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Abstract

An intuitive explanation for voter abstention is that a voter is uncertain
which policy or candidate to vote for, and so defers to the rest of the electorate
to make the decision. In majoritarian elections this has been formally modelled
as a strategic response to the swing voter’s curse, which arises because the
rare event of a pivotal vote conveys substantial information. In electoral
systems other than majority rule, however, the standard pivotal voting calculus
may not apply. This paper analyzes one such system, namely proportional
representation, where additional votes continue to push the policy outcome in
one direction or the other. A new strategic incentive for abstention arises in
that case, to avoid the “marginal voter’s curse”of pushing the policy outcome
in the wrong direction. Intuitively, conditioning on the rare event of a pivotal
vote might seem to have a greater impact on behavior, but the marginal voter’s
curse actually presents a larger disincentive for voting than the swing voter’s
curse. This and other predictions of the model are confirmed empirically by
a series of laboratory experiments.
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1 Introduction

An intuitive explanation for voter abstention is that a citizen is unsure which policy
or candidate he should vote for, and anticipates that his peers will make a better
choice on his behalf than he can make for himself. This could also explain why
citizens often cast incomplete ballots, voting in some races but abstaining in others,
even after voting costs are sunk. It is also consistent with extensive empirical
evidence that abstention and partial ballots are most likely from citizens who (by
various measures) lack political information or expertise.1 In an influential paper,
Feddersen and Pesendorfer (1996) demonstrate formally that uninformed citizens
have a strategic incentive to abstain from voting, to avoid the swing voter’s curse of
overturning an informed decision: when others are voting informatively, the better
of two alternatives is more likely to win by one vote than lose by one vote, so one
additional vote for the inferior alternative is more likely to be pivotal than one vote
for the superior alternative. A rational voter restricts attention to these pivotal
events, and concludes that if his own vote is pivotal, it is likely mistaken.
Intuitively, the logic of delegating one’s decision to those who know better seems

not to depend strongly on the institutional details of the electoral system. Empiri-
cally, Sobbrio and Navarra (2010) indeed document that uninformed citizens abstain
from voting in a variety of electoral systems. The pivotal voting calculus that gen-
erates the swing voter’s curse, however, is specific to the particular institution of
Majority Rule.2 This paper therefore explores the incentives for participation in the
alternative electoral system of Proportional Representation (PR, hereafter), which is
increasingly popular, for example in Europe and Latin America. Under an ideal PR
system, a party that receives 37% of the votes in a legislative election receives 37%
of the seats in the legislature. Since every vote slightly shifts the vote shares that
the two parties receive, every vote slightly adjusts the composition of the legislature.
If the policy outcome ultimately results from bargaining within the legislature then
shifting the composition of the legislature translates into shifting the location of the
final policy outcome. In that sense, every vote is pivotal in a PR system.3

1See the references in McMurray (2012). In particular, Lassen (2005) and Banerjee et al. (2010)
provide evidence from a natural experiment and a field experiment, respectively, that information
has a causal impact on voter participation.

2McMurray (2014) also demonstrates an incentive to abstain when the winning candidate in a
majoritarian system interprets her margin of victory as a signal from voters of the magnitude of
an optimal policy, and responds optimally. That mechanism relies on candidates overreacting to
uninformed votes, however, and so plays no role in the model below, where policy outcomes are
mechanically tied to voting.

3As a practical matter, of course, legislatures have limited numbers of seats, so PR systems
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A citizen will only value another’s judgment if they share a common interest.
Accordingly, the model below adopts the basic common-value setup of Feddersen and
Pesendorfer (1996): there are two policy extremes, 0 and 1, associated with parties
A and B, respectively. Nature designates one of these as superior, and independent
voters prefer policies that are as close as possible to this optimum. There may
also be partisan voters who prefer one of the two extremes regardless of Nature’s
choice. As an illustrative example, consider the allocation of public money, either
to education or to national defense. Many voters will wish to allocate public funds
to whatever program will truly make the greatest contribution to social welfare, but
this depends on many unknown variables, such as the true labor market returns
to schooling and the true threat of foreign invasion. Thus, voters with different
opinions on these more primitive questions may favor different spending allocations,
even though they ultimately share the same objective. Other voters may prefer
one or the other type of spending, regardless of the consequences for social welfare.
The departure from Feddersen and Pesendorfer (1996) is in replacing majority rule
payoffs with PR payoffs. Majority rule produces the extreme policy x favored by
the party who receives more votes: x = 0 if a > b and x = 1 if a < b. Under PR, the
policy outcome is instead a convex combination x = a

a+b
(0) + b

a+b
(1) = b

a+b
of the

two extremes, with weights determined by the two parties’vote shares. Continuing
the example above, x = 2

3
could be interpreted as devoting two thirds of available

funding to military endeavors and one third of the funding to education.
Under majority rule, a voter’s expected utility is determined simply by the relative

probabilities of x = 0 and x = 1, and the benefit of voting is simply proportional
to the probability of changing this outcome. The source of the swing voter’s curse
is the fact that, when voting is informative, an additional vote for the inferior party
is more likely to be pivotal than an additional vote for the superior party. Under
PR, this pivot probability is not relevant: instead, what matters is the magnitude of
the policy change xa,b+1 − xa,b = b+1

a+b+1
− b

a+b
, say from voting B. This magnitude

is largest, however, when the existing vote share for party B is small. When voting
is informative, this is most likely when the optimal policy is 0. In that case, an
additional B vote pushes the policy outcome in the wrong direction. Thus, whereas
majority rule produces a swing voter’s curse because a mistaken vote is more likely
to be pivotal than a vote for the side that is truly superior, PR generates a marginal

cannot match the vote shares precisely. It is not therefore the case that every vote is pivotal, per
se, but it is still the case that there are many pivotal events (i.e. as many as there are seats in the
legislature), in contrast with standard majoritarian models. The “ideal” PR system considered
below can be viewed as an approximation of this, where the additional smoothness serves to simplify
the analysis.
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voter’s curse because a mistaken vote is likely to have a larger policy impact than a
vote for the superior side. In either system, then, voters have a strategic incentive
to abstain.
It is not immediately obvious whether the marginal voter’s curse or the swing

voter’s curse should be stronger. In a majority rule system, the utility consequences
of a mistaken vote can be dramatic, but only with miniscule probability; in a PR
system, the consequences of mistakes are small, but unavoidable. It turns out,
however, that the comparative static is unambiguous, at least in large elections: no
matter how large the share of partisan voters, the marginal voter’s curse is actually
stronger than the swing voter’s curse. The essential intuition for this is that, under
majority, the damage caused by a mistaken vote can be corrected by a single vote
for the optimal policy. Under PR, by contrast, each vote dilutes the impact of
subsequent votes, so that multiple votes of support are required for undoing the mal-
effects of a single mistake. As a simple illustration of this, suppose that the better
of two alternatives received 3 out of 5 votes, or a 60% vote share. One additional
vote for the opposite party would reduce this vote share to 50% (i.e. 3 out of 6), and
an additional vote of support would bring it back up, but only to 57% (i.e. 4 out
of 7). In other words, it is not suffi cient to give lots of votes to the superior side;
the electorate must also give as few votes as possible to the inferior side, so that the
better side not only wins, but wins by a large margin. If there are no partisans, in
fact, turnout under PR is negligible in large elections, in contrast with majority rule
(McMurray, 2013), because everyone defers to the miniscule fraction of the electorate
who are most nearly infallible.
In either electoral system, turnout is highest when the electorate is most partisan,

because citizens who lack expertise worry less about canceling the votes of better-
informed independents when the share of independents is small. For a given level of
partisanship, the precise level of voter participation depends on the distribution of
expertise. In general, however, improving voter expertise has an ambiguous effect
on voter participation, because a citizen’s incentive to vote is increasing in his own
information but decreasing in the information of his peers. For any combination
of parameters and in either electoral system, the logic of McLennan (1998) ensures
that socially optimal behavior can occur in equilibrium. Welfare is higher under
majority rule, where in large elections, the policy outcome converges almost surely
to whichever side is truly optimal for society. This is not the case under PR: if
20% of the electorate are partisan (i.e. 10% on each side), for example, then even by
voting unanimously, the best independents can hope for is a 90% vote share.
We test our theoretical results in the laboratory. We implement a 2x3 between

subjects design and vary both the voting rule and the share of partisans in the
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electorate. While behavior is far from the point predictions, most comparative statics
are in line with the model. First, poorly informed subjects abstain significantly
more than well informed subjects, with the latter almost never abstaining. Second,
abstention of poorly informed subjects decrease with the share of partisans in both
voting systems. And third, abstention rates among poorly informed subjects are
weakly higher in PR treatments.
The comparison of electoral systems, and proportional representation in par-

ticular, has been a subject of growing interest in recent literature, including both
theoretical studies (e.g. Herrera, Morelli and Nunnari, 2015; Herrera, Morelli and
Palfrey, 2014; Kartal, 2014a; Faravelli and Sanchez-Pages, 2014; Matakos, Troum-
pounis and Xefteris, 2014; and Faravelli, Man and Walsch, 2015) and laboratory
experiments (e.g. Herrera, Morelli, and Palfrey, 2014; and Kartal, 2014b). This lit-
erature focuses on private values and costly voting, however, whereas the emphasis
on the present paper is strategic abstention for informational reasons. Literature
on strategic abstention also includes both theoretical studies (e.g. Feddersen and
Pesendorfer, 1996; Krishna and Morgan, 2011, 2012; McMurray, 2013) and labora-
tory experiments (e.g. Battaglini, Morton and Palfrey, 2008, 2010; and Morton and
Tyran, 2011), but these focus exclusively on majority rule. To our knowledge, the
present paper is the first to analyze strategic abstention under proportional repre-
sentation or to compare majority rule and PR in a common-value environment.

2 The Model

2.1 Model Description

An electorate consists of N citizens where, following Myerson (1998), N is finite but
unknown, and follows a Poisson distribution with mean n. Together, these citizens
must choose a policy x from the interval [0, 1]. Parties A and B are associated with
the policy positions 0 and 1 on the left and right, respectively, and each citizen
chooses an action in {A,B, 0}, which can be interpreted respectively as a vote for
party A, a vote or for party B, or abstention from voting. Let a and b denote
the numbers of A and B votes. In a Proportional Representation (PR) electoral
system, the final policy outcome x is a convex combination of the two parties’policy
positions, with weights given by the parties’vote shares λA = a

a+b
and λB = b

a+b
.

This reduces simply to

x (a, b) = 0λA + 1λB = λB =
b

a+ b
. (1)

5



Section 3.2 contrasts this with the case of majority rule, in which x is simply the
policy position associated with the party that receives the largest number of votes
(i.e. 0 or 1), breaking ties if necessary by a coin toss.
Some citizens are A or B partisans, and prefer policies as close as possible to

the positions of the two parties: uA (x) = 1 − x and uB (x) = x. The rest of the
electorate are non-partisan, or independent, and have preferences that depend on an
unknown state of the world ω = {α, β} with uniform prior Pr (α) = Pr (β) = 1

2
. For

these citizens, policy 0 is optimal if ω = α but policy 1 is optimal if ω = β, and the
utility of other policies merely depends on the distance from the optimum:

u (x|α) = 1− x u (x|β) = x. (2)

At the beginning of the game, each citizen is independently designated as an A
partisan with probability p, as a B partisan with probability p, and as an independent
with probability I = 1− 2p.
The optimal policy cannot be observed directly, but non-partisans observe private

signals si ∈ {sα, sβ} that are informative of the true state of the world.4 These signals
are of heterogeneous quality, reflecting the fact that citizens differ in their expertise
on the issue at hand. Specifically, each citizens is endowed with information quality
qi ∈ [0, 1], drawn independently from a common distribution F which, for simplicity,
is continuous and has full support. Conditional on ω and on qi = q, signals are then
drawn independently from the following distribution,

Pr (sα|α, q) = Pr (sβ|β, q) =
1

2
(1 + q) .

With this specification, q specifies the correlation coeffi cient between s and ω. In
particular, citizens with q = 0 are totally uninformed and citizens with q = 1 are
perfectly informed about the state of the world. More generally, by Bayes’ rule,
posterior beliefs are given by

φα (q, s) = Pr (α|s, q) =

{
1
2

(1 + q) if s = sα
1
2

(1− q) if s = sβ
(3)

and φβ (q, s) = 1− φα (q, s).
Partisan citizens have a dominant strategy to vote for the party they favor, so the

only strategic choice is that of independents, who must choose an action for every
realization of qi and si. Let σ : [0, 1] × {sα, sβ} → ∆ {A,B, 0} denote the mixed
strategy of such a citizen, and let Σ denote the set of strategies. Abusing notation

4Partisans could receive signals as well, of course, but would ignore them.
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slightly, denote a pure strategy simply as σ (q, s) = j for any j ∈ {A,B, 0}. The
ultimate policy outcome depends on the realizations of N and ω and the partisan
type of each voter, together with the voting strategy and the realization of private
information (qi, si) for each independent. The equilibrium concept used is Bayesian
Nash equilibrium. With the assumption of Poisson population uncertainty, such
equilibria are necessarily symmetric, meaning that citizens with the same type and
same private information take the same action, and are thus fully characterized by
a single voting strategy σ∗ ∈ Σ for independents.5

2.2 Definitions

Depending on the voting strategy, parties may receive votes from non-partisan citi-
zens with particular realizations of private information, in addition to partisan sup-
port. Integrating over the space of signals, therefore, the total probability vj (ω) with
which a citizen votes for party j ∈ {A,B} in state ω ∈ {α, β} can be written as

vj (ω) = p+ I

∫ 1

0

 ∑
s=sα,sβ

σ (j|q, s) Pr (s|ω, q)

 dF (q) . (4)

This expression can also be interpreted as the expected vote share of party j. By the
decomposition property of Poisson random variables (Myerson 1998), the numbers
NA and NB of A and B votes are independent Poisson random variables with means
Rω ≡ nvA (ω) and Sω ≡ nvB (ω). Thus, the probability of a particular electoral
outcome NA = a and NB = b is given by

Pr (a, b|ω) =

(
e−RωRa

ω

a!

)(
e−SωSbω
b!

)
. (5)

By the environmental equivalence property of Poisson games (Myerson 1998), an
individual from within the game reinterprets NA and NB as the numbers of A and
B votes cast by his peers; by voting himself, he can add one to either total. If
he abstains, the policy outcome will be chosen by his peers, and the individual will
receive expected utility

Eu (0|q, s) =
∑
ω=α,β

∞∑
a=0

∞∑
b=0

u [x (a, b) |ω] Pr (a, b|ω)φω, (6)

5In games of Poisson population uncertainty, the finite set of citizens who actually play the game
can be viewed as a random draw from an infinite set of potential citizens, for whom strategies could
be defined (see Myerson 1998). The distribution of opponent behavior is therefore the same for
any two individuals within the game (unlike a game between a finite set of players), implying that
a best response for one citizen is a best response for all.
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where x (a, b) depends on the electoral system. Note that this expectation depends
on private information only through the posteriors φω. Similarly, an individual can
obtain either of the following by voting for A or B, respectively.

Eu (A|q, s) =
∑
ω=α,β

∞∑
a=0

∞∑
b=0

u [x (a+ 1, b) |ω] Pr (a, b|ω)φω (7)

Eu (B|q, s) =
∑
ω=α,β

∞∑
a=0

∞∑
b=0

u [x (a, b+ 1) |ω] Pr (a, b|ω)φω (8)

and also that these expectations depend implicitly (through Pr (a, b|ω)) on the strat-
egy σ adopted by a citizen’s peers. The individual’s best response σbr (σ) is to
take the pure action j ∈ {A,B, 0} that maximizes Eu (j|q, s), and a Bayesian Nash
equilibrium σ∗ ∈ Σ is a fixed point of σ : Σ→ Σ.
Both for PR and for majority rule, the analysis below emphasizes the impor-

tance of a posterior threshold strategy σφ̄αφ̄β ∈ Σ, which is characterized by posterior
thresholds φ̄α + φ̄β ∈ [1, 2] such that

σφ̄αφ̄β (q, s) =


A if φα ≥ φ̄α
B if φβ ≥ φ̄β
0 else

.

When following a posterior threshold strategy, a citizen votes A if he is suffi ciently
confident that ω = α and votes B if he is suffi ciently confident that ω = β, abstaining
with some probability if φ̄α + φ̄β > 1. Also of interest is a quality threshold strategy
σq̄ ∈ Σ, defined such that

σq̄ (q, s) =


A if q ≥ q̄ and s = sα
B if q ≥ q̄ and s = sβ

0 else
.

That is, a citizen votes if his expertise exceeds q̄ and abstains otherwise, and condi-
tional on voting, he simply votes for the party whose position seems superior, on the
basis of his private signal s.6

Under a quality threshold strategy σq̄, (4) reduces to the following, so that the
probabilities v+ ≡ vA (α) = vB (β) and v− ≡ vA (β) = vB (α) of voting for the right

6Given the formulation in (3), a quality threshold strategy can also be interpreted as a posterior
threshold strategy for which the posterior thresholds φ̄α = φ̄β = φ̄ coincide. In that case, q̄ =

2
(
φ̄− 1

2

)
.
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or wrong alternative, respectively, are independent of the state.

v+ (q̄) = p+ I

∫ 1

q

1

2
(1 + q) dF (q) = p+

1

2
I [1− F (q)] [1 +m (q̄)] (9)

v− (q̄) = p+ I

∫ 1

q

1

2
(1− q) dF (q) = p+

1

2
I [1− F (q)] [1−m (q̄)] , (10)

where m (q̄) = E (q|q > q) is the average expertise among citizens who actually vote.
From these, we can three write expressions useful later on, namely: expected turnout
T ≡ v+ + v−, the expected winning margin W ≡ v+ − v−, and the likelihood ratio
L ≡ v+

v−
of right votes to wrong votes:

T (q̄) = 2p+ I [1− F (q̄)] (11)

W (q̄) = I [1− F (q̄)]m (q̄)

L (q̄) =
K + [1− F (q̄)] [1 +m (q̄)]

K + [1− F (q̄)] [1−m (q̄)]

where K ≡ 2p
I
is the ratio of partisans to non-partisans in the population.

As q̄ increases, voting is limited to an increasingly elite group of the most ex-
pert citizens. F (q̄) and m (q̄) therefore increase and, accordingly, T (q̄) and W (q̄)
decrease.

3 Equilibrium Analysis

3.1 Proportional Representation

Under proportional representation, x (a, b) = λB = b
a+b

as defined as in (1), so utility
reduces to

u (x|α) = 1− x = λA =
a

a+ b

u (x|β) = x = λB =
b

a+ b
,

and expected utility reduces from (6) through (8) to the following.

E [u (0|q, s)] = φαEa,b
(

a
a+b
|α
)

+ φβEa,b
(

b
a+b
|β
)

E [u (A|q, s)] = φαEa,b
(

a+1
a+b+1

|α
)

+ φβEa,b
(

b
a+b+1

|β
)

E [u (B|q, s)] = φαEa,b
(

a
a+b+1

|α
)

+ φβEa,b
(

b+1
a+b+1

|β
)
.
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Relative to abstaining, the expected benefit∆0jE [u (x) |q, s] = E [u (j|q, s)]−E [u (0|q, s)]
of voting for candidate j ∈ {A,B} depends merely on the expected changesE (∆0jλA|ω)
and E (∆0jλB|ω) that this induces in the vote shares of each party, as follows.

∆0AE [u (x) |q, s] = φαEa,b
(

a+1
a+b+1

− a
a+b
|α
)

+ φβEa,b
(

b
a+b+1

− b
a+b
|β
)

(12)

= φαE (∆0AλA|α) + φβE (∆0AλB|β)

∆0BE [u (x) |q, s] = φαEa,b
(

a
a+b+1

− a
a+b
|α
)

+ φβEa,b
(

b+1
a+b+1

− b
a+b
|β
)

(13)

= φα∆0BE (λA|α) + φβ∆0BE (λB|β) .

The first term in (12) is positive, and reflects the benefit of increasing A’s vote share
when ω = α. The second term is negative, reflecting the disutility of decreasing B’s
vote share when ω = β. Accordingly, the benefit of voting A is increasing in φα and
decreasing in φβ. Symmetrically, (13) is increasing in φβ and decreasing in φα. The
consequence of this is that a citizen who is suffi ciently confident that ω = α wishes to
vote A, while a citizen who is suffi ciently confident that ω = β wishes to vote B. In
other words, as Proposition 1 now states, the best response to any voting strategy can
be characterized as a posterior threshold strategy. In particular, the best response
to a posterior threshold strategy is another posterior threshold strategy, so standard
fixed point arguments on the pair of posterior thresholds guarantee the existence of
an equilibrium. In fact, the symmetry of the model is such that these equilibrium
thresholds can be symmetric, in which case equilibrium voting reduces simply to a
quality threshold strategy σq̄∗.

Proposition 1 If σbr ∈ Σ is a best response to σ ∈ Σ then σbr is a posterior threshold
strategy. Moreover, there exists a quality threshold q̄∗ ∈ [0, 1] such that the quality
threshold strategy σq̄∗ is a Bayesian Nash equilibrium.

As noted in Section 2.2, a consequence of a quality threshold strategy is that
vA (α) = vB (β) and vA (β) = vB (α), so that NA has the same distribution in
state α that NB has in state β, and vice versa. This implies that Pr (a, b|ω) =
Pr (b, a|ω̃), where ω̃ is the opposite state from ω, and therefore that E (∆0AλA|ω) =
E (∆0BλB|ω) and E (∆0AλB|ω) = E (∆0BλA|ω̃). Since φα (q, sα) = φβ (q, sβ) =
1
2

(1 + q) and φα (q, sβ) = φβ (q, sα) = 1
2

(1− q), this further implies that the benefit
∆0AE [u (x) |q, sα] of voting A in response to a signal sα is the same as the bene-
fit ∆0BE [u (x) |q, sβ] of voting B in response to a signal sβ. In particular, since
E (∆0jλA|ω) + E (∆0jλB|ω) = 0 for any j ∈ {A,B}, (12) and (13) reduce to

∆0AE [u (x) |q, sα] = ∆0BE [u (x) |q, sβ] =
1 + q

2
E (∆0AλA|α) +

1− q
2

E (∆0AλB|β) ,

(14)
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which is positive if and only if q exceeds the threshold q̄br, defined as follows:

q̄br =
E (∆0AλA|β)− E (∆0AλA|α)

E (∆0AλA|α) + E (∆0AλA|β)
. (15)

If q̄ = 0 then everyone votes. Intuitively, this may seem likely to be the case
in equilibrium, because voting is costless, and because every citizen has a private
signal that is informative regarding the optimal policy. The standard pivotal voting
calculus could generate a swing voter’s curse, as in Feddersen and Pesendorfer (1996),
but that calculus is irrelevant here, because A positive fraction of the electorate
abstain , but that is because of the pivotal voting calculus, which is irrelevant here,
where every vote influences the policy outcome. As Theorem 1 now states, however,
a strictly positive fraction of the electorate necessarily abstain in equilibrium.

Theorem 1 (Marginal Voter’s Curse) If a quality threshold strategy σq∗ is a
Bayesian Nash equilibrium then q∗ > 0.

The logic of Theorem 1 is simple. First, note that the impact a+1
a+b+1

− a
a+b

of
one additional A vote on the vote share of party A is largest when a is small and
b is large. When his peers are voting informatively, however, this is most likely to
occur when ω = β, in which case the additional A vote reduces utility. Similarly,
one additional B vote likely has the greatest impact when ω = α. In other words, a
vote for the inferior party is likely to exert greater influence on the policy outcome
than a vote for the superior party. By voting, then, a totally uninformed citizen
would suffer from a marginal voter’s curse. To avoid this, such a citizen abstains in
equilibrium, and the only citizens who vote are those who are suffi ciently confident
that they have correctly identified the true state of the world.

3.2 Majority Rule

An interesting question is how turnout in a PR system compares, theoretically, with
turnout under majority rule. Accordingly, this section derives the latter.7 The
assumptions of this model are the same as those made above, except that the policy
outcome x is now 0 whenever A votes outnumber B votes, and 1 otherwise (breaking
a tie, if necessary, by a fair coin toss). For non-partisans, therefore, expected utility
can be written as

Eu (x|α) = 1× Pr (x = 0|α) + 0× Pr (x = 1|α) = Pr (x = 0|α)

Eu (x|β) = 0× Pr (x = 0|β) + 1× Pr (x = 1|β) = Pr (x = 1|β) ,

7This generalizes the derivation in McMurray (2013) to include partisan voters.
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where the right-hand-side probabilities depend on a citizen’s own voting decision.
In particular, if a citizen abstains then

Pr (x = 0|ω) = Pr (a > b|ω) +
1

2
Pr (a = b|ω) .

By voting for A, he can change this to

Pr (x = 0|ω) = Pr (a > b+ 1|ω) +
1

2
Pr (a = b+ 1|ω) .

The difference between these two expressions is the probability with which a single
additional A vote is pivotal (event pivA), reversing the outcome of the election:

∆0A Pr (x = 0|ω) =
1

2
Pr (a = b|ω) +

1

2
Pr (a = b+ 1|ω) ≡ Pr (pivA|ω) .

In terms of this pivot probability, the expected benefit ∆0AEu (x|q, s) to a citizen
with qi = q and si = s (and therefore posteriors φα and φβ) of voting A instead of
abstaining is simply

∆0AE [u (x) |q, s] = φα∆0A Pr (x = 0|α)− φβ∆0A Pr (x = 1|β)

= φα Pr (pivA|α)− φβ Pr (pivA|β) , (16)

which is positive if and only if φα exceeds

φ̄
br
α =

Pr (pivA|β)

Pr (pivA|α) + Pr (pivA|β)
.

Similarly, a vote for B is pivotal with probability

∆0B Pr (x = 1|ω) =
1

2
Pr (a = b|ω) +

1

2
Pr (a+ 1 = b|ω) ≡ Pr (pivB|ω)

and thus provides expected benefit

∆0BE [u (x) |q, s] = −φα Pr (pivB|α) + φβ Pr (pivB|β) (17)

which is positive if and only if φβ exceeds

φ̄
br
β =

Pr (pivB|α)

Pr (pivB|α) + Pr (pivB|β)
.

By logic identical to Proposition 1, Proposition 2 characterizes the best response
to any voting strategy as a posterior threshold strategy, and states that an equilib-
rium strategy exists. Given the symmetry of the model, the posterior thresholds
may coincide, thus reducing to a quality threshold strategy. The proof is quite
similar to those above, and is thus omitted.
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Proposition 2 If σbr ∈ Σ is a best response to σ ∈ Σ then σbr is a posterior threshold
strategy. Moreover, there exists a quality threshold q̄∗ ∈ [0, 1] such that the quality
threshold strategy σq̄∗ is a Bayesian Nash equilibrium.

When voting follows a quality threshold strategy, it is symmetric with respect
to ω, as in Section 3.1. Since posteriors φα (q, sα) = φβ (q, sβ) = 1

2
(1 + q) and

φα (q, sβ) = φβ (q, sα) = 1
2

(1− q) are symmetric as well, (16) and (17) reduce to

∆0AE [u (x) |q, sα] = ∆0BE [u (x) |q, sβ] =
1 + q

2
Pr (pivA|α)− 1− q

2
Pr (pivA|β) ,

which is positive if and only if q exceeds the threshold q̄, defined by

q̄ =
Pr (pivA|β)− Pr (pivA|α)

Pr (pivA|α) + Pr (pivA|β)
. (18)

If citizens follow a quality threshold strategy then, when ω = α, they are more
likely to vote for candidate A than candidate B. Accordingly, candidate A is more
likely to be ahead by one vote than behind by one vote. This implies, however, that
an additional vote for candidate B is more likely to be pivotal than an additional
vote for candidate A. Similarly, when ω = β, a vote for B is less likely to be pivotal
than a vote for A. These observations, together with the symmetry of quality
threshold strategies, imply that (18) is positive, as Proposition 2 now states. Thus,
as in Feddersen and Pesendorfer (1996), relatively uninformed citizens abstain in
equilibrium, to avoid the swing voter’s curse of overturning an informed electoral
decision.

Theorem 2 (Swing Voter’s Curse) If a quality threshold strategy σq̄∗ is a Bayesian
Nash equilibrium then q̄∗ > 0.

3.3 Welfare

Drawing on the equilibrium analysis above, this section analyzes voter welfare. Ex
ante, the probabilities of being an A partisan and a B partisan are the same, and
between these groups, the election outcome is zero-sum. It is therefore uncontrover-
sial to interpret the expected utility of an independent citizen as an ex-ante measure
of social welfare. Since every citizen receives an informative private signal but only
some report their signals in equilibrium, valuable information is lost. Intuitively,
this may seem to justify efforts to increase voter participation, say by punishing
non-voters with stigma or fines. To the contrary, however, Proposition 3 states that
equilibrium abstention actually improves welfare.

13



Proposition 3 Whether the electoral system is majority rule or PR, if σ∗∗ is the
socially optimal voting strategy then σ∗∗ also constitutes a Bayesian Nash equilibrium,
and specifies that a positive fraction v∗∗0 > 0 of the electorate abstain.

The proof of Proposition 3 relies on the logic of McLennan (1998), that in a
common-value environment such as this, whatever is socially optimal is also individ-
ually optimal. The necessity of abstention then follows from Theorem 1 for PR and
from Proposition 2 for majority rule. To see how it can be welfare improving to
throw away signals, note that citizens actually have not one but two pieces of private
information: their signal realizing si and their expertise qi. In an ideal electoral
system, all signals would be utilized, but would be weighted according to their un-
derlying expertise. In a standard electoral system (whether majority rule or PR),
votes are instead weighted equally. Abstention gives citizens a crude mechanism
for transferring weight from the lowest quality signals to those that reflect better
expertise.

4 Asymptotic Results

The results above apply for a population of any finite size n. Sections 4.1 and 4.2 now
derive the limit of equilibrium behavior as n grows large, for PR and majoritarian
elections, respectively. This is relevant because electorates do tend to be large,
and also simplifies the analysis to facilitate a direct comparison of the two electoral
systems, which is the topic of Section 4.3.

4.1 Proportional Representation

For PR, asymptotic results are made possible by Lemma 1, which offers an algebraic
simplification of the formulas obtained previously, in terms of the expected numbers
Rω and Sω of votes for A and B in state ω.

Lemma 1 For any n and for any quality threshold strategy σ, the following identity
holds:

E (∆0AλA|ω) = −E (∆0AλB|ω) = E (∆0BλB|ω̃) = −E (∆0BλA|ω̃)

=
Sω + Rω2−Sω2−Sω

2
e−(Rω+Sω)

(Rω + Sω)2 . (19)
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As noted above, an equilibrium quality threshold q̄∗n for a particular n must
solve ∆0AE [u (x) |q, sα] = ∆0BE [u (x) |q, sβ] = 0. Combining (14) and (19), this is
equivalent to the following.

0 =
1 + q

2

(
Sα + R2α−S2α−Sα

2
e−(Rα+Sα)

(Rα + Sα)2

)
− 1− q

2

Sβ − R2β−S2β−Sβ
2

e−(Rβ+Sβ)

(Rβ + Sβ)2



=


1+q

n(v++v−)2

(
v− +

n(v2+−v2−)−v−
2

e−n(v++v−)

)
− 1−q
n(v++v−)2

(
v+ −

n(v2+−v2−)−v−
2

e−n(v++v−)

)


or, more compactly,
1 + q

1− q =
v+ − nTW−v−

2
e−nT

v− + nTW−v−
2

e−nT
. (20)

Equation (20) must be satisfied for a given population size parameter n, but as n
grows large, the right-hand side converges simply to the ratio v+

v−
= L (q̄).8 Thus,

the limit qP = limn→∞ q̄
∗
n of any sequence of equilibrium quality threshold must solve

the simpler equation,

L (q̄) =
1 + q

1− q . (21)

Proposition 4 shows that such a solution to (20) exists, and is unique. Unique-
ness in the limit does not imply a unique equilibrium in any game with finite size
parameter n, but if there are multiple equilibrium participation thresholds then the
implication of Proposition 4 is that these all converge to each other in the limit, at
a level that is determined entirely by the level p of partisans and the distribution
F of expertise. Note that expected turnout (11) strictly decreases in q̄, so that a
unique limiting quality threshold qP implies a unique level of turnout, as well. The
expected margin of victory v+

(
qP
)
− v−

(
qP
)
is uniquely determined by qP as well.

In large elections, of course, actual turnout and actual victory margins converge to
their expectations.
Proposition 4 also derives the comparative static implications of (21). Intuitively,

it might seem that the marginal voter’s curse should attenuate as n grows large,
because the damage caused by one mistaken vote shrinks, so citizens should be less
worried about making mistakes. If this intuition were accurate then abstention
would decline as the electorate grows large, and turnout would tend toward 100% in

8This convergence is not trivial, but is demonstrated formally in the proof of Proposition 4.
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the limit. Contrary to this intuition, however, the first part of Proposition 4 states
that qP is strictly positive, meaning that a positive fraction of the electorate always
abstains. In fact, if there are no partisans then qP equals one, meaning that turnout
actually tends to 0% in the limit. This is because the policy outcome is a weighted
average of the two extremes, with weights corresponding to vote shares. Citizens
wish to vote as unanimously as possible in favor of the superior side, and this is
accomplished by limiting participation to those who are the least likely to err.

Proposition 4 In the PR system, there exists a unique solution qP to (21), which
exhibits the following properties:
(i) qP > 0 for any partisan share p. If p = 0 then qP = 1.
(ii) qP decreases strictly with p.
(iii) qP increases with increases in the distribution F of expertise that satisfy

the monotone likelihood ratio property.

The result that equilibrium outcomes depend uniquely on the distribution of
expertise can be illustrated by solving the limiting equilibrium condition (21) for
K = 2p

1−2p
, which is simply a monotonic transformation of the partisan share. That

is, qP must solve
1− F (q̄)

q̄
[m (q̄)− q̄] = K, (22)

so for any distribution F of expertise and participation threshold qP , it is simple to
determine the fraction of partisans for which qP is the limiting equilibrium participa-
tion threshold. For a uniform distribution, for instance, F (q̄) = q̄ and m (q̄) = 1+q̄

2
,

so (22) reduces to
qP = (K + 1)−

√
K (K + 2). (23)

Using the uniform distribution, Figure 1 plots the left- and right-hand sides of
(21) for various levels p of partisanship. Evidently, the left-hand side of (21) is
maximized precisely at the intersection of the two. Indeed, this must always be
the case: it is straightforward to show that (21) coincides exactly with the first-
order condition for maximizing L (q̄). The intuition for Proposition 4 is related to
the intuition for this phenomenon. To see this, first note that the left-hand side
of (21) represents the likelihood ratio of a correct vote to an incorrect vote, for an
average voter, chosen at random. The objective of independent voters is precisely
to make this ratio as large as possible, so that the policy outcome will be as close as
possible to whatever is truly optimal. Similarly, the right-hand side of (21) is the
ratio of the likelihood ratio of a correct vote to an incorrect vote for the marginal
independent voter, whose expertise is right at the participation threshold. Equating

16



Figure 1: Left and right-hand side of equation (21) when the distribution F of
expertise is uniform for various levels of partisans.

the average and marginal likelihood ratios serves to maximize the average, just as
equating the average and marginal costs of a firm’s production serves to minimize
the average: if the marginal voter’s likelihood ratio is not as good as the average
voter’s then increasing the participation threshold removes votes of below-average
quality, thus improving the average; if the marginal voter’s likelihood ratio is better
than the average voter’s then raising the participation threshold removes votes of
above-average quality, thus making things worse.
The second part of Proposition 4 states that the marginal voter’s curse is most

severe when there are fewer partisans. Since partisans always vote, this implies
that turnout is lower with fewer partisans, as well. With no partisans at all, average
quality always exceeds marginal quality, because the marginal voter is precisely the
one with the lowest expertise– except at the very top of the domain of expertise; thus,
the equilibrium quality threshold rises all the way to qP = 1. From an independent’s
perspective, however, adding partisans adds noise to the electoral process. For any
participation threshold q̄, therefore, a higher level of partisanship reduces the average
accuracy of a vote, as Figure 1 makes clear. The accuracy of the marginal voter is
unchanged, however, and strictly improves with q̄, implying that the solution qP to
(21) is lower, as stated in the second part of Proposition 4. Since partisans always
vote, this has the clear effect of raising turnout.
The last part of Proposition 4 states that improving the distribution of expertise

has the effect of raising the limiting participation threshold qP . The intuition for this
merely complements that of increasing partisanship: improving expertise improves
the correct-to-incorrect vote ratio for any participation threshold q̄, so the solution
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to (21) is higher than before. In the case of partisanship, lowering qP unambiguously
raises voter participation. For changes in the distribution of expertise, however, the
impact on voter participation is ambiguous: on one hand, raising citizens above the
participation threshold increases turnout by transforming non-voters into voters, but
on the other hand, raising the participation threshold lowers turnout, by transforming
voters into non-voters.
Proposition 5 delineates situations in which a first-order stochastic dominance

shift in F (which is weaker than a shift that satisfies MLRP) has an unambiguous
impact on turnout: (1) improving nonvoters’information has no effect on turnout, if
it does not lift them above the participation threshold; (2) improving the expertise of
voters who are already above the participation threshold raises the margin of victory
of the superior alternative, thereby strengthening the marginal voter’s curse so that
the participation threshold rises, and turnout falls; (3) moderate improvements in
nonvoter’s information increase turnout twice, first by pushing these non-voters above
the participation threshold and then, since this lowers the margin of victory and
weakens the marginal voter’s curse, the participation threshold rises further, so that
turnout increases still further.

Proposition 5 If F and G both have log-concave densities f and g and G first-order
stochastically dominates F then
(i) If G (q) = F (q) for all q ≥ qPF then q

P
G = qPF .

(ii) If G (q) = F (q) for all q ≤ qPF then q
P
G > qPF .

(iii) If G (q) = F (q) for all q ≥ mF

(
qPF
)
and G

(
qPF
)
< F

(
qPF
)
then qPG < qPF .

4.2 Majority Rule

Like Section 4.1, this section considers how the equilibrium threshold changes as n
grows large. Here, however, the focus is on majority rule. Myerson (2000) provides
a useful preliminary result, which is that pivot probabilities in large elections can be
closely approximated as follows.

Pr (pivA|α) ≈ e−n[
√
v+−
√
v−]

2

4n
√
π
√
v+v−

√
v+ +

√
v−√

v+

Pr (pivA|β) ≈ e−n[
√
v+−
√
v−]

2

4n
√
π
√
v+v−

√
v+ +

√
v−√

v−
,
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implying that the limit qM = limn→∞ q̄
∗
n of any sequence of equilibrium quality

thresholds must solve the following approximation of (18).9

q̄ =

√
v+ −

√
v−√

v+ +
√
v−

or, equivalently,

L =
v+

v−
=

(
1 + q

1− q

)2

. (24)

Proposition 6 now states that a solution to (24) exists. If the distribution F of
expertise is well-behaved, this solution is unique.10 As in PR, uniqueness in the limit
implies that if multiple equilibria exist then they all converge to the same behavior,
and uniquely determine expected voter turnout and the expected margin of error,
as well, where actual turnout and margins of error converge to their expectations.
Uniqueness also facilitates the derivation of comparative statics, which according to
Proposition 6 match those of PR: a higher partisan share leads to a lower qM , and a
better-informed electorate leads to a higher qM .

Proposition 6 In majority rule, there exists a solution qM to (24), which lies strictly
between 0 and 1. Moreover, if F has a log-concave density then qM is unique, and
satisfies the following additional properties:
(i) qM strictly decreases in p
(ii) qM increases with increases in the distribution F of expertise that satisfy

the monotone likelihood ratio property.

As above, the result that equilibrium outcomes depend uniquely on the distribu-
tion of expertise can be illustrated by solving the limiting equilibrium condition (24)
for K.

1− F (q̄)

q̄

(
1 + (q̄)2

2
m (q̄)− q̄

)
= K. (25)

9This approximation actually requires that the number of votes tend to infinity, not just the
number of citizens, but this is guaranteed by the result below that qM < 1 no matter what fraction
of the electorate is partisan.
10Bagnoli and Bergstrom (2005) show that log-concavity is satisfied by many of the most standard

density functions, but log-concavity is actually stronger than necessary for uniqueness: one can
easily construct examples that exhibit unique equilibria but are not log-concave. The important
thing, as the proof the proposition indicates, is that raising the participation threshold q̄ should
not increase the average expertise m (q̄) of citizens above the threshold too quickly. This could be
violated, for example, if the distribution of expertise included atoms, or “spikes”of probability.
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For a given distribution F of expertise, it is then straightforward for any q̄ to find the
level of K (and therefore the level of p) such that qM = q̄ is the limiting equilibrium
quality threshold.
In stating that qM is strictly positive, the first part of Proposition 6 implies that,

for any level of partisanship, a positive fraction of the electorate abstain from voting,
no matter how large the electorate grows. This was also true of PR, as stated in
Proposition 4. Under PR, a positive fraction of the electorate also continues voting,
no matter how large the electorate grows, except in the case of p = 0, for which
qP = 1. In contrast, Proposition 6 states that qM is strictly less than one for any p
(including zero), a difference emphasized further in Section 4.3.
The logic for the result that qM decreases in p is analogous to the corresponding

result for qP : when the fraction of partisans is low, an uninformed independent
worries that he will cancel the vote of a better-informed independent, but when
the fraction of partisans is high, it is more likely that he is canceling the vote of a
partisan; in the former case he wishes to abstain, but in the latter case he wishes
to vote. Mathematically, an increase in p lowers the average vote quality for any
participation threshold, and therefore the correct-to-incorrect vote ratio, which is
the left-hand side of (24). Since L (q̄) increases in q̄, this implies a solution that is
lower than before. Similar logic underlies the last part of Proposition 6, because
improving the distribution of expertise raises L (q̄) for any q̄, and the solution to (24)
is higher than before. As in PR, however, Proposition 7 states that changes in the
distribution of information have ambiguous consequences for voter turnout: (1) if
the information of non-voters improves, but not by enough to push them above the
participation threshold, then participation does not change; (2) if the information
of voters improves then the marginal voter’s curse becomes stronger, and turnout
declines; (3) if non-voters are lifted only slightly above the participation threshold
then turnout increases, both because non-voters now vote and because the marginal
voter’s curse is not as strong. The proof is essentially identical to that of Proposition
5, and is thus omitted.11

Proposition 7 If F and G both have log-concave densities f and g and G first-order
stochastically dominates F then
(i) If G (q) = F (q) for all q ≥ qMF then qMG = qMF .
(ii) If G (q) = F (q) for all q ≤ qMF then qMG > qMF .
(iii) If G (q) = F (q) for all q ≥ mF

(
qMF
)
and G

(
qMF
)
< F

(
qMF
)
then qMG < qMF .

11This generalizes Proposition 3 of McMurray (2013), which treats only the case of p = 0.
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4.3 Comparison

Sections 4.1 and 4.2 emphasize the similarities between the comparative static im-
plications of the marginal voter’s curse for PR and the swing voter’s curse for ma-
joritarian electoral systems. Maintaining a focus on large electorates, this section
now compares the levels of equilibrium voter participation under the two regimes
(assuming a log-concave density of expertise, so that equilibrium behavior under ei-
ther electoral system is unique). Such a comparison is surprisingly unambiguous,
because of the strong similarity between the limiting equilibrium conditions (21) and
(24) for PR and majority rule.
Intuitively, it might seem that conditioning on the event a pivotal vote should

have a much greater impact on behavior than conditioning on the marginal impact
of a nudge in one direction or the other– especially in large elections, where a pivotal
vote is so extremely rare, and where the magnitude of the nudge is vanishingly small.
If so, abstention should be much higher– and turnout much lower– under majority
rule than under PR. As Theorem 3 now states, however, the opposite is true: qP

exceeds qM , meaning that voter participation is lower.

Theorem 3 If f is log-concave then qP > qM > 0.

In stating that qP > qM , Theorem 3 leaves open the possibility that the two
thresholds are quite close to one another, so that the difference is negligible. For
specific distributions, this is straightforward to investigate. Suppose, for example,
that F is uniform and that partisans comprise one third of the electorate (i.e. p = 1

6
,

and therefore K = 1
2
). From (23), this implies that qP ≈ 0.38, implying approxi-

mately 75% turnout in large PR elections (i.e. 62% turnout among independents and
100% turnout among partisans). From (25), qM ≈ 0.19, implying approximately
87% turnout in large majoritarian elections (i.e. 81% turnout among independents
and 100% turnout among partisans). Similar computations can be made for any
level of partisanship, and corresponding turnout levels are displayed in Figure 2.
Evidently, there is a substantial gap between qP and qM for all but the highest levels
of partisanship.
The gap between turnout under majority rule and PR is most notable when there

are no partisans. In that case, as Section 4.1 explains, turnout under PR tends
toward 0%, because of strategic unraveling: citizens with below-average expertise
abstain, so as to not bring down the average vote quality, but then the average
among those who are still voting is higher, and citizens below this average abstain,
and so on. Since the marginal citizen is always below average, this unraveling
continues until only the infinitessimal fraction of the most expert citizens remain.
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Figure 2: Turnout among independent voters as a function of the partisan share (2p)
and the voting rule.

Intuitively, it might seem that turnout should unravel under majority rule, just
as it does under PR, because regardless of the electoral system, the marginal citizen
always has less expertise than the average citizen, and so should eventually abstain,
to get out of the way. To the contrary, however, Proposition 6 states that a substan-
tial fraction of the electorate continue to vote, no matter how large the electorate
grows. As McMurray (2013) explains, this reflects a trade-off between the quantity
of information and the quality of information: holding the number of voters fixed,
electoral outcomes are better when the expertise behind those votes is higher. Hold-
ing expertise fixed, however, increasing the number of votes also improves election
accuracy, just as in the classic “jury theorem”of Condorcet (1785). For a citizen
with below-average expertise, voting has the opposite effects of decreasing the av-
erage quality of information while increasing the quantity of information. These
balance in the limit so that turnout remains substantial. In PR, by contrast, the
quality of information matters but the quantity of information does not: fixing the
distribution of expertise, there is no advantage to having more votes. Winning an
election by 50 to 40 is the same as winning by 500 to 400, for example, because the
policy outcomes 50

90
= 500

900
are the same. Thus, quality considerations dominate, and

turnout unravels in that case.
An alternative intuition for the discrepancy between turnout levels under majority

rule and PR makes use of the optimality arguments above. As Section 4.1 notes,
the limiting equilibrium condition (21) coincides with the first-order condition for
maximizing L (q̄) = v+

v−
– or equivalently, for maximizing v+

v++v−
. The latter is simply

22



Figure 3: Left and right-hand sides of equations (21) and (24) with a uniform distri-
bution F of expertise, for various levels of partisanship.

a formula for expected utility in large elections (i.e. where actual vote shares have
converged to expectations), as can be seen from (1) and (2). In other words, L (q̄)
can be viewed as a monotonic transformation of voters’objective function (in large
elections), and the quality threshold adjusts to the level qP that maximizes this

objective. The condition (24) for majority rule equates L (q̄) to
(

1+q̄
1−q̄

)2

instead of

to 1+q̄
1−q̄ . Since the latter maximizes L (q̄), the former does not, as Figure 3 illustrates

for a uniform distribution. The figure also illustrates how
(

1+q̄
1−q̄

)2

> 1+q̄
1−q̄ guarantees

that qM < qP , which is the crux of the proof of Theorem 3.
That qP maximizes the objective function for PR in large elections begs the

question of whether qM maximizes the objective function for majoritarian elections.
Indeed, this turns out to be the case– a feature that seems not to have been noted in
existing literature on majority rule. Under majority rule, expected utility is given
by the probability that N+ > N− (plus half the probability of a tie, which becomes
vanishingly small in large elections), where N+ is the number of votes that match
the state of the world and N− is the number of votes that do not. Since each voter
is more likely to cast a correct vote than an incorrect vote, the expected number nv+

of good votes exceeds the expected number nv− of mistakes. As Figure 4 illustrates,
large deviations from this expectation are less likely than small deviations; if N−
does exceed N+, the most likely margin of victory is a single vote.
As Myerson (2000) discusses, deviations from the expected election outcome be-

come exponentially less likely as n grows large. The magnitude of a set of events
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Figure 4: When the expected election outcome is a win, the most likely instance of a loss
coincides with the event of a pivotal vote.

therefore converges to the magnitude of the most likely event within that set. In
the case of election outcomes, this means that the magnitude of the conglomerate
event of N− exceeding N+ in large elections is the same as the magnitude of ex-
ceeding N+ by exactly one vote, which is the same as the magnitude of an exact
tie. Specifically, Myerson (2000) gives this magnitude as −

(√
v+ −

√
v−
)2
, which is

a monotonic function of
√
v+ −

√
v−. The first-order condition for minimizing the

latter is none other than the limiting equilibrium condition (24) for qM . Intuitively,
what matters is not only that the expected vote share v+ exceeds v−, but also that
the variances of N+ and N− are small relative to their expectations, so that accidents
in which N− > N+ do not occur.12 The standard deviation of a Poisson random
variable is the square root of its mean; thus,

√
nv+ and

√
nv− represent the expected

numbers of correct and incorrect votes, measured in standard deviations instead of
in numbers of votes, and

√
v+ −

√
v− is proportional to the difference.

The results that PR and majority rule each maximize their respective objective
functions, but generate different levels of voter participation, begs the question of
which system is better for social welfare. To answer this, first define xMn and xPn
to be equilibrium policy outcomes under majority rule and PR, respectively, and let
uM = limn→∞E

[
u
(
xMn
)]
and uP = limn→∞E

[
u
(
xPn
)]
denote the limits of expected

utility under either regime. Intuitively, the result of Proposition 3 that equilibrium

12These two considerations correspond to the considerations of quality and quantity, discussed
above.
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abstention improves welfare, together with the result of Theorem 3 that participation
in large elections is higher under a majoritarian regime than under PR, might seem to
suggest that welfare should be higher under PR than under majority rule. However,
the opposite actually turns out to be true, as Proposition 8 now states: in large
elections, welfare is higher under majority rule than under PR, especially for high
levels of partisanship.

Proposition 8 uM = 1 for all p < 1. uP decreases in p, from 1 for p = 0 to 1
2
for

p = 1.

The comparison here of welfare has little to do with the comparison of turnout
from Theorem 3. What drives the result is that, under majority rule, A partisans
and B partisans negate one another’s influence, so that the majority decision is
determined entirely by the behavior of independent voters, no matter how small this
group is. In a large election, a majority of these almost surely identify the true state
of the world. If there are no partisans, then PR delivers the same outcome in the
limit, as abstention is limited to an increasingly elite fraction of voters, the election
outcome tends toward unanimity, and the policy outcome converges to the desired
extreme. A positive mass of partisan votes for either side, however, bounds the
policy outcome away from 0 and 1, implying some utility loss, which is increasing in
p. Actually, even with no partisans, PR would be inferior to majority voting if the
domain of the distribution of expertise were bounded below one, so that even the
most elite citizens were incapable of agreeing unanimously on the state of the world.

5 Experiment

The model presented above is diffi cult to test with observational data, due to the
endogeneity problems inherent in much of the empirical literature on turnout. To
avoid this problem, we generate new data through a series of laboratory experiments.
Implementation in the laboratory poses a number of challenges. First, financial
and space constraints limit the number of participants, making it diffi cult to test
asymptotic results for large elections. Second, technical features of the model such as
the Poisson population uncertainty and the continuum of possible types, while elegant
and convenient for theoretical derivations, are diffi cult to explain to experimental
subjects. To circumvent these challenges we implement a simplified version of the
model above, and derive equilibrium predictions computationally. As explained
below, the simple version of the game features the main comparative statics of the
model above.
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5.1 Experimental Design and Procedures

Subjects interacted for 40 periods. The instructions in each period were identical.
In each period, subjects interacted in groups of six. At the beginning of each
round, the color of a triangle was chosen randomly to be either blue or red with
equal probability. Subjects were not told the color of the triangle, but were told
that their goal would be work together as a group to guess the color of the triangle.
Independently, each would observe one ball (a signal) drawn randomly from an urn
with 20 blue and red balls. With 40% probability, a participant would be designated
as a high type (H), and 19 of the 20 balls in the urn would be the same color as the
triangle. With 60% probability, a participant would be designated as a low type
(L), in which case only 13 of the 20 balls would be the same color as the triangle.
Individual were told their own types, but did not know the types of the other five
members of their group.
After observing their signals, each subject had to take one of three actions: vote

Blue, vote Red, or abstain from voting. Regardless of which action they chose,
however, they were told that their action choice might be replaced at random, by
the choice of a computer: with 10% probability, their vote choice was changed to
Abstain.13 With probability p the voting choice was replaced with a Blue vote, and
with probability p it was replaced with a Red vote. Replacements of votes were
determined independently across subjects. The partisanship parameter p was one
of the treatment variables of the experiment. We considered three different values:
p = 0%, p = 12.5% and p = 25%. The second treatment variable, the voting rule,
determined subjects’payoff as a function of the group votes. In the Majority Rule
(M) treatments, subjects each received payoffs of 100 points if the number of votes for
the color of the triangle exceeded the number of votes for the other color, 50 points
in case of a tie and 0 points otherwise. In the case of Proportional Representation
(P) treatments, subjects each received as payoff in points the percentage of non-
abstention votes that had the same color as the triangle– or, if everyone abstained,
a payoff equal to 50 points.
For each of the two voting rules and each of the three levels of partisanship,

Table 1 lists the equilibrium abstention rates σ∗0,H and σ
∗
0,L for high- and low-type

individuals. If they vote at all, both types of citizens should vote in accordance with
their private signals. High-type individuals should always vote, but the equilibrium

13This form of population uncertainty follows Feddersen and Pesendorfer (1996). With a known
number of voters, the swing voter’s would depend heavily on whether that number is even or odd.
If it is odd, for example, there is always an equilibrium with full participation, because a vote is then
pivotal only if the rest of the electorate is evenly split. In that case, a citizen infers no information
beyond his or her own signal, and therefore has a strict incentive to vote.
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Treatment Voting Rule % Partisans σ∗0,H σ∗0,L
M0 Majority Rule 0 0% 100%
M25 Majority Rule 25 0% 0%
M50 Majority Rule 50 0% 0%
P0 Proportional Representation 0 0% 100%
P25 Proportional Representation 25 0% 100%
P50 Proportional Representation 50 0% 0%

Table 1: Equilibrium abstention rates for high and low types, for all treatments.

strategy of low-type voters varies by treatment. Under majority rule, they should
abstain when p = 0 but vote whenever p is positive. Under Proportional Represen-
tation, low-type individuals should abstain unless p is at its highest level, so that
a vote is 50% likely to be replaced by a partisan computer. We summarize these
predictions in the following hypotheses:

Hypothesis 1 High types should vote (weakly) more than low types

Hypothesis 2 The frequency of abstention of high types should not change with the
number of partisans or with the voting rule.

Hypothesis 3 Under either voting rule, the frequency of abstention of low types
decreases with the number of partisans.

Hypothesis 4 The frequency of abstention of low types voters is weakly lower under
majority rule than under PR.

Experiments were conducted at the Experimental Economics Laboratory at the
University of Valencia (LINEEX) in November 2014. We ran one session for each
treatment, with 60 subjects each. No subject participated in more than one ses-
sion. Students interacted through computer terminals, and the experiment was
programmed and conducted with the software z-Tree (Fischbacher 2007). All exper-
imental sessions were organized along the same procedure: subjects received detailed
written instructions (see Appendix A3), which an instructor read aloud. Before start-
ing the experiment, students were asked to answer a questionnaire to check their full
understanding of the experimental design. Right after that, subjects played one of
the treatments for 40 periods and random matching. Matching occurred within
matching groups of 12 subjects, which generated 5 independent groups in each ses-
sion. At the end of each round, each subject was given the information about the
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color of the triangle, their original and their final vote, and the total numbers of Blue
votes, Red votes, and abstentions in their group (though they could not tell whether
these were the intended votes of the other participants, or computer overrides). In P
treatments, they also observed the percentage of votes that matched the color of the
triangle; in M treatments, they instead were told whether the color of the Triangle
received more, equal, or fewer votes than the other color. To determine payment at
the end of the experiment, the computer randomly selected five periods and partici-
pants earned the total of the amount earned in these periods. Points were converted
to euros at the rate of 0.025€. In total, subjects earned an average of 14.21€, in-
cluding a show-up fee of 4 Euros. Each experimental session lasted approximately
an hour.

5.2 Experimental Results

Figure 5 displays empirical abstention rates for all treatments, for voters of high and
low types. The figure shows several interesting patterns that we formalize and test
with the regression presented in Table 2. Table 2 displays the results of a random
effects GLS regression of the frequency of abstention on dummies for each possible
combination of voter type, level of partisanship, and voting rule (except for the
combination of high types and 0% partisanship under majority rule, which is the
reference category).14

Let’s focus first on the behavior of high types. According to the theoretical
predictions, these voters should never abstain. Empirically, abstention is indeed
extremely low in all treatments, ranging from 0.3% only to 3.2%. Overall, we cannot
reject the null hypothesis that the frequency of abstention across high-type voters is
constant across all treatments (χ2

4 = 3.28, p = 0.512), in line with Hypothesis 2.
Figure 5 indicates a stark contrast in behavior across voter types: while the

frequency of abstention of high-type voters is 1.73%, this frequency is 33.53% across
low types. We find indeed a significant difference at under every single treatment.15

This finding is line with Hypothesis 1: better informed voters tend to participate
more in elections. See, however, that in contrast with the theoretical predictions,
we find a strict significance in all treatments. In treatments where the percentage of
partisans is 50%, for instance, all types of voters should always vote and therefore we

14The regressions lacks temporal variables and therefore ignores potential evolution in behavior
throughout the experiment in order to ease interpretation of the coeffi cients. The results are robust
to introducing temporal variables.
15χ21 = 45.77, p < 0.001 in M0, χ21 = 82.46, p < 0.001 in M25, χ21 = 32.90, p < 0.001 in M50,

χ21 = 15.17, p < 0.001 in M0, χ21 = 90.53, p < 0.001 in M25, and χ21 = 18.36, p < 0.001 in M50.
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Figure 5: Observed abstention for each treatment, by voter type.

shouldn’t such strict difference. This brings us to study behavior of low-type voters
more closely.
Recall from Table 1 that we have corner solutions in all treatments. That is, low

types should either all abstain or all vote. Figure 5 indicates that average frequen-
cies are more moderate. However, this is not surprising as the model abstracts from
certain aspects that do influence behavior. A perhaps more insightful question is
whether the theory captures the comparative statics with respect to the voting mech-
anisms and to the level of partisans in the electorate. Let’s attack these questions
in turn. Figure 5 suggests that, in line with the predictions, the level of abstention
decreases with the percentage of partisans in the electorate. Indeed, the percentages
of abstention are 42.6%, 29.7% and 28.5% in treatments M0, M25, and M50, respec-
tively, and 37.0%, 36.2% and 27.5% in treatments P0, P25, and P50. Moreover, the
biggest drop coincides with this one predicted by theory. In the case of M treat-
ments we can indeed reject the null hypothesis that the level of abstention is not
constant across different levels of partisans in line with Hypothesis 3 (χ2

2 = 58.75,
p < 0.001). Instead, we can’t reject the null hypothesis in the case of P treatments
(χ2

1 = 2.17, p = 0.338).
Do we observe significant differences across voting mechanisms? According to

theory we should only observe significant differences the level of partisans is 25%,
and in this case we should observe that abstention is substantially higher under PR.
Although the magnitude of the difference is off, this is exactly what we find in the
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Variable Coef. Std. Err. z P>z 95% C.I.

High×M25 0.021 0.012 1.81 0.071 [−0.002, 0.045]
High×M50 0.019 0.006 3.26 0.001 [0.008, 0.031]
High× P0 0.008 0.006 1.47 0.142 [−0.003, 0.020]
High× P25 0.011 0.011 1.04 0.298 [−0.010, 0.032]
High× P50 0.032 0.022 1.45 0.147 [−0.011, 0.075]
Low ×M0 0.420 0.062 6.77 0.000 [0.299, 0.542]
Low ×M25 0.293 0.038 7.63 0.000 [0.218, 0.368]
Low ×M50 0.284 0.050 5.69 0.000 [0.186, 0.382]
Low × P0 0.361 0.093 3.89 0.000 [0.179, 0.543]
Low × P25 0.359 0.040 9.08 0.000 [0.281, 0.436]
Low × P50 0.272 0.061 4.5 0.000 [0.154, 0.391]
Constant 0.003 0.006 0.54 0.588 [−0.009, 0.015]

Observations 14,400 σu .209 ρ .313
Subjects 360 σe .309

Table 2: Random effects GLS regression of the probability of abstention on a constant
and a number of dummies indicating the interaction between voter type, voting rule, and
level of partisanship.

Figure 6: Realized payoff vs equilibrium payoff in each independent group.
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data: we find no significant differences when the level of partisans is 0% or 50%
(χ2

1 = 0.43, p = 0.514 and χ2
1 = 0.04, p = 0.844 respectively), but a statistically

significant difference in favor of PR when the level of partisans is 25% (χ2
1 = 16.76,

p < 0.001).
So far we have been focusing solely on abstention. According to theory, if they

didn’t abstain they should always vote their signal. This is not what we always
observe. Overall, they deviate from voting their signal 11.6% of the time: 4.5%
across high-type voters and 16.5% across low-type voters.16 Additionally, these
frequencies seems to increase with the level of partisans. This is consistent with
models of quantal response equilibrium, where mistakes are less prevalent when the
payoff difference across actions is smaller.17

Finally, let’s turn to welfare. Figure 6 displays the realized average payoff in each
independent group vis-à-vis the prediction for the realized draws. Actual payoffs
are lower than would have been obtained by following the equilibrium strategy, but
not by much: on average, realized payoffs were 91.7% as those that would have
been obtained by following the equilibrium strategies. In other words, deviations
from equilibrium reduced payoffs by only 8.3%. There is some heterogeneity across
voting rules: realized payoffs under majority rule were 93.7% as high as equilibrium
payoffs would have been, while payoffs under PR were 89.7% as high as equilibrium
payoffs. A clear outlier among all the treatments is P0, where overparticipation
of low types reduced payoff substantially, to 84.3% of the equilibrium levels. This
is not too surprising given the mechanical effect of the partisans, however; realized
payoffs clearly decrease with the level of partisanship. A similar regression to the
one in Table 2 where the independent variable is payoff and the random effect is
on each group shows that payoffs were higher in P0 than P25, higher in P25 than
P50, higher in M0 than M25, and higher in M25 than M50, by amounts that are
statistically significant at the 1% level in all cases.

6 Conclusion

The electoral system of Proportional Representation has become increasingly pop-
ular in recent decades, but its properties remain less well understood than those of
majority rule. In particular, the swing voter’s curse identified by Feddersen and

16This anomaly has been found systematically in experimental studies on information aggregation.
See, for instance, Bouton et al. (2014) or Bouton et al. (2015).
17See Guarnaschelli, McKelvey and Palfrey (2000) and Holt and Goeree (2005) for applications

of QRE to voting.
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Pesendorfer (1996) has been extremely influential in understanding voter participa-
tion in majoritarian systems, but existing literature has not provided an analogous
result for PR. This paper fills that gap by demonstrating a marginal voter’s curse,
which gives citizens a strategic incentive to abstain in PR systems, just as under
majority rule. This suggests that the incentive to abstain in deference to those
with better information is not highly sensitive to the electoral system, but results
more intrinsically from the common-values assumption, together with the inevitable
heterogeneity of expertise.
While it is not obvious, ex ante, which electoral system should provide greater

incentive for voter turnout, the analysis above finds that equilibrium turnout is
unambiguously higher under majority rule. This is in contrast with Herrera, Morelli,
and Palfrey (2014), who analyze a private-value model with costly voting, and find
that turnout can be higher in either system. To observers who view high levels of
voter participation as intrinsically desirable, this may make PR unattractive. The
welfare analysis above does not place value on participation, per se, and in fact
demonstrates that some abstention is desirable, in the sense that the resulting policy
outcome better matches the unknown state of the world than it would if everyone
were to have voted. Nevertheless, the mechanism that leads to lower turnout under
PR is shown to lower welfare directly: namely, proportional representation makes the
influence of partisan voters more diffi cult to negate.
Several aspects of the analysis above would benefit from future extension. For

example, the superiority of majority rule results at least partly from the assumption
that the state of the world is binary, so that the optimal policy ultimately lies at one
of the two extremes; in situations where the optimal policy is likely to lie between
the two extremes, proportional rule may be advantageous. Another useful exten-
sion would be to consider an imbalance between partisan groups. Feddersen and
Pesendorfer (1996) show that, when partisan groups are imbalanced, uninformed in-
dependents no longer abstain, instead voting to neutralize the partisan bias. Turnout
is likely to increase under PR for a similar reason, but by even more, as negating
the influence of one partisan requires more than one independent vote. Lastly, of
course, is the issue of voting costs, which may have differential effects under the two
electoral systems.

7 Appendix

Proof of Proposition 1. In response to σ, a citizen prefers to vote A if
∆0AE [u (x) |q, s] exceeds the maximum of zero and ∆0BE [u (x) |q, s]. Since (12)
is increasing in φα and (13) is decreasing in φα, these inequalities are satisfied for
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any φα above some threshold φ̄
br
α . By symmetric reasoning, a citizen prefers to

vote B if φβ exceeds a threshold φ̄
br
β . Accordingly, these thresholds characterize a

posterior threshold strategy that is the unique best response to σ.
If σq̄ is a quality threshold strategy with quality threshold q̄ then, as noted in

Section 2.2, vA (α) = vB (β) and vA (β) = vB (α). This implies that symmetric
electoral outcomes are equally probable. That is, NA has the same distribution in
state α that NB has in state β, and vice versa, so that Pr (a, b|α) = Pr (b, a|β). In
that case, it is straightforward to show that ∆0AE [u (x) |q, sα] = ∆0BE [u (x) |q, sβ]

and ∆0AE [u (x) |q, sβ] = ∆0BE [u (x) |q, sα], implying that φ̄brα = φ̄
br
β . Thus, the best

response to σq̄ is another quality threshold strategy σq̄br . In this way, q̄br (q̄) can be
interpreted as a continuous function from the compact set [0, 1] of quality thresholds
into itself. A fixed point q̄∗exists by Brouwer’s theorem, and the corresponding
quality threshold strategy σq̄∗ constitutes its own best response.

Proof of Theorem 1. The logic of this proof is to show that the best response
to the quality threshold strategy σ0 with full participation is a quality threshold
strategy σq̄br(0) with a best-response quality threshold q̄br (0) > 0, implying less-
than-full participation. To see this, first note that if citizens follow σ0 then (4)
reduces so that vA (α) = vB (β) > vA (β) = vB (α). Therefore, the distribution of
NA when ω = α first-order stochastically dominates the distribution of NA when
ω = β, and the distribution of NB when ω = β first-order stochastically dominates
the distribution ofNA when ω = α. The difference∆0AλA = a+1

a+b+1
− a
a+b

is decreasing
in a and increasing in b, however, which implies that the distribution of ∆0AλA when
ω = β first-order stochastically dominates the distribution of ∆0AλA when ω = α.
Thus, E (∆0AλA|β) > E (∆0AλA|α), implying that (15) is strictly positive.

Proof of Proposition 2. When voters follow a quality threshold strategy,

Pr (pivA|β)− Pr (pivA|α) =
1

2
[Pr (a+ 1 = b|β)− Pr (a+ 1 = b|α)]

=
1

2
[Pr (a = b+ 1|α)− Pr (a+ 1 = b|α)]

=
1

2

∞∑
k=0

e−nvA(α)−nvB(α)n2k+1

k! (k + 1)!

[
vk+1
A (α) vkB (α)− vkA (α) vk+1

B (α)
]

> 0,

where the second equality follows from the symmetry of the strategy and the inequal-
ity follows because vA (α) > vB (α). Thus, the best-response quality threshold (18)
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is strictly positive, implying that an equilibrium quality threshold must be positive
as well.

Proof of Proposition 3. McLennan (1998) points out that, in a common interest
game such as this, any strategy σ∗∗ is socially optimal is also individually rational,
and thus constitutes an equilibrium. This logic applies whether the electoral system
is PR or Majority Rule. That a positive fraction v∗∗0 > 0 of the electorate necessarily
abstain in equilibrium follows from Theorem 1 for PR and from Proposition 2.

Proof of Lemma 1. From (5) we have

E

(
a+ 1

a+ b+ 1
|ω
)

= e−Rω−Sω
∞∑
a=0

∞∑
b=0

(
Ra
ω

a!

)(
Sbω
b!

)(
a+ 1

a+ b+ 1

)
E

(
a

a+ b
|ω
)

= e−Rω−Sω
∞∑
a=0

∞∑
b=0

(
Ra
ω

a!

)(
Sbω
b!

)(
a

a+ b

)
.

Omitting the ω subscripts, this can be reduced as follows.

∞∑
b=0

Sb

b!

a

a+ b
=

a

Sa

∞∑
b=0

∫ S

0

d

dr

(
1

b!

ra+b

a+ b

)
dr =

=
a

Sa

∫ S

0

∞∑
b=0

(
1

b!
ra+b−1

)
dr =


a
Sa

∫ S
0
ra−1erdr for a ≥ 1

1/2 for a = 0

and
∞∑
b=0

Sb

b!

a+ 1

a+ b+ 1
=
a+ 1

Sa+1

∫ S

0

raerdr.

By inverting the series and integral operators again in the series over a, we have
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equal to

E

(
a+ 1

a+ b+ 1
|ω
)
− E

(
a

a+ b
|ω
)

= e−R−S

( ∞∑
a=0

Ra

a!

(
a+ 1

Sa+1

∫ S

0

raerdr

)
−
( ∞∑
a=1

Ra

a!

(
a

Sa

∫ S

0

ra−1erdr

)
+

1

2

))

= e−R−S

(∫ S

0

1

S

( ∞∑
a=0

(
R
S
r
)a

a!
+

∞∑
a=1

(
R
S
r
)a

(a− 1)!

)
erdr −

(∫ S

0

R

S

∞∑
a=1

(
R
S
r
)a−1

(a− 1)!
erdr +

1

2

))

= e−R−S
(∫ S

0

1

S

(
e
R
S
r +

R

S
re

R
S
r

)
erdr −

(∫ S

0

R

S
e
R
S
rerdr +

1

2

))
= e−R−S

1

S2

∫ S

0

e(1+R
S )r (S +Rr) dr −

(
R

1− e−(R+S)

R + S
+
e−(R+S)

2

)
=

S

(R + S)2 +
e−(R+S)

(R + S)2

R2 − S2 − S
2

In sum,

E (∆0AλA|ω) =
Sω + Rω2−Sω2−Sω

2
e−(Rω+Sω)

(Rω + Sω)2 .

That E (∆0BλB|ω̃) = E (∆0AλA|ω) follows from the symmetry of a quality threshold
strategy, and since λA + λB = 1, ∆0jλA + ∆0jλB = 0 for j ∈ {A,B}.

Proof of Proposition 4. The equilibrium condition (20) is continuous in n (and
in v+, v−, T , and W , which also vary continuously with n) so a sequence q̄∗n of
solutions to (20) must converge to a solution of the limit of (20). That is, letting
l ≡ limn→∞

nTW−v−
2

e−nT , qP must solve

1 + q

1− q =
v+ − l
v− + l

or, equivalently,

q̄ =
v+ − v− − 2l

v+ + v−
.

Suppose we have l > 0, then qP satisfies

q̄ <
v+ − v−
v+ + v−

≤ 1,
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implying a positive turnout rate T > 0, and therefore that nT → +∞. In that case,
l = limn→∞

nTW−v−
2

e−nT = 0, yielding a contradiction.
Studying the sign of the derivative of

L (q̄) =
K + [1− F (q̄)] [1 +m (q̄)]

K + [1− F (q̄)] [1−m (q̄)]

we obtain for any K the condition:

L′ (q̄) ≷ 0 ⇐⇒ L (q̄) ≷ 1 + q

1− q

For any K > 0 we have L (0) > 1 and L (1) = 1, moreover the function 1+q
1−q is

increasing from 1 to infinity. Thus, qP must be positive, and by the condition above
L (q̄) is increasing initially, must eventually cross 1+q

1−q and is decreasing from there

after. Hence L (q̄) has a unique maximum which solves L (q̄) = 1+q
1−q which therefore

coincides with the unique solution qP . Moreover, qP decreases in K as the function
L (q̄) decreases in K for all q̄.
If K = 0 then L (q̄) = 1+m(q̄)

1−m(q̄)
which is always increasing, hence we must have

L (q̄) > 1+q
1−q for all q̄ ∈ [0, 1), hence: qP = 1 solves L (q̄) = 1+q

1−q = +∞.
As for stochastic dominance, we first want to show that any MLR shift of the

distribution increases L (q̄)for any K ≥ 0 and any q ∈ [0, 1). By 9 and 10 we can
write:

L (q̄) =
K +

∫ 1

q
(1 + q) f (q) dq

K +
∫ 1

q
(1− q) f (q) dq

=

∫ 1

0
α (q) f (q) dq∫ 1

0
β (q) f (q) dq

α (q) := K + Iq (1 + q) , β (q) := K + Iq (1− q)
where Iq is the indicator function of the interval [q̄, 1] and therefore α (q) and β (q)
are both non-negative and respectively non-decreasing and non-increasing functions
of q for all K.
We need to show that for any distribution g such that g(q)

f(q)
is increasing, we have:∫ 1

0
α (q) f (q) dq∫ 1

0
β (q) f (q) dq

<

∫ 1

0
α (q) g (q) dq∫ 1

0
β (q) g (q) dq

We can write the above inequality as:∫ 1

0

∫ 1

0

α (q) β (q′) f (q) g (q′) dqdq′ <

∫ 1

0

∫ 1

0

α (q) β (q′) f (q′) g (q) dqdq′
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hence we need to show that the following function Γ is negative, namely:

Γ :=

∫ 1

0

∫ 1

0

α (q) β (q′) [f (q) g (q′)− f (q′) g (q)] dqdq′ < 0

Splitting the domain of integration in two symmetric parts we have:

Γ =


∫ ∫
q>q′

α (q) β (q′) [f (q) g (q′)− f (q′) g (q)] dqdq′+

∫ ∫
q′>q

α (q) β (q′) [f (q) g (q′)− f (q′) g (q)] dqdq′


Renaming the variables (q as q′) in the second double integral, and collecting similar
terms, we have:

Γ =

∫ ∫
q>q′

[α (q) β (q′)− α (q′) β (q)] [f (q) g (q′)− f (q′) g (q)] dqdq′

=

∫ ∫
q>q′

β (q) β (q′)

[
α (q)

β (q)
− α (q′)

β (q′)

]
f (q) f (q′)

[
g (q′)

f (q′)
− g (q)

f (q)

]
dqdq′

For any q > q′ and the properties listed above the first square brackets is positive
while the second is negative.
In sum, for any K ≥ 0 and any q ∈ [0, 1) a strict MLR shift increases L (q̄).

Hence if qP solves

qP : L (q̄) =
1 + q

1− q
given that the RHS is increasing in q and unchanged after a MLR shift of F, the new
solution after such a shift must be larger than qP .

Proof of Proposition 5. As a preliminary step, note that the following expres-
sion is equivalent to the conditional mean m (q̄) = E (q|q ≥ q̄), as can be seen by
integrating by parts.

m (q̄) = q̄ +

∫ 1

q̄

1− F (q)

1− F (q̄)
dq. (26)
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As a second preliminary step, rewrite the limiting equilibrium conditions (21) and
(24) in terms of G as follows:

1−G (q̄)

q
[mG (q)− q] = K (27)

1−G (q̄)

q

(
1 + q2

2
mG (q)− q

)
= K. (28)

1. If G (q) = F (q) for all q ≥ qPF then from (26) it is clear that mG

(
qPF
)

=
mF

(
qPF
)
. If qPF solves (21), therefore, then it solves (27) as well.

2. If G (q) = F (q) for all q ≤ qPF but G first-order stochastically dominates F
then from (26) it is clear that mG

(
qPF
)
> mF

(
qPF
)
. Therefore,

1−G
(
qPF
)

qPF

[
mG

(
qPF
)
− qPF

]
>

1− F
(
qPF
)

qPF

[
mF

(
qPF
)
− qPF

]
= K. (29)

By the log-concavity of g, the left-hand side of (27) is decreasing in q̄ (as shown in
the proof of Proposition 4), so the unique solution qPG must exceed q

P
F .

3. If G (q) = F (q) for all q ≥ mF

(
qPF
)
and G

(
qPF
)
< F

(
qPF
)
then∫ 1

qPF

qg (q) dq =

∫ 1

qPF

qf (q) dq +

∫ mF (qPF )

qPF

q [g (q)− f (q)] dq

<

∫ 1

qPF

qf (q) dq +

∫ mF (qPF )

qPF

mF

(
qPF
)

[g (q)− f (q)] dq

= mF

(
qPF
){∫ 1

qPF

f (q) dq +

∫ mF (qPF )

qPF

[g (q)− f (q)] dq

}
= mF

(
qPF
) [

1−G
(
qPF
)]
,

so mG

(
qPF
)

=

∫ 1
qP
F
qg(q)dq

1−G(qPF )
< mF

(
qPF
)
. Thus, the inequality in (29) is reversed. By

the log-concavity of g, the left-hand side of (27) is decreasing in q̄ (as shown in the
proof of Proposition 4), so the unique solution qPG must be less than q

P
F .

Proof of Proposition 6. In the expression (24) we can isolate K, yielding:

1− F (q̄)

q

(
1 + q2

2
m (q)− q

)
= K. (30)

38



To prove existence, first note that the left-hand side of (30) approaches zero as q̄
approaches 1. Thus, qM = 1 solves (30) if and only if K = 0. Moreover, if
limq→1

f ′(q)
f(q)

< ∞ then 0 < qM < 1. In that case, however, the condition that

limq→1
f ′(q)
f(q)

< ∞ implies that no sequence of equilibrium quality thresholds can
converge to one, by Theorem 3 of McMurray (2013).18 As q̄ tends to zero, the
left-hand side of (30) tends to infinity. Thus, for any K, there exists a solution
0 < qM < 1 by the Intermediate Value Theorem and continuity of the left-hand side
of (30).
As for uniqueness, for K = 0, Theorem 4 of McMurray (2013) states that the

solution to (30) is unique on the open interval (0, 1).19 For q̄ below that solution,
therefore, the left-hand side of (30) is positive (tending to infinity as q̄ tends to zero),
while for q̄ above that solution, it is negative. When it is positive, inspection of (30)
reveals that we must have

m (q̄) >
2q

1 + q2 . (31)

In that case, the left-hand side of (30)is also decreasing in q̄. To see this, differentiate
the left-hand side of (30) to obtain

−f (q̄)

(
1 + q2

2

m (q)

q
− 1

)
+

1− F (q̄)

2

(
−1 + q2

q2
m (q) +

1 + q2

q
m′ (q)

)
.

By (31), the first term in this expression is negative. The second term is negative if
and only if

m′ (q̄) <
m (q̄)

q̄
,

which is a condition equivalent to a decreasingm (q̄)−q̄ = E (q − q̄|q ≥ q̄), sometimes
called themean residual lifetime of a machine: a machine “ages”with time if its mean
residual lifetime decreases. According to Lemma 2 of Bagnoli and Bergstrom (2005),
a necessary and suffi cient condition for the latter is that f is log-concave. Thus,
under log-concavity the left-hand side of (30) is decreasing whenever it is positive,
implying a unique solution for any K > 0.
The latter also implies that, ifK increases, then qM decreases under log-concavity.
The argument for MLR shifts is analogous to the one obtained for the PR system.

18As that paper notes, this condition merely rules out electorates that are arbitrarily close to
being perfectly informed, and is suffi cient for the result but not necessary.
19 q̄ = 1 constitutes another solution but cannot be the limit of a sequence of equilibrium thresh-

olds.
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Proof of Theorem 3. From the characterization results, we know that qM ∈ (0, 1)
is the (possibly not unique) solution to:

qM : L (q̄) =

(
1 + q

1− q

)2

while qP ∈ (0, 1] is the unique solution to:

qP : L (q̄) =

(
1 + q

1− q

)
Thus, we have

q = qP ∈ (0, 1] =⇒ L (q̄) =

(
1 + q

1− q

)
<

(
1 + q

1− q

)2

q = 0 =⇒ L (q) > 1 =

(
1 + q

1− q

)2

Hence the continuous functions L (q) and
(

1+q
1−q

)2

must cross at some value qM ∈
(0, qP ).

Proof of Proposition 8. As n grows large, equilibrium strategies converge point-
wise to σqM under majority rule and to σqP under PR. In either regime, actual vote
shares converge in probability to expected vote shares. That is, N+

N
→p

nv+
n

= v+

and N−
N
→p

nv−
n

= v−.
For q̄ = qM , v+ exceeds v−, implying that Pr (N+ > N−) converges almost

surely to one, and utility converges almost surely uM = limn→∞ Pr (N+ > N−) +
1
2

limn→∞ Pr (N+ = N−) = 1 + 0. This logic is valid for any p < 1. (For p = 1,
Pr (N+ > N−) = Pr (N+ < N−) for any n, implying that uM = 1

2
+ 0).

With Proportional Representation, utility is given by N+
N++N−

, which converges in

probability to uP = v+
v++v−

=
L(qP )
L(qP )+1

. This decreases in p since it increases in L,
which decreases in p. As explained in Section 4.1, limq̄→qP L (q̄) = ∞ for p = 0,
implying that uP = 1. From (9) and (10) it is also clear that L (q̄) = 1

2
when p = 1

for any q̄, implying that uP = 1
2
in that case.
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