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Abstract

This paper considers semi-nonparametric conditional moment models where the parameters of

interest include both finite-dimensional parameters and unknown functions. We mainly focus

on two inferential problems in this framework. First, we provide new methods of uniform infer-

ence for the estimates of both finite- and infinite-dimensional components of the parameters and

functionals of the parameters. Based on these results, we can, for instance, construct uniform

confidence bands for the unknown functions and the partial derivatives of the unknown func-

tions. Recently, uniform confidence bands for a variety of models such as conditional mean and

quantiles have been introduced using strong approximation methods (Belloni, Chernozhukov

and Fernández-Val, 2011, and related work). We extend the strong approximation approach to

provide uniform inference in conditional moment restriction models with endogeneity. Second,

for a large class of conditional moment restrictions models, we provide new results for infer-

ence when parameters are only partially identified. Under partial identification, we show how

to construct pointwise confidence regions by inverting a quasi-likelihood ratio (QLR) statistic

that is also employed under point identification. We provide a consistent multiplier bootstrap

procedure for obtaining critical values corresponding to the QLR. Furthermore, we generalize

the uniform confidence bands from point identified case to uniform confidence sets over the do-

main of the unknown functions by inverting a sup-QLR statistic. The new methods are applied

to construct pointwise confidence intervals and uniform confidence bands for shape-invariant

Engel curves.
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1 INTRODUCTION

It is now commonplace for economic models to be specified in terms of a set of conditional moment

restrictions. Conditional moment restrictions provide a general, flexible framework for incorpo-

rating nonlinearities and non-Gaussian unobserved error distributions. In addition, theses models

treat instrumental variable (IV) conditions as special cases and enable an understanding of underly-

ing structural relations even when some of the regressors are endogenous. Since the groundbreaking

work of Hansen (1982) and Hansen and Singleton (1982), parametric moment restriction models

have been applied extensively and have also been extended to models that allow for semiparametric

and nonparametric specifications.

This paper considers a semi-nonparametric framework and provides pointwise and uniform

inference for parameters in models with conditional moment restrictions such that

E [ρ (Z;β0, h0(·)) |X] = 0 a.s. X, (1.1)

where ρ(·;β, h(·)) is a dρ−vector of generalized residual functions that are known up to the param-

eters θ0 ≡ (β0, h0), β0 is a vector of finite-dimensional parameters, h0(·) is a vector of unknown

functions (the infinite-dimensional parameters), Z is a vector of endogenous variables and X is a

vector of conditioning variables (instrument variables).1 We call the model semi-nonparametric in

the sense that our estimation and inference methods cover both parametric β0 and nonparametric

h0 components.

Our primary interest is inference on functionals of θ0. Functionals of θ0 include, for example, the

parametric term β0, the unknown function evaluated at a fixed point h0(w̄), or linear combinations

of the two components such as β0+5h0(w̄), where5h0(w̄) is the derivative of the unknown function

at a fixed point. In addition, we investigate the inference on h0(·) or5h0(·) that is uniform over the

domain of the unknown function (or any subset of that domain). In this work, pointwise inference

indicates inference for functionals of θ0 at a fixed point, while uniform inference indicates inference

uniformly over the domain of the functionals.

Uniform inference for models of the form (1.1) is the first main objective of interest addressed

in this work. We develop inference methods that can be used to provide uniform confidence bands

for unknown functions and functionals of unknown functions. Uniform inference methods are

motivated by testing shape restrictions that come from economic theory. Based on these results, we

can, for example, construct uniform confidence bands for unknown functions themselves, derivatives

of unknown functions, the conditional average derivatives of unknown functions and other similar

quantities.

Our second point of emphasis is the extension of inferential methods to Model (1.1) under

1Model (1.1) encompasses many important classes of econometric models. For instance, it includes the nonpara-
metric regression (e.g., Andrews (1991) and Newey (1997)), the partially linear regression/instrumental variable
(IV) regression (Robinson (1988), Ai and Chen, (2003)), the nonparametric IV regression (Newey and Powell (2003),
Horowitz (2011)). The relationship to the literature will be discussed below.
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partial identification. Based on a quasi-likelihood ratio (QLR) statistic, we provide pointwise

and uniform inference methods for functionals of parameters for a class of conditional moment

restrictions models under partial identification. Our inference methods are robust in the sense that

we can construct confidence sets for a large class of conditional moment restriction models without

knowing if the parameters are point identified or not a priori.

Constructing uniform confidence bands and conducting robust inference methods of parameters

for Model (1.1) involve several important challenges.

First, it is difficult to establish the asymptotic theory for uniform inference for the entire sup-

port of the nonparametric functionals when the generalized residual function ρ(·, β0, h0) contains

unknown functions of endogenous variables. Ideally, in order to perform uniform inference to

construct uniform confidence bands of functionals, researchers would like to invert a valid test

statistic to obtain critical values by employing modern empirical process theory to establish a

limiting distribution of the statistic. However, in contrast to parametric models, the empirical

processes arising in these problems do not converge weakly to Gaussian processes because they are

not stochastically equicontinuous. Thus, closed-form characterization of the test statistic’s asymp-

totic distribution is typically unavailable. Moreover, Model (1.1) can be regarded as a difficult

ill-posed inverse problem. When the argument of the unknown functions are endogenous, it is

difficult to propose valid uniform inference methods for both β0 and h0(·). To our best knowledge,

the procedures to construct uniform confidence bands have remained an unsolved problem.2

To overcome the difficulties in uniform inference, under point identification, we first establish

the limiting distribution of a sieve generalized method of moments (GMM) estimator for functionals

of θ0 pointwisely. Our estimator is called the sieve generalized method of moments (SGMM)

estimator. Then we employ empirical sieve processes to approximate the estimated nonparametric

function uniformly over its domain. Although the empirical sieve processes belong to a non-Donsker

class and are generally not weakly convergent, they can be strongly approximated by a sequence

of Gaussian processes. As a consequence, we are able to do inference based on the the sequence of

Gaussian processes. We propose sup-Wald, sup-Lagrange multiplier and sup-quasi-likelihood ratio

statistics for testing restrictions uniformly over the support of nonparametric functionals. Similar

to the pointwise inference problem, we show that the trinity of these three statistics hold in the

sense that they can be strongly approximated by a sequence of “chi-squared processes” and are

asymptotically equivalent. The critical values to be used for construction of uniform confidence

bands can be simulated from the suprema of the sequence of chi-squared processes or obtained via

valid multiplier bootstrap procedures.

As useful by-products of the results under point identification, we show that after rescal-

ing at different rates, pointwisely, estimators of the finite-dimensional parameter β0 and infinite-

dimensional unknown function h0(·) jointly converge to a Gaussian vector. Moreover, the para-

metric estimator and the estimator of the unknown function are asymptotically independent while

2After the first version of this paper was posted, we were aware of the related and ongoing work of Chen and
Christensen (2014). They propose a procedure to construct uniform confidence bands for nonparametric IV models.
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the parametric estimator achieves the semiparametric efficiency bound. For parametric and non-

parametric functionals of interest, we establish that the trinity of Wald, quasi-likelihood ratio and

Lagrange multiplier statistics from parametric GMM models can be extended to this more general

semi-nonparametric setting. The three classes of test statistics are asymptotically equivalent and

converge to a chi-squared distribution in the limit. The results are analogous to the ones obtained

in a parametric GMM models (see, for example, McFadden and Newey, 1994), although we handle

nonparametric functions in this study. The asymptotic independence simplifies the procedures to

construct joint confidence intervals as they can be obtained from marginal confidence intervals.

The second challenge we face is that point identification can be difficult to attain for Model

(1.1) (Newey and Powell (2003), Chen, Chernozhukov, Lee and Newey (2014)). In general, the

rank condition is hard to verify in parametric conditional moment restriction models E [ρ(Z, β)|X]

when the generalized residual functions are nonlinear. This identification problem can be even

more severe when we include unknown functions h in models with conditional moment restrictions.

Identification requires the instruments satisfying conditions stronger than rank conditions in the

parametric case.

To consider inference with a possible lack of point identification, we propose methods for a class

of conditional moment restriction models that are robust to partial identification. Under partial

identification, there can be a set of parameters satisfying the moment conditions, so consistency

and rate of convergence are measured by set distances based on suitable choices of norms. Our

choice of norm under partial identification is based on how far E [ρ(Z;β, h(·)|X] is away from zero.

With this norm, the set can be regarded as a sharp set of observationally equivalent parameters

named the identified set. To consider inference for functional restrictions of the identified set,

we focus on a class of moment condition models and functionals where there is a one-to-one

mapping between the generalized residual functions and the functional restrictions. Then the set

of functional restrictions can be regarded as an observationally equivalent set of functionals of

the generalized residual functions. Therefore, we can utilize the generalized residual functions to

distinguish parameters that satisfy both moment restrictions and functional restrictions from any

other parameters. With this approach, we are able to test hypothesis of functional restrictions

without knowing if they are point identified or not.

Under partial identification, the pointwise test statistic we consider is a quasi likelihood ratio

statistic based on a sieve GMM criterion with a general weight matrix that does not depend on

the parameters. When the parameters are point-identified, the quasi likelihood ratio statistic

converges to a weighted chi-square distribution. When the parameters are not point-identified,

the QLR statistic converges to the infimum of the square of a Gaussian process. Because the

limiting distribution is not pivotal, we invert a multiplier bootstrap version of the statistic to

obtain critical values. By inverting the test statistic, this inference procedure provides confidence

regions for the functional of parameters. If the model is point identified, such confidence regions

reduce to confidence intervals of functionals of θ0. For uniform inference over the support of the

unknown function, we propose a sup-likelihood ratio statistic to test functional restrictions. The
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test statistic may not have a limiting distribution. Instead, we employ a strong approximation

approach, which provides a sequence of approximating distributions that necessarily adjusts with

the sample size. This sequence of approximating distributions consists of a sequence of a“chi-square

processes”.3

It is also worth noting that the methods proposed here are computationally simple. In partic-

ular, all of our inference methods are based on a sieve generalized method of moments criterion.

Once the unknown functions are replaced by their sieve approximations, the SGMM criterion effec-

tively becomes a parametric one. Thus, the proposed methods are analogous to parametric GMM

ones and are easy to compute.

We provide Monte Carlo evidence on the finite sample performance of our methods. In sim-

ulation studies we find that our methods deliver accurate coverage and relatively good power.

We then apply our methods to the shape-invariant Engel curve system where total expenditure is

endogenous that originated from Blundell, Chen and Kristensen (2007). By using the 1995 U.K.

Family Expenditure Survey, we are able to construct confidence intervals and confidence bands

for the Engel curves under point identification and confidence regions under partial identification.

We formally confirm the findings of Blundell, Chen and Kristensen (2007) by revealing that lower-

income people spend a larger proportion of their total expenditure on necessary goods such as

food or fuel, while higher-income people spend proportionally less on necessary goods but more on

leisure goods. Our empirical results are consistent with the predictions from consumption theory.

Relationship to Literature

This paper is related to several existing literatures. There has been extensive work on estimation

and inference of semi-nonparametric models with moment restrictions under point identification.

For instance, Newey and Powell (2003) propose a nonparametric two-stage least squares estimator

based on series approximation and derive its consistency. Ai and Chen (2003) derive consistency

and the rate of convergence of a sieve minimum distance (SMD) estimator and established the

asymptotic distribution of the estimator of the parametric component β0. The unknown functions

are profiled out as infinite-dimensional nuisance parameters in Ai and Chen (2003). Hall and

Horowitz (2005) propose two nonparametric estimation for nonparametric IV models based on

orthogonal series and kernel methods. To deal with the ill-posed problem, Darolles, Fan, Florens

and Renault (2010) propose a different consistent estimator based on Tikhonov regularization, and

establish asymptotic properties of the estimated nonparametric instrumental regression function.

And Horowitz and Lee (2012) construct uniform confidence bands for the nonparametric IV case

3Note that our results under partial identification are based on “pointwise” asymptotics in the sense that we
only consider the case where the data generating process is fixed and we do not show asymptotic validity uniformly
over data generating processes. The uniformity issue for the particular problems that this paper consider has not
been addressed in the literature. Although it has been addressed for inference for functionals of parameters in other
models with identification difficulties, for example, in parametric models with weak identification (e.g., Andrews,
Moreira and Stock (2006), Andrews and Cheng (2012)) and in models defined by parametric moment inequalities
(Bugni, Canay and Shi (2014)), among others.
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by using properties of the unknown function such as monotonicity or smoothness to interpolate

over a finite grid of points and by allowing the number of grid points to go to infinity.

The papers that are most closely related to this one are Chen and Pouzo (2009, 2012, 2014).

Chen and Pouzo (2009) establish the semiparametric efficient estimation of β0 for model (1.1)

with possibly nonsmooth residuals. Their results depend on the consistency and convergence rates

of the nonparametric estimation of h0 based on Chen and Pouzo (2012). And Chen and Pouzo

(2014) provide inference methods for functionals of both β0 and h0 based on the SMD criterion.

Our asymptotic results under point identification complements the analysis in Chen and Pouzo

(2014) by extending the pointwise inference to uniform inference methods for the functional of

parameters. We also establish that the SGMM estimator is asymptotically equivalent to the SMD

estimator; and the parametric and nonparametric estimators are asymptotically independent while

the parametric estimator achieves the semiparametric efficiency bound. Note that in this paper

we focus on the case where the residual functions are smooth while Chen and Pouzo (2009, 2012,

2014) allow residuals to be nonsmooth.

Our uniform inference methods are related to recent seminal work on exploring the use of strong

approximation methods to derive the limiting distribution of nonparametric estimators in econo-

metrics. Related ideas appear in estimation and inference of a variety of nonparametric (quantile)

regression-type models as in Belloni, Chernozhukov and Fernández-Val (2011), Chandrasekhar,

Chernozhukov, Molinari and Schrimpf (2012), Belloni, Chernozhukov, Chetverikov and Kato (2013)

(henceforth, BCCK), Chernozhukov, Chetverikov, and Kato (2013) and Chernozhukov, Lee and

Rosen (2013). We contribute to this literature by providing uniform inference methods for general

models of the form (1.1), allowing the argument of the unknown functions to be an endogenous

regressor.

Our new results also contribute to the recent literature on inference for semiparametric and

nonparametric models by considering the use of likelihood ratio type statistics. For instance,

Murphy and van der Vaart (2000) propose standard likelihood ratio statistics for semiparametric

models and extend the classical Wilk’s theorem to infinite dimensional parameter spaces. Shen

and Shi (2005) consider a sieve likelihood ratio statistic and provide asymptotic distribution of

sieve likelihood ratio statistics for regular functionals. Based on Shen and Shi (2005), Chen and

Pouzo (2009) provide limiting distribution for a sieve quasi-likelihood ratio (QLR) statistic for

the finite-dimensional parameters in semiparametric conditional moment models and Chen and

Pouzo (2014) establish the pointwise limiting distribution of a sieve QLR for inference on func-

tionals of semi/nonparametric conditional moment restrictions regardless of whether functionals

are
√
n−estimable or not. Chen, Tamer and Torgovitsky (2011) provide methods for inference

in semiparametric likelihood models with partial identification. They focus on inference on the

finite-dimensional parameters β. We add new results in this literature in the following aspects.

First, we provide a quasi-likelihood ratio statistics for joint inference for both finite-dimensional

parameters and unknown functions in models with conditional moment restrictions; second, we

show that QLR is robust to partial identification for a class of moment restrictions models; finally,
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we extend the QLR statistic to a sup-QLR statistic so we can conduct inference uniformly over

the support of functionals of the parameters.

The literature on nonparametric IV models has achieved point identification from conditional

moments by imposing completeness conditions, e.g., Newey and Powell (2003), Chernozhukov and

Hansen (2005), Hall and Horowitz (2005), Blundell, Chen and Kristensen (2007), Chernozhukov,

Imbens and Newey (2007), Chen, Chernozhukov, Lee and Newey (2014). These completeness con-

ditions can be regarded as the nonparametric analog of the classical rank conditions in parametric

models. They have been a central focus in recent studies (e.g., Andrews (2011), d’Haultfoeuille,

2011)). In particular, Canay, Santos and Shaikh (2013) have examined hypothesis testing problems

for completeness conditions. They conclude that no nontrivial tests for these hypothesis testing

problems exist. We complement this literature by developing methods that are robust to partial

identification.

An extensive literature on inference in a variety of partially identified models has been developed

over the past decade, including Imbens and Manski (2004), Chernozhukov, Hong, and Tamer

(2007), Andrews and Jia (2008), Beresteanu and Molinari (2008), Romano and Shaikh (2008,

2010), Stoye (2009), Andrews and Guggenberger (2009), Andrews and Soares (2010), Bontemps,

Magnac, and Maurin (2010), Bugni (2010), Canay (2010), Galichon and Henry (2011), Chen,

Tamer and Torgovitsky (2011), Freyberger and Horowitz (2012), Santos (2012), Andrews and Shi

(2013), Chernozhukov, Lee and Rosen (2013), Canay, Bugni and Shi (2014) and other papers

referenced therein. We add new results to this literature by establishing the validity of the quasi-

likelihood ratio test under partial identification for a class of moment equality models. Moreover,

most works in partially identified moment condition models have focused on a fully parametric

setting while this paper considers the extension to moment equalities with unknown functions.

In a nonparametric IV setting, Santos (2012) has proposed pointwise inference methods for

hypothesis testing under partial identification. Hong (2013) has extended the methods in Santos

(2012) to conditional moment restriction models. The test statistics used in these papers have non-

standard limiting behaviors and can be challenging to approximate even with bootstrap methods

(see Grundl and Zhu (2014)). In this work, we take a different approach to focus on the prop-

erties of the QLR statistic, which converges to the infimum of a chi-square process under partial

identification that can be reduced to a chi-squared distribution if the model is point-identified.

We are also aware of independently and concurrently work by Chen, Pouzo and Tamer (2011)

(CPT, henceforth), which studies inference on Model (1.1) with partial identification based on a

minimum distance criterion. Based on the presentation slides of CPT available to us, we understand

that under partial identification, CPT studies inference based on a sieve minimum distance criterion

while our criterions are based on a sieve GMM; CPT is primarily concerned with pointwise inference

while we are interested in both pointwise and uniform inference over the support of the unknown

functions. Moreover, in the partially identified case, the present paper focus on a class of moment

condition models and the parameters where there is a one-to-one mapping between the generalized

residual functions and the functionals of interest.
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Notation and Definitions

For any column vector a, we use a′ to denote its transpose, ||a||E to denote the Euclidean norm

and for a function a(·) with domain x, we use ||a||∞ to denote the sup-norm supx∈X |a(x)|. Let

H = H1 × ... ×HL be a separable Banach space with norm || · ||H. Let H = H1 × ... ×HL be a

closed, nonempty infinite-dimensional subset of H. Let Θ = B × H ⊆ Rdβ ×H be endowed with

a (strong) norm ||θ||s = ||β||E + ||h||H. For two Banach spaces H1 and H2, for any mapping Γ:

H1 → H2, let dΓ(θ0)
dθ [δ] = ∂Γ(θ0+tδ)

∂t

∣∣∣
t=0

be the pathwise derivative at θ0 in the direction δ ∈ H1.

For two random variables X1 and X2, let X1
d
= X2 if they have identical probability distribution.

For two sequences {an}∞n=1 and {bn}∞n=1, we use the notation an . bn to denote an ≤ cbn for some

constant c > 0 that does not depend on n; and an ' bn means that c1an ≤ bn ≤ c2an for two

constants 0 < c1 ≤ c2 < ∞. If {an}∞n=1 and {bn}∞n=1 are random sequences, we use an .p bn or

an = Op(bn) to denote limc→∞ lim supn Pr (an/bn > c) = 0; and an = op(bn) means for all ε > 0,

limn→∞ P (an/bn > ε) = 0. We use the notation a ∨ b = max {a, b} and a ∧ b = min {a, b}. We

use ⇒ to denote weak convergence. Let θ = (β, h) ∈ Θ ≡ B ×H. Let Hn = H1
n × · · · × HLn be a

sequence of approximating spaces to H, denoted by a sieve. Let Θn = B ×Hn. Let Θn = B ×Hn,

Πnθn = (β′,Πnh) ∈ Θn, m(X, θ) = E [ρ(Z, θ)|X]. In what follows, We use X to be a vector of

instrumental variables with support X , where X is a compact subset of Rdx . We use Y to be a

vector of endogenous variables with support Y, where Y is a subset of Rdy . Let {Zi = (Y ′i , X
′
i)}ni=1

be a random sample from the distribution of Z = (Y ′, X ′)′ with support Y ×Xz, and Xz ⊆ X . Let

the domain of functional of interest as w ∈ W, where W is a compact subspace of Rdw ⊆ Z. Let

φ(θ) : Θ→ Rdφ be a functional of θ. Let φ(θ)[w] be a functional evaluated at w.

Structure of the Paper

The remainder of the paper is organized as follows. Section 2 provides examples of interesting

and the introduction of sieve approximations. Section 3 develops the asymptotic theory under

point identification. In section 4, we relax the identification assumption and develop asymptotic

inference theory under partial identification. Small sample performance is analyzed in a Monte

Carlo study in Section 5. Section 6 provides an empirical example. Section 7 concludes. Proofs

are in the Appendix. The online supplement contains further appendices.

2 MOTIVATING EXAMPLES AND SIEVE APPROXIMATIONS

In this section, we briefly introduce examples of semi-nonparametric conditional moment restric-

tion models from the literature that we use to illustrate our methods and results. Then we briefly

introduce the sieve methodology.

Example 2.1 (Nonparametric IV model, Newey and Powell, 2003).
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Consider a nonparametric IV model Y1 = h(Y2)+e, where E[e|X] = 0. Then given instruments

X, the conditional moment restriction can be expressed as

E [Y1 − h(Y2)|X] = 0, (2.1)

where Y1 is a scalar and the dependent variable, Y2 is the endogenous regressor, Z = (Y1, Y
′

2) and

X is the instrument. The residual function ρ(Z, θ) = Y1 − h(Y2). We are interested in testing and

constructing pointwise confidence intervals and uniform confidence bands of the unknown function

h(·) and its functionals. The function h(·) may or may not be point identified.

Example 2.2 (Partially linear model with a known link function and an endogenous nonparametric

part, Ai and Chen (2003)).

Consider a partially linear model with a known link function. Let the nonparametric part have

endogenous regressors as an argument. Consider the residual function ρ(Z, θ) = Y1 − G(X1β +

h(Y2)) with conditional moment restriction

E [ρ(Z, θ)|X] = E [Y1 −G(X1β + h(Y2))|X] = 0 (2.2)

where θ = (β′, h(·))′, G(·) is a known function, Y1 is a scalar, Z = (Y1, X
′
1, Y

′
2)′, X = (X ′1, X

′
2)′.

Suppose dim(X2) = dim(Y2) = d, dim(X1) = dβ and dim(X) = d+ dβ. We provide pointwise and

uniform joint inference methods for the finite-dimensional parameter β and the unknown function

h or functionals of both β and h when β and h are both point-identified. If we restrict G(·) to be a

strictly monotone function or an identity function, our inference methods provide valid pointwise

confidence intervals and uniform confidence bands regardless of whether parameters are identified

or not.

Example 2.3 (Engel Curves, Blundell, Chen and Kristensen, 2007).

Consider an Engel curve with unknown shape where characteristic adjustments and endogeneity

is allowed. Then the model is of the form of (1.1) with the residual function

ρl(Zi, θ) = Y1il − hl
(
Y2i − g(X ′1iβ1)

)
−X ′1iβ2,l, (2.3)

where g(·) is known, Y1il are observations on the budget share of good l = 1, . . . L ≥ 1 for each

household i facing the same relative prices, Y2i is log of total expenditure and X1i is a vector of

household composition variables. The gross earning of the head of household is the instrument

denoted X2i. We shall discuss the details of this example in Section 6.

Examples of Functionals of Interest

In many applications, we are not only interested in θ itself, but also in functionals of θ denoted

by φ(θ). We roughly divide the functionals into two groups: regular (
√
n−estimable) functionals
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and irregular (slower than
√
n−estimable) ones. For the rest of the paper, we use w to represent

the domain of functional φ(θ), where w ∈ W ⊆ Z. Examples of regular functionals of interest

include the parametric component β and E[h(w)], while examples of irregular functionals include

the function evaluated at a single point φ(h)[w] = h(w), the partial derivative φ(h)[w] = ∂wh(w)

and the conditional average partial derivative φ(h)[w−j ] =
´
∂wjh(w)df(wj |w−j).

The Method of Sieves

The method of sieves has been a popular procedure for estimating semiparametric and nonpara-

metric models in recent years. This paper considers two classes of sieve approximations. One is

for the unknown functions, the other is for the conditional moment restrictions.

First, we approximate the unknown functions by sieves. Specifically, we define a sieve space,

Hn, to be a sequence of approximating spaces to the parameter space H for unknown functions.

A particular convenient class of sieves are linear in the parameters such that

Hn =

{
h ∈ H : h(·) =

kn∑
k=1

pk(·)′ηnk = pkn(·)′ηn

}
(2.4)

where {pk}∞k=1 is a sequence of known basis functions of a Banach space. Let Θn = B×Hn. In this

paper, we use slowly growing finite-dimensional sieves (i.e., kn → ∞, kn/n → 0).4 The approxi-

mation is dense in the sense that for any θ ∈ Θ there exists Πnθ ∈ Θn such that ‖Πnθ − θ‖ → 0 as

n→∞. Common choices of basis functions include, for example, polynomial series expansions or

splines. Discussions of choices and properties of different basis functions can be found, for example,

in Chen (2007) and Hansen (2014).

Second, we follow Donald, Imbens and Newey (2003) to characterize the conditional moment

restriction model (1.1) as an infinite number of appropriate unconditional moment restrictions

formed from the product of the residual functions with sieve functions of the instrumental variable

X. We use general series functions, such as polynomials or splines, to form the unconditional

moments that grow in number with the sample size such that

E [ρ(Z, θ)⊗ qsn(X)] = 0 (2.5)

where qsn(X) = (q1(X), . . . , qsn(X))′, {qs(·)}∞s=1 is a sequence of known basis functions that ap-

proximates any square integrable functions of X as sn → ∞ slowly when n → ∞, Z ′ ≡ (Y ′, X ′z),

Y is a vector of endogenous variables, Xz is a subset of X, X is a vector of conditioning variables,

β = (β1, . . . , βdβ )′ ∈ B being a dβ−vector of Euclidean parameters (parametric components),

h = (h1(·), . . . , hL(·)) ∈ H being a L−vector valued functions (nonparametric components) and

θ ≡ (β′, h(·)) are parameters of interest. We write Q = (qsn(X1), . . . , qsn(Xn))′, and (Q′Q)− is the

4Chen and Pouzo (2012) propose a sieve minimum distance estimator that allows for large dimensional sieves
(i.e., kn/n → const. > 0) with a general class of lower semicompact and/or convex penalties. This case will not be
emphasized in this paper.
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generalized inverse of the matrix Q′Q. We impose the following assumption on the basis functions.

Assumption 2.1. For all sn, E [qsn(X)′qsn(X)] is finite. And for any function a(x) with E
[
a(X)2

]
<

∞, there are sn−vectors πn such that E
[
{a(X)− qsn(X)′πns}2

]
→ 0 as sn →∞.

Assumption 2.1 is the same as Assumption 1 in Donald, Imbens and Newey (2003) where

they consider a parametric model with conditional moment restrictions. Assumption 2.1 is a

fundamental condition on the sequence qsn(X) and the distribution of X.

Lemma 2.1. (Lemma 2.1 in Donald, Imbens and Newey, 2003) Suppose that Assumption 2.1

is satisfied and for any θ ∈ Θ, E[ρ(Z, θ)′ρ(Z, θ)] is finite. If E [ρ(Z, θ)|X] = 0 is satisfied, then

E [ρ(Z, θ)⊗ qsn(X)] = 0 for all sn; if E [ρ(Z, θ)|X] 6= 0, then E [ρ(Z, θ)⊗ qsn(X)] 6= 0 for large

enough sn.

Lemma 2.1 has been shown in Donald, Imbens and Newey (2003). This lemma is crucial for

showing that an efficient estimator under the conditional moment restrictions can be derived from

a sequence of unconditional moment restrictions. When sn grows with the sample size, information

from the conditional moment restrictions is eventually fully accounted for.5

Based on Lemma 2.1, we will propose the population and sample criterion functions we use

under point identification and partial identification in Section 3 and Section 4, respectively.

3 ASYMPTOTIC RESULTS UNDER POINT IDENTIFICATION

In this section we present some new asymptotic results for semi-nonparametric conditional mo-

ment models under point identification. We start with imposing the following point identification

assumption. It will be relaxed in Section 4, when we consider the partially identified case.

Assumption 3.1. θ0 is the only θ ∈ Θ satisfying E [ρ(Z, θ)|X] = 0 and θ0 ∈ int (Θ).

Assumption 3.1 specifies that there exists a unique θ0 satisfying the conditional moment re-

striction. Under point identification, we proceed by describing the criterion function proposed for

estimation, followed by results for consistency, the pointwise limiting theory, the uniform limit-

ing theory and the inference methods under point identification. Some technical assumptions are

presented in Appendix A.

We estimate the parameter vectors using a (penalized) sieve generalized method of moments

(SGMM) criterion (Chen (2007)). The SGMM criterion is a semi/nonparametric version of the

GMM criterion proposed by Donald, Imbens and Newey (2003) for conditional moment restric-

tions. We suggest to use SGMM because it is easy to use and is analogous to parametric GMM.

Alternative choices of the criterion functions include, for example, the sieve minimum distance

5Bierens (1990) provides a different approach to characterize the conditional moment models as an infinite number
of appropriate unconditional moment restrictions. Applications of Bierens’-type transformations can be seen in, for
example, Santos (2012) and Andrews and Shi (2013).
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estimator proposed by Ai and Chen (2003), the sieve conditional empirical likelihood estimator

proposed by Otsu (2011) based on Kitamura, Tripathi and Ahn (2004)’s conditional empirical like-

lihood and the sieve generalized empirical likelihood proposed by Sueishi (2012) based on Newey

and Smith (2004)’s generalized empirical likelihood.

Let gi(θ) = ρ(Zi, θ) ⊗ qsn(Xi) and ĝ(θ) = n−1
∑n

i=1 gi(θ). We define the two-step (penalized)

sieve GMM (SGMM) estimator θ̂n ∈ Θn as the minimizer of the following criterion6

L̂n(θ) = ĝ(θ)′

(
1

n

n∑
i=1

gi
(
θ̄n
)
gi
(
θ̄n
)′)−1

ĝ (θ) + λnPen(h) (3.1)

where θ̄n is a preliminary estimator.7

The corresponding population criterion is of the form

L(θ) = E
[
m(X, θ)′Σ(X, θ0)−1m(X, θ)

]
≡ E

[
||m(X, θ)||2

Σ−1
0

]
, (3.2)

where Σ0(X) ≡ Σ(X, θ0) ≡ E [ρ(Z, θ0)ρ(Z, θ0)′|X]. Clearly, by Assumption 3.1, L(θ) is uniquely

minimized over Θ at θ0. Similar to the ideas in parametric GMM, we show later that the two-step

sieve GMM estimator θ̂n is an efficient estimator.

Note that after the space of unknown functions H is approximated by its sieve space Hn, the

minimum is computed only over Θn. Then the SGMM criterion effectively becomes a parametric

one and is easy to compute.

We next introduce a norm || · || that will be repeatedly used later in this section. Let

Θos ⊂ {θ ∈ Θ : ||θ − θ0||s < K,Pen(θ) < K} (3.3)

be a convex, || · ||s−neighborhood around θ0. Let Θosn be the sieve space of Θos. For any θ1,

θ2 ∈ Θos, recall the pathwise derivative notation defined in Section 1. We define the norm ‖·‖ as

‖θ1 − θ2‖2 ≡ E

[{
dm(X, θ0)

dθ
[θ1 − θ2]

}′
Σ0(X)−1

{
dm(X, θ0)

dθ
[θ1 − θ2]

}]2

. (3.4)

This norm was introduced by Ai and Chen (2003) and is an extension of the Fisher norm to

conditional moment restriction models. It is motivated by the objective function of the SGMM

criterion (3.2). The convergence rate and asymptotic distribution of θ̂n under point identification

will be derived under the norm || · ||.
We now provide some conditions that are useful for showing consistency. These conditions are

6Note that the penalization needs not be used if we follow the approach of Ai and Chen (2003), Newey and Powell
(2003) and Santos (2012) and solve the ill-posed inverse problem by obtaining compactness through smoothness
assumption on the unknown functions. Then, (3.1) is the same as the parametric GMM criterion proposed by
Donald, Imbens and Newey (2003). Common choices of Pen(h) include, for example, Pen(h) = ||h||2L2 + || 5 h||2L2 .

7The preliminary estimator θ̄n is the minimizer of 3.1 by replacing
(

1
n

∑n
i=1 gi

(
θ̄n
)
gi
(
θ̄n
)′)−1

with a general

weight matrix Ŵ =
(
1
n

∑n
i=1 Σ(Xi)⊗ qsn(Xi)q

sn(Xi)
′)−1

.
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similar to the ones obtained in Chen and Pouzo (2014). Our notation follows that of Chen and

Pouzo (2014).

Assumption 3.2. (i) The data {(Y ′i , X ′i)ni=1} are i.i.d; (ii) Y ×X is compact; (iii) the density of

X is bounded above and away from zero on X .

Assumption 3.3. Let Θn ≡ B×Hn, where B is compact subset in Rdβ , and {Hn}∞n=1 is a sequence

of non-empty closed subsets of a separable infinite dimensional Banach space (H,|| · ||H) such that

for all θ ∈ Θ there exists Πnθ = (β′,Πnh) ∈ Θn satisfying ||Πnθ − θ||s = o(1).

Assumption 3.4. (Penalty) (i) λn > 0, λn = o(1); (ii) |Pen (Πnh0)− Pen(h0)| = O(1) with

Pen(h0) <∞; (iii) Pen: (H, || · ||H)→ [0,∞) is lower semicompact, namely for all constants K,

{h ∈ H : Pen(h) ≤ K} is a compact subset in (H, || · ||H) .

Assumption 3.5. (i) L : (Θ, ‖·‖s)→ [0,∞) is lower semicontinuous, L (Πnθ0) = o(1); (ii) Σ0(X)

is positive definite a.s. X and its largest and smallest eigenvalues are finite and positive.

Assumption 3.6. Uniformly over Θosn, L̂n(θ) & L(θ)−Op(%̄2
n) for %̄n = op(n

−1/4).

Assumptions 3.1-3.6 are standard in the literature (see, e.g., Chen and Pouzo, 2014). These

assumptions impose conditions on model identification, the distribution of the data, sieve space

approximation, the behavior of the penalty term and the population criterion function, respectively.

Assumption 3.6 can be verified by Lemma C.1 in the Supplemental Appendix. These conditions

imply consistency of θ̂n.

Lemma 3.1. Let θ̂n be the two-step SGMM estimator. Let

ςn ≡ sup
θ∈Θosn:‖θ−Πnθ0‖6=0

‖θ −Πnθ0‖s
‖θ −Πnθ0‖

be the sieve measure of local ill-posedness. Suppose that Assumptions 2.1, 3.2-3.6 and Assumptions

A.1-A.5 hold. For %n ≤ %̄n, where %̄n is introduced in Assumption 3.6, we have

(i) ||θ̂n − θ0|| = Op (%n), and (ii) ||θ̂n − θ0||s = Op (ςn%n + ‖θ0 −Πnθ0‖s) .

Remark. Lemma 3.1 is a minor modification of the consistency results obtained in Chen and

Pouzo (2012). We present it only for completeness of our discussion. Given the consistency result,

with probability approaching one, the PSGMM estimator belongs to a || · ||s−neighborhood around

θ0. Common choices of || · ||s include || · ||L2 or || · ||∞ for || · ||H. Blundell, Chen and Kristensen

(2007) and Chen and Pouzo (2012) show that θ̂n is a consistent estimator of θ0 in both || · ||L2 and

|| · ||∞ norms. Recently, Chen and Christensen (2014) give a general upper bound on the uniform

convergence rate for NPIV estimators when || · ||s = || · ||H = || · ||∞. 2
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3.1 Pointwise Limiting Theory

Based on the consistency results above, we now present the pointwise asymptotic distribution of

functionals of θ̂n (denoted by φ(θ̂n)) and the (joint) pointwise asymptotic distribution for φ(θ̂n) =

(β̂n, φ(ĥn)). Lemma 3.1 allows us to focus on a shrinking neighborhood of θ0. Let %sn = ςn%n +

||θ0 −Πnθ0||s, we derive our limiting theory by focusing on the local parameter space Nos and its

sieve space Nosn, where for a large K <∞,

Nos ≡ {θ ∈ Θ : ||θ − θ0|| ≤ %n log logn, ‖θ − θ0‖s ≤ %sn log logn,Pen(θ) ≤ K} (3.5)

andNosn ≡ Θn∩Nos. Note that with probability approaching one, by Lemma 3.1, θ̂n ∈ Nosn ⊆ Nos.
Let φ(θ) denoted the functionals of interest on the parameter θ = (β, h(·)). These functionals

are classified as regular or irregular ones. Heuristically speaking, regular functionals are the ones

that can be estimated at
√
n−rate (e.g., the parametric component β), while irregular functionals

are the ones that are estimated at slower than
√
n−rate (e.g., the unknown function h(·) evaluated

at a point w).

To be more formal, let || · || be the norm defined in (3.4) and ∆̄ be the closed linear span of

Θos/{θ0} under the norm ‖·‖ (defined in 3.4), then (∆̄, ‖·‖) is an infinite-dimensional Hilbert space

with the following inner product:

〈δ1, δ2〉 = E

[{
dm(X, θ0)

dθ
[δ1]

}′
Σ0(X)−1

{
dm(X, θ0)

dθ
[δ2]

}]

for δ1, δ2 ∈ ∆̄.

Let θ0n ∈ Θn be such that ||θ0n − θ0|| = minθ∈Θn ||θ− θ0||. Let ∆̄n be the sieve approximation

of ∆̄, which is a finite-dimensional space under || · || and ∆̄n is the closed linear span of Θosn/{θ0n}.
We say the functional φ(·) : Θ→ R is regular (at θ = θ0) if dφ(θ0)

dθ [·] is bounded on the infinite

dimensional Hilbert space ∆̄, i.e.,

sup
δ∈∆̄,δ 6=0

{∣∣∣∣dφ(θ0)

dθ
[δ]

∣∣∣∣ /||δ||} <∞.

Then the Riesz representation theorem implies that there is a Riesz representer δ∗ ∈ ∆̄ of the

linear functional dφ(θ0)
dθ [·] on

(
∆̄, || · ||

)
such that

dφ(θ0)

dθ
[δ] = 〈δ, δ∗〉 for all δ ∈ ∆̄

and
dφ(θ0)

dθ
[δ∗] = ‖δ∗‖2 = sup

δ∈∆̄,δ 6=0

∣∣∣∣dφ(θ0)

dθ
[δ]

∣∣∣∣2 /||δ||2 <∞. (3.6)
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We say the functional φ(·) is irregular (at θ = θ0) if dφ(θ0)
dθ [·] is unbounded on ∆̄, i.e.,

sup
δ∈∆̄,δ 6=0

{∣∣∣∣dφ(θ0)

dθ
[δ]

∣∣∣∣ /||δ||} =∞. (3.7)

Then there is a Riesz representer δ∗n ∈ ∆̄n such that

dφ(θ0)

dθ
[δn] = 〈δ∗n, δn〉 for all δn ∈ ∆̄n

and
dφ(θ0)

dθ
[δ∗n] = ‖δ∗n‖

2 = sup
δn∈∆̄n,δ 6=0

∣∣∣∣dφ (θ0)

dθ
[δn]

∣∣∣∣2 /||δn||2 <∞. (3.8)

We call δ∗n the (empirical) Riesz representer of the functional ∂φ(θ0)
∂θ [·] on ∆̄n.

We emphasize that the sieve Riesz representation of the linear functional ∂φ(θ0)
∂θ [·] on ∆̄n always

exists no matter whether ∂φ(θ0)
∂θ [·] is bounded on the infinite dimensional space ∆̄ or not because

any linear functional on a finite dimensional Hilbert space is bounded. The distinctive properties

of regular and irregular functionals impose different technical challenges in deriving the joint

distribution of parametric and nonparametric components of the parameters.

The estimator of φ(θ0) is φ(θ̂n), where θ̂n is the two-step SGMM estimator. Without loss of

generality, we assume the basis functions used to approximate φ(θ̂n) are the same as the basis

functions used to approximate the unknown functions h(·).8

Since the parameter θ includes the unknown function h(·), it is difficult to derive the asymptotic

distribution of φ(θ̂n) by adopting the usual approach that is based on the first-order condition for

θ̂n from minimizing the SGMM criterion. Instead, we follow the Riesz representation approach of

Chen and Pouzo (2014). Specifically, we provide a representation of the functional of interest and

establish the asymptotic normality of the plug-in estimator φ(θ̂n) based on such a representation.

The following condition is needed.

Assumption 3.7. (i) dφ(θ0)
dθ [δ] : ∆̄ → R is a linear functional and is non-zero; (ii) for Kn =

log logn and %n defined in (3.5), let Tn ≡
{
t ∈ R : |t| . K2

n%n
}

and u∗n = δ∗n/||δ∗n||, then

sup
(θ,t)∈Nosn×Tn

∣∣∣∣φ(θ + tu∗n)− φ(θ0)− dφ(θ0)

dθ
[θ + tu∗n − θ0]

∣∣∣∣ / ‖δ∗n‖ = o(n−1/2);

(iii) either (a) or (b) holds: (a) ‖δ∗n‖ → ∞ and
∣∣∣dφ(θ0)

dθ [θ0n − θ0]
∣∣∣ / ‖δ∗n‖ = o

(
n−1/2

)
; (b) ‖δ∗n‖ →

‖δ∗‖ <∞ and ‖δ∗ − δ∗n‖ × ‖θ0n − θ0‖ = o(n−1/2); (iv) ∆̄n is dense in (∆̄, || · ||).

Assumption 3.7 is similar to Assumption 3.5 in Chen and Pouzo. Assumption 3.7 (ii) implies

that the linear expansion error of functional φ(θ) is relatively small compared to the variance ||δ∗n||
8For ease of exposition, we consider univariate φ(θ) in this subsection and leave the discussion of inferences for a

vector φ(θ) = (φ1(θ), . . . , φJ(θ))′ : Θ→ RJ for next subsection.
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and (iii) implies that the approximation error of sieves is relatively small compared to the variance.

Let
dφ(θ0)

dθ

[
p̄kn(·)

]
≡
(
∂φ(θ0)

∂β′
,
dφ(θ0)

dh

[
pkn(·)′

])′
be a (dβ + kn)−vector, where p̄kn(·) = (1dβ , p

kn(·)′)′. Note that dφ(θ0)
dθ [p̄kn(·)] can be considered

as the pathwise derivative of the functional in the direction p̄kn(·). For example, for functional

φ(θ0) = x′β0 + h0(ȳ), we approximate h0(ȳ) as pkn(ȳ)′γn, then dφ(θ0)
dθ

[
p̄kn(·)

]
= (x′, pkn(ȳ)′)′. For

average derivatives φ(θ0) =
´
∂yjh0(y)df(y), dφ(θ0)

dθ [p̄kn(·)] =
(

0′dβ ,
´
∂yjp

kn(y)′df(y)
)′

.

The next theorem presents asymptotic normality of the plug-in SGMM estimator φ(θ̂n).

Theorem 3.1. Suppose that Assumptions 2.1, 3.1-3.7 and A.1-A.14 hold. Then

√
nV
−1/2
φ,n

(
φ
(
θ̂n

)
− φ(θ0)

)
d→ N(0, 1),

where

Vφ,n ≡
dφ(θ0)

dθ

[
p̄kn(·)

]′
Ωn

dφ(θ0)

dθ

[
p̄kn(·)

]
,

Ωn ≡ E
[(

dm(X, θ0)

dθ

[
p̄kn(·)′

])′
Σ0(X)−1

(
dm(X, θ0)

dθ

[
p̄kn(·)′

])]−1

and Σ0(X) = E [ρ(Z, θ0)ρ(Z, θ0)′|X].

Remark.

(1) Theorem 3.1 delivers pointwise asymptotic normality for functionals of the SGMM estima-

tor. It includes nonparametric regression as a special case, which was studied in Newey (1997).

Note that the normalization factor V
1/2
φ,n is the pointwise standard error for functionals.

(2) We obtain the asymptotic distribution by assuming the estimation bias is small relative to

variance under Assumption 3.7, which is an under-smoothing condition.

(3) The limiting distribution is asymptotically equivalent to the one that is obtained from the

optimally weighted SMD estimator by Chen and Pouzo (2014). If we use a general weight matrix
1
n

∑n
i=1 Σ(Xi)

−1 ⊗ qsn(Xi)q
sn(Xi)

′ instead of the optimal weight matrix, Ωn would be

E

[(
dm(X, θ0)

dθ

[
p̄kn(·)′

])′
Σ(X)−1

(
dm(X, θ0)

dθ

[
p̄kn(·)′

])]−1

×E
[(

dm(X, θ0)

dθ

[
p̄kn(·)′

])′
Σ(X)−1Σ0(X)Σ(X)−1

(
dm(X, θ0)

dθ

[
p̄kn(·)′

])]
×E

[(
dm(X, θ0)

dθ

[
p̄kn(·)′

])′
Σ(X)−1

(
dm(X, θ0)

dθ

[
p̄kn(·)′

])]−1

.

The first-order asymptotic equivalence between the SGMM and the SMD estimators is analogous

to the asymptotic equivalence between the parametric GMM and parametric minimum distance
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estimators (McFadden and Newey (1994)). 2

Based on the limiting distribution in Theorem 3.1, an interesting result is presented in Corollary

3.1 below. For example, with

φ(θ) = λ′β + φh(h(·)),

Corollary 3.1 shows that that for the two-step SGMM estimators θ̂n =
(
β̂n, ĥn(·)

)
, and functional

φ(θ̂n), the estimators β̂n and φh(ĥn) become asymptotically independent if φh(·) is an irregular

functional. Moreover, β̂n achieves the semiparametric efficient bound.

To characterize the asymptotic variance of β̂n, we introduce some notation that is standard in

the literature (see, for example, Ai and Chen (2003)). For each component βj of β, j = 1, . . . , dβ,

let $∗j ∈ H̄/{h0} denote the solution to

min
$j∈H̄−{h0}

E

{(
dm(X, θ0)

dθj
− dm(X, θ0)

dh
[$j ]

)′
Σ0(X)−1

(
dm(X, θ0)

dθj
− dm(X, θ0)

dh
[$j ]

)}
.

Let
dm(X, θ0)

dh
[$∗] =

(
dm(X, θ0)

dh
[$∗1] , . . . ,

dm(X, θ0)

dh

[
$∗dβ

])
,

and

D$∗(X) ≡ dm(X, θ0)

dβ′
− dm(X, θ0)

dh
[$∗] .

We summarize the asymptotic independence result of the parametric component and functionals

of the nonparametric component as follows.

Corollary 3.1. (Asymptotic Independence) Suppose that Assumptions 2.1, 3.1-3.7 and A.1-A.14

hold. Suppose φ(θ) = λ′β + φh(h) and φh(·) satisfies (3.7), then √
nλ′

(
β̂n − β0

)
√
nV
−1/2
φh,n

(
φh

(
ĥn

)
− φh (h0)

)  d→ N

( (
0

0

)
,

(
Vβ 0

0 1

) )
,

where

Vβ = λ′Ωβλ ≡ λ′
(
E
[
D′$∗Σ0(X)−1D$∗

])−1
λ,

Vφh,n =
dφh(h0)

dh

[
pkn(·)

]′
Ωh,n

dφh(θ0)

dh

[
pkn(·)

]
,

Ωh,n =

(
E

[
dm(x, θ0)

dh

[
pkn(·)′

]′
Σ0(X)−1dm(x, θ0)

dh

[
pkn(·)′

]])−1

. (3.9)

Remark.

(1) Our asymptotic independence result is built upon Chamberlain (1992) and Cheng and Shang

(2014). Chamberlain (1992) provides the bound on the asymptotic covariance matrix for the joint

distribution of the parametric terms and nonparametric terms in a semiparametric conditional
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moment model without proposing efficient estimators. Recently, Cheng and Shang (2014) establish

the asymptotic independence of the Euclidean estimator and the (infinite-dimensional) functional

parameters for a partially linear model based on penalized estimation. We extend the result of

Cheng and Shang (2014) to the general setting of conditional moment restriction models.

(2) From the results in Corollary 3.1, for the marginal distribution of
√
n(β̂n−β0), the asymp-

totic variance Vβ is the same as the variance matrix obtained in Ai and Chen (2003) where the

unknown function h0 was treated as a nuisance parameter by profiling it out. Corollary 3.1 also

presents the marginal distribution of the nonparametric estimator of unknown function in a semi-

nonparametric moment restriction model, which is re-scaled by the asymptotic variance. 2

We close this subsection by providing consistent estimates of the variance matrices to conduct

statistical inference on the parameters. Once h ∈ H is approximated by (linear) sieves hn ∈ Hn,

the estimators are easy to obtain: effectively by the same procedure to get consistent variance

estimates in a parametric GMM model. Furthermore, based on the asymptotic independence

result, the variance estimator can be obtained by variance estimators for the marginal distributions

of the parametric and nonparametric components, respectively.

In particular, the estimator for Vβ can be obtained in the following way. For each βj , j =

1, . . . , dβ, we estimate

$̂∗nj = min
$nj∈Hjn

(
1

n

n∑
i=1

{
dρ(Zi, θ̂n)

dβj
− dρ(Zi, θ̂n)

dh
[$j ]

}
⊗ qsn(Xi)

)′(
1

n

n∑
i=1

gi

(
θ̂n

)
gi

(
θ̂n

)′)−1

×

(
1

n

n∑
i=1

{
dρ(Zi, θ̂n)

dβj
− dρ(Zi, θ̂n)

dh
[$j ]

}
⊗ qsn(Xi)

)
.

Let the estimator of $∗n be $̂∗n =
(
$̂∗n1, . . . , $̂

∗
ndβ

)
. Then the estimator of Ω−1

β is

Ω̂−1
β,n =

(
1

n

n∑
i=1

{
dρ(Zi, θ̂n)

dβ′
− dρ(Zi, θ̂n)

dh
[$̂∗]

}
⊗ qsn(Xi)

)′(
1

n

n∑
i=1

gi

(
θ̂n

)
gi

(
θ̂n

)′)−1

×

(
1

n

n∑
i=1

{
dρ(Zi, θ̂n)

dβ′
− dρ(Zi, θ̂n)

dh
[$̂∗]

}
⊗ qsn(Xi)

)
. (3.10)

For the nonparametric component, the estimator of Ω−1
h,n is

Ω̂−1
h,n =

(
1

n

n∑
i=1

dρ(Zi, θ̂n)

dh

[
pkn(·)′

]
⊗ qsn(Xi)

)′(
1

n

n∑
i=1

gi

(
θ̂n

)
gi

(
θ̂n

)′)−1

×

(
1

n

n∑
i=1

dρ(Zi, θ̂n)

dh

[
pkn(·)

]
⊗ qsn(Xi)

)
. (3.11)

For any functionals of θ regardless of whether φ(·) is regular or not, the estimators of Ω−1
n and
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Vφ,n are

Ω̂−1
n =

(
1

n

n∑
i=1

dρ(Zi, θ̂n)

dθ

[
p̄kn(·)′

]
⊗ qsn(Xi)

)′(
1

n

n∑
i=1

gi

(
θ̂n

)
gi

(
θ̂n

)′)−1

×

(
1

n

n∑
i=1

dρ(Zi, θ̂n)

dh

[
pkn(·)

]
⊗ qsn(Xi)

)
(3.12)

and

V̂φ,n =
dφ(θ̂n)

dθ

[
p̄kn(·)

]′
Ω̂n

dφ(θ̂n)

dθ

[
p̄kn(·)

]
, (3.13)

respectively.

Theorem 3.2. (Consistency of Variance) Suppose that Assumptions of Theorem 3.1 hold. Then

Ω̂β,n
p→ Ωβ, Ω̂h,n

p→ Ωh,n, Ω̂n
p→ Ωn and V̂φ,n

p→ Vφ,n.

Although we have shown in Theorem 3.1 that the SGMM estimator is asymptotically equivalent

to the optimally weighted SMD estimator in Chen and Pouzo (2014), the estimator of the variance

for the SGMM estimator is calculated in a different way. For example, suppose ρ(Z, θ) is a scalar,

we can estimate Σ̂0(X) for the SMD estimator by

Σ̂0(X) = psn(X)′(P ′P )−1
n∑
j=1

psn(Xj)ρ
2(Zj , θ̄

SMD
n )

where θ̄SMD
n is a first-stage preliminary estimator. Asymptotically, Σ̂0(X) is a consistent estimator

for Σ0(X). However, in finite sample, SGMM estimator and SMD estimator may lead to different

estimates of Σ̂0(X). 2

3.2 Uniform Limiting Theory

The results of this subsection are motivated by an interest in performing uniform inference over

the domain of the unknown function h0(·) or functionals of h0(·). Researchers may be interested in

uniform inference over the arguments of functionals of interest rather than pointwise results. For

example, they may be interested in the following hypothesis: H0 : 5h(w) = 0 v.s. H1 : 5h(w) > 0

for all w ∈ W. This section establishes a limiting theory for inference uniformly over the domain

of functional. These results can be used to construct uniform confidence bands. Without loss

of generality, we always write the domain of functional φ(θ) as w, where w is specified by each

functional of interest.9

Furthermore, to distinguish the uniform analysis from pointwise one, we write the functional

of interest as φ(θ)[w] ( φ(θ)[w] means functional of θ evaluated at w) instead of φ(θ) to emphasize

9For instance, for the nonparametric IV model in Example 2.1, if we are interested in inference on 5h(y2)
uniformly over y2 ∈ Y2, we write w = y2. For the Engel Curves in Example 2.3, let g(·) be an identity function, if
we are interested in inference on h(y2 − x′1β1), we write w = y2 − x′1β1.
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that we are considering inference uniformly over w. In contrast to parametric models, constructing

uniform confidence bands is a difficult problem in semi-nonparametric models. Intuitively, one

wishes to obtain the asymptotic distribution of a scaled version of

sup
w

∣∣∣∣∣φ(θ̂n) [w]− φ(θ0) [w]

σ̂φ,n(w)

∣∣∣∣∣ , (3.14)

then the uniform inference could be conducted based on such process. However, as is pointed out

in Chernozhukov, Lee and Rosen (2013), even for nonparametric regression model (a special case

of model (1.1)), the left-hand side of (3.14) is not asymptotically equicontinuous, hence it does not

have an asymptotic distribution. One may fail to derive valid inference methods in this case.

Given the lack of asymptotic distribution and applicability of empirical process methods for

(3.14), we turn to another method of distributional approximation. In particular, we follow the

strong approximation10 literature to develop an approximation of the series process by a sequence

of zero-mean Gaussian processes. The key idea is that when sample size increases, the accuracy

of the strong approximation increases. Hence, we can do inference based on the the sequence of

approximating Gaussian processes.

Our strong approximation results extend the previous literature (e.g., Belloni, Chernozhukov

and Fernández-Val, 2011; Belloni, Chernozhukov, Chetverikov and Kato (2013)) in two respects.

First, we consider a general model where the residual functions in the conditional moment restric-

tions can be nonlinear in a flexible way. Second, we allow the argument of the unknown functions

to be endogenous.

Theorem 3.3. Suppose that Assumptions 2.1, 3.1-3.6, Assumptions A.1-A.19 hold uniformly

over w ∈ W. Let bn be a sequence of positive numbers such that bn → ∞. Suppose that

b6n (kn + dβ)2 ξ2
ρ,kn

log2 n/n→ 0, then we have for some Ndβ+kn ∼ N(0, Idβ+kn),

√
n
(
φ(θ̂n) [w]− φ(θ0) [w]

)
∥∥∥Ω

1/2
n An (w)

∥∥∥
E

=d
An (w)′Ω

1/2
n∥∥∥Ω

1/2
n An (w)

∥∥∥
E

Ndβ+kn + op(b
−1
n ) in `∞(W), (3.15)

where Ωn is defined in Theorem 3.1, An(w) ≡
(
dφ(θ0)
dθ

[
p̄kn(·)

])
[w].11

Remark. Theorem 3.3 can be regarded as a (uniform) functional central limit theorem for two-step

SGMM estimators. It establishes that uniformly over w, the estimate of the functional φ(θ0)[w] can

be strongly approximated by a sequence of Gaussian processes. If kn is a constant that does not

vary when the sample size increases, the right hand side of (3.15) reduces to a standard multivariate

normal distribution with a (dβ + kn)× (dβ + kn) identity matrix. In next subsection, we propose

inference methods based on Theorem 3.3. 2
10see Chapter 10 of Pollard (2001) or Appendix A in Chernozhukov, Lee and Rosen (2013) for a formal definition.
11With some abuse of notation, we use δ(w) or δn(w) to denote the direction of δ ∈ ∆̄ or δn(w) ∈ ∆̄n with

argument w for functional and φ(θ)
(
∂φ(θ0)
∂θ

[δ]
)

[w] to denote function ∂φ(θ0)
∂θ

[δ] with argument w.
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3.3 Inference Methods

This subsection outlines a large sample theory of hypothesis testing for SGMM estimators under

point identification. We show that the trinity of Wald, quasi-likelihood ratio and Lagrange mul-

tiplier tests from parametric GMM models (Newey and McFadden, 1994) can be extended to the

more general semi-nonparametric GMM models. Furthermore, we propose sup-Wald, sup-quasi-

likelihood ratio and sup-Lagrange multiplier tests for uniform inference and establish properties of

this trinity of tests. Our inference methods can be used to construct confidence intervals/regions

and confidence bands/uniform confidence regions for functionals of the parameters (including the

parameters themselves).

3.3.1 Pointwise Inference Methods

We start with a univariate t-statistic and then extend it to a Wald statistic for multivariate tests.

For the hypothesis H0 : φ(θ) = φ(θ0), with φ : Θ→ R, the t-statistic is defined by

tn = σ̂−1
φ,n

(
φ(θ̂n)− φ(θ0)

)
,

where φ
(
θ̂n

)
is a functional of the estimator θ̂n such that

σ̂2
φ,n ≡

dφ
(
θ̂n

)
dθ

[
p̄kn(·)

]′
Ω̂n

dφ
(
θ̂n

)
dθ

[
p̄kn(·)

]
/n,

and Ω̂n is defined in (3.12). The next result is a direct application of Theorem 3.1, which establishes

that tn converges to a standard normal distribution under the null. Suppose, for example, we

are interested in the unknown function at fixed point w, then tn can be employed to construct

confidence intervals for ĥn at a fixed point.

Corollary 3.2. Suppose that Assumptions of Theorem 3.1 are satisfied. Then under the null, we

have

tn = σ̂−1
φ,n

(
φ(θ̂n)− φ(θ0)

)
d→ N(0, 1).

Remark. Corollary 3.2 implies a way to construct confidence intervals as[
φ
(
θ̂n

)
− c(1− τ)σ̂φ,n, φ

(
θ̂n

)
− c(1− τ)σ̂φ,n

]
,

where c(1− τ) is the (1− τ)th quantile of the standard normal distribution. For implementation,

the procedure is analogous to the one for parametric GMM model. 2

If there are multiple restrictions on θ, the joint hypothesis is H0 : φ(θ) = φ(θ0), φ : Θ→ RJ .

A generalization of the t−statistic is a weighted quadratic form, known as the Wald statistic and

denoted by Waldn:
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Waldn =
(
φ(θ̂n)− φ(θ0)

)′
V̂ −1
φ,n

(
φ(θ̂n)− φ(θ0)

)
where V̂φ,n is an estimate of Vφ,n such that

V̂φ,n =
dφ(θ̂n)

dθ

[
p̄kn(·)

]′
Ω̂n

dφ(θ̂n)

dθ

[
p̄kn(·)

]
(3.16)

for Ω̂n in (3.12). The Wald statistic is useful for joint hypothesis such that H0 : 5h(w1) =

5h(w2) = β1 = β2 = 0 for two fixed points w1, w2 ∈ W.

Let φ(θ) = (φ1(θ), . . . , φJ(θ)). Without loss of generality, we assume that
{
dφj(θ0)
dθ [δ]

}J
j=1

are

linearly independent. Otherwise we can conduct a linear transformation for the joint hypothesis.

Assumption 3.8. (i) For φ(θ) = (φ1(θ), . . . , φJ(θ)) ,
dφj(θ0)
dθ [·] is a linear functional on ∆̄ that

satisfies Assumption 3.7 for j = 1, . . . , J ; (ii)

dφ(θ0)

dθ
[δ] ≡

(
dφ1(θ0)

dθ
[δ] , . . . ,

dφJ(θ0)

dθ
[δ]

)′
is linearly independent.

Two alternative choices to the Wald statistic are the quasi-likelihood ratio statistic and the

Lagrange Multiplier statistic. Let L̂n(θ) be the second-stage SGMM criterion function defined in

(3.1). Let the estimates under H0 : φ(θ) = φ(θ0) = r0 be

θ̃n = arg min
θ∈Θn∩{φ(θ)=r0}

L̂n(θ). (3.17)

and those unconstrained estimator be

θ̂n = arg min
θ∈Θn

L̂n(θ).

The quasi-likelihood ratio statistic (sometimes is called a minimum distance statistic) is the dif-

ference

QLRn = n
{
L̂n(θ̃n)− L̂n

(
θ̂n

)}
. (3.18)

Finally, the two-step SGMM criterion with optimal weight matrix implies that the Lagrange Mul-

tiplier statistic (score statistic) is

LMn =
n

4

dL̂n
(
θ̃n

)
dθ

[
p̄kn(·)′

]′(dφ(θ̃n)

dθ

[
p̄kn(·)

])
Ṽ −1
φ,n

(
dφ(θ̃n)

dθ

[
p̄kn(·)

])′ dL̂n (θ̃n)
dθ

[
p̄kn(·)′

]
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where θ̃n is the constrained estimator defined in (3.17),

Ṽφ,n =
dφ(θ̃n)

dθ

[
p̄kn(·)

]′
Ω̃n

dφ(θ̃n)

dθ

[
p̄kn(·)

]
. (3.19)

and Ω̃n is exactly analogous to Ω̂n in (3.12) by replacing θ̂n with θ̃n in the expression.

Theorem 3.4 develops the asymptotic distribution for the three classes of test statistics. We

develop a semi-nonparametric Wilks’ phenomenon (Wilks, 1938), i.e., the asymptotic distribution

under the null is free of nuisance parameters, by showing that all of the three statistics converge

to a chi-square distribution with degree of freedom J under regularity conditions.

Theorem 3.4. (Pointwise Trinity) Suppose that Assumptions of Theorem 3.1 and Assumption

3.8 are satisfied. Then

(i) Under H0, Waldn, QLRn and LMn all converge in distribution to a χ2
J distribution.

(ii) For %n, %sn defined in Lemma 3.1 and Kn = log log n, let ωn ∈ ∆̄n such that ||ωn||s ≤√
n||δ∗n||−1Kn%sn, ||ωn|| ≤

√
n||δ∗n||−1Kn%n for all n. Let ∂φ(θ0)

∂θ [ωn] = cn = c(1+o(1)), Then under

the following local alternative sequence,

{θ̊n ∈ Nosn : θ̊n = θ0 +
||δ∗n||√
n
× ωn}, (3.20)

Waldn, QLRn and LMn all converge in distribution to a χ2
J(c′c) distribution.

Remark.

(1) To the best of our knowledge, Theorem 3.4 is the first semi-nonparametric version of

the trinity results for SGMM models. It establishes that the three major classes of statistics are

asymptotically equivalent (at least to a first-order asymptotic approximation) for SGMM estimates.

This pattern of first-order asymptotic equivalence is analogous to the trinity results for GMM

estimates in the parametric framework.

(2) Although there is no clear statistical reason to choose between the three statistics based on

Theorem 3.4, in practice, it is often computationally easier to use one of the trinity tests rather

than another. The computational advantages of each test mirror their computational advantages

in standard parametric settings.

The Wald statistic is based on the length of the vector φ(θ̂n) − φ(θ0), i.e., the discrepancy

between the unconstrained estimator and the hypothesized value φ(θ0). It is particularly useful

when the variance matrix is easy to compute. On the other hand, if the hypothesis is non-linear

and the constrained estimator is available, a better approach to construct the test statistic can be

to directly use the SGMM criterion function via the QLRn statistic. Newey and West (1987) was

the first paper to propose such an idea in a parametric setting. The QLRn statistic generalizes their

approach to a semi-nonparametric model. It is especially useful when estimating the variance for

studentization is difficult. In semi-nonparametric models, the asymptotic variance of the estimate

may not be in closed form; furthermore, inverting the Fisher information matrix can be difficult
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when the dimension of the matrix is high. Thus, it could be more convenient to invert QLRn to

construct confidence intervals, which are invariant to nonsingular transformations of the moment

conditions. Similar to the QLRn, to get the LMn statistic, we need to calculate the constrained

estimator. Compared to the QLRn, the advantage of LMn is that it does not require one to compute

the unconstraint estimator and may have some computational advantages in certain applications.

(3) The treatment of the trinity of the tests have provides a modest extension of the results in

Chen and Pouzo (2014) to the SGMM setting. Chen and Pouzo (2014) have established the trinity

of test by using SMD estimator. Our approach is especially convenient for testing restrictions that

depend on both parametric and nonparametric components of θ. Based on the asymptotic inde-

pendence result in Corollary 3.1, we can ignore the estimate of covariance terms and construct the

confidence intervals based on marginal distributions of parametric and nonparametric estimates,

respectively. 2

3.3.2 Uniform Inference Methods

To consider hypotheses such that H0 : φ(θ)[w] = φ(θ0)[w] for all w ∈ W with φ(θ0)[w] being a

given function with argument w. we begin by augmenting the notation to write the test statistics

as the ones indexed by w (for example, tn by tn(w), Waldn by Waldn(w)).

We start with a test statistic based on the following tn−statistic process{
tn(w) =

φ(θ̂n) [w]− φ(θ0) [w]

σ̂φ,n(w)
, w ∈ W

}
. (3.21)

As we argued in Section 3.2, this process may not have a limit distribution uniformly over w ∈ W.

Alternatively, we find a (studentized) Gaussian process to approximate the process in (3.21) as{
t∗n(w) =

An(w)′Ω
1/2
n Ndβ+kn/

√
n

σφ,n(w)
, w ∈ W

}

where Ndβ+kn is a (dβ + kn)−vector of i.i.d.random variables that are drawn from a standard

multivariate normal distribution N(0, 1) and An(w) ≡
(
dφ(θ0)
dθ

[
p̄kn(·)

])
[w]. We are interested in

constructing the following confidence bands[
l̇(w), l̈(w)

]
=
[
φ(θ̂n)[w]− cn(1− τ)σ̂φ,n(w), φ(θ̂n)[w] + cn(1− τ)σ̂φ,n(w)

]
, w ∈ W

where we set cn(1− τ) be the (1− τ)th quantile of

sup
w∈W

∣∣t̂∗n(w)
∣∣ ≡ sup

w∈W

∣∣∣∣∣Ân(w)′Ω̂
1/2
n Ndβ+kn/

√
n

σ̂φ,n(w)

∣∣∣∣∣ , w ∈ W.

Thus, cn(1− τ) can be simulated numerically. In Theorem 3.5, we show that φ(w) ∈
[
l̇(w), l̈(w)

]
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for all w ∈ W with probability 1− τ .

Theorem 3.5. (Uniform Confidence Bands for Functionals). Suppose that Assumptions of The-

orem 3.3 hold. Then

(i)

sup
w∈W

|tn(w)| d= sup
w∈W

|t∗n(w)|+ op(1),

(ii)

Pr

{
sup
w∈W

|tn(w)| ≤ cn (1− τ)

}
= 1− τ + o(1).

Remark. (1) The proof strategy for Theorem 3.5 is similar to that proposed in Belloni, Cher-

nozhukov, Chetverikov and Kato (2013), although we need to handle endogeneity in our model.

Since the limit distribution may not exist, their insight is to use distributions provided by a strong

approximation.We show that the test has asymptotically correct size, even though the strong

approximation approach cannot help us to obtain a fixed limiting distribution.

(2) One-sided confidence band can be defined by, for example,[
l̇(w), l̈(w)

]
≡ (−∞, φ(θ̂n)[w] + cn(1− τ)σ̂n(w)], ∀w ∈ W,

with modifications to consider one-sided critical value for a given level 1− τ .2

For multivariate constraints, we propose the following three corresponding test statistics and

show that they are asymptotically equivalent when sample size increases. The three test statistics

are the uniform version of the three main statistics we use for pointwise inference.

We will approximate the three main statistic processes by the following “chi-square coupling”

T ∗n(w) = N ′dβ+knΩ1/2
n An(w)V −1

φ An(w)′Ω1/2
n Ndβ+kn , (3.22)

where An(w) ≡ dφ(θ0)
dθ [p̄kn(·)] is a (dβ + kn)× J matrix.

Theorem 3.6. (Uniform Trinity) Suppose that Assumptions of 3.3 and Assumption 3.8 (ii) hold.

We have

(i)

sup−Waldn ≡ sup
w∈W

{Waldn(w)} d
= sup

w
{T ∗n(w)}+ op(1);

sup−QLRn ≡ sup
w∈W
{QLRn(w)} d

= sup
w
{T ∗n(w)}+ op(1)

and

sup−LMn ≡ sup
w∈W
{LMn(w)} d

= sup
w
{T ∗n(w)}+ op(1).

(ii) Let

T̂ ∗n(w) = N ′dβ+knΩ̂1/2
n Ân(w)V̂ −1

φ Ân(w)′Ω̂1/2
n Ndβ+kn ,
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Ân [w] =
(
∂φ(θ̂n)
∂β′ , ∂φ(θ̂n)

∂h

[
pkn(·)′

])′
[w], and c0

n(1 − τ) be the conditional (1 − τ)th quantile of

supw∈W

{
T̂ ∗n(w)

}
given the data. We have

Pr
{

sup-Waldn ≤ c0
n(1− τ)

}
= 1− τ + o(1).

(iii) Let

T̃ ∗n(w) = N ′dβ+knΩ̃1/2
n Ãn(w)Ṽ −1

φ,nÃn(w)′Ω̃1/2Ndβ+kn ,

Ãn(w) = ∂φ(θ̃n)
∂h

[
p̄kn(·)

]
[w], c00

n (1 − τ) be the conditional (1 − τ)th quantile of supw∈W

{
T̃ ∗n(w)

}
given the data. We have

P
{

sup−LMn ≤ c00
n (1− τ)

}
= 1− τ + o(1).

Remark. (1) Theorem 3.6 shows that the uniform confidence regions are asymptotically similar.

We establish the “uniform trinity” results for the three main classic test statistics. A relevant result

is presented in Chen and Pouzo (2014). They establish the inference methods for functionals of

increasing dimension, where the dimension of φ(θ0), J , can grow with sample size n. By restricting

the growth rate of J (i.e., J = J(n) cannot grow faster than n1/4), they show that the limiting

distribution of a weighted sieve Wald or a weighted sieve QLR is a standard normal. Our results

in Theorem 3.6 do not restrict the growth rate of J , but then the test statistics do not have

closed-form limiting distributions. Even though the limit distributions may not exist, we can use

approximations provided by a sequence of “chi-squared processes” to obtain critical values.

Note that Ω
1/2
n and An(w) in (3.22) are unknown. Based on results in Theorem 3.6, we

can set the critical values for sup−Waldn as the (1 − τ)th quantile of supw∈W

{
T̂ ∗n(w)

}
and the

critical values for sup−LMn as the (1 − τ)th quantile of supw∈W

{
T̃ ∗n(w)

}
, respectively. For

implementation, there are two main approaches to obtain critical values for uniform inference.

One is to directly obtain critical values from the the “chi-squared processes”. For the sup-Wald

statistic, we first obtain the unconstrained estimator θ̂n, the plug-in estimator Ân and the variance

estimator V̂ −1
φ,n defined in (3.16), then simulate the quantile of supw∈W

{
T̂ ∗(w)

}
given the data

by taking draws on the Gaussian part of the chi-square processes keeping the other terms fixed

at their estimated values. For the sup-LMn statistic, in contrast, we first obtain the constrained

estimator θ̃n, the plug-in estimator Ãn and the variance estimator Ṽ −1
φ,n defined in (3.19), then

simulate the quantile of supw∈W

{
T̃ ∗n(w)

}
given the data.

(2) Alternatively, sup-QLRn does not require to estimate variance-covariance matrix. However,

to implement sup−QLRn, we need to implement a multiplier bootstrap procedure to obtain critical

values. For brevity of the paper, we put the details of such multiplier bootstrap method under

point identification in Appendix B. 2
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4 ASYMPTOTIC RESULTS UNDER PARTIAL IDENTIFICATION

In this section we discuss inference methods under partial identification by relaxing the point

identification assumption (Assumption 3.1). That is, the conditional moment restrictions are now

allowed to be satisfied at more than one value of θ. The set of parameter values that satisfy the

conditional moment restrictions is called the identified set

Θ0 =
{
θ =

(
β′, h(·)

)
: E [ρ (Z;β, h(·)) |X] = 0

}
a.s. X. (4.1)

In the partially identified setting, we will use a GMM criterion with a general weight matrix. In

the point identified case, the optimal weight matrix corresponds to the variance-covariance of the

moments at the true value θ0. In the partially identified case, there is no longer a unique value of

θ at which one would naturally evaluate the variance-covariance matrix. Hence we proceed with a

general weight matrix and consider a one-step SGMM criterion

L̄n(θ) = ĝ(θ)′Ŵ ĝ(θ) (4.2)

where θ ∈ Θn, Θn is the sieve space for Θ, Ŵ is a positive semi-definite matrix such that Ŵ =(
1
n

∑n
i=1 Σ(Xi)⊗ q(Xi)

snq(Xi)
s′n
)−1

, Σ(X) is a positive definite matrix that does not depend on

θ.12 The corresponding population criterion function is defined by

L̄(θ) =
√
m(X, θ)′Σ(X)−1m(X, θ).

Assumption 4.1. (i) The identified set Θ0 is a nonempty, closed, bounded strict subset of Θ

under || · ||s; (ii) L̄ : Θ→[0,∞) is lower semicontinuous on Θ under ||θ||s = |β|e + ||h||H

Assumption 4.2. (i) Σ(X) is positive definite a.s. X, its largest and smallest eigenvalues are

finite positive; (ii) each element of ρ(Z, θ) satisfies an envelop condition over θ ∈ Θn; (iii) L̄n(θ) &

L̄(θ)−Op(%pn) with for %pn = op(n
−1/4).

Conditions in Assumption 4.1 and Assumption 4.2 are modifications of Assumptions 3.3, 3.5

and 3.6 under partial identification. They provide conditions for set consistency when point iden-

tification fails.

We establish the consistency of Θ̂0 for Θ0 as follows. Let the family of Hausdorff norms be

defined by

dH (Θ1,Θ2, || · ||) ≡ max {d(Θ1,Θ2), d(Θ2,Θ1)} , with d(Θ1,Θ2) ≡ sup
θ1∈Θ1

inf
θ2∈Θ2

||θ1 − θ2||.

12A more general form of the criterion function L̄n(θ) = ĝ(θ)′Ŵ ĝ(θ) +λnPen(h) with non-compact H is presented
in Appendix B. For simplicity and ease of exposition in this section, we set λn = 0 and focus on the case where H
is compact under || · ||H.
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Set consistency can be constructed under the family of Hausdorff norms, which is based on different

choices of || · ||. Unlike the parametric case, different choices of norms imply significantly different

rates of convergences. We will show that set consistency can be constructed under “strong” norms

|| · ||s based on || · ||H, where || · ||H can be, for example, || · ||L2 or || · ||∞. Elements in the identified

set can be distinguished under || · ||s.
As is well known in the semiparametric literature under point identification, in order for the

parametric term to be
√
n consistent, the unknown function must be estimated at a rate that is

at least op(n
−1/4). However, in general, convergence rates obtained from || · ||s are slower than

op(n
−1/4). For point identified models in Section 3, we establish the convergence rate and limiting

theory under the norm defined in (3.4) that is based on the derivatives of the conditional moment

functions evaluated at θ0. In the partially identified model, there may not be a single value θ0 at

which the derivatives of the conditional moments should be evaluated. Instead, the parameters

satisfying the conditional moment restrictions are allowed to lie in a set Θ0. For this reason, we

consider a different norm than the one given in (3.4).

More specifically, we establish the rate of convergence for estimators of Θ0 and inference meth-

ods based on a different pseudo-metric called || · ||wp (wp is an abbreviation for “weak norm” under

partial identification), which is defined by

‖θ1 − θ2‖wp =
√
E
[
{E [ρ(Z, θ1)− ρ(Z, θ2)|X]}′Σ(X)−1 {E [ρ(Z, θ1)− ρ(Z, θ2)|X]}

]
for θ1, θ2 ∈ Θ.

For all θ ∈ Θ and any θ0 ∈ Θ0, since m(X, θ0) = E [ρ(Z, θ0)|X] = 0,

||θ − θ0||wp =
√
E
[
E [ρ(Z, θ)− ρ(Z, θ0)|X]′Σ(X)−1E [ρ(Z, θ)− ρ(Z, θ0)|X]

]
=

√
E [m(X, θ)′Σ(X)−1m(X, θ)].

Note that for any θ1
0, θ2

0 ∈ Θ0, with θ1
0 6= θ2

0, we have
∥∥θ1

0 − θ2
0

∥∥
wp

= 0 and for any θ /∈ Θ0,∥∥θ − θ1
0

∥∥
wp

=
∥∥θ − θ2

0

∥∥
wp

.

An important insight is that although consistency is based on the Hausdorff norm with || · ||s,
the elements of Θ0 form an equivalence class under || · ||wp. In this sense Θ0 can be treated as a

singleton under || · ||wp, so it is convenient to describe convergence rate of Θ̂0 based on || · ||wp.13

Let Θ̂0 be a collection of θ̂n =
(
β̂n, ĥn

)
∈ Θn that is a set of the minimizers of L̄n(θ). The

following Lemma formalizes the results of consistency and the convergence rate of Θ̂0 for Θ0.

Lemma 4.1. (Set Consistency and Rate of Convergence). Let Assumptions 2.1, 3.2, 3.3, 4.1, 4.2

and A.20 hold. We have

dH

(
Θ̂0,Θ0, || · ||s

)
= op(1); dH

(
Θ̂0,Θ0, || · ||wp

)
= op(n

−1/4).

13Similar ideas to treat identified set as an equivalence class have been explored in Liu and Shao (2003), Chen,
Tamer and Torgovitsky (2011) for likelihood models and Santos (2011) for a nonparametric IV model.
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Remark. Lemma 4.1 provides consistency results for Θ̂0 to Θ0 under || · ||s (such as || · ||∞ and

|| · ||L2) and the rate of convergence of Θ̂0 to Θ0 under norm || · ||wp. It implies that we can

focus our attention on the neighborhood of the identified set when considering inference. For any

θ0 ∈ Θ0, let be σn be the convergence rate of dH

(
Θ̂0,Θ0, || · ||wp

)
. By Lemma 4.1, we can define

the neighborhood of Θ0 as

B(θ0) = B(Θ0) ≡ {θ ∈ Θ : ||θ − θ0||wp ≤ σn log logn} (4.3)

and the corresponding sieve approximation of B(θ0) is defined by

Bn(θ0) ≡ {θn ∈ Θn : ||θn − θ0||wp ≤ σn log logn} .

Let θ0n = arg minθ∈Θn ||θ − θ0||wp.

4.1 Pointwise Inference Method

Given consistency,we can focus on the neighborhood B (θ0) and its sieve approximation Bn(θ0) for

all θ0 ∈ Θ0 to develop our testing results.

Suppose we are interested in the following vector of functionals of the parameter φ(θ) =

(φ1(θ), . . . , φJ(θ))′ : Θ→ RJ . Let the null set be R = {θ : φ(θ) = r}. The hypothesis we consider

are of the form

H0 : Θ0 ∩ R 6= ∅, H1 : Θ0 ∩ R = ∅, (4.4)

where R is a set of functions that satisfy a property we wish to test for. When θ0 is point identified,

the null hypothesis and the alternative simplify to

H0 : φ(θ) = φ(θ0), H1 : φ(θ) 6= φ(θ0).

We denote Θr
0 = Θ0 ∩ R.

To test hypotheses on functionals of θ, we utilize the information we obtain from the conditional

moment restrictions. However, if the residual functions are identical for two different parameters,

the information provided by the conditional moment restrictions (via the residual functions) would

be the same for each parameter value. In this case, the information from the conditional moment

restrictions would not allow us to distinguish between these two values of the parameter. Thus,

we impose the following Assumption 4.3 to guarantee that there is a one-to-one mapping from

parameters of interest to residual functions.

Assumption 4.3. Assume that (i) ∀θ1, θ2 ∈ Θ, if ρ(Z, θ1) = ρ(Z, θ2), then φ(θ1) = φ(θ2); (ii)

there exists a mapping F (ρ(·, θ)) = φ(θ) that is pathwise differentiable at any (fixed) point θ0 ∈ Θ0

so that dF(ρ(·,θ0))
dρ [ρ− ρ0] exists for θ ∈ B(θ0).14

14Note that the residual function ρ(·, θ) is always indexed by θ. For simplicity, we sometimes write ρ(θ0) or ρ0 to
represent ρ(·, θ0) and ρ(θ) to represent ρ(·, θ).
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Importantly, Assumption 4.3 implies that functionals of the parameters θ can be treated as

functionals of the residual functions in our analysis. For the case where θ1 6= θ2 but ρ(Z, θ1) =

ρ(Z, θ2), a.s. Z, Assumption 4.3 guarantees that F(ρ(·, θ1)) = F(ρ(·, θ2)) because φ(θ1) = φ(θ2).

So F(ρ(·, θ)) is a well-defined function. Another way to view Assumption 4.3 is to consider the

situation where for φ(θ1) 6= φ(θ2), φ(θ1) ∈ Θ0 ∩ R and φ(θ2) /∈ Θ0 ∩ R. Assumption 4.3 ensures

that ρ(Z, θ1) 6= ρ(Z, θ2) a.s. Z, which means that there is a chance that the conditional moment

restrictions provide different information on these parameters so that we are able to learn whether

one parameter is in Θ0 ∩ R and the other is not. In this sense, testing the functional restriction

φ(θ) = r is equivalent to test F(ρ) = r.

An assumption that directly implies Assumption 4.3 is the following Assumption 4.3’. Although

we only need Assumption 4.3 to satisfy when we do inference and Assumption 4.3’ is stronger, we

argue that in some applications Assumption 4.3’ is easier to verify.

Assumption 4.3’. Assume that (i) ∀θ1, θ2 ∈ Θ, if ρ(Z, θ1) = ρ(Z, θ2), then θ1 = θ2 a.s. Z; (ii)

ρ(Z, θ) is a smooth function of θ for any point θ0 ∈ Θ0 such that dρ(Z,θ0)
dθ [θ−θ0] exists for θ ∈ B(θ0).

While Assumption 4.3 (or 4.3’) imposes some limits on the models we consider, we see that

these conditions are not too restrictive and many examples of interest satisfy Assumption 4.3 or

4.3’. In order to fix ideas, we illustrate Assumption 4.3 and Assumption 4.3’ through the following

examples.

Example 4.1 (Parametric Linear/Nonlinear IV). Consider the following model

Y1 = g(Y2, β) + ei, E [e|Y2] 6= 0, E [e|X] = 0,

ρ(Z, β) = Y1 − g(Y2, β),

where g(·) is known, β ∈ Rdβ , and Z = (Y,W ′) and X is a vector of IVs. To satisfy Assumption

4.3’, we require that ∀β1, β2 ∈ Rdβ , if g(Y2, β
1) = g(Y2, β

2) a.s. Y2, then β1 = β2. For example,

Assumption 4.3’ is satisfied when g(Y2, β) = Y ′2β or g(Y2, β) =
exp(Y ′2β)

1+exp(Y ′2β)
. 2

Example 4.2 (Partially Linear Model, Example 2.2 continued). The model we consider is

E [ρ(Z, θ)|X] = E [Y1 −G(X1β + h(Y2))|X] . (4.5)

If G(·) is an identity function or a strictly monotone function, then Assumption 4.3’ is satisfied.

A direct implication is that the nonparametric IV model (Example 2.1) satisfies Assumption 4.3’

as well. 2

Example 4.3 (Engel Curves, Example 2.3 continued). Suppose g(·) is an identity function in
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Example 2.3, then for goods l = 1, . . . , L, the residual function is

ρl(Z, θ) = Y1l − hl
(
Y2 −X ′1β1

)
−X ′1β2,l.

with

E [ρl(Z, θ)|X] = E
[
Y1l − hl

(
Y2 −X ′1β1

)
−X ′1β2,l|X

]
= 0.

The unknown function hl(·) and β1, β2,l may not be point identified. Suppose the functional of

interest is φ(θ) = hl(0): the unknown function evaluated at zero. Then for two unknown functions,

h1
l (·) and h2

l (·), if h1
l (0) 6= h2

l (0), we have ρl(Z, θ
1) 6= ρl(Z, θ

2) and Assumption 4.3 (i) is satisfied.

Also notice that since φ(·) is a linear functional of θ, F(·) is a linear functional of ρ. Thus,

Assumption 4.3 (ii) is satisfied.

On the other hand, suppose, for example, we are interested in φ(θ) = β1 and suppose there are

two points β1
1 6= β2

1 such that

ρl(Z, θ
1) = ρl(Z, θ

2) a.s.Z (4.6)

then hl(Y1 −X ′1β1
1) = hl(Y1 −X ′1β2

1) a.s.Y1, X1,. Assumption 4.3’ captures the idea that in such

a case, we can not hope to consider a hypothesis where β1
1 fell into the null space and β2

1 is in

the alternative space. To satisfy Assumption 4.3’, we would need (4.6) to imply β1
1 = β2

1 . One

sufficient condition is to assume hl(·) is strictly monotone and X1 is full-rank for certain functions

without assuming hl(·) is identified. However, this simplification would not hold in general (e.g.

hl(·) = | · |). In such cases Assumption 4.3’ would fail. 2

It follows that for the purpose of testing hypothesis in (4.4), we can define an equivalence class

of functions based on the space of residual functions such that

V̄ = cl {ν(Z, θ) = (ρ(Z, θ)− ρ(Z, θ0)) , θ ∈ B(θ0)}

and

V̄n = cl {νn(Z, θ) = (ρ(Z, θ)− ρ(Z, θ0n)) : E0[ν(Z)] = 0, θ ∈ Bn(θ0)} ,

where ”cl” represents closed linear span.

Let L2
0(Pz) =

{
v(Z, θ) : E0 [v(Z)] = 0, E0

[
(ν(Z))2

]
<∞

}
be a well-defined Hilbert space.

Since V̄ is a subspace of L2
0(Pz) , (V̄, || · ||wp) is a Hilbert space with the inner product

〈ν1, ν2〉wp = E
[
E [ν(Z, θ1)|X]′Σ(X)−1E [ν(Z, θ2)|X]

]
and

‖ν1 − ν2‖wp =
√
E
[
E [ν(Z, θ1)− ν(Z, θ2)|X]′Σ(X)−1E [ν(Z, θ1)− ν(Z, θ2)|X]

]
.

Note that || · ||wp is a “strong” norm on V̄ in the sense that for ν ∈ V̄, if ||ν||wp 6= 0, then ν 6= 0.

Lemma 4.2. Suppose Assumption 4.1-4.3 hold. Then for θ0 ∈ Θ0 and for w ∈ W, there exists a
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Riesz representer ν∗(·, θ0) ∈ V̄ such that(
dF(ρ0)

dρ
[ρ− ρ0]

)
[w] = E

[
E [ν∗(Z, θ0, w)|X]′Σ(X)−1E [ρ(Z, θ)− ρ(Z, θ0)|X]

]
and (

dφ(θ0)

dθ
[θ − θ0]

)
[w] = E

[
E [ν∗(Z, θ0, w)|X]′Σ(X)−1E

[
dρ(Z, θ0)

dθ
[θ − θ0]|X

]]
.

Similar to our discussion in Section 3, ‖ν∗‖ can be infinity if the functional is irregular. If the

later is the case, we consider the approximation on the (finite-dimensional) sieve space such that

there exists a νn ∈ V̄n with(
dφ(θ0n)

dθ
[θ − θ0n]

)
[w] = E

[
E [ν∗n(Z, θ0, w)|X]′Σ(X)−1E

[
dρ(Z, θ0n)

dθ
[θ − θ0n]|X

]]
.(4.7)

We are now using the representations to show the properties of our tests. We impose the following

assumption on our functionals of interests, which is a modification of Assumption 3.8 under partial

identification.

Assumption 4.4. The following hold uniformly over θ ∈ Θr
0: (i) For φ(θ) = (φ1(θ), . . . , φJ(θ)) ,

∂φj(θ0)
∂θ [·] is a linear functional in the direction θ − θ0 for j = 1, . . . , J and is linearly independent

across j; (ii) for all w ∈ W,∣∣∣∣(dφ(θ0)

dθ
[θ0n − θ0]

)
[w]

∣∣∣∣ / ‖ν∗n(·, θ0, w)‖wp = o
(
n−1/2

)
and ∣∣∣∣{φ(θ)[w]− φ(θ0)[w]−

(
dφ(θ0)

dθ
[θ − θ0]

)
[w]

∣∣∣∣ / ‖ν∗n(·, θ0, w)‖wp = o
(
n−1/2

)
for all θ ∈ Bn(θ0).

Assumption 4.4 is similar to Assumption 4.1 in Chen, Tamer and Torgovitsky (2011). It

controls the nonlinearity bias of φ(·) and sieve approximation error of θ0n. It also imposes an

under-smoothing condition.

We suggest to employ the quasi-likelihood ratio statistic we used under point identification to

construct (pointwise) confidence regions of parameters of interest. For the criterion function L̄n(θ)

defined in (4.2), the quasi-likelihood ratio statistic is

QLRn(r) = n

(
inf

θ∈Θn∩{φ(θ)=r}
L̄n(θ)− inf

θ∈Θn
L̄n(θ)

)
. (4.8)
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For θ ∈ Θr
0 and w ∈ W, let the sample variance be

‖ν∗n(θ, w)‖2sd = Var

(
1√
n

n∑
i=1

E [ν∗n(Zi, θ, w)|Xi]
′Σ(Xi)

−1ρ(Zi, θ)

)

and the studentized Riesz representer be

µ∗n(θ, w) = ν∗n(θ, w)/||ν∗n(θ, w)||sd.

We next establish that the quasi-likelihood ratio statistic has a tight but not pivotal limiting

distribution under the null hypothesis. And the QLR statistic does not have a drifting term in the

limit like the ones in Santos (2012) or Hong (2013).

Theorem 4.1. For any r ∈ RJ . Suppose that Assumptions 2.1, 3.2, 3.3, 4.1-4.4, Assumptions

A.20-A.25 hold. Then for fixed w ∈ W,

QLRn(r) = inf
θ∈Θ0∩R

{
1

||µ∗n(θ, w)||wp
× 1√

n

n∑
i=1

E [µ∗n(Zi, θ, w)|Xi]
′Σ(Xi)

−1ρ(Zi, θ)

}2

+ op?(1)

⇒ inf
θ∈Θ0∩R

{
1

||µ∗n(θ, w)||wp
×G(·, θ)

}2

,

where we denote G(·, θ) to be a tight centered Gaussian process indexed by θ.

Remark. Note that if point identification happens to hold, the limiting distribution in Theorem

4.1 reduces to a weighted chi-squared distribution with degrees of freedom J . It can not be re-

duced to a standard chi-squared with identity weight because the test is presented for an arbitrary

weight matrix (which would not be optimal in general). To consistently estimate the asymptotic

distribution of the QLR statistic, we propose a computationally simple bootstrap procedure to

obtain the critical values for the asymptotic distribution in next theorem. 2

Once the asymptotic properties in Theorem 4.1 are established, the multiplier bootstrap can

be verified immediately. When point identification fails and the limiting distribution of the test

statistic is not pivotal, it is not new in the literature to use bootstrap methods to calculate the

critical values of the test statistic. For example, Hansen (1996) proposes a multiplier bootstrap

procedure for a class of parametric models where a nuisance parameter is not identified under

the null. Chen, Tamer and Torgovitsky (2011) propose sieve LR bootstrap for partially identified

semiparametric likelihood models. And Chen, Pouzo and Tamer (2011) propose a sieve bootstrap

procedure for partially identified semi/nonparametric conditional moment restriction models based

on a minimum distance criterion.

We define the multiplier bootstrap draw of the SGMM estimator θ̂?n as a solution to the following

33



criterion weighted by {ζi}ni=1

L̄?n(θ) =

(
1

n

n∑
i=1

ζiρ(Zi, θ)⊗ qsn(Xi)

)′(
1

n

n∑
i=1

Σ(Xi)⊗ qsn(Xi)q
sn(Xi)

′

)−1(
1

n

n∑
i=1

ζiρ(Zi, θ)⊗ qsn(Xi)

)
.

(4.9)

The multiplier bootstrap we consider consists of i.i.d. positive random weights applied to every

observation.15 The bootstrap weights satisfies the following condition.

Assumption 4.5. Let {ζi}ni=1 is an i.i.d. sequence, independent of {Xi, Zi}ni=1 and satisfying

E [ζi] = 1, E
[
ζ2
i

]
= v2

0 <∞ and
´∞

0

√
Pr (|ζ − 1| ≥ ε)dε <∞.

In particular, we select {ζi}ni=1 to be i.i.d. draws from the standard exponential distribution

with E[ζi] = 1, Var(ζi) = 1. The choice of such weights is only for ease of exposition.

For each draw of such weights, for r̂ = φ(θ̂n), let

QLR?
n(r̂) = n

(
inf

θ∈Θn∩{φ(θ)=φ(θ̂n)}
L̄?n (θ)− inf

θ∈Θn
L̄?n(θ)

)

be the bootstrap sieve QLR statistic. To validate the use of the multiplier bootstrap, we provide

the following theorem.

Theorem 4.2. (Multiplier Bootstrap) Let L̄?n(θ) be defined by (4.9). Let θ̂n be the minimizer of

L̄n(θ) over Θn defined in (4.8). Suppose the Assumptions of Theorem 4.1 and Assumption 4.5

hold. Then for fixed w ∈ W,

QLR?
n(r̂)

= inf
θ∈Θ0∩R

{
1

||µ∗n(θ, w)||wp
× 1√

n

n∑
i=1

(ζi − 1)E [µ∗n(Zi, θ, w)|Xi]
′Σ(Xi)

−1ρ(Zi, θ)

}2

+ op?(1)

⇒ inf
θ∈Θ0∩R

{
1

||µ∗n(θ, w)||wp
×G(·, θ)

}2

where G(·, θ) is a tight centered Gaussian process indexed by θ.

Remark. (1) We can apply Theorem 4.2 to construct confidence sets for φ(θ) such that

Cn = {r : QLRn(r) ≤ ĉn(r, 1− τ)}

where ĉn(r, 1− τ) is (1− τ)th quantile using the multiplier bootstrap such that

ĉn(r, 1− τ) = inf

{
u :

1

B

B∑
b=1

1
{

QLR?
n,b(r̂) ≤ u

}
≥ 1− τ

}
.

15In contrast, the random vector of observation is weighted by multinomial
(
n, n−1, . . . , n−1

)
for the nonparametric

bootstrap. The weights are exchangeable but not independent.
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(2) Our limiting theories in Theorem 4.1 and Theorem 4.2 hold pointwisely when we fix a

distribution P0. When θ0 lies on the boundary of the parameter space, although our pointwise

results still holds, it is not clear if they hold uniformly over a sequence of Pn.

(3) One of the reasons we focus on the multiplier bootstrap in this paper is that the i.i.d.

behavior of the weights simplifies the the proof of Theorem 4.2. While this result does not rule out

the possibility that the bootstrap may still work in our case, we leave such exploration for future

work. 2

4.2 Uniform Inference Method

Next we return to the case considered in Section 3.2. We want to provide methods of inference

that are, for instance, uniform over the arguments w of functionals of interest under partial iden-

tification. Generally speaking, we provide an inference procedure to construct uniform confidence

set for φ(θ)[w] uniformly over w. Similar to the point identified model, the sequence of empirical

sieve processes are indexed by kn. Hence, they may not be stochastically equicontinuous. Due

to the lack of asymptotic equicontinuity, we employ strong approximations and approximate the

test statistic process by a sequence of Gaussian processes that can be used to construct a uni-

form confidence set. For the purpose of considering inference uniformly over w, we strengthen our

restrictions on the functionals we consider as follows.

Assumption 4.6. Assume that (i) ∀θ1, θ2 ∈ Θ, if ρ(Z, θ1) = ρ(Z, θ2), then φ(θ1) = φ(θ2);

(ii) There exists a mapping F (ρ(·, θ)) = φ(θ) that is differentiable at any point θ0 ∈ Θ0 so(
dF(ρ(·,θ0))

dθ [ρ− ρ0]
)

[w] exists for all w ∈ W and θ ∈ B(θ0).

Assumption 4.6 is stronger than Assumption 4.3, however, the uniform limiting theory is also

a stronger result. And note that Assumption 4.3’ still implies Assumption 4.6.

Next we show that the entire sup−QLRn process can be uniformly close to the suprema of

a sequence of Chi-square processes of the stated form. The sup−QLRn statistic under partial

identification is

sup
w
{QLRn(w)} = sup

w

{
n

[
inf

θ∈Θn∩{φ(θ)[w]=r(w)}
L̄n(θ)− inf

θ∈Θn
L̄n(θ)

]}
.

Let the class of score functions be

Sn ≡
{
Sn(·, θ, w) = E [µ∗n(Zi, θ, w)|Xi]

′Σ(Xi)
−1ρ(Zi, θ) : θ ∈ Θ0 ∩R,w ∈ W

}
. (4.10)

We provide the following results for uniform inference under partial identification.

Theorem 4.3. Suppose that the restricted identified set Θ0 ∩ R is a compact space under ‖·‖s.
Suppose that Assumptions 2.1, 3.2, 3.3, 4.1-4.2, Assumption 4.6, 4.4 hold and suppose that As-

sumptions A.20-A.26 hold for all w ∈ W, then
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(i)

sup
w∈W

{QLRn(r(w))}

= sup
w∈W

 inf
θ∈Θ0∩{φ(θ)[w]=r(w)}

(
1

||µ∗n(θ, w)||wp
1√
n

n∑
i=1

Sn(·, θ, w)

)2
+ op(1)

d
= sup

w∈W

{
inf

θ∈Θ0∩{φ(θ)[w]=r(w)}

(
1

||µ∗n(θ, w)||wp
×G [Sn(·, θ, w)]

)2
}

+ op(1).

where G [Sn(·, θ, w)] is a sequence of Gaussian processes with continuous paths almost surely. It

has covariance function E [Sn(t1)Sn(t2)]−E [Sn(t1)]E [Sn(t2)] that is uniformly non-degenerate in

kn and is uniformly Hölder on Θr
0 ×W with t = (θ, w) ∈ Θr

0 ×W ≡ T .

(ii) Furthermore, suppose Assumption 4.5 holds. For r̂(w) = φ(θ̂n)[w]. The bootstrap process

has

sup
w
{QLR?

n(r̂(w))}

= sup
w

 inf
θ∈Θ0∩{φ(θ)[w]=r̂(w)}

(
1

||µ∗n(θ, w)||wp
1√
n

n∑
i=1

[(ζi − 1)Sn(·, θ, w)]

)2
+ op?(1)

d
= sup

w
inf

θ∈Θ0∩{φ(w)=r(w)}

(
1

||u∗n(θ, w)||wp
G̃ [Sn(·, θ, w)]

)2

+ op?(1),

where G̃ [Sn(·, θ, w)] is a sequence of Gaussian processes with the same distributions as the process

G [Sn(·, θ, w)].

Remark. Similar to the pointwise inference case, in order to get a critical value to control the

size of the test, we can employ the (1− τ)th quantile of QLR?
n (r̂(w)) by defining

ĉn(1− τ) ≡ inf

{
α : P

(
sup
w
{QLR?

n (r̂(w))} ≤ α
)
≥ 1− τ

}
.

5 MONTE CARLO

In this section, we investigate the finite sample properties of the proposed inference methods. We

consider two simulation experiments. The first simulation design is based on Horowitz (2012).

And the second one is based on Santos (2012). There are 1000 Monte Carlo replications in each

experiment.

Experiment 1:
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Consider the following data generating process (DGP):

DGP1 : Yi = βX1i +
100∑
j=1

(−1)j+1j−2 sin(jαπY1i) + 0.3ei,

Y1i = Φ(u1i + u2i), X1i ∼ Uniform(0, 1),

X2i = Φ(u1i), ei = λu2i + (1− λ)u3i,

where Φ(·) is the CDF of normal distribution, and u1i, u2i and u3i are generated from independent

standard normal distributions. The parameter α controls the wave length of the sine function and

the parameter λ controls the degree of endogeneity. We set our sample size n to be 500 and 1000.

Let ρ(Zi, θ) = Yi−βX1i−
∑100

j=1(−1)j+1j−2 sin(jαπY1i), h0(Y1i) =
∑100

j=1(−1)j+1j−2 sin(jαπY1i))

with

E

Y − β0X1 −
100∑
j=1

(−1)j+1j−2 sin(jαπY1)|X

 = 0.

We follow Horowitz (2012) to assume the model is point identified, although it is worth noting that

the QLRn is robust to partial identification. For each simulation, we use Pen(h) = ||h||2L2 +||5h||2L2

and λn = 0.0005.

The basis functions (for the instrument X2 and the unknown function) we choose are third

order polynomial splines. We set the order of the basis functions to be kn = 7 for pkn(·) ( the basis

function for the unknown function) and sn = 9 for qsn(·) (the basis function for the instrument).16

We set β0 = 0 or β0 = 1 to consider both nonparametric IV model and partially-linear IV model.

We consider three different null hypotheses. The first one is to test the unknown function at

different points for a nonparametric IV model (when we set β0 = 0). The second and third ones

are to test the joint hypotheses on both the parametric component and the unknown function for

partially linear IV model (when we set β0 = 1). We first want to test the joint hypothesis of β0 and

the unknown function evaluated at different points. Then we consider testing the joint hypothesis

of β0 and the derivatives of the unknown function evaluated at different points.

Table 1 reports the simulated size of tn, Waldn and QLRn for pointwise hypothesis tests. We

set α = 3, λ = 0.2, 0.8. For the nonparametric IV model (β0 = 0), we set φ(h) = h(y1) for the

25th, 50th, 75th quantiles of Y1 (these points are fixed for each simulation). We compare the sizes

of tn and QLRn. We set the nominal sizes to be τ = 0.05 and τ = 0.1. The sizes of the tests are

close to the nominal ones, and are not sensitive to the choices of different statistics or different

degrees of endogeneity evaluated by λ. For the partially-linear IV model (β0 = 1), for the two

joint hypotheses we consider, we compare the sizes of Waldn and QLRn. The performances of

QLRn are relatively better than the ones of Waldn. They are close to the nominal sizes and are

not sensitive to the degrees of endogeneity.

Table 2 reports uniform inference results under point identification for the nonparametric IV

16We have also tried some other different combinations of kn and sn and got similar results. Liu and Tao (2014)
propose a simple Mallows’ criterion to select the combination of kn and sn simultaneously.
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model (β0 = 0) and the partially-linear IV model (β0 = 1). The critical values for uniform tests

are obtained by multiplier bootstrap with 500 replications for each.

We report the empirical coverages of the confidence bands with nominal level of 90% and 95%,

respectively. The confidence bands have empirical coverages close to the nominal levels and are not

sensitive to the choices of α or λ. In general, performances are improved when sample sizes increase.

Experiment 2:

In the second experiment, we assume that Y ∗1
X∗

ε∗

 ∼ N
0,

 1 0.5 0.5

0.5 1 0

0.5 0 1




and define Y1 = 2 (Φ(Y ∗1 /3)− 0.5), X = 2 (Φ(X∗/3)− 0.5), e = ε∗, where Φ(·) is the c.d.f. of a

standard normal distribution.

Consider the following relationship

DGP2 : Y = 2 sin(Y1π) + e,

so ρ(Z, θ) = ρ(Z, h) = Y − 2 sin(Y1π) with E [ρ(Z, h)|X] = 0.

Santos (2012) argues that the unknown function h(Y1) = 2 sin(Y1π) for this DGP may not be

point identified. We follow Santos (2012) to define the parameter space as a compact space such

that Θ = H ≡ cl
({
θ : ‖θ‖2,2 ≤ B

})
. The choice of B measures the space of Θ. Following the

setup in Section 3.4 of Santos (2012), we consider three different choices of B (B can be 50, 100

or 1000). The null hypothesis is H0 : H0 ∩ {sin(0) = 0}.
Table 3 presents the simulated size of the multiplier bootstrap QLR-test we suggest and the

J-test from Santos (2012) as a function of nominal size τ . The basis functions are chosen to

be cubic-splines with kn = 6 and sn = 8.17 To implement the J-test, we also need to choose

norm constraints Bn for bootstrap. In contrast, our QLR-test does not require such choice of Bn.

Overall, when Bn = 50, J-test provides good size control, however, when Bn = 100 or Bn = 1000,

there are size distortions in most specifications. On the other hand, the QLR test has good size

control when the nominal size τ varies from 0.01, 0.05 to 0.1.

Figure 1 gives the QLR test’s rejection probability for the null hypothesis H0 : H0∩{sin(0) = γ}
as a function of γ ∈ [−0.5, 0.5]. We choose B to be 100 or 1000. Notice that a larger choice of

norm constraint seems to decrease the power of the test for alternatives far away from the null.

Compared with the power provided in Figure 1 of Santos (2012), the power performance of the

QLR-test is better than the J-test. For example, when B = 100 and γ = 0.4, the power of the

QLR-test is above 0.8 while the power of the J-test is below 0.5.

17For the J-test, in Table 3, we present the number provided in Santos (2012).
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6 EMPIRICAL APPLICATION

In this section we study a shape-invariant Engel curve system with endogenous total expenditure

(Blundell, Chen and Kristensen, 2007; BCK, henceforth). Engel curves describe the relationship

between consumer expenditure on a particular good or service and the consumer’s total resources

holding prices fixed. It can be regarded as the Marshallian demand function conditioning on the

prices of all goods fixed (Lewbel, 2008). Much of the evidence in the literature has let to the

recommendation to estimate Engel curves in a nonparametric way without imposing a functional

form a priori (see, for example, Banks, Blundell and Lewbel, 1997; Imbens and Newey, 2009;

Horowitz, 2011).

BCK have argued that the total expenditure could be jointly determined with individual de-

mands. Given the potential endogeneity of the total expenditure variable, we follow BCK’s sugges-

tion to use exogenous sources of income as suitable instrumental variables for total expenditure.18In

our analysis, we use the gross earnings of the household head as an instrument for total expenditure.

The data we use is the 1995 British Family Expenditure Survey (FES). The data is a subset of

married and cohabiting couples. The age of the household head is between 20 and 50. Households

where the head of household is unemployed are excluded. The data also excludes those couples

with three or more children. The income of the head for each household (IV) is measured by the

amount he earned in the chosen year before taxes. BCK provide the asymptotic distribution for

parametric estimates (β̂1, β̂2). In the current paper, our focus is to provide pointwise and uniform

confidence bands for the Engel curves by employing a sieve GMM method.

Suppose each household i faces the same relative prices. Let Yil be the budget share of good

l = 1, . . . , L for each household i. Let Y1i be the log of total expenditure and X1i be a vector

of household demographic variables. Let {(Y1il, Y2i, X1i)}ni=1 be i.i.d. observations. Blundell,

Browning and Crawford (2003) have argued that the model that is consistent with consumer

optimization theory should have the form

Y1il = hl
(
Y2i −X ′1iβ1

)
+X ′1iβ2,l + eil.

where hl, l = 1, . . . , L are unknown. We allow for the possibility that E [eil|Y2i] 6= 0, i.e., the total

expenditure is endogenous. Let the gross earnings of the head of household be the instrument

and be denoted X2i. We assume E [eil|X1i, X2i] = 0, l = 1, . . . , L. Thus, ρl (Zi, θ) = Y1il −
hl (Y2i −X ′1iβ1)−X ′1iβ2l with E [ρl(Zi, θ)|Xi] = 0 for l = 1, . . . , L.

The two-step SGMM criterion allows us to choose the preliminary estimator θ̄n in a flexible

way. We use the profiling approach suggested by BCK to get the θ̄n. In the first step, we fixed β,

18Imbens and Newey (2009) have proposed an alternative ways to estimate Engel curves in a nonseparable model
by considering a triangular simultaneous equations model and using control function approach.
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approximate hl,n(β) = pkn(·)′γln(β), and compute h̄l,n(β) by two-stage least squares such that

γ̄ln (β) =
(
P (β1)′Q(Q′Q)−1Q′P (β1) + λnPen(hn)

)−
P (β1)′Q(Q′Q)−Q′Y1l(β2,l).

Then h̄l,n(β) = pkn(·)′γ̄ln(β). Then we plug h̄n(β; ·) =
(
h̄1,n(β; ·), . . . , h̄L,n(β; ·)

)′
into the GMM

criterion and calculate

min
β∈B

L∑
l=1

(
Y1l(β2,l)− P (β1)′γ̄ln

)′
Q(Q′Q)−Q′

(
Y1l(β2,l)− P (β1)′γ̄ln

)
.

In next step, we plug θ̄n = (β̄, pkn(·)′γ̄n(β̄)) into the criterion and obtain θ̂n by minimizing over

the criterion function with optimal weight matrix

min
(β,hn)∈Θn

ĝ(θ)′

(
1

n

n∑
i=1

gi
(
θ̄n
)
gi
(
θ̄n
))−1

ĝ(θ) + λnPen(h).

In Figure 2, we report the estimates of Engel curves for different categories of nondurable goods

and services, along with their pointwise and uniform confidence bands. To construct the pointwise

confidence bands, we let ŵil = y1i − x′1iβ̂1, for l = 1, . . . , L,

σ̂n,l = pkn(y2)′Ω̂hp
kn(y2)/n,

Ω̂n =

( 1

n

n∑
i=1

pkn(ŵil)⊗ qsn(xi)

)′(
1

n

n∑
i=1

gi

(
θ̂n

)
gi

(
θ̂n

)′)−1(
1

n

n∑
i=1

pkn(ŵil)⊗ qsn(xi)

)−1

.

Then the 95% pointwise confidence bands are simply[
ĥn,l(y2)− 1.96σ̂n,l, ĥn,l(y2) + 1.96σ̂n,l

]
.

To construct uniform confidence bands, for b = 1, . . . , 2000, we compute the sup−tn statistic by

sup
y2∈Y2

∣∣∣t̂∗,bn (y2)
∣∣∣ = sup

y2∈Y2

∣∣∣∣∣∣
pkn(y2)′Ω̂

1/2
n N b

dβ+kn√
nσ̂n,l

∣∣∣∣∣∣ .
Then we form a 95%- uniform confidence bands as[

ĥn,l(y2)− cn(0.95)σ̂n,l, ĥn,l(y2) + cn(95)σ̂n,l

]
, y2 ∈ Y2,

where cn(0.95) is the 95% sample quantile of
{

supy2∈Y2

∣∣∣t̂∗,bn (w)
∣∣∣ : 1 ≤ b ≤ B

}
. For the support of

y1, Y1, we restrict Y2 = [4.75, 6.178], where 4.75 is the 5% quantile of the distribution of y2 and

6.578 is the 99% quantile of the distribution of y1.

Each Engel curve’s pointwise confidence intervals and uniform confidence bands are reported
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in Figure 2. From Figure 2, we find that the shape of the curves are similar to the ones obtained

in BCK. The confidence bands are tight along the estimates of the curves. When households’ total

expenditure increases, they tend to spend proportionally less on necessary goods such as food,

fuel, alcohol, motor and more on goods and services like food at restaurants and leisure goods. For

some categories of the goods such as alcohol or food at restaurants, from the uniform confidence

bands we obtain, we cannot reject the hypothesis that the curves are constant ones. We also find

that the confidence bands and confidence intervals tend to be more narrow in the middle when

the data has more observations and wider at the two ends of the curves when the data has less

observations.

Figure 3 reports the pointwise confidence intervals by QLR and the uniform confidence intervals

by sup-QLR by using the non-optimal weight matrix, respectively. The two tests (discussed in

Section 4) are robust to partial identification and do not require estimates of the Engel curves.

We report the bands for food, fuel and motor by using different choices of (sn, kn). We choose 100

points over [4.75, 6.178] evenly and consider 200 bootstrap repetitions for each. The shape of the

confidence bands are not very sensitive to our choices of the orders of basis functions and are, in

general, wider than the ones obtained in Figure 2. We cannot reject the hypothesis that the curves

are linear ones.

7 CONCLUSION

This paper studies the problem of pointwise and uniform inference for semi-nonparametric condi-

tional moment restriction models. Our parameter of interest contains both a parametric compo-

nent and a nonparametric component of the parameter. Under point identification, we first provide

pointwise asymptotic results for functionals of sieve GMM estimators regardless of whether the

functionals are
√
n−estimable or not. Then we extend the pointwise asymptotic results to the

entire support of the functionals and develop a uniform limiting theory for functionals of interest.

We provide formal conditions that justify a strong approximation of functionals of sieve GMM

estimators to a sequence of Gaussian processes uniformly over the support of the functionals. This

approximation essentially provides a functional central limit theorem for functionals of sieve GMM

estimators. We propose a uniform version of the three main classes of test statistics for hypotheses

on restrictions uniformly over the support of functionals. We show that sup-Wald, sup-QLR and

sup-LM are asymptotically equivalent. These results are useful to construct uniform confidence

bands for functionals of the parameters.

We then relax the point identification assumption and consider models that allow for partial

identification. We first provide consistency and nonparametric convergence rates for set estimates

of the identified set based on a PSGMM criterion. To do inference on restrictions of functionals of

the parameters in the identified set, we focus on a general class of conditional moment restriction

models. We show that, based on a non-optimally weighted SGMM criterion function, the sieve

QLR inference is robust to partial identification. The limiting distribution of the sieve QLR
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under partial identification is the infimum of the square of a weighted Gaussian process. We then

provide a valid multiplier bootstrap procedure to obtain critical values and invert the test statistic

to get confidence regions. We further show that the sup-QLR statistic is also robust to partial

identification if we consider hypotheses uniformly over the support of functionals.

The inference methods we propose are easy to compute and are analogous to implementations

in parametric GMM models. Numerical evidence shows that our methods are promising for ap-

plications. In our empirical application, we provide confidence intervals and confidence bands for

the Engel curve systems for different categories of nondurable goods and services by using 1995

British Family Expenditure Survey.

Finally, we point out some possible extensions that we do not consider in this paper. First,

little work has been done to discuss the choices of number of instruments and regressors. In a

recent work, Liu and Tao (2014) have proposed a simple Mallows’ criterion to select the number

of instruments and the number of regressors in NPIV model. However, it is not clear how to

choose them in general semi-nonparametric conditional restriction models with nonlinear or even

nonsmooth residual functions. Second, there are still some important theoretical questions that

remain to be answered. It is not clear how the estimation and inference procedures would adjust if

only weak IVs are available. And we should consider the uniformity issue over the data generating

processes of our test statistics under partial identification. We leave these extensions for future

works.
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APPENDIX

Notation and Definitions

The following notation and definitions will be used in the appendix, including some that go beyond the ones

defined in the main text.

m(X, θ) ≡ E [ρ(Z, θ)|X]

ρ(θ) ≡ ρ(Z, θ)

Σ0(X) ≡ Σ(X, θ0) ≡ E [ρ(Z, θ0)ρ(Z, θ0)′|X]

Ψ(X, θ) ≡ Σ(X, θ)−1/2m(X, θ)

Ωn ≡ E

[
dm(X, θ)

dθ

[
p̄kn(·)′

]′
Σo(X)−1 dm(X, θ)

dθ

[
p̄kn(·)′

]]−1

‖δ∗n‖ ≡ An(w)′ΩnAn(w)

u∗n = δ∗n/ ‖δ∗n‖
dΨ(X, θ)

dθ
[δ∗n] ≡ Σ(X, θ)−1/2 dm(X, θ)

dθ
[δ∗n]

αn(w) ≡ ΩnAn(w)/||ΩnAn(w)||

µ∗n = ν∗n/||ν∗n||sd
h (Θ1,Θ2) ≡ sup

θ1∈Θ1

inf
θ2∈Θ2

‖θ1 − θ2‖

dH (Θ1,Θ2, || · ||) ≡ max {h(Θ1,Θ2), h (Θ2,Θ1)}

Q(X, θ) ≡ Σ(X, θ)1/2 ⊗ q(X)′,

Q(θ) ≡ (Q(X1, θ)
′, . . . , Q(Xn, θ)

′)
′

Ψ(X, θ) ≡ Σ(X, θ)−1/2m(X, θ)

Ψ̂(x, θ) ≡ Q(x, θ) (Q(θ)′Q(θ))
−1

n∑
j=1

Q(Xj , θ)
′Σ(Xj , θ)

−1/2ρ(Zj , θ)

Ψ̃(x, θ) ≡ Q(x, θ) (Q(θ)′Q(θ))
−1

n∑
j=1

Q(Xj , θ)
′Σ(Xj , θ)

−1/2m(Xj , θ)

Ψ̂θ(X, θ) ≡ Q (Xi, θ) (Q(θ)′Q(θ))
−1

n∑
j=1

Q(Xj , θ)Σ(Xj , θ)
−1/2 dρ(Zj , θ)

dθ

[
pkn(·)

]
.

dΨ̂(x, θ)

dθ
[δ∗n] ≡ Q(x, θ) (Q(θ)′Q(θ))

−1
n∑
j=1

Q(Xj , θ)
′Σ(Xj , θ)

−1/2 dΨ(Xj , θ)

dθ
[δ∗n] .

For a matrix Q, we use λmin(Q) and λmax(Q) to denote the minimal and maximal eigenvalues of Q, respec-

tively. We use En[g] = En [g(xi)] = 1
n

∑n
i=1 g(xi) and Gn [g] = Gn [g(xi)] = 1√

n

∑n
i=1 (g(xi)− E [g(Xi)]).

For a function class F equipped with an envelope function supf∈F |f(x)| ≤ F (x). We useN
(
ε,F , L2(Q)

)
to denote the covering number of F-the minimal number of L2(Q)−balls of radius ε to cover the function set

F . We use N
(
ε ‖F‖Q,2 , L2 (Q) ,F

)
to denote the covering number relative to the envelop function F (x).
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The entropy is defined by the logarithm of the covering number. Let

J(δ,F) = sup
Q

ˆ δ

0

√
1 + logN (ε||F ||Q,2,F , L2(Q))dε

where the supremum is taken over probability measures Q with ||F ||Q,2 > 0. Similarly, we use N[](ε,F , || · ||)
to denote the bracketing number of size ε for F under the norm || · ||.

The Hölder space of order η > 0, denoted by Λη (W) , is a space of functions g :W → R such that the

first ηth derivatives are bounded, and the ηth derivative satisfies

max∑dx
i=1 ai=η

|5ag(w)−5ag(w′)| . ||w − w′||η−ηe .

The Hölder norm is defined by

‖g‖Λη = sup
w
|g(w)|+ max

a1+a2+...,adx=η

sup
x 6=x′

|∂a1+a2+...,+adw g(w)|
∂wa1

1 . . . ∂w
adw
dw

<∞.

And the Hölder ball with radius c is defined by Ληc (W) ≡ {g ∈ Ληc (W) : ||g||Λη ≤ c <∞}.

A ASSUMPTIONS

For a large constant K, let ΘK
n = {θ ∈ Θn : λnPen(h) ≤ λnK} such that both Πnθ0 and θ̂n belongs to ΘK

n

w.p.a.1. Let Θos ⊂ {θ ∈ Θ : λnPen(θ) < λnK, ‖θ − θ0‖s < K}. Let Θosn be the sieve space of Θos. Let

%̄2
n = sn

n + b2m,sn , %2
n = max

{
sn/n, b

2
m,sn

}
= op(n

−1/2). Let Kn = log log n.

Assumption A.1. (i) For each sn there is a constant ξsn and matrix B1 such that q̃sn(x) = B1q
sn(x)

for all x ∈ X , supx∈X ‖q̃sn(x)‖ ≤ ξsn , E [q̃sn(x)q̃sn(x)′] has smallest eigenvalue bounded away from zero

and
√
sn . ξs; (ii) for each kn there is a constant ξkn and matrix B2 such that p̃kn(y) = B2p

kn(y) for

all y ∈ Y, supy∈Y
∥∥p̃kn(y)

∥∥ ≤ ξkn , E
[
p̃kn(y)p̃kn(y)′

]
has smallest eigenvalue bounded away from zero; (iii)

sn log(sn)/n = o(1) for qsn(x) a polynomial spline.

Assumption A.1 is a normalization that is standard in the literature (see, e.g., Newey (1997)). Explicit

formula for ξkn and ξsn are specific for different basis functions. For example, the polynomial series satisfies

ξkn . kn and the Fourier series satisfies ξkn .
√
kn. For convenience, in the main context, we state

qsn(x) = q̃sn(x), p̃kn(y2) = pkn(y2), E
[
p̃kn(y2)p̃kn(y2)

]
= Ikn and E [q̃sn(x)q̃sn(x)′] = Isn .

Assumption A.2. L̂n(θ0n) . L(θ0n) + op(n
−1); (ii) there exists an open || · ||s−neighborhood of θ0, Θos,

such that (a) ||θ−θ0||2 . L(θ) . ||θ−θ0||2 holds for al θ ∈ Θos; (b) Θos is convex; (c) m(·, θ) is continuously

pathwise differentiable with respect to θ ∈ Θos.

Assumption A.3. Θ is convex at θ0 in the sense that for any θ ∈ Θ, (1− t)θ0 + tθ ∈ Θ for small t > 0.

We also assume that for almost all Z, ρ(Z, (1− t)θ0 + tθ) is continuously differentiable at t = 0.

Assumption A.4. (Penalty) We have either λn = o(n−1) or λn suph1,h2∈Nos
∣∣Pen

(
h1
)
− Pen(h2)

∣∣ =

o(n−1).
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Assumption A.4 allow us to ignore the effect of the penalty term in first-order limiting theory. To derive

the asymptotic distribution of functionals of θ0, we give some more conditions on φ(·).
For a class of functions F , let N[] (ε,F , || · ||L2) be the L2−covering number with bracketing of F . For

s = 1, . . . , sn, let

Fs,1 =
{
ρ(·, θ)qs(·) : θ ∈ ΘK

n

}
and

Fs,2 = {ρ(·, θ)qs(·) : θ ∈ Θosn} .

Assumption A.5. (i) Uniformly over θ ∈ ΘK
n , there are sn−vectors πn such that

E
[
{m(X, θ)− qsn(X)′πn}

2
]

= O(b2m,sn) = o(1)

as sn →∞. (ii) There exists a sequence of measurable functions {ρ̄n(Z)}∞n=1 such that E
[
ρ̄n(Z)2|X

]
<∞

and sup
θ∈Θ

K0
n
|ρ(Z, θ)| ≤ ρ̄n(Z). (iii) With Cn such that sn

n Cn = o(1), we have

max
1≤s≤sn

ˆ 1

0

√
1 + logN[] (ε,Fs,1, || · ||L2)dε ≤

√
Cn <∞

and

max
1≤s≤sn

ˆ 1

0

√
1 + logN[] (ε,Fs,2, || · ||L2)dε <∞.

(iv) For ω ∈ (0, 1], and K : X → R with E
[
|K(X)|2

]
<∞, ∀εn > 0, ∀θ′n ∈ Nosn∪{θ0}and all n, for r > 1,

E

[
sup

θn∈Nosn:||θn−θ′n||s≤εn
‖ρ(Z, θn)− ρ(Z, θ′n)‖2E |X = x

]
≤ K(x)2ε2ωn ,

E

[
sup

θn∈Nosn:||θn−θ′n||s≤εn
‖ρ(Z, θn)ρ(Z, θn)′ − ρ(Z, θ′n)ρ(Z, θ′n)′‖rE |X = x

]
≤ K(x)rεrωn .

Assumption A.5 is similar to Assumption C.2 in Chen and Pouzo (2012), which is used to obtain the

consistency and convergence rates of PSGMM estimators.

Assumption A.6. (Lindeberg condition) Let Mn,i = dm(Xi,θ0)
dθ [u∗n]

′
Σ0(Xi)

−1ρ(Zi, θ0). For ε > 0,

lim
n→∞

supE
[
(Mn,i)

21
{
|ε|n−1/2Mn,i

}
> 1
]

= 0.

Assumption A.7. (i) There is a δ∗n ∈ Θn\{θ0} such that %n × ‖δ∗n − δ∗‖ = o(n−1/2). (ii)

sup
θn∈N0sn

∥∥∥∥∥ 1

n

n∑
i=1

dρ(Zi, θn)

dθ
[u∗n(w)]⊗ qsn(Xi)

∥∥∥∥∥
E

= Op(1)

and

sup
θn,∈N0sn

∥∥∥∥∥ 1

n

n∑
i=1

d2ρ(Zi, θn)

dθ
[u∗n(w)]⊗ qsn(Xi)

∥∥∥∥∥
E

= Op(1).

Assumption A.8. (Assumption A.5 (ii) and (iii) in Chen and Pouzo (2014)). (i) %n '
√
sn/n =

max
{√

sn/n, bm,sn

}
= o(n−1/4); (ii) ∀εn > 0, max

{
(Kn%n)2, (Kn%sn)2ω

}
= (Kn%sn)2ω;
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(iii) let F3 ≡ {ρ(·, θ)− ρ(·, θ0) : θ ∈ Nosn}, then

1 ≤
√
Cn ≡

ˆ 1

0

√
1 + log

(
N[](F3, ε(Knδs,n)ω, || · ||L2

)
dε <∞

and max
{

(Kn%s,n)
ω√

Cn,Kn

}
n%2

n (Kn%s,n)
ω√

Cn → 0.

Assumption A.9. Uniformly over θ̄n ∈ Nosn ∪ {θ0},

(i) E

[∥∥∥dΨ̂(Xi,θ̄n)
dθ [δ∗n(w)]− dΨ̂(Xi,θ̄n)

dθ [δ∗n(w)]
∥∥∥2

E

]
= Op

(
(Kn%n)

−2
n−1

)
;

(ii)

E

[∥∥∥Ψ̃(Xi, θ̄)−Ψ(Xi, θ̄)
∥∥∥2

E

]
= Op

(
(Kn%n)

−2
n−1

)
.

(iii) Let {a1n}∞n=1 and {a2n}∞n=1 be real valued positive sequences such that a1n = o(1) and a2n = o(1).

Suppose there is a continuous mapping F : R+ → R+ such that

max
{
F (a1n), n−1/4

}
%n log log n = o(n−1/2)

and

sup
Nosn

sup
‖u∗n(w)−un(w)‖≤a1n

1

n

∑∥∥∥∥dΨ(Xi, θ̄n)

dθ
[u∗n(w)]− dΨ(Xi, θ̄n)

dθ
[un(w)]

∥∥∥∥2

E

= Op

(
max{F (a1n)2, n−1/2}

)
;

sup
Nosn

sup
δn∈∆̄n:||δn||=1

1

n

n∑
i=1

∥∥∥∥∥dΨ̂(Xi, θ̄n)

dθ
[un(w)]− dΨ(Xi, θ̄n)

dθ
[un(w)]

∥∥∥∥∥
2

E

= Op

(
max{a2

2n, n
−1/2}

)
.

Assumption A.10. (i) dρsn ≥ kn and kn/n = o(1). (ii) kn ln(n)ξ2
kn
n−1/2 = o(1). (iii) n−1/4+1/mξsn =

o(1); (iv) n−1/2s
1/2
n ξsn = o(n−1/4).

Assumption A.11. (i) supθ∈Nosn sup(δ∗n,w)∈∆̄n×W

∥∥∥dφ(θ)
dθ [δ∗n(w)]− dφ(θ0)

dθ [δ∗n(w)]
∥∥∥2

E
(Kn%n)

2
= o(n−1);

(ii)

sup
θ∈Nosn

∥∥∥∥dφ(θ)

dθ

[
p̄kn(·)

]
− dφ (θ0)

dθ

[
p̄kn(·)

]∥∥∥∥
E

. ξφ,nKn%n.

Assumption A.12. supδ1(w),δ2(w)∈∆̄n
|〈δ1(w), δ2(w)〉n − 〈δ1(w), δ2(w)〉| = op(Kn%n).

Assumption A.13. For each kn and any θ ∈ Nosn, δ ∈ ∆̄kn = ∆̄n → dΨ̂(·,θ)
dθ [δ] ∈ L2(fX) is a linear

functional.

Assumption A.14. (i) m(X, θ) is twice pathwise differentiable in θ ∈ Nosn and uniformly over the

direction δ∗n(w) for w ∈ W. Furthermore,

(Kn%n)
2 × E

[
sup

(θ,w)∈Nosn×W

∣∣∣∣d2m(X, θ)

dθdθ
[u∗n(w), u∗n(w)]

∣∣∣∣2
]

= o(1);
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(ii)

E

[
sup

(θ,w)∈Nosn×W

(
dm(X, θ)

dθ
[u∗n(w)]− m(X, θ0)

dθ
[u∗n(w)]

)′
×Σ0(X)−1

(
dm(X, θ)

dθ
[u∗n(w)]− m(X, θ0)

dθ
[u∗n(w)]

)]
= o(n−1/2);

(iii) for all θn ∈ Nosn, θ̄ ∈ N0s and w ∈ W,

E

[(
dm(X, θ0)

dθ
[u∗n(w)]

)′
Σ0(X)−1

(
dm(X, θ̄)

dθ
[θn − θ0]− dm(X, θ̄)

dθ
[θn − θ0]

)]
= o(n−1/2).

Assumption A.1-A.14 is similar to the standard ones in the literature (see, e.g., Chen and Pouzo (2009)

and Chen and Pouzo (2014) ). In some assumptions, we require the conditions to hold uniformly over

w ∈ W. However, they are stronger than the ones required for pointwise inference, where we only need

them to hold for a fixed w ∈ W.

Assumption A.15. Let ξk,φ = supw∈W ||An(w)|| and ξLkn ≡ supw,w′∈W:w 6=w′
||An(w)−An(w′)||

||w−w′|| . Loadings

on the coefficient satisfies (i) supw∈W 1/||An(w)|| . 1; (ii) log ξLkn . log kn.

Assumption A.16. (i) There is a non-zero linear functional mapping from ∆̄ to R such that

for all w ∈ W: δ →
(
dφ(θ0)
dθ [δ]

)
[w]; (ii) for Kn = log log n and %n defined in (3.5), let Tn ≡{

t ∈ R : |t| . K2
n%n
}

, then

sup
(θ,t,w)∈Nosn×Tn×W

∣∣∣∣φ(θ)[w]− φ(θ0)[w]−
(
∂φ(θ0)

∂θ
[θ − θ0]

)
[w]

∣∣∣∣ / ‖δ∗n(w)‖ = o(n−1/2);

(iii) either (a) or (b) holds: (a) ‖δ∗n(w)‖ → ∞ and
∣∣∣(∂φ(θ0)

∂θ [θ0n − θ0]
)

[w]
∣∣∣ / ‖δ∗n(w)‖ = o

(
n−1/2

)
;

(b) ‖δ∗n(w)‖ → ‖δ∗(w)‖ <∞ and ‖δ∗(w)− δ∗n(w)‖ × ‖θ0n − θ0‖ = o(n−1/2).

Assumption A.17. (i) max1≤j≤dρ supθ∈N0sn

∣∣∣dρj(X,θ)dθ

[
p̄kn(·)′

]∣∣∣ ≤ ξρ,kn < ∞; (ii) for all θ ∈ Nosn,

E

[∥∥∥dm(X,θ)
dθ

[
p̄kn(·)′

]∥∥∥2
]
≤ c(X)kn and E

[
c(X)2

]
≤ const. <∞. (iii) the right and side of dm(X,θ)

dθ [δ∗n(w)] =

E
[
dρ(Z,θ+tδ∗n(w))

dt

∣∣∣
t=0
|X
]

is uniformly continuous in w for all θ ∈ Nosn.

Assumption A.18. For some p ≥ 8, ρ(Z, θ) satisfies the pth order envelop condition in θ ∈ Θn.

Assumption A.19. Let m > 2. Suppose that E [|ρ(Z, θ0)|X|m] . 1;
(
ξLkn
)2m/(m−2)

log n/n . 1,

ξsn
(
ξLkn +

√
sn
)
→ 0, Op (ρs,n) = op(b

−1
n ), ξφ,nKn%s,n = op(b

−1
n ), n1/m%s,n + (vn ∨ 1)

√
ξ2
sn

logn

n = op
(
b−1
n

)
,

Op
(
max{a1n,n

−1/4}Kn%n
)

= op(b
−1
n ) and ξρ,knn

1/m = op(b
−1
n ).

The following conditions are used for the proof of Theorems and Lemmas in Section 4. They are modified

from the conditions we used in Section 3 to fit the partial identification setting.

Assumption A.20. The penalty function Pen : H → [0,∞) satisfies the following conditions: (i) Suppose

that Pen(·) is a measurable function with suph∈H0
Pen(h) <∞; (ii) the set {h ∈ H : Pen(h) ≤M} is com-

pact under || · ||s for all M ∈ [0,∞); (iii) λn > 0 such that λn suph∈H0
|Pen(hn)− Pen(h)| = O(λn) = o(1);
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(iv) λn = Op (%pn) = op(1), sup(β,h)∈Θ0
L̄(θ,Πnh) = Op(λn) = op(1), E

[
supθ∈Θ ||ρ(Z, θ)||4E |X

]
< ∞;

(v) supΘ ||θ −Πnθ||s = O(c1n), max{c1n, %pn, λn} = op(n
−1/4).

Assumption A.21. (Uniform Approximation Error) Uniformly over θ0 ∈ Θr
0 and θ0n ∈ B0n(θ0) and

w ∈ W, E
[∥∥E [u∗n(θ0n, w)|Xi]

′
Σ(Xi)ρ(Zi, θ0n)− E [u∗n(θ0, w)|Xi]

′
Σ(Xi)ρ(Zi, θ0)

∥∥2

e

]
= o(n−1/2).

Assumption A.22. For ω ∈ (0, 1], and K : X → R with E
[
|K(X)|2

]
<∞, ∀εn > 0, ∀θ ∈ Bn(θ0) ∪Θ0

and all n, for r > 1,

E

[
sup

θ1,θ2∈Bn(θ0)∪Θ0:||θ1−θ2||≤%n

∥∥ρ(Z, θ1)− ρ(Z, θ2)
∥∥2

E
|X = x

]
≤ K(x)2%2ω

n ,

E

[
sup

θ1,θ2∈Bn(θ0)∪Θ0:||θ1−θ2||≤εn

∥∥ρ(Z, θ1)ρ(Z, θ1)′ − ρ(Z, θ2)ρ(Z, θ2)′
∥∥r
E
|X = x

]
≤ K(x)rεrωn .

Assumption A.23. For σn defined in (4.3), uniformly over θ ∈ Bn(θ0) and w ∈ W, let Tn ≡
{t ∈ R : |t| . σn log log n}, then uniformly over θ ∈ Bn(θ0),t ∈ Tn and w ∈ W,∣∣∣F(ρ(·θ) + tµ∗n(·, θ0, w))[w]− F(ρ(·, θ0))−

(
dF(ρ0)
dρ [ρ+ tµ∗n(·, θ0, w)− ρ0]

)
[w]
∣∣∣

‖ν∗n(·, θ0, w)‖wp
= o(n−1/2).

Assumption A.24. (i)

sup
θ∈Bn(θ0)∪Θ0

sup
(ν∗n,w)∈∆̄n×W

∥∥∥∥∂φ(θ)

∂θ
[ν∗n(w)]− ∂φ (θ0)

∂θ
[ν∗n(w)]

∥∥∥∥2

E

(Kn%n)
2

= o(n−1);

(ii)

sup
θ∈Bn(θ0)∪Θ0

∥∥∥∥dφ(θ)

dθ

[
p̄kn(·)

]
− dφ (θ0)

dθ

[
p̄kn(·)

]∥∥∥∥
E

. ξφ,nKn%n.

Assumption A.25. For fixed w ∈ W, the empirical process vn(θ0) with l−component

vn,l(θ0) = Gn
{
E
[
ν∗n,l(Zi, θ0)|Xi

]′
Σ(Xi)

−1ρl(Zi, θ0)
}
, l = 1, . . . , dρ,

is asymptotically equicontinuous uniformly over θ0 ∈ Θr
0 so that for any ε > 0,

lim
δ→0

lim sup
n→∞

Pr

(
sup

θ0∈Θr0:||θ1
0−θ2

0 ||s≤εn

∥∥vn(θ1
0)− vn(θ2

0)
∥∥ > ε

)
= 0.

Assumption A.26. For Sn(·) defined in (4.10) and t = (θ0, w), ‖µ∗n(Zi, θ0, w)‖E . Υkn ,∥∥(Sn(t1)− Sn(t2)
)∥∥
P,2

.
∥∥t1 − t2∥∥c

for some 0 < c ≤ 1/2 in L2−norm.
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B MATHEMATICAL PROOFS

B.1 Proofs of Sections 3

B.1.1 Proofs of Section 3.0-3.1

Proof of Lemma 3.1 is presented in the Supplemental Appendix.

Proof of Theorem 3.1.

For any θ ∈ Nosn, let the local perturbation be θ(εn) = θ ± εnu
∗
n form some εn = o(n−1/2), we have

θ(εn) ∈ Nosn. Since θ̂n ∈ Nosn w.p.a.1, it implies that θ̂n(εn) = θ̂n ± εnu∗n ∈ N0sn w.p.a.1. Furthermore,

the definition of θ̂n implies that

−Op
(
ε2n
)
. Ln

(
θ̂n ± εnu∗n

)
− Ln

(
θ̂n

)
+ λ

(
Pen

(
θ̂n ± εnu∗n

)
− Pen

(
θ̂n

))
.

For the penalty term, by Assumption 3.4 and A.4, a second order Taylor expansion yields

λn

(
dP (θ̂n)

dθ
[εnu

∗
n] +

1

2

d2P (θ(s))

dθdθ
[εnu

∗
n, εnu

∗
n]

)
= Op (λnεn) = op(n

−1)

uniformly over θ(εn) = θ̂n + εnu
∗
n ∈ Nosn.

For some s ∈ [0, 1], a Taylor expansion and results in Lemma B.1 imply that

dL̂n (θ(εn))

dεn

∣∣∣∣∣
εn=0

= 2

(
1

n

n∑
i=1

dρ(Zi, θ̂n)

dθ
[εnu

∗
n]
′ ⊗ qsni (Xi)

)′(
1

n

n∑
i=1

gi(θ̄n)gi
(
θ̄n
)′)−1

ĝ
(
θ̂n

)
+ op(n

−1)

= 2

(
1

n

n∑
i=1

dρ(Zi, θ̂n)

dθ
[εnu

∗
n]
′ ⊗ qsni (Xi)

)′(
1

n

n∑
i=1

Σ(Xi, θ̄n)⊗ qiq′i

)−1

ĝ(θ̂n) + op(n
−1).

Then we can write

dL̂n (θ(εn))

dεn

∣∣∣∣∣
εn=0

=
2

n

Q(Xi, θ̄n)
(
Q
(
θ̄n
)′
Q(θ̄n)

)−1 n∑
j=1

Q(Xj , θ̄n)Σ(Xj , θ̄n)−1/2 dρ(Zj , θ̂n)

dθ
[εnu

∗
n]


′

×

Q(Xi, θ̄n)
(
Q
(
θ̄n
)′
Q(θ̄n)

)−1 n∑
j=1

Q(Xj , θ̄n)Σ(Xj , θ̄n)−1/2ρ(Zj , θ̂n)


=

2εn
n

n∑
i=1

{
dm(Xi, θ0)

dθ
[u∗n]

}
Σ(Xi, θ0)−1ρ(Zi, θ0) + εn

〈
u∗n, θ̂n − θ0

〉
+ op

(
εnn
−1/2

)
.
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For the second-order term,

d2L̂n(θ(εn))

dε2n

∣∣∣∣∣
εn=s

=

(
1

n

n∑
i=1

dρ(Zi, θ(s))

dθ
[εnu

∗
n]⊗ qi

)′(
1

n

n∑
i=1

gi
(
θ̄n
)
gi
(
θ̄n
)′)−1(

1

n

n∑
i=1

dρ(Zi, θ(s))

dθ
[εnu

∗
n]⊗ qi

)

+ĝ (θ(s))
′

(
1

n

n∑
i=1

gi
(
θ̄n
)
gi
(
θ̄n
))−1(

1

n

n∑
i=1

dρ2(Zi, θ(s))

dθdθ
[εnu

∗
n]⊗ qi

)
= Op

(
ε2n
)

= op(n
−1).

It follows that

√
n
〈
u∗n, θ̂n − θ0

〉
= − 1√

n

n∑
i=1

dm(Xi, θ0)

dθ
[u∗n]

′
Σ(Xi, θ0)−1ρ(Zi, θ0) + op (1) . (B.1)

By (B.5) in Lemma B.2,

δ∗n = η∗
′

n p̄
kn(·)

and

η∗n = Ωn
dφ(θ0)

dθ

[
p̄kn(·)

]
.

It implies that〈
u∗n, θ̂n − θ0

〉
=

〈
δ∗n/||δ∗n||, θ̂n − θ0

〉
= − 1

n||δ∗n||

n∑
i=1

dm(Xi, θ0)

dθ

[
η∗
′

n p̄
kn(·)′

]′
Σ0(Xi)

−1ρ(Zi, θ0) + op(n
−1/2)

= − 1

n||δ∗n||
dφ(θ0)

dθ

[
p̄kn(·)

]′
B−1
n

n∑
i=1

dm(Xi, θ0)

dθ

[
p̄kn(·)

]′
Σ0(Xi)

−1ρ(Zi, θ0) + op(n
−1/2)

with

||δ∗n|| = E

[(
dm(X, θ0)

dθ
[δ∗n]

)′
Σ0(X)

(
dm(X, θ0)

dθ
[δ∗n]

)]

=
dφ(θ0)

dθ

[
p̄kn(·)

]′
ΩnE

[
dm(X, θ0)

dθ

[
p̄kn(·)′

]′
Σ0(X)−1 dm(X, θ0)

dθ

[
p̄kn(·)′

]]
×Ωn

dφ(θ0)

dθ

[
p̄kn(·)

]
=

dφ(θ0)

dθ

[
p̄kn(·)

]′{
E

[
dm(X, θ0)

dθ

[
p̄kn(·)′

]′
Σ0(X)−1 dm(X, θ0)

dθ

[
p̄kn(·)′

]]}−1
dφ(θ0)

dθ

[
p̄kn(·)

]
.

The conclusion follows. 0

Lemma B.1. Suppose that Assumptions of Theorem 3.1 are satisfied. Then uniformly over θ ∈ Nosn, we

have
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(i)

1

n

n∑
i=1

{
dΨ̂(Xi, θ)

dθ
[u∗n]

}′
Ψ̂(Xi, θ) =

1

n

n∑
i=1

{
dm(Xi, θ)

dθ
[u∗n]

}′
Σ0(Xi)

−1ρ(Zi, θ0)

+ 〈u∗n, θ − θ0〉+ op(n
−1/2);

(ii) 1
n

∑n
i=1

{
d2Ψ̂(Xi,θ)
dθdθ [u∗n, u

∗
n]
}′

Ψ̂(Xi, θ) = op(n
−1/4);

and (iii) 1
n

∑n
i=1

∥∥∥dΨ̂(Xi,θ)
dθ [u∗n]

∥∥∥2

E
= Op(1), 1

n

∑n
i=1

∥∥∥d2Ψ̂(Xi,θ)
dθdθ [u∗n]

∥∥∥2

E
= Op(1).

Proof. The proof is analogous to the ones of Lemma B.3-Lemma B.6 and is omitted for brevity.

To prove Theorem 3.1, we first present and prove Lemma B.2 and Theorem B.1. Then we show the

proof of Theorem 3.1.

Lemma B.2. (Empirical Riesz) Suppose Assumptions of 3.1 hold. Let δ∗n be the empirical Riesz representer

defined in (3.8), and

Bn

≡

(
I11 In,12

In,21 In,22

)

≡

 E

[∥∥∥Σ0(X)−1/2 dm(X,θ0)
dβ′

∥∥∥2

E

]
E

[(
dm(X,θ0)

dβ′

)′
Σ0(X)−1

(
dm(X,θ0)

dh

[
pkn(·)′

])]
I ′n,12 E

[∥∥∥Σ0(X)−1/2 dm(X,θ0)
dh

[
pkn(·)′

]∥∥∥2

E

]
 . (B.2)

Let v∗n = I−1
n,22In,21. For δn = (δ′β,n, p

kn(·)′γn)′, we have

(i)

δ∗β,n = I11
n

(
∂φ(θ0)

∂β
− v∗

′

n

∂φ(θ0)

∂h

[
pkn(·)

])
(B.3)

and

δ∗h,n = pkn(·)′γ∗n, γ∗n = I−1
n,22

∂φ(θ0)

∂h

[
pkn(·)

]
− v∗nδ

∗
β,n. (B.4)

(ii) For regular functional φ(θ) = λ′β, we have

δ∗β,n = I11
n

∂φ(θ0)

∂β

δ∗h,n = −ψkn(·)′v∗nI11
n

∂φ(θ0)

∂β

and (iii) for irregular functional φ(θ) = φ(h), we have

δ∗β,n = −I11
n v∗

′

n

∂φ(θ0)

∂h

[
pkn(·)

]
δ∗h,n = pkn(·)′I22

n

∂φ(θ0)

∂h

[
pkn(·)

]
.
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Proof. By the definition of δ∗n and Riesz representation theorem,

dφ (θ0)

dθ
[δ∗n] = ‖δ∗n‖

2
= sup
δn∈∆̄n:〈δn,δn〉6=0

∣∣∣∂φ(θ0)
∂β′ (δβ) + ∂φ(θ0)

∂h [δh,n]
∣∣∣

E

[(
dm(X,θ0)

dθ [δn]
)′

Σ0(X)−1
(
dm(X,θ0)

dθ [δn]
)]

= sup
ηn=(δ′β ,γ′n)∈Rdβ+kn ,ηn 6=0

η′nAnA
′
nηn

η′nBnηn
, (B.5)

where An =
(
∂φ(θ0)
∂β′ ,

∂φ(θ0)
∂h

[
pkn(·)′

])′
and Bn is defined in (B.2) with the inverse of Bn to be

B−1
n =

(
I11
n I12

n

I21
n I22

n

)
=

( (
I11 − In,12I

−1
n,22In,21

)−1 −I−1
11 In,21I

22
n

−I−1
n,22In,21I

11
n

(
In,22 − In,21I

−1
11 In,12

)−1

)
.

By solving (B.5), for δn = (δ′β,n, p
kn(·)′γn)′, we have(

δ∗β,n
γ∗n

)
= B−1

n An =

(
I11
n I12

n

I21
n I22

n

)(
∂φ(θ0)
∂β

∂φ(θ0)
∂h

[
pkn(·)

] ) =

(
I11
n λ+ I12

n
∂φ(θ0)
∂h

[
pkn(·)

]
I21
n λ+ I22

n
∂φ(θ0)
∂h

[
pkn(·)

] ) . (B.6)

It implies that

δ∗β,n = I11
n

∂φ(θ0)

∂β
+ I12

n

∂φ(θ0)

∂h

[
pkn(·)

]
= I11

n

∂φ(θ0)

∂β
+ I21′

n

∂φ(θ0)

∂h

[
pkn(·)

]
= I11

n

(
∂φ(θ0)

∂β
− v∗

′

n

∂φ(θ0)

∂h

[
pkn(·)

])
, (B.7)

where the last equality is by the definition of I21
n and v∗n. Moreover, we have

I22
n = I−1

n,22 + I−1
n,22In,21I

11
n In,12I

−1
n,22 (B.8)

by the Woodbury matrix identity. Combining (B.6) and (B.8), it follows that

γ∗n = I21
n

∂φ(θ0)

∂β
+ I22

n

∂φ(θ0)

∂h

[
pkn(·)

]
= −I−1

n,22In,21I
11
n

∂φ(θ0)

∂β
+ I−1

n,22

∂φ(θ0)

∂h

[
pkn(·)

]
+ I−1

n,22In,21I
11
n In,12I

−1
n,22

∂φ(θ0)

∂h

[
pkn(·)

]
= −v∗nI

11
n

∂φ(θ0)

∂β
+ I−1

n,22

∂φ(θ0)

∂h

[
pkn(·)

]
+ v∗nI

11
n v∗

′

n

∂φ(θ0)

∂h

[
pkn(·)

]
= I−1

n,22

∂φ(θ0)

∂h

[
pkn(·)

]
− v∗nI

11
n

(
∂φ(θ0)

∂β
− v∗

′

n

∂φ(θ0)

∂h

[
pkn(·)

])
. (B.9)

Combining (B.7) and (B.9), part (i) follows.

For part (ii), because An =
(
∂φ(θ0)
∂β′ , 0

)′
, we have

(
δ∗β,n
γ∗n

)
= B−1

n An =

(
I11
n I12

n

I21
n I22

n

)(
∂φ(θ0)
∂β

0

)
=

(
I11
n
∂φ(θ0)
∂β

I21
n
∂φ(θ0)
∂β

)
,

it follows that δ∗β,n = I11
n
∂φ(θ0)
∂β and δ∗h,n = pkn(·)′γ∗n = pkn(·)′I21

n
∂φ(θ0)
∂β = −pkn(·)′v∗nI11

n
∂φ(θ0)
∂β .
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For part (iii), because An =
(

0, ∂φ(θ0)
∂h

[
pkn(·)′

])′
, we have

(
δ∗β,n
γ∗n

)
= B−1

n An =

(
I11
n I12

n

I21
n I22

n

)(
0

∂φ(θ0)
∂h

[
pkn(·)

] ) =

(
I12
n
∂φ(θ0)
∂h

[
pkn(·)

]
I22
n
∂φ(θ0)
∂h

[
pkn(·)

] ) ,
we have δ∗β,n = −I11

n v∗
′

n
∂φ(θ0)
∂h

[
pkn(·)

]
and δ∗h,n = pkn(·)′γ∗n = pkn(·)′I22

n
∂φ(θ0)
∂h

[
pkn(·)

]
.

Theorem B.1 presents a preliminary joint asymptotic normality result for SGMM estimator.

Theorem B.1. Suppose that Assumptions 2.1, 3.1-A.4 and A.1-A.14 hold. Suppose φ(θ) = λ′β + φh(h).

Suppose φh(·) satisfies (3.7). Then

√
nV −1/2

n

(
β̂n − β0

φ̂h

(
ĥn

)
− φh (h0)

)
d→ N

((
0

0

)
,

(
Idβ 0

0 1

))
,

where

Vn =

(
Ωβ −Ωβυ

′
n

−υnΩβ V̄φh,n + υnΩβυ
′
n

)
(dβ+1)×(dβ+1)

,

Ωβ =
(
E
[
D$∗(X)′Σ0(X)−1D$∗(X)

])−1
,

υn = −∂φ(θ0)

∂h
[pkn(·)]′I−1

n,22 × In,21

Ωh,n =

(
E

[
dm(x, θ0)

dh

[
pkn(·)′

]′
Σ0(X)−1 dm(x, θ0)

dh

[
pkn(·)′

]])−1

,

V̄φh,n =
∂φ(θ0)

∂h
[pkn(·)′]Ωh,n

∂φ(θ0)

∂h
[pkn(·)]

Proof. As is shown in the proof of Theorem 3.1,

√
n
〈
u∗n, θ̂n − θ0

〉
= − 1√

n

n∑
i=1

dm(Xi, θ0)

dθ
[u∗n]

′
Σ0(Xi)

−1ρ(Zi, θ0) + op(1),

where u∗n = δ∗n/ ‖δ∗n‖sd . By the definition of δ∗n,

dm(X, θ0)

dθ
[δ∗n] =

dm(X, θ0)

dβ

[
δ∗β,n

]
+
dm(X, θ0)

dh

[
δ∗h,n

]
=
dm(X, θ0)

dβ

(
δ∗β,n

)
+
dm(X, θ0)

dh

[
pkn(·)′γ∗h,n

]
=

dm(X, θ0)

dβ
I11
n

(
∂φ(θ0)

∂β
− v∗

′

n

∂φ(θ0)

∂h

[
pkn(·)

])
+
dm(X, θ0)

dh

[
pkn(·)′

{
I−1
n,22

∂φ(θ0)

∂h

[
pkn(·)

]
− v∗nI

11
n

(
∂φ(θ0)

∂β
− v∗

′

n

∂φ(θ0)

∂h

[
pkn(·)

])}]
where the third equality follows from Lemma B.2 and the fourth equality follows from a direct calculation.

Then the variance-covariance matrix

‖δ∗n‖
2

= E

[
dm(X, θ0)

dθ
[δ∗n]
′
Σ0(X)−1 dm(X, θ0)

dθ
[δ∗n]

]
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can be decomposed into three terms such that

||δ∗n||2 = T1 + T2 + 2T3,

where

T1 = E

[{(
dm(X, θ0)

dβ
− dm(X, θ0)

dh

[
pkn(·)′v∗n

])
I11
n

(
∂φ(θ0)

∂β
− v∗

′

n

∂φ(θ0)

∂h

[
pkn(·)

])}′
Σ0(X)−1

×
{(

dm(X, θ0)

dβ
− dm(X, θ0)

dh

[
pkn(·)′v∗n

])
I11
n

(
∂φ(θ0)

∂β
− v∗

′

n

∂φ(θ0)

∂h

[
pkn(·)

])}]
,

T2 = E

[(
dm(X, θ0)

dh

[
pkn(·)′I−1

n,22

∂φ(θ0)

∂h

[
pkn(·)

]])′
× Σ0(X)−1

(
dm(X, θ0)

dh

[
pkn(·)′I−1

n,22

∂φ(θ0)

∂h

[
pkn(·)

]])]

and

T3 = E

[{(
dm(X, θ0)

dβ
− dm(X, θ0)

dh

[
pkn(·)′v∗n

])
I11
n

(
∂φ(θ0)

∂β
− v∗

′

n

∂φ(θ0)

∂h

[
pkn(·)

])}′
Σ0(X)−1

× dm(X, θ0)

dh

[
pkn(·)′I−1

n,22

∂φ(θ0)

∂h

[
pkn(·)

]]]
.

For the first term T1, we have

T1

=

(
∂φ(θ0)

∂β
− v∗

′

n

∂φ(θ0)

∂h

[
pkn(·)

])′
× I11

n

×E

[(
dm(X, θ0)

dβ
− dm(X, θ0)

dh

[
pkn(·)′v∗n

])′
Σ0(X)−1

×
(
dm(X, θ0)

dβ
− dm(X, θ0)

dh

[
pkn(·)′v∗n

])]
×I11

n

(
∂φ(θ0)

∂β
− v∗

′

n

∂φ(θ0)

∂h

[
pkn(·)

])
=

(
∂φ(θ0)

∂β
− v∗

′

n

∂φ(θ0)

∂h

[
pkn(·)

])′
× I11

n E
[
D$∗n

(X)′Σ0(X)−1D$∗n
(X)

]
×I11

n ×
(
∂φ(θ0)

∂β
− v∗

′

n

∂φ(θ0)

∂h

[
pkn(·)

])
,

where the first equality follows from direct calculation and the second equality follows from the definition

of D$∗n
(X). For the second term T2, by the definition of Ωh,n and linearity of pathwise derivatives, we have

T2 =
∂φ(θ0)

∂h

[
pkn(·)′

]
I−1
n,22E

[
dm(X, θ0)

dh

[
pkn(·)′

]′
Σ0(X)−1 dm(X, θ0)

dh

[
pkn(·)′

]]
× I−1

n,22

∂φ(θ0)

∂h

[
pkn(·)

]
=

∂φ(θ0)

∂h

[
pkn(·)′

]
I−1
n,22ΩhI

−1
n,22

∂φ(θ0)

∂h

[
pkn(·)

]
=

∂φ(θ0)

∂h

[
pkn(·)′

]
Ω−1
h

∂φ(θ0)

∂h

[
pkn(·)

]
,
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where the last equality follows from the fact that I−1
n,22 = Ωh,n.

For the third term T3, we have

T3 =

(
∂φ(θ0)

∂β
− v∗

′

n

∂φ(θ0)

∂h

[
pkn(·)

])′
I11
n

×E

[(
dm(X, θ0)

dβ′
− dm(X, θ0)

dh

[
pkn(·)′v∗n

])′
Σ0(X)−1 dm(X, θ0)

dh

[
pkn(·)′

]]
× I−1

n,22

∂φ(θ0)

∂h

[
pkn(y2)

]
=

(
∂φ(θ0)

∂β
− v∗

′

n

∂φ(θ0)

∂h

[
pkn(·)

])′
I11
n

[
In,12 − In,12 × In,22 × I−1

n,22

]
× I−1

n,22

∂φ(θ0)

∂h

[
pkn(·)

]
= 0,

where the last equality follows by the definition of Bn and v∗n. Let υn be a 1× dβ vector such that

υn = −∂φ(θ0)

∂h

[
pkn(·)′

]
I
−1

n,22In,21 = −∂φ(θ0)

∂h

[
pkn(·)′

]
v∗n

Thus,

‖δ∗n‖
2

=

(
∂φ(θ0)

∂β
− v∗

′

n

∂φ(θ0)

∂h

[
pkn(·)

])′
I11
n × E

[
D$∗n(X)′Σ0(X)−1D$∗n(X)

]
× I11

n

×
(
∂φ(θ0)

∂β
− v∗

′

n

∂φ(θ0)

∂h

[
pkn(·)

])
+
∂φ(θ0)

∂h

[
pkn(·)′

]
Ωh

∂φ(θ0)

∂h

[
pkn(·)

]
→

(
∂φ(θ0)

∂β
+ υ′n

)′
Ωβ

(
∂φ(θ0)

∂β
+ υ′n

)
+
∂φ(θ0)

∂h

[
pkn(·)′

]
Ωh

∂φ(θ0)

∂h

[
pkn(·)

]
=

(
λ′,

∂φ(θ0)

∂h
[pkn(·)′]

)(
Ωβ −Ωβv∗

′

n

−v∗nΩβ Ωh + v∗nΩβv∗
′

n

)(
λ′,

∂φ(θ0)

∂h
[pkn(·)′]

)′
.

This complete the proof.

Proof of Theorem 3.1.

Following the proof in Theorem B.1, let ∂φ(θ0)
∂β = λ, where λ is a dβ−vector of ones. Then

Var

(
dm(Xi, θ0)

dθ

[
δ∗β,n + V

−1/2
φh,n

δ∗h,n

]′
Σo(Xi)

−1ρ(Zi, θ0)

)
→

(
λ+ V

−1/2
φh,n

υ′n

)′
Ω−1
β

(
λ+ V

−1/2
φh,n

υ′n

)
+ V

−1/2
φh,n

Vφh,nV
−1/2
φh,n

→
(
λ+ V

−1/2
φh,n

υ′n

)′
Ω−1
β

(
λ+ V

−1/2
φh,n

υ′n

)
+ 1→ λ′Ω−1

β λ+ 1.

The conclusion follows by employing Wald’s device. 2

Proof of Theorem 3.2.

See the Supplemental Appendix.
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B.1.2 Proofs of Section 3.2

We first present several lemmas that are useful for the proof of main theorems in this section. The proofs

of these lemmas are in the Supplemental Appendix.

Lemma B.3. Suppose that Assumptions in Theorem 3.3 hold. Then uniformly over w ∈ W

1√
n

n∑
i=1

{
dm(Xi, θ0)

dθ
[u∗n (w)]

}′
Σ0(Xi)

−1/2Ψ̂(Xi, θ0)

=
1√
n

n∑
i=1

{
dm(Xi, θ0)

dθ
[u∗n (w)]

}′
Σ0(Xi)

−1/2ρ(Zi, θ0) + op(1).

Lemma B.4. Suppose that Assumptions of Theorem 3.3 hold. Then uniformly over w ∈ W

Gn
[
dm(Xi, θ0)

dθ
[u∗n(w)] Σo(Xi)

−1/2
{

Ψ̂(Xi, θn)− Ψ̂(Xi, θ0)
}]

= Gn
[
dm(Xi, θ0)

dθ
[u∗n(w)] Σo(Xi)

−1 {m(Xi, θn)−m(Xi, θ0)}
]

+ op (1)

uniformly over (w, θn) ∈ W ×Nosn

Lemma B.5. Suppose that Assumptions of Theorem 3.3 hold. Then

Gn
[
dm(Xi, θ0)

dθ
[u∗n(w)]

′
Σ0(Xi)

−1 {m(Xi, θn)−m(Xi, θ0)}
]

= op(1)

uniformly over (w, θn) ∈ W ×Nosn.

Lemma B.6. Suppose Assumptions in Theorem 3.3 hold. Then

1

n

n∑
i=1

{
dΨ̂(Xi, θn)

dθ
[u∗n (w)]

}′
Ψ̂ (Xi, θn) =

1

n

n∑
i=1

{
dΨ(Xi, θ0)

dθ
[u∗n (w)]

}′
Ψ̂(Xi, θn) + op

(
n−1/2

)
uniformly on (w, θn) ∈ W ×Nosn.

Proof of Theorem 3.3.

The proof consists of two main steps. Step 1 establishes uniform linearization properties. Step 2 provides

the strong approximation results.

Step 1. The goal is to establish that

〈
u∗n(w), θ̂n − θ0

〉
=

1

n

n∑
i=1

dm(Xi, θ0)

dθ
[u∗n(w)]

′
Σ0(Xi)

−1ρ(Zi, θ0) + op

(
n−1/2

)
.

for all w ∈ W.

Similar to the proof of Theorem 3.1, by Assumption A.14 on the uniform derivatives and second-order

Taylor expansion, for tn = op(n
−1/2), we have

dL̂n (θ(tn))

dtn

∣∣∣∣∣
tn=0

=

(
1

n

∑
i=1

dρ(Zi, θ̂n)

dθ
[tnu

∗
n(w)]⊗ qi

)′(
1

n

n∑
i=1

gi
(
θ̄n
)
gi
(
θ̄n
)′)−1

ĝ
(
θ̂n

)
, (B.10)
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and

d2Ln (θ(tn))

dt2n

∣∣∣∣
t=s

=

(
1

n

∑
i=1

dρ(zi, θ(s))

dh
[tnu

∗
n]⊗ qi

)′(
1

n

n∑
i=1

gi
(
θ̄n
)
gi
(
θ̄n
)′)−1

×

(
1

n

∑
i=1

dρ(zi, θ(s))

dh
[tnu

∗
n]⊗ qi

)

+

(
1

n

n∑
i=1

d2ρ(zi, θ(s))

dθdθ
[tnu

∗
n, tnu

∗
n]⊗ qi

)′(
1

n

n∑
i=1

gi
(
θ̄n
)
gi
(
θ̄n
))−1

ĝ (θ(s))

for some s ∈ [0, 1]. By Assumption A.7,

sup
(θn,w)∈N0sn×W

∥∥∥∥∥ 1

n

n∑
i=1

dρ(Zi, θn)

dθ
[u∗n(w)]⊗ qsn(Xi)

∥∥∥∥∥
E

= Op(1)

and

sup
(θn,w)∈N0sn×W

∥∥∥∥∥ 1

n

n∑
i=1

d2ρ(Zi, θn)

dθdθ
[u∗n(w), u∗n(w)]⊗ qsn(Xi)

∥∥∥∥∥
E

= Op(1).

It implies that d2Ln(θ(t))
dt2

∣∣∣
t=s

= Op
(
t2n
)
. Furthermore,

dL̂n (θ(tn))

dtn

∣∣∣∣∣
tn=0

=

(
1

n

∑
i=1

dρ(Zi, θ̂n)

dθ
[tnu

∗
n(w)]⊗ qi

)′(
1

n

n∑
i=1

Σ(Xi, θ̄n)⊗ qiq′i

)−1

ĝ
(
θ̂n

)
+ op

(
tnn
−1/2

)

=
1

n

n∑
i=1

Q(Xi, θ̄n)
(
Q(θ̄n)′Q(θ̄n)

)−1
n∑
j=1

Q(Xj , θ̄n)Σ(Xj , θ̄n)−1/2 dρ(Zi, θ̂n)

dθ
[tnu

∗
n(w)]


′

×

Q(Xi, θ̄n)
(
Q(θ̄n)′Q(θ̄n)

)−1
n∑
j=1

Q(Xj , θ̄n)Σ(Xj , θ̄n)−1/2ρ(Zj , θ̂n)

+ op(n
−1), (B.11)

where the first equality follows from Lemma B.7 and the second equality follows from direct calculations.

By Lemma C.1 and Lemma B.6, (B.11) can be simplified to

dL̂n (θ(tn))

dtn

∣∣∣∣∣
tn=0

=
1

n

n∑
i=1

dm(Xi, θ0)

dθ
[u∗n(w)]

′
Σ0(Xi)

−1/2Ψ̂(Xi, θ̂n) + op(n
−1).
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Note that for all (w, θn) ∈ W ×Nosn, by direct calculation, we have

1√
n

n∑
i=1

dm(Xi, θ0)

dθ
[u∗n (w)]

′
Σ0(Xi)

−1/2
{

Ψ̂(Xi, θn)− Ψ̂(Xi, θ0)
}

= Gn
[
dm(Xi, θ0)

dθ
[u∗n (w)]

′
Σ0(Xi)

−1/2
{

Ψ̂(Xi, θn)− Ψ̂(Xi, θ0)
}]

+
√
nE

[
dm(Xi, θ0)

dθ
[u∗n (w)]

′
Σ0(Xi)

−1/2
{

Ψ̂(Xi, θn)− Ψ̂(Xi, θ0)
}]

. (B.12)

By Lemma B.4, for all w ∈ W,

Gn
[
dm(Xi, θ0)

dθ
[u∗n (w)]

′
Σ0(Xi)

−1/2
{

Ψ̂(Xi, θn)− Ψ̂(Xi, θ0)
}]

= Gn
[
dm(Xi, θ0)

dθ
[u∗n (w)]

′
Σ0(Xi)

−1 {m(Xi, θn)−m(Xi, θ0)}
]

+ op(1)

= op(1),

where the second equality follows from Lemma B.5.

For second term on the right hand side of (B.12), note that uniformly over θn ∈ Nosn and w ∈ W,

E

[∣∣∣∣dm(Xi, θ0)

dθ
[u∗n(w)]

′
Σ0(Xi)

−1/2
{

Ψ̂(Xi, θn)−Ψ(Xi, θn)
}∣∣∣∣2
]

≤ E

[∥∥∥∥dm(Xi, θ0)

dθ
[u∗n(w)]

′
Σ(Xi)

−1/2

∥∥∥∥2

E

]
× sup
x∈X ,θ∈Nosn∪{θ0}

∥∥∥Ψ̂(Xi, θn)−Ψ(Xi, θn)
∥∥∥2

E

= Op
(
%2
n

)
= op(n

−1/2) (B.13)

where the last equality follows from Lemma C.1. Similarly,

E

[∣∣∣∣dm(Xi, θ0)

dθ
[u∗n(w)]

′
Σ0(Xi)

−1/2
{

Ψ̂(Xi, θ0)−Ψ(Xi, θ0)
}∣∣∣∣2
]

= op(n
−1/2). (B.14)

Combining (B.13) and (B.14), we have

E

[
dm(Xi, θ0)

dθ
[u∗n (w)]

′
Σ0(Xi)

−1/2
{

Ψ̂(Xi, θn)− Ψ̂(Xi, θ0)
}]

= E

[
dm(Xi, θ0)

dθ
[u∗n (w)]

′
Σ0(Xi)

−1 {m(Xi, θn)−m(Xi, θ0)}
]

= E

[
dm(xi, θ0)

dθ
[u∗n (w)]

′
Σ0(Xi)

−1

{
dm (Xi, θn)

dθ
[θn − θ0]

}]
= E

[
dm(xi, θ0)

dθ
[u∗n (w)]

′
Σ0(Xi)

−1

{
dm (Xi, θn)

dθ
[θn − θ0]− dm (Xi, θ0)

dθ
[θn − θ0]

}]
+ 〈u∗n (w) , θn − θ0〉+ op

(
n−1/2

)
= 〈u∗n (w) , θn − θ0〉+ op

(
n−1/2

)
,
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where the last equality follows from Assumption A.14 that

E

[{
dm(Xi, θ0)

dθ
[u∗n (w)]

}′
Σ0(Xi)

−1

{
dm (Xi, θn)

dθ
[θn − θ0]− dm (Xi, θ0)

dθ
[θn − θ0]

}]
= op(n

−1/2)

uniformly on θ ∈ N0 and θn ∈ N0sn and w ∈ W. Therefore, uniformly over θn ∈ Nosn and w ∈ W, we have

dL̂n (θ(tn))

dtn

∣∣∣∣∣
tn=0

=
tn
n

∑ dm(Zi, θ0)

dθ
[u∗n(w)]

′
Σ(Xi, θ0)−1ρ(Zi, θ0) + tn

〈
u∗n(w), θ̂n − θ0

〉
+ op(tnn

−1/2),

and it implies that

√
n
〈
u∗n(w), θ̂n − θ0

〉
= − 1√

n

n∑
i=1

dm(Xi, θ0)

dθ
[u∗n(w)]

′
Σo(Xi)

−1ρ(Zi, θ0) + op (1)

= −αn(w)′Ω1/2
n

1√
n

n∑
i=1

dm(Xi, θ0)

dθ

[
p̄kn(·)′

]′
Σo(Xi)

−1ρ(Zi, θ0) + op(1)

where the second equality follows from the definition that αn(w) =
Ω1/2
n An(w)∥∥∥Ω

1/2
n An(w)

∥∥∥
E

and u∗n(w).

By Assumption A.15,

‖αn (w1)− αn (w2)‖E .

∥∥∥∥∥∥ An (w1)∥∥∥Ω
1/2
n An(w1)

∥∥∥
E

− An(w2)∥∥∥Ω
1/2
n An(w2)

∥∥∥
E

∥∥∥∥∥∥
E

.
‖An(w1)−An(w2)‖E∥∥∥Ω

1/2
n An(w1)

∥∥∥
E

+ ‖An(w2)‖E

∣∣∣∣∣∣ 1∥∥∥Ω
1/2
n An(w1)

∥∥∥
E

− 1∥∥∥Ω
1/2
n An(w2)

∥∥∥
E

∣∣∣∣∣∣
=
‖An(w1)−An(w2)‖E∥∥∥Ω

1/2
n An(w1)

∥∥∥
E

+ ‖An(w2)‖E

∣∣∣∥∥∥Ω
1/2
n An(w2)

∥∥∥
E
−
∥∥∥Ω

1/2
n An(w1)

∥∥∥
E

∣∣∣∥∥∥Ω
1/2
n An(w1)

∥∥∥
E

∥∥∥Ω
1/2
n An(w2)

∥∥∥
E

.
‖An(w1)−An(w2)‖E

‖An(w1)‖E
. ξLkn ‖w1 − w2‖E

where the last inequality follows from Assumption A.15.

For l = 1 . . . , dρ, since max1≤t,l≤dρ
∣∣Σtl(X, θ0)−1

∣∣ = Op(1), consider

F =

{
f = αn(w)

dml(X, θ0)

dθ

[
p̄kn(·)′

]
Σ0(X)−1ρl(Z, θ0)

}
. (B.15)

Then Var
[
αn,(w)′ dml(X,θ0)

dθ

[
p̄kn(·)′

]
Σ0(X)−1ρl(Z, θ0)

]
. 1 and

sup
w∈W

∣∣∣∣αn,l(w)
dml(X, θ0)

dθ

[
p̄kn(·)′

]
Σ0(X)−1ρl(Z, θ0)

∣∣∣∣ . ξρ,knn
1/m = op(b

−1
n ),
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where the inequality follows from Assumption 3.5 (ii), A.15 A.17 and A.19. Furthermore, for w1, w2 ∈ W,

f(w1)− f(w2)

≤ ξLkn
∥∥w1 − w2

∥∥ max
1≤i≤n

|ρt(Zi, θ0)|
∥∥Σ0(Xi)

−1
∥∥ max

1≤i≤n

∥∥∥∥dml(Xi, θ0)

dθ

[
p̄kn(·)

]∥∥∥∥
. ξLkn

∥∥w1 − w2
∥∥n1/mξρ,kn .

It implies that for some C > 0,

sup
Q
N
(
F , L2(Q), εn1/mξρ,kn

)
≤
(
CξLk /ε

)dw
.

Thus, by Theorem 6.1 in BCCK (see also Giné and Koltchinskii, 2006),

E

[
sup
w∈W

∣∣∣∣αn(w)′Gn
[
dm(Xi, θ0)

dθ

[
p̄kn(·)′

]
Σ0(Xi)

−1ρ(Zi, θ0)

]∣∣∣∣] .√log n. (B.16)

Step 2. (Strong Approximation)

Our proof applies Yurinskii’s coupling (Theorem 10 in Pollard, 2002). Let

S1i = Ω1/2
n

dm(Xi, θ0)

dθ

[
p̄kn(·)′

]′
Σ0(Xi)

−1ρ(Zi, θ0)

be a copy of the first order approximation to our estimator. As all eigenvalues of Ωn and Σ0 are bounded

away from zero,

E ‖S1i‖3 .
∥∥Σ0(Xi)

−1
∥∥3
E

[
max

1≤l≤dρ

∥∥∥∥dml(Xi, θ0)

dθ

[
p̄kn(·)′

]∥∥∥∥3
](

max
1≤l≤dρ

max
1≤i≤n

E
[
‖ρl(Zi, θ0)‖3 |Xi

])

. sup
1≤i≤n

max
1≤l≤dρ

E

[∥∥∥∥dml(Xi, θ0)

dθ

[
p̄kn(·)′

]∥∥∥∥2
]

sup
1≤i≤n

max
1≤l≤dρ

∥∥∥∥dρl(Zi, θ0)

dθ

[
p̄kn(·)′

]∥∥∥∥
. (kn + dβ) ξρ,kn <∞,

where we used the contraction property of conditional expectation, Assumption A.7 and A.17-A.19. By

applying Yurinskii’s coupling, ∀ε > 0, as b6n (kn + dβ)
2
ξ2
ρ,kn

log2 n/n→ 0, we have

Pr

{∥∥∥∥∥ 1√
n

n∑
i=1

S1i −Ndβ+kn

∥∥∥∥∥ > 3δb−1
n

}
.

n (kn + dβ)
2
ξρ,kn(

δb−1
n
√
n
)3 (

1 + (kn + dβ)−1 log (kn + dβ)
2
ξρ,kn

)
.

b3n(kn + dβ)2ξρ,kn
δ3
√
n

(
1 +

log n

(kn + dβ)

)
→ 0.

It implies that

√
n
〈
u∗n(w), θ̂n − θ0

〉
=

An(w)∥∥∥Ω
1/2
n An(w)

∥∥∥
E

′
ΩnGn

[
dm(Xi, θ0)

dθ

[
p̄kn(·)′

]′
Σo(Xi)

−1ρ(Zi, θ0)

]
+ op

(
b−1
n

)
.
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Thus, by the definition of S1i, we have

√
n
〈
u∗n(w), θ̂n − θ0

〉
=

An(w)′Ω
1/2
n∥∥∥Ω

1/2
n An(w)

∥∥∥
E

Ω1/2
n GnS1i + op

(
b−1
n

)

=
An(w)′Ω

1/2
n∥∥∥Ω

1/2
n An(w)

∥∥∥
E

Ndβ+kn + op
(
b−1
n

)

in `∞(W). Therefore, under the assumption that supw
√
n |rn(w)| / ‖δ∗n(w)‖ = op(b

−1
n ), we have

√
n
(
φ̂n(w)− φ0(w)

)
‖δ∗n‖

=

√
n
〈
δ∗n(w), θ̂n − θ0

〉
∥∥∥An(w)′Ω

1/2
n

∥∥∥
E

+ op
(
b−1
n

)
=

An(w)′Ω
1/2
n∥∥∥An(w)′Ω

1/2
n

∥∥∥
E

Ndβ+kn + op
(
b−1
n

)
in `∞ (W). 2

B.1.3 Proofs of Section 3.3

The following lemma implies results in Lemma 4.1.

Lemma B.7. (Consistency and Convergence Rates of Variance Estimators) Suppose Assumptions of

3.3 hold. Let b−1
n = op

(
1√

logn

)
. Then uniformly over w ∈ W, we have (i)

‖δ̂∗n(w)−δ∗n(w)‖
‖δ∗n(w)‖ = op

(
b−1
n

)
, (ii)∣∣∣∣‖δ̂∗n(w)‖

‖δ∗n(w)‖ − 1

∣∣∣∣ = op
(
b−1
n

)
, (iii) ‖û∗n(w)− u∗n(w)‖ = op

(
b−1
n

)
, (iv)

‖δ̃∗n(w)−δ∗n(w)‖
‖δ∗n(w)‖ = op

(
b−1
n

)
, (v)

∣∣∣∣‖δ̃∗n(w)‖
‖δ∗n(w)‖ − 1

∣∣∣∣ =

op
(
b−1
n

)
and (vi) ||ũ∗(w)− u∗n(w)|| = op(b

−1
n ).

The proof of Lemma B.7 is presented in the Supplemental Appendix.

Proof of Theorem 3.5.

We show the proof in two main steps. In the first step, we prove that

tn(w) = t∗(w) + op(b
−1
n )

uniformly over w ∈ W. And in the second step, we prove that

Pr

{
sup
w∈W

|tn(w)| ≤ cn(1− τ)

}
= 1− τ + o(1).

Step 1. Assumption A.16 implies that for for all w ∈ W

√
n
φ(θ̂n)[w]− φ(θ0)[w]

‖δ∗n(w)‖
=
√
n
∂φ(θ0)
∂θ [θ̂n − θ0][w]

‖δ∗n(w)‖
+ op(1) =

√
n
∂φ(θ0)
∂θ [θ̂n − θ0,n + θ0,n − θ0][w]

‖δ∗n(w)‖
+ op(1)

=
√
n
〈
δ∗n(w), θ̂n − θ0n

〉
/ ‖δ∗n(w)‖+ op(1) =

√
n
〈
δ∗n(w), θ̂n − θ0

〉
/ ‖δ∗n(w)‖+ op(1)

where the last equality is by the orthogonality property of θ0,n.
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Moreover, by the triangle inequality,∣∣∣∣∣∣
〈
δ̂∗n (w) , θ̂n − θ0

〉
n∥∥∥δ̂∗n(w)

∥∥∥
n

−

〈
δ∗n (w) , θ̂n − θ0

〉
‖δ∗n (w)‖

∣∣∣∣∣∣
.

∣∣∣∣∣∣
〈
δ̂∗n(w)− δ∗n(w), θ̂n − θ0

〉
n∥∥∥δ̂∗n(w)

∥∥∥
n

∣∣∣∣∣∣+

∣∣∣〈δ̂∗n (w) , θ̂n − θ0

〉∣∣∣∥∥∥δ̂∗n(w)
∥∥∥

∣∣∣∣∣∣1−
∥∥∥δ̂∗n(w)

∥∥∥
n

‖δ∗n(w)‖

∣∣∣∣∣∣ (B.17)

uniformly over w ∈ W.

By triangle inequality and Lemma B.7,

∣∣∣∣ 〈δ̂∗n(w)−δ∗n(w),θ̂n−θ0〉
n

‖δ̂∗n(w)‖
n

∣∣∣∣ = op(n
−1/2),

∣∣∣∣1− ‖δ̂∗n(w)‖
‖δ∗n(w)‖

∣∣∣∣ = op
(
b−1
n

)
and

|〈δ̂∗n(w),θ̂n−θ0〉|
‖δ̂∗n(w)‖ = Op(n

−1/2), it implies that (B.17) is op(n
−1/2).

Furthermore, Theorem 3.3 implies that

sup
w∈W

∣∣∣∣∣∣
√
n
〈
δ∗n (w) , θ̂n − θ0

〉
‖δ∗n(w)‖

−
An(w)′Ω

1/2
n Ndβ+kn∥∥∥An(w)′Ω

1/2
n

∥∥∥
∣∣∣∣∣∣ = op(1).

Therefore,

φ
(
θ̂n

)
[w]− φ(θ0)[w]

σ̂φ,n(w)
=
An(w)′Ω

1/2
n Ndβ+kn∥∥∥An(w)′Ω

1/2
n

∥∥∥ + op(1)

in `∞(W)

Step 2. Note that by triangle inequality,∣∣∣∣ sup
w∈W

∣∣t̂∗n(w)
∣∣− sup

w∈W
|t∗n(w)|

∣∣∣∣ ≤ sup
w∈W

∣∣∣∣∣
(
A(w)′Ω̂1/2

√
nσ̂φ̂(w)

− A(w)′Ω1/2

√
nσφ(w)

)
Ndβ+kn

∣∣∣∣∣ .
Let ENdβ+kn

[·] be the expectation with respect to the distribution of Ndβ+kn . Conditionally on the

data,

ENdβ+kn

[(
t̂∗n(w)− t∗n(w)

)2]1/2
=

∥∥∥∥∥ Ân(w)′Ω̂
1/2
n√

nσ̂φ,n(w)
− An(w)′Ω

1/2
n√

nσ̂φ,n(w)

∥∥∥∥∥
E

≤

∥∥∥∥∥An(w)′Ω
1/2
n√

nσφ,n(w)

∥∥∥∥∥
E

∣∣∣∣σφ,n(w)

σ̂φ,n(w)
− 1

∣∣∣∣+
‖An(w)‖E√
nσ̂φ,n(w)

∥∥∥Ω̂1/2
n − Ω1/2

n

∥∥∥
E

+

∥∥∥∥∥ Ân(w)−An(w)√
nσφ,n(w)

∥∥∥∥∥ .
Since

∥∥∥Ω̂
1/2
n − Ω

1/2
n

∥∥∥
E
≤
∥∥∥Ω̂n − Ωn

∥∥∥
E

∥∥Ω−1
n

∥∥1/2

E
, we have

‖An(w)‖E√
nσ̂φ(w)

∥∥∥Ω̂1/2
n − Ω1/2

n

∥∥∥
E
≤
‖An(w)‖E√
nσ̂φ(w)

∥∥∥Ω̂n − Ωn

∥∥∥
E

∥∥Ω−1
n

∥∥1/2

E
.p b

−1
n ,

where the second inequality is from Theorem B.7. Similarly, as all eigenvalues of Ωn are bounded away from
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zero, by the triangle inequality,

∣∣∣∣∣ σ̂φ̂,n(w)

σφ,n(w)
− 1

∣∣∣∣∣ ≤
∥∥∥An(w)′

(
Ω̂

1/2
n − Ω

1/2
n

)∥∥∥
E∥∥∥An(w)′Ω

1/2
n

∥∥∥
E

.p
∥∥∥Ω̂1/2

n − Ω1/2
n

∥∥∥
E

= op(b
−1
n ).

Moreover, by Assumption A.19,

∥∥∥∥∥ Ân(w)−An(w)√
nσφ,n(w)

∥∥∥∥∥ .

∥∥∥Ân(w)−An(w)
∥∥∥

‖An(w)‖
. ξφ,nKn%s,n = op(b

−1
n )

Thus,

ENkn

[(
t̂∗n(w)− t∗n(w)

)2]1/2
= op(b

−1
n ).

Furthermore, uniformly over w1, w2 ∈ W,

ENkn

[((
t̂∗n(w1)− t∗n(w1)

)
−
(
t̂∗n(w2)− t∗n(w2)

))2]1/2
≤

∥∥∥∥An(w1)′Ω1/2

√
nσφ(w1)

− An(w2)′Ω1/2

√
nσφ(w2)

∥∥∥∥
E

+

∥∥∥∥∥ Ân(w1)′Ω̂1/2

√
nσ̂φ(w1)

− Ân(w2)′Ω1/2

√
nσ̂φ(w2)

∥∥∥∥∥
E

.

By triangle inequality, uniformly over w1, w2 ∈ W,∥∥∥∥∥An(w1)′Ω
1/2
n√

nσφ(w1)
− An(w2)′Ω

1/2
n√

nσφ(w2)

∥∥∥∥∥
E

≤
‖An(w1)−An(w2)‖E√

nσφ(w1)
+
‖An(w)‖E√

n

|σφ(w2)− σφ(w1)|
σφ(w1)σφ(w2)

.
‖An(w1)−An(w2)‖E

‖An(w1)‖E
.p ξ

L
kn ‖w1 − w2‖E .

Similarly, uniformly over w1, w2 ∈ W,∥∥∥∥∥ Â(w1)′Ω̂1/2

√
nσ̂f̂ (w1)

− Â(w2)′Ω12

√
nσ̂f̂ (w2)

∥∥∥∥∥
E

.p ξ
L
kn ‖w1 − w2‖E .

It follows that

ENkn

[((
t̂∗n(w1)− t∗n(w1)

)
−
(
t̂∗n(w2)− t∗n(w2)

))2]1/2
.p ξ

L
kn ‖w1 − w2‖E .

Thus, there exists a sequence {`n} s.t. `n → 0 and

P

{∣∣∣∣ sup
w∈W

∣∣t̂∗n(w)
∣∣− sup

w∈W
|t∗n(w)|

∣∣∣∣ > `n (log n)
−1/2

}
→ 0.

The following proof follows from the arguments in the proof of Theorem 5.6 in BCCK. We present here for

completeness of the proof.

Denote c̃n(1− τ) as the (1− τ)−quantile of supw∈W |t?n(w)|. By∣∣∣∣ sup
w∈W

∣∣t̂∗n(w)
∣∣− sup

w∈W
|t∗n(w)|

∣∣∣∣ = op

(
`n (log n)

−1/2
)
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and the fact that closeness in probability implies closeness of conditional quantiles (Lemma A.3 in BCCK,

2013), for a sequence {νn} such that νn = o(1), we have

Pr
{
cn(1− τ) < c̃n(1− τ − νn)− `n (log n)

−1/2
}

= o(1),

Pr
{
cn(1− τ) > c̃n(1− τ + νn) + `n (log n)

−1/2
}

= o(1).

Furthermore, by the strong approximation result in Theorem 3.3, there exists a sequence of {βn} of constants

and a sequence {Zn} of random variables such that βn = o(1), Zn equals in distribution to ||t∗n||W , and

Pr

{∣∣∣∣ sup
w∈W

|tn(w)| − Zn
∣∣∣∣ > βn/

√
log n

}
= o(1).

It implies that for universal constant C, we have

Pr

{
sup
w∈W

|tn(w)| ≤ cn(1− τ)

}
≤ Pr

{
Zn ≤ cn(1− τ) + βn/

√
log n

}
+ o(1)

≤ Pr {Zn ≤ c̃n(1− τ + νn + C(`n + βn))}+ o(1)

≤ Pr {Zn ≤ c̃n (1− τ + νn + C(`n + βn))}+ o(1)

= 1− τ + o(1).

where the third inequality follows from the “anti-concentration for separable Gaussian processes” (Lemma

5.3 in BCCK).

Moreover, since cn(1− τ) .p
√

log n, we have 2cn(1− τ)σ̂n .p
√

log nσ(w), uniformly over w ∈ W. 2

Proof of Theorem 3.6.

Part (i): The assumption on the linear independence of functionals implies that

n
(
φ(θ̂n)[w]− φ(θ0)[w]

)′
V̂ −1
φ,n

(
φ(θ̂n)[w]− φ(θ0)[w]

)
=

J∑
j=1

{√
n
(
φj(θ̂n)[w]− φj(θ0)[w]

)
/
∥∥∥δ̂∗n,j(w)

∥∥∥}2

=

J∑
j=1

{√
n
〈
δ∗n,j(w), θ̂n − θ0

〉
/
∥∥∥δ̂∗n,j(w)

∥∥∥}2

+ op(1). (B.18)

For each j = 1, . . . , J , by Theorem 3.3, for all w ∈ W, we have

√
n
〈
δ∗n,j(w), θ̂n − θ0

〉
/
∥∥δ∗n,j(w)

∥∥
= − 1√

n

n∑
j=1

dm(Xi, θ0)

dθ
[u∗n,j(w)]′Σ0(Xi)

−1ρ(Zi, θ0) + op(b
−1
n )

= V
−1/2
φ,n An(w)′Ω1/2

n Ndβ+kn + op(b
−1
n ). (B.19)
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Note that by Lemma B.7, for j = 1, . . . , J ,∣∣∣∣∣∣
〈
δ̂∗n,j (w) , θ̂n − θ0

〉
n∥∥∥δ̂∗n,j(w)

∥∥∥
n

−

〈
δ∗n,j (w) , θ̂n − θ0

〉
∥∥δ∗n,j (w)

∥∥
∣∣∣∣∣∣

.

∣∣∣∣∣∣
〈
δ̂∗n,j(w)− δ∗n,j(w), θ̂n − θ0

〉
n∥∥∥δ̂∗n,j(w)

∥∥∥
n

∣∣∣∣∣∣+

∣∣∣〈δ̂∗n,j (w) , θ̂n − θ0

〉∣∣∣∥∥∥δ̂∗n,j(w)
∥∥∥

∣∣∣∣∣∣1−
∥∥∥δ̂∗n,j(w)

∥∥∥
n∥∥δ∗n,j(w)
∥∥
∣∣∣∣∣∣ = op(b

−1
n ). (B.20)

Combining (B.19) and (B.20) yields that∥∥∥∥∥∥
〈
δ̂
∗
n (w) , θ̂n − θ0

〉
n∥∥∥δ̂∗n(w)

∥∥∥
n

−
√
nV
−1/2
φ,n An(w)′Ω1/2

n Ndβ+kn

∥∥∥∥∥∥ = op
(
b−1
n

)
.

Therefore, for all w ∈ W,

Waldn(w) =

J∑
j=1

 An,j(w)′Ω
1/2
n∥∥∥An,j(w)′Ω

1/2
n

∥∥∥
E

Ndβ+kn

2

+ op(1)

= N ′dβ+knΩ1/2
n An(w)V −1

φ,nAn(w)′Ω1/2
n Ndβ+kn + op(1).

Next, we show that for a sequence {`n} such that `n → 0,

P

{∣∣∣∣ sup
w∈W

∣∣∣T̂ ∗n(w)
∣∣∣− sup

w∈W
|T ∗n(w)|

∣∣∣∣ > `n/
√

log n

}
= o(1).

Note that by triangle inequality and Assumption 3.8,∣∣∣∣ sup
w∈W

∣∣∣T̂ ∗n(w)
∣∣∣− sup

w∈W
|T ∗n(w)|

∣∣∣∣
≤ sup

w∈W

∣∣∣T̂ ∗n(w)− T ∗n(w)
∣∣∣

= sup
w∈W

∣∣∣∣∥∥∥V̂ −1/2
φ,n Ân(w)′Ω̂1/2

n Ndβ+kn

∥∥∥2

E
−
∥∥∥V −1/2

φ,n An(w)′Ω1/2
n Ndβ+kn

∥∥∥2

E

∣∣∣∣
≤ sup

w∈W

J∑
j=1

∣∣∣∣∣∣
 Ân,j(w)′Ω̂

1/2
n∥∥∥Ân,j(w)′Ω̂

1/2
n

∥∥∥
E

− An,j(w)′Ω
1/2
n∥∥∥An,j(w)′Ω

1/2
n

∥∥∥
E

Ndβ+kn

∣∣∣∣∣∣
2

+ op(b
−1
n ).

Then the results follows by similar calculations in the proof of Theorem 3.5 and extended continuous mapping

theorem.

Part (ii): By the definition of sup−QLRn, we first consider the difference of Ln(θ̃n) − Ln(θ̂n). Since

φ(θ̃n)[w] = φ(θ0)[w] for all w ∈ W, under the null,
〈
u∗n(w), θ̃n − θ0

〉
= op(n

−1/2).

Let θ̃n(tn, w) = θ̃n − tnu∗n(w). By the definition of θ̂n,

L̂n(θ̃n)− L̂n(θ̂n) ≥ L̂n
(
θ̃n

)
− L̂n

(
θ̃n(tn, w)

)
− op(n−1).
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Furthermore,

L̂n

(
θ̃n

)
− L̂n

(
θ̃n(tn, w)

)
− op(n−1)

= L̂n

(
θ̃n

)
− L̂n

(
θ̃n − tnu∗n(w)

)
− op(n−1)

=
2tn
n

n∑
i=1

dm(Xi, θ0)

dθ
[u∗n(w)]

′
Σ0(Xi)

−1ρ(Zi, θ0) + 2tn

〈
u∗n(w), θ̃n − θ0

〉
− t2n + op(n

−1).

=
2tn
n

n∑
i=1

dm(Xi, θ0)

dθ
[u∗n(w)]

′
Σ0(Xi)

−1ρ(Zi, θ0)− t2n +Op(n
−1/2tn) + op(n

−1)

=
2tn
n

n∑
i=1

dm(Xi, θ0)

dθ
[u∗n(w)]

′
Σ0(Xi)

−1ρ(Zi, θ0)− t2n + op(n
−1). (B.21)

Minimizing the above distance yields that

tn =
1

n

n∑
i=1

dm(Xi, θ0)

dθ
[u∗n(w)]

′
Σ0(Xi)

−1ρ(Zi, θ0) = Op(n
−1/2) (B.22)

and hence for all w, we have

L̂n

(
θ̃n

)
− L̂n

(
θ̂n

)
≥

(
1

n

n∑
i=1

dm(Xi, θ0)

dθ
[u∗n(w)]

′
Σ0(Xi)

−1ρ(Zi, θ0)

)2

+ op(n
−1). (B.23)

On the other hand, let θ∗n = θ̂n(tn, w) = θ̂n + tnu∗n(w), by similar arguments in the proof of Theorem 3.3,

for all w ∈ W,

L̂n

(
θ̂n(tn, w)

)
− L̂n

(
θ̂n

)
=

2tn
n

n∑
i=1

dm(Xi, θ0)

dθ
[u∗n(w)]

′
Σ0(Xi)

−1ρ(Zi, θ0) + 2tn

〈
u∗n(w), θ̂n − θ0

〉
+ t2n + op(n

−1)

=

(
1

n

n∑
i=1

dm(Xi, θ0)

dθ
[u∗n(w)]

′
Σ0(Xi)

−1ρ(Zi, θ0)

)2

+ op(n
−1),

where the last equality follows from (B.22), tn . n−1/2 and the result in Theorem 3.3 such that for all

w ∈ W,

1√
n

n∑
i=1

dm(Xi, θ0)

dθ
[u∗n(w)]

′
Σ0(Xi)

−1ρ(Zi, θ0) +
〈
u∗n(w), θ̂n − θ0

〉
= op(1).

If φ
(
θ̂n(tn, w)

)
[w] = φ(θ0)[w] for all w ∈ W, then by the definition of θ̃n,

n
(
L̂n(θ̃n)− L̂n

(
θ̂n

))
≤ n

(
L̂n

(
θ̂n(tn, w)

)
− L̂n(θ̂n)

)
+ op(1)

=

(
1√
n

n∑
i=1

dm(Xi, θ0)

dθ
[u∗n(w)]

′
Σ0(Xi)

−1ρ(Zi, θ0)

)2

+ op(1). (B.24)
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Combining (B.23) and (B.24), we conclude that uniformly over w ∈ W,

n
(
L̂n(θ̃n)− L̂n

(
θ̂n

))
=

(
1

n

n∑
i=1

dm(Xi, θ0)

dθ
[u∗n(w)]

′
Σ0(Xi)

−1ρ(Zi, θ0)

)2

+ op(1).

However, if φ
(
θ̂n(tn, w)

)
[w] 6= φ(θ0)[w] for all w ∈ W, under the null, we show that there exists t∗n ∈ Tn

w.p.a.1. such that (i) t∗n = tn + op(n
−1/2) = Op(n

−1/2) and (ii) φ
(
θ̂n(t∗n, w)

)
[w] = φ(θ0)[w] for all w ∈ W.

The proof strategy is based on the one in Shen and Shi (2005) or Chen and Pouzo (2014).

Let M̄n = o
(
||δ∗n||n−1/2

)
. By the Riesz representation theorem, for all w ∈ W,

−M̄n ≤ φ(θ + tnu
∗
n(w))[w]− φ(θ0)[w]− 〈θ − θ0, δ

∗
n(w)〉 − tn||δ∗n(w)|| ≤ M̄n,

Thus, for any r ∈
{
|r| ≤ 2Kn max1≤j≤J ||δ∗n,j(w)||%n

}
, let

t = −〈u∗n(w), θ − θ0〉 − 2M̄n ‖δ∗n(w)‖−1
+ r ‖δ∗n(w)‖−1

and

t̄ = −〈u∗n(w), θ − θ0〉+ 2M̄n ‖δ∗n(w)‖−1
+ r ‖δ∗n(w)‖−1

.

To show that t ∈ Tn, note that since

|t| × ||δ∗n(w)|| . ||θ − θ0||+ 2
∣∣M̄n

∣∣+ |r(w)|,

we have |t| ≤ 4K2
n%n. Then t ∈ Tn. By the same argument, t̄ ∈ Tn. Therefore, by the definitions of t and t̄,

for all w ∈ W,

φ(θ + t̄u∗n (w))[w]− φ(θ0)[w] ≥ r(w) + M̄n > r(w)

and

φ(θ + tu∗n (w))[w]− φ(θ0)[w] ≤ r(w)− M̄n < r(w).

By continuity of φ(θ + tu∗n) and the mean value theorem, there exists some t∗n ∈ [t, t̄] such that t∗n ∈ Tn
and φ(θ + t∗nu∗n(w))[w] = r(w). It implies that φ

(
θ̂n(t∗n, w)

)
[w] − φ(θ0)[w] = 0. Furthermore, by similar

arguments as above, we show that

Ln

(
θ̂n(t∗n, w)

)
− Ln

(
θ̂n(t, w)

)
− op(n−1)

=
(
Ln

(
θ̂n(t∗n, w)

)
− Ln(θ̂n)

)
−
(
Ln

(
θ̂n(t, w)

)
− Ln

(
θ̂n

))
− op(n−1)

= t∗n

J∑
j=1

[〈
θ̂n − θ0, u

∗
n,j(w)

〉
− 1

n

n∑
i=1

dm(Xi, θ0)

dθ

[
u∗n,j(w)

]′
Σ(Xi)

−1ρ(Zi, θ0)

]
+ op(n

−1)

= Op(n
−1/2)× op(n−1/2) + op(n

−1) = op(n
−1).
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Therefore, by orthogonality of {δ∗n,j(w)} for all w,

n
(
L̂n(θ̃n)− L̂n

(
θ̂n

))
≤ n

(
L̂n

(
θ̂n(t∗n, w)

)
− Ln

(
θ̂n

))
=

J∑
j=1

(
1√
n

n∑
i=1

dm(Xi, θ0)

dθ
[u∗n(w)]

′
Σ0(Xi)

−1ρ(Zi, θ0)

)2

+ op(1)

=

J∑
j=1

(√
n
〈
δ∗j,n(w), θ̂n − θ0

〉
/
∥∥δ∗j,n(w)

∥∥)2

+ op(1)

and

n
(
L̂n(θ̃n)− L̂n

(
θ̂n

))
≥ nL̂n

(
θ̃n

)
− L̂n

(
θ̃n(t∗n, w)

)
=

J∑
j=1

(
1√
n

n∑
i=1

dm(Xi, θ0)

dθ
[u∗n(w)]

′
Σ0(Xi)

−1ρ(Zi, θ0)

)2

+ op(1)

=

J∑
j=1

(√
n
〈
δ∗j,n(w), θ̂n − θ0

〉
//
∥∥δ∗j,n(w)

∥∥)2

+ op(1)

for all w ∈ W. Since for each j = 1, . . . , J , for all w ∈ W, by Theorem 3.3,

√
n
〈
δ∗j,n(w), θ̂n − θ0

〉
∥∥δ∗j,n(w)

∥∥ =
An,j(w)′Ω

1/2
n∥∥∥An,j(w)′Ω
1/2
n

∥∥∥Ndβ+kn + op(1).

It yields that

n
(
L̂n

(
θ̃n

)
− L̂n

(
θ̂n

))
= N ′dβ+knΩ1/2

n An(w)V −1
φ,nAn(w)′Ω1/2

n Ndβ+kn + op(1).

(iii) By similar argument as in the proof of Theorem 3.3, let ũ∗n(w) = δ̃∗n(w)/||δ̃∗n(w)|| for w ∈ W. Then for

all w ∈ W,

1

2

dL̃n(θ̃n)

dθ
[ũ∗n(w)′]

=
1

n

n∑
i=1

dm(Xi, θ0)

dθ

[
δ̃∗n(w)/

∥∥∥δ̃∗n(w)
∥∥∥]′ Σ0(Xi)

−1ρ(Zi, θ0) +
〈
θ̃n − θ0, ũ

∗
n(w)

〉
+ op(n

−1/2).

By the definition of θ̃n, for all w, we have

0 =
√
n
(
φ
(
θ̃n

)
[w]− φ(θ0) [w]

)
/
∥∥∥δ̃∗n(w)

∥∥∥ =
√
n
〈
θ̃n − θ0, ũ

∗
n(w)

〉
+ op(1).
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It implies that
√
n
〈
θ̃n − θ0, ũ

∗
n(w)

〉
= op(1). Thus,

√
n

1

2

dL̃n(θ̃n)

dθ
[ũ∗n(w)′] =

1√
n

n∑
i=1

dm(Xi, θ0)

dθ

[
δ̃∗n(w)/

∥∥∥δ̃∗n(w)
∥∥∥]′Σ0(Xi)

−1ρ(Zi, θ0) + op(1)

=
1√
n

n∑
i=1

dm(Xi, θ0)

dθ
[δ∗n(w)/ ‖δ∗n(w)‖]′ Σ0(Xi)

−1ρ(Zi, θ0) + op(1),

where the second equality follows from Lemma B.7. Then the results follow by the same steps above as the

ones for sup-Waldn and sup−QLRn. 2

B.1.4 Multiplier Bootstrap for Uniform Inference Under Point Identification

we show that the following multiplier bootstrap procedures are valid for uniform inference under point

identification.

Consider a sequence {ζi}ni=1 that are i.i.d. draws from the standard exponential distribution and inde-

pendent of the data. For each draw of such weights, we define the multiplier bootstrap draw of the SGMM

estimator θ̂?n as a solution to the following criterion weighted by {ζi}ni=1 such that

L̂?n(θ) =

(
1

n

n∑
i=1

ζiρ(Zi, θ)⊗ qsni

)′(
1

n

n∑
i=1

Σ(Xi, θ̃n)⊗ qsni q
s′n
i

)−1(
1

n

n∑
i=1

ζiρ(Zi, θ)⊗ qsni

)
+ λnPen(h).

(B.25)

Let g?i (θ̂n) = (ζi − 1)ρ(Zi, θ̂
?
n) and the bootstrap variance estimator be

V̂ ?φ,n =
dφ(θ̂n)

dθ

[
ψ̄kn(·)′

]′ ×( 1

n

n∑
i=1

dρ(Zi, θ̂n)

dθ

[
p̄kn (·)′

]
⊗ qi

)′(
1

n

∑
i=1

g?i

(
θ̂n

)
g?i

(
θ̂n

)′)−1

×

(
1

n

n∑
i=1

dρ(Zi, θ̂n)

dθ

[
p̄kn (·)′

]
⊗ qi

)
× dφ(θ̂n)

dθ

[
ψ̄kn(·)′

]
.

We have E
[
V̂ ?φ,n|Zn

]
= V̂φ,n.

Let

sup−Wald?n ≡ sup
w∈W

{
n
(
φ
(
θ̂?n

)
[w]− φ

(
θ̂n

)
[w]
)′
V̂ ?−1

φ̂n
(w)

(
φ
(
θ̂?n

)
[w]− φ

(
θ̂n

)
[w]
)}

, (B.26)

sup−QLR?
n ≡ n sup

w∈W

{
min

θ∈Θn:φ(θ)=r̂(w)
L∗n(θ)− min

θ∈Θn
L?n (θ)

}
,

where r̂(w) = φ(θ̂n)[w] and

sup−LM?
n ≡ n

4
sup
w∈W


dL̂n

(
θ̃n

)
dθ

[
p̄kn(·)′

] [w]′

(
∂φ(θ̃n)

∂θ

[
p̄kn(·)

])
[w]

× Ṽ −1
φ,n(w)

(
∂φ(θ̃n)

∂θ

[
p̄kn(·)

])′
[w]

dL̂n
(
θ̃n

)
dθ

[
p̄kn(·)′

] [w]

 .
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Theorem B.2. Suppose that Assumptions of Theorem 3.6 hold. Then for

T ∗n(w) = N ′dβ+knΩ1/2
n An(w)V −1

φ An(w)′Ω1/2
n Ndβ+kn , (B.27)

then we have

(i) sup−Wald?n
d
= supw {T ∗n(w)} + op(1); sup−QLR?

n
d
= supw {T ∗n(w)} + op(1) and sup−LM?

n
d
=

supw {T ∗n(w)}+ op(1).

(ii) The results continue to hold in P−probability if we replace the unconditional P by the conditional

probability P ?(·|D) given D = {(xi, yi) : i = 1, . . . , n}.

Proof. The proof of Theorem is similar to the one of Theorem 3.6. Thus, we only present the main steps

for the sup−Wald?n. For the sup−Wald?n statistic, note that the weight ζi is independent of data with

E [ζi] = 1, E
[
ζ2
i

]
= 1 and max1≤i≤n ζi .p log n. By replacing the envelop of ξρ,kn we used in the proof of

Theorem 3.3 by ξρ,kn log n, we have

n
(
φ(θ̂?n)[w]− φ(θ̂n)[w]

)′
V̂ −1
φ,n

(
φ(θ̂?n)[w]− φ(θ̂n)[w]

)
=

J∑
j=1


√
n
(
φj(θ̂

?
n)[w]− φj(θ̂n)[w]

)
∥∥∥δ̂∗n,j(w)

∥∥∥


2

=

J∑
j=1

{√
n
〈
δ∗n,j(w), θ̂?n − θ̂n

〉
/
∥∥δ∗n,j(w)

∥∥}2

+ op(b
−1
n ), (B.28)

where the second equality follows from Lemma B.7.

For j = 1, . . . , J , it can be shown that uniformly over w ∈ W.

√
n
〈
u∗n,j , θ̂

?
n − θ̂n

〉
=
√
n
〈
u∗n,j(w), θ̂?n − θ0

〉
−
√
n
〈
u∗n,j(w), θ̂n − θ0

〉
=

1√
n

n∑
i=1

(ζi − 1)
dm(Xi, θ0)

dθ

[
u∗n,j(w)

]′
Σ0(Xi)

−1ρ(Zi, θ0) + op(1)

=
An,j(w)′Ω

1/2
n√

n||ΩnAn,j(w)||
Ω1/2
n

n∑
i=1

(ζi − 1)
dm(Xi, θ0)

dθ

[
p̄kn(·)′

]
Σ0(Xi)

−1ρ(Zi, θ0) + op(1)

where the last equality follows from δ∗n,j(w) = p̄kn(·)′ΩnAn,j(w) and

u∗n,j(w) = p̄kn(·)′ΩnAn,j(w)/ ‖ΩnAn,j(w)‖ .

Let ζoi = ζi − 1.Note that for F defined in (B.15),
∥∥ζ(f1 − f2)

∥∥
Q,2
≤ ‖ζ‖Q,2

∥∥f1 − f2
∥∥
Q,2

, then

N (ε||ζ||Q,2||F ||Q,2, ζF , L2(Q)) ≤ N (ε||ζ||Q,2,F , L2(Q)) .

Let {τi}ni=1 be a sequence of i.i.d. Rademacher random variables defined by Pr(τ = 1) = Pr(τ = −1) = 1
2 .

Let

Gon ≡
αn(w)′√

n
Ω1/2
n

n∑
i=1

τi
dm(Xi, θ0)

dθ
[p̄kn(·)′]ρ(Zi, θ0).

By Theorem 2.2.4 of van der Vaart and Wellner (1996), for ψ2(y2) = exp{y2} − 1. For the Orlicz norm
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|| · ||ψ2
,

∥∥∥∥∥G0
n

∥∥
ζF

∥∥∥
ψ2|D,ζ

.
ˆ ‖‖|ζf |‖n‖F

0

√
1 + logN (ε, ζF , L2(Pn))dε

'
ˆ ‖‖|ζf|‖n‖F
‖ζ‖n×||F ||n

0

√
1 + logN (u||ζ||n × ||F ||n, ζF , L2 (Pn))||ζ||n × ||F ||ndu

.
ˆ 1

0

√
1 + logN (u||F ||n,F , L2 (Pn))||ζ||n × ||F ||ndu.

Next, we take expectations on both sides of the above equation. By the definition of ζ (E[ζ] = 1) and the

symmetrization inequality (Lemma 2.3.1 of van der Vaart and Wellner, 1996), we have

E

[
sup
w∈W

αn(w)′ΩnGn
[
ζ
dm(Xi, θ0)

dθ
[p̄kn(·)′]ρ(Zi, θ0)

]]
.

√
log n

by combining the results from (B.16).

Furthermore, since E
[
(ζo)

2
]

= 1 and E
[
|ζo|3

]
. 1, we can apply Yurinskii’s coupling for the weighted

process and obtain that

Pr

{∥∥∥∥∥ 1√
n

Ω1/2
n

n∑
i=1

ζoi
dm(Xi, θ0)

dθ

[
p̄kn(·)′

]′
Σo(Xi)

−1ρ(Zi, θ0)−Ndβ+kn

∥∥∥∥∥ > 3δb−1
n

}
→ 0.

It implies that

√
n
〈
u∗n(w), θ̂?n − θ̂n

〉
=

An(w)∥∥∥Ω
1/2
n An(w)

∥∥∥
E

′
ΩnGn

[
ζoi
dm(Xi, θ0)

dθ

[
p̄kn(·)′

]′
Σo(Xi)

−1ρ(Zi, θ0)

]
+ op

(
b−1
n

)

=
An(w)′Ω

1/2
n∥∥∥Ω

1/2
n An(w)

∥∥∥
E

Ndβ+kn + op
(
b−1
n

)
.

Part (ii) follows from Theorem 4.5 (3) in BCCK.

B.2 Proofs of Sections 4

Throughout this subsection, our results are based on a general SGMM criterion function such that

L̄n(θn) = ĝ(θn)′Ŵ ĝ(θn) + λnPen(hn).

We assume Assumption A.20 holds.

Proof of Lemma 4.1.

Lemma 4.1 is a direct application of Lemma C.4 in the Supplemental Appendix.2

Proof of Lemma 4.2.

Without loss of generality, we assume dρ = 1 and J = 1. Under Assumption 4.3 and Assumption 4.4, for
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any θ0 ∈ Θ0, consider the mapping F : F(ρ(·, θ))[w] = φ(θ)[w]. Notice that dF(ρ0)
dρ [ρ− ρ0] : V̄ → R is a

linear functional of ρ, then if

sup
ν(Z,θ)=ρ(Z,θ)−ρ(Z,θ0) 6=0:ν∈V̄

∣∣∣(dF(ρ(·,θ0))
dρ [ν]

)
[w]
∣∣∣2

E
[
E [ν(Z, θ)|X]

′
Σ(X)−1E [ν(Z, θ)|X]

] <∞, (B.29)

then functional φ(θ) are functional on V̄, by the Riesz representation theorem, for any θ0 ∈ Θ0, there is a

ν∗(·, θ0) ∈ V̄ such that

‖ν∗(·, θ0, w)‖2wp = sup
ν∈V̄:〈ν,ν〉6=0

∣∣∣(dF(ρ(·,θ0))
dρ [ν]

)
[w]
∣∣∣2

E
[
E [ν(Z, θ)|X]

′
Σ(X)−1E [ν(Z, θ)|X]

] , (B.30)

and (
dF(ρ0)

dρ
[ρ− ρ0]

)
[w] = 〈ν∗(·, θ0, w), ρ− ρ0〉wp

=
[
E [ν∗(Z, θ0, w)|X]

′
Σ(X)−1E [ρ(Z, θ)− ρ(Z, θ0)]

]
.

Then(
dφ(θ0)

dθ
[θ − θ0]

)
[w] =

(
dF(ρ0)

dρ
· dρ(Z, θ0)

dθ
[θ − θ0]

)
[w] =

〈
ν∗(·, θ0, w),

dρ(Z, θ0)

dθ
[θ − θ0]

〉
wp

= E

[
E [ν∗(Z, θ0, w)|X]

′
Σ(X)−1E

[
dρ(Z, θ0)

dθ
[θ − θ0]

]]
.

If

sup
ν(Z,θ)=ρ(Z,θ)−ρ(Z,θ0) 6=0:ν∈V̄

∣∣∣(dF (ρ(·,θ0))
∂θ [ν]

)
[w]
∣∣∣2

E
[
E [ν(Z, θ)|X]

′
Σ(X)−1E [ν(Z, θ)|X]

] =∞,

we still have

sup
νn(Z,θ)=ρ(Z,θ)−ρ(Z,θ0n)6=0:ν∈V̄n

∣∣∣(dF(ρ(·,θ0n))
dρ [ν]

)
[w]
∣∣∣2

E
[
E [ν(Z, θ)|X]

′
Σ(X)−1E [ν(Z, θ)|X]

] <∞,
then there exists a ν∗n(Z, θ0) such that

(
dF(ρ0)

dρ
[ρ− ρ0n]

)
[w] = E

[
E [ν∗n(Z, θ0, w)|X]

′
Σ(X)−1E [ρ(Z, θ)− ρ(Z, θ0n)|X]

]
(B.31)

2

Proof of Theorem 4.1.

By Assumption 4.4, without loss of generality, we assume J = 1. Let ν∗n(θ̄0, w) be the empirical Riesz

representer and µ∗n
(
θ̄0, w

)
=

ν∗n(θ̄0,w)
‖ν∗n(θ̄0,w)‖

sd

. For all θ̄0 ∈ Θ0 ∩ R, we consider Bn(θ̄0). By the definition of θ̂n

(the unconstrained estimator), we have
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L̄n

(
θ̃n

)
− L̄n

(
θ̂n

)
≥ L̄n

(
θ̃n

)
− L̄n

(
θ̃n (tn, w)

)
(B.32)

where θ̃n(tn, w) ∈ Bn(θ̄0) satisfies ρ(Z, θ̃n(tn, w)) = ρ(Z, θ̃n)−tn×µ∗n(θ̄0, w) for
{
tn ∈ Tn ≡

{
t ∈ [−1, 1] : t . n−1/2

}}
.

To simplify notation, we write ρ(Z, θ) = ρ(θ) for θ ∈ Bn(Θ0) ∪Θ0. By Lemma C.6,

L̄n

(
θ̃n

)
− L̄n

(
θ̃n (tn, w)

)
= 2tn

(
1

n

n∑
i=1

E
[
µ∗n(Ziθ̄0, w)|Xi

]′
Σ(Xi)

−1ρ(Zi, θ̄0) +
〈
ρ(θ̃n)− ρ(θ̄0), µ∗n(θ̄0, w)

〉
(1 + o(1))

)
−t2n

∥∥µ∗n(θ̄0, w)
∥∥2

+ op
(
n−1

)
.

By the definition of θ̃n and Lemma 4.2, for all θ̄0 ∈ Θ0 ∩R

0 =
φ(θ̃n)[w]− φ(θ̄0)[w]

||ν∗n(θ̄0, w)||sd
=
〈
ρ
(
θ̃n

)
− ρ

(
θ̄0

)
, µ∗n(θ̄0, w)

〉
wp

+ op(n
−1/2),

which implies that
〈
ρ
(
θ̃n

)
− ρ

(
θ̄0

)
, µ∗n(θ̄0, w)

〉
wp

= op
(
n−1/2

)
.

Thus,

L̄n

(
θ̃n

)
− L̄n

(
θ̃n (tn)

)
(B.33)

= 2tn

(
1

n

n∑
i=1

E
[
µ∗n(Zi, θ̄0, w)|Xi

]′
Σ(Xi)

−1ρ(Zi, θ̄0)

)
− t2n

∥∥µ∗n(θ̄0, w)
∥∥2

wp
+ op(n

−1),

which is minimized at

tn =
∥∥µ∗n(θ̄0, w)

∥∥−2

wp

(
1

n

n∑
i=1

E
[
µ∗n(Zi, θ̄0, w)|Xi

]′
Σ(Xi)

−1ρ(Zi, θ̄0)

)
= Op

(
n−1/2

)
. (B.34)

By plugging (B.34) into (B.33) and combining (B.32) we have for all θ̄0 ∈ Θ0 ∩R,

n
(
L̄n

(
θ̃n

)
− L̄n

(
θ̂n

))
≥

(
1

‖µ∗n(θ0, w)‖wp
1√
n

n∑
i=1

E
[
µ∗n(Zi, θ̄0, w)|Xi

]′
Σ(Xi)

−1ρ(Zi, θ̄0)

)2

+ op(1). (B.35)

On the other hand, let ρ(Z, θ∗n, w) = ρ(Z, θ̂n) + tn × µ∗n(θ̄0, w) for tn be the one in (B.34). Then

by Lemma C.6,

L̄n(θ∗n)− L̄n(θ̂n)

= 2tn

{
1

n

n∑
i=1

E
[
µ∗n(Zi, θ̄0, w)|Xi

]′
Σ(Xi)

−1ρ(Zi, θ̄0) +
〈
ρ
(
θ̂n

)
− ρ(θ0), µ∗n(θ̄0, w)

〉
wp

}
+t2n ×

∥∥µ∗n(θ̄0, w)
∥∥2

wp
+ op(n

−1). (B.36)

Let εn = o(n−1/2) for any θn ∈ Bn(θ0) ⊂ Θn, consider a local pertubation ρ(Z, θ(εn)) = ρ(Z, θn) ± εn ×

79



µ∗n(θ̄0, w). By the definition of θ̂n, we have

−op(n−1) ≤ L̄n

(
θ̂n(εn)

)
− L̄n

(
θ̂n

)
= ±2εn

{
1

n

n∑
i=1

E
[
µ∗n(θ̄0, w)|Xi

]′
Σ(Xi)

−1ρ(Zi, θ̄0)

}
∓ 2εn

〈
ρ(θ̂n)− ρ(θ̄0), µ∗n(θ̄0, w)

〉
wp

+ε2
n × ||µ∗n(θ̄0, w)||2wp + op(n

−1).

where the second equality follows from essentially the same caculations as those of Lemma C.6. Thus, by

the fact that εn = o(n−1/2) and ||µ∗n(θ̄0, w)||2wp = O(1), we have

1

n

n∑
i=1

E
[
µ∗n(Zi, θ̄0, w)|Xi

]′
Σ(Xi)

−1ρ(Zi, θ̄0) +
〈
ρ
(
θ̂n

)
− ρ(θ̄0), µ∗n(θ̄0, w)

〉
wp

= op(n
−1/2). (B.37)

Combining (B.36) and (B.37) yields that

L̄n(θ∗n)− L̄n
(
θ̂n

)
= t2n × ‖µ∗n(θ0, w)‖2wp + op(n

−1).

Furthermore, by the definition of tn in (B.34), we have

(tn)2 ×
∥∥µ∗n(θ̄0, w)

∥∥2

wp
=
∥∥µ∗n(θ̄0, w)

∥∥−2

wp

(
1

n

n∑
i=1

E
[
µ∗n(Zi, θ̄0, w)|Xi

]′
Σ(Xi)

−1ρ(Zi, θ̄0)

)2

.

Therefore,

L̄n (θ∗n)− L̄n
(
θ̂n

)
=
∥∥µ∗n(θ̄0, w)

∥∥−2

wp

(
1

n

n∑
i=1

E
[
µ∗n(Zi, θ̄0, w)|Xi

]′
Σ(Xi)

−1ρ(Zi, θ̄0)

)2

+ op(n
−1).

If F (ρ (·, θ∗n, w)) = F (ρ (·, θ0, w)), then under the null, by the definition of θ̃n,

L̄n(θ̃n)− L̄n(θ̂n)

≤ L̄n(θ∗n)− L̄n(θ̂n) + op(n
−1)

=
∥∥µ∗n(θ̄0, w)

∥∥−2

wp

(
1

n

n∑
i=1

E
[
µ∗n(Zi, θ̄0, w)|Xi

]′
Σ(Xi)

−1ρ(Zi, θ̄0)

)2

+ op(n
−1). (B.38)

The conclusion follows by Assumption A.25, (B.35) and (B.38).

However, it is possible that F (ρ (·, θ∗n, w)) 6= F (ρ (·, θ0, w)). If the latter is the case, we show

that there exists t∗n ∈ Tn w.p.a.1 such that ρ(θ∗n(t∗n, w)) = ρ(θ̂n)+t∗nµ
∗
n(θ̄0, w) satisfying the following

two conditions: (i) F(ρ(·, θ∗n(t∗n, w)) = F(ρ(·, θ0, w)) for all w ∈ W and (ii) t∗n = −tn + op(n
−1/2).

The proof strategy of the existence of such t∗n is similar to the ones in the proof of The-

orem 3.6. First, by the Riesz representation theorem and Assumption A.23, for θ̂n, there is a K̄n =
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o(n−1/2||µ∗n(θ̄0, w)||wp) such that

−K̄n ≤ F(ρ(·, θ̂n) + tnµ
∗
n(θ̄0, w))[w]− F(ρ(θ0, w))[w]−

〈
ρ(θ̂n)− ρ(θ0), v∗n(θ̄0, w)

〉
wp

−t||µ∗n(θ̄0, w)||wp ≤ K̄n.

Thus, for any r ∈
{
|r| ≤ 2K̄n||µ∗n(θ̄0, w)||wpσn

}
, let Tn ≡ {t ∈ R : |t| ≤ 4K̄2

nσn},

t||µ∗n(θ̄0, w)||2wp = −
〈
µ∗n(θ̄0, w), ρ(θ̂n)− ρ(θ0)

〉
wp
− 2K̄n

∥∥ν∗n(θ̄0, w)
∥∥−1

sd
+ r

∥∥ν∗n(θ̄0, w)
∥∥−1

sd

and

t̄||µ∗n(θ̄0, w)||2wp = −
〈
µ∗n,(θ̄0, w), ρ(θ̂n)− ρ(θ0)

〉
wp

+ 2K̄n

∥∥ν∗n(θ̄0, w)
∥∥−1

sd
+ r

∥∥ν∗n(θ̄0, w)
∥∥−1

sd
.

To show that t ∈ Tn, note that since

|t| . ||ρ(θ̂n)− ρ(θ0)||wp × ||µ∗n(θ̄0, w)||wp + 2
∣∣K̄n

∣∣ ∥∥ν∗n(θ̄0, w)
∥∥−1

sd
×+|r|

∥∥ν∗n(θ̄0, w)
∥∥−1

sd
,

we have |t| ≤ 4K2
n%n. Then t ∈ Tn. By the same argument, t̄ ∈ Tn. Therefore, by the definitions of t and t̄

and θ̂n, we have

F
(
ρ
(
θ̂n

)
+ tµ∗n(θ̄0, w)

)
[w]− F(ρ(·, θ0))[w] ≤ r(w)− K̄n < r

and

F
(
ρ
(
θ̂n

)
+ t̄µ∗n(θ̄0, w)

)
[w]− F(ρ(·, θ0))[w] ≥ r(w) + K̄n > r

By continuity of F(ρ(θ̂n) + tnµ
∗
n(θ̄0, w)) and the mean value theorem, there exists some t∗n ∈ [t, t̄] such that

t∗n ∈ Tn and F(ρ(·, θ̂n)+ t∗nµ
∗
n(θ̄0, w))[w] = F(ρ(·, θ0))[w]. Thus, t∗n satisfies Condition (i). Second, we show

that t∗n = −tn + op(n
−1/2). By Assumption A.23,∣∣∣∣F(ρ(·, θ̂n) + t∗nµ

∗
n(θ̄0, w)

)
[w]− F(ρ(·, θ0))[w]− dF(ρ0)

dρ
[ρ(θ∗n(t∗n, w))− ρ(θ0)]

∣∣∣∣ /||ν∗n(θ̄0, w)||wp = op(n
−1/2)∣∣∣∣dF(ρ0)

dρ
[ρ(θ∗n(t∗n, w))− ρ(θ0)]

∣∣∣∣ /||ν∗n(θ̄0, w)||wp = op(n
−1/2),

where F
(
ρ(·, θ̂n) + t∗nµ

∗
n(θ̄0, w)

)
[w]− F(ρ(·, θ0))[w] = 0. By the definition of ‖·‖wp, it implies that

〈
ρ(θ̂n)− ρ(θ0), ν∗n(θ̄0, w)/||ν∗n(θ̄0, w)||wp

〉
− t∗n||µ∗n(θ̄0, w)||2 = op(n

−1/2).

Since ||µ∗n(θ̄0, w)|| = O(1), by the definition of tn and (B.37), we have t∗n = −tn + op(n
−1/2). Thus, there

exists a t∗n that satisfies Condition (i) and (ii). 2

Proof of Theorem 4.2.

By Assumption 4.4, without loss of generality, we assume J = 1. Let ν∗n(w, θ̄0) be the empirical Riesz

representer and µ∗n
(
w, θ̄0

)
=

ν∗n(w,θ̄0)
‖ν∗n(w,θ̄0)‖

sd

. For all θ̄0 ∈ Θ0 ∩ R, let θ̃?n(tn) ∈ Bn(θ̄0) satisfy ρ(Z, θ̃?n(tn)) =

ρ(Z, θ̃?n)− tn × µ∗n(θ̄0, w) for
{
tn ∈ Tn ≡

{
t ∈ [−1, 1] : t . n−1/2

}}
. By the definition of θ̂n, we have
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L̄?n

(
θ̃?n

)
− L̄?n

(
θ̂?n

)
≥ L̄?n

(
θ̃?n

)
− L̄?n

(
θ̃?n (tn)

)
. (B.39)

By Lemma C.6, for all w ∈ W and θ̄0 ∈ Θ0 ∩R,

L̄?n

(
θ̃?n

)
− L̄?n

(
θ̃?n (tn)

)
= 2tn

(
1

n

n∑
i=1

ζiE
[
µ∗n(Zi, θ̄0, w)|Xi

]′
Σ(Xi)

−1ρ(Zi, θ̄0)−
〈
ρ
(
θ̃?n

)
− ρ (θ0) , µ∗n(θ̄0, w)

〉
wp

)
−t2n

∥∥µ∗n(θ̄0, w)
∥∥2

wp
+ op?(n−1).

Then by Assumption 4.4 and Assumption A.23, we have for all w ∈ W,∣∣∣∣〈ρ(θ̃?n)− ρ(θ̂n) , µ∗n(θ̄0, w)
〉
wp

∣∣∣∣ = op

(
n−1/2

)
.

Thus,

L?n

(
θ̃?n

)
− L?n

(
θ̃?n (tn)

)
= 2tn

(
1

n

n∑
i=1

ζiE
[
µ∗n(Zi, θ̄0, w)|Xi

]′
Σ(Xi)

−1ρ(Zi, θ̄0)−
〈
ρ
(
θ̃?n

)
− ρ

(
θ̂n

)
+ ρ(θ̂n)− ρ(θ0), µ∗n(θ̄0, w)

〉
wp

)
−t2n||µ∗n(θ̄0, w)||2wp + op?(n−1)

= 2tn

(
1

n

n∑
i=1

ζiE
[
µ∗n(Zi, θ̄0, w)|Xi

]′
Σ(Xi)

−1ρ(Zi, θ̄0)−
〈
ρ(θ̂n)− ρ(θ0), µ∗n(θ̄0, w)

〉
wp

)
+ op?(n−1)

−t2n||µ∗n(θ̄0, w)||2wp + op?(n−1)

= 2tn

(
1

n

n∑
i=1

(ζi − 1)E
[
µ∗n(Zi, θ̄0, w)|Xi

]′
Σ(Xi)

−1ρ(Zi, θ̄0)

)
− t2n||µ∗n(θ̄0, w)||2wp + op?(n−1), (B.40)

where the last equality follows from the equation that tn . n−1/2 and the following equation

1

n

n∑
i=1

E
[
µ∗n(Zi, θ̄0, w)|Xi

]′
Σ(Xi)

−1ρ(Zi, θ̄0) = −
〈
ρ(θ̂n)− ρ(θ0), µ∗n(θ̄0, w)

〉
wp

+ op(n
−1/2)

implied by Lemma C.6(ii). Note that (B.40) is minimized at

t?n =
∥∥µ∗n(θ̄0, w)

∥∥−2

wp

(
1

n

n∑
i=1

(ζi − 1)E
[
µ∗n(Zi, θ̄0, w)

]′
Σ(Xi)

−1ρ(Zi, θ̄0)

)
. (B.41)

Therefore,

n
{
L?n

(
θ̃?n

)
− L?n

(
θ̂?n

)}
≥

{
1

‖µ∗n(θ0, w)‖wp
1√
n

n∑
i=1

(ζi − 1)E
[
µ∗n(Zi, θ̄0, w)|Xi

]′
Σ(Xi)

−1ρ(Zi, θ0)

}2

+ op?(1). (B.42)

Suppose there is a θ?n ∈ Θn satisfies ρ(Z, θ?n) = ρ(Z, θ̂?n) + t?n×µ∗n(θ̄0) + op(n
−1/2) and φ(θ?n) = φ(θ̂n). Then
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we obtain that under the null, by the definition of θ̃?n,

L̄n(θ̃?n)− L̄n(θ̂?n) ≤ L̄n(θ?n)− L̄n(θ̂?n) + op(n
−1).

By similar arguments as above, we can show that

L̄n(θ?n)− L̄n(θ̂?n)

= −2t?n

{
1

n

n∑
i=1

(ζi − 1)E
[
µ∗n(Zi, θ̄0, w)|Xi

]′
Σ(Xi)

−1ρ(Zi, θ̄0) +
〈
ρ
(
θ̂?n

)
− ρ

(
θ̂n

)
, µ∗n(θ̄0, w)

〉
wp

}
+ (t∗n)

2 × ‖µ∗n(θ0, w)‖2wp + op(n
−1).

Since t?n = Op(n
−1/2) and

1

n

n∑
i=1

(ζi − 1)E
[
µ∗n(Zi, θ̄0, w)|Xi

]′
Σ(Xi)

−1ρ(Zi, θ̄0) +
〈
ρ
(
θ̂?n

)
− ρ

(
θ̂n

)
, µ∗n(θ̄0, w)

〉
wp

= op(n
−1/2),

we have

L̄n(θ?n)− L̄n(θ̂?n) = (t∗n)
2 × ‖µ∗n(θ0, w)‖2wp + op(n

−1).

By the definition of t∗n in (B.41), for all θ̄0 ∈ Θ0 ∩R,

n
(
L̄n(θ̃?n)− L̄n(θ̂?n)

)
≤ n

(
L̄n(θ?n)− L̄n(θ̂?n)

)
=

∥∥µ∗n(θ̄0, w)
∥∥−2

wp

(
1√
n

n∑
i=1

(ζi − 1)E
[
µ∗n(Zi, θ̄0, w)|Xi

]′
Σ(Xi)

−1ρ(Zi, θ̄0)

)2

+ op(1). (B.43)

The existence of θ?n can be shown essentially by the same way as the one in the proof of Theorem 4.1. The

conclusion follows by combining (B.42) and (B.43). 2

Proof of Theorem 4.3.

See the Supplemental Appendix.
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Table 1: Size as a Function of τ (DGP1): Pointwise Tests

Degree of endogeneity λ = 0.2 λ = 0.2 λ = 0.8 λ = 0.8

Nominal size τ = 0.10 τ = 0.05 τ = 0.10 τ = 0.05

β0 = 0, H0 : h(y1) = h0(y1)

tn QLRn tn QLRn tn QLRn tn QLRn

h(y0.25
1 ) 0.098 0.102 0.045 0.059 0.113 0.098 0.055 0.057

h(y0.5
1 ) 0.096 0.102 0.042 0.052 0.113 0.101 0.055 0.059

h(y0.75
1 ) 0.094 0.101 0.045 0.053 0.112 0.101 0.052 0.057

β0 = 1, H0 : β = β0, h(y1) = h0(y1)

Waldn QLRn Waldn QLRn Waldn QLRn Waldn QLRn

h(y0.25
1 ) 0.112 0.109 0.062 0.058 0.102 0.098 0.063 0.055

h(y0.5
1 ) 0.113 0.109 0.063 0.059 0.103 0.094 0.064 0.054

h(y0.75
1 ) 0.112 0.106 0.066 0.054 0.105 0.095 0.060 0.056

β0 = 1, H0 : β = β0,5h(y1) = 5h0(y1)

Waldn QLRn Waldn QLRn Waldn QLRn Waldn QLRn

h(y0.25
1 ) 0.095 0.101 0.041 0.057 0.110 0.101 0.046 0.052

h(y0.5
1 ) 0.095 0.101 0.040 0.054 0.118 0.101 0.043 0.053

h(y0.75
1 ) 0.094 0.102 0.040 0.055 0.111 0.103 0.042 0.058

Table 2: Empirical Coverage as a Function of Normal Level (DGP1): Uniform Results

n = 500 n = 1, 000

β0 = 0 β0 = 1 β0 = 0 β0 = 1

H0 :h(w) = h0(w) H0 : β = β0, h(w) = h0(w) H0 :h(w) = h0(w) H0 : β = β0, h(w) = h0(w)

sup-t sup-Wald sup-t sup-Wald

λ = 0.2 λ = 0.8 λ = 0.2 λ = 0.8 λ = 0.2 λ = 0.8 λ = 0.2 λ = 0.8

α = 2

1− τ = 0.90 0.88 0.85 0.88 0.92 0.89 0.90 0.89 0.91

1− τ = 0.95 0.93 0.94 0.93 0.97 0.94 0.94 0.96 0.96

α = 3

1− τ = 0.90 0.90 0.96 0.87 0.91 0.90 0.90 0.98 0.87

1− τ = 0.95 0.94 0.95 0.93 0.96 0.95 0.96 0.94 0.94
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Table 3: Size as a Function of τ and Bn (DGP 2)

H0 : sin(0) = 0; n=500

B = 50 B = 102 B = 103

nominal size Bn QLR-test J-test QLR-test J-test QLR-test J-test

τ = 0.1 50 0.097 0.108 0.101 0.102 0.103 0.104

τ = 0.1 100 0.128 0.106 0.116

τ = 0.1 1000 0.154 0. 126 0.126

τ = 0.05 50 0.054 0.060 0.053 0.054 0.050 0.052

τ = 0.05 100 0.076 0.068 0.062

τ = 0.05 1000 0.096 0.076 0.068

τ = 0.01 50 0.009 0.006 0.011 0.010 0.011 0.010

τ = 0.01 100 0.008 0.012 0.016

τ = 0.01 1000 0.020 0.012 0.016

−0.4 −0.2 0 0.2 0.4 0.6
0

0.1
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0.4
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Figure 1. Power curves of the QLR test as a function of B (− ∗ −:B = 102, −o−: B = 103).
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Figure 2: Estimates, Pointwise and Uniform Confidence Bands of Engel Curves
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Figure 3: Pointwise and Uniform Confidence Bands of Engel Curves by QLR and sup-QLR
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