�) for some � for which N �(�̂��)0ŵ(ŵ0
̂ŵ)�1ŵ0(�̂��) � �21��(H)g:

First, consider the case that h(�) is a linear function of the parameters so that h(�̂)�h(�) =

w0(�̂ � �); and ŵ = hDer(�̂) = w: This gives

CSDelta1�� = fh 2 RH jh = w0� for some � for which N �(�̂��)0w(w0
̂w)�1w0(�̂��) � �21��(H)g;

which is the same set as
\

WCS
h(�)
1��:

Next, if h(�) is continuously di¤erentiable (and not necessarily linear), then

h(�̂) � h(�) = hDer(��)
0(�̂ � �) where �� is an intermediate value, �� 2 (�̂; �): Note that

hDer(�̂); hDer(��); and ŵ (calculated using numerical di¤erentiation or least squares) all

converge in probability to w = hDer = hDer(�0): This gives

CSDelta1�� = fh 2 RH jh = w0� for some � for which N �(�̂��)0w(w0
̂w)�1w0(�̂��) � �21��(H)+op(1)g;

so that the con�dence sets of the delta method and WCS-bootstrap are �rst order equiv-

alent.



Table 1: 95% Confidence Intervals for the Effects of Changes in the Demographic Variables (Separately) on the Expected  
Durations of Employment and Non-employment Spells  

    

Left-censored 
non-employment 

spells 

Left-censored 
employment 

spells 
  

Fresh non-
employment 

spells 

Fresh 
employment 

spells 
Estimate 39.305 42.248  11.821 11.929 

Delta Method [37.872,40.738] [41.055,43.441]  [10.811,12.832] [10.969,12.900] 
AD-bootstrap [38.009,40.491] [40.957,43,327]  [10.897,12.884] [11.031,12.965] 
CI-bootstrap [36.623,41.566] [39.956,44.252]  [10.207,14.037] [10.366,14.163] 

Estimated Expected 
Duration (in months) 

WCI-bootstrap [37.431,41.089] [40.571,43.567]   [10.864,12.943] [10.960,13.037] 
AD/Delta  0.866 0.993  0.983 1.002 
CI/Delta 1.725 1.801  0.528 1.966 Ratio of Lengths of 

Confidence Intervals 
 WCI/Delta 1.276 1.256   0.972 1.076 

       
Effect on Expected Duration From Changes With Respect to: 

Estimated Effect 7.471 5.095   -0.070 1.027 
Delta Method [5.376,9.566] [3.142,7.048]  [-1.113,0.972] [0.184,1.870] 
AD-bootstrap [5.399,9.429] [3.209,7.057]  [-1.094,0.919] [0.206,1.825] 
CI-bootstrap [3.550,10.945] [1.312,9.066]  [-2.527,2.066] [-0.723,2.655] 

Age:                             
(age=35) - (age=25) 

WCI-bootstrap [5.167,9.623] [2.992,7.397]   [-1.315,1.095] [0.024,2.037] 
AD/Delta  0.962 0.985  0.965 0.960 
CI/Delta 1.765 1.985  2.203 2.004 Ratio of Lengths of 

Confidence Intervals 
 WCI/Delta 1.063 1.128   1.156 1.194 

  
Estimated Effect -5.293 7.013  -1.940 2.970 

Delta Method [-7.352,-3.234] [4.775,9.251]  [-3.106,-0.773] [1.983,3.958] 
AD-bootstrap [-7.230,-3.237] [4.795,9.211]  [-3.120,-0.766] [2.013,3.940] 
CI-bootstrap [-9.432,-1.204] [2.372,11.364]  [-4.116,0.313] [1.099,5.011] 

 Schooling:                    
(s = 12) - (s < 12) 

WCI-bootstrap [-7.868,-2.615] [4.462,9.735]  [-3.227,-0.600] [1.823,4.057] 
AD/Delta  0.970 1.072   1.009 0.976 
CI/Delta 1.998 2.184  1.898 1.981 Ratio of Lengths of 

Confidence Intervals 
 WCI/Delta 1.276 1.280   1.126 1.131 

!



!
Table 1 (Continued) 

    
Left-censored 

non-employment 
spells 

Left-censored 
employment 

spells 
  

Fresh non-
employment 

spells 

Fresh 
employment 

spells 
Effect on Expected Duration From Changes With Respect to: 

Estimated Effect 2.524 -1.074  1.842 -0.440 
Delta Method [-0.022,5.069] [-3.390,1.242]  [0.434,3.249] [-1.595,0.716] 
AD-bootstrap [0.100,5.265] [-3.420,1.235]  [0.424,3.150] [-1.550,0.695] 
CI-bootstrap [-1.702,7.678] [-5.662,3.440]  [-0.752,4.612] [-2.663,1.701] 

Race:                                   
Black - White 

WCI-bootstrap [-0.355,5.674] [-3.908,1.648]   [0.329,3.331] [-1.775,1.005] 
AD/Delta  1.015 0.910  0.968 0.971 
CI/Delta 1.842 1.788  1.665 1.888 Ratio of Lengths of 

Confidence Intervals 
 WCI/Delta 1.184 1.091   1.066 1.203 

       
Estimated Effect 2.708 -2.616   0.435 0.090 

Delta Method [-0.051,5.467] [-5.623,0.391]  [-1.076,1.947] [-1.330,1.511] 
AD-bootstrap [-0.0422,5.728] [-5.216,0.093]  [-0.968,1.889] [-1.234,1.477] 
CI-bootstrap [-2.921,9.055] [-7.613,2.476]  [-2.225,3.490] [-2.702,3.003] 

Race:                                   
Hispanic - White 

WCI-bootstrap [-0.522,6.455] [-6.314,1.289]   [-1.105,2.103] [-1.522,1.998] 
AD/Delta  1.046 0.883  0.945 0.954 
CI/Delta 2.170 1.678  1.891 1.887 Ratio of Lengths of 

Confidence Intervals 
 WCI/Delta 1.264 1.264   1.061 1.164 

              
Estimated Effect 4.225 -1.965   1.151 0.165 

Delta Method [2.450,6.000] [-3.982,0.053]  [0.011,2.290] [-0.721,1.051] 
AD-bootstrap [2.335,6.042] [-3.853,-0.080]  [0.012,2.295] [-0.715,1.027] 
CI-bootstrap [0.558,7.912] [-5.525,1.700]  [-1.205,3.250] [-1.903,1.653] 

Number of children 
less than 6 years old                  
(one - zero) 

WCI-bootstrap [1.894,6.451] [-4.359,0.653]  [-0.158,2.439] [-0.875,1.164] 
AD/Delta  1.044 0.935  1.002 0.983 
CI/Delta 2.072 1.722  1.955 2.007 Ratio of Lengths of 

Confidence Intervals 
 WCI/Delta 1.284 1.242   1.140 1.151 

!



!
!
!
!
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Table 2: 95% Confidence Intervals For the Effect of Changing Demographic Variables on the Expected Fraction  
of Time Spent in Employment for Different Time Horizons 

    3-year Period 6-year Period 10-year Period 
Estimate 0.431 0.439 0.449 

AD-bootstrap [0.414,0.449] [0.421,0.459] [0.431,0.470] 
CI-bootstrap [0.396,0.469] [0.401,0.480] [0.409,0.491] 

Estimated Expected Fraction of 
Time in Employment 

WCI-bootstrap  [0.396,0.469] [0.401,0.480] [0.409,0.489] 
AD/CI 0.479 0.481 0.476 Ratio of Lengths of Confidence 

Intervals AD/WCI 0.479 0.481 0.488 
     
Change on the Expected Fraction of Time Spent in Employment With Respect to:  

Estimated Effect 0.09 0.097 0.100 
AD-bootstrap [0.072,0.107] [0.078,0.115] [0.081,0.119] 
CI-bootstrap [0.053,0.125] [0.058,0.134] [0.061,0.137] 

Schooling: (s = 12) - (s < 12) 

WCI-bootstrap [0.053,0.126] [0.058,0.136] [0.061,0.140] 
AD/CI 0.486 0.487 0.500 Ratio of Lengths of Confidence 

Intervals AD/WCI 0.479 0.474 0.481 
 

Estimated Effect -0.031 -0.034 -0.037 
AD-bootstrap [-0.050,-0.009] [-0.055,-0.011] [-0.058,-0.012] 
CI-bootstrap [-0.073,0.019] [-0.080,0.019] [-0.083,0.019] 

Race: Black - White 

WCI-bootstrap [-0.073,0.019] [-0.079,0.019] [-0.083,0.019] 
AD/CI 0.446 0.444 0.451 Ratio of Lengths of Confidence 

Intervals AD/WCI 0.446 0.449 0.451 
!
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Table 2 (Continued)  
    3-year Period 6-year Period 10-year Period 
Change on the Expected Fraction of Time Spent in Employment With Respect to: 

Estimated Effect -0.026 -0.028 -0.029 
AD-bootstrap [-0.046,-0.001] [-0.050,-0.002] [-0.052,-0.001] 
CI-bootstrap [-0.068,0.023] [-0.073,0.024] [-0.077,0.026] 

Race: Hispanic - White 

WCI-bootstrap [-0.070,0.025] [-0.074,0.027] [-0.077,0.029] 
AD/CI 0.495 0.495 0.495 Ratio of Lengths of Confidence 

Intervals AD/WCI 0.474 0.475 0.481 
     

Estimated Effect -0.030 -0.033 -0.035 
AD-bootstrap [-0.047,-0.014] [-0.052,-0.016] [-0.054,-0.017] 
CI-bootstrap [-0.067,0.004] [-0.072,0.003] [-0.075,0.003] 

Number of kids less than 6 
years old: one - zero 

WCI-bootstrap [-0.067,0.004] [-0.072,0.003] [-0.075,0.003] 
AD/CI 0.465 0.480 0.474 Ratio of Lengths of Confidence 

Intervals AD/WCI 0.465 0.480 0.474 
!
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Table 3: Estimated Probabilities of Different Dating Outcomes under the Company's Matching Algorithm 

  
 

Prediction CI-bootstrap AD-bootstrap (2)length 
/(3)length  

   (1) (2) (3) (4) 
Panel A           
Outcomes           

1 0 0 . . .  57.425 [56.576,57.841] [56.793,57.579] 1.609 
2 0 1 . . .  10.758 [10.422,11.210] [10.545,10.966] 1.872 
3 1 0 . . .  16.111 [15.481,16.869] [15.878,16.488] 2.275 
4 1 1 0 0 .  4.354 [4.198,4.672] [4.301,4.494] 2.456 
5 1 1 0 1 .  2.393 [2.304,2.539] [2.329,2.450] 1.942 
6 1 1 1 0 .  3.181 [3.083,3.396] [3.133,3.300] 1.874 
7 1 1 1 1 0  5.524 [5.144,5.970] [5.295,5.809] 1.607 
8 1 1 1 1 1   0.255 [0.231,0.300] [0.238,0.289] 1.353 
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