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Abstract

We analyze the optimal design of dynamic mechanisms in the absence of transfers.

The designer uses future allocation decisions to elicit private information. Values evolve

according to a two-state Markov chain. We solve for the optimal allocation rule. Unlike

with transfers, efficiency decreases over time. In the long-run, polarization obtains,

but not necessarily immiseration. A simple implementation is provided. The agent is

endowed with a given “budget,” corresponding to a number of units he is entitled to

claim in a row. Considering the limiting continuous-time environment, we show that

persistence hurts.
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1 Introduction

This paper is concerned with the dynamic allocation of resources when transfers are not

allowed and information regarding their optimal use is private information to an individual.

The informed agent is strategic rather than truthful.
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We are searching for the social choice mechanism that would bring us closest to efficiency.

Here, efficiency and implementability are understood to be Bayesian: the individual and

society understand the probabilistic nature of uncertainty and update based on it. Both the

societal decision not to allow money –for economic, physical, legal or ethical reasons– and

the sequential nature are assumed. Temporal constraints apply to the allocation of goods,

such as jobs, houses or attention, and it is difficult to ascertain future demands.

Throughout, we assume that the good to be allocated is perishable.1 Absent private

information, the allocation problem is trivial: the good should be provided if and only if its

value exceeds its cost.2 However, in the presence of private information, and in the absence

of transfers, linking future allocation decisions to current decisions is the only instrument

available to society to elicit truthful information. Our goal is to understand this link.

Our main results are a characterization of the optimal mechanism and an intuitive in-

direct implementation for it. In essence, the agent should be granted an inside option,

corresponding to a certain number of units of the good that he is entitled to receive “no

questions asked.” This inside option is updated according to his choice: whenever the agent

desires the unit, his inside option is reduced by one unit; whenever he forgoes it, it is revised

according to his valuation for an incremental unit at the end of his “queue,” a valuation

that depends on the length of the queue and the chain’s persistence. This results in simple

dynamics: an initial phase of random length in which the efficient choice is made during

each round, followed by an irreversible shift to one of the two possible outcomes in the game

with no communication, namely, the unit is either always supplied or never supplied again.

These findings contrast with static design with multiple units (e.g., Jackson and Sonnen-

schein, 2007), as the optimal mechanism isn’t a (discounted) quota mechanism as commonly

studied in the literature: the order in the sequence of reports matters. By backloading inef-

ficiencies, the mechanism takes advantage of the agent’s ignorance regarding future values,

resulting in a convergence rate higher than under quota mechanisms. Backloading contrasts

with the outcome with transfers (Battaglini, 2005). The long-run outcome, polarization, also

differs from principal-agent models with risk-aversion (Thomas and Worrall, 1990).

Formally, our good can take one of two values during each round. Values are serially

correlated over time. The binary assumption is certainly restrictive, but it is known that,

1Many allocation decisions involve goods or services that are perishable, such as how a nurse or a worker

should divide time; which patients should receive scarce medical resources (blood or treatments); or which

investments and activities should be approved by a firm.
2This is because the supply of the perishable good is taken as given. There is a considerable literature

on the optimal ordering policy for perishable goods, beginning with Fries (1975).
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even with transfers, the problem becomes intractable beyond binary types (see Battaglini

and Lamba, 2014).3 We begin with the i.i.d. case, which suffices to illustrate many of the

insights of our analysis, before proving the results in full generality. The cost of providing

the good is fixed and known. Hence, it is optimal to assign the good during a given round

if and only if the value is high. We cast our problem of solving for the efficient mechanism

(given the values, cost and discount factor) as one faced by a disinterested principal with

commitment who determines when to supply the good as a function of the agent’s reports.

There are no transfers, certification, or signals concerning the agent’s value, even ex post.

We demonstrate that the optimal policy can be implemented through a mechanism in

which the appropriate currency is the number of units that the agent is entitled to receive

sequentially with “no questions asked.” If the agent asks for the unit, his “budget” decreases

by one; if he foregoes it, it increases by a factor proportional to the value of getting incre-

mental units, if he were to cash in all his units as fast as possible, with the incremental units

last. Such incremental units are especially valuable if his budget is large, as this makes his

current type largely irrelevant to his expected value for these incremental units. Hence, an

agent with a small budget must be paid more than an agent with a larger one.

This updating process is entirely independent of the principal’s belief concerning the

agent’s type. The only role of the prior belief is to specify the initial budget. This budget

mechanism is not a token mechanism in the sense that the total (discounted) number of

units the agent receives is not fixed. Depending on the sequence of reports, the agent might

ultimately receive few or many units.4 Eventually, the agent is either granted the unit forever

or never again. Hence, polarization is ineluctable, but not immiseration.

We study the continuous time limit over which the flow value for the good changes

according to a two-state Markov chain, and prove that efficiency decreases with persistence.

Allocation problems without transfers are plentiful. It is not our purpose to survey them.

Our results can inform best practices concerning how to implement algorithms to improve

allocations. For instance, consider nurses who must decide whether to take alerts triggered by

patients seriously. The opportunity cost is significant. Patients, however, appreciate quality

time with nurses irrespective of whether their condition necessitates it. This discrepancy

produces a challenge with which every hospital must contend: ignore alarms and risk that

a patient with a serious condition is not attended to, or heed all alarms and overwhelm the

nurses. “Alarm fatigue” is a problem that health care must confront (see, e.g., Sendelbach,

2012). We suggest the best approach for trading off the risks of neglecting a patient in need

3In Section 5.2, we consider the case of a continuum of types that are i.i.d. over time.
4It isn’t a bankruptcy mechanism (Radner, 1986) either, because the order of the report sequence matters.
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and attending to one who simply cries wolf.5

Related Literature. Our work is closely related to the bodies of literature on mechanism

design with transfers and on “linking incentive constraints.” Sections 3.4 and 4.5 are devoted

to these and explain why transfers (resp., the dynamic nature of the relationship) matter.

Transfers: The obvious benchmark work that considers transfers is Battaglini (2005),6

who considers our general model but allows transfers. Another important difference is his

focus on revenue maximization, a meaningless objective in the absence of prices.

Because of transfers, his results are diametrically opposed to ours. In Battaglini, efficiency

improves over time (exact efficiency obtains eventually with probability 1). Here, efficiency

decreases over time, with an asymptotic outcome that is at best the outcome of the static

game. The agent’s utility can increase or decrease depending on the history: receiving the

good forever is clearly his favorite outcome, while never receiving it again is the worst.

Krishna, Lopomo and Taylor (2013) provide an analysis of limited liability (though transfers

are allowed) in a model closely related to that of Battaglini, suggesting that excluding the

possibility of unlimited transfers affects both the optimal contract and dynamics.7

Linking Incentives: This refers to the notion that as the number of identical decision

problems increases, linking them allows to improve on the isolated problem. See Fang and

Norman (2006) and Jackson and Sonnenschein (2007) for papers specifically devoted to this

(see also Radner, 1981; Rubinstein and Yaari, 1983). Hortala-Vallve (2010) provides an

analysis of the unavoidable inefficiencies that must be incurred away from the limit, and

Cohn (2010) demonstrates the suboptimality of the mechanisms commonly used.

Unlike the bulk of this literature, we focus on the exactly optimal mechanism (for a fixed

degree of patience). This allows us to identify results (backloading, for instance) that need

not hold for other asymptotically optimal mechanisms, and to clarify the role of the dynamic

structure. Discounting isn’t the issue; the fact that the agent learns the value of the units

as they come is. Section 3.4 elaborates on the relationship between our results and theirs.

Dynamic Capital Budgeting: More generally, the notion that virtual budgets can be used

as intertemporal instruments to discipline agents with private information has appeared in

several papers in economics, within the context of games and principal-agent models.

5Clearly, our mechanism is much simpler than existing electronic nursing workload systems. However,

none appears to seriously consider strategic agent behavior as a constraint.
6See also Zhang (2012) for an exhaustive analysis of Battaglini’s model as well as Fu and Krishna (2014).
7Note that there is an important exception to the quasi-linearity commonly assumed in the dynamic

mechanism design literature, namely, Garrett and Pavan (2015).
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Within the context of games, Möbius (2001) is the first to suggest that tracking the

difference in the number of favors granted (with two agents) and using it to decide whether

to grant new favors is a simple but powerful way of sustaining cooperation in long-run rela-

tionships.8 While his token mechanism is suboptimal, it has desirable properties: properly

calibrated, it yields an efficient allocation as discounting vanishes. Hauser and Hopenhayn

(2008) come the closest to solving for the optimal mechanism (within the class of PPE).

Their analysis allows them to qualify the optimality of simple budget rules (according to

which each favor is weighted equally, independent of the history), showing that this rule

might be too simple (the efficiency cost can reach 30% of surplus). Their analysis suggests

that the best equilibrium shares many features with the policy in our one-player world: the

incentive constraint binds, and the efficient policy is followed unless it is inconsistent with

promise keeping. Our model can be viewed as a game with one-sided incomplete informa-

tion in which the production cost is known. There are some differences, however. First, our

principal has commitment and hence is not tempted to act opportunistically. Second, he

maximizes efficiency rather than his payoff.9 Li, Matouschek and Powell (2015) solve for the

PPE in a model similar to our i.i.d. benchmark and allow for monitoring (public signals),

demonstrating that better monitoring improves performance.

Some principal-agent models find that simple capital budgeting rules are exactly optimal

in related models (e.g., Malenko, 2013). Our results suggest how to extend such rules

when values are persistent. Indeed, in our i.i.d. benchmark, the policy admits a simple

implementation in terms of a dynamic two-part tariff. As simple as the implementation

remains with Markovian types, it becomes then more natural to interpret the budget as an

entitlement for consecutive units rather than a budget with a “fixed” currency value.

More generally, that allocation rights to other (or future) units can be used as a “currency”

to elicit private information has long been recognized. Hylland and Zeckhauser (1979) first

explain how this can be viewed as a pseudo-market. Casella (2005) develops a similar idea

within the context of voting rights. Miralles (2012) solves a two-unit version with general

distributions, with both values being privately known at the outset. A dynamic two-period

version of Miralles is analyzed by Abdulkadiroğlu and Loertscher (2007).

All versions considered in this paper would be trivial in the absence of imperfect obser-

vation of the values. If the values were perfectly observed, it would be optimal to assign the

8See also Athey and Bagwell (2001), Abdulkadiroğlu and Bagwell (2012) and Kalla (2010).
9There is also a technical difference: our limiting model in continuous time corresponds to the Markovian

case in which flow values switch according to a Poisson process. In Hauser and Hopenhayn, the lump-sum

value arrives according to a Poisson process, and the process is memoryless.
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good if and only if the value is high. Due to private information, it is necessary to distort

the allocation: after some histories, the good is provided independent of the report; after

others, the good is never provided again. In this sense, the scarcity of goods provision is

endogenously determined to elicit information. There is a large body of literature in opera-

tions research considering the case in which this scarcity is considered exogenous – there are

only n opportunities to provide the good, and the problem is then when to exercise these

opportunities. Important early contributions include Derman, Lieberman and Ross (1972)

and Albright (1977). Their analyses suggest a natural mechanism that can be applied in our

environment: the agent owns a number of “tokens” and uses them whenever he pleases.

Exactly optimal mechanisms have been computed in related environments. Frankel

(2011) considers a variety of related settings. The most similar is his Chapter 2 analysis

in which he also derives an optimal mechanism. While he allows for more than two types

and actions, he restricts attention to the types that are serially independent over time (our

starting point). More importantly, he assumes that the preferences of the agent are inde-

pendent of the state, which allows for a drastic simplification of the problem. Gershkov and

Moldovanu (2010) consider a dynamic allocation problem related to Derman, Lieberman and

Ross in which agents possess private information regarding the value of obtaining the good.

In their model, agents are myopic and the scarcity of the resource is exogenously assumed.

In addition, transfers are allowed. They demonstrate that the optimal policy of Derman,

Lieberman and Ross (which is very different from ours) can be implemented via appropriate

transfers. Johnson (2014) considers a model that is more general than ours (he permits two

agents and more than two types). Unfortunately, he does not provide a solution to his model.

A related literature considers optimal stopping without transfers; see, in particular,

Kováč, Krähmer and Tatur (2014). This difference reflects the nature of the good, namely,

whether it is perishable or durable. When only one unit is desired, this is a stopping problem.

With a perishable good, a decision must be made at every round. As a result, incentives

and the optimal contract have little in common. In the stopping case, the agent might have

an option value to forgo the current unit if the value is low and future prospects are good.

This is not the case here –incentives to forgo the unit must be endogenously generated via

promises. In the stopping case, there is only one history that does not terminate the game.

Here, policies differ not only in when the good is first provided but also thereafter.

Finally, while the motivations of the papers differ, the techniques for the i.i.d. benchmark

that we use borrow numerous ideas from Thomas and Worrall (1990), as we explain in Section

3, and our intellectual debt cannot be overstated.

Section 2 introduces the model. Section 3 solves the i.i.d. benchmark, introducing many
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of the ideas of the paper, while Section 4 solves the general model, and develops an imple-

mentation for the optimal mechanism. Section 5 extends the results to cases of continuous

time or continuous types. Section 6 concludes.

2 The Model

Time is discrete and the horizon infinite, indexed by n “ 0, 1, . . . There are two parties,

a disinterested principal and an agent. During each round, the principal can produce an

indivisible unit of a good at a cost c ą 0. The agent’s value (or type) during round n, vn is a

random variable that takes value l or h. We assume that 0 ă l ă c ă h such that supplying

the good is efficient if and only if the value is high, but the agent’s value is always positive.

The value follows a Markov chain as follows:

Prvn`1 “ h | vn “ hs “ 1 ´ ρh, Prvn`1 “ l | vn “ ls “ 1 ´ ρl,

for all n ě 0, where ρl, ρh P r0, 1s. The invariant probability of h is q :“ ρl{pρh ` ρlq. For

simplicity, we assume that the initial value is drawn according to the invariant distribution,

that is, Prv0 “ hs “ q. The (unconditional) expected value of the good is denoted µ :“
Ervs “ qh ` p1 ´ qql. We make no assumptions regarding how µ compares to c.

Let κ :“ 1 ´ ρh ´ ρl be a measure of the persistence of the Markov chain. Throughout,

we assume that κ ě 0 (or equivalently, 1´ρh ě ρl); that is, the distribution over tomorrow’s

type conditional on today’s type being h first-order stochastically dominates the distribution

conditional on the type being l.10 Two interesting special cases occur when κ “ 1 and κ “ 0.

The former corresponds to perfect persistence; the latter, to i.i.d. values, see Section 3.

Allowing for persistence is important for at least two reasons. First, it affects some of

the results (some of the results in the i.i.d. case rely on martingale properties that do not

hold with persistence) and suggests a way of implementing the optimal mechanism in terms

of an inside option that cannot be discerned in the i.i.d. case.11 Second, it allows a direct

comparison with the results derived by Battaglini (2005)

The agent’s value is private information. At the beginning of each round, the value is

drawn and the agent is informed of it. The two parties are impatient and share a common

10The role of this assumption, which is commonly adopted in the literature, and what occurs in its absence,

when values are negatively serially correlated, is discussed at the end of Sections 4.3 and 4.4.
11There are well-known examples in the literature in which persistence changes results much more drasti-

cally than here, see for instance Halac and Yared (2015).
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discount factor δ P r0, 1q.12 To exclude trivialities, assume that δ ą l{µ and δ ą 1{2.
Let xn P t0, 1u refer to the supply decision during round n; e.g., xn “ 1 means that the

good is supplied during round n.

Our focus is on identifying the (constrained) efficient mechanism defined below. Hence,

we assume that the principal internalizes both the cost of supplying the good and the value

of providing it to the agent. We solve for the principal’s favorite mechanism.

Thus, given an infinite history txn, vnu8
n“0

, the principal’s realized payoff is defined as:

p1 ´ δq
8ÿ

n“0

δnxnpvn ´ cq,

where δ P r0, 1q is a discount factor. The agent’s realized utility is defined as follows:13

p1 ´ δq
8ÿ

n“0

δnxnvn.

Throughout, payoff and utility refer to the expectation of these values. Note that the utility

belongs to the interval r0, µs. The agent seeks to maximize expected utility.

We now introduce or emphasize several important assumptions maintained throughout.

- There are no transfers. This is our point of departure from Battaglini (2005) and most

of dynamic mechanism design. Note also that our objective is efficiency, not revenue

maximization. With transfers, there is a trivial mechanism that achieves efficiency:

supply the good if and only if the agent pays a fixed price in the range pl, hq.

- There is no ex post signal regarding the realized value of the agent –the principal

does not see realized payoffs. Depending on the context, it might be more realistic to

assume that a signal of the value occurs at the end of a round, independent of the supply

decision. In some other applications, it makes more sense to assume that this signal

occurs only if the good is supplied (e.g., a firm discovers the productivity of a worker

who is hired). Conversely, statistical evidence might only occur from not supplying the

good if supplying it averts a risk (a patient calling for care or police calling for backup).

See Li, Matouschek and Powell (2014) for an analysis (with “public shocks”) in a related

context. Presumably, the optimal policy differs according to the monitoring structure.

Understanding what happens without any signal is the natural first step.

12The common discount factor is important. Yet, because we view our principal as a social planner trading

off the agent’s utility with the social cost of providing the good as opposed to an actual player, it is natural

to assume that her discount rate is equal to the agent’s.
13Throughout, the term payoff describes the principal’s objective and utility describes the agent’s.
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- We assume that the principal commits ex ante to a (possibly randomized) mechanism.

This assumption brings our analysis closer to the literature on dynamic mechanism

design and distinguishes it from the literature on chip mechanisms (as well as Li,

Matouschek and Powell, 2014), which assumes no commitment on either side and

solves for the (perfect public) equilibria of the game.

- The good is perishable. Hence, previous choices affect neither feasible nor desirable

future opportunities. If the good were durable and only one unit were demanded, the

problem would be one of stopping, as in Kováč, Krähmer and Tatur (2014).

Due to commitment, we focus on policies in which the agent truthfully reports his type at

every round and the principal commits to a (possibly random) supply decision as a function

of this last report as well as of the entire history of reports without loss of generality.

Formally, a direct mechanism or policy is a collection pxnq8
n“0

, with xn : tl, hun`1 Ñ r0, 1s
mapping a sequence of reports by the agent into a decision to supply the good during a given

round.14 Our definition exploits the fact that, because preferences are time-separable, the

policy may be considered independent of past realized supply decisions. A direct mechanism

defines a decision problem for the agent who seeks to maximize his utility. A reporting

strategy is a collection pmnq8
n“0

, where mn : tl, hun ˆ tl, hu Ñ ∆ptl, huq maps previous

reports and the value during round n into a report for that round.15 The policy is incentive

compatible if truth-telling (that is, reporting the current value faithfully, independent of past

reports) is an optimal reporting strategy.

Our first objective is to solve for the optimal (incentive-compatible) policy, that is, for

the policy that maximizes the principal’s payoff subject to incentive compatibility. The value

is the resulting payoff. Second, we would like to find a simple indirect implementation of

this policy. Finally, we wish to understand the payoff and utility dynamics under this policy.

3 The i.i.d. Benchmark

We begin our investigation with the simplest case in which values are i.i.d. over time; that is,

κ “ 0. This is a simple variation of Thomas and Worrall (1990), although the indivisibility

caused by the absence of transfers leads to dynamics that differ markedly from theirs. See

Section 4 for the analysis in the general case κ ě 0.

14For simplicity, we use the same symbols l, h for the possible agent reports as for the values of the good.
15Without loss of generality, we assume that this strategy does not depend on past values, given past

reports, as the decision problem from round n onward does not depend on these past values.
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With independent values, it is well known that attention can be further restricted to

policies that can be represented by a tuple of functions Ul, Uh : r0, µs Ñ r0, µs, pl, ph :

r0, µs Ñ r0, 1s mapping a utility U (interpreted as the continuation utility of the agent) onto

a continuation utility ul “ UlpUq, uh “ UhpUq beginning during the next round as well as the

probabilities phpUq, plpUq of supplying the good during this round given the current report

of the agent. These functions must be consistent in the sense that, given U , the probabilities

of supplying the good and promised continuation utilities yield U as a given utility to the

agent. This is “promise keeping.” We stress that U is the ex ante utility in a given round;

that is, it is computed before the agent’s value is realized. The reader is referred to Spear

and Srivastava (1987) and Thomas and Worrall (1990) for details.16

Because such a policy is Markovian with respect to the utility U , the principal’s payoff

is also a function of U only. Hence, solving for the optimal policy and the (principal’s) value

function W : r0, µs Ñ R amounts to a Markov decision problem. Given discounting, the

optimality equation characterizes both the value and the (set of) optimal policies. For any

fixed U P r0, µs, the optimality equation states the following:

W pUq “ sup
ph,pl,uh,ul

tp1 ´ δq pqphph ´ cq ` p1 ´ qqplpl ´ cqq

` δ pqW puhq ` p1 ´ qqW pulqqu (OBJ)

subject to incentive compatibility and promise keeping, namely,

p1 ´ δqphh ` δuh ě p1 ´ δqplh ` δul, (ICH)

p1 ´ δqpll ` δul ě p1 ´ δqphl ` δuh, (ICL)

U “ p1 ´ δq pqphh ` p1 ´ qqpllq ` δ pquh ` p1 ´ qqulq , (PK)

pph, pl, uh, ulq P r0, 1s ˆ r0, 1s ˆ r0, µs ˆ r0, µs.

The incentive compatibility and promise keeping conditions are denoted IC (ICH, ICL) and

PK. This optimization program is denoted P.

Our first objective is to calculate the value function W as well as the optimal policy.

Obviously, the entire map might not be relevant once we account for the specific choice of

the initial promise –some promised utilities might simply never arise for any sequence of

reports. Hence, we are also interested in solving for the initial promise U˚, the maximizer

of the value function W .

16Not every policy can be represented in this fashion, as the principal does not need to treat two histories

leading to the same continuation utility identically. However, because they are equivalent from the agent’s

viewpoint, the principal’s payoff must be maximized by some policy that does so.
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3.1 Complete Information

Consider the benchmark case of complete information: that is, we solve P dropping the IC

constraints. As the values are i.i.d., we can assume, without loss of generality, that pl, ph are

constant over time. Given U , the principal chooses ph and pl to maximize

qphph ´ cq ` p1 ´ qqplpl ´ cq,

subject to U “ qphh ` p1 ´ qqpll. It follows easily that

Lemma 1 Under complete information, the optimal policy is

$
&

%
ph “ U

qh
, pl “ 0 if U P r0, qhs,

ph “ 1, pl “ U´qh

p1´qql if U P rqh, µs.

The value function, denoted ĎW , is equal to

ĎW pUq “

$
&

%

`
1 ´ c

h

˘
U if U P r0, qhs,

`
1 ´ c

l

˘
U ` cq

`
h
l

´ 1
˘

if U P rqh, µs.

Hence, the initial promise (maximizing ĎW ) is U0 :“ qh.

That is, unless U “ qh, the optimal policy ppl, phq cannot be efficient. To deliver U ă qh,

the principal chooses to scale down the probability with which to supply the good when the

value is high, maintaining pl “ 0. Similarly, for U ą qh, the principal is forced to supply the

good with positive probability even when the value is low to satisfy promise keeping.

While this policy is the only constant optimal one, there are many other (non-constant)

optimal policies. We will encounter some in the sequel. We call ĎW the complete-information

payoff function. It is piecewise linear (see Figure 1). Plainly, it is an upper bound to the

value function under incomplete information.

3.2 The Optimal Mechanism

We now solve for the optimal policy under incomplete information in the i.i.d. case. We first

provide an informal derivation of the solution. It follows from two observations (formally

established below). First,

The efficient supply choice ppl, phq “ p0, 1q is made “as long as possible.”
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To understand this qualification, note that if U “ 0 (or U “ µ), promise keeping allows no

latitude in the choice of probabilities. The good cannot (or must) be supplied, independent

of the report. More generally, if U P r0, p1 ´ δqqhq, it is impossible to supply the good if the

value is high while satisfying promise keeping. In this utility range, the observation must be

interpreted as indicating that the supply choice is as efficient as possible given the restriction

imposed by promise keeping. This implies that a high report leads to a continuation utility

of 0, with the probability of the good being supplied adjusted accordingly. An analogous

interpretation applies to U P pµ ´ p1 ´ δqp1 ´ qql, µs.
These two peripheral intervals vanish as δ Ñ 1 and are ignored for the remainder of this

discussion. For every other promised utility, we claim that it is optimal to make the (“static”)

efficient supply choice. Intuitively, there is never a better time to redeem promised utility

than when the value is high. During such rounds, the interests of the principal and agent

are aligned. Conversely, there cannot be a worse opportunity to repay the agent what he is

due than when the value is low because tomorrow’s value cannot be lower than today’s.

As trivial as this observation may sound, it already implies that the dynamics of the

inefficiencies must be very different from those in Battaglini’s model with transfers. Here,

inefficiencies are backloaded.

As the supply decision is efficient as long as possible, the high type agent has no incentive

to pretend to be a low type. However,

Incentive compatibility of the low type agent always binds.

Specifically, without loss of generality, assume that ICL always binds and disregard ICH .

The reason that ICL binds is standard: the agent is risk neutral, and the principal’s payoff

is a concave function of U (otherwise, he could offer the agent a lottery that the agent would

accept and that would make the principal better off). Concavity implies that there is no

gain in spreading continuation utilities ul, uh beyond what ICL requires.

Because we are left with two variables (ul, uh) and two constraints (ICL and PK), we

can immediately solve for the optimal policy. Algebra is not needed. Because the agent is

always willing to state that his value is high, it must be the case that his utility can be

computed as if he followed this reporting strategy, namely,

U “ p1 ´ δqµ ` δuh, or uh “ U ´ p1 ´ δqµ
δ

.

Because U is a weighted average of uh and µ ě U , it follows that uh ď U . The promised

utility necessarily decreases after a high report. To compute ul, note that the reason that the

high type agent is unwilling to pretend he has a low value is that he receives an incremental
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value p1´δqph´lq from obtaining the good relative to what would make him merely indifferent

between the two reports. Hence, defining U :“ qph ´ lq, it holds that

U “ p1 ´ δqU ` δul, or ul “ U ´ p1 ´ δqU
δ

.

Because U is a weighted average of U and ul, it follows that ul ď U if and only if U ď U . In

that case, even a low report leads to a decrease in the continuation utility, albeit a smaller

decrease than if the report had been high and the good provided.

The following theorem (proved in Appendix A; see appendices for all proofs) summarizes

this discussion with the necessary adjustments on the peripheral intervals.

Theorem 1 The unique optimal policy is

pl “ max

"
0, 1 ´ µ ´ U

p1 ´ δql

*
, ph “ min

"
1,

U

p1 ´ δqµ

*
.

Given these values of pph, plq, continuation utilities are

uh “ U ´ p1 ´ δqphµ
δ

, ul “ U ´ p1 ´ δqppll ` pph ´ plqUq
δ

.

For reasons that will become clear shortly, this policy is not uniquely optimal for U ď U .

We now turn to a discussion of the utility dynamics and of the shape of the value function,

which are closely related. This discussion revolves around the following lemma.

Lemma 2 The value function W : r0, µs Ñ R is continuous and concave on r0, µs, con-

tinuously differentiable on p0, µq, linear (and equal to ĎW ) on r0, Us, and strictly concave on

rU, µs. Furthermore,

lim
UÓ0

W 1pUq “ 1 ´ c

h
, lim

UÒµ
W 1pUq “ 1 ´ c

l
.

Indeed, consider the following functional equation for W that we obtain from Theorem 1

(ignoring again the peripheral intervals for the sake of the discussion):

W pUq “ p1 ´ δqqph ´ cq ` δqW

ˆ
U ´ p1 ´ δqµ

δ

˙
` δp1 ´ qqW

ˆ
U ´ p1 ´ δqU

δ

˙
.

Hence, taking for granted the differentiability of W stated in the lemma,

W 1pUq “ qW 1pUhq ` p1 ´ qqW 1pUlq.

13



In probabilistic terms, W 1pUnq “ ErW 1pUn`1qs given the information at round n. That is, W 1

is a bounded martingale and so converges.17 This martingale was first uncovered by Thomas

and Worrall (1990); we refer to it as the TW-martingale. Because W is strictly concave on

pU, µq, yet uh ‰ ul in this range, it follows that the process tUnu8
n“0

must eventually exit this

interval. Hence, Un converges to either U8 “ 0 or µ. However, note that, because uh ă U

and ul ď U on the interval p0, Us, this interval is a transient region for the process. Hence,

if we began this process in the interval r0, Us, the limit must be 0 and the TW-martingale

implies that W 1 must be constant on this interval – hence the linearity of W .18

While W 1
n :“ W 1pUnq is a martingale, Un is not. Because the optimal policy yields

Un “ p1 ´ δqqh ` δErUn`1s,

utility drifts up or down (stochastically) according to whether U “ Un is above or below

qh. Intuitively, if U ą qh, then the flow utility delivered is insufficient to honor the average

promised utility. Hence, the expected continuation utility must be even larger than U .

This raises the question of the initial promise U˚: where does the process converge given

this initial value? The answer is delivered by the TW-martingale. Indeed, U˚ is characterized

by W 1pU˚q “ 0 (uniquely, given strict concavity on rU, µs). Hence,

0 “ W 1pU˚q “ PrU8 “ 0 | U0 “ U˚sW 1p0q ` PrU8 “ µ | U0 “ U˚sW 1pµq,

where W 1p0q and W 1pµq are the one-sided derivatives given in the lemma. Hence,

PrU8 “ 0 | U0 “ U˚s
PrU8 “ µ | U0 “ U˚s “ pc ´ lq{l

ph ´ cq{h. (1)

The initial promise is set to yield this ratio of absorption probabilities. Remarkably, this

ratio is independent of the discount factor (despite the discrete nature of the random walk,

the step size of which depends on δ). Both long-run outcomes are possible irrespective of

patience. Depending on the parameters, U˚ can be above or below qh, the first-best initial

promise, as is easy to check in examples. In Appendix A, we show that U˚ is decreasing in

the cost, which should be clear, because the random walk tUnu only depends on c via the

choice of initial promise U˚ given by (1). We record this discussion in the next lemma.

Lemma 3 The process tUnu8
n“0

(with U0 “ U˚) converges to 0 or µ, a.s., with probabilities

given by (1).

17It is bounded because W is concave, and hence, its derivative is bounded by its value at 0 and µ, given

in the lemma.
18This yields multiple optimal policies on this range. As long as the spread is sufficiently large to satisfy

ICL, not so large as to violate ICH , consistent with PK and contained in r0, Us, it is an optimal choice.
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Figure 1: Value function for pδ, l, h, q, cq “ p.95, .40, .60, .60, .50q.

3.3 Implementation

As mentioned above, the optimal policy is not a token mechanism because the number

of units the agent receives is not fixed.19 However, the policy admits a simple indirect

implementation in terms of a budget that can be described as follows. Let f :“ p1 ´ δqU ,

and g :“ p1 ´ δqµ ´ f “ p1 ´ δql.
Provide the agent with an initial budget of U˚. At the beginning of each round, charge

him a fixed fee f . If the agent asks for the item, supply it and charge a variable fee g for it.

Increase his budget by the interest rate 1

δ
´ 1 each round – provided that this is feasible.

This scheme might become infeasible for two reasons. First, his budget might no longer

allow him to pay g for a requested unit. Then, award him whatever fraction his budget

can purchase (at unit price g). Second, his budget might be so close to µ that it is no

longer possible to pay him the interest rate on his budget. Then, return the excess to him,

independent of his report, at a conversion rate that is also given by the price g.

For budgets below U , the agent is “in the red,” and even if he does not buy a unit, his

budget shrinks over time. If his budget is above U , he is “in the black,” and forgoing a unit

increases the budget. When doing so pushes the budget above µ´ p1´ δqp1´ qql, the agent

19To be clear, this is not an artifact of discounting: the optimal policy in the finite-horizon undiscounted

version of our model can be derived along the same lines (using the binding ICL and PK constraints), and

the number of units obtained by the agent is also history-dependent in that case.
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“breaks the bank” and reaches µ in case of another forgoing, which is an absorbing state.

This structure is reminiscent of results in research on optimal financial contracting (see,

for instance, Biais, Mariotti, Plantin and Rochet, 2007), a literature that assumes transfers.20

In this literature, one obtains (for some parameters) an upper absorbing boundary (at which

the agent receives the first-best outcome) and a lower absorbing boundary (at which the

project is terminated). There are important differences, however. The agent is not paid in

the intermediate region: promises are the only source of incentives. In our environment, the

agent receives the good if his value is high, achieving efficiency in this intermediate region.

As we explain in Section 4, this simple implementation relies on the independence of

types over time. With persistence, the (real) return on the budget –which admits a simple

interpretation in terms of an inside option– will depend on its size.

3.4 A Comparison with Token Mechanisms as in Jackson and Son-

nenschein (2007)

We postpone the discussion of the role of transfers to Section 4.5 because the environment

considered in Section 4 is the counterpart to Battaglini (2005). However, because token

mechanisms are typically introduced in i.i.d. environments, we make some observations con-

cerning the connection between our results and those of Jackson and Sonnenschein (2007)

to explain how our dynamic analysis differs from the static one with many copies.

The distinction between static and dynamic problem isn’t about discounting, but about

the agent’s information. In Jackson and Sonnenschein (2007), the agent is a prophet, in

the sense of stochastic processes: he knows the entire realization of the process from the

beginning; in our environment, the agent is a forecaster: the process of his reports must be

predictable with respect to the realized values up to the current date.

For the purpose of asymptotic analysis (when either the discount factor tends to 1 or

the number of equally weighted copies T ă 8 tends to infinity), the distinction is irrelevant:

token mechanisms are optimal (but not uniquely so) in the limit, whether the problem is

static or dynamic. Because the emphasis in Jackson and Sonnenschein is on asymptotic

analysis, they focus on a static model and on token mechanisms; they derive a rate of

convergence for this mechanism (namely, the loss relative to the first-best outcome is of the

order Op1{
?
T q), and discuss the extension of their results to the dynamic case.

20There are other important differences in the set-up. They allow two instruments: downsizing the firm

and payments. Additionally, this is a moral hazard-type problem because the agent can divert resources

from a risky project, reducing the likelihood that it succeeds during a given period.
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In fact, if attention is restricted to token mechanisms, and values are binary, the outcome

is the same in the static and dynamic version. Forgoing low-value items as long as the budget

does not allow all remaining units to be claimed is not costly, as subsequent units cannot be

worth even less. Similarly, accepting high-value items cannot be a mistake.

However, for a fixed discount factor (or a fixed number of units), and even with binary

values, token mechanisms are not optimal, whether the problem is static or dynamic; and

the optimal mechanisms aren’t the same for both problems. In the dynamic case, as we have

seen, a report not only affects whether the agent obtains the current unit but also affects

the total number he obtains.21 In the static case, the optimal mechanism does not simply

ask the agent to select a fixed number of copies that he would like but offers him a menu

that trades off the risk in obtaining the units he claims are low or high and the expected

number that he receives.22 The agent’s private information pertains not only to whether a

given unit has a high value but also to how many units are high. Token mechanisms do not

elicit any information in this regard. Because the prophet has more information than the

forecaster, the optimal mechanisms are distinct.

The question of how the two optimal mechanisms compare (in terms of average efficiency)

isn’t entirely obvious. Because the prophet has better information about the number of high-

value items, the mechanism must satisfy more incentive-compatibility constraints (which

harms welfare) but might induce a better fit between the number of units he receives and

the number he should receive. Indeed, there are examples (say, for T “ 2) in which the

comparison goes either way depending on parameters.23 Asymptotically, the comparison is

clear, as the next lemma states. The proof is relegated to Online Appendix C.1.

Lemma 4 It holds that

|W pU˚q ´ qph ´ cq| “ Op1 ´ δq.

In the case of a prophetic agent, the average loss converges to zero at rate Op
?
1 ´ δq.

21To be clear, token mechanisms are not optimal even without discounting.
22The exact characterization of the optimal mechanism in the case of a prophetic agent is somewhat

peripheral to our analysis and is thus omitted.
23Consider a two-round example with no discounting in which q “ 1{2, h “ 4, l “ 1, c “ 2. If the agent is a

prophet, he is offered the choice between one unit for sure, or two units, each with probability 4{5. The hl, lh

agent chooses the former, and the hh, ll agent the latter. When the agent is a forecaster, let p1, p2 denote the

probabilities of supply in rounds 1, 2. The high type in the first round chooses pp1, p2q “ p1, 3{5q, and the

low type chooses pp1, p2q “ p0, 1q. It is easy to verify that the principal is better off when facing a prophetic

agent. Suppose instead q “ 2{3, h “ 10, l “ 1, c “ 9. A prophetic agent is offered a pooling menu in which he

receives one unit for sure. When the agent is a forecaster, the high-type contract is pp1, p2q “ p1, 0q, and the

low-type contract is pp1, p2q “ p0, 1{7q. It is easy to verify that the principal is better off with a forecaster.
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For a prophet, the rate is no better than with token mechanisms. Token mechanisms achieve

rate Op
?
1 ´ δq precisely because they do not attempt to elicit the number of high units.

By the central limit theorem, this implies that a token mechanism “gets it wrong” by an

order of Op
?
1 ´ δq. With a prophet, incentive compatibility is so stringent that the optimal

mechanism performs hardly better, eliminating only a fraction of this inefficiency.24 The

forecaster’s relative lack of information serves the principal. Because the former knows

values only one round in advance, he gives the information away for free until absorption.

His private information regarding the number of high units being of the order p1 ´ δq, the

overall inefficiency is of the same order. Both rates are tight (see the proof of Lemma 4):

indeed, were the agent to hold private information for the initial round only, there would

already be an inefficiency of the order 1 ´ δ; hence, welfare cannot converge faster.

To sum up: token mechanisms are never optimal, but they do well in the prophetic case.

Not so with a forecaster.

4 Persistent Types

We now return to the general model in which types are persistent rather than independent.

As a warm-up, consider the case of perfect persistence ρh “ ρl “ 0. In that case, future

allocations just cannot be used as instruments to elicit truth-telling. We revert to the static

problem for which the solution is to either always provide the good (if µ ě c) or never do so.

This makes the role of persistence not entirely obvious. Because current types assign

different probabilities of being a high type tomorrow, one might hope that tying promised

future utility to current reports facilitates truth-telling. But the case of perfectly persis-

tent types also shows that correlation diminishes the scope for using future allocations as

“transfers.” A definite answer is obtained in the continuous time limit in Section 5.1.

The techniques that served us well with independent values are no longer useful. We

will not be able to rely on martingale techniques. Worse, ex ante utility is no longer a valid

state variable. To understand why, note that with independent types, an agent of a given

type can evaluate his utility based only on his current type, on the probability of allocation

as a function of his report, and the promised continuation utility tomorrow as a function of

his report. However, if today’s type is correlated with tomorrow’s type, the agent cannot

evaluate his continuation utility without knowing how the principal intends to implement it.

24This result might be surprising given Cohn’s (2010) “improvement” upon Jackson and Sonnenschein.

However, while Jackson and Sonnenschein cover our set-up, Cohn does not and features more instruments

at the principal’s disposal. See also Eilat and Pauzner (2011) for an optimal mechanism in a related setting.
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This is problematic because the agent can deviate, unbeknown to the principal, in which case

the continuation utility computed by the principal, given his incorrect belief regarding the

agent’s type tomorrow, is not the same as the continuation utility under the agent’s belief.

However, conditional on the agent’s type tomorrow, his type today carries no information

on future types by the Markovian assumption. Hence, tomorrow’s promised interim utilities

suffice for the agent to compute his utility today regardless of whether he deviates. Of course,

his type tomorrow is not directly observable. Instead, we must use the utility he receives

from tomorrow’s report (assuming he tells the truth). That is, we must specify his promised

utility tomorrow conditional on each possible report at that time.

This creates no difficulty in terms of his truth-telling incentives tomorrow: because the

agent does truthfully report his type on path, he also does so after having lied at the previous

round (conditional on his current type and his previous report, his previous type does not

enter his decision problem). The one-shot deviation principle holds: when the agent considers

lying now, there is no loss in assuming that he reports truthfully tomorrow.

Plainly, we are not the first to note that, with persistence, the appropriate state variables

are the interim utilities. See Townsend (1982), Fernandes and Phelan (2000), Cole and

Kocherlakota (2001), Doepke and Townsend (2006) and Zhang and Zenios (2008). Yet here,

this is still not enough to evaluate the principal’s payoff and use dynamic programming. We

must also specify the principal’s belief. Let φ denote the probability that she assigns to the

high type. This probability can take only three values depending on whether this is the

initial round or whether the last report was high or low. Nonetheless, it is just as convenient

to treat φ as an arbitrary element in the unit interval.

4.1 The Program

As discussed above, the principal’s optimization program, cast as a dynamic programming

problem, requires three state variables: the belief of the principal, φ “ Prv “ hs P r0, 1s, and

the pair of (interim) utilities that the principal delivers as a function of the current report,

Uh, Ul. The largest utility µh (resp., µl) that can be given to a player whose type is high

(resp. low) is delivered by always supplying the good. The utility pair pµh, µlq solves

µh “ p1 ´ δqh ` δp1 ´ ρhqµh ` δρhµl, µl “ p1 ´ δql ` δp1 ´ ρlqµl ` δρlµh;

that is,

µh “ h ´ δρhph ´ lq
1 ´ δ ` δpρh ` ρlq

, µl “ l ` δρlph ´ lq
1 ´ δ ` δpρh ` ρlq

.
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We note that

µh ´ µl “ 1 ´ δ

1 ´ δ ` δpρh ` ρlq
ph ´ lq.

The gap between these largest utilities decreases in δ, and vanishes as δ Ñ 1.

A policy is now a pair ph : R2 Ñ r0, 1s and pl : R
2 Ñ r0, 1s mapping the current utility

vector U “ pUh, Ulq onto the probability with which the good is supplied as a function of

the report, and a pair Uphq : R2 Ñ R
2 and Uplq : R2 Ñ R

2 mapping U onto the promised

utilities pUhphq, Ulphqq if the report is h, and pUhplq, Ulplqq if it is l. We abuse notation, as the

domain of pUphq, Uplqq should be those vectors that are feasible and incentive compatible.

Define the function W : r0, µhs ˆ r0, µls ˆ r0, 1s Ñ R Y t´8u that solves the following

program for all U P r0, µhs ˆ r0, µls, and φ P r0, 1s:

W pU, φq “ sup tφ pp1 ´ δqphph ´ cq ` δW pUphq, 1 ´ ρhqq
` p1 ´ φq pp1 ´ δqplpl ´ cq ` δW pUplq, ρlqqu ,

over pl, ph P r0, 1s, and Uphq, Uplq P r0, µhs ˆ r0, µls subject to promise keeping and incentive

compatibility, namely,

Uh “ p1 ´ δqphh ` δp1 ´ ρhqUhphq ` δρhUlphq (2)

ě p1 ´ δqplh ` δp1 ´ ρhqUhplq ` δρhUlplq, (3)

and

Ul “ p1 ´ δqpll ` δp1 ´ ρlqUlplq ` δρlUhplq (4)

ě p1 ´ δqphl ` δp1 ´ ρlqUlphq ` δρlUhphq, (5)

with the convention that supW “ ´8 whenever the feasible set is empty. Note that W is

concave on its domain (by the linearity of the constraints in the utilities). An optimal policy

is a map from pU, φq into pph, pl, Uphq, Uplqq that achieves the supremum given W .

4.2 Complete Information

Proceeding as with i.i.d. types, we briefly review the solution under complete information,

that is, dropping (3) and (5). Write ĎW for the resulting value function. If we ignore promises,

the efficient policy is to supply the good if and only if the type is h. Let v˚
h (or v˚

l ) denote

the utility that a high (or low) type obtains under this policy. The pair pv˚
h, v

˚
l q satisfies

v˚
h “ p1 ´ δqh ` δp1 ´ ρhqv˚

h ` δρhv
˚
l , v˚

l “ δp1 ´ ρlqv˚
l ` δρlv

˚
h,
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which yields

v˚
h “ hp1 ´ δp1 ´ ρlqq

1 ´ δp1 ´ ρh ´ ρlq
, v˚

l “ δhρl

1 ´ δp1 ´ ρh ´ ρlq
.

When a high type’s utility Uh is in r0, v˚
hs, the principal supplies the good only if the type is

high. Thus, the payoff is Uhp1 ´ c{hq. When Uh P pv˚
h, µhs, the principal always supplies the

good if the type is high. To fulfill her promise, the principal also supplies the good when the

type is low. The payoff is v˚
hp1´ c{hq ` pUh ´ v˚

hqp1´ c{lq. We proceed analogously given Ul

(the problems of delivering Uh and Ul are uncoupled). In summary, ĎW pU, φq is given by

$
’’’’’’&

’’’’’’%

φ
Uhph´cq

h
` p1 ´ φqUlph´cq

h
if U P r0, v˚

hs ˆ r0, v˚
l s,

φ
Uhph´cq

h
` p1 ´ φq

´
v˚
l

ph´cq
h

` pUl´v˚
l

qpl´cq
l

¯
if U P r0, v˚

hs ˆ rv˚
l , µls,

φ
´

v˚
h

ph´cq
h

` pUh´v˚
h

qpl´cq
l

¯
` p1 ´ φqUlph´cq

h
if U P rv˚

h, µls ˆ r0, v˚
l s,

φ
´

v˚
h

ph´cq
h

` pUh´v˚
h

qpl´cq
l

¯
` p1 ´ φq

´
v˚
l

ph´cq
h

` pUl´v˚
l

qpl´cq
l

¯
if U P rv˚

h, µls ˆ rv˚
l , µls.

For future purposes, note that the derivative of W (differentiable except at Uh “ v˚
h and

Ul “ v˚
l ) is in the interval r1´ c{l, 1´ c{hs, as expected. The latter corresponds to the most

efficient utility allocation, whereas the former corresponds to the most inefficient allocation.

In fact, W is piecewise linear (a “tilted pyramid”) with a global maximum at v˚ “ pv˚
h, v

˚
l q.

4.3 Feasible and Incentive-Feasible Utility Pairs

One difficulty in using interim utilities as state variables is that the dimensionality of the

problem increases with the cardinality of the type set. A related difficulty is that it is not

obvious which vectors of utilities are feasible given the incentive constraints. For instance,

promising to assign all future units to the agent in the event that his current report is high

while assigning none if this report is low is simply not incentive compatible.

The set of feasible utility pairs (that is, the largest bounded set of vectors U such that

(2) and (4) can be satisfied with continuation vectors in the set itself) is easy to describe.

Because the two promise keeping equations are uncoupled, it is simply the set r0, µhsˆr0, µls
(as was already implicit in Section 4.2). What is challenging is to solve for the feasible,

incentive-compatible (in short, incentive-feasible) utility pairs: these are interim utilities for

which there are probabilities and promised utility pairs tomorrow that make truth-telling

optimal and such that these promised utility pairs tomorrow satisfy the same property.

Definition 1 The incentive-feasible set, V P R
2, is the set of interim utilities in round 0

that are obtained for some incentive-compatible policy.
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It is standard to show that V is the largest bounded set such that for each U P V there

exists ph, pl P r0, 1s and two pairs Uphq, Uplq P V solving (2)–(5).25

Our first step is to solve for V . To obtain some intuition regarding its structure, let us

enumerate some of its elements. Clearly, 0 P V and µ :“ pµh, µlq P V . It suffices to never or

always supply the unit, independent of the reports.26 More generally, for any integer ν ě 0,

the principal can supply the unit for the first ν rounds, independent of the reports, and never

supply the unit after. We refer to such policies as pure frontloaded policies because they

deliver a given number of units as quickly as possible. Similarly, a pure backloaded policy

does not supply the unit for the first ν rounds but does so afterward, independent of the

reports. A (possibly mixed) frontloaded (resp., backloaded) policy is one that randomizes

over two pure frontloaded (resp., backloaded) policies over two consecutive integers.

Fix a backloaded and a frontloaded policy such that the high-value agent is indifferent

between the two. Then, the low-value agent prefers the backloaded policy, because the

conditional expectation of his value for a unit in a given round ν increases with ν.

The utility pairs corresponding to such policies are immediate to define in parametric

form. Given ν P N, let

uν
h “ E

«

p1 ´ δq
ν´1ÿ

n“0

δnvn | v0 “ h

ff

, uν
l “ E

«

p1 ´ δq
ν´1ÿ

n“0

δnvn | v0 “ l

ff

, (6)

and set uν :“ puν
h, u

ν
l q. This is the utility pair when the principal supplies the unit for the

first ν rounds, independent of the reports. Second, for ν P N, let

uν
h “ E

«

p1 ´ δq
8ÿ

n“ν

δnvn | v0 “ h

ff

, uν
l “ E

«

p1 ´ δq
8ÿ

n“ν

δnvn | v0 “ l

ff

, (7)

and set uν :“ puν
h, u

ν
l q.27 This is the pair when the principal supplies the unit only from

round ν onward. The sequence uν is decreasing (in both arguments) as ν increases, with

u0 “ µ and limνÑ8 uν “ 0. Similarly, uν is increasing, with u0 “ 0 and limνÑ8 uν “ µ.

Not only is backloading better than frontloading for the low-value agent for a fixed high-

value agent’s utility, but these policies also yield the best and worst utilities. Formally,

25Incentive-feasibility is closely related to self-generation (see Abreu, Pearce and Stacchetti, 1990), though

it pertains to the different types of a single agent rather than to different players. The distinction is not

merely a matter of interpretation because a high type can become a low type and vice-versa, which represents

a situation with no analogue in repeated games. Nonetheless, the proof of this characterization is identical.
26Again, with some abuse, we write µ P R

2.
27Here and in Section 4.6, we omit the obvious corresponding analytic expressions. See Appendix B.
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Lemma 5 It holds that

V “ cotuν , uν : ν P Nu.

That is, V is a polygon with a countable infinity of vertices (and two accumulation points).

See Figure 2 for an illustration. It is easily verified that
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Figure 2: The set V for parameters pδ, ρh, ρl, l, hq “ p9{10, 1{3, 1{4, 1{4, 1q.

lim
νÑ8

uν`1

l ´ uν
l

uν`1

h ´ uν
h

“ lim
νÑ8

uν`1

l ´ uν
l

uν`1

h ´ uν
h

“ 1.

When the switching time ν is large, the change in the agent’s utility from increasing this

time is largely unaffected by his initial type. Hence, the slopes of the boundaries are less

than and approach 1 as ν Ñ 8. Because pµl ´ v˚
l q{pµh ´ v˚

hq ą 1, the vector v˚ is outside

V . This isn’t surprising. Due to private information, the low-type agent derives information

rents: if the high-type agent’s utility were first-best, the low-type agent’s utility would be

too high.

Persistence affects the set V as follows. When κ “ 0 and values are i.i.d., the low-value

agent values the unit in round ν ě 1 the same as the high-value agent does. Round 0 is the

exception. As a result, the vertices tuνu8
ν“1

(or tuνu8
ν“1

) are aligned and V is a parallelogram
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with vertices 0, µ, u1 and u1. As κ increases, the imbalance between type utilities increases.

The set V flattens. With perfect persistence, the low-type agent no longer cares about

frontloading versus backloading, as no amount of time allows his type to change. See Figure

3.
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Figure 3: Impact of persistence, as measured by κ ě 0.

The structure of V relies on κ ě 0. If types were negatively correlated over time, then

frontloading and backloading would not span the boundary of V . Indeed, consider the case in

which there is perfect negative serial correlation. Then, providing the unit if and only if the

round is odd (even) favors (hurts) the low-type agent relative to the high-type agent. These

two policies achieve the extreme points of V . According to whether higher or lower values

of Uh are considered, the other boundary points combine such alternation with frontloading

or backloading. A negative correlation thus requires a separate treatment, omitted here.

Front- and backloading are not the only policies achieving boundary utilities. The lower

locus corresponds to policies that assign maximum probability to the good being supplied

for high reports, while promising continuation utilities on the lower locus that make ICL

bind. The upper locus corresponds to policies assigning minimum probability to the good

being supplied for low reports while promising continuation utilities on the upper locus that

make ICH bind. Front- and backloading are representative examples within each class.
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4.4 The Optimal Mechanism and Implementation

Not every incentive-feasible utility vector arises under the optimal policy. Irrespective of

the sequence of reports, some vectors are never used. While it is necessary to solve for the

value function and optimal policy on the entire domain V , we first focus on the subset of V

that is relevant given the optimal initial promise and resulting dynamics. We relegate the

discussion of the optimal policy for other utility vectors to Section 4.6.
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Figure 4: Dynamics of utility on the lower locus.

This subset is the lower locus –the polygonal chain spanned by pure frontloading. Two

observations from the i.i.d. case remain valid. First, the efficient choice is made as long as

possible; second, the promises are chosen so the agent is indifferent between the two reports

when his type is low. To understand why such a policy yields utilities on the “frontloading”

boundary (as mentioned in Section 4.3), note that, because the low type is indifferent between

both reports, the agent is willing to say high irrespective of his type. Because the good is

then supplied, the agent’s utilities can be computed as if frontloading prevailed.

From the principal’s perspective, however, it matters that frontloading isn’t actually

implemented. As in the i.i.d. case, the payoff is higher under the optimal policy. Making the

efficient supply choice as long as possible, even if it involves delay, increases this payoff.

Hence, after a high report, continuation utility declines.28 Specifically, Uphq is computed

28Because the lower boundary is upward sloping, the interim utilities of both types vary in the same way.
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as under frontloading as the solution to the following system, given U :

Uv “ p1 ´ δqv ` δEvrUphqs, v “ l, h.

Here, EvrUphqs is the expectation of the utility vector Uphq provided that the current type

is v (e.g., for v “ h, EvrUphqs “ ρhUlphq ` p1 ´ ρhqUhphq).
The promised Uplq does not admit such an explicit formula because it is pinned down by

ICL and the requirement that it lies on the lower boundary. In fact, Uplq might be lower or

higher than U (see Figure 4) depending on U . If U is high enough, Uplq is higher; conversely,

under certain conditions, Uplq is lower than U when U is low enough.29 This condition has

a simple geometric interpretation: if the half-open line segment p0, v˚s intersects the lower

boundary and let U denote the intersection,30 then Uplq is lower than U if and only if U

lies below U .31 However, if there is no such intersection, then Uplq is always higher than U .

This intersection exists if and only if

h ´ l

l
ą 1 ´ δ

δρl
. (8)

Hence, Uplq is higher than U (for all U) if the low-type persistence is sufficiently high.

Utility declines even after a low report if U is so low that even the low-type agent expects

to have sufficiently fast and often a high value that the efficient policy would yield too high

a utility. When the low-type persistence is high, this does not occur.32 As in the i.i.d. case,

the principal achieves the complete-information payoff if and only if U ď U (or U “ µ). We

summarize this discussion with the following theorem, a special case of the next.

Theorem 2 The optimal policy consists of the constrained-efficient policy

pl “ max

"
0, 1 ´ µl ´ Ul

p1 ´ δql

*
, ph “ min

"
1,

Uh

p1 ´ δqh

*
,

in addition to a (specific) initially promised U0 ą U on the lower boundary of V and choices

pUphq, Uplqq on this lower boundary such that ICL always binds.

While the implementation in the i.i.d. case is described in terms of a “utility budget,”

inspired by the use of (ex ante) utility as a state variable, the analysis of the Markov case

Accordingly, we use terms such as “higher” or “lower” utility and write U ă U 1 for the component-wise order.
29As in the i.i.d. case, Uplq is always higher than Uphq.
30This line has the equation Ul “ δρl

1´δp1´ρlqUh.
31With some abuse, we write U P R

2 because it is the natural extension of U P R as introduced in Section

3. Additionally, we set U “ 0 if the intersection does not exist.
32This condition is satisfied in the i.i.d. case due to our assumption that δ ą l{µ.
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strongly suggests the use of a more concrete metric –the number of units that the agent

is entitled to claim in a row with “no questions asked.” The vectors on the boundary are

parameterized by the number of rounds required to reach 0 under frontloading. We denote

such a policy by a number x ě 0, with the interpretation that the good is supplied for the

first txu rounds, and with probability x ´ txu also during round txu ` 1. (Here, txu denotes

the integer part of x.) The corresponding utility pair is written as pUhpxq, Ulpxqq such that

Uhpxq “ E

«

p1 ´ δq
txu´1ÿ

n“0

δnvn | v0 “ h

ff

` px ´ txuqE
“
p1 ´ δqδtxuvtxu | v0 “ h

‰
,

Ulpxq “ E

«

p1 ´ δq
txu´1ÿ

n“0

δnvn | v0 “ l

ff

` px ´ txuqE
“
p1 ´ δqδtxuvtxu | v0 “ l

‰
.

If x “ 8, the good is always supplied, yielding utility µ.

We may think of the optimal policy as follows. During a given round n, the agent is

promised xn. If the agent asks for the unit (and this is feasible, that is, xn ě 1), the next

promise xn`1phq equals xn ´ 1. It is easy to verify that the following holds for both v “ l, h:

Uvpxnq “ p1 ´ δqv ` δE
“
Uvn`1

pxn ´ 1q | vn “ v
‰
. (9)

If xn ă 1 and the agent asks for the unit, he receives the unit with probability xn and obtains

a continuation utility of 0. Instead, claiming to be low leads to the revised promise xn`1plq
such that

Ulpxnq “ δE
“
Uvn`1

pxn`1plqq | vn “ l
‰
, (10)

provided that there exists a (finite) xn`1plq that solves this equation.33 Combing (9) and

(10), we obtain the following:

p1 ´ δql “ δE
“
Uvn`1

pxn`1plqq ´ Uvn`1
pxn ´ 1q | vn “ l

‰
.

Therefore, the promise after the low report xn`1plq is chosen so that the low-value agent

is indifferent between consuming the current unit and consuming the units between xn ´ 1

and xn`1plq. With i.i.d. types, the policy described by (9)–(10) reduces to that described in

Section 3.3 (a special case of the Markovian case).

It is perhaps surprising that the optimal policy can be derived but less surprising that

comparative statics are difficult to obtain except by numerical simulations. By scaling both

33This is impossible if the promised xn is too large (formally, if the payoff vector pUhpxnq, Ulpxnqq P Vh).

In that case, the good is provided with the probability q̃ that solves Ulpxnq´q̃p1´δql
δ

“ E
“
Uvn`1

p8q | vn “ l
‰
.
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ρl and ρh by a common factor, p ě 0, one varies the persistence of the value without affecting

the invariant probability q, and hence, the value µ is also unaffected. Numerically, it appears

that a decrease in persistence (an increase in p) leads to a higher payoff. When p “ 0, types

never change, and we are left with a static problem. When p increases, types change more

rapidly, and the promised utility becomes a more effective currency.

As mentioned, these comparative statics are merely suggested by simulations. As promised

utility varies as a random walk with unequal step size on a grid that is itself a polygonal

chain, there is little hope of establishing this result more formally. To derive a result along

these lines, see Section 5.1. Nonetheless, we note that it is not persistence but positive

correlation that is detrimental. It is tempting to think that any type of persistence is bad

because it endows the agent with private information that pertains not only to today’s value

but also to tomorrow’s, and eliciting private information is often costly. But conditional on

today’s type, the agent’s information regarding his future type is known.34

Given any initial choice of U0, finitely many consecutive reports of l or h suffice for the

promised utility to reach µ or 0. By the Borel-Cantelli lemma, this implies that absorption

occurs almost surely. As in the i.i.d. case, the ex ante utility computed under the invariant

distribution is a random process that drifts upward if and only if qUl `p1´qqUh ě qh, where

the right-hand side is the flow utility under the efficient policy. However, we are unable to

derive the absorption probabilities beginning from the optimal initial promise (we know of

no analogue to the TW-martingale).35

4.5 A Comparison with Transfers as in Battaglini (2005)

As mentioned, our model can be regarded as the no-transfer counterpart of Battaglini (2005).

The difference in results is striking. A main finding of Battaglini, “no distortion at the top,”

has no counterpart here. With transfers, efficient provision occurs forever once the agent first

reports a high type. Further, even along the history in which efficiency is not achieved in finite

time, namely, an uninterrupted string of low reports, efficiency is asymptotically approached.

As explained above, we necessarily obtain (with probability one) an inefficient outcome,

which can be implemented without further reports. Moreover, both long-run outcomes

can arise. To sum up, with (resp., without) transfers, inefficiencies are frontloaded (resp.,

34With perfectly negatively correlated types, the complete information payoff is achieved: offer the agent a

choice between receiving the good in all odd or all even rounds. As δ ą l{h (we assumed that δ ą l{µ), truth-

telling is optimal. Just as in the case of a lower discount rate, a more negative correlation (or less positive

correlation) makes future promises more effective incentives because preference misalignment is shorter-lived.
35Starting from the optimal initial promise, both long-run outcomes have strictly positive probability.
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backloaded) to the greatest extent possible.

The difference can be understood as follows. First, and importantly, Battaglini’s results

rely on revenue maximization being the objective. With transfers, efficiency is trivial: simply

charge c whenever the good must be supplied. When revenue is maximized, transfers reverse

the incentive constraints: it is no longer the low type who would like to mimic the high type

but the high type who would like to avoid paying his entire value for the good by claiming

he is low. The high type incentive constraint binds and he must be given information

rents. Ideally, the principal would like to charge for these rents before the agent has private

information, when the expected value of these rents to the agent is still common knowledge.

When types are i.i.d., this poses no difficulty, and these rents can be expropriated one

round ahead of time. With correlation, however, different types of agents value these rents

differently, as their likelihood of being high in the future depends on their current types.

However, when considering information rents sufficiently far in the future, the initial type

exerts a minimal effect on the conditional expectation of the value of these rents. Hence, the

value can “almost” be extracted. As a result, it is in the principal’s best interest to maximize

the surplus and offer a nearly efficient contract at all dates that are sufficiently far away.

Money plays two roles. First, because it is an instrument that allows promises to “clear” on

the spot without allocative distortions, it prevents the occurrence of backloaded inefficiencies

– a poor substitute for money in this regard. Even if payments could not be made “in

advance,” this would suffice to restore efficiency if that were the goal. Another role of money,

as highlighted by Battaglini, is that it allows value to be transferred before information

becomes asymmetric. Hence, information rents no longer impede efficiency, at least with

respect to the remote future. These future inefficiencies are eliminated altogether.

A plausible intermediate case arises when money is available but the agent is protected

by limited liability, so that payments can only be made from the principal to the agent. The

principal maximizes social surplus net of any payments.36 In this case, we show in Appendix

C.3 (see Lemma 11) that no transfers are made if (and only if) c´ l ă l. This condition can

be interpreted as follows: c´ l is the cost to the principal of incurring one round inefficiency

(supplying the good when the type is low), whereas l is the cost to the agent of forgoing a

low-value unit. Hence, if it is costlier to buy off the agent than to supply the good when the

value is low, the principal prefers to follow the optimal policy without money.

36If payments do not matter for the principal, efficiency is easily achieved because he would pay c to the

agent if and only if the report is low and nothing otherwise.
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4.6 The General Solution

Theorem 2 follows from the analysis of the optimal policy on the entire domain, V . Because

only those values in V along the lower boundary are relevant, the reader might elect to skip

this subsection, which completely solves the program in Section 4.1.

We further divide V into subsets and introduce two sequences of utility vectors. First,

given U , define the sequence tvνuνě0 by

vνh “ E
“
δνUvν

| v0 “ h
‰
, vνl “ E

“
δνU vν

| v0 “ l
‰
. (11)

Intuitively, this is the payoff from waiting for ν rounds from initial value h or l, and then

getting U vν
. Let V be the payoff vectors in V that lie below the graph of the set of points

tvνuνě0. Figure 5 illustrates this construction. Note that V has a non-empty interior if

and only if ρl is sufficiently large (see (8)). This set is the domain of utilities for which the

complete information payoff can be achieved, as stated below.

Lemma 6 For all U P V Y tµu and all φ,

W pU, φq “ ĎW pU, φq.

Conversely, if U R V Y tµu, then W pU, φq ă ĎW pU, φq for all φ P p0, 1q.

To understand Lemma 6, we first observe that if the agent is promised U , his future promised

utility after a low report is exactly U under the optimal policy. Therefore, for any U that is

on the lower locus of V and lies below U , the complete information payoff can be achieved.

Second, for any ν ě 1, the utility vν can be delivered by not supplying the unit in the

current round and setting the future utility to be vν´1, regardless of the report. The agent’s

promised utility becomes Up“ v0q after ν rounds. From this point on, the optimal policy as

specified in Theorem 2 is implemented. Clearly, under this policy, the unit is never supplied

when the agent’s value is low. Therefore, the complete information payoff is achieved.

Second, we define ûν :“ pûν
h, û

ν
l q, ν ě 0 as follows:

ûν
h “ E

«

p1 ´ δq
νÿ

n“1

δnvn | v0 “ h

ff

, ûν
l “ E

«

p1 ´ δq
νÿ

n“1

δnvn | v0 “ l

ff

. (12)

This is the utility vector if the principal supplies the unit from round 1 to round ν, inde-

pendent of the reports. We note that û0 “ 0 and ûν is an increasing sequence (in both

coordinates) contained in V , where limνÑ8 ûν “ ū1. The ordered sequence tûνuνě0 defines a

polygonal chain P that divides V zV into two subsets, Vt and Vb, consisting of those points
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in V zV that lie above or below P . We also let Pb, Pt be the (closure of the) polygonal chains

defined by tuνuνě0 and tuνuνě0 that correspond to the lower and upper boundaries of V .

We now define a policy (which, as we will see below, is optimal) ignoring for the present

the choice of the initial promise.

Definition 2 For all U P V , set

pl “ max

"
0, 1 ´ µl ´ Ul

p1 ´ δql

*
, ph “ min

"
1,

Uh

p1 ´ δqh

*
, (13)

and

Uphq P Pb, Uplq P

$
&

%
Pb if U P Vb

Pt if U P Pt.

Furthermore, if U P Vt, Uplq is chosen such that ICH binds.

For any U , the current allocation is the efficient one (as long as possible), and the future

utilities Uphq and Uplq are chosen so that PKH and PKL are satisfied. We show that the

closer U is to the lower boundary of V , the higher the principal’s payoff is. Therefore, Uphq
and Uplq shall be as close to Pb as ICL and ICH permit. One can always choose Uphq to be

on Pb, because moving Uphq toward Pb makes ICL less binding. However, one cannot always

choose Uplq to be on Pb without violating ICH , because the high-value agent might have an

incentive to mimic the low-value one as we increase Uhplq and decrease Ulplq. This is where

the definition of P plays the role. If the promised utility is pûν
h, û

ν
l q P P , the high-value agent

is promised the expected utility from foregoing the unit in round 0 and consuming the unit

from round 1 to ν. Therefore, if the low-value agent consumes no unit in the current round

and is promised a future utility that is on the lower (or frontloading) locus, ICH holds with

equality. Hence, for all utilities above P , Uplq is chosen such that ICH binds, whereas for

all utilities below P , one chooses Uplq to be on the lower locus. It is readily verified that the

policy and choices of Uplq, Uphq also imply that ICL binds for all U P Pb.

A surprising property of this policy is that it is independent of the principal’s belief. That

is, the belief regarding the agent’s value does not enter the optimal policy, for a fixed the

promised utility. Roughly, this is because the variations of the value function with respect

to utilities are so pronounced that the incentive-feasibility constraints rather than the beliefs

dictate the policy. However, the belief affects the optimal initial promise and the payoff.

Figure 5 illustrates the dynamics. Given any promised utility vector, the vector pph, plq “
p1, 0q is used (unless U is too close to 0 or µ), and promised utilities depend on the report. A

report of l shifts the utility to the right (toward higher values), whereas a report of h shifts it
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Figure 5: The set V and the optimal policy for pδ, ρh, ρl, l, hq “ p9{10, 1{3, 1{4, 1{4, 1q.

to the left and toward the lower boundary. Below the interior polygonal chain, utility jumps

to the lower boundary after an l report; above it, the jump is determined by ICH . If the

utility starts from the upper boundary, the continuation utility after an l report stays there.

For completeness, we also define the subsets over which promise keeping prevents the

efficient choices pph, plq “ p1, 0q from being made. Let Vh “ tpUh, Ulq : pUh, Ulq P V, Ul ě u1

l u
and Vl “ tpUh, Ulq : pUh, Ulq P V, Uh ď u1

hu. It is easily verified that pph, plq “ p1, 0q is feasible

at U given promise keeping if and only if U P V zpVh Y Vlq.

Theorem 3 Fix U0 P V ; given U0, the policy stated above is optimal. The initial promise

U˚ is in Pb X pV zV q, with U˚ increasing in the principal’s prior belief.

Furthermore, the value function W pUh, Ul, φq is weakly increasing in Uh along the rays

x “ φUh ` p1 ´ φqUl for any φ P t1 ´ ρh, ρlu.

Given that U˚ P Pb and given the structure of the optimal policy, the promised utility

vector never leaves Pb. It is also simple to verify that, as in the i.i.d. case (and by the same

arguments), the (one-sided) derivative of W approaches the derivative of ĎW as U approaches

either µ or the set V . As a result, the initial promise U˚ is strictly interior.
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5 Extensions

Here, we relax two modeling choices. First, we have opted for a discrete time framework

because it embeds the case of independent values – a natural starting point for which there

is no counterpart in continuous time. This choice comes at a price. With Markovian types,

closed-forms (and comparative statics) aren’t available in discrete time. As we show, they

are in continuous time. Second, we have assumed that the agent’s value is binary. As is well

known (see Battaglini and Lamba, 2014, for instance), it is difficult to make progress with

more types, even with transfers, unless strong assumptions are imposed. In the i.i.d. case,

this is nonetheless possible. Below, we consider the case of a continuum of types.

5.1 Continuous Time

To make further progress, we examine the limiting stochastic process of utility and payoff

as transitions that are scaled according to the usual Poisson limit, when the variable round

length, ∆ ą 0, is taken to 0, and transition probabilities are set to ρh “ λh∆ ` op∆q,
ρl “ λl∆`op∆q. Formally, we consider a continuous-time Markov chain pvtqtě0 (by definition,

a right-continuous process) with state space tl, hu, transition matrix pp´λl, λlq, pλh,´λhqq,
and initial probability q “ λl{pλh `λlq of h. Let T0, T1, T2, . . . be the corresponding random

times at which the value switches (setting T0 “ 0 if the initial state is l such that, by

convention, vt “ l on any interval rT2k, T2k`1q).
The optimal policy defines a tuple of continuous-time processes that follow deterministic

trajectories over any interval rT2k, T2k`1q. First, the belief pµtqtě0 of the principal takes

values in the range t0, 1u. Namely, µt “ 0 over any interval rT2k, T2k`1q, and µt “ 1 otherwise.

Second, the utilities of the agent pUl,t, Uh,tqtě0 are functions of his type. Finally, the expected

payoff of the principal, pWtqtě0, is computed according to his belief µt.

The pair of processes pUl,t, Uh,tqtě0 takes values in V , obtained by considering the limit

(as ∆ Ñ 0) of the formulas for tuν , uνuνPN. In particular, one obtains that the lower bound

is given in parametric form by37

uhpτq “ E

„ż τ

0

e´rtvtdt | v0 “ h


, ulpτq “ E

„ż τ

0

e´rtvtdt | v0 “ l


,

where τ ě 0 can be interpreted as the requisite time for promises to be fulfilled under the

policy that consists of producing the good regardless of the reports until that time is elapsed.

37Here and in what follows, we omit the obvious corresponding analytic expressions. See Appendix C.2.
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We define µ “ limτÑ8puhpτq, ulpτqq as the vector of values from getting the good forever.38

The upper boundary is now given by the pairs puhp¨q, ulp¨qq, where

uhpτq “ E

„ż 8

τ

e´rtvtdt | v0 “ h


, ulpτq “ E

„ż 8

τ

e´rtvtdt | v0 “ l


.

Finally, we define the set V of vectors for which the complete-information payoff is attained.

Let pUh, U lq be the largest intersection of the graph of u “ puh, ulq with the line Ul “ λl

λl`r
Uh.

If U “ 0 then V “ t0u. If not, define the points pvhp¨q, vlp¨qq given in parametric form by

vhpτq “ E
“
e´rτUvτ

| v0 “ h
‰
, vlpτq “ E

“
e´rτUvτ

| v0 “ l
‰
.

Intuitively, this is the payoff from waiting for a duration τ from initial value h or l, and then

getting Uvτ
. Let V be the payoff vectors in V that lie below the graph of this set of points.

Figure 6 illustrates this construction. The boundary of V is smooth except at 0 and µ.39

It is immediately verifiable that V has a non-empty interior if and only if (cf. (8))

h ´ l

l
ą r

λl

.

Hence, the complete-information payoff cannot be achieved (except for 0, µ) when the low

state is too persistent. However, V ‰ H when the agent is sufficiently patient.

How does τ –the denomination of utility on the lower boundary– evolve over time? Along

the lower boundary, it evolves continuously. On any interval over which h is continuously

reported, it evolves deterministically, with increments

dτh

dt
“ ´1.

Instead, when l is reported, the evolution is given by

dτ l

dt
“ l

Ere´rτvτ | v0 “ ls ´ 1.

The increment dτ l is positive or negative depending upon whether τ maps onto a utility

vector in V . The interpretation is as in discrete time: whether the agent asks for the unit or

38Explicitly,

µ “

ˆ
h ´

λh

λh ` λl ` r
ph ´ lq, l `

λl

λh ` λl ` r
ph ´ lq

˙
.

39It is also easy to verify that the limit of the chain defined by ûν lies on the lower boundary: Vb is empty

in the continuous-time limit.
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Figure 6: Incentive-feasible set for pr, λh, λl, l, hq “ p1, 10{4, 1{4, 1{4, 1q.

not, he must pay a fixed cost of 1. However, conditional on foregoing the unit and reporting

l, he is compensated by a term that equals the rate of substitution between the opportunity

flow cost of giving up the current unit, l, and the value of getting it at the most propitious

future time less than τ : the later being the better given his current type, this means his

expected (discounted) value at this upper bound τ .

The evolution of utility is not continuous for utilities that are not on the lower boundary

of V . A high report leads to a vertical jump in the utility of the low type down to the lower

boundary. See Figure 6. This change is intuitive because by promise keeping, the utility of

the high-type agent cannot jump because such an instantaneous report has only a minute

impact on his flow utility. A low report, however, leads to a drift in the type’s utility.

Continuous time allows to explicitly solve for the principal’s value function. Because her

belief is degenerate, except at the initial instant, we write Whpτq (resp., Wlpτq) for the payoff

when (she assigns probability one to the event that) the agent’s valuation is currently high

(resp. low). See Appendix C.2 for a derivation of the solution and the proof of the following.

Lemma 7 The value W pτq :“ qWhpτq`p1´qqWlpτq decreases pointwise in persistence 1{p,
where λh “ pλ̄h, λl “ pλ̄l, for some fixed λ̄h, λ̄l for all τ ,

lim
pÑ8

W pτq “ ĎW pτq, lim
pÑ0

max
τ

W pτq “ maxtµ ´ c, 0u.
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Hence, persistence hurts the principal’s payoff. With independent types, the agent’s prefer-

ences are quasilinear in promised utility such that the only source of inefficiency derives from

the bounds on this currency. When types are correlated, the promised utility is no longer

independent of today’s types in the agent’s preferences, reducing the degree to which this

mechanism can be used to efficiently provide incentives. With perfectly persistent types,

there is no longer any leeway, and we are back to the inefficient static outcome. Figure 7

illustrates the value function for two levels of persistence and compares it to the complete-

information payoff evaluated along the lower locus, ĎW (the lower envelope of three curves).

What about the agent’s utility? We note that the utility of both types is increasing in τ .

Indeed, because a low type is always willing to claim that his value is high, we may compute

his utility as the time over which he would obtain the good if he continuously claimed to be of

the high type, which is precisely the definition of τ . However, persistence plays an ambiguous

role in determining the agent’s utility: perfect persistence is his favorite outcome if µ ą c.

Hence, always providing the good is the best option in the static game. Conversely, perfect

persistence is worse if µ ă c. Hence, persistence tends to improve the agent’s situation

when µ ą c.40 As r Ñ 0, the principal’s value converges to the complete information payoff

qph´cq. We conclude with a rate of convergence without further discussion given the detailed

comparison with Jackson and Sonnenschein (2007) provided in Section 3.4.

Lemma 8 It holds that

|max
τ

W pτq ´ qph ´ cq| “ Oprq.

5.2 Continuous Types

Throughout our analysis, attention has been restricted to two types. This assumption makes

the analysis tractable. Here, we explain which features of the solution are robust, at least

when types are i.i.d. In particular, backloading occurs in the sense that the allocation is

eventually insensitive to the agent’s private information: polarization occurs with both long-

run outcomes being possible. On the other hand, even in the first round, the allocation

isn’t efficient; in fact, it isn’t even bang-bang. Because transfers aren’t available, some

intermediate types obtain the good with interior probability, even with i.i.d. types.

Assume that types are drawn i.i.d. from some distribution F with support rv, 1s, v P r0, 1q
and density f ą 0 on rv, 1s. In Proposition 1, we specialize to power distributions F pvq “ va,

a ě 1. Let µ “ Ervs be the type’s expected value and hence also the highest possible utility

40However, this convergence is not necessarily monotone, which is easy to verify via examples.
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Figure 7: Value function and complete information payoffs as a function of τ (here,

pλl, λh, r, l, h, cq “ pp{4, 10p{4, 1, 1{4, 1, 2{5q and p “ 1, 1{4).

promise. As before, we start with the complete-information benchmark, with a lemma whose

proof is straightforward and omitted. A policy is threshold if, for every U , the assignment is

non-decreasing in the type and takes only values 0 and 1.

Lemma 9 The complete information payoff ĎW is strictly concave. The complete informa-

tion policy is unique and threshold, where the threshold v˚ is continuously decreasing from 1

to v as U varies from 0 to µ. Given the initial promise U , utility remains constant at U .

Noteworthy is the strict concavity of ĎW over its entire domain. With a continuum of types,

the threshold type above which the unit is delivered can be tailored to the promised utility

in a way that mitigates the fact that this utility might be above or below first best. Given a

promised utility U P r0, µs, there exists a threshold v˚ such that the good is provided if and

only if the type is above v˚. As before, utility does not evolve over time. Returning to the

case in which the agent privately observes values, we have the following.41

Theorem 4 The value function is strictly concave in U , continuously differentiable, and

strictly below the complete information payoff (except for U “ 0, µ). Given U P p0, µq, the

optimal policy p : rv, 1s Ñ r0, 1s is not a threshold policy.

41See Appendix C.3.
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One might have expected the optimal policy to be threshold. However, without transfers,

incentive compatibility requires the continuation utility to vary with reports, yet the prin-

cipal’s payoff is not linear. Consider a small open interval of types around a candidate

threshold. From the principal’s perspective, conditional on the type being in this interval,

the outcome is a lottery over giving the unit or not, as well as over continuation payoffs.

Replacing this lottery with its expected value leaves the agent virtually indifferent; but it

benefits the principal, given the strict concavity of her payoff function.

Dynamics cannot be described as explicitly as with binary values. The TW-martingale

remains useful: W 1 is a bounded martingale, as U -a.e.,

W 1pUq “
ż

1

v

W 1pUpU, vqqdF pvq,

where U : r0, µsˆrv, 1s Ñ r0, µs is the optimal policy mapping current utility and report into

continuation utility. Because UpU, ¨q is not constant, except at U “ 0, µ, and W is strictly

concave, it must be that the limit is 0 or µ, and both must occur with positive probability.

Lemma 10 Given any initial level U0, the utility process Un converges to t0, µu, with both

limits having strictly positive probability if v ą 0 (If v “ 0, 0 occurs a.s.).

What is then the optimal policy? In Appendix C.3, we prove the following.

Proposition 1 Suppose that F pvq “ va, a ě 1. There exists U˚˚ P p0, µq such that

1. for any U ă U˚˚, there exists v1 such that ppvq “ 0 for v P r0, v1s and ppvq is strictly

increasing (and continuous) when v P pv1, 1s. The constraint Up1q ě 0 binds, while the

constraint pp1q ď 1 does not.

2. for any U ě U˚˚, there exists 0 ď v1 ď v2 ď 1 such that ppvq “ 0 for v ď v1, ppvq
is strictly increasing (and continuous) when v P pv1, v2q and ppvq “ 1 for v ě v2. The

constraints Up0q ď µ and Up1q ě 0 do not bind.

Figure 8 illustrates the optimal policy for some U ě U˚˚.42 Indirect implementation is

more difficult, as the agent might be assigned the good with interior probability. Hence, the

variable fee of the two-part tariff that we describe must be extended to a nonlinear schedule

in which the agent pays a price for each “share” of the good that he would like.

42The thresholds are v1 “ .5, v2 « .575, Up0q « .412, and Up1q « .384.
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Figure 8: Optimal policy for δ “ .95, c “ .4, and v uniform on r0, 1s.

Markovian Types. We see little hope for analytic results with additional types in the

Markovian case. In fact, even with three types, we are unable to characterize the incentive-

feasible set. It is clear that frontloading is the worst policy for the low type, given some

promised utility to the high type, and backloading is the best, but what of maximizing a

medium type’s utility given a pair of utilities to the low and high type? It appears that the

convex hull of utilities from frontloading and backloading policies traces out the lowest utility

that a medium type can obtain for any such pair, but the set of incentive-feasible payoffs has

full dimension. His maximum utility obtains when one of his incentive constraints binds, but

there are two possibilities, according to the binding constraint. This yields two hypersurfaces

that do not appear to admit closed-form solutions. The analysis of the two-type case suggests

that the optimal policy follows a path of utility triples on such a boundary.

6 Concluding Comments

Here, we discuss some extensions.

Renegotiation-Proofness. The optimal policy, as described in Sections 3–4, is clearly not

renegotiation-proof, unlike with transfers (see Battaglini, 2005). After a history of reports

such that the promised utility is zero, both parties would be better off by reneging and start-

ing afresh. There are several ways to define renegotiation-proofness. Strong-renegotiation

(Farrell and Maskin, 1989) implies a lower bound on the utility vectors visited (except in the

event that µ is so low that it makes the relationship altogether unprofitable, and so U˚ “ 0.)

However, the structure of the optimal policy can still be derived from the same observations.

The low-type incentive-compatibility condition and promise keeping specify the continuation
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utilities, unless a boundary is reached regardless of whether it is the lower boundary (that

must serve as a lower reflecting barrier) or the upper absorbing boundary µ.

Public Signals. While assuming no statistical evidence whatsoever allows us to clarify how

the principal can exploit the repeated allocation decision to mitigate the inefficiency entailed

by private information, there are many applications for which such evidence is available.

This public signal depends on the current type and possibly on the action chosen by the

principal. For instance, if the decision is to fill a position (as in labor market applications),

feedback on the quality of the applicant only obtains if he is hired. Instead, if the good

insures the agent against a risk with a cost that might be either high or low, the principal

might discover that the agent’s claim was warranted only if she fails to provide a good.

Incomplete Information Regarding the Process. Thus far, we have assumed that

the agent’s type is drawn from a distribution that is common knowledge. This feature is

obviously an extreme assumption. In practice, the agent might have superior information

regarding the frequency with which high values arrive. If the agent knows the distribution

from the beginning, the revelation principle applies, and it is a matter of revisiting the

analysis from Section 3 with an incentive compatibility constraint at time 0.

Alternatively, the agent might not possess such information initially but be able to deter-

mine the underlying distribution from successive arrivals. This is the more challenging case

in which the agent himself is learning about q (or, more generally, the transition matrix)

as time passes. In that case, the agent’s belief might be private (in the event that he has

deviated in the past). Therefore, it is necessary to enlarge the set of reports. A mechanism

is now a map from the principal’s belief µ (regarding the agent’s belief), a report by the

agent of this belief, denoted ν, and his report on his current type (h or l) onto a decision of

whether to allocate the good and the promised continuation utility.
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A Missing Proof For Section 3

Proof of Theorem 1. Based on PK and the binding ICL, we solve for uh, ul as a function

of ph, pl and U :

uh “ U ´ p1 ´ δqphpqh ` p1 ´ qqlq
δ

, (14)

ul “ U ´ p1 ´ δqpphqph ´ lq ` pllq
δ

. (15)

We want to show that an optimal policy is such that (i) either uh as defined in (14) equals

0 or ph “ 1; and (ii) either ul as defined in (15) equals v̄ or pl “ 0. Write W pU ; ph, plq for the

maximum payoff from using ph, pl as probabilities of assigning the good, and using promised

utilities as given by (14)–(15) (followed by the optimal policy from the period that follows).

Substituting uh and ul into (OBJ), we get, from the fundamental theorem of calculus, for

any fixed p1h ă p2h such that the corresponding utilities uh are interior,

W pU ; p2h, plq ´ W pU ; p1h, plq “
ż p2

h

p1
h

tp1 ´ δqq ph ´ c ´ p1 ´ qqph ´ lqW 1pulq ´ v̄W 1puhqqu dph.

This expression decreases (pointwise) in W 1puhq and W 1pulq. Recall that W 1puq is bounded

from above by 1 ´ c{h. Hence, plugging in the upper bound for W 1, we obtain that

W pU ; p2h, plq ´ W pU ; p1h, plq ě 0. It follows that there is no loss (and possibly a gain) in

increasing ph, unless feasibility prevents this. An entirely analogous reasoning implies that

W pU ; ph, plq is nonincreasing in pl.

It is immediate that uh ď ul and both uh, ul decreases in ph, pl. Therefore, either uh ě 0

binds or ph equals 1. Similarly, either ul ď v̄ binds or pl equals 0.

Proof of Lemma 2. We start the proof with some notation and preliminary remarks.

First, given any interval I Ă r0, µs, we write Ih :“
”
a´p1´δqµ

δ
,
b´p1´δqµ

δ

ı
X r0, µs and Il :“

”
a´p1´δqU

δ
,
b´p1´δqU

δ

ı
X r0, µs where I “ ra, bs; we also write ra, bsh, etc. Furthermore we

use the (ordered) sequence of subscripts to indicate the composition of such maps, e.g.,

Ilh “ pIlqh. Finally, given some interval I, we write ℓpIq for its length.

Second, we note that, for any interval I Ă rU, U s, identically, for U P I, it holds that

W pUq “ p1 ´ δqpqh ´ cq ` δqW

ˆ
U ´ p1 ´ δqµ

δ

˙
` δp1 ´ qqW

ˆ
U ´ p1 ´ δqU

δ

˙
, (16)

and hence, over this interval, it follows by differentiation that, a.e. on I,

W 1pUq “ qW 1puhq ` p1 ´ qqW 1pulq.
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Similarly, for any interval I Ă rU, µs, identically, for U P I,

W pUq “ p1 ´ qq
´
U ´ c ´ pU ´ µqc

l

¯
` p1 ´ δqqpµ ´ cq ` δqW

ˆ
U ´ p1 ´ δqµ

δ

˙
, (17)

and so a.e.,

W 1pUq “ ´p1 ´ qqpc{l ´ 1q ` qW 1puhq.

That is, the slope of W at a point (or an interval) is an average of the slopes at uh, ul, and

this holds also on rU, µs, with the convention that its slope at ul “ µ is given by 1´ c{l. By

weak concavity of W , if W is affine on I, then it must be affine on both Ih and Il (with the

convention that it is trivially affine at µ). We make the following observations.

1. For any I Ď pU, µq (of positive length) such that W is affine on I, ℓpIhXIq “ ℓpIlXIq “
0. If not, then we note that, because the slope on I is the average of the other two, all

three must have the same slope (since two intersect, and so have the same slope). But

then the convex hull of the three has the same slope (by weak concavity). We thus

obtain an interval I 1 “ cotIl, Ihu of strictly greater length (note that ℓpIhq “ ℓpIq{δ,
and similarly ℓpIlq “ ℓpIq{δ unless Il intersects µ). It must then be that I 1

h or I 1
l

intersect I, and we can repeat this operation. This contradicts the fact the slope of W

on r0, Us is p1 ´ c{hq, yet W pµq “ µ ´ c.

2. It follows that there is no interval I Ď rU, µs on which W has slope p1´ c{hq (because

then W would have this slope on I 1 :“ cottUu Y Iu, and yet I 1 would intersect I 1
l .)

Similarly, there cannot be an interval I Ď rU, µs on which W has slope 1 ´ c{l.

3. It immediately follows from 2 that W ă ĎW on pU, µq: if there is a U P pU, µq such that

W pUq “ ĎW pUq, then by concavity again (and the fact that the two slopes involved

are the two possible values of the slope of ĎW ), W must either have slope p1 ´ c{hq on

r0, Us, or 1 ´ c{l on rU, µs, both being impossible.

4. Next, suppose that there exists an interval I Ă rU, µq of length ε ą 0 such that W is

affine on I. There might be many such intervals; consider the one with the smallest

lower extremity. Furthermore, without loss, given this lower extremity, pick I so that

it has maximum length, that W is affine on I, but on no proper superset of I. Let

I :“ ra, bs. We claim that Ih P r0, Us. Suppose not. Note that Ih cannot overlap with

I (by point 1). Hence, either Ih is contained in r0, Us, or it is contained in rU, as, or

U P pa, bqh. This last possibility cannot occur, because W must be affine on pa, bqh,
yet the slope on pah, Uq is equal to p1 ´ c{hq, while by point 2 it must be strictly less
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on pU, bhq. It cannot be contained in rU, as, because ℓpIhq “ ℓpIq{δ ą ℓpIq, and this

would contradict the hypothesis that I was the lowest interval in rU, µs of length ε

over which W is affine.

We next observe that Il cannot intersect I. Assume b ď U . Hence, we have that Il is

an interval over which W is affine, and such that ℓpIlq “ ℓpIq{δ. Let ε1 :“ ℓpIq{δ. By

the same reasoning as before, we can find I 1 Ă rU, µq of length ε1 ą 0 such that W

is affine on I 1, and such that I 1
h Ă r0, Us. Repeating the same argument as often as

necessary, we conclude that there must be an interval J Ă rU, µq such that (i) W is

affine on J , J “ ra1, b1s, (ii) b1 ě U , there exists no interval of equal or greater length

in rU, µq over which W would be affine. By the same argument yet again, Jh must be

contained in r0, Us. Yet the assumption that δ ą 1{2 is equivalent to Uh ą U , and so

this is a contradiction. Hence, there exists no interval in pU, µq over which W is affine,

and so W must be strictly concave.

This concludes the proof.

Differentiability follows from an argument that follows Benveniste and Scheinkman (1979),

using some induction. We note that W is differentiable on p0, Uq. Fix U ą U such that

Uh P p0, Uq. Consider the following perturbation of the optimal policy. Fix ε “ pp ´ p̄q2, for

some p̄ P p0, 1q to be determined. With probability ε ą 0, the report is ignored, the good is

supplied with probability p P r0, 1s and the next value is Ul (Otherwise, the optimal policy

is implemented). Because this event is independent of the report, the IC constraints are still

satisfied. Note that, for p “ 0, this yields a strictly lower utility than U to the agent, while it

yields a strictly higher utility for p “ 1. As it varies continuously, there is some critical value

–defined as p̄– that makes the agent indifferent between both policies. By varying p, we may

thus generate all utilities within some interval pU ´ ν, U ` νq, for some ν ą 0, and the payoff

W̃ that we obtain in this fashion is continuously differentiable in U 1 P pU ´ ν, U ` νq. It

follows that the concave function W is minimized by a continuously differentiable function

W̃ –hence, it must be as well.
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B Missing Proof For Section 4

Proof of Lemma 5. Substituting the agent’s expected value in each round into (6) and

(7), we obtain that

uν
h “ p1 ´ δνqµh ` δνp1 ´ qqpµh ´ µlqp1 ´ κνq, uν

l “ p1 ´ δνqµl ´ δνqpµh ´ µlqp1 ´ κνq,
uν
h “ δνµh ´ δνp1 ´ qqpµh ´ µlqp1 ´ κνq, uν

l “ δνµl ` δνqpµh ´ µlqp1 ´ κνq.

Let W denote the set cotuν , uν : ν ě 0u. The point u0 is supported by pph, plq “ p1, 1q, Uphq “
Uplq “ pµh, µlq. For ν ě 1, uν is supported by pph, plq “ p0, 0q, Uphq “ Uplq “ uν´1. The

point u0 is supported by pph, plq “ p0, 0q, Uphq “ Uplq “ p0, 0q. For ν ě 1, uν is supported

by pph, plq “ p1, 1q, Uphq “ Uplq “ uν´1. Therefore, we have W Ă BpW q. This implies that

BpW q Ă V .

We define four sequences as follows. First, for ν ě 0, let

wν
h “ δν p1 ´ κνq p1 ´ qqµl,

wν
l “ δν p1 ´ q ` κνqqµl,

and set wν “ pwν
h, w

ν
l q. Second, for ν ě 0, let

wν
h “ µh ´ δν p1 ´ κνq p1 ´ qqµl,

wν
l “ µl ´ δν p1 ´ q ` κνqqµl,

and set wν “ pwν
h, w

ν
l q. For any ν ě 1, wν is supported by pph, plq “ p0, 0q, Uphq “ Uplq “

wν´1, and wν is supported by pph, plq “ p1, 1q, Uphq “ Uplq “ wν´1. The sequence wν starts

at w0 “ p0, µlq with limνÑ8 wν “ 0. Similarly, wν starts at w0 “ pµh, 0q and limνÑ8 wν “ µ.

We define a set sequence as follows:

W ν “ co
`
tuk, uk : 0 ď k ď νu Y twν , wνu

˘
.

It is obvious that V Ă BpW 0q Ă W 0. To prove that V “ W , it suffices to show that

W ν “ BpW ν´1q and limνÑ8 W ν “ W .

For any ν ě 1, we define the supremum score in direction pλ1, λ2q given W ν´1 as

Kppλ1, λ2q,W ν´1q “ supph,pl,Uphq,Uplqpλ1Uh ` λ2Ul), subject to (2)–(5), ph, pl P r0, 1s, and

Uphq, Uplq P W ν´1. The set BpW ν´1q is given by

č

pλ1,λ2q

 
pUh, Ulq : λ1Uh ` λ2Ul ď Kppλ1, λ2q,W ν´1q

(
.
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Without loss of generality, we focus on directions p1,´λq and p´1, λq for all λ ě 0. We

define three sequences of slopes as follows:

λν
1

“ p1 ´ qqpδκ ´ 1qκνpµh ´ µlq ´ p1 ´ δqpqµh ` p1 ´ qqµlq
qp1 ´ δκqκνpµh ´ µlq ´ p1 ´ δqpqµh ` p1 ´ qqµlq

,

λν
2

“ 1 ´ p1 ´ qq p1 ´ κνq
q p1 ´ κνq ,

λν
3

“ p1 ´ qq p1 ´ κνq
qκν ` p1 ´ qq .

It is easy to verify that

λν
1

“ uν
h ´ uν`1

h

uν
l ´ uν`1

l

“ uν
h ´ uν`1

h

uν
l ´ uν`1

l

, λν
2

“ uν
h ´ wν

h

uν
l ´ wν

l

“ uν
h ´ wν

h

uν
l ´ wν

l

, λν
3

“ wν
h ´ 0

wν
l ´ 0

“ wν
h ´ µh

wν
l ´ µl

.

When pλ1, λ2q “ p´1, λq, the supremum score as we vary λ is

Kpp´1, λq,W ν´1q “

$
’’’’’’’’’’’&

’’’’’’’’’’’%

p´1, λq ¨ p0, 0q if λ P r0, λν
3
s

p´1, λq ¨ wν if λ P rλν
3
, λν

2
s

p´1, λq ¨ uν if λ P rλν
2
, λν´1

1
s

p´1, λq ¨ uν´1 if λ P rλν´1

1
, λν´2

1
s

¨ ¨ ¨
p´1, λq ¨ u0 if λ P rλ0

1
,8q.

Similarly, when pλ1, λ2q “ p1,´λq, we have

Kpp1,´λq,W ν´1q “

$
’’’’’’’’’’’&

’’’’’’’’’’’%

p1,´λq ¨ pµh, µlq if λ P r0, λν
3
s

p1,´λq ¨ wν if λ P rλν
3
, λν

2
s

p1,´λq ¨ uν if λ P rλν
2
, λν´1

1
s

p1,´λq ¨ uν´1 if λ P rλν´1

1
, λν´2

1
s

¨ ¨ ¨
p1,´λq ¨ u0 if λ P rλ0

1
,8q.

Therefore, we have W ν “ BpW ν´1q. Note that this method only works when parameters are

such that λν
3

ď λν
2

ď λν´1

1
for all ν ě 1. If ρl{p1 ´ ρhq ě l{h, the proof stated above applies.

Otherwise, the following proof applies.

We define four sequences as follows. First, for 0 ď m ď ν, let

whpm, νq “ δν´m pqµh p1 ´ δmq ` p1 ´ qqµlq ´ p1 ´ qqpδκqν´m pµh ppδκqm ´ 1q ` µlq ,
wlpm, νq “ δν´m pqµh p1 ´ δmq ` p1 ´ qqµlq ` qpδκqν´m pµh ppδκqm ´ 1q ` µlq ,
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and set wpm, νq “ pwhpm, νq, wlpm, νqq. Second, for 0 ď m ď ν, let

whpm, νq “ p1 ´ qqδνκν pµh pδmκm ´ 1q ` µlq ` κm pµhδ
m ´ δν pqµh p1 ´ δmq ` p1 ´ qqµlqq

δmκm
,

wlpm, νq “ ´qδνκν pµh pδmκm ´ 1q ` µlq ` κm pµlδ
m ´ δν pqµh p1 ´ δmq ` p1 ´ qqµlqq

δmκm
,

and set wpm, νq “ pwhpm, νq, wlpm, νqq. Fixing ν, the sequence wpm, νq is increasing (in

both its arguments) as m increases, with limνÑ8 wpν ´ m, νq “ um. Similarly, fixing ν,

wpm, νq is decreasing as m increases, limνÑ8 wpν ´ m, νq “ um.

Let W pνq “ twpm, νq : 0 ď m ď νu and W pνq “ twpm, νq : 0 ď m ď νu. We define a set

sequence as follows:

W pνq “ co
`
tp0, 0q, pµh, µlqu Y W pνq Y W pνq

˘
.

Since W p0q equals r0, µhs ˆ r0, µls, it is obvious that V Ă BpW p0qq Ă W p0q. To prove

that V “ W :“ cotuν , uν : ν ě 0u, it suffices to show that W pνq “ BpW pν ´ 1qq and

limνÑ8 W pνq “ W . The rest of the proof is similar to the first part and hence omitted.

Proof of Lemma 6. It will be useful in this proof and those that follow to define the

operator Bij , i, j “ 0, 1. Given an arbitrary A Ă r0, µhs ˆ r0, µls, let

BijpAq :“ tpUh, Ulq P r0, µhs ˆ r0, µls : Uphq, Uplq P A solving (2)–(5) for pph, plq “ pi, jqu ,

and similarly Bi¨pAq,B¨jpAq when only ph or pl is constrained.

The first step is to compute V0, the largest set such that V0 Ă B¨0pV0q. Plainly, this is

a proper subset of V , because any promise Ul P pδρlµh ` δp1 ´ ρlqµl, µls requires that pl be

strictly positive.

We first show that V̄ P V0. Substituting the probability of being h in round ν conditional

on the current type into (11), we obtain the analytic expression of tvνuνě1:

vνh “ δν pp1 ´ qqU l ` qUh ` p1 ´ qqκνpUh ´ U lqq , vνl “ δν pp1 ´ qqU l ` qUh ´ qκνpUh ´ U lqq .

Note that the sequence tvνu solves the system of equations, for all ν ě 0:

vν`1

h “ δp1 ´ ρhqvνh ` δρhv
ν
l , vν`1

l “ δp1 ´ ρlqvνl ` δρlv
ν
h,

and v1l “ v0l (which is easily verified given the condition that v0 “ U lies on the line

Ul “ δρl
1´δp1´ρlqUh). For any ν ě 1, vν can be supported by setting ph “ pl “ 0 and

Uphq “ Uplq “ vν´1. Therefore, vν can be delivered with pl being 0 and continuation
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utilities in V̄ . We next show that v0 can itself be obtained with continuation utilities in V̄ .

This one is obtained by setting pph, plq “ p1, 0q, setting ICL as a binding constraint, and

Uplq “ v0 (again one can check that Uphq is in V̄ and that ICH holds). This suffices to

show that V̄ Ď V0, because the extreme points of V̄ can be supported with pl being 0 and

continuation utilities in the set, and all other utility vectors in V̄ can be written as a convex

combination of these extreme points.

The proof that V0 Ă V̄ follows the similar lines as determining the boundaries of V in

the proof of Lemma 5: one considers a sequence of programs, setting Ŵ 0 “ V and defining

recursively the supremum score in direction pλ1, λ2q given Ŵ ν´1 as Kppλ1, λ2q, Ŵ ν´1q “
supph,pl,Uphq,Uplq λ1Uh ` λ2Ul, subject to (2)–(5), pl “ 0, ph P r0, 1s, Uphq, Uplq P Ŵ ν´1,

λ ¨ Uphq ď λ ¨ U and λ ¨ Uplq ď λ ¨ U . The set BpŴ ν´1q is given by

č

pλ1,λ2q

!
pUh, Ulq P V : λ1Uh ` λ2Ul ď Kppλ1, λ2q, Ŵ ν´1q

)
,

and the set Ŵ ν “ BpŴ ν´1q obtains by considering an appropriate choice of λ1, λ2. More

precisely, we always set λ2 “ 1, and for ν “ 1, pick λ1 “ 0. This gives Ŵ 1 “ V X tU : Ul ď
v0l u. We then pick (for every ν ě 2) as direction λ the vector p´pvν´1

l ´ vνl q{pvν´1

h ´ vνhq, 1q,
and as a result obtain that

V0 Ď Ŵ ν “ Ŵ ν´1 X
"
U : Ul ´ vνl ď vν´1

l ´ vνl
vν´1

h ´ vνh
pUh ´ vνhq

*
.

It follows that V0 Ă V̄ .

Next, we argue that this achieves the complete-information payoff. First, note that

V̄ Ď V X tU : Ul ď v˚
l u. In this region, it is clear that any policy that never gives the unit to

the low type while delivering the promised utility to the high type must be optimal. This is

a feature of the policy that we have described to obtain the boundary of V (and plainly it

extends to utilities U below this boundary).

Finally, one must show that above it the complete-information payoff cannot be achieved.

It follows from the definition of V̄ as the largest fixed point of B¨0 that starting from any

utility vector U P V zV̄ , U ‰ µ, there is a positive probability that the unit is given (after

some history that has positive probability) to the low type. This implies that the complete-

information payoff cannot be achieved in case U ď v˚. For U ě v˚, achieving the complete-

information payoff requires that ph “ 1 for all histories, but it is not hard to check that the

smallest fixed point of B1¨ is not contained in V X tU : U ě v˚u, from which it follows that

suboptimal continuation payoffs are collected with positive probability.
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Proof of Theorem 2 and 3. We start the proof by defining the function W : V ˆ tρl, 1´
ρhu Ñ RYt´8u, that solves the following program, for all pUh, Ulq P V , and φ P tρl, 1´ρhu,

W pUh, Ul, φq “ sup tφ pp1 ´ δqphph ´ cq ` δW pUhphq, Ulphq, 1 ´ ρhqq
` p1 ´ φq pp1 ´ δqplpl ´ cq ` δW pUhplq, Ulplq, ρlqqu ,

over ppl, phq P r0, 1s2, and Uphq, Uplq P V subject to PKH , PKL, ICL. Note that ICH is

dropped so this is a relaxed problem. We characterize the optimal policy and value function

for this relaxed problem and relate the results to the original optimization problem. Note

that for both problems the optimal policy for a given pUh, Ulq is independent of φ as φ

appears in the objective function additively and does not appear in constraints. Also note

that the first best is achieved when U P V . So, we focus on the subset V zV .

1. We want to show that for any U , it is optimal to set ph, pl as in (13) and to choose Uphq
and Uplq that lie on Pb. It is feasible to choose such a Uphq as the intersection of ICL

and PKH lies above Pb. It is also feasible to choose such a Uplq as ICH is dropped. To

show that it is optimal to choose Uphq, Uplq P Pb, we need to show that W pUh, Ul, 1´ρhq
(or W pUh, Ul, ρlq) is weakly increasing in Uh along the rays x “ p1 ´ ρhqUh ` ρhUl (or

y “ ρlUh ` p1´ ρlqUl). Let W̃ denote the value function from implementing the policy

above.

2. Let pUh1pxq, Ul1pxqq be the intersection of Pb and the line x “ p1 ´ ρhqUh ` ρhUl. We

define function whpxq :“ W̃ pUh1pxq, Ul1pxq, 1´ρhq on the domain r0, p1´ρhqµh `ρhµls.
Similarly, let pUh2pyq, Ul2pyqq be the intersection of Pb and the line y “ ρlUh`p1´ρlqUl.

We define wlpyq :“ W̃ pUh2pyq, Ul2pyq, ρlq on the domain r0, ρlµh ` p1 ´ ρlqµls. For any

U , let XpUq “ p1´ ρhqUh ` ρhUl and Y pUq “ ρlUh ` p1´ ρlqUl. We want to show that

(i) whpxq (or wlpyq) is concave in x (or y); (ii) w1
h, w

1
l is bounded from below by 1´ c{l

(derivatives have to be understood as either right- or left-derivatives, depending on the

inequality); and (iii) for any U on Pb

w1
hpXpUqq ě w1

lpY pUqq. (18)

Note that we have w1
hpXpUqq “ w1

lpY pUqq “ 1 ´ c{h when U P V̄ . For any fixed

U P PbzpV̄ Y Vhq , a high report leads to Uphq such that p1 ´ ρhqUhphq ` ρhUlphq “
pUh ´ p1´ δqhq{δ and Uphq is lower than U . Also, a low report leads to Uplq such that

ρlUhplq ` p1´ ρlqUlplq “ Ul{δ and Uplq is higher than U if U P PbzpV̄ Y Vhq. Given the
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definition of wh, wl, we have

w1
hpxq “ p1 ´ ρhqU 1

h1pxqw1
h

ˆ
Uh1pxq ´ p1 ´ δqh

δ

˙
` ρhU

1
l1pxqw1

l

ˆ
Ul1pxq

δ

˙
,

w1
lpyq “ ρlU

1
h2pyqw1

h

ˆ
Uh2pyq ´ p1 ´ δqh

δ

˙
` p1 ´ ρlqU 1

h2pyqw1
l

ˆ
Ul2pyq

δ

˙
.

If x, y are given by XpUq, Y pUq, it follows that pUh1pxq, Ul1pyqq “ pUh2pyq, Ul2pyqq and

hence

w1
h

ˆ
Uh1pxq ´ p1 ´ δqh

δ

˙
“ w1

h

ˆ
Uh2pyq ´ p1 ´ δqh

δ

˙
,

w1
l

ˆ
Ul1pxq

δ

˙
“ w1

l

ˆ
Ul2pyq

δ

˙
.

Next, we want to show that for any U P Pb and x “ XpUq, y “ Y pUq

p1 ´ ρhqU 1
h1pxq ` ρhU

1
l1pxq “ ρlU

1
h2pyq ` p1 ´ ρlqU 1

l2pyq “ 1,

p1 ´ ρhqU 1
h1pxq ´ ρlU

1
h2pyq ě 0.

This can be shown by assuming that U is on the line segment Uh “ aUl ` b. For any

a ą 0, the equalities/inequality above hold. The concavity of wh, wl can be shown by

taking the second derivative

w2
hpxq “ p1 ´ ρhqU 1

h1pxqw2
h

ˆ
Uh1pxq ´ p1 ´ δqh

δ

˙
U 1
h1pxq
δ

` ρhU
1
l1pxqw2

l

ˆ
Ul1pxq

δ

˙
U 1
l1pxq
δ

,

w2
l pyq “ ρlU

1
h2pyqw2

h

ˆ
Uh2pyq ´ p1 ´ δqh

δ

˙
U 1
h2pxq
δ

` p1 ´ ρlqU 1
l2pyqw2

l

ˆ
Ul2pyq

δ

˙
U 1
l2pyq
δ

.

Here, we use the fact that Uh1pxq, Ul1pxq (or Uh2pyq, Ul2pyq) are piece-wise linear in x

(or y). For any fixed U P Pb X Vh and x “ XpUq, y “ Y pUq, we have

w1
hpxq “ p1 ´ ρhqU 1

h1pxqw1
h

ˆ
Uh1pxq ´ p1 ´ δqh

δ

˙
` ρhU

1
l1pxq l ´ c

l
,

w1
lpyq “ ρlU

1
h2pyqw1

h

ˆ
Uh2pyq ´ p1 ´ δqh

δ

˙
` p1 ´ ρlqU 1

h2pyq l ´ c

l
.

Inequality (18) and the concavity of wh, wl can be shown similarly. To sum up, if wh, wl

satisfy properties (i), (ii) and (iii), they also do after one iteration.

3. Let W be the set of W pUh, Ul, 1 ´ ρhq and W pUh, Ul, ρlq such that
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(a) W pUh, Ul, 1 ´ ρhq (or W pUh, Ul, ρlq) is weakly increasing in Uh along the rays

x “ p1 ´ ρhqUh ` ρhUl (or y “ ρlUh ` p1 ´ ρlqUl);

(b) W pUh, Ul, 1 ´ ρhq and W pUh, Ul, ρlq coincide with W̃ on Pb.

(c) W pUh, Ul, 1 ´ ρhq and W pUh, Ul, ρlq coincide with ĎW on V̄ ;

If we pick W0pUh, Ul, φq P W as the continuation value function, the conjectured policy

is optimal. It is optimal to choose ph, pl according to (13) because w1
h, w

1
l are in r1 ´

c{l, 1 ´ c{hs. We want to show that the new value function W1 is also in W. Property

(b) and (c) are obvious. We need to prove property (a) for φ P t1 ´ ρh, ρlu. That is,

W1pUh ` ε, Ul, φq ´ W1pUh, Ul, φq ě W1pUh, Ul ` 1 ´ ρh

ρh
ε, φq ´ W1pUh, Ul, φq. (19)

We start with the case in which φ “ 1 ´ ρh. The left-hand side equals

δp1 ´ ρhq
´
W0pŨhphq, Ũlphq, 1 ´ ρhq ´ W0pUhphq, Ulphq, 1 ´ ρhq

¯
, (20)

where Ũphq and Uphq are on Pb and

p1 ´ δqh ` δ
´

p1 ´ ρhqŨhphq ` ρhŨlphq
¯

“ Uh ` ε,

p1 ´ δqh ` δ pp1 ´ ρhqUhphq ` ρhUlphqq “ Uh.

For any fixed U P V zpV̄ Y Vhq, the right-hand side equals

δρh

´
W0pŨhplq, Ũlplq, ρlq ´ W0pUhplq, Ulplq, ρlq

¯
, (21)

where Ũplq and Uplq are on Pb and

δ
´
ρlŨhplq ` p1 ´ ρlqŨlplq

¯
“ Ul ` 1 ´ ρh

ρh
ε,

δ pρlUhplq ` p1 ´ ρlqUlplqq “ Ul.

We need to show that (20) is greater than (21). Note that Uphq, Ũphq, Uplq, Ũplq are

on Pb, so only the properties of wh, wl are needed. Taking the limit as ε goes to 0, we

obtain that (19) is equivalent to

w1
h

ˆ
Uh ´ p1 ´ δqh

δ

˙
ě w1

l

ˆ
Ul

δ

˙
, @pUh, Ulq P V zpV̄ Y Vh Y Vlq. (22)

The case in which φ “ ρl leads to the same inequality as above. Given that wh, wl

are concave, w1
h, w

1
l are decreasing. Therefore, we only need to show that inequality
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(22) holds when pUh, Ulq are on Pb. This is true given that (i) wh, wl are concave; (ii)

inequality (18) holds; (iii) pUh ´ p1 ´ δqhq{δ corresponds to a lower point on Pb than

Ul{δ does. When U P Vh, the right-hand side of (19) is given by p1 ´ ρhqεp1 ´ c{lq.
Inequality (19) is equivalent to w1

hppUh ´p1´δqhq{δq ě 1´c{l, which is obviously true.

Similar analysis applies to the case in which U P Vl.

This shows that the optimal policy for the relaxed problem is the conjectured policy and W̃

is the value function. The maximum is achieved on Pb and the continuation utility never

leaves Pb.

We are back to the original optimization problem. The first observation is that we can

decompose the optimization problem into two sub-problems: (i) choose ph, Uphq to maximize

p1 ´ δqphph ´ cq ` δW pUhphq, Ulphq, 1 ´ ρhq subject to PKH and ICL; (ii) choose pl, Uplq
to maximize p1 ´ δqplpl ´ cq ` δW pUhplq, Ulplq, ρlq subject to PKL and ICH . We want to

show that the conjecture policy with respect to ph, Uphq is the optimal solution to the first

sub-problem. This can be shown by taken the value function W̃ as the continuation value

function. We know that the conjecture policy is optimal given W̃ because (i) it is always

optimal to choose Uphq that lies on Pb due to property (a); (ii) it is optimal to set ph to

be 1 because w1
h lies in r1 ´ c{l, 1 ´ c{hs. The conjecture policy solves the first sub-problem

because (i) W̃ is weakly higher than the true value function point-wise; (ii) W̃ coincides with

the true value function on Pb. The analysis above also implies that ICH binds for U P Vt.

Substituting the agent’s expected value in each round into (12), we obtain that

ûν
h “ µh ´ p1 ´ δqh ´ δν`1

`
p1 ´ qql ` qh ` p1 ´ qqκν`1pµh ´ µlq

˘
,

ûν
l “ µl ´ p1 ´ δql ´ δν`1

`
p1 ´ qql ` qh ´ qκν`1pµh ´ µlq

˘
.

It is easily verified that for U P Vt if we choose pl to be 0 and Uplq to be on Pb, ICH binds.

Next, we show that the conjecture policy is the solution to the second sub-problem.

For a fixed U P Vt, PKL and ICH determines Uhplq, Ulplq as a function of pl. Let γh, γl

denote the derivative of Uhplq, Ulplq with respect to pl

γh “ p1 ´ δqplρh ´ hp1 ´ ρlqq
δp1 ´ ρh ´ ρlq

, γl “ p1 ´ δqphρl ´ lp1 ´ ρhqq
δp1 ´ ρh ´ ρlq

.

It is easy to verify that γh ă 0 and γh`γl ă 0. We want to show that it is optimal to set pl to

be zero. That is, among all feasible pl, Uhplq, Ulplq satisfying PKL and ICH, the principal’s

payoff from the low type, p1 ´ δqplpl ´ cq ` δW pUhplq, Ulplq, ρlq, is the highest when pl “ 0.

It is sufficient to show that within the feasible set

γh
BW pUh, Ul, ρlq

BUh

` γl
BW pUh, Ul, ρlq

BUl

ď p1 ´ δqpc ´ lq
δ

, (23)
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where the left-hand side is the directional derivative of W pUh, Ul, ρlq along the vector pγh, γlq.
We first show that (23) holds for all U P Vb. For any fixed U P Vb, we have

W pUh, Ul, ρlq “ ρl

ˆ
p1 ´ δqph ´ cq ` δwh

ˆ
Uh ´ p1 ´ δqh

δ

˙˙
` p1 ´ ρlqδwl

ˆ
Ul

δ

˙
.

It is easy to verify that BW {BUh “ ρlw
1
h and BW {BUl “ p1 ´ ρlqw1

l. Using the fact that

w1
h ě w1

l and w1
h, w

1
l P r1´ c{l, 1´ c{hs, we prove that (23) follows. Using similar arguments,

we can show that (23) holds for all U P Vh. Note that W pUh, Ul, ρlq is concave on V .

Therefore, its directional derivative along the vector pγh, γlq is monotone. For any fixed

pUh, Ulq on Pb, we have

lim
εÑ0

γh
BW pUh`γhε,Ul`γlε,ρlq

BUh
` γl

BW pUh`γhε,Ul`γlε,ρlq
BUl

´
´
γh

BW pUh,Ul,ρlq
BUh

` γl
BW pUh,Ul,ρlq

BUl

¯

ε

“γh
2
ρl

δ
w2

h

ˆ
Uh ´ p1 ´ δqh

δ

˙
` γl

2
1 ´ ρl

δ
w2

l

ˆ
Ul

δ

˙
ď 0.

The last inequality follows as wh, wl are concave. Given that pγh, γlq points towards the

interior of V , (23) holds within V .

For any x P r0, p1´ρhqµh`ρhµls, let zpxq be ρlUh1pxq`p1´ρlqUl1pxq. The function zpxq is

piecewise linear with z1 being positive and increasing in x. Let φ0 denote the prior belief of the

high type. We want to show that the maximum of φ0W pUh, Ul, 1´ρhq`p1´φ0qW pUh, Ul, ρlq
is achieved on Pb for any prior φ0. Suppose not. Suppose pŨh, Ũlq P V zPb achieves the

maximum. Let U0 (or U1) denote the intersection of Pb and p1 ´ ρhqUh ` ρhUl “ p1 ´
ρhqŨh ` ρhŨl (or ρlUh ` p1 ´ ρlqUl “ ρlŨh ` p1 ´ ρlqŨl). It is easily verified that U0 ă U1.

Given that pŨh, Ũlq achieves the maximum, it must be true that

W pU1

h , U
1

l , 1 ´ ρhq ´ W pU0

h , U
0

l , 1 ´ ρhq ă 0,

W pU1

h , U
1

l , ρlq ´ W pU0

h , U
0

l , ρlq ą 0.

We show that this is impossible by arguing that for any U0, U1 P Pb and U0 ă U1,

W pU1

h , U
1

l , 1 ´ ρhq ´ W pU0

h , U
0

l , 1 ´ ρhq ă 0 implies that W pU1

h , U
1

l , ρlq ´ W pU0

h , U
0

l , ρlq ă 0.

It is without loss to assume that U0, U1 are on the same line segment Uh “ aUl ` b. Hence,

W pU1

h , U
1

l , 1 ´ ρhq ´ W pU0

h , U
0

l , 1 ´ ρhq “
ż s1

s0
w1

hpsqds,

W pU1

h , U
1

l , ρlq ´ W pU0

h , U
0

l , ρlq “ z1psq
ż s1

s0
w1

lpzpsqqds,
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where s0 “ p1 ´ ρhqU0

h ` ρhU
0

l , s1 “ p1 ´ ρhqU1

h ` ρhU
1

l . Given that w1
hpsq ě w1

lpzpsqq and

z1psq ą 0,
şs1
s0
w1

hpsqds ă 0 implies z1psq
şs1
s0
w1

lpzpsqqds ă 0. The optimal U0 is chosen such

that XpU0q maximizes φ0whpxq`p1´φ0qwlpzpxqq which is concave in x. Thus, at x “ XpU0q,

φ0w
1
hpXpU0qq ` p1 ´ φ0qw1

lpzpXpU0qqqz1pXpU0qq “ 0.

According to (18), we know that w1
hpXpU0qq ě 0 ě w1

lpzpXpU0qqq. Therefore, the derivative

above is weakly positive for any φ1
0

ą φ0 and hence U0 increases in φ0.
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C Online Appendix: Not for Publication

C.1 Proof of Lemma 4

Proof. We first consider the forecaster. We will rely on Lemma 8 from the continuous-time

(Markovian) version of the game defined in Section 5.1. Specifically, consider a continuous-

time model in which random shocks arrive according to a Poisson process at rate λ. Con-

ditional on a shock, the agent’s value is h with probability q and l with the complementary

probability. Both the shocks’ arrivals and the realized values are the agent’s private informa-

tion. This is the same model as in Section 5.1 where λh “ λp1´ qq, λl “ λq. The principal’s

payoff W is the same as in Proposition 2. Let W ˚ denote the principal’s payoff if the shocks’

arrival times are publicly observed. Since the principal benefits from more information, his

payoff weakly increases W ˚ ě W . (The principal is guaranteed W by implementing the

continuous-time limit of the policy specified in Theorem 2.) Given risk neutrality, the model

with random public arrivals is the same as the model in which shocks arrive at fixed intervals,

t “ 1{λ, 2{λ, 3{λ, . . . This is effectively the discrete-time model with i.i.d. values in which

the round length is ∆ “ 1{λ and the discount factor is δ “ e´ r
λ . Given that the loss is of

the order Opr{λq in the continuous-time private-shock model, the loss in the discrete-time

i.i.d. model is of smaller order than Op1 ´ δq.
Basing on the analysis above, we next show that the loss is of order Op1 ´ δq. We

consider an allocation problem in which the agent’s first-round type realization is private

information whereas his type realization after the first round is public information. Let W ˚˚

denote the principal’s payoff in this problem, which is larger than the principal’s payoff in

the benchmark model. Let U denote the promised utility before the first round and Ul, Uh

the promised utilities after the agent reports l, h during round one. It is optimal to set

ph “ 1, pl “ 0 during round one. From PK and binding ICL, we obtain

Uh “ pδ ´ 1qpqh ´ ql ` lq ` U

δ
, Ul “ pδ ´ 1qqph ´ lq ` U

δ
.

The principal’s payoff given U is

p1 ´ δqqph ´ cq ` δ
`
qĎW pUhq ` p1 ´ qqĎW pUlq

˘
, (24)

where ĎW is the complete-information payoff function defined in Lemma 1. The principal’s

payoff W ˚˚ is the maximum of (24) over U . It is easy to verify that the efficiency loss

qph ´ cq ´ W ˚˚ is proportional to p1 ´ δq. Therefore, the loss in the benchmark model has

the order of Op1 ´ δq.
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We now consider the prophet. We divide the analysis in three stages. In the first two,

we consider a fixed horizon 2N ` 1 and no discounting, as is usual. Let us start with the

simplest case: a fixed number of copies 2N ` 1, and q “ 1{2.43 Suppose that we relax the

problem (so as to get a lower bound on the inefficiency). The number m “ 0, . . . , 2N ` 1, of

high copies is drawn, and the information set tpm, 2N ` 1´mq, p2N ` 1´m,mqu is publicly

revealed. That is, it is disclosed whether there are m high copies, of N ´m high copies (but

nothing else).

The optimal mechanism consists of the collection of optimal mechanisms for each infor-

mation set. We note that, because q “ 1{2, both elements in the information set are equally

likely. Hence, fixing tpm, 2N ` 1´mq, p2N ` 1´m,mqu, with m ă N , it must minimize the

inefficiency

min
p0,p1,p2

p1 ´ p0qmph ´ cq ` p2N ` 1 ´ 2mqp1 ´ p1qph ´ cq ` p1pc ´ lq
2

` p2mpc ´ lq,

where p0, p1, p2 are in r0, 1s. To understand this expression, we note that it is common

knowledge that at least m units are high (hence, providing them with probability p0 reduces

the inefficiency mph´cq from these. It is also known that m are low, which if provided (with

probability p2) leads to inefficiency mpc ´ lq and finally there are 2N ` 1 ´ 2m units that

are either high or low, and the choice p1 in this respect implies one or the other inefficiency.

This program is already simplified, as p0, p1, p2 should be a function of the report (whether

the state is pm, 2N ` 1 ´ mq or p2N ` 1 ´ m,mq) subject to incentive-compatibility, but it

is straightforward that both IC constraints bind and lead to the same choice of p0, p1, p2 for

both messages. In fact, it is also clear that p0 “ 1 and p2 “ 0, so for each information set,

the optimal choice is given by the minimizer of

p2N ` 1 ´ 2mqp1 ´ p1qph ´ cq ` p1pc ´ lq
2

ě p2N ` 1 ´ 2mqκ,

where κ “ minth ´ c, c ´ lu. Hence, the inefficiency is minimized by (adding up over all

information sets)

Nÿ

m“0

ˆ
2N ` 1

m

˙ˆ
1

2

˙
2N`1

p2N ` 1 ´ 2mqκ “ Γ
`
N ` 3

2

˘
?
πΓpN ` 1qκ Ñ

?
2N ` 1?
2π

κ.

We now move on to the case where q ‰ 1{2. Without loss of generality, assume q ą 1{2.
Consider the following public disclosure rule. Given the realized draw of high and lows, for

43We pick the number of copies as odd for simplicity. If not, let Nature reveal the event that all copies

are high if this unlikely event occurs. This gives as lower bound for the inefficiency with 2N ` 2 copies the

one we derive with 2N ` 1.
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any high copy, Nature publicly reveals it with probability λ “ 2 ´ 1{q. Low copies are not

revealed. Hence, if a copy is not revealed, the principal’s posterior belief that it is high is

qp1 ´ λq
qp1 ´ λq ` p1 ´ qq “ 1

2
.

Second, Nature reveals among the undisclosed balls (say, N 1 of those) whether the number of

highs is m or N 1 ´m, namely it discloses the information set tpm,N 1 ´mq, pN 1 ´m,mqu, as

before. Then the agent makes a report, etc. Conditional on all publicly revealed information,

and given that both states are equally likely, the principal’s optimal rule is again to pick a

probability p1 that minimizes

pN 1 ´ 2mqp1 ´ p1qph ´ cq ` p1pc ´ lq
2

ě pN 1 ´ 2mqκ.

Hence, the total inefficiency is

2N`1ÿ

m“0

ˆ
2N ` 1

m

˙
qmp1 ´ qq2N`1´m

˜
mÿ

k“0

ˆ
m

k

˙
λkp1 ´ λqm´k|2N ` 1 ´ k ´ 2pm ´ kq|

¸

κ,

since with k balls revealed, N 1 “ 2N `1´k, and the uncertainty concerns whether there are

(indeed) m ´ k high values or low values. Alternatively, because the number of undisclosed

copies is a compound Bernoulli, it is a Bernoulli random variable as well with parameter qλ,

and so we seek to compute

1?
2N ` 1

2N`1ÿ

m“0

ˆ
2N ` 1

m

˙
pqλqmp1 ´ qλqN`1´m

Γ
`
N ´ m ` 3

2

˘

?
πΓpN ´ m ` 1qκ.

We note that

lim
NÑ8

1?
2N ` 1

2N`1ÿ

m“0

ˆ
2N ` 1

m

˙
pqλqmp1 ´ qλqN`1´m

Γ
`
N ´ m ` 3

2

˘

?
πΓpN ´ m ` 1q

“ lim
NÑ8

2N`1ÿ

m“0

ˆ
2N ` 1

m

˙
pqλqmp1 ´ qλqN`1´m

?
2N ´ 1 ´ m

2
?
Nπ

“ sup
αą0

lim
NÑ8

2N`1ÿ

m“0

ˆ
2N ` 1

m

˙
pqλqmp1 ´ qλqN`1´m

a
2N ´ 1 ´ p2N ` 1qqλp1 ` αq

2
?
Nπ

“ sup
αą0

a
1 ´ p1 ` αqqλ?

2π
“

?
1 ´ qλ?
2π

“
?
1 ´ q?
π

,

hence the inefficiency converges to

?
2N ` 1

?
1 ´ q?
π

κ.
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Third, we consider the case of discounting. Note that, because the principal can always treat

items separately, facing a problem with k i.i.d. copies, whose value l, h is scaled by a factor

1{k (along with the cost) is worth at least as much as one copy with a weight 1. Hence, if

say, δm “ 2δk, then modifying the discounted problem by replacing the unit with weight δm

by two i.i.d. units with weight δk each makes the principal better off. Hence, we fix some

small α ą 0, and consider N such that δN “ α, i.e., N “ lnα{ ln δ. The principal’s payoff

is also increased if the values of all units after the N -th one are revealed for free. Hence,

assume as much. Replacing each copy k “ 1, . . . , N by tδk{δN u i.i.d. copies each with weight

δN gives us as lower bound to the loss to the principal

sup
α

δN
břN

k“1
tδk{δN u

,

and the right-hand side tends to a limit in excess of 1

2
?
1´δ

(use α “ 1{2 for instance).

C.2 Continuous Time

Define the function

gpτq :“ qph ´ lqe´pλh`λlqτ ` lerτ ´ µ,

so that upon direct calculation,

dτ l :“
gpτq

µ ´ qph ´ lqe´pλh`λlqτ
dt,

where µ “ qh ` p1 ´ qql, as before. If V has a non-empty interior, we can identify the value

of τ that is the intersection of the critical line and the boundary; call this value τ̂ , which is

simply the positive root (if any) of g. Otherwise, set τ̂ “ 0. Also, recall that dτh “ ´1.

We now motivate the derivation of the differential equations solved by Wh,Wl. By defi-

nition of the policy that is followed, the value functions solve the following paired system of

equations:

Whpτq “ rdtph ´ cq ` λhdtWlpτq ` p1 ´ rdt ´ λhdtqWhpτ ` dτhq ` Opdt2q,

and

Wlpτq “ λldtWhpτq ` p1 ´ rdt ´ λldtqWlpτ ` dτ lq ` Opdt2q.
Assume for now (as will be verified) that the functions Wh,Wl are twice differentiable. We

then obtain the differential equations

pr ` λhqWhpτq “ rph ´ cq ` λhWlpτq ´ W 1
hpτq,
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and

pr ` λlqWlpτq “ λlWhpτq ` gpτq
µ ´ qph ´ lqe´pλh`λlqτ

W 1
l pτq,

subject to the following boundary conditions.44 First, at τ “ τ̂ , the value must coincide

with the value given by the first-best payoff ĎW in that range. That is, Whpτ̂ q “ ĎWhpτ̂q, and

Wlpτ̂ q “ ĎWlpτ̂q. Second, as τ Ñ 8, it must hold that the payoff µ´ c is approached. Hence,

lim
τÑ8

Whpτq “ µh ´ c, lim
τÑ8

Wlpτq “ µl ´ c.

We directly work with the expected payoff W pτq “ qWhpτq ` p1 ´ qqWlpτq. Let τ0 denote

the positive root of

w0pτq :“ µe´rτ ´ p1 ´ qql.

As is easy to see, this root always exists and is strictly above τ̂ , with w0pτq ą 0 iff τ ă τ̂ .

Finally, let

fpτq :“ r ´ pλh ` λlq
w0pτq
gpτq erτ .

It is then straightforward to verify (though not quite as easy to obtain) that45

Proposition 2 The value function of the principal is given by

W pτq “

$
’’’’’’’’&

’’’’’’’’%

ĎW1pτq if τ P r0, τ̂q,

ĎW1pτq ´ w0pτqh´l
hl

crµ

şτ
τ̂

e
´

şt
τ0

fpsqds

w2
0

ptq
dt

ş8
τ̂

λh`λl
gptq

e
2rt´

şt
τ0

fpsqds
dt

if τ P rτ̂ , τ0q,

ĎW1pτq ` w0pτqh´l
hl

c

¨

˝1 ` rµ

ş8
τ

e
´

şt
τ0

fpsqds

w2
0

ptq
dt

ş8
τ̂

λh`λl
gptq

e
2rt´

şt
τ0

fpsqds
dt

˛

‚ if τ ě τ0,

where
ĎW1pτq :“ p1 ´ e´rτ qp1 ´ c{hqµ.

It is straightforward to derive the closed-form expressions for complete-information payoff,

which we omit here.

44To be clear, these are not HJB equations, as there is no need to verify the optimality of the policy that

is being followed. This fact has already been established. The functions must satisfy these simple recursive

equations.
45As τ Ñ t0, the integrals entering in the definition of W diverge, although not W itself, given that

limτÑt0 w0pτq Ñ 0. As a result, limτÑt0 W pτq is well-defined, and strictly below W1pt0q.
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Proof of Lemma 7. The proof has three steps. We recall that W pτq “ qWhpτq ` p1 ´
qqWlpτq. Using the system of differential equations, we get

`
erτ l ` qph ´ lqe´pλh`λlqτ ´ µ

˘
ppr ` λhqW 1pτq ` W 2pτqq,

“ ph ´ lqqλhe
´pλh`λlqτW 1pτq ` µprpλh ` λlqW pτq ` λlW

1pτq ´ rλlph ´ cqq.

It is easily verified that the function W given in Proposition 2 solves this differential equation,

and hence is the solution to our problem. Let w :“ W ´ ĎW1. By definition, w solves a

homogeneous second-order differential equation, namely,

kpτqpw2pτq ` rw1pτqq “ rµwpτq ` erτw0pτqw1pτq, (25)

with boundary conditions wpτ̂q “ 0 and limτÑ8 wpτq “ ´p1 ´ l{hqp1 ´ qqc. Here,

kpτq :“ qph ´ lqe´pλh`λlqτ ` lerτ ´ µ

λh ` λl

.

By definition of τ̂ , kpτq ą 0 for τ ą τ̂ . First, we show that k increases with persistence

1{p, where λh “ pλ̄h, λl “ pλ̄l, for some λ̄h, λ̄l fixed independently of p ą 0. Second, we

show that rµwpτq ` erτw0pτqw1pτq ă 0, and so w2pτq ` rw1pτq ă 0 (see (25)). Finally we use

these two facts to show that the payoff function is pointwise increasing in p. We give the

arguments for the case τ̂ “ 0, the other case being analogous.

1. Differentiating k with respect to p (and without loss setting p “ 1) gives

dkpτq
dp

“ µ

λ̄h ` λ̄l

´ e´pλ̄h`λ̄lqτ ph ´ lqλ̄lp1 ` pλ̄l ` λ̄hqτq
pλ̄h ` λ̄lq2

´ l

λ̄h ` λ̄l

erτ .

Evaluated at τ “ τ̂ , this is equal to 0. We majorize this expression by ignoring the

term linear in τ (underlined in the expression above). This majorization is still equal

to 0 at 0. Taking second derivatives with respect to τ of the majorization shows that

it is concave. Finally, its first derivative with respect to τ at 0 is equal to

h
λ̄l

λ̄h ` λ̄l

´ l
r ` λ̄l

λ̄h ` λ̄l

ď 0,

because r ď h´l
l
λ̄l whenever τ̂ “ 0. This establishes that k is decreasing in p.

2. For this step, we use the explicit formulas for W (or equivalently, w) given in Propo-

sition 2. Computing rµwpτq ` erτw0pτqw1pτq over the two intervals pτ̂ , τ0q and pτ0,8q
yields on both intervals, after simplification,

´
h´l
hl

c
ş8
τ̂

λ̄h`λ̄l

rvgptq e
2rt´

şt
τ0

fpsqds
dt
erτe´

şτ
τ̂
fsds ă 0.
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[The fraction can be checked to be negative. Alternatively, note that W ď ĎW1 on

τ ă τ0 is equivalent to this fraction being negative, yet ĎW1 ě ĎW (ĎW1 is the first branch

of the complete-information payoff), and because W solves our problem it has to be

less than ĎW1.]

3. Consider two levels of persistence, p, p̃, with p̃ ą p. Write w̃, w for the corresponding

solutions to the differential equation (25), and similarly W̃ ,W . Note that W̃ ě W

is equivalent to w̃ ě w, because ĎW1 and w0 do not depend on p. Suppose that there

exists τ such that w̃pτq ă wpτq yet w̃1pτq “ w1pτq. We then have that the right-hand

sides of (25) can be ranked for both persistence levels, at τ . Hence, so must be the

left-hand sides. Because kpτq is lower for p̃ than for p (by our first step), because kpτq
is positive and because the terms w2pτq ` rw1pτq, w̃2pτq ` rw̃1pτq are negative, and

finally because w̃1pτq “ w1pτq, it follows that w̃2pτq ď w2pτq. Hence, the trajectories

of w and w̃ cannot get closer: for any τ 1 ą τ , wpτq ´ w̃pτq ď wpτ 1q ´ w̃pτ 1q. This is

impossible, because both w and w̃ must converge to the same value, ´p1´ l{hqp1´qqc,
as τ Ñ 8. Hence, we cannot have w̃pτq ă wpτq yet w̃1pτq “ w1pτq. Note however

that this means that w̃pτq ă wpτq is impossible, because if this were the case, then by

the same argument, since their values as τ Ñ 8 are the same, it is necessary (by the

intermediate value theorem) that for some τ such that w̃pτq ă wpτq the slopes are the

same.

Proof of Lemma 8. The proof is divided into two steps. First we show that the

difference in payoffs between W pτq and the complete-information payoff computed at the

same level of utility upτq converges to 0 at a rate linear in r, for all τ . Second, we show that

the distance between the closest point on the graph of up¨q and the complete-information

payoff maximizing pair of utilities converges to 0 at a rate linear in r. Given that the

complete-information payoff is piecewise affine in utilities, the result follows from the triangle

inequality.

1. We first note that the complete-information payoff along the graph of up¨q is at most

equal to maxtĎW1pτq,ĎW2pτqu, where ĎW1 is defined in Proposition 2 and

ĎW2pτq “ p1 ´ e´rτ qp1 ´ c{lqµ ` qph{l ´ 1qc.

These are simply two of the four affine maps whose lower envelope defines ĎW , see

Section 3.1 (those for the domains r0, v˚
hs ˆ r0, v˚

l s and r0, µhs ˆ rv˚
l , µls). The formulas
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obtain by plugging in uh, ul for Uh, Ul, and simplifying. Fix z “ rτ (note that as r Ñ 0,

τ̂ Ñ 8, so that changing variables is necessary to compare limiting values as r Ñ 0),

and fix z such that lez ą µ (that is, such that gpz{rq ą 0 and hence z ě rτ̂ for small

enough r). Algebra gives

lim
rÑ0

fpz{rq “ pez ´ 1qλhl ´ λlh

lez ´ µ
,

and similarly

lim
rÑ0

w0pz{rq “ pqh ´ pez ´ 1qp1 ´ qqlqe´z,

as well as

lim
rÑ0

gpz{rq “ lez ´ µ.

Hence, fixing z and letting r Ñ 0 (so that τ Ñ 8), it follows that
w0pτq

şτ
τ̂

e
´

şt
τ0

fpsqds

w2
0

ptq
dt

ş8
τ̂

λh`λl
gptq

e
2rt´

şt
τ0

fpsqds
dt

converge to a well-defined limit. (Note that the value of τ0 is irrelevant to this quantity,

and we might as well use rτ0 “ lnpµ{pp1 ´ qqlqq, a quantity independent of r). Denote

this limit κ. Hence, for z ă rτ0, because

lim
rÑ0

ĎW1pz{rq ´ W pz{rq
r

“ h ´ l

hl
cκ,

it follows that W pz{rq “ ĎW1pz{rq ` Oprq. On z ą rτ0, it is immediate to check from

the formula of Proposition 2 that

W pτq “ ĎW2pτq ` w0pτqh ´ l

hl
crµ

şτ
τ̂

e
´

şt
τ0

fpsqds

w2

0
ptq dt

ş8
τ̂

λh`λl

gptq e
2rt´

şt
τ0

fpsqds
dt

.

[By definition of τ0, w0pτq is now negative.] By the same steps it follows that W pz{rq “
ĎW2pz{rq ` Oprq on z ą rτ0. Because W “ ĎW1 for τ ă τ̂ , this concludes the first step.

2. For the second step, note that the utility pair maximizing complete-information payoff

is given by v˚ “
´

r`λl

r`λl`λh
h, λl

r`λl`λh
h
¯
. (Take limits from the discrete game.) We

evaluate upτq ´ v˚ at a particular choice of τ , namely

τ˚ “ 1

r
ln

µ

p1 ´ qql .

It is immediate to check that

ulpτ˚q ´ v˚
l

qr
“ ´uhpτ˚q ´ v˚

h

p1 ´ qqr “
l ` ph ´ lq

´
p1´qql

µ

¯ r`λl`λh
r

r ` λl ` λh

Ñ l

λl ` λh

,
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and so }upτ˚q ´ v˚} “ Oprq. It is also easily verified that this gives an upper bound on

the order of the distance between the polygonal chain and the point v˚. This concludes

the second step.

C.3 Continuous Types

Proof of Theorem 4. By the principle of optimality, letting S :“ W ´ U ,

SpUq “ δ

ż
SpUpU, vqqdF ´ p1 ´ δqcEF rqpvqs,

over q : rv, 1s Ñ r0, 1s and U : r0, µs ˆ rv, 1s Ñ r0, µs, subject to

U “
ż

pp1 ´ δqqpvqv ` δUpU, vqq dF,

and, for all v, v1 P rv, 1s,

p1 ´ δqqpvqv ` δUpU, vq ě p1 ´ δqqpv1qv ` δUpU, v1q.

Note that the dependence of q on U is omitted. By the usual arguments, it follows that q is

nondecreasing and differentiable a.e., with p1 ´ δqq1pvqv ` δ
BUpU,vq

Bv “ 0, and so

UpU, vq “ UpU, vq ´ 1 ´ δ

δ

ˆ
vqpvq ´ vqpvq ´

ż v

v

qpsqds
˙
.

This formula is also correct if q is discontinuous. Promise keeping becomes

U “ δUpU, vq ` p1 ´ δq
ˆ
vqpvq `

ż
1

v

p1 ´ F pvqqqpvqdv
˙
.

So, the objective SpUq equals

sup

"
δ

ż
S

ˆ
U

δ
´ 1 ´ δ

δ

ˆ
vqpvq ´

ż v

v

qpsqds ´
ż

1

v

p1 ´ F pvqqqpvqds
˙˙

dF ´ p1 ´ δqcEF rqpvqs
*
,

over q : rv, 1s Ñ r0, 1s, nondecreasing, and the feasibility restriction

@v P rv, 1s : U ´ p1 ´ δq
ˆ
vqpvq ´

ż v

v

qpsqds ´
ż

1

v

p1 ´ F pvqqqpvqds
˙

P r0, δµs.
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We note that, by the envelope theorem,

S 1pUq “
ż
S 1pUpU, vqqdF.

We restrict attention to the case in which qpvq “ 0, qp1q “ 1, slight adjustments might be

necessary otherwise.

Again, let us suppose contrary to the assumption that S 1 is constant over some interval I.

Pick two points in this interval, U1 ă U2. Given U “ λU1 `p1´λqU2, λ P p0, 1q, consider the

policy qλ,Uλ that uses qλ “ λq1 `p1´λqq2, and similarly Uλp¨, vq “ λU1p¨, vq`p1´λqU2p¨, vq.
To be clear, this is the strategy that consists, for every report v, in giving the agent the good

with probability qλpvq “ λq1pvq ` p1 ´ λqq2pvq, and transiting to the utility the averages

of the utility after v under the policy starting at U1 and U2 (more generally, the weighted

average given the sequence of reports). We note that, given risk neutrality of the agent, this

policy induces the agent to report truthfully (since he does both at U1 and at U2), and gives

him utility U , by construction.

We claim that, given U , and for any given v, S 1pUpU1, vqq “ S 1pUpU2, vqq. If not, then

there exists v such that S 1pUpU1, vqq ‰ S 1pUpU2, vqq and some U 1 “ λUpU1, vq`p1´λqUpU2, vq
in between these two values such that SpU 1q ą λSpUpU1, vqq ` p1 ´ λqSpUpU2, vqq. Then,

consider using the policy that uses qλ,Uλ for one step and then reverts to the optimal policy.

Because it does at least as well as the average of the two policies for all values of v, and does

strictly better for v, it is a strict improvement, a contradiction.

Hence, we may assume that S 1pUpU1, vqq “ S 1pUpU2, vqq. We next claim that this im-

plies that, without loss, q1p¨q “ q2p¨q. Indeed, we can divide rv, 1s into those (maximum

length) intervals over which S 1pUpU1, vqq “ S 1pUpU2, vqq and those over which S 1pUpUi, vqq ą
S 1pUpU´i, vqq, for some i “ 1, 2. On any interval of values of v over which UpU1, vq “ UpU2, vq,
it follows from the formula above, namely,

UpU, vq “ UpU, v1q ´ 1 ´ δ

δ

ż v

v1

sdqpsq,

that the variation is the same for q1 and q2 (Since the function UpU, vq is the same). Over

intervals of values of v over which S 1 is independent of i, S must be affine over the ranges

rminitUpUi, vqu,maxitUpUi, vqus, sot that, because S is affine, it follows from the Bellman

equation that U does not matter for the optimal choice of q either.

Hence, q1p¨q “ q2p¨q. It follows that, if for some v, UpU1, vq “ UpU2, vq, it must also

be that UpU1, ¨q “ UpU2, ¨q. This is impossible, because then U1 “ U2, by promise-keeping.

Hence, there is no v such that UpU1, vq “ UpU2, vq, and S is affine on the entire range
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of UpU1, ¨q,UpU2, ¨q. In fact, the values of UpU1, ¨q must be translates of those of UpU2, ¨q.
Without loss, we might take rU1, U2s to be the largest interval over which S is affine. Given

that qpvq “ 0 ă qp1q “ 1, neither UpU1, ¨q nor UpU2, ¨q is degenerate (that is, constant).

Therefore, the only possibility is that both the range of UpU1, ¨q and that of UpU2, ¨q are in

rU1, U2s. This is impossible given promise keeping and that q1p¨q “ q2p¨q.
For clarity of exposition, we assume that the agent’s value v is drawn from rv, vs (instead

of rv, 1s) according to F with v P r0, vq. Let x1pvq “ ppvq and x2pvq “ UpU, vq. The optimal

policy x1, x2 is the solution to the control problem

max
u

ż v

v

p1 ´ δqx1pvqpv ´ cq ` δW px2pvqqdF,

subject to the law of motion x1
1

“ u and x1
2

“ ´p1´ δqvu{δ. The control is u and the law of

motion captures the incentive compatibility constraints. We define a third state variable x3

to capture the promise-keeping constraint

x3pvq “ p1 ´ δqvx1pvq ` δx2pvq ` p1 ´ δq
ż v

v

x1psqp1 ´ F psqqds.

The law of motion of x3 is x1
3
pvq “ p1 ´ δqx1pvqpF pvq ´ 1q.46 The constraints are

u ě 0,

x1pvq ě 0, x1pvq ď 1,

x2pvq ď v̄, x2pvq ě 0,

x3pvq “ U, x3pvq ´ p1 ´ δqvx1pvq ´ δx2pvq “ 0.

Let γ1, γ2, γ3 be the costate variables and µ0 the multiplier for u ě 0. For the rest of this

sub-section the dependence on v is omitted when no confusion arises. The Lagrange is

L “ pp1 ´ δqx1pv ´ cq ` δW px2qq f ` γ1u ´ γ2
1 ´ δ

δ
vu ` γ3p1 ´ δqx1pF ´ 1q ` µ0u.

46Note that the promise-keeping constraint can be rewritten as

U “ p1 ´ δqvx1pvq ` δx2pvq ` p1 ´ δq

ż v

v

x1psqp1 ´ F psqqds.
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The first-order conditions are

BL
Bu “ γ1 ´ γ2

1 ´ δ

δ
v ` µ0 “ 0,

9γ1 “ ´ BL
Bx1

“ p1 ´ δq pγ3p1 ´ F q ´ fpv ´ cqq ,

9γ2 “ ´ BL
Bx2

“ ´δfW 1px2q,

9γ3 “ ´ BL
Bx3

“ 0.

The transversality conditions are

γ1pvq ď 0, γ1pvq ` p1 ´ δqvγ3pvq ď 0,

γ1pvqx1pvq “ 0, pγ1pvq ` p1 ´ δqvγ3pvqq p1 ´ x1pvqq “ 0,

γ2pvq ě 0, γ2pvq ` δγ3pvq ě 0,

γ2pvqpv̄ ´ x2pvqq “ 0, pγ2pvq ` δγ3pvqqx2pvq “ 0,

γ3pvq and γ3pvq free.

The first observation is that γ3pvq is constant, denoted γ3. Moreover, given γ3, 9γ1 involves

no endogenous variables. Therefore, for a fixed γ1pvq, the trajectory of γ1 is fixed. Whenever

u ą 0, we have µ0 “ 0. The first-order condition BL
Bu “ 0 implies that

γ2 “ δγ1

p1 ´ δqv and 9γ2 “ δ pγ1 ´ v 9γ1q
pδ ´ 1qv2 .

Given that 9γ2 “ ´δfW 1px2q, we could determine the state x2

x2 “ pW 1q´1

ˆ
v 9γ1 ´ γ1

pδ ´ 1qfv2
˙
. (26)

The control u is given by ´ 9x2δ{pp1´ δqvq. As the promised utility varies, we conjecture that

the solution can be one of the three cases.

Case one occurs when U is intermediate: There exists v ď v1 ď v2 ď v such that x1 “ 0

for v ď v1, x1 is strictly increasing when v P pv1, v2q and x1 “ 1 for v ě v2. Given that u ą 0

iff v P pv1, v2q, we have

x2 “

$
’’’’&

’’’’%

pW 1q´1

´
v 9γ1´γ1

pδ´1qfv2

¯ˇ̌
ˇ
v“v1

if v ă v1,

pW 1q´1

´
v 9γ1´γ1

pδ´1qfv2

¯
if v1 ď v ď v2,

pW 1q´1

´
v 9γ1´γ1

pδ´1qfv2

¯ˇ̌
ˇ
v“v2

if v ą v2,
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and

x1 “

$
’’’&

’’’%

0 if v ă v1,

´ δ
1´δ

şv
v1

9x2

s
ds if v1 ď v ď v2,

1 if v ą v2.

The continuity of x1 at v2 requires that

´ δ

1 ´ δ

ż v2

v1

9x2

s
ds “ 1. (27)

The trajectory of γ2 is given by

γ2 “

$
’’’&

’’’%

δγ1
p1´δqv1 ` δpF pv1q ´ F pvqqv1 9γ1pv1q´γ1pv1q

pδ´1qfpv1qv2
1

if v ă v1,

δγ1
p1´δqv if v1 ď v ď v2,

δγ1
p1´δqv2 ´ δpF pvq ´ F pv2qqv2 9γ1pv2q´γ1pv2q

pδ´1qfpv2qv2
2

if v ą v2.

If pW 1q´1

´
v1 9γ1pv1q´γ1pv1q

pδ´1qfpv1qv2
1

¯
ă v̄ and pW 1q´1

´
v2 9γ1pv2q´γ1pv2q

pδ´1qfpv2qv2
2

¯
ą 0, the transversality condition

requires that

δγ1pv1q
p1 ´ δqv1

` δF pv1q
v1 9γ1pv1q ´ γ1pv1q

pδ ´ 1qfpv1qv21
“ 0, (28)

δγ1pv2q
p1 ´ δqv2

´ δp1 ´ F pv2qqv2 9γ1pv2q ´ γ1pv2q
pδ ´ 1qfpv2qv22

“ ´δγ3. (29)

We have four unknowns v1, v2, γ3, γ1pvq and four equations, (27)–(29) and the promise-

keeping constraint. Alternatively, for a fixed v1, (27)–(29) determine the three other un-

knowns v2, γ3, γ1pvq. We need to verify that all inequality constraints are satisfied.

Case two occurs when U is close to 0: There exists v1 such that x1 “ 0 for v ď v1 and x1

is strictly increasing when v P pv1, vs. The x1pvq ď 1 constraint does not bind. This implies

that γ1pvq ` p1 ´ δqvγ3 “ 0. When v ą v1, the state x2 is pinned down by (26).

From the condition that γ1pvq ` p1 ´ δqvγ3pvq “ 0, we have that W 1px2pvqq “ 1 ´ c{v.
Given strict concavity of W and W 1p0q “ 1 ´ c{v, we have x2pvq “ 0. The constraint

x2pvq ě 0 binds, so (29) is replaced with

δγ1pvq
p1 ´ δqv ` δγ3 ď 0,

which is always satisfied given that γ1pvq ď 0. From (28), we can solve γ3 in terms of v1.

Lastly, the promise-keeping constraint pins down the value of v1. Note that the constraint
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x1pvq ď 1 does not bind. This requires that

´ δ

1 ´ δ

ż v

v1

9x2

s
ds ď 1. (30)

There exists a v˚
1

such that this inequality is satisfied if and only if v1 ě v˚
1
. When v1 ă v˚

1
,

we move to case one. We would like to prove that the left-hand side increases as v1 decreases.

Note that γ3 measures the marginal benefit of U , so it equals W 1pUq.
Case three occurs when v ą 0 and U is close to µ: There exists v2 such that x1 “ 1 for

v ě v2 and x2 is strictly increasing when v P rv, v2q. The x1pvq ě 0 constraint does not bind.

This implies that γ1pvq “ 0. When v ă v2, the state x2 is is pinned down by (26). From the

condition that γ1pvq “ 0, we have that W 1px2pvqq “ 1 ´ c{v. Given strict concavity of W

and W 1pv̄q “ 1´ c{v, we have x2pvq “ v̄. The constraint x2pvq ď 1 binds, so (28) is replaced

with
δγ1pvq

p1 ´ δqv ď 0,

which is always satisfied given that γ1pvq ď 0. From (29), we can solve γ3 in terms of v2.

Lastly, the promise-keeping constraint pins down the value of v2. Note that the constraint

x1pvq ě 0 does not bind. This requires that

´ δ

1 ´ δ

ż v2

v

9x2

s
ds ď 1. (31)

There exists a v˚
2

such that this inequality is satisfied if and only if v2 ď v˚
2
. When v2 ą v˚

2
,

we move to case one.

Proof of Proposition 1. To illustrate, we assume that v is uniform on r0, 1s. The proof

for F pvq “ va with a ą 1 is similar. We start with case two. From condition (28), we solve

for γ3 “ 1 ` cpv1 ´ 2q. Substituting γ3 into γ1pvq, we have

γ1pvq “ 1

2
p1 ´ δqp1 ´ vqpvpcpv1 ´ 2q ` 2q ´ cv1q.

The transversality condition γ1p0q ď 0 is satisfied. The first-order condition BL
Bu “ 0 is also

satisfied for v ď v1. Let G denote the function
`
pW 1q´1

˘1
. We have

´ δ

1 ´ δ

ż
1

v1

9x2

s
ds “ ´ δ

p1 ´ δq

ż
1

v1

G
´
1 ´ c ` c

2

´
v1 ´ v1

s2

¯¯ cv1

s3
1

s
ds

“ ´ δ

p1 ´ δq

ż
0

v1´1{v1
G
´
1 ´ c ` c

2
x
¯ c

2

c
1 ´ x

v1
dx.

70



The last equality is obtained by the change of variables. As v1 decreases, v1 ´ 1{v1 de-

creases and
a

1 ´ x{v1 increases. Therefore, the left-hand side of (30) indeed increases as v1

decreases.

We continue with case one. From (28) and (29), we can solve for γ3 and γ1pvq

γ3 “ 1 ` c

ˆ
v1p2v2 ´ 1q

v2
2

´ 2

˙
,

γ1pvq “ 1

2
pδ ´ 1q

ˆ
v

ˆ
pv ´ 2q

ˆ
c

ˆ
v1p2v2 ´ 1q

v2
2

´ 2

˙
` 1

˙
´ 2c ` v

˙
` cv1

˙
.

It is easily verified that γ1p0q ď 0, γ1p1q ď 0, and the first-order condition BL
Bu “ 0 is satisfied.

Equation (27) can be rewritten as

´ δ

1 ´ δ

ż v2

v1

9x2

s
ds “ ´ δ

p1 ´ δq

ż v2

v1

G

ˆ
1 ´ c ` c

2

ˆ
v1p2v2 ´ 1q

v2
2

´ v1

s2

˙˙
cv1

s3
1

s
ds “ 1.

For any v1 ď v˚
1
, there exists v2 P pv1, 1q such that (27) is satisfied.

Transfers with Limited Liability. Here, we consider the case in which transfers are

allowed but the agent is protected by limited liability. Therefore, only the principal can pay

the agent. The principal maximizes his payoff net of payments. The following lemma shows

that transfers occur on the equilibrium path when the ratio c{l is higher than 2.

Lemma 11 The principal makes transfers on path if and only if c ´ l ą l.

Proof. We first show that the principal makes transfers if c ´ l ą l. Suppose not. The

optimal mechanism is the same as the one characterized in Theorem 1. When U is sufficiently

close to µ, we want to show that it is “cheaper” to provide incentives using transfers. Given

the optimal allocation pph, uhq and ppl, ulq, if we reduce ul by ε and make a transfer of

δε{p1 ´ δq to the low type, the IC/PK constraints are satisfied. When ul is sufficiently

close to µ, the principal’s payoff increment is close to δpc{l ´ 1qε ´ δε “ δpc{l ´ 2q, which is

strictly positive if c´ l ą l. This contradicts the fact that the allocation pph, uhq and ppl, ulq
is optimal. Therefore, the principal makes transfers if c ´ l ą l.

If c´l ď l, we first show that the principal never makes transfers if ul, uh ă µ. With abuse

of notation, let tm denote the current-period transfer after m report. Suppose um ă µ and

tm ą 0. We can increase um (m “ l or h) by ε and reduce tm by δε{p1´ δq. This adjustment

has no impact on IC/PK constraints and strictly increases the principal’s payoff given that
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W 1pUq ą 1 ´ c{l when U ă µ.47 Suppose ul “ µ and tl ą 0. We can always replace pl, tl

with pl ` ε, tl ´ εl. This adjustment has no impact on IC/PK and (weakly) increases the

principal’s payoff. If ul “ µ, pl “ 1, we know that the promised utility to the agent is at

least µ. The optimal scheme is to provide the unit forever.

47It is easy to show that the principal’s complete-information payoff, if U P r0, µs and c´ l ď l, is the same

as ĎW in Lemma 1.
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