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Abstract

This paper examines reputational incentives in the context of traditional promotion

systems. As in Holmström (1999), a worker’s productive abilities are revealed over time

through output, and wages are based on expected output, and so on assessed ability. Specif-

ically, work increases the probability that a skilled worker achieves an observable break-

through. In the presence of a deadline, it is shown that career concerns not only affect the

amount of work produced, but also its timing: while it would be best to have the worker

put in effort early, it is optimal for him to do so midway through his probationary period

if this effort is not observed, and late if it is observed. Committing to a deadline is shown

to be welfare-increasing, even if it curtails learning. In the observable case, it is better to

condition termination on time than on assessed ability.

I Introduction

Promotion policies in professional service firms are typically based on an “up-or-out-system”

(law firms, accounting firms, consulting firms, etc.). Employees are expected to obtain promotion

to partner in a certain time period; if not, they are expected to quit, when they are not dismissed

forthright. While alternative theories have been put forth (e.g., tournament models), agency

theory provides an appealing framework to analyze such systems (see Fama, 1980, or Fama and

Jensen, 1983). This paper investigates the incentives of employees, how they evolve over time,
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how they depend on the work performance measurement, as well as on the other provisions on

the labor contract. We then turn to the optimal design of such policies.

Our model borrows its key ingredients from Holmström (1999).1 There are no explicit output-

contingent contracts. The firm, or market, must pay the worker, or agent, a competitive wage,

given his expected output, which in turn is based on his assessed ability. Information about

ability is symmetric at the start. We depart from Holmström in the specification of the learning

process. Skill and output are binary, and only a skilled agent can achieve a high output. The

time at which this output arrives –the breakthrough– follows an exponential distribution, whose

instantaneous intensity increases with the worker’s effort. Once the agent succeeds, and so proves

himself, he is promoted and gets a constant compensation. While in some respects more stylized

than Holmström’s, this specification implies that effort increases not only expected output, but

also the speed of learning, unlike in the Gaussian set-up. We view it as a plausible alternative

modeling for labor markets in which frequently revised effort decisions provide highly informative

signals infrequently. Furthermore, we consider a somewhat richer environment, which includes an

“apprenticeship period,” a time period in which the worker must succeed; else, the employment

stops, with the worker incurring a termination cost, a fixed penalty that can be thought of as

diminished career opportunities. We analyze the equilibria of the resulting game under two

sets of assumptions. First, we assume that the firm does not observe the worker’s effort –only

breakthroughs, if ever, are observed; second, we consider the case in which effort is observed as

well, so that information remains symmetric, independently of the history of effort choices by

the worker.

Effort and skill interact in a rich way. When the market places more emphasis on a worker’s

output (i.e., when it anticipates greater effort), the intertemporal incentives of the agent are

affected. Higher wages can lead to procrastination, by which the agent chooses to postpone

putting in effort to a later date, and they affect the overall amount of effort as well. In particular

we establish the following results.

1 Employees work too little, too late. The social optimum involves an effort path that puts in

high effort early on, to achieve a breakthrough as soon as possible; if no such breakthrough

occurs, so that the agent grows sufficiently convinced that his ability is low, it is best to stop

costly effort altogether. When effort is not observed by the firm, the equilibrium involves a

different pattern: the employee does not work early on, then increases his effort over time,

1See Gilson and Mnookin (1989) for a vivid account of associate career patterns in law firms, and the relevance
of Holmström’s model as a possible explanation.
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before reverting to low effort as the deadline nears. Finally, when effort is observed by

the firm, the worker puts in no effort until the deadline is sufficiently close, at which point

he starts to work hard. Despite these contrasting work patterns, the amount of work is

always smaller in the equilibrium than in the social optimum, whether effort is observed or

not. Further, as in Holmström, better monitoring reduces effort, i.e., total effort exerted is

higher when effort choices are not observed.

More specifically, we prove that, with unobservable effort, the equilibrium is unique, and the

equilibrium path can be divided into phases that correspond to the described effort pattern.

Uniqueness is a little surprising in our set-up in which effort affects the speed of learning, in

light of the results of Dewatripont, Jewitt and Tirole (1999a,b). In the case of observable effort,

attention is restricted to Markovian equilibria. Those are not unique, but share some features

described in Section IV.

We then turn to contract design, and ask whether having a deadline, corresponding to a rigid

apprenticeship period, is useful. Why not keep the employee past the deadline, adjusting the

wage for the diminished incentives and lower assessed ability?2 However:

2 Deadlines are desirable, whether the agent can commit to them or not. When the worker

commits to his favorite deadline, effort increases as the deadline nears (i.e., in the unob-

servable case, effort does not let down after having been high).

In fact, with unobserved effort, under some circumstances, it is even in the worker’s best

interest to have relatively high penalties for failing to achieve a breakthrough by the deadline, as

it endows the worker with some commitment power. While the characterization of the optimal

deadline turns out to be surprisingly intricate, it is worth noting that it is often best to set it

such that, at least initially, the worker exerts no effort.

Absent a deadline, the only ”fundamental,” that is, the only payoff-relevant information is

the assessment of the worker’s ability. This determines, in particular, the socially optimal level

of effort and termination time, given the cost of termination. A natural alternative to a deadline,

therefore, would be to use a stopping rule based on this assessed ability, at least in the case in

which this assessment is public, as is the case with observable effort. However, we show that:

3 Deadlines are always better than stopping rules based on assessed ability.

2See Gilson and Mnookin (1989) for a discussion of this puzzle for the case of law firms.
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“Finishing lines,” based on assessed ability, provide precisely the wrong incentives, as it turns

out. Working hard hastens learning, and so termination, which is most useful when wages are

low, that is, when assessed ability is low. With such a stopping rule, the worker puts in low effort

when his assessed ability is high, and high effort when it is low, the opposite of what would be

optimal.

The most related paper is Holmström, as discussed. See also Jovanovic (1979) and Murphy

(1986) for related model. Our paper shares with Gibbons and Murphy (1989) the interplay of

implicit incentives (career concerns) and explicit incentives (termination penalty). It shares with

Prendergast and Stole (1996) the existence of a finite horizon, and thus, of complex dynamics

related to seniority. See also Bar-Isaac for reputational incentives in a model in which survival

depends on reputation. The binary set-up is reminiscent of Mailath and Samuelson (2005).

A theory of up-or-out contracts, based on asymmetric learning and promotion incentives, is

investigated in Ghosh and Waldman (2010), while Chevalier and Ellison (1999) provide evidence

of the sensitivity of termination to performance.

There is a growing literature on reputation in teams, which is certainly relevant for profes-

sional service firms, in which associates routinely engage in joint projects with partners. See

Bar-Isaac (2007), Jeon (1996), Landers, Rebitzer and Taylor (1996), Levin and Tadelis (2005),

Morrison and Wilhelm (2004), and Tirole (1996). Extending our set-up to allow for team work

is subject to ongoing research.

II The Model

We shall consider the incentives of a single agent, or worker, to exert effort, or work. Time

is continuous, and the horizon finite: t ∈ [0, T ]. However, the game, or project, can end before

t = T , in case the agent’s effort is successful. Specifically, we assume that there is a binary state

of the world ω = 0, 1 that is interpreted as the underlying skill, or ability of the agent. If the

state is ω = 0, the agent is bound to fail, no matter how much effort he exerts. If the state

is ω = 1, a success arrives at a time that is exponentially distributed, with an intensity that

increases in the instantaneous level of effort exerted by the agent. The state is 1 with probability

p0 ∈ [0, 1].

Effort is a (measurable) function from time to the interval [0, ū], where ū represents an upper

bound to the instantaneous effort that the agent can exert. If the agent exerts effort ut over the

time interval [t, t + dt], the probability of a success over that time interval is (λ + ut)dt, where
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λ ≥ 0 can be viewed as luck. Formally, the instantaneous arrival rate of a breakthrough at time

t is given by ω · (λ+ ut).

While the game has not ended, the agent receives a flow wage wt. For now, let us think of this

wage as an exogenous (measurable) function of time only that accrues to the agent as long as

the game has not ended, though equilibrium constraints will later be imposed on this function,

as this wage will reflect the market’s expectations of the agent’s effort and ability, given that the

value of a success is normalized to one.

In addition to this wage, the agent incurs a linear cost for effort: exerting effort level ut over

the time interval [t, t+ dt] entails a flow cost α · utdt, α > 0. Furthermore, achieving a success is

desirable on two accounts: first, a known high-ability agent can expect a flow outside wage of v,

so that this outside option v is a (flow) opportunity cost incurred as long as no success has been

achieved. Second, reaching the deadline (without achieving a success) entails a fixed penalty of

k, representing diminished career opportunities to workers with such poor records. There is no

discounting.

Thus, the worker chooses u : [0, T ] → [0, ū], measurable, to maximize

Eu

[∫ T∧τ

0

(wt − v − αut)dt− χτ≥Tk

]

,

where Eu is the expectation conditional on the worker’s strategy u, and τ is the time at which a

success occurs –a random variable that is exponentially distributed, with instantaneous intensity

at time t equal to 0 if the state is 0, and to λ + ut if the state is 1, and χE is the indicator of

event E.

Of course, at time t effort is only exerted, and the wage collected, conditional on the event

that no success has been achieved. We shall omit to say so explicitly, as those histories are

the only nontrivial ones. Given his past effort choices, the agent can compute his belief pt that

he is of high ability by using Bayes’ rule. It is standard to show that, in this continuous-time

environment, Bayes’ rule is equivalent to the ordinary differential equation (O.D.E.)

ṗt = −pt (1− pt) (λ+ ut) ,

with initial condition p0 = p0. By the law of iterated expectations, we can then rewrite our
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objective as
∫ T

0

e−
∫

t

0 ps(λ+us)ds(wt − v − αut)dt− ke−
∫

T

0 pt(λ+ut)dt.3

While the belief pt is a variable that is easy to interpret, the problem is more conveniently

analyzed by using the log likelihood ratio

xt := ln
1− pt
pt

,

which measures the relative likelihood that the state is 0. Thus, xt ∈ R increases as the agent

becomes more pessimistic about his ability. With some abuse, we shall refer to x as the belief as

well (keeping in mind that it varies in the opposite direction of p over time). The main benefit

is that the evolution of x is linear, namely,

ẋt = λ + ut,

and we let x0 := ln (1− p0) /p0. Furthermore, the objective function simplifies considerably to

∫ T

0

(
1 + e−xt

)
(wt − αut − v) dt− ke−xT , 4 (1)

which the worker seeks to maximize, given w, over all measurable u : [0, T ] → [0, ū] such that

ẋt = λ+ ut, x0 = x0. (2)

First, we shall derive the social optimum. Then, we will turn to the strategic problem, in which

the worker maximizes his own payoff only.

3To see this, note that the probability that no success has occurred by time t is given by

e−
∫

t

0
ps(λ+us)ds.

4This is the objective function up to an additive constant, as well as, more importantly, to a multiplicative

constant
(

1 + e−x0

)
−1

, which is ignored here, as it does not affect the optimality of a given strategy. However,

for consistency, we shall re-introduce those constants when we apply the optimality principle. See Section V.
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III Benchmarks

We first examine two special cases: the social planner’s solution, and the single agent’s optimal

strategy when the wage is given exogenously.

A The Social Planner

What is the expected value of a success? Remember that we normalized the value of a success

to 1. However, a success only arrives with instantaneous probability

pt (λ+ ut) =
λ+ ut

1 + ext

,

as a success only occurs at rate λ + ut if the agent is of high ability. This, therefore, is the

expected value of success, and the objective becomes

max
u

∫ T

0

(
1 + e−xt

)
(
λ+ ut

1 + ext

− αut − v

)

dt− ke−xT .

That is, the planner maximizes

∫ T

0

[e−xt(λ+ ut)− (1 + e−xt)(v + αut)]dt− ke−xT ,

over all measurable u : [0, T ] → [0, ū] such that ẋt = λ + ut, x0 = x0. The solution to this

problem follows easily from Pontryagin’s maximum principle. The proof of the next lemma and

of all formal results, can be found in appendix. A strategy u is extremal if it only takes extreme

values: ut ∈ {0, ū}, for all t.

Lemma 1 Optimal effort is extremal. Furthermore, there are (at most) two intervals, cor-

responding to maximum and zero effort. Maximum effort precedes zero effort if and only if

v/λ > α.

Of course, one of the intervals might be empty: it might well be that the optimum involves

no effort, or effort always.

Note that neither the initial belief, nor the terminal cost (k) affect whether maximum effort

is exerted first or last. Of course, they affect the total amount of effort, but given this amount,

they do not affect its timing. The role of the sign αλ − v in the ordering of these intervals is

easy to see: consider exerting some bit of effort now or at the next instant (thus, keeping the
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total amount of planned effort fixed); by waiting, a loss vdt is incurred; on the other hand, with

probability λdt, the marginal cost of this effort, α, will be saved. Therefore, if

v/λ > α,

it is better to work early than late, if at all. From now on, we shall focus on the case v/λ > α.

This way, effort is efficient even far from the deadline. An example of such a path is given by

the left panel in Figure 1. The right panel gives the corresponding path for the value of output

(i.e., pt(λ+ ūt)).
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Figure 1: Effort and expected value at the social optimum

Whether effort is still exerted at the deadline depends on how pessimistic the social planner

is at that point. By the transversality condition from Pontryagin’s principle, full effort is exerted

at the deadline if and only if

(1 + k) e−xT ≥ α
(
1 + e−xT

)
, or pT (1 + k) ≥ α, (3)

recalling the definition of xT . This simply states that the expected marginal social gains from

effort (one success, and avoiding the loss) should exceed the marginal cost. If the social planner

becomes too pessimistic, he gives up before the end. Note that the flow loss v no longer plays a

role at that time, as the terminal (lump-sum) penalty overshadows any such flow cost.

Let x∗ denote the threshold terminal belief that satisfies (3) with equality, assuming such a

value exists. To rule out uninteresting cases, we shall assume that x∗ is finite. In fact, to narrow
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down the possibilities, while focusing on the most interesting ones, we shall maintain throughout

the following set of assumptions on the parameters.5

Assumption 1 The parameters α, k, v and λ are such that

1 + α > v/λ > k > α.

It is straightforward to solve for the switching time (or switching belief) more generally. For

all terminal beliefs xT > x∗, for which no effort is exerted at the deadline, the switching belief

between equilibrium phases is determined by

(1 + k − α)e−xT − α =

∫ xT

x

e−sαλ− v

λ
ds,

which gives as value of x (as a function of t)

x (t) = ln
(
(1 + k − v/λ)e−λ(T−t) − (α− v/λ)

)
− lnα.

This represents a frontier in (t, x) space that the equilibrium path will cross from below for

sufficiently long deadlines. Consistent with the fact that, in the optimum, a switch to zero effort

is irreversible, when ut = 0 and ẋt = λ, the path leaves this locus (i.e., it holds that x′ (t) < λ).

The switching belief x (t) decreases in T : the longer the deadline, the longer maximum effort

will be exerted (recall that x measures pessimism). This belief decreases in α and increases in v

and k: the higher the cost of failing, or the lower the cost of effort, the longer effort is exerted.

B Exogenous Wages

Before solving for an equilibrium in which wages are set by a competitive market, we derive the

worker’s optimal effort path given an exogenous wage path wt. This will allow us to understand

5These assumptions are not necessary for all results. The inequality k > α allows for full effort to be exerted
at some terminal belief xT in the non-cooperative problem. The inequality v/λ > k means the loss at the deadline
is not overwhelming compared to the agent’s potential talent λ and payoff v. The last inequality implies the first
zero-effort phase of Section IV is not empty for sufficiently low values of x0 (i.e. optimistic enough initial beliefs).
If this were not the case, then full effort would obtain for all paths leading to xT < x∗. Note that, if v was the
flow payoff of the agent on a similar task, once his high ability were known, it would be equal to λ, as this is his
expected productivity. In this case, our assumption can be thought of as requiring just α < k < 1, where 1 is the
value of a success.
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under which circumstances high effort is optimal. Recall that the worker maximizes

∫ T

0

(
1 + e−xt

)
(wt − αut − v) dt− ke−xT ,

subject to ẋt = λ + ut, x0 = x0. Pontryagin’s theorem states the existence of an absolutely

continuous function γ : [0, T ] → R, such that (a.e.):6

ut > (<) 0 if γt > (<)α
(
1 + e−xt

)
,

γ̇t = e−xt (wt − αut − v) , (4)

γT = ke−xT .

It is often more convenient to work with the “incentive function”

φt := γt − α
(
1 + e−xt

)
,

such that the agent works at full effort (i.e., sets u = ū) whenever φt is positive. The second

term in φt is the marginal cost of effort α multiplied by the probability that the game will last

until t.7

Let us start with a “technical” result.

Lemma 2 A solution to (1)—(2) exists and is unique. Furthermore, the necessary conditions

(4) are also sufficient.

First note that the transversality condition in (4) implies that the agent works at the deadline

if and only if

xT ≤ ln
k − α

α
, or pTk ≥ α.

This is similar to the social planner’s decision rule at the deadline, except that the worker does

not take into account the lump-sum value of success (compare with (3)).

What determines the instantaneous amount of work? Integrating (4) and using the transver-

6Note that the problem cannot be abnormal, since there is no restriction on the terminal value of the state
variable. See Note 5, Ch. 2, Seierstad and Sydsaeter. It will be understood from now on that statements about
derivatives only hold almost everywhere.

7Recall that this probability is given by exp(−
∫ t

0
ps (λ+ us) ds) ∝ (1 + e−xt).
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sality condition yields that effort is optimal whenever

α ≤
ke−xT +

∫ T

t
e−xs (v − ws) ds− α

∫ T

t
e−xsusds

1 + e−xt

. (5)

As is clear from (5), unlike in Holmström, but as in Dewatripont, Jewitt and Tirole, future

compensation does affect the incentives of the agent to put in high effort: increasing the wedge

between the future rewards from success and failure (v − ws) encourages high effort, ceteris

paribus. Similarly, a higher penalty for termination or a lower cost of effort provide stronger

incentives.

Let us now consider the intertemporal allocation of effort. Because our model has more than

two periods, it allows us to examine not only how much, but when effort is exerted. This can be

read off the derivative of φ:

φ̇t = e−xt (wt − αut − v) + α (λ+ ut) e
−xt .

We can interpret a negative (positive) change in incentives to work as the agent’s desire to an-

ticipate (resp. procrastinate) effort. Indeed, if the agent is working today, and φ̇t > 0 (procras-

tinating), then he clearly will work tomorrow as well. Similarly, if he intends to work tomorrow

and φ̇t < 0 (anticipating), then he will work today. As is clear from this equation, the horizon

length and termination cost do not affect the timing of work; flow wages and outside option

affect incentives to anticipate as incentives to work: higher-powered incentives lead to earlier (as

well as more) effort.

We can further clarify the link between φ̇t and timing of effort by considering the incentives

to procrastinate. If effort today dominates effort tomorrow, then

pt · αut+dt
︸ ︷︷ ︸

cost saved

≥ α · pt (λ+ ut)
︸ ︷︷ ︸

Pr. of success at t

− pt (v − wt)
︸ ︷︷ ︸

,

net loss due to delay

(6)

which states that frontloading effort saves costs tomorrow at a rate pt, while procrastinating saves

costs (today) at a rate α with probability pt (λ+ ut) and reduces the probability in jumping

from flow wt to flow v at a rate pt. For example, when wt ≥ v, the agent always prefers to

procrastinate.8 Again, we see that the trade-off does not depend on the belief pt, which cancels,

8Rearranging the previous inequality, we obtain the condition for anticipating effort φ̇t ≤ 0 (up to a positive
denominator 1− pt, which appears because of the probability of reaching time t at all).
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nor on the actual effort exerted, provided it is locally continuous. Condition (6) simplifies to

v − wt ≥ αλ,

so that procrastination becomes less attractive over time if the wage is decreasing. If anticipating

effort dominates today, procrastinating effort cannot be optimal later on. Thus, maximum effort

must be concentrated on a single time interval.

Therefore, based on the procrastination incentives, we can conclude that

φ̇t =
pt

1− pt
(wt − v + αλ)

determines the possible effort phases. If wt is increasing (resp. decreasing), then φt is quasiconvex

(resp. quasiconcave), that is, lack of effort (resp. effort) occurs in at most one interval. More

formally,

Lemma 3 If the wage is strictly monotone, the optimal policy is extremal. If the wage is in-

creasing (resp. decreasing), the optimal policy involves at most one interval in which effort is

zero (resp., maximal).

If wt is increasing, and at time t the agent prefers to procrastinate (φ̇ > 0), he will always

prefer to do so in the future. Therefore, he cannot shirk, start working, and then stop: when he

starts working, φ̇t > 0, meaning he likes to procrastinate. Were he to stop (before the deadline),

he could benefit by delaying his effort phase altogether.

Quite naturally, increasing wages can lead to work, stop, and then pick it up again when

the deadline is close. If the agent does not work at the deadline, then he only has at most one

(initial) effort phase.

If the wage is strictly decreasing, then φ̇t cannot be first positive, then negative, and then

positive again. In fact, once the agents prefers to anticipate effort, he always prefers to anticipate

it (if he’s working at all). Now, when he stops working, we must have φ̇ < 0 (so he would prefer

to anticipate, if he had to work). Therefore, there cannot be a gap between effort phases. Once

the agent stops working, he cannot resume work later (or he would benefit from anticipating the

second phase).

Finally, if the wage is constant, the agent always prefers to procrastinate or to anticipate

effort.9 A very high wage (relative to v) means he prefers to delay effort, and leads to a zero

9We can think of the social planner’s problem as an instance in which the “wage” (the value of success) is
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followed by full work pattern (depending on how short the deadline is). A very low wage leads

to a work then stop pattern.

To conclude, even when wages are monotone, the worker’s incentives need not be so over

time. While the equilibrium wage path of the next section fails to be monotone, the trade-off

laid out in (6) remains decisive.

IV The Equilibrium with Unobservable Effort

In this section, the wage is no longer taken as exogenous. There is a competitive market,

which pays the worker the expected value of output. The market does not observe the worker’s

past effort, but only that the worker has not succeeded so far. Therefore, the wage is given by

wt = Et[pt(λ+ ut)],

where pt and ut are the agent’s belief and effort, respectively, at time t, given his private history

of past effort (of course, it is assumed that he has had no successes so far). Given Lemma 2, the

agent will not use a chattering control (i.e., a distribution over measurable functions (ut)), but

rather a single function. Therefore, we may write

wt = p̂t(λt + ût),

where p̂t and ût denote the belief and anticipated effort at time t, as viewed from the market.

Equilibrium requires that expected effort coincide with actual effort. That is, for every t,

ût = ut,

and therefore, also, p̂t = pt at all t. Note that, off path, the market might hold wrong beliefs.

Fortunately, on path, this problem can be analyzed with the help of Pontryagin’s maximum

principle. This states that there exists an absolutely continuous function φ such that effort is

maximum (resp. zero) if φ > 0 (resp. < 0). This function must satisfy the differential equation

φ̇t = e−xt(wt + αλ− v), (7)

constant.
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as well as the transversality condition

φT = (k − α)e−xT − α,

which must hold at the deadline. Finally, in equilibrium,

wt = pt(λ+ ut) =
λ+ ut

1 + ext

. (8)

We now note:

Lemma 4 The equilibrium path consists of at most four phases, for some 0 ≤ t1 ≤ t2 ≤ t3 ≤ T :

1. during [0, t1], no effort is exerted;

2. during (t1, t2], effort is interior, i.e. ut ∈ (0, ū);

3. during (t2, t3], effort is maximal;

4. during (t3, T ], no effort is exerted.

Any of these intervals might be empty.10

Lemma 4 describes the overall structure of the equilibrium outcome. As is stated, any of the

intervals might be empty, and it is easy to compute instances of each of the different possibilities.

See Figure 2 for an example of effort (left panel) and corresponding wage dynamics (right panel).

The parameters are the same as those used in Figure 1 above).

What is happening along the (most complicated) equilibrium path? Being very optimistic at

the start, the agent sees little reason to exert effort: his wage is high anyhow, and luck might

suffice. As time goes by, he becomes more pessimistic, and at some point, if he kept being paid

a wage that would correspond to low effort, he would find it optimal to switch to high effort.

However, the worker’s actual and expected efforts are strategic substitutes: if the market expects

the worker to exert high effort, the worker gets a high wage, which depresses his incentives to

exert effort (as effort is likely to end the stream of wages collected, recall (6)). Therefore, if

the market expected the worker to exert high effort, low effort would be optimal; if the market

expected low effort, high effort would be optimal. As a result, the equilibrium involves an interior

10Here and elsewhere, the choices at the extremities of the intervals are irrelevant, and our specification is
arbitrary in this respect.
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Figure 2: Effort and wages in the non-observable case

level of effort, which rises continuously in this second phase, keeping the wage constant, so that

the worker remains indifferent between high and low effort. At some point, the agent becomes

sufficiently pessimistic that no such tension persists, and he switches to maximum effort; and

possibly, once the deadline looms even closer, he then switches back one last time to low effort,

as the final penalty no longer provides sufficient incentives given the ambient pessimism.

Note that these effort dynamics imply that wages are decreasing over time, with the exception

of a possible jump upward, as effort switches to ū. Note also that, during the phase in which

effort is interior, the wage is constant.

As mentioned, not all those phases might exist; he might switch from low to maximum effort

without intermediate phase; he might reach the deadline while exerting maximum effort, etc.

Furthermore, there are two distinct sets of circumstances under which high effort is optimal (see

Section VI, Figure 6).

A more formal account of the equilibrium structure is given in the proof of Lemma 5. To

sketch how to proceed in order to solve for an equilibrium, suppose for simplicity that there is

no interval with maximum effort. In the region with interior effort, the wage must be set such

that φ̇ = 0 (see (7)), i.e. w = v − αλ. This pins down the level of effort, as in equilibrium the

wage equals expected output (see (8)), and so we obtain a differential equation for the belief,

ẋ = (1 + ex)(v − αλ), or e−xt = Ce(v−αλ)t − 1, (9)

for some constant C. If t1 ∈ (0, t2), then it is determined by the property that effort is continuous
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at t1. Indeed, because limt↑t1 φ̇t ≥ limt↓t1 φ̇t, it must be that 0 = limt↑t1 ut ≤ limt↓t1 ut. On the

other hand, there is no reason for effort to be continuous at t2, which is determined by the

solution of φt2
= 0. Because ut1 = 0, it follows from (8) that

1 + ext1 =
λ

v − αλ
,

and xt1 = x0 + λt1, which gives two equations for xt1 and t1. On the last interval (t3, T ], effort

is zero and φt3
= 0, so that we can integrate (7) and use the transversality condition, to get

φT − φt3
= (k − α)e−xT − α =

∫ T

t3

e−xt

(
λ

1 + ext

+ αλ− v

)

dt,

or

(v − λ(1 + α))(1 + e−xt3 ) = (1 + e−xT )(v − λ(1 + k)) + λ ln
1 + e−xT

1 + e−xt3
+ λk,

which, given that xT − xt3 = λ(T − t3), provides another relationship between xt3 and t3.

Furthermore, applying (9) to the endpoints of the interval [t1, t2] gives

1 + e−xt1

1 + e−xt2
= e−(v−αλ)(t2−t1),

and xt3 − xt2 = (λ + ū)(t3 − t2), provides two equations for xt2 and t2. Therefore, at least in

principle, we can solve for all the switching times and beliefs, and check whether all phases are

well-defined given the parameters.

We then establish the following result.

Lemma 5 The equilibrium exists and is unique.

The proof of Lemma 5 relies on showing that the final belief xT is a strictly increasing function

of the deadline: extending the deadline unambiguously increases the amount of learning (though

the total amount of work might increase or decrease).

Note that we have not specified the equilibrium strategy of the worker, because we have

not derived his behavior following his own (unobservable) deviations. Yet it is not difficult to

describe the worker’s optimal behavior off-path. In Section VI, we shall briefly do so.

One might wonder whether the penalty k is really hurting the worker. After all, it endows him

with some commitment to work. A thorough analysis is provided in Appendix C. As explained

there, increasing k increases the amount of work performed; furthermore, if parameters are such
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that working at some point is optimal, then the optimal (i.e. payoff-maximizing) termination

penalty is strictly positive.

Special cases One might also wonder how restrictive our assumptions on the parameters

really are. In order to illustrate why we focus on what we believe are the more economically

significant scenarios, we now discuss how our results would change in a number of special cases

that do not fit our maintained assumptions.

1. k < α. When the penalty is too low relative to the cost of effort, the agent never works at

the deadline. The equilibrium can only be characterized by at most four phases, but zero

effort must take place in the last one. The rest of our analysis remains unchanged.

2. v < αλ. When the cost of waiting is low, the agent always has an incentive to delay effort,

or to procrastinate. Formally, we have φ̇t > 0 for any level of the wage. Therefore, provided

he works at all, the agent works at the end, and effort is forward absorbing. In other words,

for long enough deadlines (so that xT > x∗) no effort is exerted, while for shorter ones the

agent follows a zero-full pattern. In fact, because the agent is never indifferent with respect

to the intertemporal allocation of a his work, interior levels of effort are not exerted in

equilibrium.

3. T = ∞. When the deadline is infinite, the value of the penalty is irrelevant, because it will

be paid in equilibrium with probability 1 − p0 irrespective of effort. Since beliefs always

evolve at rate λ (or faster), learning will be complete in equilibrium. The effort pattern

is similar to the case of a low penalty value. In particular, we have lim φT = −α, and

the equilibrium path involves zero-interior-(full)-zero effort. A simple condition determines

whether effort is exerted at all. In particular, effort provision requires that

α ≤
(v/λ− 1) e−x0 + ln (1 + e−x0)

1 + e−x0
.

(Note that if v = λ, a sufficient condition is α ≤ e−1).

4. λ = 0. In this case, talent is not productive without effort. This is the technically more

challenging case, because beliefs “freeze” when the agent stops working. Nevertheless, the

equilibrium construction is quite intuitive. In particular, the agent cannot stop working

before the deadline, if the resulting xT < x∗. In this case, the agent would strictly prefer
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to work at T and would be better off anticipating his effort. Formally, note that we have

φ̇t = e−xt (wt − v) = e−xt

(
ût

1 + ex̂t

− v

)

.

and so, once the agent shirks, he shirks throughout. Therefore, either no effort is ever

exerted, or the agent follows a work-shirk pattern. If ū < v, the agent always strictly

prefers to anticipate effort. If not, then interior effort levels are possible, in which case the

equilibrium is of the mixed-full-zero type. Intuitively, the agent does not shirk early on,

because without the “luck and talent” component, the procrastination motive is completely

removed. At the same time, the “luck” component is precisely the basis of the agent’s

reputation, i.e. the ability of achieving breakthroughs independently of his own effort.

V Observable Effort ex post

Let us contrast this equilibrium with the outcome when effort is observable. That is, we

maintain here the assumption that the competitive wage is paid up-front, but the resulting effort

is observed as soon as it is exerted. This implies that the belief of the market is always correct,

p̂t = pt, on and off the equilibrium path, and the payment flow is given by

wt = pt(λ+ ût),

where pt is the common belief, and ût is the effort level that the market expects the agent to

exert in the next instant. Up to a constant, the agent then maximizes

∫ T

0

[e−xt(λ+ ût)− (αut + v)(1 + e−xt)]dt− ke−xT .11

Note that, because the worker’s actions are observed, wages are no longer a function of time

only, as they are affected by a deviation by the worker. At the very least, then, we must describe

wages, and behavior, as a function of time t and current belief x. In fact, we shall restrict

attention to equilibria in Markov strategies

u : R× [0, T ] → [0, ū] ,

11We use here that (1 + e−xt)wt = (1 + e−xt)(λ+ ût)/(1 + ext) = e−xt(λ+ ût).
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such that u is upper semicontinuous in (x, t), and such that the value function

V (x, t) = sup
u

{∫ T

t

1 + e−xs

1 + e−x

[
λ+ u (xs, s)

1 + exs

− v − αu(xs, s)

]

ds− k
1 + e−xT

1 + e−x

}

,

is piecewise differentiable.12 We shall prove that such equilibria exist. We first argue that if the

agent ever exerts low effort, he has always done so in the past.

Lemma 6 Fix an equilibrium. If u (x, t) = 0 on some open set Ω ⊂ R × [0, T ], then also

u (x′, t′) = 0 if the equilibrium trajectory that starts at (x′, t′) intersects Ω.

This lemma implies that every equilibrium has a simple structure: if the agent is ever willing

to exert high effort, he keeps being willing to do so at any later time, at least on the equilibrium

path. In any equilibrium involving extremal effort levels only, there are at most two phases: first,

the worker exerts no effort, then, full effort. This is precisely the opposite of the structure for the

social planner, in which high effort comes first (see lemma 1). The social planner works, until

he becomes sufficiently pessimistic, if ever. The agent shirks, until it is time to panic, if ever.

He can only be trusted by the market to put in high effort if he is “back to the wall,” so that

maximum effort will remain optimal at any later time, no matter what he does until then; if the

market paid the worker for high effort, yet he was supposed to let up his effort later on, then the

worker would gain by deviating to low effort, pocketing the high wage in the process; because the

observable deviation to no effort would make everyone more optimistic, it would only increase

his incentives to exert high effort and thus increase his wage at later times.

This, of course, relies heavily on the Markovian assumption. Nevertheless, as the next theorem

states, there are multiple Markovian equilibria.

Theorem 1 Given T , there exists continuous, increasing x, x̄ : [0, T ] → R, xt ≤ x̄t, such that:

i All equilibria involve maximum effort below x :

x < xt ⇒ u (x, t) = ū;

ii All equilibria involve no effort above x̄ :

x > x̄t ⇒ u (x, t) = 0;

12That is, there exists a finite partition of R× [0, T ] into closed subsets Si with non-empty interior, such that
V is differentiable on the interior of Si, and the intersection of any pair Si, Sj is either empty or a smooth
1-dimensional manifold.
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iii These bounds are tight: there exists an equilibrium σ (resp. σ̄) in which effort is either 0

or ū depending on whether x is above or below x (resp. x̄).

Given Lemma 6, it should come as no surprise that, whenever finite, the functions x, x̄

(which are actually differentiable) have slopes greater than λ + ū, so that their hypographs are

absorbing for the trajectories (x, t) under any strategy. The proof of the theorem provides an

explicit description of these boundaries. Note that these functions take value on the extended

real line: indeed, they both converge to −∞ as t ↓ t∗, for some common value t∗ (where T − t∗

is independent of T ): if the deadline is large enough, the equilibrium always involves no effort

initially. It is worth pointing out that x̄T = xT = x∗, where ex
∗

= (k − α) /α.

These results are illustrated in Figure 3 for the same parameters as in Figure 2 in the unob-

servable case.
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Figure 3: Effort and wages in the observable case

It is worth noting that, while σ and σ̄ provide lower and upper bounds on the equilibrium

effort exerted in an equilibrium (in the sense of (i)–(ii)), these equilibria are not the only ones.

There exist other equilibria involving only extremal effort levels, whose boundary is between x

and x̄, as well as equilibria in which interior effort levels are exerted at some states. In particular,

the proof builds an equilibrium in which the agent exerts an interior amount of effort at all times

t for all values of x in [xt, x̄t]. This effort is decreasing in t and increasing in x . It is equal to

ū at x̄t, decreases continuously along the equilibrium trajectory from that point on, until the

lower boundary is reached (which, unless a success occurs, necessarily happens before time T ),
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at which point the effort level jumps up to ū.13

In the extremal equilibria, wages are decreasing over time, except for an upward jump at the

point at which effort jumps up to ū. In the interior-effort equilibrium described in the proof (in

which effort is interior everywhere between x and x̄), wages decreases continuously over time.

The intuition behind the equilibrium multiplicity is straightforward. The market only believes

that the worker will exert high effort if he is sufficiently optimistic and the deadline is close enough

(time to go must not exceed t∗). These states are thus rewarded with a high wage, which makes

them relatively desirable. If it is possible at all to reach them, putting in low effort is the best

way to do so. This incentive to shirk disappears as soon as this region is reached (as it is such

that no feasible strategy leaves it). This wedge in incentives, then, provides scope for a range of

specification, from an equilibrium that minimizes effort (if σ specifies any effort at all at some

state, all equilibria do specify at least as much), to an equilibrium that maximizes effort (if σ̄

specifies less than full effort at some state, all other equilibria specify even less effort at that

state).

The threshold x̄ is decreasing in the cost of effort α, and increasing in the outside option

v and penalty k, as one would expect. Considering the equilibrium with maximum effort, the

agent works more, the more desirable success is.

VI Comparison

Along the equilibrium path, the dynamics of effort look very different when one compares the

social planner, the agent when effort is unobservable, and the agent when effort is observable.

Yet it turns out that effort can easily be ranked across those cases. To do so, the key is to

describe effort in all three cases in terms of the state (x, t), i.e., the belief and the time.

For the observable case, it is enough to focus on the maximal full effort region, defined by the

frontier x̄, as it will turn out that even this equilibrium specifies less effort than what happens

with a social planner, or an agent whose effort is not observed.

The boundaries (in (x, t)-space) that characterize the optimal strategy in the unobservable

case are more complicated. An important distinction is whether, in the unobservable case, a full

13It is not possible to strengthen (4) further to the statement that, once maximum effort is exerted, it is
exerted throughout: there is considerable leeway in specifying equilibrium strategies between x and x̄, and
nothing precludes maximum effort to be followed by interior effort. (Of course, as soon as x is crossed, effort is
maximal.)
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effort region occurs right before the terminal belief xT = x∗. This depends on the sign of

φ′ (x∗ | ū) =
1

1 + ex∗
−

v − αλ

λ + ū
=

α

k
−

v − αλ

λ+ ū
≶ 0.

Consider the equation defining the full effort frontier in the unobservable case x2 (t)

(k − α) e−x2−(λ+u)(T−t) − α−

∫ x2+(λ+u)(T−t)

x2

e−x

(
1

1 + ex
−

v − αλ

λ+ ū

)

dx. (10)

If φ′ (x∗ | ū) > 0 then the slope x′
2 (t) at T is less than λ+ ū, meaning we would leave the full

effort region in a neighborhood of (T, x∗) . There is then no full effort phase at x∗ and the full

effort regions are disconnected. See Figure 6 and compare with Figure 4 and 5. These figures

use as parameters ū = 1/2, α = 1/5, v = λ = 1, x0 = −4, T = 5 and, depending on the figure,

k ∈ {.3, .4, .6}. If instead φ′ (x∗ | ū) < 0, then there is a connected full effort region and full

effort is exerted at x∗ as well.
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We can now state our first comparison result.

Lemma 7

1. The maximal effort region for the observable case is contained in the full effort region for

the unobservable case.
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2. All effort regions in the unobservable case are in turn contained in the full effort region of

the social optimum.

As shown in the pictures, Lemma 7 confirms the intuition that observability of effort reduces

the incentives to work. In particular, the highest effort equilibrium in the observable case in-

volves unambiguously lower effort levels than the (unique) equilibrium in the unobservable case.

Furthermore, Lemma 7 establishes that the social planner exerts more effort both on the exten-

sive and the intensive margin. The overall effort region in both the observable and unobservable

cases are smaller than the planner, who in addition always exerts maximum effort.

We now turn to a comparison of the boundaries in the unobservable case.

Lemma 8

1. The no effort frontier x3 (t) is increasing in k and v. It is decreasing in α and λ.

2. The full effort frontier x2 (t) is increasing in α, λ and ū. It is decreasing in k and v.

This result holds regardless of whether the full effort region is connected. It confirms the intu-

ition that (in terms of beliefs) the agent works longer when the prize and the penalty are higher,

and works less when the marginal cost of effort and the luck component are more significant.

Finally, we turn to the comparative statics of the boundaries in the observable case.

Lemma 9 The boundary of the maximal effort equilibrium x̄ (t) is increasing in k and v and

decreasing in α and λ.

Note that the effect of the maximum effort level ū is ambiguous, as ū enters twice. On the

one hand, time goes by faster, so the boundary tends to be closer to the deadline T . On the other

hand, x̄ (t) is also equal to the belief level at which the agent can be indifferent with respect to

effort provision, when the market expects effort ū. Increasing the upper bound on effort relaxes

this constraint and pushes the boundary out.

Finally, one might wonder whether increasing the termination penalty k can increase wel-

fare, for some parameters, as it might help resolve the commitment problem. Unlike in the

non-observable case, this turns out never to occur, at least in the maximum-effort equilibrium:

increasing the penalty decreases welfare, though it unambiguously increases total effort. The

proof is in Appendix C.

Similarly, increasing v, the value of succeeding, increases effort (in the maximum-effort equi-

librium), though it decreases the worker’s payoff.
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VII Endogenous Deadlines

We now relax the assumption of an exogenous deadline, which can be seen as a partial output-

contingent contract that induces the agent to exert effort close to the deadline. We now explore

how long the agent will choose to work (i.e. be in a relationship) as a function of his commitment

power and the observability of his effort. We confirm the earlier result that, in a specific sense,

more effort is exerted without observability.

A The Commitment Case

In this section we impose the additional parameter restriction

k +
α

k
−

v + αū

λ+ ū
≥ 0,

or v not too large, which ensures the monotonicity of x2 (t). In this sense, this is a natural

assumption. It states that when the agent is more pessimistic at the deadline, he works at full

speed for a shorter period of time (he has strict incentives to work over a smaller range of beliefs).

We summarize the qualitative properties of the optimal deadline when effort is unobservable,

and relegate a more detailed treatment in an appendix.

Lemma 10 Let T ∗ denote the optimal deadline with commitment and unobservable effort

1. T ∗ is finite.

2. If effort is ever exerted, it is maximal, and exerted at T ∗.

3. For x0 sufficiently low, no effort is exerted at t = 0.

4. For k sufficiently close to α no effort is ever exerted.

We then turn to the case of observable effort.

Lemma 11 Let T̃ denote the optimal deadline with commitment and unobservable effort

1. T̃ is finite.

2. If effort is ever exerted, it is exerted at T̃ .

3. For x0 sufficiently low, no effort is exerted at t = 0.

Thus the effort patterns under the optimal deadline are similar in the two cases.

25



B The Non-commitment Case

In the equilibrium of the game without commitment, the agent must choose to quit at the

deadline T . Given an equilibrium deadline T , we fix the off-equilibrium beliefs to specify ût = ū

if xt < x∗ for all t > T ∗, and ût = 0 otherwise. In other words, the market does not react to a

failure to quit, anticipates the agent quitting immediately afterwards and expects instantaneous

effort to be determined as if x = xT .

Let v̄ := α (λ (1 + k) + ū) /k and v := αλ (1 + k) /k. Also denote by

x̂ := ln

(
λ+ ū

αū+ v
(1 + k)− 1

)

the belief level that makes the agent indifferent between continuing or stopping when exerting

maximal effort. Similarly, let

x′ := ln

(
λ

v
(1 + k)− 1

)

denote the belief level that makes the agent indifferent between continuing or stopping when

exerting zero effort. We then have the following characterization in terms of the final beliefs xT

Lemma 12 The optimal deadline in the absence of commitment is given by

xT ∗ =







max{x0, x̂} if v > v̄

x∗ if v ∈ [v, v̄]

x′ if v < v

if effort is unobservable, and by

xT ∗ =

{

max{x0, x̂} if v ≥ v̄

x′ if v < v̄

if effort is observable.

An immediate consequence of Lemma 12 is that the total amount of effort exerted in equilib-

rium is weakly higher in the unobservable case. Thus, the comparison result carries over to the

case of endogenous termination of the relationship. In the unobservable case, the effort patterns

can then be traced back to x0. In particular, they imply a (zero-mix)-full equilibrium in the first

case, a (zero)-mix equilibrium in the second, and a zero effort equilibrium in the third.
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C Finishing Lines

We now compare setting a deadline with a finishing line. A deadline T is a time at which the

game stops. A finishing line, instead, is a value of the belief, x̂, at which the game stops, and

the penalty k is incurred. Given some finishing line, what is the optimal strategy of the worker?

As a consequence, what is the optimal finishing line, and is setting a finishing line preferable

to a deadline? For brevity, we relegate the explicit description of the optimal strategy given a

finishing line to the proof of the following lemma. Attention is restricted to Markovian strategies,

which, given the absence of deadline, reduce to measurable functions u(·) of the (public) belief

only. As usual, equilibrium requires that the expected effort that determines the wage coincides

with optimal effort.

Lemma 13

1. Given the finishing line x̂, the optimal strategy involves first no effort, then interior and

increasing effort, then full effort;

2. The optimal finishing line involves stopping immediately: x̂ = x0. Therefore, it is always

better to set a deadline than a finishing line.

Effort increases continuously as a function of x. As the lemma states, it is zero for low

enough values of x, and maximum for high enough values. These thresholds do not depend on

x̂ (of course, they only make sense if x̂ is larger). Why is effort highest precisely when it has no

chance in achieving a success? The point is, the more pessimistic the worker, the lower his wage

(for a given amount of expected effort); while for high values of x, the penalty is unavoidable,

increasing effort has the advantage of bringing about the end of the game faster, thereby avoiding

the flow loss v. For lower values of x instead, the wage is higher, and so the incentive to terminate

the game is lower. Hence, effort is highest precisely when success is not to be expected. When

the market and the agent are optimistic, the agent has little incentive to work. As a result, flow

payoffs are always negative (work is exerted “when it does not pay”) and it is best to stop the

project as soon as possible.

VIII Concluding Remarks

Rather than summarize our findings, let us point out what we view as the most promising

extensions of this agenda.
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First and foremost, one might wonder how results would change if the project had to be

completed by a team. After all, in law or consulting firms, projects are often assigned to a

team of employees that combine partners with junior associates. This raises several issues. The

team must achieve several possibly conflicting objectives: incentivizing both the partner and the

associate, and eliciting information about the associate’s ability. How should profits be shared in

the team to do so? When should the project be terminated, or the junior associate replaced? Is

it indeed optimal to combine workers whose assessed ability differs, as opposed to workers about

whom information is symmetric? Analyzing such questions raises a new modeling challenge, as

results are likely to be sensitive to the technology that combines the agents’ abilities and effort.

Relatedly, it seems important to “close” the model. For now, the deadline is taken as ex-

ogenous, or chosen by the worker. In most settings, the firm is the one that controls the length

of the probationary period. Firms have a cost of hiring (or firing) workers –possibly due to the

delay in filling a vacancy– but derive a surplus from the worker in excess of the competitive wage

they have to pay. Studying the efficiency properties and the characteristics of the resulting labor

market (composition of the working force, duration of unemployment) seems to be an interesting

undertaking.
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A Appendix

Proof of Lemma 1 The social planner maximizes

∫ T

0

(1 + e−xt)(
λ+ ut

1 + ext

− αut − v)dt− ke−xT , s.t. ẋt = λ+ ut.

Let γt be the costate variable. The Hamiltonian for this problem is

H (x, u, γ, t) = e−xt(λ+ ut)− (1 + e−xt)(v + αut) + γt (λ+ ut) .

Define φt := ∂H/∂ut = (1−α)e−xt −α+ γt. Note that given xt and γt, the value of φt does not

depend on ut. Pontryagin’s principle applies, and yields

ut = ū (ut = 0) ⇔ φt :=
∂H

∂ut

= (1− α)e−xt − α + γt > (<)0,

as well as

γ̇t = e−xt(λ− v + (1− α)ut), γT = ke−xT .

Differentiating φt with respect to time, and using the last equation gives

φ̇t = e−xt(αλ− v), φT = (1 + k − α)e−xT − α.

Note that φ is either increasing or decreasing depending on the sign of αλ − v. Therefore, the

equilibrium is either maximum effort–no effort, or no effort–maximum effort. �

Proof of Lemma 2 We address the three claims in turn.

Existence: Note that both the integrand of the objective and the state equation are linear in

the control u. Therefore, the Filippov-Cesari existence theorem applies (see thm. 8 of Seierstad

and Sydsaeter: linearity ensures that the set N(x, U, t) is convex.)

Uniqueness: We can equivalently write the objective as, up to constant terms,

∫ T

0

(1 + e−xt)(wt − v − α(ẋ− λ))dt− ke−xT ,

or, integrating out, letting gt := wt − v + αλ, in terms of the likelihood ratio lt = pt/(1− pt),

∫ T

0

ltgtdt− (k − α)lT + α ln lT + Constant.
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Because the first two terms are linear in l while the last is strictly concave, it follows that there

exists a unique optimal terminal odds ratio l∗T := lT . Furthermore, if there are two paths l, l′, with

l0 = l′0 = p0/(1−p0), and lT = l′T = l∗T , then there exists a third path l∗ that strictly improves on

either path. Indeed, let αt = 1 if lt ≥ l′t, and αt = 0 otherwise, and define l∗t := αtlt + (1− αt)l
′
t.

Then ∫ T

0

(l∗t − l′t)gtdt =

∫ T

0

αt(lt − l′t)gtdt > 0.

Sufficiency: While the optimization program described above is not necessarily concave in x,

observe that, given lt := pt/ (1− pt), it is equivalent to

∫ T

0

lt (wt − αut − v) dt− k (lT − 1) ,

such that l̇t = −lt (λ+ ū), so that the maximized Hamiltonian is concave in l, and sufficiency

then follows from the Arrow sufficiency theorem (see Seierstad and Sydsaeter (1987), Thm. 3.17).

�

Proof of Lemma 4 We prove the following:

1. If there exists t ∈ (0, T ) such that φt > 0, then there exists t′ ∈ [t, T ] such that us = ū for

s ∈ [t, t′], us = 0 for s ∈ (t′, T ].

2. If there exists t ∈ (0, T ) such that φt < 0, then either us = 0 for all s ∈ [t, T ] or us = 0 for

all s ∈ [0, t],

which easily implies our decomposition. For the first part, note that either us = ū for all

s > t, or there exists t′′ such that both φt′′ > 0 (so in particular ut′′ = ū) and φ̇t′′ < 0. Because

pt decreases over time, and us ≤ ut′′ for all s > t′′, it follows that ws < wt′′ , and so φ̇s < φ̇t′′ < 0.

Hence φ can cross 0 only once for values above t, establishing the result. For the second part,

note that either us = 0 for all s ≥ t, or there exists t′′ ≥ t such that φt′′ < 0 (so in particular

ut′′ = 0) and φ̇t′′ > 0. Because pt decreases over time, and us ≥ ut′′ for all s < t′′, it follows that

ws ≥ wt′′ , and so φ̇s > φ̇t′′ > 0. For all s < t′′, φs < 0 and φ̇s > 0. Hence, us = 0 for all s ∈ [0, t].

�

Proof of Lemma 5 We address the two claims in reverse order.

Uniqueness: assume an equilibrium exists, and note that, given a final belief xT , the pair

of differential equations for φ and x (along with the transversality condition) admit a unique
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solution, pinning down, in particular, the effort exerted by, and the wage received by the agent.

Therefore, if two (or more) equilibria existed for some values (x0, T ), it would have to be the

case that each of them is associated with a different terminal belief xT . However, we shall show

that, for any x0, the time it takes to reach a terminal belief xT is a continuous, strictly increasing

function T (xT ); therefore, no two different terminal beliefs can be reached in the same time T .

We start with a very optimistic initial belief x0 < x1, as this allows for the richest paths (the

other cases are subsets of these).

Clearly, we have T (x0) = 0. As long as x0 < x∗, we have a first range for xT over which full effort

is always exerted. For these terminal beliefs, we have T (xT ) = (xT − x0) / (λ+ ū), increasing.

If for all xT ≤ x∗ the following expression is strictly positive

(k − α) e−xT − α−

∫ xT

x0

e−x

(
1

1 + ex
−

v − αλ

λ+ ū

)

dx, (11)

then we always have full effort, until xT = x∗. If so, go to the section “Long Terminal Beliefs.”

Otherwise, go to the section “Short Terminal Beliefs.”

Short Terminal Beliefs

For these beliefs, we have a full effort phase at the end. We assume x0 < x1 < x∗, as the other

cases are subsets of those discussed here. Full effort is exerted at the end typically for short

deadlines. If xT < x∗ then the full effort region is given by [x2, xT ], where x2 solves

(k − α) e−xT − α−

∫ xT

x2

e−x

(
1

1 + ex
−

v − αλ

λ+ ū

)

dx = 0.

Therefore, we have

dx2

dxT

=

(
1

1 + ex2
−

v − αλ

λ+ ū

)−1(

k − α +
1

1 + exT

−
v − αλ

λ+ ū

)

ex2−xT .

The denominator is positive by construction (φ (x) hits zero going backwards).

1. Suppose x2 > x1. Then the time to get to xT is given by

T (xT ) =
xT − x2

λ+ ū
+

∫ x2

x1

dx

λ+ u (x)
+

x1 − x0

λ
.
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Using the formula for interior effort,

u (x) = (v − αλ) (1 + ex)− λ,

we can write

T ′ (xT ) =
1

λ+ ū
+

dx2

dxT

ū− u (x2)

(λ+ ū) (λ+ u (x2))

∝ λ+ u (x2) +
dx2

dxT

(ū− u (x2))

= (v − αλ) (1 + ex2) + (ū− u (x2))
dx2

dxT

.

We want to show T ′ (xT ) > 0. Clearly, if dx2/dxT > 0, we are done. If not, then we have

T ′ (xT ) > (v − αλ) (1 + ex2) + (λ + ū− (v − αλ) (1 + ex2))
dx2

dxT

e−(x2−xT )

= (v − αλ) (1 + ex2) + (1 + ex2) (λ+ u)

(

k − α +
1

1 + exT

−
v − αλ

λ+ ū

)

∝ k − α +
1

1 + exT

> 0.

2. Now suppose x0 < x2 < x1, and so no effort is exerted on [x0, x2] . Notice that if x2 (xT ) ≤ x0

then T (xT ) is clearly increasing, in xT (since we have full effort throughout). If x2 (xT ) >

x0, the time necessary to reach the terminal belief is given by

T (xT ) =
xT − x2

λ+ ū
+

x2 − x0

λ
.

Therefore,

λ (λ+ ū) T ′ (xT ) = λ+ ū
dx2

dxT

.

It is immediate that if x2 is increasing in xT then T ′ (·) > 0. If not, then we have

T ′ (xT ) ∝ λ+ ū
dx2

dxT

> λ+ ū
dx2

dxT

e−(x2−xT )

∝ λ

(
1

1 + ex2
−

v − αλ

λ+ ū

)

+ ū

(

k − α +
1

1 + exT

−
v − αλ

λ+ ū

)

.
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We also know ex2 < ex1 = λ/ (v − αλ)− 1, and thus

T ′ (xT ) > λ

(
v − αλ

λ
−

v − αλ

λ+ ū

)

+ ū

(

k − α+
1

1 + exT

−
v − αλ

λ+ ū

)

= ū

(

k − α +
1

1 + exT

)

> 0.

Longer Terminal Beliefs

For xT > x∗ we can have four possible patterns: never work (in which case the time to xT is

clearly increasing), zero-mixed-zero, zero-mixed-full-zero, or zero-full-zero. We now show that

T (xT ) is increasing under any of these patterns. In addition the times at which the equilibrium

path switches between the various effort regions are continuous functions of xT , so it suffices to

establish T ′ (xT ) in each of these cases separately.

Zero and Mixed Effort Phases

We again consider the time necessary to reach a given terminal belief xT . We consider beliefs

xT > x∗, for which the agent does not work at the end. If there is no full effort phase, the agent

works at a rate

u (x) = (v − αλ) (1 + ex)− λ

until the switching belief x3, then stops until xT . The two thresholds are linked by the equation

(k − α) e−xT − α−

∫ xT

x3

e−x

(
1

1 + ex
+ α−

v

λ

)

dx = 0.

From the state equation, we know beliefs increase at rate λ+u (x) in the first phase, and at rate

λ afterwards. The time to xT is therefore given by

T (xT ) =

∫ xT

x1

1

λ+ u (x)
dx =

∫ x3(xT )

x1

1

(v − αλ) (1 + ex)
dx+

xT − x3 (xT )

λ
.

Consider the derivative of T with respect to xT ,

λT ′ (xT ) = 1 +

(
λ

λ+ u (x3)
− 1

)
dx3

dxT

,

where dx3/dxT is given by

dx3

dxT

=

(
1

1 + ex3
−

v

λ
+ α

)−1(

k +
1

1 + exT

−
v

λ

)

ex3−xT . (12)
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Now, we know (1 + ex3)−1 + α− v/λ < 0 for all x > x1. Therefore, if (1 + ex3)−1 + k − v/λ > 0,

the whole expression is positive. (Note that our assumption λk < v does not determine the sign

of dx3/dxT .) Conversely, suppose that (1 + ex3)−1+k− v/λ < 0. We then check whether T ′ (xT )

can be negative. We obtain

λT ′ (xT ) = 1− ex3−xT
u (x3)

λ+ u (x3)

(
v

λ
−

1

1 + exT

− k

)/(
v

λ
−

1

1 + ex3
− α

)

> 1−
u (x3)

λ+ u (x3)

(
v

λ
−

1

1 + exT

− k

)/(
v

λ
−

1

1 + ex3
− α

)

.

Now plug in the expression for u (x3), notice that the x3 drops out, and obtain

λT ′ (xT ) > λ
k − α

v − αλ
> 0.

Full and Mixed Effort Phases

Now suppose the path involves mixing on [x1, x2], full effort on [x2, x3] and zero effort on [x3, xT ].

The time it takes to reach xT is then given by

λT (xT ) =

∫ x2(xT )

x1

λ

(v − αλ) (1 + ex)
dx+

λ

λ+ ū
(x3 (xT )− x2 (xT )) + xT − x3 (xT ) .

Hence

λT ′ (xT ) = 1−
ū

λ+ ū

dx3

dxT

+
dx2

dxT

(
λ

λ+ u (x2)
−

λ

λ+ ū

)

.

Notice that x2 is the solution to

∫ x3

x2

e−x

(
1

1 + ex
+

αλ− v

λ + ū

)

dx = 0. (13)

We then have
dx2

dxT

= −
e−x3

(
1

1+ex3
+ αλ−v

λ+ū

)

e−x2
(

1
1+ex2

+ αλ−v

λ+ū

)
dx3

dxT

, (14)

and so

λT ′ (xT ) = 1−
dx3

dxT

(
ū

λ+ ū
−

dx2

dxT

(
λ

λ+ u (x2)
−

λ

λ+ ū

))

.

Plug in the explicit formula for u(x2) and for dx3/dxT to obtain the following expression for
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λT ′(xT ):

(exT (v − kλ)− (k + 1)λ+ v) (−λex2 (ū+ ex3(αλ− v)− v + αλ+ λ)− ū (ex3 + 1) ex3(v − αλ))

exT (ū+ λ) (exT + 1) (v − αλ) (ex3(v − αλ) + v − (α + 1)λ)
+1.

To simplify, let V = λ/(v−αλ)−1, U = (λ+ ū)/(v−αλ)−1, k = α(K+1), and Xi = exi to get

1−
(K(V + 1)(X3 + 1)α + V −XT ) (U (V X2 +X2 +X2

3 +X3)−X3(V (X2 +X3 + 1) +X2))

(U + 1)XT (XT + 1)(V −X3)
.

The constraints are: 0 < V < X2 < U < X3 < XT , 0 < K < XT , and α > 0. Note that the

conditions v > αλ and ū > 0 follow from U > V > 0. The condition α < k < α(XT + 1) is

captured by 0 < K < XT . Finally, note that if v > kλ (which is equivalent to αK < (1 + V )−1)

then this expression is positive, as it is linear in A = K(1 + V )α, and it is positive both for

A = 0, 1.14

Only the Full Effort Phase

In this case, the incentives to exert effort hit zero when beliefs are at a level that does not allow

mixing, or x2 < x1. The candidate equilibrium involves zero-full-zero effort. The time required

14This requires a little bit of work. Consider the case A = 0. The derivative w.r.t. U of the expression is

−
(1 + V ) (X3 + 1) (X3 +X2) (XT − V )

(1 + U)
2
(X3 − V )XT (1 +Xt)

< 0,

so the expression is minimized by choosing U as high as possible given the constraints, i.e. U = X3, in which
case the expression simplifies to

X3V +XT (1 +XT −X3)

XT (1 +XT )
> 0.

Consider now A = 1. Similarly, the derivative w.r.t. U does not depend on U itself, so the expression is minimized
at one of the extreme values of U ; if U = X3, it is equal to

X3 (1 +X3 + V ) +XT (XT −X3 + 1)

XT (1 +XT )
> 0;

if U = X2, the resulting expression’s derivative w.r.t. X2 is independent of X2, so we can again plug in one of
the two extreme cases, X2 = X3 or X2 = V ; the values are then, respectively,

X3 (1 + V +X3) +XT (XT −X3 + 1)

XT (1 +XT )
> 0

and
XT (1 +XT + V )− V (1 + V +X3)

XT (1 +XT )
≥

X3 (X3 + 1)− V (V + 1)

XT (1 +XT )
≥ 0.
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is then given by

λT (xT ) = xT − x3 + (x3 − x2)
λ

λ+ ū
+ x2 − x0

= xT − (x3 − x2)
ū

λ+ ū
− x0,

where x3 and x2 solve the same equations as before. Therefore,

λT ′ (xT ) = 1−
ū

λ+ ū

(
dx3

dxT

−
dx2

dxT

)

,

where the last two terms are given by equations (12) and (14) respectively. Again, if dx3/dxT > 0,

we are done by the same argument as before (remember that the ratio in parentheses is negative).

Therefore, let dx3/dxT < 0. Want to show the term in parentheses is positive. Substituting the

expressions in (12) and (14), and using the same change of variable as before, we want to show

that

1−
X2 (X2 + 1) (U − V ) (U −X3) (XT (K(V + 1)α− 1) +K(V + 1)α + V )

(U + 1)XT (XT + 1) (U −X2) (V −X3)
> 0.

To establish this inequality, it is simpler to bound α. Setting the expression to zero, this is

equivalent to requiring that

αK <
(U + 1)XT (U −X2) (V −X3)

(V + 1)X2 (X2 + 1) (U − V ) (U −X3)
−

1

XT + 1
+

1

V + 1
,

a sufficient condition for this is that αK < (1 + V )−1, which is equivalent to v > kλ.

Existence: We have established that the time necessary to reach the terminal belief is a con-

tinuous and strictly increasing function. Therefore, the terminal belief reached in equilibrium is

itself given by a strictly increasing function

xT (T ) : R+ → [x0,∞).

Since there exists a unique path consistent with optimality for each terminal belief, given a

deadline T we can establish existence by constructing the associated equilibrium outcome, and

in particular, the equilibrium wage path. Existence and uniqueness of an optimal strategy for

the worker, after any (on or off-path) history, follows then from Lemma 2. �
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Proof of Lemma 6 Suppose that the equilibrium effort is zero on some open set Ω. Consider the

sets Ωt′ = {(x, s) : s ∈ (t′, T ] } such that the trajectory starting at (x, s) intersects Ω. Suppose

that u is not identically zero on Ω0 and let τ = inf {t′ : u = 0 on Ωt′}. That is, for all t′ < τ ,

there exists (x, s) ∈ Ωt′ , u (x, s) > 0. Suppose first that we can take s = t. We can write the

payoff

V (x, t) =

∫ xτ

x

1 + e−s

1 + e−x

(
λ

1 + es
− v

)
1

λ
ds+

1 + e−xτ

1 + e−x
V (xτ , τ) ,

or, rearranging,

(
1 + e−x

)
V (x, t) = −

(
e−xτ − e−x

) (

1−
v

λ

)

−
v

λ
(xτ − x) +

(
1 + e−xτ

)
V (xτ , τ) ,

where (xτ , τ) ∈ Ω and V (xτ , τ) is differentiable. The Hamilton-Jacobi-Bellman equation (a

function of (x, t)) can be derived from

V (x, t) =
λ+ û

1 + ex
dt− vdt

+max
u

[

−αudt+

(

1−
λ+ u

1 + ex

)

(V (x, t) + Vx(x, t)(λ+ u)dt+ Vt(x, t)dt)

]

+ o (dt) ,

which gives, taking limits,

0 =
λ+ û

1 + ex
− v + max

u∈[0,ū]

[

−αu−
λ+ u

1 + ex
V (x, t) + Vx(x, t)(λ+ u) + Vt(x, t)

]

.

Therefore, if u (x, t) > 0,

−
V (x, t)

1 + ex
− α+ Vx(x, t) > 0, or

(
1 + e−x

)
Vx(x, t)− e−xV (x, t) > α

(
1 + e−x

)
,

or finally,
∂

∂x

[(
1 + e−x

)
V (x, t)

]
− α

(
1 + e−x

)
> 0. (15)

Notice, however, by direct computation, that, because low effort is exerted from (x, t) to (xτ , τ),

for all points (xs, s) on this trajectory, s ∈ (t, τ) ,

∂

∂x

[(
1 + e−xs

)
V (xs, s)

]
−α

(
1 + e−xs

)
= e−xτ

(

1−
v

λ
− V (xτ , τ)

)

−α−
(

1 + α−
v

λ

)

e−xs ≤ 0,
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so that, because xt < xs, and 1 + α− v/λ > 0,

∂

∂x

[(
1 + e−x

)
V (x, t)

]
− α

(
1 + e−x

)
< 0,

a contradiction to u (x, t) > 0. If instead u (x, t) = 0 for all (x, t) ∈ Ωt, then there exists

(x′, t′) → (x, t) ∈ Ωt, u (x
′, t′) > 0. Because u is upper semi-continuous, for every ε > 0, there

exists a neighborhood N of (x, t) such that u < ε on N . Hence

lim
(x′,t′)→(x,t)

∂

∂x

[(

1 + ex
′

)

V (x′, t′)
]

− α
(

1 + ex
′

)

=
∂

∂x

[(
1 + e−x

)
V (x, t)

]
− α

(
1 + e−x

)
< 0,

a contradiction. �

Proof of Theorem 1 We start with (i). That is, we show that u (x, t) = ū for x < xt in all

equilibria. We first define x as the solution to the differential equation

(λ(1+α)−v+(λ+ ū)αex(t)+ū−((1+k)(λ+ū)−(v+αū))e−(λ+ū)(T−t))

(
x′ (t)

λ+ ū
− 1

)

= −ū, (16)

subject to x (T ) = x∗. This defines a strictly increasing function of slope larger than λ + ū, for

all t ∈ (T − t∗, T ], with limt↑t∗ x (T − t) = −∞.15 Given some equilibrium, and an initial value

(xt, t), let u (τ ; xτ ) denote the value at time τ ≥ t along the equilibrium trajectory. For all t, let

x̃ (t) := sup {xt : ∀τ ≥ t : u (τ ; xt) = ū in all equilibria} ,

with x̃ (t) = −∞ if no such xt exists. By definition the function x̃ is increasing (in fact, for

all τ ≥ t, x̃ (τ) ≥ x̃ (t) + (λ+ ū) (τ − t)), and so it is a.e. differentiable (set x̃′ (t) = +∞

if x jumps at t). Whenever finite, let s (t) = x̃′ (t) / (x̃′ (t)− λ) > 0. Note that, from the

transversality condition, x̃ (T ) = x∗. In an abuse of notation, we also write x̃ for the set function

t → [limt′↑t x̃ (t
′) , limt′↓t x̃ (t

′)].

We first argue that the incentives to exert high effort decrease in x (when varying the value

15The differential equation for x can be implicitly solved, which yields

ln
k − α

α
= (xt + (λ+ ū) (T − t )) +

ū

λ (1 + α) + ū− v
ln (k − α) ū (λ+ ū)

−
ū

λ (1 + α) + ū− v
ln

(
e(λ+ū)(T−t ) (λ (1 + α) + ū− v) (λ (1 + α)− v + α (λ+ ū) ext)

− (λ (1 + α)− v) (λ (1 + α) + ū− v + (k − α) (λ+ ū))

)

.
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x of an initial condition (x, t) for a trajectory along which effort is exerted throughout). Indeed,

recall that high effort is exerted iff

∂

∂x

(
V (x, t)

(
1 + e−x

))
≥ α

(
1 + e−x

)
.

The value V H(x, t) obtained from always exerting (and being paid for) high effort is given by

(1 + e−x)V H(x, t) =

∫ T

t

(1 + e−xs)

[
λ+ ū

1 + exs

− v − αū

]

ds− k(1 + e−xT )

=
(
e−x − e−xT

)
(

1−
v + αū

λ+ ū

)

− (T − t) (v + αū)− k(1 + e−xT ) (17)

where xT = x+ (λ+ ū) (T − t). Therefore, using (15), high effort is exerted if and only if

k −

(

1 + k −
v + αū

λ+ ū

)
(
1− e−(λ+ū)(T−t)

)
≥ α (1 + ex) .

Note that the left-hand side is independent of x, while the right-hand side is increasing in x.

Therefore, if high effort is exerted throughout from (x, t) onward, then it is also from (x′, t) for

all x′ < x.

Fix an equilibrium and a state (x0, t0) such that x0 + (λ+ ū) (T − t0) < x∗. Note that the

equilibrium trajectory must eventually intersect some state (x̃t, t). We start again from the

formula for the payoff

(
1 + e−x0

)
V (x0, t0) =

∫ t

t0

[
e−xs (λ+ u (xs, s))−

(
1 + e−xs

)
(v + αu (xs, s))

]
ds

+
(
1 + e−x̃t

)
V H (x̃t, t) .

Let W (x̃t) = V H (x̃t, t) (since x̃ is strictly increasing, it is well-defined). Differentiating with

respect to x0, and taking limits as (x0, t0) → (x̃t, t), we obtain

lim
(x0,t0)→(x̃t,t)

∂ (1 + e−x0)V (x0, t0)

∂x0

=
[
e−x̃tλ−

(
1 + e−x̃t

)
v
] s (x̃t)− 1

λ
+ s (x̃t)

[
W ′ (x̃t)

(
1 + e−x̃t

)
−W (x̃t) e

−x̃t

]
.

If less than maximal effort can be sustained arbitrarily close to, but before the state (x̃t, t) is

reached, it must be that this expression is no more than α
(
1 + e−x̃t

)
in some equilibrium, by
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(15). Rearranging, this means that

(

1−W (x) + (1 + ex)
(

W ′ (x)−
v

λ

))

s (x) +
(v

λ
− α

)

ex ≤ 1 + α−
v

λ
,

for x = x̃t. Given the explicit formula for W (see (17)), and since s (x̃t) = x̃′
t/ (x̃

′
t − λ), we can

rearrange this to obtain an inequality for x̃t. The derivative x̃′
t is smallest, and thus the solution

x̃t is highest, when this inequality binds for all t. The resulting ordinary differential equation is

precisely (16).

Next, we turn to (ii). That is, we show that u (x, t) = 0 for x > x̄t in all equilibria. We define

x̄ by

x̄t = ln

[

k − α +

(
v + ūα

λ+ ū
− (1 + k)

)
(
1− e−(λ+ū)(T−t)

)
]

− lnα, (18)

which is well-defined as long as k − α +
(
v+ūα

λ+ū
− (1 + k)

) (
1− e−(λ+ū)(T−t)

)
> 0. This defines a

minimum time T − t∗ mentioned above, which coincides with the asymptote of x (as can be seen

from (16)). It is immediate to check that x̄ is continuous and strictly increasing on [T − t∗, T ],

with limt↑t∗ x̄T−t = −∞, xT = x∗, and for all t ∈ (T − t∗, T ), x̄′
t > λ+ ū.

Let us define W (x, t) = e−xV (x, t), and re-derive the HJB equation. The payoff can be

written as

W (x, t) =
[
(λ + u (x, t)) e−x −

(
1 + e−x

)
(v + αu)

]
dt+W (x+ dx, t+ dt) ,

which gives

0 = (λ+ u (x, t)) e−x − v
(
1 + e−x

)
+Wt (x, t) + λWx (x, t) + max

u∈[0,ū]

(
Wx (x, t)− α

(
1 + e−x

))
u.

As we already know (see (15)), effort is maximum or minimum depending on Wx (x, t) ≶

α (1 + e−x). Let us rewrite the previous equation as

v − αλ−Wt (x, t)

= ((1 + α)λ− v + u (x, t)) e−x + λ
(
Wx (x, t)− α

(
1 + e−x

))
+
(
Wx (x, t)− α

(
1 + e−x

))+
ū.

Given Wx, Wt is maximized when effort u (x, t) is minimized: the lower u (x, t), the higher

Wt (x, t), and hence the lower W (x, t− dt) = W (x, t) −Wt (x, t) dt. Note also that, along any

equilibrium trajectory, no effort is never strictly optimal (by (iv)). Hence, Wx (x, t) ≥ α (1 + e−x),

and therefore, again u (x, t) (or W (x, t− dt)) is minimized when Wx (x, t) = α (1 + e−x): to
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minimize u (x, t), while preserving incentives to exert effort, it is best to be indifferent whenever

possible.

Hence, integrating over the equilibrium trajectory starting at (x, t),

v − αλ (T − t)− k
(
1 + e−xT

)
+W (x, t)

=

∫ T

t

u (xs, s) e
−xsds+

∫ T

t

[

((1 + α) λ− v) e−xs + (λ+ ū)
(
Wx (xs, s)− α

(
1 + e−xs

))+
]

ds.

We shall construct an equilibrium in which Wx (xs, s) = α (1 + e−xs) for all x > xt. Hence, this

equilibrium minimizes
∫ T

t

u (xs, s) e
−xsds,

along the trajectory, and since this is true from any point of the trajectory onward, it also

minimizes u (xs, s), s ∈ [t, T ]; the resulting u (x, t) will be shown to be increasing in x, and equal

to ū at x̄t.

Let us construct this interior effort equilibrium. Integrating (15) over any domain with non-

empty interior, we obtain that

(1 + ex)V (x, t) = ex(αx+ c(t))− α, (19)

for some function c(t). Because the trajectories starting at (x, t) must cross x (whose slope is

larger than λ+ ū), value matching must hold at the boundary, which means that

(1 + ext)V H(xt, t) = ext(αxt + c(t))− α,

which gives c (t) (for t ≥ T − t∗). From (19), we then back out V (x, t). The HJB equation then

reduces to

v − αλ =
λ+ u (x, t)

1 + ex
+ Vt (x, t) ,

which can now be solved for u (x, t). That is, the effort is given by

λ+ u (x, t) = (1 + ex) (v − αλ)−
∂

∂t
[(1 + ex)V (x, t)]

= (1 + ex) (v − αλ)− exc′ (t) .

It follows from simple algebra (c′ is detailed below) that u (x, t) is increasing in x. Therefore,
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the upper end x̄t cannot exceed the solution to

λ+ ū = (1 + ex̄) (v − αλ)− ex̄c′ (t) ,

and so we can solve for

ex̄ =
λ (1 + α)− v + ū

v − αλ− c′ (t)
,

Note that, from totally differentiating the equation that defines c (t),

c′ (t) = x′ (t) e−x(t)
[
(W ′ (x (t))− α)

(
ex(t) + 1

)
−W (x (t))

]

= v − αλ+ e−x(t) (v − (1 + α)λ) ,

where we recall that x is the lower boundary below which effort must be maximal, and W (x) =

V H (xt, t). This gives

ex̄ = ex
λ (1 + α)− v + ū

λ (1 + α)− v
, or ex =

λ (1 + α)− v

λ (1 + α)− v + ū
ex̄.

Because (16) is a differential equation characterizing x, we may substitute for x̄ from the last

equation to obtain a differential equation characterizing x̄, namely

ū

1− x̄′(t)
λ+ū

+ ((1 + k) (λ+ ū)− (v + αū)) e−(λ+ū)(T−t)

= λ (1 + α) + ū− v +
α (λ+ ū) (λ (1 + α)− v)

λ (1 + α)− v + ū
ex̄,

with boundary condition x̄ (T ) = x∗. It is simplest to plug in the formula given by (18) and

verify that it is indeed the solution of this differential equation.

Finally, we prove (iii). The same procedure applies to both, so let us consider σ̄, the strategy

that exerts high effort as long as x < x̄t, (and no effort above). We shall do so by “verifica-

tion.” Given our closed-form expression for V H(x, t) (see (17)), we immediately verify that it

satisfies the (15) constraint for all x ≤ x̄t (remarkably, x̄t is precisely the boundary at which

the constraint binds; it is strictly satisfied at xt, when considering σ). Because this function

V H(x, t) is differentiable in the set {(x, t) : x < x̄t}, and satisfies the HJB equation, as well as

the boundary condition V H(x, T ) = 0, it is a solution to the optimal control problem in this

region (remember that the set {(x, t) : x < x̄t} cannot be left under any feasible strategy, so that

no further boundary condition needs to be verified). We can now consider the optimal control
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problem with exit region Ω := {(x, t) : x = x̄t}∪{(x, t) : t = T} and salvage value V H(x̄t, t) or 0,

depending on the exit point. Again, the strategy of exerting no effort satisfies the HJB equation,

gives a differentiable value on R× [0, T ] \Ω, and satisfies the boundary conditions. Therefore, it

is a solution to the optimal control problem. �

Proof of Lemma 7 (1.) Plug the expression for x̄ (t) given by (18) into (10) and notice that

(10) cannot be equal to zero unless x̄ (t) = x∗ and t = T , or x̄ (t) → −∞. Therefore, the two

frontiers cannot cross before the deadline T , but they have the same vertical asymptote.

Now suppose that φ′ (x∗ | ū) > 0 so that the frontier x2 (t) goes through (T, x∗) . Consider the

slopes of x2 (t) and x̄ (t) evaluated at (T, x∗). We obtain

[x̄′ (t)− x′
2 (t)]t=T ∝ (ū+ λ) (k − α) > 0,

so the unobservable frontier lies above the observable one for all t.

Next, suppose φ′ (x∗ | ū) < 0, so there is no mixing at x∗ and the frontier x2 (t) does not go

through (T, x∗) . In this case, we still know the two cannot cross, and we also know a point on

x2 (t) is the pre-image of (T, x∗) under full effort. Since we also know the slope x̄′ (t) > λ + ū,

we again conclude that the unobservable frontier x2 (t) lies above x̄ (t).

Finally, consider the equation defining the no effort frontier x3 (t),

(k − α) e−x3−λ(T−t) − α−

∫ x3+λ(T−t)

x3

e−x

(
1

1 + ex
−

v − αλ

λ

)

dx = 0. (20)

Totally differentiating with respect to t shows that x′
3 (t) < λ (might be negative). Therefore,

the no effort region does not intersect the full effort region defined by x̄ (t) in the observable

case.

(2.) To compare the effort regions in the unobservable case and the full effort region in the

social optimum, consider the planner’s frontier xP (t), which is given by

xP (t) = ln
(
(1 + k − v/λ)e−λ(T−t) − (α− v/λ)

)
− lnα.

The slope of the planner’s frontier is given by

x′
P (t) = λ

(1 + k − v/λ)e−λ(T−t)

(1 + k − v/λ)e−λ(T−t) + v/λ− α
∈ [0, λ].
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In the equilibrium with unobservable effort, all effort ceases above the frontier x3 (t) defined in

(20) above, which has the following slope

x′
3 (t) = λ

((
1 + ex3+λ(T−t)

)−1
+ k − v/λ

)

e−λ(T−t)

(

(1 + ex3+λ(T−t))
−1

+ k − v/λ
)

e−λ(T−t) + v/λ− α− (1 + ex3)−1
.

We also know x3 (T ) = x∗ and xP (T ) = ln ((1 + k − α) /α) > x∗. Now suppose towards a

contradiction that the two frontiers crossed at a point (t, x). Plugging in the expression for

xP (t) in both slopes, we obtain

x′
3 (t) =

(

1 +
v/λ− α− s (t)

(1 + k − v/λ+ (1− s (t)))e−λ(T−t)

)−1

>

(

1 +
v/λ− α

(1 + k − v/λ)e−λ(T−t)

)−1

= x′
P (t) ,

with

s (t) = 1/
(
1 + exP (t)

)
∈ [0, 1] ,

meaning the unobservable frontier would have to cross from below, a contradiction. �

Proof of Lemma 8 (1.) Fix a terminal belief xT = x3 + λ (T − t) and consider the equation

defining the no effort frontier, which is given in (20). The left hand side of (20) is decreasing

in x3, because fixing xT the derivative is simply given by φ′ (x3 | u = 0), which is negative by

construction. In addition, it is immediate to show that the left hand side of (20) is increasing in

k and v and decreasing in α and λ, which establishes the result.

(2.) We analyze the cases of xT ≤ x∗ and xT > x∗ separately.

Fix a terminal belief xT ≤ x∗ and consider the definition of the full effort frontier, which is

obtained by setting x0 = x2 in equation (11). The left hand side of (11) is increasing in x2, because

fixing xT the derivative is simply given by φ′ (x2 | u = ū), which is positive by construction. In

addition, it is immediate to show that the left hand side of (11) is increasing in k and v and

decreasing in α, λ, and ū,which establishes the result.

Fix a terminal belief xT > x∗ and consider the equation defining the full effort frontier, which in

this case is given in (13) and depends on x3 (xT ) as well. The left hand side of (13) is increasing

in x2, because fixing xT and hence x3 (xT ) the derivative is simply given by φ′ (x2 | u = ū), which

is positive by construction. In addition, it is immediate to show that the integrand in (11) is

increasing in α, λ, and ū, and decreasing in v. Finally, the left hand side of (11) is decreasing in

x3 (the derivative is given by φ′ (x3 | u = ū) < 0). Combining these facts with the comparative
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statics of x3 from part (1.) establishes the result. �

Proof of Lemma 9 The results can be obtained directly by differentiating expression (18) for

the frontier x̄ (t). �

Proof of Lemma 12 In the observable case, suppose the agent quits before x∗. Then he must

quit while exerting maximal effort. This can only occur at xT = x̂, which requires no mixing at

x∗. Therefore, if φ′ (x∗ | ū) < 0 and x0 < x̂, the agent quits at x̂. If we have mixing at x∗, then

the agent can quit at x∗. This requires φ′ (x∗ | ū) < 0, so that v is not too high and interior effort

is exerted at x∗, but also V ′ (x∗) < 0, where the payoff is computed assuming the market expects

zero effort (for x > x∗) and the agent does not work going forward. The parameter conditions for

this case to occur are given given by in equation (27). If on the other hand we have V ′ (x∗) ≥ 0,

then the agent has an incentive to continue the relationship at x∗, and will therefore quit while

exerting zero effort. This occurs at xT = x′, and since in this case x1 > x′ > x∗, the agent exerts

zero effort throughout.

In the observable case, if v < v̄, the agent will never be paid, as he would never stop while

being paid, at least for values of x consistent with him working if he were to stop right after

this instant. Therefore, the market never pays the worker, and the worker chooses the optimal

deadline accordingly. If v ≥ v̄, then the final belief must be exactly the one that makes him

indifferent (x̂). �

Proof of Lemma 13 Let x̂ denote the stopping belief, fixed exogenously for now. The payoff

to be maximized is

∫ x̂

x

(λ+ u (x)) e−x − (1 + e−x) (v + αu)

λ+ u
dx− k

(
1 + e−x̂

)
,

where u (x) is the expected effort given state x and u is the control variable (equal to u (x) at x

in equilibrium). Transversality requires that u = u (x̂) maximizes

(λ+ u (x̂)) e−x̂ −
(
1 + e−x̂

)
(v + αu)

λ+ u
,

whose derivative w.r.t. u is proportional to

(
1 + ex̂

)
(v − αλ)− λ− u (x̂) .

47



Hence,

u (x̂) =







ū if 1 + ex̂ > λ+ū

v−αλ
,

u ∈ (0, ū) if u solves 1 + ex̂ = λ+u
v−αλ

,

0 if 1 + ex̂ < λ

v−αλ
.

The intuition is straightforward: if x̂ is high enough, there is no chance of success, but effort

makes the game end sooner; there is no hope avoiding the penalty k, but at least the worker

can avoid enduring the flow loss v. For a fixed value of expected effort, the flow cost of delay is

relatively more important than the flow wage for high values of x̂, because the market pays then

a smaller wage, expecting success to be unlikely.

The Hamilton-Jacobi-Bellman equation is

(λ+ u) e−x − v
(
1 + e−x

)
+ λW ′ (x) + max

u∈[0,ū]

(
W ′ (x)− α

(
1 + e−x

))
u,

and it follows upon integration in the relevant intervals that, more generally,

u (x) =







ū for 1 + ex > λ+ū
v−αλ

,

(1 + ex) (v − αλ)− λ if 1 + ex ∈
[

λ

v−αλ
, λ+ū

v−αλ

]
,

0 if 1 + ex < λ
v−αλ

,

for all relevant values of x (i.e., values such that x < x̂). Assuming 1 + ex̂ > λ+ū

v−αλ
, the resulting

value function has derivative (w.r.t. x̂)

e−x̂

(

1−
(
1 + ex̂

) αū+ v

λ+ ū

)

,

for initial values of x < x̂ such that 1 + ex > λ+ū
v−αλ

. Note that

1−
(
1 + ex̂

) αū+ v

λ+ ū
< 1−

αū+ v

v − αλ
= −α

λ + ū

v − αλ
< 0,

and so increasing the finishing line x̂ decreases the value: it is best to set it equal to x. By the

principle of optimality, we can rule out finishing lines x̂ such that

1 + ex̂ >
λ+ ū

v − αλ
.

Similarly, assuming that both 1 + ex and 1 + ex̂ are in
[

λ
v−αλ

, λ+ū
v−αλ

]
, the derivative of the value
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(w.r.t. x̂) is

−α
(
1 + e−x

)
< 0;

hence, such finishing lines in this interval cannot be optimal either. Finally, if both 1 + ex and

1 + ex̂ are below λ

v−αλ
, this derivative equals

e−x̂
(

1−
v

λ

(
1 + ex̂

))

< e−x̂

(

1−
v

v − αλ

)

= −
αλe−x̂

v − αλ
< 0,

so that, in that case as well, it is best to stop immediately.

To summarize, if one must choose a finishing line x̂, it is best to set it equal to x0, with a

resulting value of −k. Because choosing a deadline T = 0 is always possible, it follows immedi-

ately that deadlines always improve on finishing lines. �
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B Appendix: Endogenous Deadlines

A Unobservable Effort

First, we define the function x2 (xT ) as the solution to

(k − α) e−xT − α−

∫ xT

x2(xT )

e−x

(
1

1 + ex
−

v − αλ

λ+ ū

)

dx = 0. (21)

Thus, x2 (xT ) is the lowest belief at which the agent has strict incentives to work, given that

his terminal belief is xT ≤ x∗. We will also make use of the inverse function x−1
2 (x) to indicate

terminal beliefs xT .

Throughout this section, we maintain the two following assumptions

x′
2 (xT ) > 0 for all xT ≤ x∗,

x0 < x∗.

Totally differentiating (21), we obtain

dx2

dxT

=
k − α+ 1

1+exT
− v−αλ

λ+ū

1
1+ex2

− v−αλ

λ+ū

ex2−xT .

Using the definition of 1/
(
1 + ex

∗
)
= α/k, it is then immediate to see that the first assumption

is equivalent to the following:

k − α +
α

k
−

v − αλ

λ+ ū
≥ 0. (22)

In particular, (22) allows for both full effort regions and mixing at xT = x∗.

We now look for the optimal deadline under commitment. In our uniqueness proof, we have

shown the time required to reach a final belief xT is strictly increasing. Therefore, we now

analyze the equivalent problem of finding the optimal terminal belief xT . Let the agent’s payoff

be denoted by

V (xT ) :=

∫ xT

x0

1 + e−x

λ+ u (x)

(
λ+ u (x)

1 + ex
− αu (x)− v

)

dx− ke−xT . (23)

We start by establishing some results we use repeatedly.

Lemma 14 Let the equilibrium be of the (zero)-interior-full effort type. Then V ′ (xT ) < 0.
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Proof. Notice that such an equilibrium must involve x∗ ≥ xT ≥ x2 (xT ) ≥ x1. In the mixing

region, effort is given by

λ+ u (x) = (v − αλ) (1 + ex) .

Substituting into (23), we can write the payoff as

V (xT ) : =

∫ x1

x0

1 + e−x

λ

(
λ

1 + ex
− v

)

dx−

∫ x2(xT )

x1

α
(
e−x + 1

)
dx

+

∫ xT

x2(xT )

1 + e−x

λ+ ū

(
λ+ ū

1 + ex
− αū− v

)

dx− ke−xT .

Now, the derivative is given by

dV

dxT

= (1 + k) e−xT −
(
1 + e−xT

) αū+ v

λ+ ū
−

dx2

dxT

(
1 + e−x2

λ+ ū

(
λ + ū

1 + ex2
− αū− v

)

+
(
1 + e−x2

)
α

)

= −ex2−xT

(

1 + k −
αū+ v

λ+ ū

)

+
1 + ex2

1 + exT

−
αū+ v

λ+ ū
.

Integrating the expression for x2 in (21), we obtain

(

1 + k −
αū+ v

λ + ū

)

ex2−xT − α (1 + ex2)− ex2 ln
e−xT + 1

e−x2 + 1
− 1 +

αū+ v

λ+ ū
= 0.

Substituting the first term into the derivative, we obtain

dV

dxT

= −α (1 + ex2)− ex2 ln
e−xT + 1

e−x2 + 1
− 1 +

1 + ex2

1 + exT

(24)

< −ex2 ln
e−xT + 1

e−x2 + 1
− 1 +

1 + ex2

1 + exT

≤ 0, ∀xT ≥ x2.

This ends the proof.

Therefore, we know payoffs are decreasing in xT whenever we have an interior effort region.

Corollary 2 Let the equilibrium be of the zero-full type. Then V ′ (xT ) < 0 for x2 (xT ) sufficiently

close to x1.

Proof. Such an equilibrium must involve x2 (xT ) ≤ x1. We know that the equilibrium effort

is continuous at x1, so that u (x1) = 0. Since the right hand side of (24) if strictly negative for

x2 ∈ [x1, xT ], it follows that payoffs are decreasing in xT whenever x2 (xT ) is in a neighborhood

of x1.
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Lemma 15 Let the equilibrium be of the zero-full type. Then

lim
x0→−∞

V ′
(
x−1
2 (x0)

)
= +∞.

Proof. Then consider the asymptote of the full effort region we computed earlier,

k − α +

(
v + ūα

λ+ ū
− (1 + k)

)
(
1− e−(λ+ū)(T−t)

)
= 0,

solve for (λ+ ū)(T − t) and obtain

ex
−1
2 (x0) → ex0

(
v+ūα

λ+ū
− (1 + k)

v+ūα
λ+ū

− (1 + k) + (k − α)

)

.

Now collect consider the derivative of the zero-full effort payoffs

dV

dxT

= (1 + k) e−xT −
(
1 + e−xT

) αū+ v

λ+ ū
−

dx2

dxT

(
1 + e−x2

) ū (v − αλ)

λ (ū+ λ)
,

plug in x2 = x0 and the expression for xT = x−1
2 (x0). Then let x0 → −∞. We obtain

dV

dxT

→ ∞ · sign

[

(λ (1 + α)− v)
(ū+ λ (1 + k)− v + ū (k − α))

λ (λ (1 + α)− v + ū)

]

= +∞.

This ends the proof.

This means it is profitable to stretch the deadline (even if it means introducing a shirking

region) for sufficiently optimistic initial beliefs. Finally, we consider the range of short deadlines

over which full effort is always exerted.

Lemma 16 Consider equilibria in which full effort is exerted throughout. Payoffs are increasing

in xT if and only if

exT ≤ ex̂ =
λ+ ū

αū+ v
(1 + k)− 1.

Furthermore,

x̂ < x∗ ⇐⇒
1

1 + ex∗
−

v − αλ

λ+ ū
= φ′ (x∗ | ū) < 0.

Proof. In this case, the payoff as a function of xT is given by

V (xT ) :=

∫ xT

x0

1 + e−x

λ+ ū

(
λ+ ū

1 + ex
− αū− v

)

dx− ke−xT .
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Differentiating with respect to xT yields

dV

dxT

= −
(
1 + e−xT

) αū+ v

λ+ ū
+ (1 + k) e−xT ,

which is equal to zero at xT = x̂. Comparing x̂ with x∗, we find

x∗ − x̂ ∝
v − αλ

λ+ ū
−

1

1 + ex∗
.

This ends the proof.

This result allows us to conclude that whenever there is full effort at xT = x∗, the optimal

x̂ < x∗ and (more importantly) whenever we have mixing at x∗, payoffs under full effort are

increasing for all xT ≤ x∗. It is therefore convenient to divide the analysis in two cases, depending

on whether x̂ ≶ x∗, or in other words, on whether we have full effort regions at xT = x∗.

A.1 Interior Effort (when xT = x∗)

In this case (x̂ > x∗), it is useful to remember that, since there are no full effort regions at x∗,

the threshold x2 (x
∗) is exactly equal to x∗. We highlight the role of x0 and x1 in what follows.

• Suppose x0 < x1 < x∗. Payoffs are clearly increasing in xT as long as x2 (xT ) < x0, as

in that case only full effort is exerted. For longer deadlines, the function V (·) has a kink

when x2 (xT ) = x0. At that point, we need to consider the derivative of V (·) under zero-

full effort. We know V ′
(
x−1
2 (x1)

)
< 0 and limx→−∞ V ′

(
x−1
2 (x)

)
= +∞, so (need to show

quasiconcavity here, but pictures help) we conjecture there exists a unique

x̃ < x1 : V
′
(
x−1
2 (x̃)

)
= 0.

Clearly, if x0 > x̃, then the payoff under zero-full is decreasing at xT = x−1
2 (x0), and

therefore we can identify

x∗
T = max

{
x−1
2 (x̃) , x−1

2 (x0)
}
, (25)

as the optimal deadline. This deadline yields either a zero-full or a full effort equilibrium.

In other words, if x0 is far away from x1 the payoff V (·) might still increase at the kink.

• Suppose x1 < x0 < x∗. Then we know V ′ (xT ) > 0 if x2 (xT ) < x0 but we also know payoffs

are decreasing after the kind at x2 (xT ) = x0, because in that case we would have interior
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effort on [x0, x2]. In this case, it is immediate to conclude that

x∗
T = x−1

2 (x0) .

Therefore, these two subcases can be summarized by (25).

• A different case is one in which x1 > x∗. By assumption we then have x0 < x1. Consider

the derivative of the payoff at the zero-full equilibrium when xT = x∗ (and consequently

the full effort region vanishes). Rearranging, we obtain

V ′ (x∗) ∝ (αλ− (v − αλ) k)2 −
((
α− kα + k2

)
(v − αλ) k − α2λ

)
ū. (26)

It is easy to check that – under the current assumptions – all three terms in parentheses

are positive, and the first one is proportional to the difference x1 − x∗ (which we in fact

assume positive in this case). Thus, for x1 in a neighborhood of x∗ we still have V ′ (x∗) < 0.

However, for longer deadlines xT > x∗ the payoff is given by

V (xT ) :=

∫ xT

x0

1 + e−x

λ

(
λ

1 + ex
− v

)

dx− ke−xT .

This is the case because no effort can be exerted if xT ∈ [x∗, x1]. More generally, for

x1 > x∗, the equation defining x3

(k − α) e−xT − α−

∫ xT

x3

e−x

(
1

1 + ex
−

v − αλ

λ

)

dx = 0,

does not have a solution for xT close enough to x1 (the first terms are φ (xT ) < 0 and the

integrand is positive for all x ≥ x1).

When the equilibrium is characterized by no effort throughout, the derivative of the payoff

is given by

V ′ (xT ) = (1 + k) e−xT −
(
1 + e−xT

) v

λ
.

In particular, we have

V ′ (x∗) =
(

1 + k −
v

λ

) α

k − α
−

v

λ
> 0, (27)

so that V has an upward kink at xT = x∗. The payoff under no effort has a local maximum
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at

1 + ex
′

=
1 + k

v/λ
,

and it is easy to show that

x′ < x1,

so we have the right expression.

To summarize, if V ′ (x∗) is negative from the left and positive from the right, we have a

bimodal payoff function, and the optimal deadline is given by

x′ or max
{
x−1
2 (x̃) , x−1

2 (x0)
}
.

Notice that if the optimal deadline is given by x′, then the equilibrium involves no effort

throughout.

As we increase the distance x1−x∗, for example by bringing k closer to α, the left derivative

of V (x∗) becomes positive. (In particular, there exists a critical k̃ for which x̃ = x∗ and

V ′ (x∗) = 0.) In that case, the payoff function is again single peaked and the optimal

deadline is given by x′.

A.2 Full Effort (when xT = x∗)

In this case, notice that x̂ < x∗ implies x1 < x∗. Since x1 and x̂ play a more significant role,

we now analyze several subcases. Many of the results follow from the previous subsection.

• Suppose x1 > x2 (x̂). Then:

– x2 (x̂) ≤ x0 ⇒ x∗
T = x̂, because in this case we can have the (payoff-maximizing) full

effort equilibrium.

– x2 (x̂) > x0 ⇒ for x0 in a (left) neighborhood of x2 (x̂), the optimal deadline cannot

yield a zero-full equilibrium. Indeed, we know the payoff function has a kink when

x2 (xT ) = x0, while the derivative of the payoff function under full effort is continuous.

Therefore, for x0 close to x2 (x̂), we must have x∗
T = x−1

2 (x0). If x0 is very low, then

we know by the earlier Lemma that eventually V ′
(
x−1
2 (x0)

)
≥ 0 even under zero-full

effort. That occurs precisely when x0 = x̃. To summarize, in this case we have

x∗
T = max

{
x−1
2 (x̃) , x−1

2 (x0)
}
.
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• Suppose x1 < x2 (x̂).

– x2 (x̂) < x0 ⇒ x∗
T = x̂ because, as before, we can have the (payoff-maximizing) full

effort equilibrium.

– x2 (x̂) > x0 > x1 ⇒ x∗
T = x−1

2 (x0) because in this case we know payoffs are increasing

when xT = x−1
2 (x0) < x̂, but also decreasing if we extend xT further. Indeed, we

would introduce an interior effort region, so after the kink, the payoff function is

downward sloping.

– x2 (x̂) > x1 > x0 ⇒ x∗
T = max

{
x−1
2 (x̃) , x−1

2 (x0)
}
. This case is the most similar one

to the previous subsection. Extending the deadline past x−1
2 (x0) introduces a no effort

region. Therefore, if V ′
(
x−1
2 (x0)

)
< 0, the optimal deadline is x−1

2 (x0). If not, then

we can extend xT until x2 = x̃ < x1.

B Observable Effort

Let us start by assuming commitment to a deadline. At what belief is a player indifferent

between stopping immediately and one instant later? Denote the threshold belief x̂. If effort is

exerted at that moment, we can derive x̂ by computing the derivative with respect to T of (17),

and setting it equal to for t = T . We obtain

ex̂ =
λ+ ū

αū+ v
(1 + k)− 1,

which is lower than x∗, as it must, iff

v > v̄ :=
α

k
(λ (1 + k) + ū) .

On the other hand, if

v < v :=
α

k
λ (1 + k) ,

then we must define

ex̂ =
λ

v
(1 + k)− 1 > ex

∗

,

while if v ∈ [v, v̄], we set x̂ = x∗ = ln (k − α) /α.

To conclude, if the choice to the agent were to stop or continue for an instant, he would stop

if and only if x > x̂. However, what this means in terms of the optimal deadline will now hinge

on whether this involves work or not at that time, i.e., whether v ≶ v.
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Let us first assume that v > v, so that he would work at the belief at which he is indifferent

between stopping and continuing. If x ≥ x̂, we are done: the agent chooses to stop immediately.

Suppose so x < x̂. To minimize possibilities, we focus throughout on the equilibrium that

maximizes effort, i.e. so that, given the deadline, the agent works if and only if x < x̄t.

Suppose first that the value of T that solves

x+ (λ+ ū) T = x̂

is such that, given a deadline of T , x < x̄0. In that case, it is clear that this is the optimal

deadline for the worker. What if x > x̄0? Maintain this assumption. Note that choosing the

optimal deadline given x is equivalent to choosing, given T large enough, the value of t that

maximizes V (t, x). The question is then, were is this maximum achieved? For (t, x) such that

x < x̄t, Vt (t, x) < 0, and the agent prefers to have more time (a lower value of t). The key

computation, then, is to the immediate left of (t, x̄t). Recall that the equilibrium payoff in this

region (in which low effort is exerted) is given by

(
1 + e−x

)
V (x, t) =

∫ xτ

x

(

e−s −
v

λ

(
1 + e−s

))

ds+
(
1 + e−xτ

)
V (xτ ) ,

where V (xτ ) is the value on the boundary where effort switches from zero to maximum effort,

and xτ = x+ λ (τ − t) is the belief at that time. Differentiating with respect to t gives

[

e−xτ −
v

λ

(
1 + e−xτ

)
+

d

dxτ

((
1 + e−xτ

)
V (xτ )

)
]
dxτ

dt
,

but recall that, at the boundary, the inner derivative is identically equal to α (1 + e−xτ ). Note

that, for all x < x∗,

e−xτ +
(

α−
v

λ

) (
1 + e−xτ

)
> 0,

while dxτ/dt < 0 (increasing t shortens the time until the boundary is hit, and thus lower the

corresponding belief). Hence, the payoff strictly decreasing in t to the left of the boundary, at

least for values of t sufficiently close to the boundary. This implies that the optimum deadline

is then set such that the worker shirks for a while, at the beginning. This optimum deadline T ,

however, must be finite.

If v < v, on the other hand, the worker has a choice: either he insist on working until the

belief reaches x̂ (or any value of x such that xT > x∗), and then he must always put in zero

effort; or he must choose a deadline that forces him to stop at a belief no larger than x∗. In the
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former case, which occurs if x is high enough, he sets the deadline so that

x+ λT = x̂;

in the latter case, the analysis is as in the case v > v: if the value of T that solves

x+ (λ+ ū) T = x∗

is such that x < x̄0, that value of T is the optimal deadline; if not, a longer deadline is chosen

that maximizes V (x, t) subject to xT < x∗.
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C Appendix: Comparative Statics

A Unobservable Effort

Throughout this section we fix a deadline T . We then focus on four kinds of equilibrium

structures: interior-zero effort, interior-full effort, zero-full effort, and finally zero-interior-full-

zero effort. We first examine the role of learning on payoffs, measured by the impact of the

terminal beliefs xT for a given T . We then turn to the effects of the penalty k and the cost of

waiting v.

A.1 Zero-Interior-Zero Equilibria

For a given T , we have the following equations linking the thresholds xT and x2.

(k − α)e−xT − α =

∫ xT

x2

e−x

(
1

1 + ex
+ α−

v

λ

)

dx

Tλ = xT − x2 +

∫ x2

x1

λ

λ+ u (x)
dx+ x1 − x0.

From the second one we can compute

dx2

dxT

=
λ+ u (x2)

u (x2)
.

The payoff to the agent is given by

V =

∫ x1

x0

(

e−x −
(
1 + e−x

) v

λ

)

dx+

∫ x2

x1

(

e−x −
(
1 + e−x

) v + αu (x)

λ+ u (x)

)

dx

+

∫ xT

x2

(

e−x −
(
1 + e−x

) v

λ

)

dx− ke−xT .

Therefore, we can express the effect of xT on payoffs as

dV

dxT

= ke−xT + e−xT −
(
1 + e−xT

) v

λ
−

dx2

dxT

(
1 + e−x2

)
(
v + αu (x2)

λ+ u (x2)
−

v

λ

)

Using the fact that in the interior effort region we have

λ+ u (x) = (v − αλ) (1 + ex) ,
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we obtain
dV

dxT

= (1 + k) e−xT −
(
1 + e−xT

) v

λ
+
(
1 + e−x2

) v − αλ

λ
.

1. The effect of k. We have
dV

dk
= −e−xT +

dV

dxT

dxT

dk

where, based on the first two equations,

dxT

dk
=

((

k +
1

1 + exT

−
v

λ

)

e−xT +
v − αλ

λ
e−x2

)−1

e−xT .

It is immediate (using xT > x2) to check that dxT/dk > 0. Simplifying, we obtain

dV

dk
=

dxT

dk

(
1

exT + 1
− α

)

.

2. The effect of v. We have

dV

dv
=

dV

dxT

dxT

dv
−

∫ x1

x0

1 + e−x

λ
dx−

∫ xT

x2

1 + e−x

λ
dx

(notice that when effort is interior (v + αu (x)) / (λ+ u (x)) does not depend on v). In

addition, we have

dxT

dv
=

((

k − α +
1

1 + exT

−
v − αλ

λ

)

e−xT + e−x2
v − αλ

λ

)−1
e−x2 − e−xT

λ
,

which is also positive. Simplifying, we obtain

dV

dv
=

e−x2 − e−xT

λ
+

(
1

1 + exT

− α

)
dxT

dv
−

∫ x1

x0

1 + e−x

λ
dx−

∫ xT

x2

1 + e−x

λ
dx

=

(
1

1 + exT

− α

)
dxT

dv
−

∫ x1

x0

1 + e−x

λ
dx−

∫ xT

x2

1

λ
dx.
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A.2 Zero-Interior-Full Equilibria

The equations determining the switching threshold x2 are given by

(k − α)e−xT − α =

∫ xT

x2

e−x

(
1

1 + ex
−

v − αλ

λ+ ū

)

dx

T (λ+ ū) = xT − x2 +

∫ x2

x1

λ+ ū

λ+ u (x)
dx+

λ+ ū

λ
(x1 − x0) .

Therefore, we have
dx2

dxT

= −
λ+ u (x2)

ū− u (x2)
,

The agent’s payoff is given by

V (k) =

∫ x1

x0

(

e−x −
(
1 + e−x

) v

λ

)

dx+

∫ x2

x1

(

e−x −
(
1 + e−x

) v + αu (x)

λ+ u (x)

)

dx

+

∫ xT

x2

(

e−x −
(
1 + e−x

) v + αū

λ+ ū

)

dx− ke−xT .

Therefore

dV

dxT

= (1 + k) e−xT −
(
1 + e−xT

) v + αū

λ+ ū
−

dx2

dxT

(
1 + e−x2

)
(
v + αu (x2)

λ + u (x2)
−

v + αū

λ+ ū

)

= (1 + k) e−xT −
(
1 + e−xT

) v + αū

λ+ ū
+
(
1 + e−x2

) v − αλ

λ+ ū

1. The effect of k. We have
dV

dk
= −e−xT +

dV

dxT

dxT

dk

where, based on the first two equations,

dxT

dk
=

((

k +
1

1 + exT

−
v + αū

λ+ ū

)

e−xT +
v − αλ

λ+ ū
e−x2

)−1

e−xT .

It is immediate (using xT > x2) to check that dxT/dk > 0. Simplifying, we obtain

dV

dk
=

dxT

dk

(
1

exT + 1
− α

)

.
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2. The effect of v. We have

dV

dv
=

dV

dxT

dxT

dv
−

∫ x1

x0

1 + e−x

λ
dx−

∫ xT

x2

1 + e−x

λ+ ū
dx

(notice that when effort is interior (v + αu (x)) / (λ+ u (x)) does not depend on v). In

addition, we have

dxT

dv
=

((

k − α +
1

1 + exT

−
v − αλ

λ+ ū

)

e−xT +
v − αλ

λ+ ū
e−x2

)−1
e−x2 − e−xT

λ+ ū
,

which is also positive. Simplifying, we obtain

dV

dv
=

(1 + k) e−xT − (1 + e−xT ) v+αū

λ+ū
+ (1 + e−x2) v−αλ

λ+ū
(
k − α + 1

1+exT
− v−αλ

λ+ū

)
e−xT + v−αλ

λ+ū
e−x2

e−x2 − e−xT

λ+ ū

−

∫ x1

x0

1 + e−x

λ
dx−

∫ xT

x2

1 + e−x

λ+ ū
dx

=

(
1

1 + exT

− α

)
dxT

dv
−

∫ x1

x0

1 + e−x

λ
dx−

∫ xT

x2

1

λ + ū
dx.

A.3 Zero-Full Equilibria

For T short enough and x0 low enough, we can have have a zero-full equilibrium with the

threshold x2 determined by

(k − α)e−xT − α =

∫ xT

x2

e−x

(
1

1 + ex
−

v − αλ

λ+ ū

)

dx

T (λ+ ū) = xT − x2 +
λ+ ū

λ
(x2 − x0) .

Therefore, we have
dx2

dxT

= −
λ

ū
,

and

V =

∫ x2

x0

(

e−x −
(
1 + e−x

) v

λ

)

dx+

∫ xT

x2

(

e−x −
(
1 + e−x

) v + αū

λ+ ū

)

dx− ke−xT .
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Therefore

dV

dxT

= (1 + k) e−xT −
(
1 + e−xT

) v + αū

λ+ ū
−

dx2

dxT

(
1 + e−x2

)
(
v

λ
−

v + αū

λ+ ū

)

= (1 + k) e−xT −
(
1 + e−xT

) v + αū

λ+ ū
+
(
1 + e−x2

) v − αλ

λ+ ū
,

exactly as in the previous case.

1. The effect of k. We have
dV

dk
= −e−xT +

dV

dxT

dxT

dk

where, based on the first two equations,

dxT

dk
=

(

(k +
1

1 + exT

−
v + αū

λ+ ū
)e−xT +

λ

ū
e−x2

(
1

1 + ex2
−

v − αλ

λ+ ū

))−1

e−xT .

It is immediate (using xT > x2 and x2 < x1) to check that dxT/dk > 0. We then have

dV

dk
=

dxT

dk

(
1

1 + exT

− α+ e−x2
(ex2 + 1) (v − αλ)− λ

ū (1 + ex2)

)

2. The effect of v. We have

dV

dv
=

dV

dxT

dxT

dv
−

∫ x2

x0

1 + e−x

λ
dx−

∫ xT

x2

1 + e−x

λ+ ū
dx

In addition, we have

dxT

dv
=

((

k − α +
1

1 + exT

−
v − αλ

λ+ ū

)

e−xT +
λ

ū
e−x2

(
1

1 + ex2
−

v − αλ

λ+ ū

))−1
e−x2 − e−xT

λ+ ū
,

which is also positive. Simplifying, we obtain

dV

dv
=

(1 + k) e−xT − (1 + e−xT ) v+αū
λ+ū

+ (1 + e−x2) v−αλ
λ+ū

(
k − α + 1

1+exT
− v−αλ

λ+ū

)
e−xT + λ

ū
e−x2

(
1

1+ex2
− v−αλ

λ+ū

)
e−x2 − e−xT

λ+ ū

−

∫ x1

x0

1 + e−x

λ
dx−

∫ xT

x2

1 + e−x

λ+ ū
dx

=

(
1

1 + exT

− α+ e−x2
(ex2 + 1) (v − αλ)− λ

ū (1 + ex2)

)
dxT

dv
−

∫ x1

x0

1 + e−x

λ
dx−

∫ xT

x2

1

λ+ ū
dx.
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A.4 Zero-Interior-Full-Zero

These equilibria can occur for ū low enough, and x0 also low. The equations determining the

switching thresholds are given by

(k − α)e−xT − α =

∫ xT

x3

e−x

(
1

1 + ex
−

v − αλ

λ

)

dx

Tλ = xT − x3 + x1 − x0 +
x3 − x2

λ+ ū
λ+

∫ x2

x1

λ

λ+ u (x)
dx.

0 =

∫ x3

x2

e−x

(
1

1 + ex
−

v − αλ

λ+ ū

)

dx

From the second and third equations, we have

1−
dx3

dxT

(

1−
λ

λ+ ū

)

= −
dx2

dxT

(
λ

λ+ u (x2)
−

λ

λ+ ū

)

dx3

dxT

e−x3

(
1

1 + ex3
−

v − αλ

λ+ ū

)

=
dx2

dxT

e−x2

(
1

1 + ex2
−

v − αλ

λ+ ū

)

.

Therefore,

dx3

dxT

= −
e−x2 v−αλ

λ

e−x3
(

1
1+ex3

− v−αλ
λ+ū

)
− e−x2 ū

λ
v−αλ
ū+λ

dx2

dxT

= −
1 +

e−x2 v−αλ

λ

e−x3( 1
1+e

x3
− v−αλ

λ+ū
)−e−x2 ū

λ

v−αλ

ū+λ

(
1− λ

λ+ū

)

(
λ

(v−αλ)(1+ex2)
− λ

λ+ū

) .

Now payoffs

V (k, T ) =

∫ x1

x0

(

e−x −
(
1 + e−x

) v

λ

)

dx+

∫ x2

x1

(

e−x −
(
1 + e−x

) v + αu (x)

λ+ u (x)

)

dx

+

∫ x3

x2

(

e−x −
(
1 + e−x

) v + αū

λ+ ū

)

dx+

∫ xT

x3

(

e−x −
(
1 + e−x

) v

λ

)

dx− ke−xT .
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Therefore

dV

dxT

= (1 + k) e−xT −
(
1 + e−xT

) v

λ
−

dx3

dxT

(
1 + e−x3

)
(
v + αū

λ+ ū
−

v

λ

)

−
dx2

dxT

(
1 + e−x2

)
(
v + αu (x2)

λ+ u (x2)
−

v + αū

λ+ ū

)

= (1 + k) e−xT −
(
1 + e−xT

) v

λ
+

v − αλ

λ
+

e−x3
(

1
1+ex3

− v−αλ

λ

)
e−x2

e−x3
(

1
1+ex3

− v−αλ
λ+ū

)
− e−x2 ū

λ
v−αλ
ū+λ

v − αλ

λ

= (1 + k) e−xT −
(
1 + e−xT

) v

λ
+

v − αλ

λ

(

1 +
e−x3

(
1

1+ex3
− v−αλ

λ

)
e−x2

e−x3
(

1
1+ex3

− v−αλ
λ+ū

)
− e−x2 ū

λ
v−αλ
ū+λ

)

.

1. The effect of k. We have
dV

dk
= −e−xT +

dV

dxT

dxT

dk

where, based on the first three equations,

dxT

dk
=

(

(k − α +
1

1 + exT

−
v − αλ

λ
)e−xT −

dx3

dxT

e−x3

(
1

1 + ex3
−

v − αλ

λ

))−1

e−xT ,

where dx3/dxT is given above. It is immediate (using xT > x3) to check that dxT/dk > 0.

Substituting, we again obtain

dV

dk
=

dxT

dk

(
1

1 + exT

− α

)

.

2. The effect of v. We have

dV

dv
=

dV

dxT

dxT

dv
−

∫ x1

x0

1 + e−x

λ
dx−

∫ x3

x2

1 + e−x

λ+ ū
dx−

∫ xT

x3

1 + e−x

λ
dx

In addition, we have

dxT

dv
=

e−x3−e−xT

λ
+ e−x2−e−x3

ū+λ

( 1
1+e

x3 − v−αλ

λ
)e−x3

e−x3( 1
1+e

x3 − v−αλ

λ+ū
)− ū

ū+λ
e−x2 v−αλ

λ

(
k − α+ 1

1+exT
− v−αλ

λ

)
e−xT + e−x2 v−αλ

λ

e−x3( 1
1+e

x3 − v−αλ

λ
)

e−x3( 1
1+e

x3 − v−αλ

λ+ū
)− ū

ū+λ
e−x2 v−αλ

λ

.

which is positive because the second term on the denominator is decreasing in x2 and
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x3 > x2. Plugging into the payoff derivative, we obtain

dV

dv
=

e−x3 − e−xT

λ
+

e−x2 − e−x3

ū+ λ

(
1

1+ex3
− v−αλ

λ

)
e−x3

e−x3
(

1
1+ex3

− v−αλ
λ+ū

)
− ū

ū+λ
e−x2 v−αλ

λ

+
dxT

dv

(
1

1 + exT

− α

)

−

∫ x1

x0

1 + e−x

λ
dx−

∫ x3

x2

1 + e−x

λ+ ū
dx−

∫ xT

x3

1 + e−x

λ
dx

A.5 Summary

We have shown that, in all kinds of equilibria, the term pT ≥ α appears in the effect of k on

payoffs. In other words, the potential benefits of a higher penalty depend on how likely it is to

obtain a success by working harder, compared to the cost of effort (but surprisingly it does not

directly depend on the size of the loss).

In conclusion, higher penalties make the agent (weakly) work harder, and the effect on payoffs

depends on the productivity of this additional effort. Fix a deadline T, and define

xT0 : = x0 + (λ+ u)T , and

xT1 : = x1 +

(

T −
x1 − x0

λ

)

(λ+ ū) .

We now summarize our findings on the role of penalties.

Lemma 17

1. The terminal belief xT (k) is (weakly) increasing in k, and strictly increasing if the equilib-

rium effort is not constant.

2. If the equilibrium effort is constant, payoffs are strictly decreasing in k.

3. If the equilibrium effort is not constant, and 1 + exT (k) > α−1 then payoffs are strictly

decreasing in k.

4. If the equilibrium involves an interior effort phase, the condition in (3.) is also necessary.

5. If positive effort is exerted for some t, the optimal penalty level k∗ is such that

(
1 + exT (k∗)

)−1
= α if (1 + exT1 )−1 < α

1
1+exT (k∗) +

(

ex2(xT (k∗))+1
)

(v−αλ)−λ

ūex2(xT (k∗))
(

1+ex2(xT (k∗))
) = α if 1

1+e
xT1

> α > 1
1+e

xT0
+ (ex0+1)(v−αλ)−λ

ūex0(1+ex0)

xT (k∗) = x0 + (λ+ ū)T if 1
1+e

xT0
+ (ex0+1)(v−αλ)−λ

ūex0(1+ex0)
> α,
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Proof of Lemma 17: (1.–4.) These statements summarize the results in the previous subsec-

tion. Notice that the only case in which 1+ exT (k) > α−1 is only sufficient for payoffs to decrease

is given by “zero-full” equilibria.

(5.) We need to discuss how we move across various kinds of equilibria as k increases, for a fixed

T . Start with k close to α. In this case, the agent never works at the deadline. If the deadline

is too short, no effort will ever be exerted, and payoffs can only decrease in k. Similarly, if full

effort is exerted throughout, the penalty has an unambiguous negative effect.

Assume that the T is large enough that some effort is exerted for all k ∈ [α, v/λ]. Furthermore,

assume that when k = v/λ full effort is not exerted throughout. Under these assumptions, we

start with (zero)-interior-(full)-zero equilibria. Notice that while terminal beliefs xT increase

with k, so does the critical level x∗. It is easy to check that

dx∗

dk
=

1

k − α
>

dxT

dk
,

in all the previous cases. Therefore, as k increases, we (possibly) move to (zero)-interior-full, and

eventually to zero-full, if x0 < x1.

In all equilibria involving full effort at the end, the critical value of x2 is decreasing in xT and

hence in k (see the previous analysis). Moreover, notice that when equilibria move from zero-

interior-full to zero-full, the derivative of the payoff function is continuous, becomes proportional

to
1

1 + exT

− α +
(ex2 + 1) (v − αλ)− λ

ūex2 (1 + ex2)
,

which is continuous at x2 = x1.

Finally, defining the critical values of xT as the thresholds for a full effort and a zero-full effort

equilibrium with x2 (xT ) = x1 establishes the result. �

Analyzing the role of the cost of waiting is more complex, as v enters the flow payoffs and

not only the thresholds and continuation values. Nevertheless, we summarize our findings in the

following lemma, where we show that the cost of waiting is generally more detrimental to payoffs

than the penalties. Intuitively, for higher values of the penalties, the agent works longer and

reduces the likelihood of incurring the penalties. On the contrary, the cost of waiting is incurred

as a flow, and even higher effort levels (hence likelihood of the breakthrough) do not compensate

the agent enough.

Lemma 18 Fix a deadline T.
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1. The terminal belief xT (k) is (weakly) increasing in v, and strictly increasing if the equilib-

rium effort is not constant.

2. If the equilibrium does not involve an intermediate full effort phase, then

dV

dk
< 0 ⇒

dV

dv
< 0.

Proof of Lemma 18: (1.–2.) These observations follow from the discussion in the previous

section. Note that the relationship between dV/dk and dV/dv is ambiguous only when the

equilibrium is of the zero-interior-full-zero type. �

B Observable Case

Attention is restricted throughout to the maximum effort equilibrium (characterized by (x̄t)).

Note first that, if by decreasing k, we can make the agent worse off, it must be that his payoff

is strictly increasing in k for some value of k, and we might so consider small changes dk.

Furthermore, if such parameters existed, it must be the case that we can find them such that,

prior to the decrease, x = x0 is such that the agent is indifferent between working and not

working, i.e. x = x̄0. (Without loss, we take t = 0). To see this, note that if x0 is such that the

agent has strict incentives to work, slightly decreasing k must make him better off (as it does

not change his flow wage, but decreases his penalty in case the deadline is reached). If instead

x0 is such that he has strict incentives not to work at the beginning, then we can consider as

initial conditions the point (xt, t) at which xt = x̄t: after all, the wage he will receive until then

is the same whether the penalty is slightly decreased or not.

Then, decreasing the cost by dk changes the overall payoff by

∆ =
(
1− e−x−(λ+ū)T

)
−

[

α
(
1 + e−x

)
−

d

dx

((
1 + e−x

)
V (x)

)
− e−x

]

ū
dt

dk
,

where dt > 0 is the time until the high effort region is reached, given that the cost has been

decreased by dk > 0 . By definition of the boundary (or by the envelope theorem) the first two

terms in the square brackets cancel, and we can totally differentiate the formula for x̄t w.r.t. t
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and k to solve for dt/dk. Doing so yields

∆ =
α(λ+ ū)

(1 + k) (λ+ ū)− αū − v − e(λ+ū)T ((α + 1)λ+ ū− v)

+
αū(λ+ ū)

M
(
(1− e−(λ+ū)T )

(
αū+v
λ+ū

− k − 1
)
− α + k

) + 1,

where

M := λe(λ+ū)T ((α + 1) λ+ ū− v)− (2λ+ ū)((1 + k) (λ+ ū)− αū − v ).

Letting X = e−(λ+ū)T , we can differentiate:

d∆

dX
= −α(λ+ ū)

(1 + α)λ− v

(λ(1 + α− (k + 1)X) + ūX(α− k − 1) + ū+ v(X − 1))2

−α(λ+ ū)
λū(2λ+ ū)

(λ((1 + α) λ+ ū− v)−X(2λ+ ū)((1 + k) (λ+ ū)− αū− v))2
.

This is negative, so we might evaluate ∆ at the highest possible value (X = 1), to get an

upper bound
αū

kλ+(λ+ū)(1+k−α)−v
− k

α− k
,

which is of the sign of

k −
αū

kλ+ (λ+ ū) (1 + k − α)− v
.

Plainly, this is decreasing in v; set it equal to (1 + α)λ; the resulting expression,

k −
αū

(k − α)(2λ+ ū) + ū
,

is increasing in λ, so set it to zero, and we obtain

k −
α

1 + k − α
,

which is positive, as it is decreasing in α and equal to 0 when α = k. So decreasing k always

increases the payoff of the worker.
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