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Abstract

What contributes to the growing income inequality across U.S. households? We de-
velop an information-based general equilibrium model that links capital income derived
from financial assets to a level of investor sophistication. Our model implies income
inequality between sophisticated and unsophisticated investors that is growing in in-
vestors’ aggregate and relative sophistication in the market. We show that our model
is quantitatively consistent with the data from the U.S. market. In addition, we pro-
vide supporting evidence for our mechanism using a unique set of cross-sectional and
time-series predictions on asset ownership and stock turnover.
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The rise in wealth and income inequality in the United States and worldwide has been one of

the most hotly discussed topics over the last few decades in policy and academic circles.1 A

significant step towards understanding the patterns in the data is the vast empirical and the-

oretical literature on wage inequality, skill-biased technological change, and the polarization

of the U.S. labor market.2 Less understood thus far has been inequality in capital income

generated in financial markets. An important component of total income, capital income is

by far the most polarized part of household income in the United States, and it exhibits a

strong upward trend in polarization.3 A growing literature in economics and finance4 ana-

lyzes household behavior in financial markets and especially its impact on financial returns.

Some of the robust general trends in household behavior are a growing non-participation

in high-return investments and a decline in trading activity. Anecdotal evidence suggests

that an ever present and growing disparity in investor sophistication, or investor access to

superior investment technologies, is partly responsible for these trends. An early articulation

of this argument is Arrow (1987) and more recently Piketty (2014); however, micro-founded,

quantitative treatments of such mechanisms are still missing.

In this paper, we provide a micro-founded mechanism for the return differential and show

that, when embedded in a general equilibrium framework, it can go a long way in explaining

the growth in capital income inequality, qualitatively and quantitatively. The main friction

in the model is heterogeneity in investor sophistication. Intuitively, when information about

financial assets is costly to process, individuals with different access to financial resources

differ in terms of their capacity to acquire and process information. Wealthier investors gain

access to better information, which allows them to earn a higher income on the assets they

1For a summary of the literature, see Piketty and Saez (2003); Atkinson, Piketty, and Saez (2011). A
comprehensive discussion of the topic is also provided in the 2013 Summer issue of the Journal Economic
Perspectives and in Piketty (2014).

2Representative contributions to this line of research include Katz and Autor (1999); Acemoglu (1999);
Autor, Katz, and Kearney (2006, 2008); and Autor and Dorn (2013).

3Using the data from the Survey of Consumer Finances we document that approximately 25% of house-
holds actively participate in financial markets. Capital income accounts for approximately 15% of this
group’s total income, ranging from 40% to less than 1%. Between 1989 and 2010, the ratio of the capital
income of the group in the 90th percentile of the wealth distribution relative to that of the median group
increased from 29 to 57.

4Most recently represented by Calvet, Campbell, and Sodini (2007) and Chien, Cole, and Lustig (2011).
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hold. As a result, their wealth diverges from that of less wealthy investors with relatively less

information. In addition, the relatively unsophisticated investors perceive their information

disadvantage through asset prices and allocate their investments away from the allocations

of sophisticated investors, resulting in further divergence.

Our mechanism provides an explanation for the growing presence of sophisticated, in-

stitutional investors in risky asset classes, over the last 20-30 years (Gompers and Metrick

(2001)). Specifically, the average institutional equity ownership has more than doubled over

the last few decades, and it accounts now for more than 60% of the total stock ownership.

Our hypothesis also fits well with a puzzling phenomenon of the last two decades of a growing

retrenchment of retail investors from trading and stock market ownership in general (Stam-

baugh (2014)),5 even though direct transaction costs, if anything, have fallen significantly.

We document such avoidance of risky assets both for direct stock ownership and ownership

of intermediated products, such as actively managed equity mutual funds. Specifically, we

find that direct stock ownership has been falling steadily over the last 30 years, while flows

into equity mutual funds coming from less sophisticated, retail investors began to decline

and turn negative starting from the early 2000s, implying a drop in cumulative flows by 2012

by an astounding 70% of their 2000 levels.

To formalize our arguments and to assess their qualitative and quantitative match to the

data, we build a noisy rational expectations equilibrium model with endogenous informa-

tion acquisition and capacity constraints in the spirit of Van Nieuwerburgh and Veldkamp

(2009, 2010), and Kacperczyk, Van Nieuwerburgh, and Veldkamp (2013). We generalize this

theoretical framework by allowing for meaningful heterogeneity both across assets and across

investors. Specifically, we consider an economy with many risky assets and one riskless as-

set. The risky assets differ in terms of volatilities of their fundamental payoffs. A fraction

of investors are endowed with high capacity for processing information and the remaining

fraction have lower, yet positive capacity. Thus, everyone in the economy has the ability to

5We view the Stambaugh (2014) study as complementary to ours. It aims to explain the decreasing
profit margins and activeness of active equity mutual funds using exogenously specified decline in individual
investors’ stock market participation. In contrast, our study endogenizes such decreasing participation as
part of the mechanism which explains income inequality.
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learn about assets payoffs, but to different degrees. Investors have mean-variance preferences

with equal risk aversion coefficients and learn about assets payoffs from optimal private sig-

nals subject to an entropy constraint on information (Sims (2003)). Based on the observed

assets characteristics, investors decide which assets to learn about, how much information

to process about these assets, and how much wealth to invest.

In a departure from existing work, both the number of assets that are actively traded (i.e.,

learned about) in the market, and the mass of investors choosing to learn about each asset

are determined endogenously. In equilibrium, learning exhibits specialization, preference for

volatility, and strategic substitutability. First, each investor chooses to invest all her capacity

into learning about one asset, while trading the other assets in the portfolio based only

on her priors. Second, investors prefer to learn about assets with highly volatile payoffs,

since that is where the gains from spending information capacity are the greatest, ceteris

paribus. Third, the gains from learning about an asset decrease with the mass of investors

already learning about it thus making investors prefer stocks that are relatively less explored.

Therefore, despite the specialization at the investor level, the aggregate economy has an

interior solution for the number of assets that are learned about, reflecting the strategic

substitutability in learning.

We provide an analytical characterization of the model’s predictions, which we then

quantify in the parameterized model. First, in the cross-section of investors, sophisticated

investors generate higher capital income relative to unsophisticated investors. This diver-

gence is driven by three forces: (i) sophisticated investors have better information to identify

profitable assets (average effect), (ii) sophisticated investors adjust their portfolios in real

time (dynamic effect), and (iii) unsophisticated investors reduce their exposure to assets with

large sophisticated ownership, due to the impact of sophisticated ownership on prices (gen-

eral equilibrium effect). Second, heterogeneity in sophistication also affects trading intensity

asymmetrically. Sophisticated investors frequently trade their assets while unsophisticated

investors turn over their risky assets much less.

We next investigate the response of our outcome variables to shocks to sophistication.

First, we show that sophisticated ownership increases with aggregate sophistication, which
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can be interpreted as general progress in information-processing technologies. This result

holds even if we keep the relative sophistication of the two investor types constant. Intu-

itively, the more an investor knows, the easier it is for her to learn on the margin. This effect

reinforces the general equilibrium effect that the same growth in capacity moves prices more

when it is applied to the sophisticated investors’ capacity than when it increases the capacity

of the unsophisticated investors. This asymmetry leads to unsophisticated investors being

priced out of the risky asset market.

Second, we show that in response to growth in aggregate sophistication, the mechanism

implies a robust, unique way in which investors expand their risky portfolio holdings and

change their portfolio composition. Specifically, we show that sophisticated investors keep

moving down in the asset volatility dimension. At the same time, unsophisticated investors

retrench from risky assets and hold safer assets.

Third, the symmetric expansion in capacity leads to lower expected market returns.

These results play an important role in that they cut against plausible alternative explana-

tions, such as the model with heterogeneous risk aversion or differences in trading costs.

To evaluate the quantitative fit of our theoretical predictions to the data, we calibrate the

model using U.S. data spanning the period from 1989 to 2012. We parameterize the model

using micro data on stocks and aggregate retail and institutional portfolios, which allows us

to pin down details of the stochastic structure of assets payoffs. In our calibration, we set the

parameters based on the first half of our sample period, and treat the second subperiod data

moments as a test for the dynamic effect coming from progress in information technology.

Specifically, in order to generate the dynamic predictions of the model, we introduce aggre-

gate (not investor-specific) progress in information technology, which increases the average

equity ownership rate of sophisticated investors from 23% (the data average for 1989-2000)

to 43% (the data average for 2001-2012), while keeping the remaining parameters unchanged.

We show that the analytical predictions from the model are qualitatively and quantita-

tively borne out in the empirical evidence. First, sophisticated investors, on average, exhibit

higher rates of returns that are approximately 2.7 percentage points per year higher in the

model, compared to a 3 percentage point difference in the data. Hence, the information
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friction delivers return inequality qualitatively and quantitatively, which gives the model a

chance to account for capital income polarization when we map it to the household data.

As an additional unique feature of our mechanism, the model predicts that cross-sectional

asset turnover is monotonically increasing with asset return volatility and with the owner-

ship share of sophisticated investors, both results being consistent with the data. Second, we

show that the dynamic predictions further confirm our economic mechanism. In response to

symmetric growth in technology, sophisticated investors increase their ownership of equities

by first entering the most volatile stocks and subsequently moving into stocks with medium

and low volatility–a pattern we also document in the data. At the same time, sophisticated

investors’ entry into equity induces higher asset turnover, in magnitudes consistent with the

data, both in the time series and in the cross-section of stocks.

In our main result, we use our parametrized model to explore the consequences of our

mechanism for capital income inequality. We link information heterogeneity to past wealth

and returns on financial assets. Intuitively, a high fixed cost and low marginal cost of access

to information would endogenously lead to wealthier individuals obtaining better access to

information, along the lines outlined in Arrow (1987). Here, we take this as a guiding

principle in mapping the investors in our model into different wealth deciles in the Survey of

Consumer Finances. Specifically, in the population of households who participate in asset

markets, we use the ratio of average financial wealth of the 10% wealthiest investors relative

to 50% poorest investors in 1989 as a proxy for initial relative investor sophistication, and

we posit that the growth in financial wealth maps directly into a subsequent increase in

investor sophistication. We then show that introducing this feedback generates endogenous

evolution of capacity and capital income that can match capital income inequality growth

in the data. The model implies an average inequality growth of 71% between 1989 and

2010, versus 83% in the data. Moreover, we can closely match the evolution of the growth

rate over the entire sample period. These results further imply that from the perspective

of our model, wealth is a good proxy for sophistication. This exercise can be viewed as

a quantification of the economic mechanism proposed by Arrow (1987), in which financial

wealth facilitates access to more sophisticated investment techniques, and begets even more
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wealth. This result is also consistent with evidence in Chapter 12 of Piketty (2014) in which

he attributes differences in portfolio returns among University endowments to differences in

their investment levels.

In addition to our quantitative analysis, we provide a discussion of general empirical

regularities which qualitatively correspond to the analytical predictions of the model. We

show that unsophisticated investors tend to hold an increasingly larger fraction of their

wealth in safer, liquid assets. They also reduce their aggregate equity ownership. In the

data, we observe a steady outflow of unsophisticated, retail money from risky assets, such as

direct equity and equity mutual funds, while the flows from sophisticated investors into such

assets are generally positive. Somewhat surprisingly, these outflows in the data continued

until recently despite a large increase in the risky assets valuations.

This paper spans three strands of literature: (1) the literature on household finance; (2)

the literature on rational inattention; and (3) the literature on income inequality. While

some of our contributions are specific to each of the individual streams, our additional value

added comes from the fact that we integrate the streams into one unified framework within

our research context.

Our results relate to a wide spectrum of research in household finance and portfolio

choice. The main ideas we develop build upon an empirical work on limited capital market

participation (Mankiw and Zeldes (1991); Ameriks and Zeldes (2001)), growing institutional

ownership (Gompers and Metrick (2001)), household trading decisions (Barber and Odean

(2001), Campbell (2006), Calvet, Campbell, and Sodini (2009b, 2009a), Guiso and Sodini

(2012)), and investor sophistication (Barber and Odean (2000, 2009), Calvet, Campbell, and

Sodini (2007), Grinblatt, Keloharju, and Linnainmaa (2009)). While the majority of the

studies attribute limited participation rates to either differences in stock market participation

costs (Gomes and Michaelides (2005), Favilukis (2013)) or preferences, we relate the decisions

to differences in sophistication across investors.

Another building block of our paper is the literature on rational inattention and en-

dogenous information capacity that originates with the papers of Sims (1998, 2003, 2006).

More germane to our application are models of costly information of Van Nieuwerburgh and

6



Veldkamp (2009, 2010), Mondria (2010), and Kacperczyk, Van Nieuwerburgh, and Veld-

kamp (2013). The literature on endogenous information acquisition generally assumes that

informed investors have homogenous information capacity, face a homogeneous set of risky

assets, or learn about a single asset in the aggregate. In contrast, we study the implications

of a model with heterogeneous agents in an environment with many heterogeneous assets,

and we solve for the endogenous allocation of investor types across assets types. We show

that the implications of such a model for portfolio decisions and asset prices are very dif-

ferent than those of the model with homogeneity. In addition, we study the quantitative

implications of information frictions for income processes of investors and the equilibrium

holdings of assets with different characteristics, such as volatility or turnover, all features

which are absent in the present literature.

Our last building block constitutes the literature on income inequality that dates back

to the seminal work by Kuznets and Jenks (1953) and has been subsequently advanced by

the work of Piketty (2003), Piketty and Saez (2003), Alvaredo, Atkinson, Piketty, Saez,

et al. (2013), Autor, Katz, and Kearney (2006), and Atkinson, Piketty, and Saez (2011).

In contrast to our paper, a vast majority of that literature explain total income inequality

looking at the income earned in labor market (e.g., Acemoglu (1999, 2002); Katz and Autor

(1999); Autor, Katz, and Kearney (2006, 2008); and Autor and Dorn (2013)); and they do

not consider explanations that relate to informational sophistication of investors.

The closest paper in spirit to ours is Arrow (1987) who also considers information differ-

ences as an explanation of income gap. However, his work does not consider heterogeneity

across assets or investors and does not attempt a quantitative evaluation of the strength

of the forces in general equilibrium. Both these elements are crucial for the results of our

paper, and especially to establish the validity of our mechanism. Thanks to having a richer,

equilibrium framework, we are able to parameterize the model and show that it comes very

close to the data moments. Another work related to ours is Peress (2004) who examines

the role that wealth and decreasing absolute risk aversion play in investors’ acquisition of

information and participation in risky assets. In contrast to that paper, we focus on micro

foundations of how investors attain superior rates of return on equity. In addition, we model
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how different investors allocate their money across disaggregated risky asset classes. This

allows us to test our information-based mechanism using micro-level data.

The rest of the paper proceeds as follows. In Section 1, we provide the general equilibrium

framework to study behavior and income evolution of heterogeneously informed individuals.

In Section 2, we derive analytical predictions, which we subsequently take to the data.

In Section 3, we establish our main results and provide additional evidence in favor of

our proposed mechanism. Section 4 concludes. All the proofs and derivations are in the

Appendix.

1 Theoretical Framework

We build a noisy rational expectations model of portfolio choice with heterogeneous

information a la Grossman and Stiglitz (1980), following the information choice models of

Van Nieuwerburgh and Veldkamp (2009, 2010), and Kacperczyk, Van Nieuwerburgh, and

Veldkamp (2013). Our specification departs from this work by introducing heterogeneity in

investors’ capacity to process information. In our model, all investors have the ability to

learn about asset payoffs, but to different degrees. This heterogeneity allows us to investigate

how different levels of capacity dispersion affect returns and investment behavior, and it is

critical to our results concerning the evolution of inequality over time. Our methodological

contribution is to solve for the equilibrium allocation of information capacity across assets

and investors. In our solution, both the number of assets that are being learned about and

the mass of investors learning about each asset are determined endogenously. In contrast,

previous work assumes that all investors with positive information capacity learn about the

same asset(s). Since learning about an asset affects the holdings of that asset, the endogenous

allocation of investor learning allows us derive rich asset-level predictions, and it is critical

to our test of the information mechanism.
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1.1 Setup

A continuum of atomless investors of mass one, indexed by j, solve a portfolio choice

problem to maximize mean-variance utility over wealth Wj, given common risk aversion

coefficient ρ > 0. The financial market consists of one risk-free asset, with price normalized

to 1 and payoff r, and n > 1 risky assets, indexed by i, with prices pi, and independent

payoffs zi = z + εi, with εi ∼ N (0, σ2
i ). The risk-free asset has unlimited supply, and each

risky asset has fixed supply, x. For each risky asset, non-optimizing “noise traders” trade for

reasons orthogonal to prices and payoffs (e.g. liquidity, hedging, or life-cycle reasons), such

that the net supply available to the optimizing investors is xi = x+ νi, with νi ∼ N (0, σ2
x),

independent of payoffs and across assets. For simplicity, we introduce heterogeneity only in

the volatility of payoffs, although the model can easily accommodate heterogeneity in supply

and in mean payoffs.

Prior to making the portfolio decision, each optimizing investor can choose to obtain

information about some or all of the risky asset payoffs. Mass λ ∈ (0, 1) of investors have

high capacity for obtaining information, K1, and are labeled sophisticated, and mass 1 − λ

of investors have low capacity, K2, and are labeled unsophisticated, with 0 < K2 < K1 <∞.

Information is obtained in the form of endogenously designed signals subject to this capacity

limit. The investor’s signal choice is modeled following the rational inattention literature

(Sims (2003)), using entropy reduction as a measure of the amount of information acquired.

Signals are then used to update the beliefs that inform each investor’s portfolio allocation.

Optimization occurs in two stages. In the first stage, investors solve their information

acquisition problem: they choose the distribution of signals to receive in order to maximize

expected utility, subject to their information capacity. In the second stage, given the sig-

nals they receive, investors update their beliefs about the payoffs and choose their portfolio

holdings to maximize utility.
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1.2 Portfolio Choice

We begin by solving the portfolio problem in the second stage, for a given signal structure.

Each investor chooses portfolio holdings qji to solve

max
{qji}ni=1

Uj = Ej (Wj)−
ρ

2
Vj (Wj) (1)

s.t. Wj = r

(
W0j −

n∑
i=1

qjipi

)
+

n∑
i=1

qjizi, (2)

where Ej and Vj denote the mean and variance conditional on investor j’s information set,

and W0j is initial wealth. Optimal portfolio holdings are given by

qji =
µ̂ji − rpi
ρσ̂2

ji

, (3)

where µ̂ji and σ̂2
ji are the mean and variance of investor j’s posterior beliefs about the payoff

zi, conditional on the investor’s information.

1.3 Information Choice

Each investor can receive a separate signal sji on each of the asset payoffs, zi. Given the

optimal portfolio holdings, the information problem in the first stage becomes choosing the

distribution of these signals to maximize expected utility, E0j [Uj], subject to the information

constraint, I (z; sj) ≤ Kj, where I (z; sj) denotes the Shannon (1948) mutual information,

measuring the information that the vector of private signals conveys about the vector of

payoffs. This information constraint imposes a limit on the amount of uncertainty reduction

that the signals can achieve. Since perfect information requires infinite capacity, each investor

faces some residual uncertainty about the realized payoffs.

For analytical tractability, we make the following assumption about the signal structure:

Assumption 1 The signals sji are independent across assets.

Assumption 1 implies that the total quantity of information obtained by an investor can
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be expressed as a sum of the quantities of information obtained for each asset.6 The infor-

mation constraint becomes
∑n

i=1 I (zi; sji) ≤ Kj, where I (zi; sji) measures the information

conveyed by the private signal sji about the payoff of asset i.

Investors decompose each payoff into a lower-entropy signal component and a residual

component that represents the information lost through this compression: zi = sji + δji.
7

For tractability, we introduce the following additional assumption:

Assumption 2 The signal sji is independent of the data loss δji.

Since zi is normally distributed, Assumption 2 implies that sji and δji are also normally

distributed, by Cramer’s Theorem: sji ∼ N
(
z, σ2

sji

)
and δji ∼ N

(
0, σ2

δji

)
with σ2

i = σ2
sji +

σ2
δji.

8 Hence, posterior beliefs are also normally distributed random variables, independent

across assets, with mean µ̂ji = sji and variance σ̂2
ji = σ2

δji. A perfectly precise signal would

be associated with no information loss, such that the investor’s posterior uncertainty would

be zero. Conversely, a signal that consumes no information capacity would be completely

uninformative: it would discard all information about the realized payoff, returning only the

mean payoff, z, and leaving the investor’s posterior uncertainty equal to the prior uncertainty.

Using this signal structure and the resulting distribution of expected excess returns, the

investor’s information problem becomes choosing the variance of posterior beliefs to solve

max
{σ̂2

ji}ni=1

n∑
i=1

Gi
σ2
i

σ̂2
ji

, (4)

s.t.

n∏
i=1

σ2
i

σ̂2
ji

≤ e2Kj , (5)

where Gi represents the expected utility gain from learning about asset i. This gain is a

function of the distribution of expected excess returns. It is an equilibrium object, and it is

common across investor types and taken as given by each investor.

6Assumption 1 is common in the literature. Allowing for potentially correlated signals requires a numer-
ical approach, and is beyond the scope of this paper.

7We discuss the difference between these compressed signals and the signals with additive noise usually
employed in the literature in Section ??.

8In general, the optimal signal structure may require correlation between the signal and the data loss,
but Assumption 2 maintains this analytical tractability.
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Lemma 1 The solution to the maximization problem (4)-(5) is a corner: each investor

allocates her entire capacity to learning about a single asset from the set of assets with

maximal expected utility gains. The posterior beliefs of an investor j, learning about asset

lj ∈ arg maxiGi, are normally distributed, with mean and variance

µ̂ji =

sji if i = lj

z if i 6= lj

and σ̂2
ji =

e
−2Kjσ2

i if i = lj

σ2
i if i 6= lj.

(6)

The linear objective function and the convex constraint imply that each investor spe-

cializes, learning about a single asset. Which asset that is—namely which are the assets

with the biggest gains from learning—will be determined in equilibrium. Conditional on

the realized payoff, the signal is normally distributed random variables whose mean is a

weighted sum of the prior and the shock, E (sji|zi) = z+
(
1− e−2Kj

)
εi, and whose variance

is V (sji|zi) =
(
e−2Kj − e−4Kj

)
σ2
i . Hence, as capacity Kj → ∞, the conditional signal ap-

proaches the realized payoff, zi, and the conditional variance approaches zero. For Kj = 0,

the signal is always equal to the prior mean, z, and the conditional variance is once again

zero.

1.4 Equilibrium Prices

Given the solution to each investor’s portfolio and information problem, the market

clearing condition pins down equilibrium prices as linear combinations of the shocks.

Lemma 2 The price of asset i is given by pi = ai + biεi − ciνi, with

ai =
1

r

[
z − ρσ2

i x

(1 + φmi)

]
, bi =

φmi

r (1 + φmi)
, ci =

ρσ2
i

r (1 + φmi)
, (7)

where φ ≡ λ
(
e2K1 − 1

)
+ (1− λ)

(
e2K2 − 1

)
is a measure of the aggregate capacity for pro-

cessing information in the economy, and mi is the mass of investors learning about asset i,

with
∑n

i=1 mi = 1.
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The price of an asset reflects the asset’s payoff and supply shocks, with relative weights

that depend on the mass of investors learning about the asset. For each asset, the quantity

φmi is an important statistic: it is a measure of the capacity that the market allocates to

learning about that asset in equilibrium. For assets in markets with no information capacity

(φ = 0) and for assets that are not learned about (mi = 0), the price only reflects the noise

shock νi. As the capacity allocated to an asset increases, the asset’s price comoves more

strongly with the underlying payoff (ci decreases and bi increases, though at a decreasing

rate). In the limit, as φ→∞, the price approaches the discounted payoff, zi/r.

1.5 Equilibrium Learning

Using equilibrium prices, we derive the conditions that determine the assets that are

learned about in equilibrium and the mass of investors learning about each asset. Without

loss of generality, let assets be ordered such that σ2
i > σ2

i+1 for all i ∈ {1, ..., n− 1}.

Lemma 3 The equilibrium gain from learning about asset i is

Gi =
1 + ρ2ξi

(1 + φmi)
2 , (8)

where ξi ≡ σ2
i (σ2

x + x2) summarizes the properties of asset i. Let k denote the number of

assets with strictly positive learning mass in equilibrium. Then, the masses {mi}ni=1 are

uniquely pinned down by the following conditions:

Gi = G∗, ∀i ∈ {1, ..., k} , (9)

Gi < G∗,∀i ∈ {k + 1, ..., n} , (10)

k∑
i=1

mi = 1. (11)

The equilibrium allocation of active investors across assets, {mi}ni=1, is pinned down by

the k − 1 indifference conditions implied by equation (9), combined with the condition that
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each investor learns about some asset, (11). Condition (10) ensures that no other asset yields

a higher gain from learning.

Lemma 3 implies the following properties for the equilibrium gains:

∂Gi

∂σ2
i

> 0,
∂Gi

∂mi

≤ 0,
∂Gi

∂φ
≤ 0.

Hence, learning in the model exhibits preference for volatility (high σ2
i ) and strategic sub-

stitutability (low mi). Furthermore, for the assets that are actively traded, the value of

learning about an asset also falls with the aggregate amount of information in the market,

ceteris paribus, since more capacity overall increases the comovement between prices and

payoffs, thereby reducing excess returns.

For sufficiently low information capacity, all investors learn only about the most volatile

asset: for φ < φ1, m1 = 1 and mi = 0 for all i > 1, where

φ1 ≡

√
1 + ρ2ξ1

1 + ρ2ξ2

− 1. (12)

Hence, we endogenize the single-asset learning assumed by Kacperczyk, Van Nieuwerburgh,

and Veldkamp (2013) as an optimal outcome for low enough information processing capacity.

Above this threshold, we obtain an interior solution: as the overall capacity in the economy

increases, investors expand their learning towards lower volatility assets. For sufficiently

high information capacity, or alternatively, for low enough dispersion in asset volatilities,

all assets are learned about, thus endogenizing the assumption employed in models with

exogenous signals.9 However, in the presence of asset heterogeneity, even if all assets are

learned about, there is heterogeneity in the information capacity allocated to each asset:

since the equilibrium gain is increasing in σ2
i and decreasing in mi, the mass of investors

learning about each asset is increasing in σ2
i . In turn, this heterogeneity has implications for

9This result also implies that if the degree of dispersion in asset payoff volatilities varies, learning will
also vary, with economies/periods with high dispersion being characterized by more concentrated learning,
and economies/periods with low dispersion being characterized by more diversified learning (and hence
portfolios).
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holdings, returns and turnover in the cross section of assets.10 In the quantitative analysis

of Section 3, we parameterize the model to obtain an interior solution, in order to take these

implications to the data, as a test of our mechanism.

In order to further characterize aggregate learning, we introduce the following notation:

Definition 1 Let φk be a threshold for φ, such that for any φ < φk, at most k assets are

actively traded (learned about) in equilibrium, while for φ ≥ φk, at least k + 1 assets are

actively traded in equilibrium.

Using this definition, Lemma 3 implies that the threshold values of aggregate information

capacity are monotonic: 0 < φ1 < φ2 < ... < φn−1. The following lemma further characterizes

aggregate learning in response to variation in the level and in the dispersion of investor

capacities.

Lemma 4 Let φk−1 ≤ φ ≤ φk, such that k > 1 assets are actively traded, and consider

changes in investor capacity such that k′ is the new number of actively traded assets (po-

tentially different from k for large enough changes in capacity). Then, equilibrium masses

{mi}ni=1 satisfy the following conditions:

(i) There exists a threshold asset ı̄ < k′, such that mi is decreasing in φ for all assets

i ≤ ı̄, and increasing in φ for all assets ı̄ < i ≤ k′.

(ii) The quantity (φmi) is increasing in φ for all assets i ∈ {1, ..., k′}.

(iii) The quantity mi(e
2Kj − 1), j ∈ {1, 2}, is increasing in Kj at an increasing rate for

all assets i ∈ {1, ..., k′}.

Lemma 4 shows that as the amount of aggregate capacity φ increases, the amount of

capacity allocated to each asset (φmi) strictly increases for all assets that are learned about

(part (ii)), even though the mass mi of investors learning about the most volatile assets

decreases, so that investors shift to new assets to be learned about (part (i)). Furthermore,

the amount of capacity allocated to each asset by each investor group (mi(e
2Kj − 1)) also

increases, but it increases by more for the group of sophisticated investors, who have higher

10If assets are homogeneous, then mi = 1/n ∀i ∈ {1, ..., n}.
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capacity (part (iii)). In Section 2, we use these results to derive analytical predictions on

the patterns of investment, in response to both an increase in the cross-sectional dispersion

of capacity and a symmetric growth of capacity.

1.6 The Value of Prices

We have presented each investor’s information acquisition problem in terms of a constraint

on the information obtained through private signals alone, disregarding the information con-

tent of prices. Specifically, we have assumed that investors cannot condition on prices in the

information acquisition stage, even though they can condition on prices when choosing asset

holdings in the second stage (which is necessary for market clearing, given the exogenous

supply). When some agents in the economy acquire information through private signals,

prices become informative about asset payoffs, because they reflect the demand of these

privately informed investors. In the literature on portfolio choice with exogenous signals,

investors are often assumed to learn about payoffs not only from their private signals, but

also from equilibrium prices, which aggregate the information of all investors in the market

(e.g. Admati (1985)). Hence, we now ask: would our investors have an incentive to allocate

capacity to learning from prices rather than only from their own private signals? We show

that the answer to this question is no: if the information contained in prices is costly to pro-

cess, then prices are an inferior source of information when the investor has the opportunity

to observe endogenously designed signals on the payoffs themselves.

We consider the signal choice of an individual investor, taking the choices of all other

investors as given by the solution in Sections 1.4 and 1.5. Processing information through

either prices or private signals consumes the investor’s capacity. Hence, whatever the source

of information, the investor cannot acquire a total quantity beyond her capacity limit, Kj.

Lemma 5 If prices consume capacity, then the capacity-constrained investor chooses to de-

vote all her capacity to learning about payoffs through private signals on asset payoffs, rather

than devoting any capacity to learning from prices.

The investor strictly prefers learning through the private signal in the presence of strategic
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substitutability, which corresponds to the model in this paper.11 Our proof is based on the

same logic as that of Kacperczyk, Van Nieuwerburgh, and Veldkamp (2013), although it is

derived for a different information structure and extended to include the case in which the

information content of prices is not necessarily processed perfectly.

Lemma 5 implies that investors will not allocate any capacity to learning about the supply

shock, νi, either: learning about the noise traders is not useful, unless that information is

combined with information processed from equilibrium prices. It is only joint information on

both variables that can inform investors about payoffs, which is ultimately what they seek

to learn.

2 Analytical Predictions

In this section, we present a set of analytical results implied by our model. We first present

the predictions for capital income inequality followed by a set of theoretical predictions

that are specific to the information-based mechanism. These results allow us to compare

the model’s implications with evidence from stock-level micro data. We conclude with a

discussion of how variations of the baseline framework affect equilibrium outcomes.

2.1 Capital Income Inequality

Let πji denote the average profit per capita for an investor of type j ∈ {1, 2} , from

trading asset i:

π1i ≡
Q1i (zi − rpi)

λ
and π2i ≡

Q2i (zi − rpi)
1− λ

, (13)

where Q1i and Q2i are the aggregate holdings of asset i for sophisticated and unsophisticated

investors, respectively, obtained by integrating holdings qji across investors of each type:

Q1i = λ

[
(zi − rpi) +mi

(
e2K1 − 1

)
(zi − rpi)

ρσ2
i

]
, (14)

11Conversely, it is well known from the literature on learning with strategic complementarities that in
such settings agents overweigh the public signals at the expense of their private signals (e.g. Morris and Shin
(2002)).
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Q2i = (1− λ)

[
(zi − rpi) +mi

(
e2K2 − 1

)
(zi − rpi)

ρσ2
i

]
. (15)

Our first result is that heterogeneity in information capacity across investors drives capital

income inequality as sophisticated investors generate higher income than unsophisticated

ones. This is summarized in Proposition 1.

Proposition 1 If K1 > K2 then
∑

i π1i −
∑

i π2i > 0.

The informational advantage manifests itself in two ways. First, sophisticated investors

achieve relatively higher profits by holding a different average portfolio (the average effect).

Second, they also achieve relatively higher profits by obtaining larger gains from shock real-

izations that are profitable relative to expectations, and incurring smaller losses on unprof-

itable shock realizations (the dynamic effect). These two effects show up in the average level

and in the adjustment of holdings in response to shocks, and are summarized in Proposition

2.

Proposition 2 Let K1 > K2 and φk−1 ≤ φ < φk, such that the first k > 1 assets are actively

traded in equilibrium. The following statements hold:

(i) E
{
Q1it

λ
− Q2it

(1−λ)

}
> 0 for i ∈ {1, ..., k}.

(ii) If E(zi − rpi) > E(zl − rpl), then E
{
Q1i

λ
− Q2i

(1−λ)

}
> E

{
Q1l

λ
− Q2l

(1−λ)

}
, for any two

assets i, l ∈ {1, ..., k},.

(iii) Q1i

λ
− Q2i

(1−λ)
is increasing in excess returns, zi − rpi, for i ∈ {1, ..., k}.

Proposition 2 demonstrates that sophisticated investors choose higher average holdings

of risky assets (part (i)), since the risky assets are the ones with the largest gains from

learning, ceteris paribus. On average, they also tilt their portfolios towards profitable assets

more than unsophisticated investors do (part (ii)). Moreover, for every realized state xi, zi,

sophisticated investors are able to adjust their portfolios (contemporaneously) upwards if

the shock implies high returns and downwards if the shock implies low returns (part (iii)).

Hence, also dynamically, they are able to outperform unsophisticated investors by responding

to shock realizations in a way that increases their profits.
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The differential dynamic adjustment of investor portfolios implies differences in trading

intensity, as shown in Proposition 3

Proposition 3 Let K1 > K2 and φk−1 ≤ φ < φk, such that the first k > 1 assets are actively

traded in equilibrium. Let Vji denote the average per capita volume of trade generated by

investors of type j ∈ {1, 2} in asset i. Then, V1i ≥ V2i with equality for i ∈ {k + 1, ...n}.

To see explicitly the impact on capital income inequality coming from the dynamic effect,

we express the total capital income of an average sophisticated investor as12

n∑
i=1

π1i ≡
n∑
i=1

αiπ2i, (16)

where, by (14) and (15),

αi ≡
π1i

π2i

=
(zi − rpi) +mi(e

2K1 − 1)(zi − rpi)
(zi − rpi) +mi(e2K2 − 1)(zi − rpi)

, ∀i. (17)

That is, capital income of an average sophisticated investor can be expressed as a weighted

sum of an average unsophisticated investor’s capital income from each asset, but the weights

depart from 1 whenever the asset is actively traded (mi > 0).

To see the dynamic effect, consider how variation in the weights αi drives income dif-

ferences. For assets that are actively traded in equilibrium, they vary depending on the

realization of the shocks zi and xi. There are two possible scenarios. First, π2i > 0, which

by (17) implies π1i > 0 and αi > 1. Hence, sophisticated investors have a larger gain in

their (positive) capital income from asset i. Second, π2i < 0 and either (i) π1i < 0 and

0 < αi < 1, or (ii) π1i > 0 and αi < 0. The first case implies that sophisticated investors put

a smaller weight in their portfolio on the loss, while the second case means that the profit

of sophisticated investors puts a negative weight on the loss. In both cases, sophisticated

investors either incur a smaller loss or realize a bigger profit, state by state.

12Here, we are implicitly assuming that profits are never exactly zero. For such case, the arguments
extend trivially.
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These arguments lead to the following comparative result: increases in sophistication

heterogeneity lead to a growing capital income polarization. Intuitively, greater dispersion

in information capacity means that, relative to unsophisticated investors, sophisticated in-

vestors receive higher-quality signals about the fundamental shocks, and as a result, they

respond more strongly to realized excess profits zi − rpi. This is the essence of Proposition

4.

Proposition 4 Consider an increase in capacity dispersion of the form K ′1 = K1+∆1 > K1,

K ′2 = K2−∆2 < K2, with ∆1 and ∆2 chosen such that total information capacity φ remains

unchanged. Then, the ratio
∑

i π1i/
∑

i π2i increases, that is, capital income becomes more

polarized.

The results show that heterogeneity in capacity generates heterogeneity in portfolios,

which in result decreases the relative participation of unsophisticated investors. Below, we

explore the intuitive reasons behind unsophisticated investors’ retrenchment from risky assets

in the presence of informationally superior, sophisticated investors.

Intuition Suppose that the realized state is such that in equilibrium zi− rpi > 0 for some

asset i. Consider one of a set of homogeneous investors with capacity K2 who learns about

asset i and receives the mean signal for her type, S2 = z̄ie
−2K2 +zi(1−e−2K2). Her allocation

is then

q2i = e2K2

(
S2 − rpi
ρσ2

i

)
,

where e−2K2σ2
i is the variance of the her posterior beliefs.

Let the allocation of investors to learning about different assets, {mi}ni=1, also be fixed at

the equilibrium level, and exogenously increase the capacity of mass γ < mi of investors to

K1 > K2 so that they become more sophisticated. These new sophisticated investors have

average demand given by

q1i = e2K1

(
S1 − rpi
ρσ2

i

)
,

where the mean signal they receive is S1 = z̄ie
−2K1 + zi(1− e−2K1).
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There are two effects that lead to an increased relative participation of sophisticated

investors in risky assets in this example: a partial equilibrium one and a general equilibrium

one.

First, absent any price adjustment, the partial equilibrium effect is that the remaining

unsophisticated investors do not change their demand q2i for asset i. But the new sophis-

ticated investors now demand more, because (i) S1 > S2 (we are considering a good state

where zi > z̄i), and (ii) their signal is more precise (e−2K1σ2
i < e−2K2σ2

i ). Hence, in partial

equilibrium, we would observe growth in sophisticated investors’ ownership. However, we

would see no change in the strategies of unsophisticated investors.

Second, there is the general equilibrium effect working through price adjustment, which

makes unsophisticated investors perceive an informational disadvantage in trading asset i

after sophisticated investors enter. In particular, in accordance with the market clearing

conditions, the price will adjust to the greater demand from the relatively more informed

investors. Through that price adjustment, both types of investors will see their profits fall,

but only unsophisticated ones will choose to reduce their holdings. Their signals are not

of a high enough quality to sustain previous positions as the optimal choice. Through this

general equilibrium effect, the entry of sophisticated investors spills over to an informational

disadvantage for unsophisticated investors and causes their retrenchment from trading the

asset.

2.2 Testing the Mechanism

In this section, we provide further analytical characterization of our model’s predictions.

These analytical results, together with the quantitative predictions from our parameterized

model, serve as a test of the main mechanism of the model when compared with the same

features in the data.

We start with the characterization of properties of the market return in response to growth

in the overall level of information in the economy. As aggregate information increases, prices

contain a growing amount of information about the fundamental shocks, and excess market

return drops. This is summarized in Proposition 5.
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Proposition 5 (Market Value) Growth in total information processing capacity leads to

(i) higher average prices, dpi
dφ
≥ 0;

(ii) lower average market excess returns, dE (zit − rpit) /dφ ≤ 0.

Next, in Proposition 6, we consider the effects of a pure increase in dispersion of so-

phistication, without changing the aggregate level of sophistication in the economy. Such

polarization in capacities implies polarization in holdings.

Proposition 6 Consider an increase in capacity dispersion of the form K ′1 = K1+∆1 > K1,

K ′2 = K2 + ∆2 < K2, with ∆1 and ∆2 chosen such that total information capacity φ remains

unchanged. Then, the average ownership difference E
{∑

i
Q1i

λ
−
∑

i
Q2i

1−λ

}
increases.

Using Proposition 4, we can show that the aggregate symmetric growth in information

technology, modeled as a common growth rate of both K1 and K2, leads to a growing

retrenchment of unsophisticated investors and hence an increased ownership of risky assets by

sophisticated (Proposition 7), as well as growing capital income polarization (Proposition 8).

Proposition 7 (Dynamic Ownership) Consider symmetric information capacity, such

that K1t = Kt and K2t = Ktγ, γ ∈ (0, 1), and consider φk−1 < φ < φk such that the first

k > 1 assets are actively traded in equilibrium. In equilibrium, the average ownership share

by sophisticated investors increases across all assets: for all i

dE{Q1i

λ
− Q2i

1− λ
}/dK > 0.

Proposition 8 (Capital Income Polarization) Consider symmetric information capac-

ity, such that K1t = Kt and K2t = Ktγ, γ ∈ (0, 1), and consider φk−1 < φ < φk such that

the first k > 1 assets are actively traded in equilibrium. In equilibrium, the average capital

income becomes more polarized:

dE{
∑
i

π1i/
∑
i

π2i}/dK > 0.
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3 Quantitative Results

In this section, we present the results corresponding to our analytical predictions. We

first discuss the parametrization of the model using stock-level micro data, and show the

quantitative impact of information frictions. Further, we present results that help us to

identify our economic mechanism in the data. Then, we proceed to our main result: We

use the predictions of the parameterized model to establish the link between differences

in investors’ sophistication – proxied by differences in their financial wealth – and capital

income inequality, using a sample of individuals from the Survey of Consumer Finances.

Finally, we proceed with the discussion of alternative mechanisms, and provide additional

empirical evidence that supports our analytical predictions.

3.1 Parametrization

Our analytical design combines a portfolio framework with information frictions. Thus,

in order to parameterize the model it is essential that we use data with a similar level of

granularity. Our evidence is based on institutional portfolio holdings data from Thomson

Reuters. These data contain a large sample of portfolios of publicly traded equity held by

institutional investors and come from quarterly reports required by law and submitted by

institutional investors to the Securities and Exchange Commission (SEC). While the official

requirement for reporting is that the minimum asset size exceed $100 million, and thus not

all investors are in the data, in reality, the data are comprehensive as more than 95% of

all dollar investments are reported. Overall, thanks to their rich micro-level structure, the

data allow us to directly test the predictions of our model for portfolio composition and its

evolution for different asset classes.

To map the model to the data, we need to identify the heterogeneity in information

capacity across investors. To this end, we define sophisticated investors as those classified

as investment companies or independent advisors (types 3 and 4) in the Thomson data set.

These investors include wealthy individuals, mutual funds, and hedge funds. Among all

types, these two groups are known to be particularly active in their information production
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efforts; in turn, other groups, such as banks, insurance companies, or endowments and

pensions are more passive by nature. Our definition of unsophisticated investors is other

shareholders who are not part of Thomson data. These are individual (retail) investors.

To provide the empirical verification of the proposed investor classification, we show the

evolution of cumulative returns of portfolios held by the two types of investors using data

over the time period 1989-2012. We proceed in three steps. First, we obtain the market

value of each stock held by all investors of a given type. Market value of each stock is the

product of the number of combined shares held by a given investor type and the price per

share of that stock, obtained from CRSP. Since the number of shares held by unsophisticated

investors is not directly observable, we impute this value by taking the difference between the

total number of shares available for trade and the number of shares held by all institutional

investors. Second, we calculate the value shares of each stock in the aggregate portfolio by

taking the ratio of market value of each stock relative to the total value of the portfolio of

each type of investor. Third, we obtain the return on the aggregate portfolio by matching

each asset share with their next month realized return and calculating the value-weighted

aggregated return. We repeat this procedure separately for sophisticated and unsophisticated

investors.

To compare portfolio performance of the two investor types, we calculate cumulative

values of $1 invested by each group in January 1989 using time series of the aggregated

monthly returns ending in December 2012. We present the two series in Figure 1.

Our results indicate that portfolio returns of sophisticated investors indeed systemati-

cally outperform those of unsophisticated investors. The value of $1 invested in January

1989 grows to $5.32 at the end of 2012 for sophisticated investors and only to $3.28 for

unsophisticated investors.

We now proceed to the details of the parametrization of the model that we subsequently

use to assess the validity of our economic mechanism. We use stock-level micro data and

aggregated investors’ equity shares, which allows us to test the model’s predictions regarding

portfolio allocations and asset turnover across assets and over time. We parameterize the

model to match key moments of the data for the period 1989-2000. We think of this as the
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Figure 1: Cumulative Return in Equity Markets.

initial period in our model and treat it as a point of departure for our dynamic comparative

statics exercises.

The key parameters of our model are the information capacity of each investor type

(K1 and K2), the averages and volatilities of the fundamental shocks (z̄i, σi) and the supply

shocks (x̄i, σxi, , i = 1, ..., n), the risk aversion parameter (ρ), and the fraction of sophisticated

investors (λ).

For parsimony, we restrict some parameters and normalize the natural candidates. In

particular, we normalize x̄ = 5, z̄ = 10 and restrict σxi = σx. To capture heterogeneity in

assets returns, we set the lowest volatility σn = 1 and assume that volatility changes linearly

across assets, which means that it can be parameterized by a single number, the slope of the

line.13 We pick the remaining parameters to match the following targets in the data (based on

1989-2000 averages): (i) aggregate equity ownership of sophisticated investors, equal to 23%;

(ii) real risk-free interest rate, defined as the average nominal return on 3-month Treasury

bills minus inflation rate, equal to 2.5%; (iii) average annualized stock market return in

excess of the risk-free rate, equal to 11.9%; (iv) average monthly equity turnover, defined as

the total monthly volume divided by the number of shares outstanding, equal to 9.7%; (v)

the ratio of the 90th percentile to the median of the cross-sectional idiosyncratic volatility

13In particular, we set σi = σn + α(n − i)/n which, given our normalization of σn, leaves only α to be
determined.
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of stock returns, equal to 3.54. In addition, we arbitrarily set the fraction of assets about

which agents learn to 50%.

To generate the dynamic predictions of our model, we assume a symmetric growth in

information capacity of each investor type, in order to match the 2001-2012 average equity

ownership rate of sophisticated investors, equal to 43%. The progress in information capacity

required to achieve this target amounts to a roughly 9.5% capacity growth annually (for 11

years from the middle of the first sub period to the middle of the second sub period). We

think of this approach as a way of modeling technological progress in investment technology

which affects both types of investors in the same way—hence, the reported results are not

driven by differential growth but come solely from the general equilibrium effects of our

mechanism.

The above procedure leaves us with one key parameter left—the ratio of information

capacity of sophisticated versus unsophisticated investors, K1/K2. We set this parameter to

10% in this section, and use Survey of Consumer Finances data to pin it down when we use

the model to predict capital income polarization in the next section. The parameters and

model fit are presented in Tables 1 and 2.

Table 1: Parameter Values

Parameter Value

K1, K2, λ, n 0.577, 0.0577, 0.2, 10
z̄i, x̄i 10, 5
ρ 1.0865
σxi 0.41 for all assets i
{σi}, i = 1, ..., 10 assets {1.5026, 1.4468, 1.3909, 1.3351, 1.2792, 1.2234, 1.1675,

1.1117, 1.0558, 1}
K1, K2 ex-post 1.57, 0.157

3.2 Quantifying the Information Friction

In this section, we explore the quantitative implications of our information frictions, and

contrast them with the stock-level micro evidence. We first discuss findings related to returns
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Table 2: Parametrization: Model Fit

Statistic Data Model

Market Return 11.9% 11.9%
Average Turnover 9.7% 9.7%
Sophisticated Investors’ Ownership 23% 23%
Informed Trading n.a. 50%

inequality. Next, we show that predictions specific to our economic mechanism are borne

out in the data, which we view as independent tests of our model.

3.2.1 Returns Inequality

We report the results in Table 3. The parameterized model implies a 2.7 percentage

point advantage (14% versus 11.3%) in average portfolio returns between sophisticated and

unsophisticated investors, which accounts for 90% of the difference in the data for the 1989-

2000 period (13.4% versus 10.4%). Thus, the model can account for a significant fraction of

the empirical difference in returns across the two investor types. Given that our mechanism

has an economically large implication for the difference in performance across agents with

different information capacities, this suggests that a similarly large economic effect may

also exist within the household sector. In particular, if sophistication can be approximated

by financial wealth (as implied by a setting in Arrow (1987)), then our mechanism would

imply a growing disparity in capital incomes across households. We explore the quantitative

implications of this hypothesis in Section 3.3.

Decomposing the Return Differential As our analytical results suggest, sophisticated

investors outperform unsophisticated investors for two reasons: (i) they are more exposed

to risk because they hold a larger share of risky assets (compensation for risk); and (ii) they

have informational advantage (compensation for skill).

Below, we decompose the returns of each investor type to shed light on the relative

importance of these two effects. To this end, we first derive the conditional CAPM model in
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Table 3: Market Averages by Subperiod: Data and Model

1989-2000 2001-2012

Statistic Data Model Data Model

Market Return 11.9% 11.9% 2.4% 3.5%
Sophisticated Investors’ Return 13.4% 14% 2.9% 3.7%
Unsophisticated Investors’ Return 10.4% 11.3% 1.6% 3.4%
Average Equity Turnover 9.7% 9.7% 16% 14%
Sophisticated Investors’ Ownership 23% 23% 43% 43%

our setup, which gives the asset pricing equation

Et(rit)− r =
covt(rit, rmt)

vart(rmt)
(Et(rmt)− r), (18)

so that the conditional market βit of asset i is covt(rit,rmt)
vart(rmt)

. In the above, rit is the return

on asset i in period t, pmt is the price of the market portfolio (pm :=
∑
xipi), and rmt =∑

zitxit/pmt is the market return.14

In order to evaluate returns on a portfolio of average investor type j = S, U , define

portfolio weights of investor j at time t as

ωijt =
qijtpit∑
l qljtplt

.

The time t expected excess return on the portfolio of type j is

Rjt =
∑
i

ωijt(Et(rit)− r),

and the ex-ante expectation of that return is

R̄j = αj + β̄j(E(rmt)− r)) (19)

14Both the expectation and the covariance are conditional on the information available to the average
investor in period t. For detailed derivation, see Appendix.
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where β̄j =
∑

iEωijtEβit, and

αj =
∑
i

cov(ωijt, Et(rit)) +
∑
i

Eωijtcov(βit, Et(rmt)).

Quantitatively, the pure skill effect captured by αj accounts for all of the return differ-

ential in the model. To see that, replace αS with αU to get the counterfactual return of the

sophisticated investors if their skill effect was the same as the unsophisticated investors’:

R̂S = αU + β̄S(E(rmt)− r)).

According to R̂S, the sophisticated portfolio would generate an annualized return of

11.2% versus 11.3% of the unsophisticated portfolio15 (determined by R̄U), which means

actually more than 100% of the return differential is due to skill.

This exercise can also shed light on whether the skill compensation differential αS > αU

in the model comes from superior active response to shocks or just different portfolio weights

across types on average. These two effects are captured by the first and second expression

which determines alpha, respectively. Quantitatively, active portfolio adjustment in response

to shocks is the dominant force determining alpha: It accounts for 84% of the sophisticated

investors’ αS and 80% of the unsophisticated investors’ αU .

3.2.2 Testing the Mechanism

The results in the previous section demonstrate a significant impact of our information

mechanism on the return differential, which will be the driving force behind accounting

for the capital income polarization in the next section. Before we proceed to our analysis

of capital income, however, we provide a set of quantitative predictions for the benchmark

parametrization that allow us to provide additional support for our mechanism by comparing

it to the corresponding data moments. These are robust predictions of our mechanism and

are proven analytically in Section 2. Below, we show a good fit of these results not only

15α1/α2 is equal to 1.67 in the model.
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qualitatively but also quantitatively.

Market Averages Technological progress in information capacity in the model implies

large changes in average market returns, cross-sectional return differential, and turnover.

We report these statistics generated by the model and observed in the data in Table 3.

The changes implied by the model not only match the changes in the data qualitatively,

but they also come close quantitatively. Both the model and the data imply a decrease in

market return and a decrease in the return differential of portfolios held by sophisticated

and unsophisticated investors. Intuitively, in the model, lower market return is a result of

an increase in quantity of information: The price reflects that and tracks much more closely

the actual return z than it does in the initial parametrization with lower overall capacity

(for additional intuition, see Proposition 5).

The model also predicts a sharp increase in average asset turnover, in magnitudes con-

sistent with the data. As with the market return, this result is a direct implication of our

mechanism and is not driven by changes in asset volatility. In fact, fundamental asset volatil-

ities (σis) are held at the same level across the two sub-periods in the model. Intuitively,

higher turnover in the model is driven by more informed trading by sophisticated investors,

both due to their holding a larger share of the market as well as them receiving more precise

signals about asset payoffs.

Expansion of Ownership Investors in our model prefer to learn about assets with higher

volatility. In particular, upon increasing their information capacity, they first invest it in

the most volatile asset until the benefits from a unit of information become equalized with

those of the second-highest volatility asset, then third, and so forth (see Proposition 3).

This process implies a particular way in which sophisticated investors expand their portfolio

holdings as their capacity (through overall capacity) increases. Specifically, we should see

that sophisticated investors exhibit the highest initial growth in ownership for the the highest-

volatility assets, then lower-volatility assets, etc. This prediction is robustly borne out in

the data, as exhibited in Figure 2, which shows the evolution of this growth in the model
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Figure 2: Cumulative Growth in Sophisticated Investors’ Ownership: Data and Model

and in the data over the period 1989-2012.16

In Figure 3, we show the change in asset ownership by sophisticated investors over the

periods 1989-2000 and 2001-2012, where assets are sorted by volatility of their returns. This

cross-sectional change underlies the average ownership targets in the model of 23% in the

initial period and 43% in the later period. Both the data and the model exhibit a hump-

shaped profile of the increase and they are also very close quantitatively.
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Figure 3: Absolute Change in Sophisticated Investors’ Ownership

In conclusion, even though we parameterize the model to match the aggregate ownership

levels of sophisticated investors in the pre- and post-2000 period, the model is also able to

16To generate this graph in the model, we increase aggregate capacity from zero to the level that matches
48% sophisticated ownership, which is the last point in the data.
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explain quantitatively how ownership increases across asset volatility classes, both in terms

of timing of the growth levels and in terms of the absolute magnitudes of the ownership

changes.

Cross-sectional Turnover Our model implies cross-sectional variation in asset turnover,

driven by differential investment of investors’ information capacity. Intuitively, if an asset is

more attractive and investors invest more in it, then there are more investors with precise

signals about this asset’s returns, and these investors want to act on such better information

by taking larger and more volatile positions. Since the sophisticated investors receive more

precise signals, and they have preference towards high-volatility assets, we should see a

positive relationship between volatility and turnover. We report turnover in relation to

return volatility in the model and in the data in Table 4.

Table 4: Turnover by Asset Volatility

Volatility quintile 1 2 3 4 5 Mean

1989-2000

Data 5% 8.5% 10.5% 12.5% 11.5% 9.7%
Model 9% 9% 9.3% 9.9% 10.8% 9.7%

2001-2012

Data 11% 14.6% 17% 18.4% 19.3% 16%
Model 12.5% 13.6% 14.2% 15% 15.4% 14%

The first two rows compare data and the model prediction for the initial parametrization

to 1989-2000 data. Both data and model show increasing patterns in turnover as volatility

goes up, which are quantitatively close to each other. In the next two rows, we compare

data for the 2001-2012 period to results generated from the dynamic exercise in the model

in which we increase overall capacity. The model implies an increase in average turnover

compared to that in an earlier period and additionally matches the cross-sectional pattern of

the increase. This effect is purely driven by our information friction, since the fundamental

volatilities remain constant over time in this exercise.17

17Our model also implies a positive turnover-ownership relationship, which we further confirm in the data.
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At first it may appear as though our results are at odds with evidence in Barber and

Odean (2000) who find that trading intensity is negatively related to performance, while

our findings would suggest that sophisticated investors achieve superior returns and they

trade more. We argue that the two are not necessarily contradictory. First, we highlight

the relationship between gross (portfolio) returns and turnover while their result is about

net returns to emphasize the role of transaction costs. In fact, Barber and Odean (2000)

do find that turnover is weakly positively related to gross returns. Second, their data set

covers a subset of (retail) investors over the short period of 1991-1997. Hence, the capital

income distribution is likely truncated from above. Our data set instead also includes most

sophisticated investors and our theory predicts that these most sophisticated investors have

disproportionately higher information advantage. Finally, we look at turnover at the stock

level, while they look at turnover by investor type; these are conceptually different statistics,

and in the presence of any investor-fixed effects, the investor-based results would be skewed.

3.3 Capital Income Inequality

In our analysis so far we have obtained a set of parameters crucial for understanding

the workings of investors’ opportunity set. Crucially, these parameters are calibrated in

the economy with non-trivial heterogeneity across investors and assets. In this section, we

use this parameterization of the stochastic environment of our economy implied by micro-

evidence to shed light on the main question of our paper: the dynamics of capital income

inequality. We perform this analysis on a group of U.S. households from the Survey of

Consumer Finances (SCF). The SCF data set has been a standard testing set for questions

related to households finance and thus is a reliable source for our purpose.

A critical element for our analysis involves the measurement of investor sophistication.

Following the work of Arrow (1987) and Calvet, Campbell, and Sodini (2009b), we use wealth

levels as proxies for investor sophistication. The idea is that wealthier individuals have access

to better information production or processing technologies, which in the language of our

model means they have greater information capacity. We investigate, through the lens of

This result is consistent with the empirical findings in Chordia, Roll, and Subrahmanyam (2011).
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our model, how initial wealth levels can propagate information capacity differences through

time.

Specifically, we map investor types in our model into households in different wealth

groups in the SCF. We then explicitly map the ratio of wealth levels into initial ratio of

information capacities and posit that the growth in information capacity is linearly related

to the growth of the financial portfolio of each investor type. Hence, differences in rates

of return endogenously propagate into different capacity levels in subsequent periods. The

guiding principle of our exercise is the existence of a technology of obtaining capacity that

is characterized by high fixed and low marginal costs, as explored in Arrow (1987). Below,

we first proceed to describe the relevant groups of individuals in the SCF, and then present

model results.

In order to map our investor types into household types in the SCF, we restrict our data

to households who participate in capital markets. Specifically, we focus on households with

non-zero investment in either stocks or non-money market mutual funds, or a brokerage

account (about 30% of the population). We then consider two subsets of households: a

group of 10% of households with the highest level of total wealth at each point in time

(sophisticated investors) and a group of 50% of households with the lowest level of total

wealth (unsophisticated investors).18

We proceed to set the initial ratio of investors’ information capacity, K1/K2 in the model,

to the 1989 ratio of average financial wealth in the top 10% and the bottom 50% of the total

wealth distribution of our households. In the data, this ratio is equal to 29.92. We then pick

the initial aggregate capacity level to match the excess return on the market portfolio, equal

to 11.9% in the data.19 We then assume that the growth of each investor type’s capacity

18Income ratios are highly dispersed cross-sectionally, with sophisticated investors earning at the minimum
45 times more dollar income than unsophisticated ones. This dispersion also grows strongly over time up to
150 in 2004. Even though it subsequently diminishes slightly, it remains at a very high level of at least 100.
In the data, we also find that the ratio in rates of returns for sophisticated vs. unsophisticated investors on
average equals 1.7 and varies between 1.1 and 2.15 in the time series–which suggests that the capital income
polarization is not driven mechanically by financial wealth differences.

19We also set the initial wealth in order to match the average initial (1989) return on wealth of 5%,
consistent with the SCF in 1989. The parameterization procedure gives capacity levels equal to K1 = 0.694
and K2 = 0.0231.
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is equal to her return on equity. We simulate the model for 21 years forward, which is the

time span of our data set. As the outcome of the experiment, we obtain the endogenous

capital income dispersion growth implied by our mechanism. The results of this exercise are

presented in Table 5 and Figure 4.

Table 5: Capital Income Dispersion: Data and Model

Data 1989-2010 Model

Capital Income Dispersion Growth 83% 71%

We obtain a 71% growth in capital income inequality (83% in the data), which is over

93% of the growth observed in the data. We conclude that our mechanism implies a strong

role of wealth as a proxy for sophistication and growth in wealth as a proxy for growth in

sophistication, especially in explaining capital income polarization observed in the data. As

Figure 4 shows, the model matches well not only the overall growth but also the dynamics

of the increase in capital income polarization.
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Figure 4: Cumulative Growth in Capital Income Dispersion
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3.4 Additional Supporting Evidence

So far, we presented quantitative results supporting analytical predictions that are based

on our parameterized model. Specifically, our theoretical predictions imply that differences in

capital income can stem from two sources: heterogeneity in prices of investable assets and the

differential exposure of investors to holding such assets. In this section, we provide additional

evidence on each of these channels that offers support for our predictions qualitatively but

cannot be assessed quantitatively.

Unsophisticated Investors’ Retrenchment We show that cross-sectional differences in

assets holdings of investors with different levels of sophistication are consistent with predic-

tions of our model and thus contribute to capital income inequality and its growing polariza-

tion. Our main prediction is that unsophisticated investors should be more likely to invest

in assets with lower expected values. In the quantitative tests of the model in Figure 2,

we show that sophisticated investors allocate their wealth first into assets with highest level

of volatility and subsequently into assets with lower levels of volatility. Now, we provide

additional evidence which suggests similar investors’ preferences.

Our first piece of evidence is based on SCF data regarding households’ holdings in liquid

wealth. The idea of this test is that unsophisticated investors should be more likely to invest

in safe (liquid) assets. SCF provides detailed classification of wealth invested in such assets

that include checking accounts, call accounts, money market accounts, coverdell accounts,

and 529 educational state-sponsored plans. As before, in each period, we divide households

into two groups: top 10% and bottom 50% of the wealth distribution. For each of the groups,

we calculate the average ratio of liquid wealth to total financial wealth. Higher ratios would

imply greater exposure to low-profit assets. We present the two time series in Figure 5.

We find evidence that strongly supports predictions of our model. First, the average ratio

of liquid wealth for sophisticated investors, equal to 15.3%, is significantly lower than that for

unsophisticated investors, which in our sample equals 25%. In addition, while the exposure

to liquid assets by sophisticated investors is generally non-monotonic (u-shaped), similar

investment for unsophisticated investors exhibits a strong positive time trend, especially in
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Figure 5: Share of Liquid Wealth in Financial Wealth: Survey of Consumer Finances.

the last 20 years: The average investment goes up from 16.7% in 1998 to 39% in 2010.

This evidence strongly supports our economic mechanism in that differences in information

capacity lead to retrenchment by unsophisticated investors from risky assets and relocation

to safer assets.

We further confirm this claim using evidence on institutional holdings from Thomson

Reuters. To this end, we calculate average (equal-weighted) equity ownership of sophisticated

investors (mutual funds and hedge funds) and unsophisticated (retail) investors. We report

the respective time series quarterly averages of the ownership over the period 1989-2012 in

Figure 6.

The results paint a picture that is generally consistent with our model’s predictions. Al-

though the average ownership level of unsophisticated investors is higher in an unconditional

sample and equals 61%, the time-series evidence clearly indicates a very strong pattern: The

average equity ownership for unsophisticated investors goes down while that for sophisticated

investors significantly goes up.20 We argue that this evidence is consistent with the view

that the observed expansion of relative financial wealth drives the expansion of information

capacities. Realizing a positive shock to information capacity sophisticated investors enter

20The visible positive trend in active ownership has been documented before by Gompers and Metrick
(2001) and is even stronger if one accounts for differences in market values across assets and the preference
of sophisticated investors for large-cap stocks.
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Figure 6: Equity Ownership by Sophistication Type.

the profitable equity market at the expense of unsophisticated investors who perceive the

informational disadvantage in the market and as a result move away from equity. Notably,

the retrenchment of unsophisticated investors from directly holding equity happened despite

the overall strong performance of equity markets over the same time period. This suggests

that investors do not simply respond to past trends in equity returns.

As a final auxiliary prediction we consider money flows into mutual funds. The idea is

that equity mutual funds are more risky than non-equity funds. As such, unsophisticated

investors should be less likely to invest in the former, especially if information capacity gets

more polarized.

To test this prediction in the data we use mutual fund data from Morningstar. Morn-

ingstar classifies different funds into those serving institutional investors and individuals

whose investment is at least $100,000 (institutional funds) and those serving individual in-

vestors with investment value less than $100,000 (retail funds). For the purpose of testing

our predictions, we define sophisticated investors as those investing in institutional funds

and unsophisticated investors as those investing in retail funds. Subsequently, we calculate

cumulative aggregated dollar flows into equity and non-equity funds, separately for each

investment type. Our data span the period 1989-2012. We present the results in Figure 7.

We find that the cumulative flows from sophisticated investors into equity and non-
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Figure 7: Cumulative Flows to Mutual Funds by Sophistication Type: Equity vs. Non-
Equity

equity funds increase steadily over the whole sample period. In contrast, the flows from

unsophisticated investors display a visibly different pattern. The flows into equity funds

keep increasing until 2000 but subsequently decrease at a significant rate of more than 3

times by 2012. Moreover, the decrease in cumulative flows to equity mutual funds coincides

with a significant increase in cumulative flows to non-equity funds. Overall, these findings

support predictions of our model: Sophisticated investors have a large exposure to risky

assets and subsequently add extra exposure to less risky assets, whereas unsophisticated

investors leave riskiest assets and move into safer assets as they perceive higher information

disadvantage.

One could point out that the increase in equity fund flows by unsophisticated investors

observed in the early sample period is inconsistent with our model. However, we argue that

this result could still be rationalized by contrasting it with the steady decrease in holdings

of individual equity documented earlier. To the extent that individual equity holdings are

more risky than diversified equity portfolios, such as mutual funds, this only means that in

the earlier period unsophisticated investors reallocate their wealth from riskier to safer asset

class.
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Stock Selection Ability The second building block of our economic mechanism is the

ability of sophisticated investors to better choose assets. Our quantitative evaluation maps

the model prediction to the observed differences in performance between sophisticated and

unsophisticated investors. Here, we provide an additional qualitative result in which we

show that equity holdings of sophisticated investors are higher for stocks which realize higher

returns.

To conduct this test, we obtain data on stock returns come from Center for Research on

Security Prices (CRSP), and for each stock we calculate the market shares of sophisticated

investors. Next, we estimate the regression model over the period January 1989-December

2012 with stock/month as a unit of observation. Our dependent variable is the share of

sophisticated investors in month t and the independent variable is return corresponding to

the stock in month t. Our regression model includes year-month fixed effects and standard

errors are clustered at the stock level to account for the cross-sectional correlation in the

data. We report the results of this estimation in Table 6.

Table 6: Future Returns Explain Sophisticated Investors’ Ownership

Variable Value Standard Error

Future Return 0.048 0.00845
Constant 0.300 0.00007
Year-Month-Fixed Effects Yes
Number of Observations 1,525,787

We find strong evidence that sophisticated investors tend to invest more in stocks that

generate higher returns (which is consistent with our model’s prediction summarized in

Proposition 2). Hence, we conclude that sophisticated investors in our sample exhibit supe-

rior stock-selection ability. This finding corroborates that in a number of other studies that

show the strong existence of stock-picking ability among sophisticated investors, such as ac-

tively managed equity mutual funds (e.g., Daniel, Grinblatt, Titman, and Wermers (1997),

Cohen, Coval, and Pástor (2005), Kacperczyk, Sialm, and Zheng (2005), Kacperczyk and

Seru (2007)). At the individual level, there is ample anecdotal evidence that shows superior
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investment ability of wealthy investors such as Warren Buffett or Carl Icahn.

Overall, our evidence is consistent with the premise of our economic mechanism that

sophisticated investors are good at choosing assets and relocating their resources to the

most profitable ones.

3.5 Discussion of Alternative Mechanisms

Our findings so far strongly suggest that heterogeneity in information capacity has the

ability to explain cross-sectional and time-series patterns in capital income inequality, while

simultaneously producing results that are consistent with other micro-level financial data.

While the information friction constitutes a plausible economic mechanism, there may cer-

tainly exist other mechanisms which could contribute to the patterns observed in the data.

To our knowledge, our paper is the first to embed the proposed friction in an equilibrium

model and formally test its predictions vis a vis the data to provide an independent verifica-

tion for the proposed mechanism. Our view is that any alternative mechanism put forward

should be subject to the same verification procedure. While their formal modeling is beyond

the scope of this paper, below we discuss some of the popular alternative explanations in

light of micro-evidence.

Risk aversion differences It is possible that capital income inequality in the data is

driven by differences in risk aversion among investors. In particular, if one group of investors

is less risk averse they would hold a greater share of risky assets with higher expected returns

and hence would have higher expected capital income. Such a setting would also encompass

situations in which investors are exposed to different levels of volatility in areas outside

capital markets, like labor income.

Within our mean-variance specification, growing differences in risk aversion would pro-

duce growing aggregate ownership in risky assets of less risk-averse investors, but it would not

generate any difference in investor-specific rates of return on equity, or differential growth in

ownership reported in Figure 2. The reason being that differences in risk aversion imply dif-

ferent exposures to risky portfolio but not different risky portfolio weights, and hence imply a
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uniform proportional retrenchment of the high risk aversion agents from equity. This result,

supported additionally by regression results in Section 3.4, suggests that the excess market

performance is driven by sophisticated investors explicitly picking different portfolio shares

(as opposed to pure timing). Finally, differences in risk aversion across investors cannot

explain the cross-sectional turnover profile of assets (in Table 4).21

We are not the first ones to point out that preference-based approaches to explaining

household portfolio choice suffer from serious drawbacks. Analysis in Dumas (1989), as well

as arguments in Chien, Cole, and Lustig (2011) suggest that differences in risk preferences

cannot account for observed differences in rates of returns across agents with different degrees

of sophistication.22

Saving rates Another explanation for the growing capital income polarization could be

differences in savings rates among households. If less wealthy households have lower savings

rates (which go towards financial wealth), then their financial wealth will grow slower than

that of the more wealthy households and hence capital incomes of the two groups will diverge.

We view this explanation as separate from our mechanism, since it implies no differences in

rates of return on financial wealth, and works through pure size effects of the financial wealth.

This directly contradicts our finding, presented in Figure 8, on differences in rates of return

on financial wealth across wealth groups in the Survey of Consumer Finances. In particular,

for each of the group identified by us as sophisticated and unsophisticated in Section 3.3

(top 10% and bottom 50% of wealth distribution), we compute a rough measure of rate of

return by taking capital income relative to financial wealth for each group of households.

Figure 8 plots the ratio of these rates of return in our data. Sophisticated investors earn

on average a 70% higher rate of return on their financial wealth relative to unsophisticated

investors, with the number being positive in all survey years. We conclude that there are

large and persistent return differences between household groups, which are captured by

21Note that in a model with CRRA specification, portfolio weights will also be identical across risky
assets, and hence even in that specification, rates of return on equity will be equalized across investor types.

22Using a different approach, Chien, Cole, and Lustig (2011) explore the role of exogenous heterogeneity
in investment technologies in explaining wealth distribution. We build a micro-founded model of such
heterogeneity, and focus on capital income (flows) and differences in rates of return.

42



our mechanism and by the nature of return construction are not driven by savings rates

differences.
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Figure 8: Return on Financial Wealth by Sophistication Type

Age-dependent investment policies Capital income polarization in our data also does

not seem to be driven by age demographics. In principle, our measure of capital income

includes capital gains and the endogenous household decision of when to realize them. This

could depend on a variety of life-cycle factors which we will proxy by using investor age.

Figure 9 plots the average age of sophisticated and unsophisticated investors in the SCF.

As expected, the wealthy households are older on average. However, the figure reveals that

there is no special time-series dynamics to the age difference that could possibly explain the

observed capital income dynamics.

Further analysis also rules out the possibility that capital income differences are the

outcome of differences in market returns over time combined with buy-and-hold, passive

strategies of households in different age cohorts. Figure 10 plots, for each year, the past

15-year and 5-year cumulative return on holding the market (left panel)23. It simulates the

cumulative return of a household which buys the market index at age 40 and sells at 44 or

at 55 - a completely passive strategy. As we can see, the cumulative return on the passive

23The patterns we document are essentially the same for other choices of the two horizons, like 20-year
and 10-year cumulative returns.
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Figure 10: Cumulative market return on a 5-year and 15-year passive investment in market
(left panel) and implied growth in polarization (right panel).

strategy actually exhibits a declining trend, more so for the 15-year strategy. This implies

that if all investors used the passive strategy and the only difference would be how much of

the capital gain is realized by each age group, we should observe the 44-year olds’ capital

income (driven by cumulative return over the last 5 years) to go up relative to the 55-year

olds’ (driven by returns over the last 15 years). This is presented in the right panel of Figure

10. Compared with the data in Figure 4, it is clear that the passive investment strategies

imply a counterfactual evolution of capital income polarization.
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Transaction costs Finally, we discuss the potential of differences in transaction costs

across investors to account for the data. To the extent that less sophisticated investors face

higher transaction costs in risky asset markets they would be willing to participate less, as

argued in Gomes and Michaelides (2005) and others.

While this explanation might have some merit to explain cross-sectional patterns in the

data, we believe it is less likely to explain the time-series results. In particular, we observe

that more sophisticated households generate significantly greater gap in their incomes over

time, which is hard to reconcile with the fact that there was not much change in the overall

quantity of transaction costs, as reported in French (2008). In fact, if anything, growth

in internet access and services made an access to more direct investing extremely easy and

relatively less costly for the average citizen as opposed to just the few privileged ones.

4 Concluding Remarks

What contributes to the growing income inequality across households? This question

has been of great economic and policy relevance for at least several decades starting with a

seminal work by Kuznets. We approach this question from the perspective of capital income

that is known to be highly unequally distributed across individuals. We propose a theo-

retical information-based framework that links capital income derived from financial assets

to a level of investor sophistication. Our model implies the presence of income inequality

between sophisticated and unsophisticated investors that is growing in the extent of total

sophistication in the market and in relative sophistication across investors. Additional pre-

dictions on asset ownership, market returns, and turnover help us pin down the economic

mechanism and rule out alternative explanations. The quantitative predictions of the model

match qualitatively and quantitatively the observed data.

Although our empirical findings are strictly based on the U.S. market, our model should

have similar implications for other financial markets. For example, qualitatively, we know

that income inequality in emerging markets tends to be even larger than the one documented

for the U.S. To the extent that financial sophistication in such markets is much more skewed
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one could rationalize within our framework the differences in capital incomes. Similarly, the

U.S. market is considered to be the most advanced in terms of its total sophistication, which

is possibly why we find a greater dispersion in capital income compared to other developed

markets, such as those in Europe or Asia.

More generally, one could argue that although the overall growth of investment resources

and competition across investors with different skill levels are generally considered as a

positive aspect of a well-functioning financial market, our work suggests that one should

assess any policy targeting overall information environment in financial markets as potentially

exerting an offsetting and negative effect on socially relevant issues, such as distribution of

income. We leave detailed evaluation of such policies for future research.
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Appendix

Model

Portfolio Choice We begin by solving investors’ portfolio problem in the second stage,
for a given signal structure. Each investor chooses portfolio holdings qji to solve

max{qji}ni=1
Uj = Ej (Wj)− ρ

2
Vj (Wj) s.t. Wj = r (W0j −

∑n
i=1 qjipi) +

∑n
i=1 qjizi,

where W0j is initial wealth and Ej and Vj denote the mean and variance conditional on
investor j’s information set:

Ej (Wj) = Ej [rW0j +
∑n

i=1 qji (zi − rpi)] = rW0j +
∑n

i=1 qji [Ej (zi)− rpi] ,

Vj (Wj) = Vj [rW0j +
∑n

i=1 qji (zi − rpi)] =
∑n

i=1 q
2
jiVj (zi) .

Let µ̂ji ≡ Ej [zi] and σ̂2
ji ≡ Vj [zi]. The investor’s portfolio problem is to maximize

Uj = rW0j +
∑n

i=1 qji (µ̂ji − rpi)−
ρ
2

∑n
i=1 q

2
jiσ̂

2
ji.

The first order conditions with respect to qji yield the optimal portfolio holdings, given by

qji =
µ̂ji−rpi
ρσ̂2
ji
.

Since W0j does not affect the optimization, we normalize it to zero. The indirect utility
function becomes

Uj = 1
2ρ

∑n
i=1

(µ̂ji−rpi)2

σ̂2
ji

.

Posterior Beliefs The signal structure, zi = sji + δji, implies that posterior beliefs are
normally distributed, with mean and variance given by Bayesian updating,

µ̂ji = z +
Cov(sji,zi)

σ2
sji

(sji − sji) = z + sji − z = sji,

σ̂2
ji = σ2

i

(
1− Cov2(sji,zi)

σ2
sjiσ

2
i

)
= σ2

i

(
1− σ2

sji

σ2
i

)
= σ2

δji.

Conditional Distribution of Signals Conditional on the realized payoff, the signal is a
normally distributed random variable, with mean and variance given by Bayesian updating,

E (sji|zi) = sji +
Cov(sji,zi)

σ2
i

(zi − z) = z +
σ2
sji

σ2
i
εi =

{
z +

(
1− e−2Kj

)
εi if i = lj

z if i 6= lj,

V (sji|zi) = σ2
sji

(
1− Cov2(sji,zi)

σ2
sjiσ

2
i

)
= σ2

sji

(
1− σ2

sji

σ2
i

)
=

{(
1− e−2Kj

)
e−2Kj if i = lj

0 if i 6= lj.
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Information Constraint Let H (z) denote the entropy of z, and let H (z|sj) denote the
conditional entropy of z given the vector of signals sj. Then

I (z; sj) ≡ H (z)−H (z|sj)
(1)
=
∑n

i=1 H (zi)−H (z|sj)
(2)
=
∑n

i=1H (zi)−
∑n

i=1 H (zi|zi−1, sj)

(1)
=
∑n

i=1H (zi)−
∑n

i=1H (zi|sj)
(3)
=
∑n

i=1H (zi)−
∑n

i=1 H (zi|sji) =
∑n

i=1 I (zi; sji)

where (1) follows from the independence of the payoffs zi; (2) follows from the chain rule for
entropy, where zi−1 = {z1, ..., zi−1}; (3) follows from the independence of the signals sji.

Hence, under the assumption that the signals are independent, I (z; sj) =
∑n

i=1 I (zi; sji).

For each asset i, the entropy of zi ∼ f (zi) = N (z, σ2
i ) is

H (zi) ≡
∫
f (zi) ln

1

f (zi)
dzi =

∫
f (zi) ln

{√
2πσ2

i exp

[
(zi − z)2

2σ2
i

]}
dzi

=

∫
f (zi)

[
1

2
ln
(
2πσ2

i

)
+

(zi − z)2

2σ2
i

]
dzi

=
1

2
ln
(
2πσ2

i

)
+

1

2σ2
i

∫
f (zi) (zi − zi)2 dzi =

1

2
ln
(
2πeσ2

i

)
.

The signal structure, zi = sji + δji, implies that

I (zi; sji) = H (zi) +H (sji)−H (zi, sji)

=
1

2
log
(
2πeσ2

i

)
+

1

2
log
(
2πeσ2

sji

)
− 1

2
log
[
(2πe)2

∣∣Σzisji

∣∣]
=

1

2
log

(
σ2
i σ

2
sji∣∣Σzisji

∣∣
)

=
1

2
log

(
σ2
i

σ2
δji

)
,

where
∣∣Σzisji

∣∣ = σ2
sjiσ

2
δji is the determinant of the variance-covariance matrix of zi and sji.

Across assets,

I (z; sj) =
∑n

i=1 I (zi; sji) = 1
2

∑n
i=1 log

(
σ2
i

σ2
δji

)
= 1

2
log

(
n∏
i=1

σ2
i

σ2
δji

)
.

The information constraint can be written as
n∏
i=1

σ2
i

σ2
δji
≤ e2Kj .
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Finally, since σ̂2
ji = σ2

δji, the information constraint becomes
n∏
i=1

σ2
i

σ̂2
ji
≤ e2Kj .

Conversely, for an additive noise signal structure with sji = zi + δji, I (zi; sji) =

1
2

log
(
σ2
i+σ2

δji

σ2
δji

)
, and the information constraint would be

n∏
i=1

σ2
i+σ2

δji

σ2
δji
≤ e2Kj .

Information Objective Expected utility is given by

E0j [Uj] = 1
2ρ
E0j

[∑n
i=1

(µ̂ji−rpi)2

σ̂2
ji

]
= 1

2ρ

∑n
i=1

E0j[(µ̂ji−rpi)2]
σ̂2
ji

= 1
2ρ

∑n
i=1

(
R̂2
ji+V̂ji

σ̂2
ji

)
,

where R̂ji and V̂ji denote the ex-ante mean and variance of expected excess returns, µ̂ji−rpi.
Conjecture (and later verify) that prices are normally distributed, pi ∼ N

(
pi, σ

2
pi

)
.

R̂ji ≡ E0j (µ̂ji − rpi) = z − rpi,

V̂ji ≡ V0j (µ̂ji − rpi) = V ar (µ̂ji) + r2σ2
pi − 2rCov (µ̂ji, pi) .

The signal structure implies that V ar (µ̂ji) = σ2
sji.

Following Admati (1985), conjecture (and later verify) that prices are pi = ai + biεi − ciνi,
for some coefficients ai, bi, ci ≥ 0. We compute Cov (µ̂ji, pi) exploiting the fact that posterior
beliefs and prices are conditionally independent given payoffs:

Cov (µ̂ji, pi) =
Cov(µ̂ji,zi)Cov(zi,pi)

σ2
i

.

Since Cov (zi, pi) = biσ
2
i and Cov (µ̂ji, zi) = σ2

sji, then Cov (µ̂ji, pi) = biσ
2
sji. Then

V̂ji = σ2
sji + r2σ2

pi − 2rbiσ
2
sji = (1− rbi)2 σ2

i + r2c2
iσ

2
x − (1− 2rbi) σ̂

2
ji.

Hence the distribution of expected excess returns is normal with mean and variance:

R̂ji = z − rai and V̂ji = (1− rbi)2 σ2
i + r2c2

iσ
2
x − (1− 2rbi) σ̂

2
ji.

Expected utility becomes

E0j [Uj] = 1
2ρ

∑n
i=1

[
(z−rai)2+(1−rbi)2σ2

i+r2c2i σ
2
x−(1−2rbi)σ̂

2
ji

σ̂2
ji

]
= 1

2ρ

∑n
i=1 Gi

σ2
i

σ̂2
ji
− 1

2ρ

∑n
i=1 (1− 2rbi) ,

where Gi ≡ (1− rbi)2 +
r2c2i σ

2
x

σ2
i

+ (z−rai)2
σ2
i

, and where the second summation is independent of

the investor’s choices.

Hence, the investor’s objective is to maximize
∑n

i=1Gi
σ2
i

σ̂2
ji

. Note that the gain Gi is the same

across all investors and it is taken as given by each individual investor. It is determined in
equilibrium, as a function of equilibrium prices.
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Proof of Lemma 1 The linear objective function and the convex constraint imply
a corner solution for the optimal allocation of attention for each investor: each investor
allocates all capacity to learning about a single asset. For all other assets, the posterior
variance is equal to the prior variance. Let lj index the asset about which investor j learns.
The information constraint becomes

n∏
i=1

σ2
i

σ̂2
ji

=
σ2
lj

σ̂2
jlj

= e2Kj , and hence the variance of the investor’s beliefs is given by

σ̂2
ji =

{
e−2Kjσ2

i if i = lj,

σ2
i if i 6= lj.

The mean of posterior beliefs is derived above.

The investor’s problem becomes picking the asset lj to maximize∑n
i=1 Gi

σ2
i

σ̂2
ji

=
(
e2Kj − 1

)
Glj +

∑n
i=1Gi.

Since e2Kj > 1, the objective is maximized by allocating all capacity to the asset with the
largest utility gain: lj ∈ arg maxiGi.

Proof of Lemma 2 The market clearing condition for each asset in state (zi, xi) is∫
M1i

(
sji−rpi
e−2K1ρσ2

i

)
dj +

∫
M2i

(
sji−rpi
e−2K2ρσ2

i

)
dj + (1−m1i −m2i)

(
z−rpi
ρσ2
i

)
= xi,

where M1i denotes the set of measure m1i ∈ [0, λ] of sophisticated investors who choose to
learn about asset i, and M2i denotes the set of measure m2i ∈ [0, 1− λ], of unsophisticated
investors who choose to learn about asset i.

Using the conditional distribution of the signals,
∫
M1i

sjidj = m1i

[
z +

(
1− e−2K1

)
εi
]

for the
type-1 investors, and similarly for the type-2 investors.

The market clearing condition can be written as α1z + α2εi − xi = α1rpi, where

α1 ≡
1+m1i(e2K1−1)+m2i(e2K2−1)

ρσ2
i

and α2 ≡
m1i(e2K1−1)+m2i(e2K2−1)

ρσ2
i

.

We obtain identification of the coefficients in pi = ai + biεi − ciνi as

ai = 1
r

[
z − x

α1

]
, bi = α2

rα1
, and ci = 1

rα1
.

Let Φi ≡ m1i

(
e2K1 − 1

)
+m2i

(
e2K2 − 1

)
be a measure of the information capacity allocated

to learning about asset i in equilibrium.
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Further substitution yields

ai = 1
r

(
z − ρσ2

i x

1+Φi

)
, bi = 1

r

(
Φi

1+Φi

)
, ci = 1

r

(
ρσ2
i

1+Φi

)
.

Since the gain factor Gi for each i is the same across all investors, regardless of their type,
we assume that the participation of sophisticated and unsophisticated investors in learning
about a particular asset is proportional to their mass in the population: m1i = λmi and
m2i = (1− λ)mi, where mi is the total mass of investors learning about asset i. Hence
Φi = φmi, where φ ≡ λ

(
e2K1 − 1

)
+ (1− λ)

(
e2K2 − 1

)
is a measure of the total capacity for

processing information available in the economy. Substitution yields

ai = 1
r

(
z − ρσ2

i x

1+φmi

)
, bi = 1

r

(
φmi

1+φmi

)
, ci = 1

r

(
ρσ2
i

1+φmi

)
.

Proof of Lemma 3 Using equilibrium prices, equilibrium gains become

Gi ≡ (1− rbi)2 +
r2c2i σ

2
x

σ2
i

+ (z−rai)2
σ2
i

=
[
1− φmi

1+φmi

]2

+
(

1
1+φmi

)2

ρ2σ2
i σ

2
x +

(
1

1+φmi

)2

ρ2σ2
i x

2 =

1+ρ2σ2
i (σ2

x+x2)
(1+φmi)

2 .

Hence Gi = 1+ρ2ξi
(1+φmi)

2 , where ξi ≡ σ2
i (σ2

x + x2).

By Lemma 1, each investor allocates capacity to a single asset among the assets with the
highest gain. First suppose that there is only one asset that is being learned about and let
this asset be denoted by l: ml = 1 and mi = 0 for all other assets i 6= l. Then Gl = 1+ρ2ξl

(1+φ)2
.

Consider an individual investor’s gain from learning about a second arbitrary asset i 6= l: at
the current equilibrium, Gi = 1 + ρ2ξi. The investor will switch to learning about asset i
unless Gl > Gi, which is equivalent to 1+ρ2ξl

1+ρ2ξi
> (1 + φ)2. Hence, learning about a single asset

is sustained only if this inequality is satisfied. Since 1 + φ > 1, the inequality holds only if
ξl > ξi for any i 6= l. We have assumed, without loss of generality, that assets in the economy
are ordered such that, for all i ∈ {1, ..., n− 1}, σ2

i > σ2
i+1, which implies that ξi > ξi+1.

Hence, l = 1: the asset learned about is the asset with the highest volatility. Moreover, since
the left-hand side of the inequality is decreasing in ξi, the threshold for starting to learn

about the second asset, taking shocks and risk aversion as given, is φ1 ≡
√

1+ρ2ξ1
1+ρ2ξ2

− 1. At

this threshold market capacity, investors begin learning about the second asset, ξ2.

Second, suppose that φ ≥ φ1, such that at least two assets are learned about. We show
that gains must be equated among all assets with positive learning mass. Consider any two
assets h, l, with strictly positive masses, mh,ml > 0, and suppose that they have unequal
gains. WLOG, let Gh < Gl. Consider any investor learning about asset h. His utility
is
(
e2Kj − 1

)
Gh +

∑n
i=1Gi <

(
e2Kj − 1

)
Gl +

∑n
i=1 Gi. Hence, this investor will have an

incentive to switch to learning about asset l instead. The gain is decreasing in the mass of
investors learning about an asset. Hence, as investors switch from learning about asset h to

54



asset l, mh falls (hence Gh rises) and ml rises (hence Gl falls). This process continues until
in the new equilibrium, Gh = Gl, and each individual investor is just indifferent between
learning about either asset. Note that this process also implies that the masses mi are strictly
decreasing across the assets that are learned about. Let the equilibrium gain for assets with
positive mass be denoted by G∗.

Finally, the gains of all assets with zero learning mass must be strictly lower than G∗.
Otherwise, an individual investor would once again have the incentive to deviate and learn
about one of these assets.

Proof of Lemma 4 We begin by deriving expressions for the masses mi. The necessary and
sufficient conditions for determining {mi}ni=1 in equilibrium are

∑k
i=1mi = 1 and 1+φmi

1+φm1
= ci1,

for any i ∈ {2, ..., k} , where ci1 ≡
√

1+ρ2ξi
1+ρ2ξ1

< 1, and mi = 0 for any i ∈ {k + 1, ..., n}.

Recursively,

mi = ci1m1 − 1
φ

(1− ci1) ∀i ∈ {2, ..., k}.

Hence 1 =
∑k

i=1mi = m1 + m1

∑k
i=2 ci1 −

1
φ

∑k
i=2 (1− ci1), which results in a solution for

m1 given by

m1 =
1+ 1

φ

∑k
i=2(1−ci1)

1+
∑k
i=2 ci1

.

We next prove the three claims in the lemma:

(i) For any φ > 0, m1 changes continuously with φ. Differentiating m1 with respect to φ,

dm1

dφ
= − 1

φ2

[∑k
i=2(1−ci1)

1+
∑k
i=2 ci1

]
< 0, since 0 < ci1 < 1 for all i > 1. Hence, m1 is decreasing in φ.

Likewise, for each asset i ∈ {2, ..., k}, mi changes continuously with φ. Differentiating mi

with respect to φ,

dmi
dφ

= ci1

(
dm1

dφ

)
+ 1
φ2

(1− ci1). Substituting in the derivative of m1 and rearranging we obtain

dmi
dφ

= 1
φ2

[
1− ci1

(
k∑k

j=1 cj1

)]
, where we have used the fact that c11 = 1. Since ci1 < 1 and

ci1 is strictly decreasing in i, then dmi
dφ

is increasing in i.

Next, consider the case of a local increase in φ to some φ′ < φk, such that no new assets
are learned about in equilibrium. Since Σimi = 1, there must be at least one asset i > 1 for
which dmi

dφ
> 0, and this asset defines the cutoff i.
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Finally, suppose that k < n, and consider the case of an increase in φ to some φ′ with
φk ≤ φ′ < φk′ , such that k′ > k assets are learned about in equilibrium (with k′ ≤ n).
Let the equilibrium masses associated with aggregate capacity φ′ be denoted by m′i for
i ∈ {1, ..., k′}. For the new assets, m′i > mi = 0 for all i ∈ {k + 1, ..., k′}, hence the mass is

increasing in φ. From above, m′1 < m1. Since Σimi = 1, the new cutoff will be some i
′
> i.

(ii) First, consider the case of a local increase in φ to some φ′ < φk, such that no new assets
are learned about in equilibrium. For assets that are not learned about, i > k, mi = 0
both before and after the capacity increase, hence d(φmi)

dφ
= 0. For any two assets that are

learned about, i, l ≤ k, equating equilibrium gains implies 1 + φmi = (1 + φml) cil, where

cil ≡
√

1+ρ2ξi
1+ρ2ξl

> 0. Totally differentiating, d(φmi)
dφ

= d[(1+φml)cil]
dφ

yields

mi + φdmi
dφ

=
(
ml + φdml

dφ

)
cil.

Suppose that there exists an asset i ≤ k such that d(φmi)
dφ

≤ 0. Then for all other assets

l ≤ k, l 6= i, we must also have
(
ml + φdml

dφ

)
cil ≤ 0. Since cil > 0, ml > 0, and φ > 0, then

we must have that dml
dφ

< 0. But this contradicts (i): Σimi = 1, hence there must be at least

one asset for which dmi
dφ
≥ 0. Hence for all i ≤ k, d(φmi)

dφ
> 0.

Second, consider the case of an increase in φ to some φ′ with φk ≤ φ′ < φk′ , such that k′ > k
assets are learned about in equilibrium (with k ≤ n). For assets which remain passively
traded, i > k′, mi = m′i = 0; hence, there is no change in the aggregate capacity allocated
to these assets. For the new assets that are actively traded, i ∈ {k + 1, ..., k′}, m′i > mi = 0,
hence, φ′m′i > φmi. Finally, an asset i that was actively traded both before and after the
increase, i ≤ k, had, prior to the increase, a utility gain strictly larger than that of an asset l
that was previously not learned about, which implies that 1 + φmi < cil. After the increase,
asset i has a utility gain equal to that of asset l: 1 + φ′m′i = (1 + φ′m′l) cil. Substituting
the inequality for cil into the equality, we obtain φ′m′i − φmi > φ′m′l (1 + φmi). Since the
right-hand side is positive, it follows that φ′m′i > φmi, which completes the proof.

(iii) Let K1 = K and K2 = γK, for some γ ∈ (0, 1), and consider the case of a local increase
in capacity K such that no new assets are learned about in equilibrium. Let miφ ≡ dmi

dφ
. The

derivatives we are interested in are

d[mi(e
2K−1)]
dK

= 2e2Kmi +miφ(e2K − 1) dφ
dK

d[mi(e
2Kγ−1)]
dK

= 2γe2Kγmi +miφ(e2Kγ − 1) dφ
dK

where dφ
dK

= 2λe2K + 2γ(1− λ)e2Kγ > 0.

First, consider the case in which miφ > 0. Then, since e2K > e2Kγ > γe2Kγ,

d[mi(e
2K−1)]
dK

> d[mi(e
2Kγ−1)]
dK

> 0.

56



Next, consider the case in which miφ < 0. Factoring out 2e2K yields

d
[
mi

(
e2K − 1

)]
dK

= 2e2K
{
mi +miφ

(
e2K − 1

) [
λ+ (1− λ) γe2K(γ−1)

]}
= 2e2K

{
mi +miφ

[
λ
(
e2K − 1

)
+ (1− λ) γ

(
e2K − 1

)
e2K(γ−1)

]}
= 2e2K

{
mi +miφ

[
λ
(
e2K − 1

)
+ (1− λ) γ

(
e2Kγ − e2K(γ−1)

)]}
> 2e2K

{
mi +miφ

[
λ
(
e2K − 1

)
+ (1− λ)

(
e2Kγ − 1

)]}
,

where the inequality follows from miφ < 0, γ < 1, e2K > 1, and e2K(γ−1) < 1. Using the
definition of φ, we obtain

d[mi(e2K−1)]
dK

> 2e2K (mi + φmiφ) = 2e2K
[
d(φmi)
dφ

]
> 0,

where the last inequality follows from part (ii) above.

Similarly, also for the case in which miφ < 0,

d
[
mi

(
e2Kγ − 1

)]
dK

= 2γe2Kγmi +miφ

(
e2Kγ − 1

) [
2λe2K + 2γ (1− λ) e2Kγ

]
= 2e2Kγ

{
γmi +miφ

[
λ
(
e2K − e2K(1−γ)

)
+ γ (1− λ)

(
e2Kγ − 1

)]}
> 2γe2Kγ

{
mi +miφ

[
λ
(
e2K − e2K(1−γ)

)
+ (1− λ)

(
e2Kγ − 1

)]}
= 2γe2Kγ

{
mi +miφ

[
λ
(
e2K − 1

)
+ λ

(
1− e2K(1−γ)

)
+ (1− λ)

(
e2Kγ − 1

)]}
= 2γe2Kγ

{
mi +miφφ+miφλ

(
1− e2K(1−γ)

)}
where the inequality follows from γ < 1, miφ < 0, and the term in square brackets being
positive. Using the definition of φ, we obtain

d[mi(e2Kγ−1)]
dK

> 2γe2Kγ
{[

d(φmi)
dφ

]
+ λmiφ

(
1− e2K(1−γ)

)}
> 0,

where the last inequality follows from part (ii) above and from miφ < 0 and 1 < e2K(1−γ).

Finally, note that

λ
{
d[mi(e

2K−1)]
dK

}
+ (1− λ)

{
d[mi(e

2Kγ−1)]
dK

}
=
[
d(φmi)
dφ

] (
dφ
dK

)
.

Plugging in dφ/dK,

λ

{
d[mi(e

2K − 1)]

dK

}
+(1−λ)

{
d[mi(e

2Kγ − 1)]

dK

}
= λ

{
2e2K

[
d (φmi)

dφ

]}
+(1− λ)

{
2γe2Kγ

[
d (φmi)

dφ

]}
.

Since the first term on the left-hand side is greater than the first term on the right-hand
side, and since 2e2K > 2γe2Kγ, it must be the case that the second element of this weighted
average is smaller, which implies that
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d[mi(e
2K−1)]
dK

> d[mi(e
2Kγ−1)]
dK

, which concludes the proof.

Proof of Lemma 5 We consider the choice of an individual investor, taking the choices
of all other investors as given, characterized by the solution in the main text.

Case A. First, we consider the case in which the investor treats the price as any other
random variable that cannot be processed perfectly for free. Suppose that the investor
allocates capacity to learning the price of asset i. This investor will observe a compressed
representation of the price, spji, that is the result of the decomposition pi = spji + εji,with

spji ∼ N
(
pi, σ

2
spji

)
, εji ∼ N

(
0, σ2

εji

)
, and σ2

pi = σ2
spji+σ

2
εji. The amount of capacity consumed

by the price signal is

I
(
pi; s

p
ji

)
= 1

2
log
(
σ2
pi

σ2
εji

)
.

The quantity of information about payoffs that is conveyed by the price signal is

I
(
zi; s

p
ji

)
= H (zi) +H

(
spji
)
−H

(
zi, s

p
ji

)
= 1

2
log

(
σ2
i σ

2
spji

|Σzispji|

)
,

where
∣∣Σzispji

∣∣ is the determinant of the variance-covariance matrix of zi and spji. Using the
fact that zi and spji are conditionally independent given prices,

Cov
(
zi, s

p
ji

)
=
Cov (zi, pi)Cov

(
pi, s

p
ji

)
σ2
pi

.

Using the solution for equilibrium prices, Cov (zi, pi) = biσ
2
i . Using the signal structure,

Cov
(
pi, s

p
ji

)
= σ2

spji. Hence

Cov
(
zi, s

p
ji

)
=
biσ

2
i σ

2
spji

σ2
pi

.

The determinant becomes ∣∣Σzispji

∣∣ = σ2
i σ

2
spji

(
σ2
piσ

2
pi − b2

iσ
2
i σ

2
spji

σ2
piσ

2
pi

)
so that

I
(
zi; s

p
ji

)
= 1

2
log

 σ2
pi

c2i σ
2
xi+

b2
i
σ2
i

σ2
pi

σ2
εji

 .

Next, we show that I
(
zi; s

p
ji

)
≤ I

(
pi; s

p
ji

)
. Suppose not. Then, in order for the reverse

inequality to hold, it must be the case that

c2
iσ

2
xi <

(
1− b2i σ

2
i

σ2
pi

)
σ2
εji ⇔ σ2

pi < σ2
εji,
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which is a contradiction. Hence, I
(
zi; s

p
ji

)
≤ I

(
pi; s

p
ji

)
, with equality if and only if σ2

pi =

σ2
εji, which occurs only if I

(
pi; s

p
ji

)
= 0. Hence for any positive capacity dedicated to the

price signal, the effective amount of information about the payoff is less than the capacity
consumed in order to receive the signal.

Case B. Next, we consider the case in which the price itself is a perfectly observed signal
that nonetheless consumes capacity. Suppose that the investor uses capacity to learn from pi,
and let posterior beliefs about zi conditional on pi be denoted by yi. Then yi ∼ N

(
yi, σ

2
yi

)
,

with

yi = σ2
yi

[
1
σ2
i
zi +

b2i
c2i σ

2
xi
zi − bi

ciσ2
xi

(xi − xi)
]

1
σ2
yi

= 1

1

σ2
i

+
b2
i

c2
i
σ2
xi

.

The information contained in the price of asset i is I (zi; pi) = 1
2

log
(
σ2
i

σ2
yi

)
. Using the solution

for equilibrium prices, this variance is given by

σ2
yi =

σ2
i

1+
(

φmi
ρσiσxi

)2 .
We next demonstrate that the investor’s ex-ante expected utility is higher when allocating
all her capacity to learning from private signals than when allocating at least a portion of her
capacity to learning from prices, owing to strategic substitutability. The investor’s objective
is to maximize

Ẽ1j [U2j] =
1

2ρ

n∑
i=1

(
Ṽji + R̃2

ji

σ̃2
ji

)
, (20)

subject to
n∏
i=1

(
σ2
i

σ̃2
ji

)
≤ e2Kj , (21)

where R̃ji and Ṽji denote the ex-ante mean and variance of expected excess returns,
(µ̃ji − rpi), µ̃ji and σ̃2

ji denote the mean and variance of the investor’s posterior beliefs about
the payoff zi, and the tilde indicates that these variables are computed under a signalling
mechanism that allows for learning from prices.
Suppose that the investor uses capacity to learn from pi, and let posterior beliefs about
zi conditional on pi be denoted by yi. Then, the investor designs a signal conditional on
the information obtained from the price, yi = s̃ji + δ̃ji, where we maintain the same two
independence assumptions that were used in setting up the private signal in the absence
of learning from the price. Under this signal structure, the ex-ante mean is the same,
regardless of whether the investor learns from pi or not: R̃ji = zi−rpi. The ex-ante variance

of expected excess returns is given by Ṽji = V ar1j (µ̃ji) + r2σ2
pi− 2rCov1j (µ̃ji, pi). Using the
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formula for partial correlation and exploiting the fact that signals and prices are conditionally
independent given beliefs,

Cov1j (µ̃ji, pi) =
Cov1j (µ̃ji, yi)Cov1j (yi, pi)

σ2
yi

.

Using the signal structure, Cov1j (µ̃ji, yi) = V ar (s̃ji), V ar (s̃ji) = σ2
yi − σ̃2

ji, and using
equilibrium prices, Cov1j (yi, pi) = biσ

2
i . Hence

Cov1j (µ̃ji, pi) = biσ
2
i −

biσ
2
i σ̃

2
ji

σ2
yi

Hence Ṽji = (1− 2rbi)σ
2
i + r2σ2

pi −
(
σ2
i − σ2

yi

)
−
[
1− 2rbi

(
σ2
i

σ2
yi

)]
σ̃2
ji, if the investor learns

from pi.

Conversely, if the investor does not allocate any capacity to learning from prices, Vji =
(1− 2rbi)σ

2
i + r2σ2

pi − (1− 2rbi) σ̃
2
ji, where we have used the fact that the information con-

straint implies that the investor’s posterior variance, here denoted by σ̃2
ji, is the same in both

cases. Both cases imply a corner solution, with the investor allocating all capacity to learning
about a single asset. The remaining question is: will the investor allocate any capacity to
learning from the price, or will she use all capacity on the private signal? It can be easily
seen that for any positive level of capacity allocated to the price signal, Vji > Ṽji. Hence,
the investor’s ex-ante utility is lower when she devotes any positive amount of capacity to
learning from prices. Learning from prices increases the covariance between the investor’s
posterior beliefs and equilibrium prices, thereby reducing the investor’s excess returns. This
case is similar to that of Kacperczyk, Van Nieuwerburgh, and Veldkamp (2013), who show
that prices are an inferior source of information in a portfolio choice model with an additive
constraint on the sum of signal precisions.
Hence, regardless of the informativeness of prices relative to the investor’s capacity, the
investor is always better off learning through signals that provide information directly on
the payoffs. In our framework prices lose their special role as publicly available signals.

Analytical Predictions

Proof of Proposition 1. Using equations (14)-(15), the difference in profits for asset i is
given by

π1i − π2i =
mi

(
e2K1 − e2K2

)
(zi − rpi)2

ρσ2
i

≥ 0.

This difference is zero if mi = 0 or K1 = K2. For K1 > K2, it is strictly positive for assets
that are learned about in equilibrium (i.e., if mi > 0). Also, K1 > K2 > 0 implies φ > 0. It
follows that mi > 0 for at least one i.
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Proof of Proposition 2. Using equations (14)-(15), the ownership difference for asset i
becomes

Q1i

λ
− Q2i

(1− λ)
= mi

(
e2K1 − e2K2

)(zi − rpi
ρσ2

i

)
.

(i) For i > k, mi = 0, and hence the ownership difference is equal to zero. For i ≤ k, mi > 0,
and the expected ownership differential is given by

E

{
Q1i

λ
− Q2i

(1− λ)

}
=
mixi

(
e2K1 − e2K2

)
1 + φmi

, (22)

where we have used the fact that expected excess returns are, by equations (??) and (7),

E (zi − rpi) =
ρσ2

i xi
1 + φmi

. (23)

Since K1 > K2 and xi > 0, the result follows.
(ii) First, we show that if E(zi − rpi) > E(zl − rpl), then mi > ml. Since i, l < k, their gain
factors are equated, Gi = Gl. Using (23), and the fact that xi = x and σxi = σx for all i, the
gain factor of asset i can be written as

Gi =
1 + ρ2 (σ2

x + x2)σ2
i

ρ2x2σ4
i

[E(zi − rpi)]2 ,

and a corresponding expression holds for Gl. The inequality in excess returns implies that

1 + ρ2 (σ2
x + x2)σ2

i

σ4
i

<
1 + ρ2 (σ2

x + x2)σ2
l

σ4
l

,

which reduces to σ2
i > σ2

l . Proposition 3 implies that mi is increasing in ξi, which, under
the maintained assumptions that xi and σ2

xi are equal across i, implies that mi is increasing
in σ2

i . Hence, mi > ml.
Next, from the expression for the expected ownership differential in (22), the difference in
expected relative ownership across the two assets is

E

{
Q1i

λ
− Q2i

(1− λ)

}
− E

{
Q1l

λ
− Q2l

(1− λ)

}
=
x
(
e2K1 − e2K2

)
(mi −ml)

(1 + φmi) (1 + φml)
> 0,

which completes the proof.

Proof of Proposition ??. Using equations (14)-(15), the state-by-state ownership differ-
ence for asset i becomes

Q1i

λ
− Q2i

(1− λ)
= mi

(
e2K1 − e2K2

)(zi − rpi
ρσ2

i

)
.

If i ≤ k, the equilibrium level of mi > 0 is an ex-ante decision, and hence it is constant
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across realizations. The result follows.

Proof of Proposition 4. Our derivation keeps the aggregate information quantity φ con-
stant, and hence the masses mi unchanged, by equation (9), which in turn implies that
prices also remain unchanged, by equations (??) and (7). By equations (13), (14), and (15),
relative capital income is∑

i π1i∑
i π2i

=

∑
i{(zi − rpi)(zi − rpi) +mi(e

2K1 − 1)(zi − rpi)2}∑
i{(zi − rpi)(zi − rpi) +mi(e2K2 − 1)(zi − rpi)2}

.

Since K ′1 > K1 and K ′2 < K2, each element of
∑

i π1i increases and each element of
∑

i π2i

decreases.

Proof of Proposition 5. (i) From equations (??) and (7), the average equilibrium price of
asset i can be expressed as

pi =
1

r

(
zi −

ρσ2
i xi

1 + φmi

)
.

For i > k, mi = 0, and pi remains unchanged. For i ≤ k, mi > 0, and pi is increasing in
φmi, which in turn is increasing in φ, per Proposition 4.
(ii) Equilibrium expected excess returns are

E (zit − rpit) =
ρσ2

i xi
1 + φmi

.

For i > k, mi = 0, and expected excess returns remain unchanged. For i ≤ k, mi > 0, and
the expected excess return of asset i is decreasing in φmi, which in turn is increasing in φ,
per Proposition 4.

Proof of Proposition 6. The average ownership difference is given by

E

{
Q1i

λ
− Q2i

(1− λ)

}
=
mixi

(
e2K1 − e2K2

)
1 + φmi

.

For our designed deviation of information capacities, the aggregate information quantity φ
constant, and hence the masses mi are unchanged by equation (9). Polarization in e2K1

versus e2K2 gives the result.

Proof of Proposition 7. Using equations (14) and (15), the expected difference in asset
ownership is given by

E

{
Q1i

λ
− Q2i

1− λ

}
=

1 +mi

(
e2K1 − 1

)
1 + φmi

xi −
1 +mi

(
e2K2 − 1

)
1 + φmi

xi.

Since average quantities have to be equal to average supply x̄i, it is enough to show that the
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first element of the sum is increasing. It is given by

dE{Q1i

λ
}

dK
=

d[mi(e
2K−1)]
dK

(1 + φmi)− dφmi
dφ

dφ
dK
mi(e

2K − 1)

(1 + φmi)2
xi

The sign of the expression is determined by the sign of

sign

(
dE{Q1i

λ
}

dK

)
= sign

(
d[mi(e

2K − 1)]

dK
− dφmi

dφ

dφ

dK
mi(e

2K − 1)
1

1 + φmi

)
= sign

(
d[mi(e

2K − 1)]

dK
− dφmi

dφ
(e2K − 1)

2(λe2K + (1− λ)γe2Kγ)

λe2K + (1− λ)e2Kγ

)
In the proof of Proposition 4, we show that

d[mi(e
2K − 1)]

dK
> 2e2K d (φmi)

dφ
> 0.

Using that expression, we obtain

sign

(
dE{Q1i

λ
}

dK

)
= sign

(
2e2K − (2e2K − 2)

λe2K + (1− λ)γe2Kγ

λe2K + (1− λ)e2Kγ

)
> 0,

where the last inequality is guaranteed by λe2K+(1−λ)γe2Kγ

λe2K+(1−λ)e2Kγ
< 1.

Proof of Proposition 8. Using equations (13) and (14), the expected income from holding
asset i for the sophisticated investors is given by:

E(π1i) =
mi(e

2K − 1)(σ2
i + ρ2ξi)− φmiσ

2
i + ρ2ξi

ρ(1 + φmi)2

and hence, the ratio of expected profits is

Eπ1i

Eπ2i

=
mi(e

2K − 1)(σ2
i + ρ2ξi)− φmiσ

2
i + ρ2ξi

mi(e2Kγ − 1)(σ2
i + ρ2ξi)− φmiσ2

i + ρ2ξi

which can be written as
Eπ1i

Eπ2i

=
mi(e

2K − 1)α− φmi + ω

mi(e2Kγ − 1)α− φmi + ω

where

α = 1 +
ρ2ξi
σ2
i

and ω = α− 1.

Then consider the difference between old and new expected profit between two levels of
overall capacity K∗ > K, with K∗ associated with the endogenous mass of investors m∗i and
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K with mi:

∆ ≡ m∗i (e
2K∗ − 1)α− φ∗m∗i + ω

m∗i (e
2K∗γ − 1)α− φ∗m∗i + ω

− mi(e
2K − 1)α− φmi + ω

mi(e2Kγ − 1)α− φmi + ω
.

We will show that ∆ > 0, i.e.

m∗i (e
2K∗ − 1)α− φ∗m∗i + ω

m∗i (e
2K∗γ − 1)α− φ∗m∗i + ω

>
mi(e

2K − 1)α− φmi + ω

mi(e2Kγ − 1)α− φmi + ω
.

Suppose that expected profits for each investor are positive (which must be true for them to
hold the asset), then the above is equivalent to

[m∗i (e
2K∗−1)α−φ∗m∗i+ω][mi(e

2Kγ−1)α−φmi+ω] > [mi(e
2K−1)α−φmi+ω][m∗i (e

2K∗γ−1)α−φ∗m∗i+ω].

Multiplying through and rearranging,

αω[m∗i (e
2K∗ − 1)−mi(e

2K − 1)− (m∗i (e
2K∗γ − 1)−mi(e

2Kγ − 1))]

+m∗i (e
2K∗ − 1)αmi(e

2Kγ − 1)α−m∗i (e2K∗ − 1)αφmi

− φ∗m∗imi(e
2Kγ − 1)α

>

+mi(e
2K − 1)αm∗i (e

2K∗γ − 1)α−mi(e
2K − 1)αφ∗m∗i

− φmim
∗
i (e

2K∗γ − 1)α

Since the first term in square brackets is positive by Proposition 4, for our result to hold it
is enough to show that (factoring out αm∗imi > 0)

α[(e2K∗ − 1)(e2Kγ − 1)− (e2K − 1)(e2K∗γ − 1)]− (e2K∗ − 1)φ− φ∗(e2Kγ − 1)

> −(e2K − 1)φ∗ − φ(e2K∗γ − 1)

which can be written as

α[(e2K∗ − 1)(e2Kγ − 1)− (e2K − 1)(e2K∗γ − 1)]− [(e2Kγ − e2K)φ∗ + φ(e2K∗ − e2K∗γ)] > 0

To obtain a closed-form expression for the second bracketed term, plug in the definition of
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φ, to obtain

(e2Kγ − e2K)[λ(e2K∗ − 1) + (1− λ)(e2K∗γ − 1)] + (e2K∗ − e2K∗γ)[λ(e2K − 1) + (1− λ)(e2Kγ − 1)]

= (e2Kγ − 1)λ(e2K∗ − 1) + (e2Kγ − 1)(1− λ)(e2K∗γ − 1)

− (e2K − 1)λ(e2K∗ − 1)− (e2K − 1)(1− λ)(e2K∗γ − 1)

+ (e2K∗ − 1)λ(e2K − 1) + (e2K∗ − 1)(1− λ)(e2Kγ − 1)

− (e2K∗γ − 1)λ(e2K − 1)− (e2K∗γ − 1)(1− λ)(e2Kγ − 1)

= (e2K∗ − 1)(e2Kγ − 1)− (e2K − 1)(e2K∗γ − 1)

Hence, a sufficient condition for ∆ > 0 is

(α− 1)[(e2K∗ − 1)(e2Kγ − 1)− (e2K − 1)(e2K∗γ − 1)] > 0 (24)

Since α > 1, it is enough to show that the term in square brackets is positive. To see that,
define f (K∗) =

(
e2K∗ − 1

) (
e2Kγ − 1

)
−
(
e2K − 1

) (
e2K∗γ − 1

)
and notice that f (K) = 0.

Furthermore, also notice that f ′ (K∗ = K) = 0 and f ′ (K∗) = 0 for all K∗ if γ ∈ {0, 1}, and
that f ′ (K∗) has a single maximum with respect to γ for each K∗, and that maximum is
attained at γ ∈ (0, 1). To see that, calculate

f
′

γ ≡
df ′ (K∗)

dγ
= 2

(
2Ke2K∗e2Kγ − e2K∗γ

(
e2K − 1

)
(1 + 2γK)

)
> 2e2K∗γe2K

(
2K +

(
1

e2K
− 1

)
(1 + 2γK)

)
.

Clearly, f
′
γ = 0 for a single value of γ. Additionally, by the arguments in the proof of

Proposition 4, we know that at γ = 0, f ′γ = 0. Hence, for any K∗, K, f ′ = 0 for γ ∈ {0, 1},
f ′ is increasing in γ at γ = 0 and f ′ has a single maximum with respect to γ. It follows that
for all γ between zero and one, f ′ (K∗) > 0, and hence equation (24) is satisfied.

Derivation of (18) and (19) We can derive the conditional CAPM equation in our model
by using the market clearing condition (we omit the time notation for clarity of exposition):∫

sij
σ̂2
ij

dj − rpi
∫

1

σ̂2
ij

dj = ρxi,

where σ̂2
ij is equal to σ2

i if the investor is not learning, e−2Kjσ2
i if investor type j is learning

about asset i. sij are not correlated with σ̂2
ij, so we can express the market clearing as

1

Θi

(Si − rp) = ρxi
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where sij = z̄i for investors who don’t learn and

Si =

∫
sijdj,

1

Θi

=

∫
1

σ̂2
ij

dj.

That gives
rpi = Si − ρΘixi.

Define the market payoff:
∑
zixi. The (conditional) covariance of zi with the market is a

function of the average conditional variance of zi:

cov(zi,
∑

xizi) = xiΘi,

so the price of the asset is

pi =
1

r
[Si − ρcov(zi,

∑
xizi)],

Consider the weighted average pm :=
∑
xipi as the price of the market portfolio, and∑

zixi/pm the return on the market. Then the expected return is Si/pi, given by

E(ri)− r = ρpmcov(ri, rm),

For the whole market,
E(rm)− r = ρpmcov(rm, rm).

Substituting out pmρ gives

E(ri)− r =
cov(ri, rm)

var(rm)
(E(rm)− r)

So the market βi of asset i is cov(ri,rm)
var(rm)

. By i.i.d. shocks assumption,

cov(ri, rm) = 1/(pipm)cov(zi,
∑

xizi) = Θixi/(pipm)

and
var(rm) = p2

mvar(
∑
i

xizi) = p2
m

∑
x2
iΘi.

Using the conditional CAPM, we can price the return on strategy {ωijt}ni=1 at time t,

Rjt =
∑
i

ωit(Et(rit)− r).
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The unconditional expectation of that return is

E0

∑
i

ωit(Et(rit)− r) =
∑
i

cov0(ωit, Et(rit)) +
∑
i

E0ωitE0[Et(rit)− r]

=
∑
i

cov0(ωit, Et(rit)) +
∑
i

E0ωitE0[βit(Et(rmt)− r)],

where the covariance and the expectation are unconditional. We can thus express the ex-
pected return on the portfolio as

R̄j =
∑
i

cov0(ωit, Et(rit)) +
∑
i

E0ωitcov0(βit, Et(rmt)) + β̄(E0(rmt)− r)]

where β̄ =
∑

iE0ωitE0βit.
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