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1. INTRODUCTION

I provide new integration–based estimation and inference methods in models with

partial identification. Under the assumption that the identified set is connected, I propose

a root–n–consistent estimator of any given projection of the identified set. I construct

confidence sets for a class of scalar–valued functions of the parameter vector, which are

easy to compute, have correct asymptotic coverage probability (pointwisely in the nuisance

parameters), and are not conservative as projection–based confidence intervals. Embedded

in this methodology is an automatic moment selection procedure.

The methods proposed in this paper apply to a class of models in which the parameters

of interest may not be uniquely determined by economic restrictions and distributions

of observables. Examples include missing data, censored or interval–observed data (e.g.

Horowitz and Manski, 2000; Manski, 2003; Manski and Pepper, 2000; Manski and Tamer,

2002), models with level–k rationality (Aradillas-Lopez and Tamer, 2008), models with

multiple equilibria (Andrews, Berry, and Jia, 2004; Ciliberto and Tamer, 2009; Grieco, 2010;

Pakes, Porter, Ho, and Ishii, 2006), asset pricing models with incomplete markets (Kaido

and White, 2009), incomplete auction models (Haile and Tamer, 2003), and instrumental

variable regressions in which the rank condition is violated (Phillips, 1989). In this paper, I

focus on models characterized by a set of moment inequalities with connected and closed

identified set.1

My integration–based approach is built on the methods of Laplace estimation, which

Chernozhukov and Hong (2003, CH) proposed to simplify computation in models with

point identified parameters.2 Laplace estimators are defined as minimizers of quasi-

posterior risk functions, where the quasi-posteriors resemble Bayesian posteriors in which

the loglikelihood is replaced by a rescaled sample objective function of a difficult–to–

compute extremum estimator. In my paper, I estimate the projections of the identified set

and make inferences about scalar–valued functions of the parameter vector in moment

inequality models using marginal quasi–posteriors.

1An equality can be expressed by two inequalities.
2The estimators in CH are called Laplace type estimators (LTEs). LTEs have other nice properties, e.g. estimates
can be as efficient as the extremum estimates, inference procedures based on the quantiles of the quasi-posterior
distribution can yield asymptotically valid confidence intervals.
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As is well–noted in the literature (e.g. Chernozhukov, Hansen, and Jansson, 2009; Hahn

and Ridder, 2009; Jun, 2008), existing methods of projecting a high–dimensional confidence

set generally leads to a conservative inference on the corresponding component of the

parameter vector. By using marginal quasi–posteriors, my approach targets directly on

the the parameter of interest and avoids the conservativeness caused by projection. Pakes,

Porter, Ho, and Ishii (2006, PPHI) study inferences about one component of the parameter

vector in moment inequality models. They assume that the “extreme” of the identified set

is a singleton, but I do not.3

The asymptotics that I consider in this paper is pointwise in that the nuisance parameters

of the model are assumed to be fixed (see discussions in Romano and Shaikh, 2010). I take

this approach, because one of my primary goals is to develop an inference method for scalar–

valued functions of the parameter vector which is not conservative and is valid (pointwise

in nuisance parameters). As Andrews and Soares (2010) pointout, local uniformity over the

set of nuisance parameters is a desirable property and I intend to pursue it in a follow up

research.

The estimation and inference procedures proposed in this paper are computationally

attractive. My method of estimation requires no more than getting random draws from

marginal quasi–posteriors, which can be implemented using a Markov Chain Monte Carlo

(MCMC) algorithm. To make inferences, I do not invert a hypothesis test, which would

sometimes require a resampling procedure for each parameter value that is tested (e.g.,

Andrews and Guggenberger, 2009; Bugni, 2010; Canay, 2010; Chernozhukov, Hong, and

Tamer, 2007; Romano and Shaikh, 2010). Instead, my confidence sets are constructed by

using quantiles of the marginal quasi–posterior, which can be obtained by simulation; it

requires little more than drawing random numbers from a multivariate normal with an

estimated covariance matrix.

I use a “smooth” moment selection mechanism when calculating critical values. I assign

different weights to moment equations. A binding moment receives a weight of one with

probability approaching one; a non–binding moment receives a weight that converges in

3Let ΘI be the identified set. Let θ1` = infθ1{∃θ2 : (θ1, θ2) ∈ ΘI} and ΘI2(θ1`) = {θ2 : θ1 = θ1`, θ ∈ ΘI}. PPHI
assume that ΘI2(θ1`) is a singleton (their assumption A1 (d)). My methods allow that ΘI2(θ1`) has positive
Lebesgue measure in Rd−1.
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probability to zero exponentially. In the limit, this moment selection mechanism picks out

the binding moment conditions, as does the Chernozhukov, Hong, and Tamer (2007, CHT)

recommendation (adopted by Rosen (2008), among others). In finite samples, however,

my method always assigns positive weights to all the moments. There are other moment

selection methods, e.g., the generalized moment selection (GMS) (Andrews and Soares,

2010) with this property. With GMS, a measure of slackness is added to the demeaned

limiting variable, whereas in my setup the slackness of the moment equations is reflected in

the weights.4

My method relates to the literature in which the parameters are scalar–valued and

“interval–identified” (e.g. Imbens and Manski, 2004; Stoye, 2009; Woutersen, 2006). For

researchers who are interested in a scalar–valued function of the parameter vector, my paper

provides a natural way of transforming a multi–dimensional task into a one dimensional

problem with “interval–identified” parameter. My method therefore provide a way to

bridge existing results in the models with “interval–identified” parameter and the models

with multi–dimensional parameters.

An alternative to my procedure is a Bayesian approach. Moon and Schorfheide (2009)

show that classical confidence sets and Bayesian credible sets are generally different (the

two types of sets may coincide when the parameter are point identified). Liao and Jiang

(2010, LJ) have recently studied large sample properties of the posterior distribution based

on the limited information likelihood for moment inequality models. They establish the

consistency of their estimator and study moment selection issues. The credible sets pro-

posed by LJ, however, are not valid confidence sets from a frequentist point of view. For

example, when the parameter of interest is scalar–valued, LJ construct a 95% credible set by

taking 2.5% and 97.5% quantiles of their posterior distribution. The credible set hence will

be contained in the identified set with probability approaching one, thus is not a valid confi-

dence set for either the true parameter value or the identified set itself. My confidence sets,

on the other hand, are intervals defined by two marginal quasi–posterior quantiles which

are chosen based on the asymptotic behavior of the tails of the marginal quasi–posterior.

My confidence sets cover the true values with prespecified probability.

4GMS provides (uniform) correct asymptotic coverage probability. In this paper, I consider fixed models.
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My estimation procedure uses MCMC algorithms, which have been applied by others to

partially identified models to reduce computational burden. Chernozhukov, Hansen, and

Jansson (2009, CHJ) use an MCMC algorithm to construct CHT type confidence sets for

the parameter vector in quantile regression models. My paper exploits the advantage of

MCMC algorithms for general moment inequality models and construct less conservative

confidence sets for individual components of the the parameter vector.

In addition to what I have discussed before, there are other approaches to estimation

and inference in models with partial identification. Beresteanu and Molinari (2008) and

Beresteanu, Molchanov, and Molinari (2010) study inference on the identified set based on

the theory of random sets; Kaido (2010) considers a duality approach for inference about

the identified set, where subsampling procedures are employed; Bontemps, Magnac, and

Maurin (2007) study inference for the parameter value in set–identified linear models.

The rest of the paper is organized as follows. I introduce the model and my estimator in

section 2. I discuss the asymptotic properties of my estimator in section 3. In section 4, I

propose procedures for constructing confidence sets both for the true parameter value and

the identified set. I have some further discussions in section 5 before I conclude this paper

in section 6.

2. SETUP

Suppose that there is a true parameter θ0 ∈ Θ ⊂ Rd that satisfies a set of moment

inequalities

E
[
m(j)(Wi, θ0)

]
≤ 0, j = 1, · · · , J, (1)

where {Wi}n
i=1 are i.i.d. observations and Θ is the parameter space.

The identified set ΘI is a collection of parameter values that satisfy the moment inequali-

ties:

ΘI =
{

θ ∈ Θ : ∀j = 1, · · · , J : E
[
m(j)(Wi, θ)

]
≤ 0

}
.

ΘI is not empty because θ0 ∈ ΘI by construction.
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In what follows, I assume that there is some δ̃ ∈ (0, ∞) such that m(j)(Wi, ·) is defined on

the δ̃–expansion of Θ: Θδ̃ = {θ ∈ Rd : inft∈Θ̃ ‖t− θ‖ ≤ δ̃}. Let

m(Wi, θ) = (m(1)(Wi, θ), · · · , m(j)(Wi, θ))′

and mi(θ) be the abbreviation for m(Wi, θ). Throughout this paper, the measurability of

m(j) is a maintained assumption.

For any J–vector x, let ‖x‖2
+ = ∑j

(
|xj|+

)2, where |xj|+ = max{0, xj}. Following CHT, I

consider the following population and sample objective functions

L(θ) = −‖Emi(θ)‖2
+ , Ln(θ) = −‖m̄(θ)‖2

+ ,

where m̄(θ) = (1/n)∑n
i=1 mi(θ).5 Note that L(θ) = 0 if and only if θ ∈ ΘI .

I define the quasi–posterior density

fn(θ) =
1

Dn
exp(nLn(θ)) (2)

over the expanded parameter space Θ, where Dn =
∫

t∈Θ exp(nLn(t))dt is for normalization.

Note that fn is not a Bayesian posterior because exp(nLn(θ)) is not a likelihood.

The quasi–posterior density is defined such that it is always non–negative and declines

sufficiently fast as the sample size increases for any θ outside of an ε–expansion of the

identified set. The exponential function is not the only possible choice . In the case of

point identification (CH), the exponential transformation is a natural choice because it

leads to normal approximation for the quasi–posterior density in large sample. In partially

identified models, the exponential transformation results in attractive properties also, which

will be clear later.

From now on I focus on the first element of the parameter vector. Write θ = (θ1, θ′2)
′

and θ0 = (θ01, θ′02)
′, where θ1 is a scalar and θ2 is potentially vector–valued. Let Θ1 be the

first dimension of Θ, i.e., the set of all possible θ1’s for which there exists a θ2 such that

(θ1, θ2) ∈ Θ. Define Θ2, ΘI1 and ΘI2 similarly. The object of interest is a confidence set for

5In CHT, the objective function has a weighting matrix Σ(θ): L(θ) = −
∥∥∥Emi(θ)Σ1/2(θ)

∥∥∥2

+
. In this paper, I

let Σ(θ) = I for the sake of notational simplicity. My approach can be extended to accommodate weighting
matrices.
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θ01. Let

θ1` = inf
θ1∈ΘI1

θ1, θ1u = sup
θ1∈ΘI1

θ1.

So θ1` and θ1u are the end points of ΘI1. Likewise, θ1 and θ1 be the end points of Θ1. They

are assumed to be known to the researcher. For any θ∗1 ∈ ΘI1, let

ΘI2(θ
∗
1 ) = {θ2 : (θ∗1 , θ2) ∈ ΘI},

i.e., ΘI2(θ
∗
1 ) is a collection of θ2’s such that (θ∗1 , θ2) belongs to the identified set. This notation

will be used repeatedly throughout this paper.

Let f1n be the marginal quasi–posterior density for θ1: f1n(θ1) =
∫

θ2∈Θ2
fn(θ1, θ2)dθ2. Let

F1n be the distribution function of the marginal quasi–posterior. For any τ ∈ [0, 1], I define

the τ–th quantile of the marginal quasi–posterior as

F−1
1n (τ) = inf{θ1 ∈ [θ1, θ1] : F1n(θ1) ≥ τ}.

3. ESTIMATION

I discuss the estimation of θ1` and θ1u in this section. Example A below (example 1 in

CHT) illustrates the idea behind my estimator. In example A, the parameter is scalar–valued.

My estimator is applicable when the parameters are vector–valued.

Example A (interval–observed data). Suppose that there are i.i.d. random variables

{(Y`i, Yi, Yui)}n
i=1. Assume that Y`i, Yi, and Yui have finite expectations and satisfy Y`1 ≤

Y1 ≤ Yu1 a.s.. The parameter of interest is θ0 = E[Y1]. Researchers only observe {(Y`i, Yui)}n
i=1.

This model can be characterized by two moment inequalities

EY`1 ≤ θ0 ≤ EYu1.

In this model, θ0 is not identified whereas the bounds of ΘI = [θ`, θu] = [EY`1, EYu1]

are identified. For the purpose of illustration, assume that θu > θ`. One choice for the

population and sample objective functions is

L(θ) = −|EY`1 − θ|2+ − |θ −EYu1|2+, Ln(θ) = −|Ȳ` − θ|2+ − |θ − Ȳu|2+.

7



Let Θ be a compact subset of R of which [θ`, θu] belongs to the interior. Consider an

“infeasible” quasi–posterior6

f∞(θ) = lim
n→∞

exp(nL(θ))∫
t∈Θ exp(nL(t))dt

.

It can be seen that f∞(θ) = 1/(θu − θ`) if θ ∈ ΘI and f∞(θ) = 0 otherwise. Hence the

support of the “infeasible” quasi–posterior is exactly the identified set. Since the population

objective function is unknown, I construct a “feasible” quasi–posterior using the sample

objective function Ln:

fn(θ) =
exp(−n|Ȳ` − θ|2+ − n|θ − Ȳu|2+)∫

t∈Θ exp(−n|Ȳ` − t|2+ − n|t− Ȳu|2+)dt
.

By construction, the quasi–posterior density is maximized over the interval [Ȳ`, Ȳu] and

declines towards both end points of Θ.

Figure 1 shows the shapes of f∞ and fn (renormalized such that the maximum of fn

equals 1/(θu − θ`)) for different sample size, with Y`i ∼ U[−1, 0] and Yui ∼ U[1, 2]. �

As shown in fig. 1, the quasi–posterior concentrates on the identified set as the sample

size increases. When d > 1, a similar pattern is expected for the marginal quasi–posterior

f1n. Example A, despite its simplicity, suggests a natural method of estimation for θ1` and

θ1u. A quantile whose corresponding (quasi–posterior) probability level converges to zero

(one) can be a candidate estimator for θ1` (θ1u).

Specifically, I propose the following estimators:

θ̂1` = F−1
1n (τ̂`) , θ̂1u = F−1

1n (1− τ̂u) .

Here τ̂` and τ̂u take values from (0, 1); the choice of (quasi–posterior) probability levels τ̂`

and τ̂u will be discussed later. The estimators θ̂1` and θ̂1u are just quantiles of the marginal

quasi–posterior.

3.1. Consistency. In this subsection I will propose a way of choosing τ̂` and τ̂u such that

θ̂1` and θ̂1u are consistent estimators regardless of the length of [θ1`, θ1u]. From here on I

illustrate my approach and conditions needed for the case of d = 2 and I focus on estimation

6The limit may not exist (e.g. when the identified set has an empty interior), but it does exist in this example.
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FIGURE 1. Quasi–posterior density (example A)

of θ1`. The upper bound θ1u can be dealt with similarly. I provide formulas for generic d in

appendix F.

Assumption 3.1. Θ is compact.

Assumption 3.1 is standard. It implies that Dn =
∫

t∈Θ exp(nLn(t))dt is finite because

exp(nLn(θ)) is bounded uniformly in Θ.

Assumption 3.2. ΘI is connected.

Connectedness says that ΘI can not be represented by two or more disjoint subsets. It

ensures that the projections of the identified set onto each axis are intervals.

For any θ ∈ Θ, let d(θ, ΘI) = inft∈ΘI ‖t− θ‖.

Assumption 3.3. There exist constants C > 0 and δ > 0 such that for all θ ∈ Θ

‖Em1(θ)‖+ ≥ min{Cd(θ, ΘI), δ}.
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Assumption 3.3 is also made in CHT. It requires that when parameters take values outside

of the identified set, the expectations of the moments are at least proportional to the distance

between the parameters and the identified set.

Assumption 3.4. Em1 is Lipschitz continuous on Θ.

Note that assumptions 3.1 and 3.4 implies that ΘI is closed.

Let ∆n(θ) =
√

n (m̄(θ)−Em1(θ)). Let L ∞(Θ) be the set of functions which are uni-

formly bounded on Θ.

Assumption 3.5. ∆n(θ) weakly converge to a Gaussian process ∆(θ) on L ∞(Θ).

Assumption 3.5 is also made in CHT. It requires that convergence in distribution for

every θ ∈ Θ and stochastic tightness of the process ∆n (see section 2.1, Van der Vaart and

Wellner, 1996). In example A, assumption 3.5 is satisfied if EY2
`1 and EY2

u1 are finite. In

example B below, assumption 3.5 is satisfied if E‖W1‖2 is finite.

The (quasi–posterior) probability levels that I propose for my estimators are those using

τ̂` = τ̂u = min{ĉ/(nDn), 1/2}, (3)

where ĉ > 0 is chosen by the researcher. Note that τ̂` is truncated at 1/2. I introduce this

truncation to accommodate the point identification case. I show in the proof of theorem 3.1

that τ̂` < 1/2 with probability approaching one unless θ1` = θ1u. The truncation ensures

that θ̂1` ≤ θ̂1u.

Assumption 3.6. ĉ
p→ c for some c ≥ 0. When c = 0, ĉ converges at a polynomial rate.

Theorem 3.1. Let assumptions 3.1 to 3.6 hold. Then θ̂1`
p→ θ1`.

Proof. See appendix B.1. �

I have some comments on theorem 3.1. First, in the limit (when n goes to ∞), the

quasi–posterior “will be concentrated on” ΘI . Therefore, the marginal posterior “will be

concentrated on” [θ1`, θ1u], also. To achieve the consistency of my estimators for the θ1` and

θ1u, I just “cut” two properly–sized tails off the marginal posterior. When the identified set

has positive Lebesgue measure, Dn converges in probability to a positive constant, implying
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that τ̂` = ĉ`/(nDn)
p→ 0. In this case, I essentially cut off two tails whose mass converges to

zero.

Second, the rate requirement in assumption 3.6 can be relaxed in specific scenarios. For

example, if one knows that the identified set has positive Lebesgue measure, one can allow

that ĉ diverges as long as ĉ/n
p→ 0 at a polynomial rate. Assumption 3.6 is stronger because

it ensures the consistency of this estimator even when the identified set has an empty

interior (i.e., ΘI be a single point or other lower dimension subset of R2).

Third, for estimation, I do not assume that ΘI belongs to the interior of Θ. When ΘI

intersects with the boundary of Θ, e.g., θ1` = θ1 (the smallest value for the first dimension

of the parameter space), my estimator θ̂` converges to θ1` from above.

3.2. Rate of convergence. In this subsection, I will provide conditions under which my

estimators are
√

n–consistent regardless of θ0 being point or partially identified. The

convergence rate is needed for constructing confidence sets for θ01.

Example A continued. I first illustrate the idea of obtaining the rate using example A.

If one chooses a probability level τ̂` in such a way that F−1
n (τ̂`)− Ȳ` = Op(1/

√
n), then

since Ȳ` is a
√

n–consistent estimator of θ`, the quantile F−1
n (τ̂`) will be a

√
n–consistent

estimator also. In example A, it turns out that Fn(Ȳ`), which is the mass on the left tail of

the quasi–posterior, decreases to zero at rate 1/
√

n. Hence a choice of τ̂` ∝ 1/
√

n ensures

that F−1
n (τ̂`) falls into a

√
n–neighborhood of θ`. �

When θ0 is a vector, then the appropriate choice of τ̂` depends on how fast the tail mass

of the marginal posterior decreases to zero, which as I will illustrate in example B, depends

crucially on the shape of the set ΘI2(θ1`) = {θ2 : (θ1`, θ2) ∈ ΘI}.

Example B (Linear moments). Consider the following four linear moment inequalities,

Em(1)(Wi, θ) = EXiθ1 + EYiθ2 − 1 ≤ 0,

Em(2)(Wi, θ) = EXiθ1 −EYiθ2 + 3 ≤ 0,

Em(3)(Wi, θ) = θ1 −EZi ≤ 0,
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FIGURE 2. Marginal quasi–posterior density

where {Wi = (Xi, Yi, Zi)} are i.i.d. observations such that EX1 = −1, EY1 = 1, EZ1 = 2

and E‖W1‖2 < ∞. Let Θ = [0.5, 2.5] × [0.5, 3.5]. I take θ0 = (1, 2)′. Xi, Yi, and Zi are

independent. Let ∆nW =
√

n(W̄ −EW) and ∆W be the (distributional) limit of ∆nW .

In this example, the identified set is a triangle. Researchers are interested in the parameter

θ01 and the projection of the identified set on the axis of θ1: ΘI1 = [1, 2]. �

Figure 2 shows the quasi–posteriors as well as the marginal quasi–posteriors for ex-

ample B, with sample size n = 100. Note that the tail masses τ̃` and τ̃u of marginal

quasi–posterior outside of the projection of the identified set are very different: τ̃` is a lot

smaller than τ̃u. It turns out that on the left end, because ΘI2(θ1`) only contains a single

point, the tail mass decreases at rate n. On the right end, ΘI2(θ1u) contains an interval with

positive length, the tail mass decreases at rate of root–n. Before formally stating this result

in lemma 3.1, I make a few more assumptions.

Assumption 3.7. For all θ ∈ Θ, Em1(θ) is continuously differentiable.

Let Q(θ) be the J × d derivative matrix of Em1 evaluated at θ. Let J (θ) ⊆ {1, 2, · · · , J}
be the set of indices of binding moments at θ and EmJ1 (θ) be the subvector of expectations
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of binding moments, i.e., EmJ1 (θ) = 0. Let QJ
′
(θ) = ∂EmJ1 (θ)/∂θ. ∆Jn (θ) and ∆J (θ) are

similarly defined. Let Q1(θ) be the first column of Q(θ).

Note that by assumptions 3.3 and 3.7, there exist positive constants k and K such that

for any θ∗2 belonging to the interior of ΘI2(θ1`), the absolute value of every component of

QJ1 (θ1`, θ∗2 ) takes values in [k, K]. In addition, assumption 3.3 ensures that each row and

each column of QJ (θ) has at least one non–zero element.

Assumption 3.8. When ΘI2(θ1`) = {θ`}, QJ (θ`) has full column rank.

Assumption 3.8 is crucial to ensure that the quasi–posterior decline sufficiently fast

within a
√

n local neighborhood of the corner point θ`. When all the moment equations

are linear and ΘI2(θ1`) is a singleton, assumption 3.8 implies that J ≥ d and that there are

no more than J − d moment equations be proportional to each other. A full column rank

condition is also assumed in PPHI.

Let int(ΘI) be the interior of ΘI and ∂(ΘI) be the boundary of ΘI . For δ > 0 and θ ∈ Θ,

let Bδ
θ = {t ∈ Θ : ‖t− θ‖ ≤ δ}.

Assumption 3.9. ΘI satisfies either (1) or (2) below.

(1) ΘI is convex.

(2) For any θ ∈ ∂(ΘI) and any δ > 0, Bδ
θ ∩ int(ΘI) is not empty.

Convexity is required in Bontemps, Magnac, and Maurin (2007), Beresteanu and Molinari

(2008), Kaido (2010). One can impose assumptions on the moment equations, e.g. linear

moment equations, to ensure the convexity. When convexity does not satisfies, my analysis

goes through provided condition 3.9–(2) holds. I will discuss more on this assumption after

theorem 3.2.

Assumption 3.10. ĉ
p→ c∗ for some c∗ > 0.

To show consistency of my estimators, I allow ĉ
p→ 0 at polynomial rate. Here, I require

that ĉ converges in probability to a positive constant.

Lemma 3.1 shows that to obtain
√

n–consistency, the choice of τ̂` depends on the shape of

ΘI2(θ1`). Let τ̂a
` = min{ĉ/(nDn), 1/2} and τ̂b

` = min{ĉ/(
√

nDn), 1/2}. Note that τ̂a
` and

τ̂b
` have different rates.
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Lemma 3.1. Suppose that assumptions 3.1 to 3.5 and 3.7 to 3.10 are satisfied.

(1) If ΘI2(θ1`) contains an interval of positive length, then

(a) for any K > 0, limn→∞ P(
√

n(θ1` − F−1
1n (τ̂a

` )) > K) = 1 whenever θ1` > θ1.

(b)
√

n(θ1` − F−1
1n (τ̂b

` )) = Op(1).

(2) If ΘI2(θ1`) contains only singletons, then
√

n(θ1` − F−1
1n (τ̂a

` )) = Op(1).

Proof. See appendix B.2. �

The implication of lemma 3.1 is that one has to choose different quantiles for different

cases to obtain
√

n–consistency. The choice depends on the unknown shape of ΘI2(θ1`). So

it is desirable to construct an estimator θ̂∗1` which can automatically adapt to the shape of

ΘI2(θ1`). This is feasible because the quasi–posterior provides corresponding information.

To see this, consider an infeasible version θ̃∗1` of the estimator θ̂∗1`

θ̃∗1` = F−1
1n (τ̂`(θ1`)) , with τ̂`(θ1`) = min

{
ĉUn(θ1`)

nDn
,

1
2

}
,

where

Un(θ1) =
√

n
∫

θ2

exp(−n‖m̄(θ1, θ2)‖2
+)dθ2.

By construction, supθ1
Un(θ1) ≤ C

√
n for some C > 0. It can be shown (in the proof

of theorem 3.2) that when ΘI2(θ1`) is a singleton, U1n(θ1`) = Op(1), in which case I am

essentially using a probability level decreasing at rate of n; whereas if ΘI2(θ1`) is an interval,

U1n(θ1`) = Op(
√

n) and I am using a probability level decreasing at rate root–n. The

quantity U1n(θ1`) hence picks out the correct rate.

U1n(θ1`) is unknown because it depends on θ1`. I define a feasible version of θ̃∗1`

θ̂∗1` = F−1
1n
(
τ̂`(θ̂

∗
1`)
)

, τ̂`(θ̂
∗
1`) = min

{
ĉUn(θ̂∗1`)

nDn
,

1
2

}
. (4)

If there are multiple solutions to eq. (4), I choose an arbitrary one.

Theorem 3.2. Suppose that assumptions 3.1 to 3.3, 3.5 and 3.7 to 3.10 are satisfied. Let θ̂∗1` be

constructed from eq. (4), then
√

n(θ̂∗1` − θ1`) = Op(1).

Proof. See appendix B.3. �
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Under assumption 3.7, the marginal quasi–posterior allows for an expansion within in

a
√

n–neighborhood of θ1`, hence I can focus on a
√

n–localized marginal quasi–posterior.

Assumption 3.8 ensures that when ΘI2(θ1`) is a singleton, the localized quasi–posterior

(outside of the identified set) around θ` is integrable. With assumptions 3.7 and 3.8, my

estimator θ̂∗1` can not “underestimate” θ1` more than an order of 1/
√

n.

Assumption 3.9, on the other hand, ensures that θ̂∗1` does not “overestimate” θ1` more than

an order of 1/
√

n. To see this, note that assumption 3.9–(2) implies that there exists a subset

of the interior of ΘI with positive Lebesgue measure, and on which the quasi–posterior

density takes positive values in large sample. Because the quasi–posterior probability level

associate with θ̂∗1` eventually converges to zero, θ̂∗1` can not exceed θ1` in large sample.

Assumption 3.9–(1) plays a similar role.

4. INFERENCE

The next question that I address is how to choose two quantiles of the marginal quasi–

posterior such that the resulting interval covers θ01 with a prespecified probability asymptot-

ically. In section 4.1, I propose such a procedure which takes care of several issues. First, my

confidence set covers θ01 with prespecified probability regardless of the shape of ΘI2(θ1`).

Second, θ01 may be point identified or partially identified; my procedure accommodates

both cases. Third, I use a weighting method to pick out the binding moments asymptotically.

An algorithm for constructing confidence sets can be found in appendix D.1.

In section 4.2, I show that my confidence set contains any fixed alternative with probabil-

ity approaching zero and has nontrivial power against local alternatives. My method can be

used to construct confidence sets for scalar–valued functions of the true parameter vector,

which will be discussed in section 4.3. I construct a confidence set for [θ1`, θ1u] in section 4.4.

There are other ways of constructing confidence sets for θ01. One way is to construct a

confidence set for θ0, then take the first dimension as the confidence set for θ01. In section 4.5,

I provide an example showing that the projection of a high–dimensional confidence set is

conservative.

4.1. Construct confidence sets for θ01.

15



4.1.1. An infeasible confidence set. It is convenient to introduce an infeasible confidence set

ΘI
αn first; I will propose a feasible confidence set Θ̂I

α in section 4.1.2.

The inference about θ01 is based on the following observation. Suppose that θ1` is in

the interior of Θ̃1. Then for some properly chosen α`n → ∞, α`nDnF1n(θ1`) converges in

distribution to a continuous random variable ξ` (this will be formally shown later). I can

then use the distributional information of ξ` to construct confidence sets for θ1`.

To illustrate the idea, suppose that the object of interest is a one–sided confidence set for

θ1`. Let c`(α) be the α–th quantile of ξ`, then

P

{
θ1` ≥ F−1

1n

(
c`(α)
α`nDn

)}
= P {α`nDnF1n(θ1`) ≥ c`(α)}

= P{ξ` ≥ c`(α)}+ o(1) = 1− α + o(1).

Thus a quantile of the marginal quasi–posterior f1n serves as the boundary point of a

one–sided confidence set for θ1`. This idea can be extended to construct confidence sets for

θ01.

There are some difficulties. First, depending on the shape of ΘI2(θ1`), one needs to

choose different rates for α`n such that the distributional limit of α`nDnF1n(θ1`) exists and

is nondegenerate. Second, the distributional limits of α`nDnF1n(θ1`) may be different for

different shapes of ΘI2(θ1`). In principle, ΘI2(θ1`) could be a union of finite number of

singletons and intervals. I make a following assumption to simplify the presentation of the

theocratic results in this section.

Assumption 4.1. ΘI2(θ1`) is contains at most one interval and one singleton.

Assumption 4.1 is satisfied when ΘI is convex. Theocratic results in this section still

holds without this assumption (with complicated notation).

I require that the first dimension of the identified set belongs to the interior of the first

dimension of the parameter space.

Assumption 4.2. [θ1`, θ1u] belongs to the interior of Θ1.
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Lemma 4.1. Suppose that assumptions 3.1 to 3.3, 3.5, 3.7, 3.8 and 4.2 are satisfied. If ΘI2(θ1`) =

{θ2`}, then

nDnF1n(θ1`)
d→ ξ A

` =
∫

h1≤0

∫
h2∈R

exp
(
−‖∆J (θ`) + QJ (θ`)h‖2

+

)
dh. (5)

If ΘI2(θ1`) = [θ2`, θ2u], then

√
nDnF1n(θ1`)

d→ ξB
` =

∫
h1≤0

∫
θ2∈[θ2`,θ2u]

exp
(
−‖∆J (θ1`, θ2) + QJ1 (θ1`, θ2)h1‖2

+

)
dθ2dh1.

(6)

Proof. See appendix C.1. �

The message from lemma 4.1 is similar to that from lemma 3.1. In lemma 3.1, one needs

to choose different rates for probability levels according to the shape of ΘI2(θ1`) to achieve
√

n–consistency of the boundary estimators. Here, I need to use different rescaling and

different limiting distributions accordingly to construct confidence sets for θ01.

I propose to choose α`n as follow:

α`n = ω`nn + (1−ω`n)
√

n, ω`n = ν

(
Mn(θ1`)

log n

)
, (7)

where ν(x) = φ(x)/φ(0), φ is the standard normal density and for some βn → ∞,

Mn(θ1) =
√

βn

∫
exp(−βn‖m̄(θ1, θ2)‖2

+)dθ2. (8)

So α`n is defined as an weighted average of
√

n and n; the weights depends on the

behavior of a quantity Mn(θ`). Similarly, I consider a random variable ξ`n defined as

ξ`n = ω`nψn

(
ξ A
`

)
+ (1−ω`n)ξ

B
` , (9)

where ψn(x) = min{x, log n}. Again, ξ`n is a weighted average based on the same weight.

The truncation introduced by ψ takes care of the possibility that ξ A
` explode when ΘI2(θ1`)

is an interval.

I make one assumption on the rate of βn. The rate conditions are sufficient to ensure that

the weight ω`n converges to one or zero depending on the shape of ΘI2(θ1`). Hence the
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weight ω`n automatically select (asymptotically) correct rescaling parameter and limiting

distribution (see lemma C.2 for details).

Assumption 4.3. βn/(
√

n log n)→ ∞ and βn/n→ 0.

The motivation for the definitions in eqs. (7) and (12) is as follows. If ΘI2(θ1`) is a

singleton, I know that Mn(θ1`)/ log n
p→ 0 and ω`n

p→ 1, in which case I rescale DnF1n(θ1`)

by α`n = n and use ξA
` . On the other hand, if ΘI2(θ1`) is an interval, Mn(θ1`)/ log n diverges

in probability and ω`n
p→ 0 exponentially. In this case I rescale DnF1n(θ1`) by α`n =

√
n and

use distribution ξB
` .

There are other issues I take care of to correctly specify the critical value of the random

variable ξ`n. First, the distribution of ξ A
` and ξB

` depends on the identities of the binding

moments. I use a weighting procedure to pick out the binding moments. For each θ, let

γn(θ) be a sample–size–dependent J–vector of weights with j–th component

γjn(θ) =
exp(−βn| 1n ∑n

i=1 m(j)(Wi, θ)|2)
exp(−βn| 1n ∑n

i=1 m(j)(Wi, θ)|2+)
. (10)

By construction, γjn(θ) ∈ (0, 1]. As is shown in lemma C.1, for any θ∗ ∈ ΘI , the weight

γjn(θ
∗) converges to one if the j–th moment is binding at θ∗; γjn(θ

∗) converges to zero

otherwise.7 Now I consider a weights–adjusted version of ξ`n,

ξ̃`n = ω`nψn

(
ξ̃ A
`

)
+ (1−ω`n)ξ̃

B
` , (11)

where ξ̃ A
` =

∫
h1≤0

∫
h2∈R

exp(−γ′n(θ`))‖∆(θ`) + Q(θ`)h‖2
+)dθ2dh1

ξ̃B
` =

∫
h1≤0

∫
θ2∈[θ2`,θ2u]

exp
(
−γ′n(θ1`, θ2)‖∆(θ1`, θ2) + Q1(θ1`, θ2)h1‖2

+

)
dθ2dh1

(12)

Let ξ̃un and αun be defined in a similar way.

7When the j–th moment is nearly binding at θ∗, i.e., when Em(j)(θ
∗) = λ/

√
n for some λ ∈ (−∞, 0), γjn(θ

∗)
converges in distribution to a random variable takes value from (0, 1). In this paper, I do not consider this case.
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To make inferences about θ01, one also needs to be careful about the length of the interval

[θ1`, θ1u]. Let T = θ1u − θ1` and T̄ be the largest value that T can take. Let T̂ be a
√

n–

consistent estimator for T. I construct a confidence interval for θ01 as

ΘI
αn =

[
F−1

1n

(
τI
`

)
, F−1

1n

(
1− τI

u

)]
,

where τI
` = cI

`/(α`nDn), τI
u = cI

u/(αunDn), and (cI
`, cI

u) is a solution to the following prob-

lem:8

(cI
`, cI

u) = argmin
(c`,cu)∈R+×R+

∣∣∣∣F−1
1n

(
c`

α`nDn

)
− F−1

1n

(
1− cu

αunDn

)∣∣∣∣ (13)

s.t. P

{
c` ≤ ξ̃`n, cu ≤

√
nν

(
βn

nT̂

)
+ ξ̃un

}
= 1− α,

P

{
cu ≤ ξ̃un, c` ≤

√
nν

(
βn

nT̂

)
+ ξ̃`n

}
= 1− α,

When T > 0,
√

nν
(

βn/nT̂
)

diverges to infinity, in which case cI
` and cI

u are computed

as 1− α quantiles of ξ̃`n and ξ̃un respectively; when T is zero,
√

nν
(

βn/nT̂
)

converges in

probability to zero, in which case the confidence set is constructed using the joint distribution

of ξ̃`n and ξ̃un.

Theorem 4.1. Suppose that assumptions 3.1 to 3.3, 3.5, 3.7, 3.8 and 4.1 to 4.3 are satisfied. Then

lim
n→∞

inf
θ01∈[θ1`,θ1u]

P(θ01 ∈ ΘI
αn) = 1− α.

Proof. See appendix C.2. �

I have several comments on theorem 4.1. First, ΘI
αn is constructed directly from the

marginal quasi–posterior rather than as a projection of a high–dimensional confidence set.

Second, my weighting method picks out the binding moments asymptotically. Third, I

introduce an additional “shrinkage term” to accommodate the point identification case.

Fourth, the critical values cI
` and cI

u are computed from the joint distribution of ξ`n and ξun

to take care of the possible correlation between them.

8 If there are multiple solutions to eq. (13), I take an arbitrary one.
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I use example C to illustrate how my procedure accommodates the point identification

case.

Example C. Suppose that θ0 is the unique value for which Em(j)(W1, θ0) = 0 for j = 1, 2,

where θ0 ∈ Θ ⊂ R2. Suppose in addition that the moment equations and the parameter

space Θ satisfy all the conditions required by theorem 4.1. In this case,

 ξ A
` =

∫
h1≤0

∫
h2∈R

exp(−‖∆(θ0) + Q(θ0)h‖2)dh

ξA
u =

∫
h1≥0

∫
h2∈R

exp(−‖∆(θ0) + Q(θ0)h‖2)dh.
(14)

Write Q0 for Q(θ0) and ∆0 for ∆(θ0). Let U = − 1
2 (Q

′
0Q0)−1Q′0∆0 and U1 be the first

component of U . Let V0 be the variance of ∆0. Assuming further that Q′0V0Q0 = 2(Q′0Q0),

it then follows that U is a mean zero bivariate normal with variance Σ = 1
2 (Q

′
0Q0)−1.9

With some algebra, it can be shown that cI
` and cI

u need to be chosen such that

P(ξ A
` ≥ cI

`, ξ A
u ≥ cI

u) = P
[
ΦΣ11(U1) ≥ cI

`/C, 1−ΦΣ11(U1) ≥ cI
u/C

]
= 1− α,

where ΦΣ11 is the distribution function for N (0, Σ11) and Σ11, Σ11 is the first diagonal

element of Σ and C is a constant given by C = 2π|Σ|1/2. It is not difficult to verify that

ΦΣ11(U1) is uniformly distributed on the unit interval. By observing that nDn → C, I

can conclude that cI
`/nDn

p→ α/2 and cI
u/nDn

p→ α/2. In other words, the confidence

set is essentially an interval introduced by α/2 and 1 − α/2 quantiles of the marginal

quasi–posterior. �

4.1.2. Constructing Θ̂I
α. The confidence set ΘI

αn is infeasible because the joint distribution of

ξ̃`n and ξ̃un is unknown; as a result, cI
` and cI

u are unknown. In this subsection I propose

an algorithm obtaining consistent estimates for cI
` and cI

u. I highlight the big picture of

the procedure in the main text ; the detailed algorithm is in appendix D.1 (algorithm 1).

Throughout this subsection, I assume that there are
√

n–consistent estimates for θ1` and θ1u,

which can be computed from eq. (4).

9I.e., the “generalized information equality” in CH is satisfied.
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Note that there are several unknown parts in the expression for ξ̃`n: ∆(θ1`, θ2), γn(θ),

Q1(θ1`, θ2), α`n and θ` in the expression of ξ̃ A
` . I discuss how to obtain feasible versions of

them in turn.

∆(θ1`, θ2) is a J–dimensional Gaussian process. For each j, j′, and θ2 and θ′2, the covariance

between ∆j(θ1`, θ2) and ∆j′(θ1`, θ′2) is

Hj,j′,θ2,θ′2
= Em(j)(W1; θ1`, θ2)m(j′)(W1; θ1`, θ′2)−Em(j)(W1; θ1`, θ2)Em(j′)(W1; θ1`, θ′2).

It can be estimated by

Ĥj,j′,θ2,θ′2
=

1
n

n

∑
i=1

m(j)(Wi; θ̂1`, θ2)m(j′)(Wi; θ̂1`, θ′2)− m̄(j)(θ̂1`, θ2)m̄(j′)(θ̂1`, θ′2).

Q1(θ1`, θ2) can be consistently estimated by Q̂1 = ∂m̄(θ)/∂θ|θ=(θ̂1`,θ2)
.

I replace γn(θ1`, θ2) with γ̂(θ̂1`, θ2), where θ1` is replaced by θ̂1` in eq. (10). Similarly, ω`n

is replaced by ω̂` = νn(Mn(θ̂1`)/ log n).

When ΘI2(θ1`) is a singleton, θ` can be estimated by θ̂` = (θ̂1`, θ̂2)′, where

θ̂2 =
∫

θ2∈Θ2

θ2 fn(θ̂1`, θ2)dθ2.10

Then I construct Θ̂I
α by replacing the unknown parts with their estimates in eq. (13). I

add assumptions 4.4 and 4.5 to ensure that Q̂ and Ĥ converge uniformly to their population

counterparts. Assumptions 4.4 and 4.5 imply that assumptions 3.4, 3.5 and 3.7 are satisfied.

Assumption 4.4. For each w ∈ W , m(w, θ) is continuously differentiable at each θ ∈ Θ. There

exists a d(w) such that ‖∂m(w, θ)/∂θ‖ < d(w) for all θ ∈ Θ and Ed(W1) < ∞.

Assumption 4.5. E‖m1(θ)‖2 < ∞ for all θ.

Theorem 4.2. Suppose that assumptions 3.1 to 3.3, 3.8, 3.9 and 4.1 to 4.5 are satisfied, then

lim
n→∞

inf
θ01∈[θ1`,θ1u]

P(θ01 ∈ Θ̂I
α) = 1− α.

Proof. See appendix C.3. �

10If ΘI2(θ1`) contains more than one singletons, I need to estimate each of them. In this case, the marginal
quasi–posterior fn(θ1`, θ2) of θ2 have more than mode. Computation will be much harder.
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Constructing Θ̂I
α does not require resampling procedures. Instead, I just need to obtain

random draws from the joint distribution of ξ̃`n and ξ̃un. As shall be clear in algorithm 1

(appendix D.1), each random draw involves only computing a d–dimensional integral

whose integrand is a parametric function of a Gaussian process.

4.2. Local power. Note that the end points of the confidence set ΘI
αn are essentially

√
n–

consistent estimators for θ1` and θ1u, so it follows that my confidence set contains any fixed

alternative with probability approaching zero. In this section, I will analyze the local power

property of my inference procedure. I consider local alternatives of the following form:

θ1n = θ1`− h∗1/
√

n, where h∗1 ∈ R+. The case where θ1n = θu + h∗1/
√

n is similar. The object

is to derive a lower bound of power function fh : R+ → [0, 1] defined by

fh(h∗1) = lim
n→∞

P(θ1n /∈ ΘI
αn).

Theorem 4.3 shows that my confidence set has non–trivial local power against the
√

n–

local alternatives.

Theorem 4.3. Suppose that assumptions 3.1 to 3.3, 3.5, 3.7, 3.8 and 4.1 to 4.3 are satisfied. Then

fh is non–decreasing and

lim
h∗1→+∞

fh(h∗1) = 1.

Proof. See appendix C.4. �

4.3. Constructing a confidence set for a scalar–valued function of θ0. Researchers may

also be interested in g(θ0), where g : Θ → R is a scalar–valued function. When g(θ0) =

ι′(j)θ0, where ι(j) is a vector whose j–th component is one and others are zeros, making

inferences about g(θ0) is equivalent to making an inference about θ0j, which has been

discussed in the previous section.

I take a reparameterization approach to construct a confidence set for g(θ0). Let

Θg = {(θg
1 , θ

g
2 ) : θ ∈ Θ, θ

g
2 = θ2, θ

g
1 = g(θ)}, Θg

I = {(θ
g
1 , θ

g
2 ) : θ ∈ ΘI , θ

g
2 = θ2, θ

g
1 = g(θ)}.

Let θ
g
01 = g(θ0) and θ

g
0 = (θ

g
01, θ02).
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Assumption 4.6. g is bounded and continuously differentiable on Θ. The first order derivative is

bounded on Θ.

Assumption 4.7. For all θ2 ∈ Θ2, g(·, θ2) is strictly monotone in its first argument. For all

θ1 ∈ Θ1, g is weakly monotone in each elements of θ2.

Assumptions 4.6 and 4.7 are satisfied when g is linear.

For any K, let CK = {θ ∈ Θ : g(θ) = K} and DK = ∂(ΘI) ∩ CK. Let DK
2 = {θ2 : ∃θ1 :

(θ1, θ2) ∈ DK}.

Assumption 4.8. One of the following conditions hold.

(1) DK
2 has positive measure in Rd−1.

(2) DK is a singleton {(θg
1`, θ

g∗
2 )} and QJ (g−1(θ

g
1`; θ

g∗
2 ), θ

g∗
2 ) has a full column rank.

Assumption 4.8 is a technique assumption that ensures that whenever Θg
I2(θ

g
1`) is a

singleton, Qg has a full column rank. Assumption 4.8 holds if m and g are linear (together

with assumption 3.2).

Without loss of generality, assume that the coefficient associate with θ1 in g is non–zero.

For each θg ∈ Θg, let mg
(j)(θ

g) = m(j)
(

g−1(θ
g
1 ; θ

g
2 ), θ

g
2

)
, where g−1(·; θ

g
2 ) is the inverse of g

with respect to its first argument, holding the others fixed.

Theorem 4.4 shows that the tuple (Θg, Θg
I , mg) satisfies the assumptions of theorem 4.1,

provided that (Θ, ΘI , m) satisfies the corresponding assumptions. Hence under this repa-

rameterization, making inferences about g(θ0) is equivalent to making inferences about θ
g
01,

the first element of the reparameterized vector θ
g
0 .

Theorem 4.4. Suppose that assumptions 3.1 to 3.3, 3.5, 3.7 to 3.9 and 4.1 to 4.8 are satisfied. Then

the same inferences can be made for g(θ0) as were made for θ01 in theorems 4.1 and 4.2.

Proof. See appendix C.5 �

4.4. Constructing a confidence set for the interval [θ1`, θ1u]. My method can be used to

construct confidence sets for [θ1`, θ1u]. Let ξ̃`n and ξ̃un be defined as in eq. (12). For any

0 < α < 1/2, let (cII
` , cII

u ) be a solution to the following problem,

(cII
` , cII

u ) = argmin
(c`,cu)∈R+×R+

∣∣∣∣F−1
1n

(
c`

α`nDn

)
− F−1

1n

(
1− cu

α`nDn

)∣∣∣∣
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s.t. P
(
c` ≤ ξ̃`n, cu ≤ ξ̃un

)
= 1− α.

Let ΘII
αn =

[
F−1

1n
(
cII
` /α`nDn

)
, F−1

1n
(
1− cII

u /α`nDn
)]

.

Theorem 4.5. Suppose that assumptions 3.1 to 3.3, 3.5, 3.7, 3.8 and 4.1 to 4.3 are satisfied. Then

lim
n→∞

P([θ1`, θ1u] ⊆ ΘII
αn) = 1− α.

Proof. See appendix C.6. �

The constants cII
` and cII

u can be estimated similar to the way I estimate cI
` and cI

u. This

reparameterization approach can also be used to construct a confidence set for

Θg
I1 = [ inf

θ0∈ΘI
g(θ0), sup

θ0∈ΘI

g(θ0)].

Corollary 4.1. The confidence set of Θg
I1 can be constructed as in theorem 4.5.

4.5. Comparison with projection methods: an example. I compare my confidence set for

θ01 to a projected confidence set using example D. I show that the projected confidence

set covers θ01 with probability strictly greater than 1− α. I replicate the same exercise for

[θ1`, θ1u] and obtain the same conclusion.

I follow CHT’s procedure and construct a confidence set for θ0 which has 1− α asymp-

totic coverage probability. The projected confidence set is constructed by taking the first

dimension of a confidence set for θ0.

Example D. Consider the following linear moment inequalities,

Em(1)(Wi, θ) = EXiθ1 + EYiθ2 ≤ 0,

Em(2)(Wi, θ) = EXiθ1 −EZiθ2 + 2 ≤ 0,

where {Wi = (Xi, Yi, Zi)} are i.i.d. observations such that EX1 = −1, EY1 = EZ1 = 1,

E‖W1‖2 < ∞. Let the parameter space Θ equal [0, 2]× [0, 2] and let θ0 = (1, 1)′. I assume

that Xi, Yi and Zi are independent. Let ∆nW =
√

n(W̄ −EW) and ∆W be the limit of ∆nW .

In this example, the identified set is a triangle whose three edges are θ2 − θ1 ≤ 0,

−θ1 − θ2 + 2 ≤ 0 and θ1 − 2 ≤ 0. The object of interest is the parameter θ01 and the first
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dimension of the identified set, which equals [θ1`, θ1u] = [1, 2]. For simplicity, I assume that

the researcher knows the value of θ1u, but not θ1`. �

4.5.1. The projected confidence set for θ01. Following CHT, I define a random variable (see

Theorem 4.2 in CHT)

C = lim
n→∞

sup
θ∈ΘI

nLn(θ) = sup
θ∈ΘI

{
|∆Xθ1 + ∆Yθ2 + κ1(θ)|2+ + |∆Xθ1 − ∆Zθ2 + κ2(θ)|2+

}
,

where κj(θ) = −∞ if Em(j)(θ) < 0; κj(θ) = 0 if Em(j)(θ) = 0. Let cPro
α be the 1− α

quantile of C: P(C ≤ cPro
α ) = 1− α. For any θ ∈ ΘI , let c̄(θ) = min{cPro

α , ĉPro
α (θ)} where

ĉPro
α (θ) is a consistent estimate of the 1− α quantile of (see equation (5.5) in CHT)

C(θ) = lim
n→∞

nLn(θ) = ‖∆J (θ)‖2
+,

where ∆(θ) is mean zero normal.

The confidence set ΘPro,I
α for θ0 is

Θ̂Pro,I
α = {θ ∈ Θ : nLn(θ) ≤ c̄(θ)},

I follow the simulation algorithm proposed by CHT to compute ĉPro(θ), which by con-

struction is truncated above. Thus one can let c̄(θ) = ĉPro(θ). CHT show that the confidence

set constructed this way has 1− α asymptotic coverage probability for θ0.

Note that the projection of Θ̂Pro,I
α onto the axis of θ1 takes the form of [θPro,I

1α , 2].

Lemma 4.2. In example D,

lim
n→∞

inf
θ0∈ΘI

P(θ0 ∈ Θ̂Pro,I
α ) = 1− α,

and

lim
n→∞

inf
θ1∈[1,2]

P(θ1 ∈ [θPro,I
1α , 2]) = P(θPro,I

1α ≤ 1) > 1− α.

Proof. See appendix C.7. �

In this example, although Θ̂Pro,I
α has 1− α asymptotic coverage probability for θ0, the

projection [θPro,I
1α , 2] fails to have this desirable property.
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4.5.2. The projected confidence set for [θ1`, θ1u]. To construct the confidence set for [1, 2] by the

projection method, I first construct a confidence set ΘPro,II
α for ΘI , then project it onto the

axis of θ1 to obtain ΘPro,II
1α , where

ΘPro,II
α = {θ ∈ Θ : nLn(θ) ≤ cPro

α }.

Lemma 4.3. In example D, limn→∞ P([1, 2] ⊆ ΘPro,II
1α ) > 1− α.

Proof. See appendix C.8. �

The intuition behind lemma 4.3 is as follows. Ideally one wants to construct ΘPro,II
1α based

on the asymptotic behavior of the sample objective function around the point (1, 1), because

it is the “left–most” corner of the identified set. Nevertheless, the critical value is chosen

based on the random variable C, which is the limiting random variable of the sup of the

sample objective function over the entire boundary. In this example, the maximizer is

different from (1, 1) with probability greater than one. Therefore, the critical values are

based on a random variable that stochastically dominates the desired one, which results in

a conservative confidence set.

5. FURTHER DISCUSSION

5.1. Asymptotic Normality. In CH, the localized and recentered quasi–posterior density

for local parameter h converges in probability to a standard normal density in total variation

of moments norm sense (see Theorem 1 in CH). In moment inequality models, the limit of

the localized quasi–posterior density is generally not normal. The sample objective function

does not allow for a quadratic expansion toward inside of the identified set because of

the truncation ‖ · ‖+. In example A, the quasi–posterior density of the local parameter

h` =
√

n(θ − θ`) is flat for all h` > 0. In addition, towards the outside of the identified

set, depending on which moments are binding, the localized quasi–posterior density is

generally a mixture of normals. In generally, θ̂1` and θ̂1u will not have limiting normal

distribution either.

There is, however, a way of achieving the asymptotic normality for θ̂1` and θ̂1u in a class

of moment inequality models by “smoothing out” the truncation caused by ‖ · ‖+. Consider
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a “smoothed” quasi–posterior density

f S
n (θ) ∝ exp

(
−‖
√

nm̄(θ)‖2
ρn

)
,

where ρn ≥ 0. For a vector x, ‖x‖2
ρn

= ∑J
j

(
|xj|ρn

)2, where |x|ρn = x1[x ≥ −ρn]. The

new sample objective function essentially penalizes all the sample moments that are not

sufficiently smaller than 0. Let FS
n be the distribution function corresponding to f S

n . Note

that f S
n = fn if ρn = 0.

Assumption 5.1. ΘI2(θ1`) = {θ2`} is singleton and θ` = (θ1`, θ2`)
′ is in the interior of parameter

space.

Note that assumption 5.1 is assumed in PPHI.

Assumption 5.2. The first dimension of ΘI has non–empty interior.

Assumption 5.3. ρn diverges to +∞ slower than polynomial rate.

Let θ̂S
1` = (FS

1n)
−1 [ĉ/(nDn)]. To achieve asymptotic normality, I requires that ĉ satisfies

assumption 5.4 below.

Assumption 5.4. ĉ
p→
√

2
4 (2π)d

√
|(QJ ′` QJ` )

−1|.

Theorem 5.1. Suppose that assumptions 3.1 to 3.3, 3.5, 3.7, 3.8 and 5.1 to 5.4 are satisfied, then

√
n(θ̂S

1` − θ1`)
d→ U1,

where U1 is the first component of the vector U = (QJ
′

` QJ` )
−1QJ

′
` ∆J` and

U ∼ N
{

0, (QJ
′

` QJ` )
−1(QJ

′
` VJ` QJ` )(Q

J ′
` QJ` )

−1
}

,

where VJ` = E[∆J` ∆J
′

` ].

Proof. See appendix E.1. �

QJ` is unknown, but can be consistently estimated using a first step consistent estimator.

The variance of ∆J` can also be estimated (see discussions in section 3).
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6. CONCLUSION

In this paper I propose integration–based estimation and inference methods for moment

inequality models. My confidence sets covers the each component (or a scalar–valued

function) of the true parameter vector with prespecified probability and are comparatively

easy to compute.

There are issues of potential interest that are not studied in this paper. First, one may be

interested in models where the number of moment equations is large (Menzel, 2008), models

characterized by conditional moment inequalities (Andrews and Shi, 2010; Shi, 2009), or

models are not characterized by moment inequalities (maximum score estimator when

the support condition is violated). Second, I focus on a single element (or a scalar–valued

function) of the parameter vector. In some applications researchers may be interested in

a joint confidence set for a subvector, in which case one needs to study the asymptotic

behavior of the marginal quasi–posterior of the corresponding subvector. In this case

confidence set can be constructed as a level set of the marginal quasi–posterior (similar to

what CHJ do for the entire parameter vector). Third, it is challenging but interesting to

extend the current framework and allow for the presence of infinite dimensional nuisance

parameters.
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APPENDIX A. SOME LEMMAS

In this section I present some lemmas which will be used for the proofs in sections 3 and 4. A

maintained assumption in appendix A is that ΘI belongs to the interior of parameter space. The

proofs are based on d = 2, but can be extended to generic d (see appendix F).

Lemma A.1 says that nDn is bounded away from 0 with probability approaching one. Lemma A.1

will be used in the proof for consistency.

Lemma A.1. Suppose that assumptions 3.1, 3.4 and 3.5 are satisfied, then for any ε > 0, there exists a

C∗ > 0 such that limn→∞ P(nDn < C∗) < ε.

Proof. Assumption 3.1 ensures that Dn is well defined. For some C1 > 0, define set An = {θ :

d(θ, ΘI) ≤ C1√
n}. Then by Lipschitz assumption 3.4, there exist C2 > 0 such that

max
j

sup
θ∈An

|Em(j)(W1, θ)|+ ≤ C2 sup
θ∈An

d(θ, ΘI) ≤ C2C1/
√

n.

Let µ(An) be the Lebesgue measure of An, then exist C3 > 0 and C4 > 0 such that C3/n ≥ µ(An) ≥
C4/n. Let ι be a J–vector of ones, then for any C > 0,

P (nDn < C) ≤ P

(
n inf

θ∈An
exp(−n‖m̄(θ)‖2

+)µ(An) < C
)

≤ P

(
C3 inf

θ∈An
exp(−‖∆n(θ) +

√
nEm1(θ)‖2

+) < C
)

= P

(
sup
θ∈An

‖∆(θ) +
√

nEm1(θ)‖2
+ > log (C3/C) + op(1)

)
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≤ P

(
‖ sup

θ∈An

∆(θ) + sup
θ∈An

√
nEm1(θ)‖2

+ > log (C3/C) + op(1)

)

≤ P

(
‖ sup

θ∈An

∆(θ) + C1C2ι‖2
+ > log(C3/C) + op(1)

)
.

The equality holds because supθ∈An
‖∆n(θ)− ∆(θ)‖ = op(1) by assumption 3.5 and ‖ · ‖ is continu-

ous. The last inequality holds because the monotonicity of ‖ · ‖+. The right hand side probablity

converges to zero as C decrease to zero since supθ∈An
∆(θ) is bounded in probability. �

Lemmas A.2 to A.8 say that the integral of the numerator of the quasi–posterior outside of the

identified set can be approximated by a “localized” integral within a
√

n–neighborhood (but outside)

of the identified set, with demeaned random variables replaced by their limits. My proof follows the

same idea as in Chernozhukov and Hong (2003).

Lemmas A.2 to A.7 deal with the case in which ΘI2(θ1`) is a singleton: ΘI2(θ1`) = {(θ1`, θ2`)} =
{θ`}. Define

Nn(h) = Dn fn(θ1` +
h1√

n
, θ2` +

h2√
n
), N∞(h) = exp(−‖∆J (θ`) + QJ (θ`)h‖2

+).

By assumptions 3.1 and 3.2, I can write the integration region for the local parameter h =
√

n(θ− θ`) as Hn = {h : −√n(θ1` − θ1) ≤ h1 ≤ 0,−√n(θ2` − θ2) ≤ h2 ≤
√

n(θ2 − θ2`)}. I separate

Hn into three parts: H1n = {h : ‖h‖ < M, h1 ∈ Hn}, H2n = {h : M < ‖h‖ < M∗
√

n, h ∈ Hn} and

H3n = {h : ‖h‖ ≥ M∗
√

n, h ∈ Hn} for some M∗, M > 0. In the rest part of appendix A, I drop the

sup script J for the sake of notational simplicity. By assumption assumption 3.2, Hn converges to

R− ×R in the Painleve–Kuratowski sense.11

Lemma A.2. Suppose that assumptions 3.1, 3.2, 3.5 and 3.7 are satisfied, then∫
h∈H1n

|Nn(h)− N∞(h)|dh
p→ 0.

Proof. Note that Nn(h) is

Nn(h) = Dn fn(θ1` +
h1√

n
, θ2` +

h2√
n
)

= exp(−‖∆n(θ1` +
h1√

n
, θ2` +

h2√
n
) +
√

nEm1(θ1` +
h1√

n
, θ2` +

h2√
n
)‖2

+)

= exp(−‖∆n(θ1` +
h1√

n
, θ2` +

h2√
n
) + Q(θ`)h +

√
nEm1(θ1`, θ2`) + Rn(h1, h2)‖2

+),

11See discussion in Kaido (2010).

32



where

Rn(h1, h2) =
√

nEm1(θ1` +
h1√

n
, θ2` +

h2√
n
)−Q(θ`)h−

√
nEm1(θ1`, θ2`).

Note that if Em1(θ1`, θ2`) = 0 (I already drop the sup script J for notational simplicity). So it follows

that, ∫
h∈H1n

|Nn(h)− N∞(h)|dh =
∫

H1n

N∞(h)| exp(Tn(h))− 1|dh,

where Tn(h) = ‖∆(θ`) + Q(θ`)h‖2
+ − ‖∆n(θ1` +

h1√
n , θ2` +

h2√
n ) + Q(θ`)h + Rn(h1, h2)‖2

+, it is suffi-

cient to show that suph∈H1n
|Tn(h)| = op(1) since N∞ is uniformly bounded in probability over

H1n.

sup
h∈H1n

‖∆(θ`)− ∆n(θ1` +
h1√

n
, θ2` +

h2√
n
)‖

≤ sup
h∈H1n

‖∆(θ1` +
h1√

n
, θ2` +

h2√
n
)− ∆n(θ1` +

h1√
n

, θ2` +
h2√

n
)‖

+ sup
h∈H1n

‖∆(θ`)− ∆(θ1` +
h1√

n
, θ2` +

h2√
n
)‖ = op(1).

The right hand termm is op(1) because of assumption 3.5.

By assumption 3.7 (continuous differentiability), I know that suph∈H1n
Rn,j(h) = o(‖h‖) ≤

o(M) = o(1). Thus suph∈H1n
Tn(h)

p→ 0 and
∫

h∈H1n
|Nn(h)− N∞(h)|dh

p→ 0. �

Lemma A.3. Suppose that assumptions 3.1, 3.2, 3.5, 3.7 and 3.8 are satisfied, then for any ε > 0, there is a

choice of 0 < M < ∞ such that

P(
∫

H2n∪H3n

N∞(h)dh ≤ ε) > 1− ε.

Proof. Let a and b be scalars. Then |a + b|2+ ≥ |a|2+ − |b| unless a ≥ 0, b < 0 and a + b > 0. This can

be verified as follows.

Case 1, a ≥ 0, b ≥ 0. |a + b|2+ ≥ |a|2+ − |b| holds obviously.

Case 2, a < 0, b < 0. |a + b|2+ ≥ 0 > |a|2+ − |b| holds obviously.

Case 3, a < 0, b ≥ 0. |a + b|2+ ≥ 0 ≥ −|b| = |a|2+ − |b|.
Case 4, a ≥ 0, b < 0. In this case, if a + b < 0, then |a + b|2+ = 0 ≥ |a| − |b| = |a|2+ − |b|.
In this lemma, I will treat Q(θ`)h term as a and ∆(θ`) term as b.

I divide the integration region H2n ∪ H3n into HA
n and HB

n , where

HA
n = {h ∈ H2n ∪ H3n, Q(θ`)h + ∆(θ`) ≥ 0},
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and HB
n is the complement of HA

n within H2n ∪ H3n. Note

P(
∫

H2n∪H3n

N∞(h)dh ≤ 2ε) ≥ P(
∫

HA
n

N∞(h)dh ≤ ε,
∫

HB
n

N∞(h)dh ≤ ε)

≥ 1−P(
∫

HA
n

N∞(h)dh > ε)−P(
∫

HB
n

N∞(h)dh > ε).

For region HA
n , since Q(θ`)h + ∆(θ`) ≥ 0, I have

lim
M→+∞

P(
∫

HA
n

N∞(h)dh > ε) = lim
M→+∞

P(
∫

HA
n

exp(−‖∆(θ`) + Q(θ`)h‖2
+)dh > ε)

≤ lim
M→+∞

P(
∫
‖h‖>M

exp(−‖∆(θ`) + Q(θ`)h‖2)dh > ε) = 0.

The right hand side term converges to zero because Q(θ`) has full column rank by assumption 3.8

and ∆(θ`) is bounded in probability by assumption 3.5.

Now consider region HB
n , observe that ‖∆(θ`)+Q(θ`)h‖2

+ ≥ ‖Q(θ`)h‖2
+−‖∆(θ`)‖ for all h ∈ HB

n ,

it follows∫
h∈HB

n

N∞(h)dh ≤
∫

h∈HB
n

exp(−‖Q(θ`)h‖2
++ ‖∆(θ`)‖2)dh = exp(‖∆(θ`)‖2)

∫
h∈HB

n

exp(−‖Q(θ`)h‖2
+)dh.

Since ‖∆(θ`)‖ is bounded in probability by assumption 3.5, to complete the proof of this lemma, I

just need to show

lim
M→+∞

∫
h∈HB

n

exp(−‖Q(θ`)h‖2
+)dh = 0.

Note that

∫
h∈HB

n

exp(−‖Q(θ`)h‖2
+)dh ≤

∫
h∈Hn

exp(−‖Q(θ`)h‖2
+)dh

=
∫
{h:h1≤0}

exp(−‖Q(θ`)h‖2
+)dh−

∫
{h:h1≤0,‖h‖≤M}

exp(−‖Q(θ`)h‖2
+)dh.

If the first term on the right hand side is finite, then the second term on the right hand side is

also finite and moreover is strictly monotonically increasing in M. It covers to the first term as M

increases because a bounded monotonically increasing sequence has a limit. It remains to show that

the first term is finite.

To show the first term is finite, observe that (i) for all j, Qj1, which is the derivative of the jth

binding moment equation with respect to θ1 evaluating at θ`, are all negative by definition of θ1`, and

(ii) by the definition of θ`, there exists at least one pair of (j, j′) such that Qj′2 and Qj2 is non–zero

34



and take different signs since ΘI2(θ1`) is a singleton. Without loss of generality, assume that Q12 < 0

and Q22 > 0.

First note that h = 0 is the only possible value from Hn such that all components of the vector

Q(θ`)h be smaller or equal to zero. In other words, for all h ∈ Hn, h 6= 0, there exist at least one

moment who takes positive value. Now consider the integration region where the first element of

Q(θ`)h is the only element greater than 0. Call this region HB1
n . It implies that Q11h1 + Q12h2 > 0.

Since Q12 < 0, then h2 < −Q11
Q12

h1. Since Q22 > 0, then Q21h1 + Q22h2 < 0 implies that h2 < −Q21
Q22

h1.

Since h1 < 0, it turns out −Q21
Q22

h1 < 0 < −Q11
Q12

h1, so∫
h∈HB1

n

exp(−‖Q`h‖2
+)dh ≤

∫
h1≤0

∫
h2<− Q21

Q22
h1,‖h‖≥M

exp(−(Q11h1 + Q12h2)
2)dh.

The right hand side converges to zero as M increases to ∞.

For the integration region where there are more than one elements take positive value, a similar

argument applies. In particular, if in the region where all the elements are positive, it is integrable

because exp(−h′Q(θ`)
′Q(θ`)h) is just a rescaled normal density.

�

Lemma A.4. Suppose that assumptions 3.1, 3.2, 3.5, 3.7 and 3.8 are satisfied, then for any ε > 0, there

exists M∗ and M such that

lim
n→∞

P(
∫

H2n

Nn(h)dh ≤ ε) > 1− ε.

Proof. Let ε be arbitrarily given. For any ε∗ > 0, let M∗ be small enough such that the following

condition holds:

lim sup
n→∞

P

 sup
{h:‖h‖≤√nM∗ ,h1≤0}

‖∆n(θ` +
h√
n )− ∆n(θ`)‖

1 + ‖h‖ > ε∗

 < ε∗. (15)

This is possible by assumption 3.5. Meanwhile,

Nn(h) = exp(−‖∆n(θ` +
h√
n
) +
√

nEm1(θ` +
h√
n
)‖2

+)

= exp(−‖∆n(θ`) + Q(θ`)h + Ra
n(h1, h2) + Rb

n(h1, h2)‖2
+)

= exp(−‖h‖2‖ ∆n

‖h‖ + Q`
h
‖h‖ +

Ra
n
‖h‖ +

Rb
n
‖h‖‖

2
+).
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where

Ra
n(h1, h2) = ∆n(θ` +

h√
n
)− ∆n(θ`),

Rb
n(h1, h2) =

√
nEm1(θ` +

h√
n
)−Q(θ`)h = o(‖h‖).

Hence we can choose M∗ such that for largen n,

Nn(h) = exp

(
−‖h‖2

[∥∥∥∥∆(θ`)
‖h‖ + Q(θ`)

h
‖h‖

∥∥∥∥2

+
+ op(1)

])

≤ exp

(
−‖h‖2

[∥∥∥∥∆(θ`)
‖h‖ + Q(θ`)

h
‖h‖

∥∥∥∥2

+
− 1

2
‖Q(θ`)

h
‖h‖‖

2
+

])

= exp
(
−‖∆(θ`) + Q(θ`)h‖2

+ +
1
2
‖Q(θ`)h‖2

+

)
≤ exp

(
−‖Q(θ`)h‖2

+ + ‖∆(θ`)‖2 +
1
2
‖Q(θ`)h‖2

+

)
= exp

(
−1

2
‖Q(θ`)h‖2

+ + ‖∆(θ`)‖2
)

The first inequality is because of eq. (15) and the fact that ‖Q(θ`)
h
‖h‖‖2

+ > 0 for all h such that h 6= 0

and h1 ≤ 0. The right hand side term can be dealt with in the similar way as in lemma A.3. �

Lemma A.5. Suppose that assumptions 3.1 and 3.3 to 3.5 are satisfied, then for any ε > 0, and each M∗ > 0,

lim
n→∞

P(
∫

H3n

Nn(h)dh ≤ ε) > 1− ε.

Proof. Let M∗ > 0 be arbitrary. For any h ≥ M∗
√

n, let θ1 = θ1` +
h1√

n and θ2 = θ2` +
h2√

n , let H∗3n

be corresponding integration region for θ. Then infθ∈H∗3n
d(θ, ΘI) ≥ M∗. By assumption 3.3, there

exists at least one j and some δm > 0 such that Em(j)(W1, θ)+ ≥ δm uniformly over H∗3n.

sup
h∈H3n

Nn(h) = sup
h∈H3n

exp(−‖∆n(θ1` +
h1√

n
, θ2` +

h2√
n
) +
√

nEm1(θ1` +
h1√

n
, θ2` +

h2√
n
)‖2

+)

= sup
θ∈H∗3n

exp(−‖∆n(θ1, θ2) +
√

nEm1(θ1, θ2)‖2
+) ≤ exp(−| inf

θ∈H∗3n

∆jn(θ1, θ2) +
√

nδm|2+)

Since supθ∈Θ ∆n(θ) = OP(1), for any ε > 0

lim
n→∞

P(
∫

H3n

Nn(h)dh < ε) ≥ lim→∞
P(
∫

H∗3n

sup
θ∈H∗3n

exp(−|∆jn(θ1, θ2) +
√

nδm|2+)dθ < ε)

≥ lim
n→∞

P(µ(H∗3n) exp(−| inf
θ∈H∗3n

∆jn(θ) +
√

nδm|2+)dθ < ε) = 1.

The right hand side converges to one because infθ∈H∗3n
∆n(θ) is bounded in probability. �
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Lemma A.6. Suppose that assumptions 3.1 to 3.5, 3.7 and 3.8 are satisfied, then for any ε > 0, there exist

an M > 0 such that

lim
n→∞

P(
∫

H2n∪H3n

|Nn(h)− N∞(h)|dh ≤ ε) > 1− ε.

Proof. Follows from lemmas A.2 to A.5. �

Lemma A.7. Suppose that assumptions 3.1 to 3.5, 3.7 and 3.8 are satisfied, then∫
Hn
|Nn(h)− N∞(h)|dh = op(1).

Proof. Follows from lemma A.2 and lemma A.6. �

So far I have shown that approximation holds when ΘI2(θ1`) is a singleton (lemma A.7) .

Lemma A.8 below shows that a similar approximation holds when ΘI2(θ1`) is an interval.

Lemma A.8. Suppose that assumptions 3.1 to 3.5, 3.7 and 3.8 are satisfied. Suppose that ΘI2(θ1`) =

[θ2`, θ2u] with θ2u > θ2`, then

∫
h1≤0

∫
θ2∈Θ2

Dn fn(θ1` +
h√
n

, θ2)dθ2dh1

=
∫

h1≤0

∫
θ2∈[θ2`,θ2u ]

exp(−‖∆J (θ1`, θ2) + QJ1 (θ1`, θ2)h1‖2
+)dθ2dh1 + op(1).

Proof. Without loss of generality, suppose that there is only one binding moment for all θ ∈ {θ : θ1 =

θ1`, θ2 ∈ (θ2`, θ2u)}, say the first moment inequality. I can ignore the superscript J for notational

simplicity. If there are more than one binding moments for some θ ∈ {θ : θ1 = θ1`, θ2 ∈ (θ2`, θ2u)},
the same analysis goes through. I first show that,

∫
h1≤0

∫
θ2∈[θ2`,θ2u ]

∣∣∣∣exp(−‖∆n(θ1` +
h1√

n
, θ2) + Q1(θ1`, θ2)h1 + Rn(θ1`, θ2)‖2

+

− exp(−‖∆(θ1`, θ2) + Q1(θ1`, θ2)h1‖2
+)
∣∣∣ dθ2dh1 = op(1), (16)

where

Rn(θ1`, θ2) =
√

nEm1(θ1` + h1/
√

n, θ2)−
√

nEm1(θ1`, θ2)−Q1(θ1`, θ2)h1.

By assumption 3.7, Rn is continuous in θ2, hence we know that supθ2∈[θ2`,θ2u ]
Rn(θ1`, θ2) = o(‖h‖).

Note that for all θ2 ∈ [θ2`, θ2u], Em1(θ1`, θ2) = 0 (remember I drop the supscript J for notational

simplicity). Now I can divide the integration region for h1 into three parts. The proof essentially

follows from the previous proofs (lemma A.7).

It remains to show the integration outside of [θ2`, θ2u is op(1). Let ε > 0 be arbitrary. Then
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P

(∫
h1≤0

∫
θ2 /∈[θ2`,θ2u ]

Dn fn(θ1` +
h√
n

, θ2)dθ2dh1 ≤ 2ε

)
≥ 1−P

(∫
h1≤0

∫
θ2∈[θ2`−δ,θ2` ]∪[θ2u ,θ2u+δ]

Dn fn(θ1` +
h√
n

, θ2)dθ2dh1 > ε

)
−P

(∫
h1≤0

∫
θ2≤θ2`−δ,θ2≥θ2u+δ

Dn fn(θ1` +
h√
n

, θ2)dθ2dh1 > ε

)
The first probability on the right hand side can be made arbitrarily small by taking δ small; the

second probability converges to zero as n increases for any δ > 0.

In particular, note that if Q(θ1`, θ2`) and Q(θ1`, θ2u) have full column ranks, then

∫
h1≤0

∫
θ2 /∈[θ2`,θ2u ]

Dn fn(θ1` +
h√
n

, θ2)dθ2dh1

=
1√
n

∫
h1≤0,h2≥0

exp(−‖∆(θ1`, θ2u) + Q(θ1`, θ2u)h‖2
+)dh

+
1√
n

∫
h1≤0,h2≤0

exp(−‖∆(θ1`, θ2`) + Q(θ1`, θ2`)h‖2
+)dh + op(

1√
n
)

= Op(
1√
n
).

Again, the argument follows from lemma A.7. �

APPENDIX B. PROOFS IN SECTION 3

B.1. Proof of theorem 3.1. I first show that for any ε > 0, and r > 0, supΘ/Θε
I

nr fn(θ) = op(1),

which is sufficient for limn→∞ P(θ̂1` < θ1` − ε)→ 0. Let δ > 0 be specified in assumption 3.3. Note

that with probability approaching one

sup
Θ/Θε

I

nr fn(θ) =
nr

Dn
exp(− inf

Θ/Θε
I

n‖m̄(θ)‖2
+)

=
nr

Dn
exp(− inf

Θ/Θε
I

n‖m̄(θ)−Em1(θ) + Em1(θ)‖2
+) ≤

nr+1

nDn
exp(− δ2

ε n
4

) = op(1).

The last inequality is because of assumption 3.3, there exits at least one j such that infθ∈Θ/Θε
I

Em(h)(W1, θ) >

δε = min{Cε, δ} and because of supθ∈Θ |m̄(θ) − Em1(θ)| < δε/2 with probability one. The last

equality holds because of lemma A.1 that nDn is bounded away from 0 in probability. Given as-

sumption 3.6, ĉ decreases to zero at polynomial rate. This shows that for any ε, limn→∞ P(θ̂1` <

θ1` − ε) = 0.
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Now I show that limn→∞ P(θ̂1` > θ1` + ε) → 0. There are two cases, θ1` = θ1u and θ1` < θ1u.

When θ1` = θ1u,

P(θ̂1` > θ1` + ε) = P(τ̂` ≥ F1n(θ1` + ε)) ≤ P

(
1
2
≥ F1n(θ1` + ε)

)
.

Since F1n(θ1` + ε)
p→ 1 by the previous argument, it follows the probability on the right hand side is

arbitrarily small as n is large. It remains to show same conclusion holds when θ1` < θ1u.

P(θ̂1` > θ1` + ε) = P

(
ĉ ≥ n

∫
{θ:θ1≤θ1`+ε}

exp(−n‖m̄(θ)‖2
+)dθ

)
≤ P

(
ĉ ≥ n

∫
Bn

exp(−n‖m̄(θ)‖2
+)dθ

)
,

where Bn = {θ : θ1` ≤ θ1 ≤ θ1` + ε,
√

n‖Em1(θ)‖+ ≤ δ∗} for some δ∗ < ∞. Note that by Lipschitz

assumption 3.4, there exists some δ∗∗ > 0 such that µ(Bn) ≥ δ∗∗ε√
n .

It thus follows,

P

(
ĉ ≥ n

∫
Bn

exp(−n‖m̄(θ)‖2
+)dθ

)
≤ P

(
ĉ ≥ n

∫
Bn

exp(−n‖m̄(θ)‖2
+)dθ

)
≤ P

(
ĉ ≥ nµ(Bn) inf

θ∈Bn
exp(−n‖m̄(θ)‖2

+

)
.

To show that right hand side probability converges to zero as n increases, it sufficient to show that

infθ∈Bn exp(−n‖m̄(θ)‖2
+) is bounded away from zero with probability approaching one. This is

true because

1 ≥ inf
θ∈Bn

exp
(
−n‖m̄(θ)‖2

+

)
= exp

(
− sup

θ∈Bn

‖m̄(θ)‖2
+

)

≥ exp

(
−‖ sup

θ∈Bn

∆n(θ) + sup
θ∈Bn

√
nEm1(θ)‖2

+

)

≥ exp

(
−‖ sup

θ∈Bn

∆n(θ)‖2
+ − ‖ sup

θ∈Bn

√
nEm1(θ)‖2

+

)
(17)

Note that by assumption 3.5, ‖ supθ∈Bn
∆n(θ)‖2

+ is Op(1). Also, ‖ supθ∈Bn

√
nEm1(θ)‖2

+ is finite.

Hence the right hand side of eq. (17) bounded away from zero with probability approaching one.

B.2. Proof of lemma 3.1. The proof to lemma 3.1 is summarized by the following three lemmas.

B.2.1. ΘI2(θ1`) is a singleton.
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Lemma B.1. Suppose that assumptions 3.1, 3.3 to 3.5 and 3.7 to 3.10 are satisfied. Suppose that ΘI2(θ1`) is

a singleton. Let τ̂ = min{ ĉ`
nDn

, 1
2}, where ĉ`

p→ c` > 0, let θ̂1` = F−1
1n (τ̂), then

√
n(θ̂1` − θ1`) = Op(1).

Proof. It is enough to show that for any K ∈ R, limn→∞ P(
√

n(|θ̂1` − θ1`)| > K) converges to zero

as K increases to infinity.

Part 1. I show that for limn→∞ P(
√

n(θ̂1`− θ1`) ≤ −K) converges to zero as K increases to infinity

first.

P(
√

n(θ1` − θ̂1`) ≥ K) = P(ĉ` ≤ nDn

∫ θ1`− K√
n

θ1

∫
θ2∈Θ2

fn(θ1, θ2)dθ2dθ1)

= P(ĉ` ≤ Dn

∫ −K

−√n(θ1`−θ1)

∫ √n(θ2)−θ2`

−√n(θ2`−θ2)
fn(θ1` +

h1√
n

, θ2` +
h2√

n
)dh2dh1).

Following lemma A.7,

P(ĉ` ≤ Dn

∫ −K

−∞

∫ √n(θ2)−θ2`

−√n(θ2`−θ2)
fn(θ1` +

h1√
n

, θ2` +
h2√

n
)dh2dh1)

= P(ĉ` ≤
∫
{h:h1≤−K}

Nn(h)dh) = P(c` ≤
∫
{h:h1≤−K}

N∞(h)dh) + op(1).

The right hand side converges to zero as K increases to infinity, as already shown in lemma A.3.

Part 2. Now I show that limn→∞ P(θ̂1` > θ1` +
K√

n ) → 0 as K increase. Suppose θ1u > θ1` for

now.

P(θ̂1` ≥ θ1` +
K√

n
) = P(c` + op(1) ≥ n

∫
{θ:θ1≤θ1`+

K√
n }

exp(−n‖m̄(θ)‖2
+))

≤ P(c` + op(1) ≥ n
∫
Bn

exp(−n‖m̄(θ)‖2
+)dθ), (18)

where

Bn = {θ : θ1` +
K

4
√

n
≤ θ1 ≤ θ1` +

3K
4
√

n
, d(θ, ΘI) ≤

δ∗√
n
}.

By assumption 3.4, there exist C1 > 0 such that

max
j

sup
θ∈Bn

|Em(j)(W1, θ)|+ ≤ sup
θ∈Bn

C1d(θ, ΘI) =
C1δ∗

4
√

n
.

It is not difficult to verify that µ(Bn) =
C2Kδ∗

16n for some C2 > 0. It thus follows,

P(c` + op(1) ≥ n
∫
Bn

exp(−n‖m̄(θ)‖2
+)dθ)
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≥ P(c` + op(1) ≥ nµ(Bn) inf
θ∈Bn

exp(−n‖m̄(θ)‖2
+)

= P(c` + op(1) ≥
C2Kδ∗

16
inf

θ∈Bn
exp(−n‖m̄(θ)‖2

+).

It remains to show that infθ∈Bn exp(−n‖m̄(θ)‖2
+) is bounded away from zero with probability ap-

proaching one. This is true since supθ∈Bn
‖√nEm1(θ)‖2

+ ≤ C1δ∗
4 < +∞ and by the same argument

as in eq. (17).

To complete part 2, it remains to show limn→∞ P(θ̂1` > θ1` +
K√

n ) → 0 when θ1` = θ1u. In this

case, θ0 is point identified.

P

(
θ̂1` > θ1` +

K√
n

)
= P

(
τ̂` ≥ F1n(θ1` +

K√
n
)

)
≤ P

(
1
2
≥ F1n(θ1` +

K√
n
)

)
.

The probability limit of F1n(θ1` +
K√

n ) can be made arbitrarily close to one as K increases. So the

conclusion follows.

Combine part 1 and 2, the statement of the Lemma follows. �

B.2.2. ΘI2(θ1`) is an interval.

Lemma B.2. Suppose that assumptions 3.1, 3.3 to 3.5 and 3.7 to 3.10 are satisfied. Suppose that ΘI2(θ1`) =

[θ2`, θ2u]. Let τ̂ = min{ ĉ`
nDn

, 1
2}, where ĉ`

p→ c` > 0, let θ̂1` = F−1
1n (τ̂), then with probability approaching

1,
√

n(θ̂1` − θ1`)→ −∞

Proof. I want to show that for any K > 0,

lim
n→∞

P(
√

n(θ1` − θ̂1`) > K) = 1.

Note that

P(
√

n(θ1` − θ̂1`) > K) = P

(
ĉ` ≤ nDn

∫ θ1`− K√
n

θ1

∫
θ2∈Θ2

fn(θ1, θ2)dθ2dθ1

)

= P

(
ĉ` ≤

√
nDn

∫ −K

−∞

∫
θ2∈Θ2

fn(θ1` + h1/
√

n, θ2)dθ2dh1

)
= P(ĉ` ≤ An + Bn) ≥ P(ĉ ≤ An),

where

An =
√

n
∫ −K

−∞

∫
θ2∈[θ2`,θ2u ]

Dn fn(θ1` + h1/
√

n, θ2)dθ2dh1

Bn =
√

n
∫ −K

−∞

∫
θ2 /∈[θ2`,θ2u ]

Dn fn(θ1` + h1/
√

n, θ2)dθ2dh1

I will show that An diverges to +∞ with probability approaching one.
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By assumptions 3.4 and 3.7, there exists some C1 < 0 such that (note that h1 ≤ 0 here)

0 ≤ max
j

sup
θ2∈[θ2`,θ2u ]

√
nEm(j)(W1; θ1` +

h1√
n

, θ2) ≤ C1h1.

Hence

An =
√

n
∫ −K

−∞

∫
θ2∈[θ2`,θ2u ]

exp(−‖∆n(θ1` +
h1√

n
, θ2) +

√
nEm1(θ1` +

h1√
n

, θ2)‖2
+)dθ2dh1

≥
√

n
∫ −K

−∞

∫
θ2∈[θ2`,θ2u ]

exp(−‖∆n(θ1`, θ2) + C1h1 + op(1)‖2
+)dθ2dh1.

For every given K, An diverges to +∞ since the integral is bounded away from zero with probability

approaching one. �

Lemma B.3. Suppose that assumptions 3.1, 3.3 to 3.5 and 3.7 to 3.10 are satisfied. Suppose that ΘI2(θ1`) =

[θ2`, θ2u]. Let τ̂ = min{ ĉ`√
nDn

, 1
2}, where ĉ`

p→ c` > 0, let θ̂1` = F−1
1n (τ̂), then with probability approaching

1,
√

n(θ̂1` − θ1`) = Op(1)

Proof. Part 1. Let K > 0 be arbitrary, I want to show that

lim
K→+∞

lim
n→∞

P(
√

n(θ1` − θ̂1`) > K) = 0.

Note that

P(
√

n(θ1` − θ̂1`) > K) = P(ĉ` ≤
√

nDn

∫ θ1`− K√
n

θ1

∫
θ2∈Θ2

fn(θ1, θ2)dθ2dθ1)

= P(ĉ` ≤ Dn

∫ −K

−∞

∫
θ2∈Θ2

fn(θ1` + h1/
√

n, θ2)dθ2dh1) = P(ĉ` ≤ An + Bn),

where

An =
∫ −K

−∞

∫
θ2∈[θ2`,θ2u ]

Dn fn(θ1` + h1/
√

n, θ2)dθ2dh1

Bn =
∫ −K

−∞

∫
θ2 /∈[θ2`,θ2u ]

Dn fn(θ1` + h1/
√

n, θ2)dθ2dh1

Bn is Op(1/
√

n) by the same argument in lemma B.1. It remains to show that limn→∞ P(ĉ ≤ An)

decrease to zero as K increases to infinity.

By assumptions 3.4 and 3.7, there exists at least one j and some C2 < 0 such that

inf
θ2∈[θ2`,θ2u ]

√
nEm(j)(W1, (θ1` +

h1√
n

, θ2)) ≥ C2h1 ≥ 0.
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Then with probability approaching one,

An =
∫ −K

−∞

∫
θ2∈[θ2`,θ2u ]

exp(−‖∆n(θ1` +
h1√

n
, θ2) +

√
nEm1(θ1` +

h1√
n

, θ2)‖2
+)dθ2dh1

≤ (θ2u − θ2`)
∫ −K

−∞
exp(−| inf

θ2∈[θ2`,θ2u ]
∆jn(θ1`, θ2) + C2h1 + op(1)|2+)dh1

= (θ2u − θ2`)
∫ −K

−∞
exp(−| inf

θ2∈[θ2`,θ2u ]
∆j(θ1`, θ2) + C2h1|2+)dh1 + op(1).

The conclusion follows because ĉ
p→ c > 0 and infθ2∈[θ2`,θ2u ]

∆(θ1`, θ2) is Op(1).

Part 2. I want to show that

lim
K→+∞

lim
n→∞

P(
√

n(θ̂1` − θ1`) > K) = 0.

The case in which θ1u = θ1` is similar to part 1. Suppose θ1u > θ1` for now.

P

(
θ̂1` ≥ θ1` +

K√
n

)
= P

(
ĉ` ≥

√
n
∫
{θ:θ1≤θ1`+

K√
n }

exp(−n‖m̄(θ)‖2
+)

)

= P

(
c` + op(1) ≥

√
n
∫
{θ:θ1≤θ1`+

K√
n }

exp(−n‖m̄(θ)‖2
+)

)

≤ P

(
c` + op(1) ≥

√
n
∫
Bn

exp(−n‖m̄(θ)‖2
+)dθ

)
,

where Bn = {θ : θ1` ≤ θ1 ≤ θ1`+
K√

n , d(θ, ΘI) ≤ δ∗/
√

n}. By assumption 3.4, supθ∈Bn
‖Em1(θ)‖+ ≤

supθ∈Bn
C1d(θ, ΘI) ≤ δ∗√

n for some δ∗ > 0.

It is not difficult to verify that µ(Bn) ≥ Kδ∗∗√
n for some δ∗∗ under assumption 3.9. If assumption 3.9–

(2) holds, i.e., ΘI has non–empty interior around (θ1`, θ2), this conclusion holds immediately. When

ΘI is convex (under assumption 3.9–1), just note that Bn always contains a triangle with three corner

points: (θ1`, θ2`), (θ1`, θ2u) and (θ1` +
K√

n , (θ2u + θ2`)/2). I can take δ∗∗ = (θ2u − θ2`)/2.

It thus follows,

P(c` + op(1) ≥ n
∫
Bn

exp(−n‖m̄(θ)‖2
+)dθ)

≥ P(c` + op(1) ≥ nµ(Bn) inf
θ∈Bn

exp(−n‖m̄(θ)‖2
+)

= P(c` + op(1) ≥
Kδ∗

16
inf

θ∈Bn
exp(−n‖m̄(θ)‖2

+).

The limit probability converges to zero as K increases. �
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B.3. Proof of theorem 3.2. Consistency is ensured by construction and theorem 3.1. To see this, I

just need to show that for any ε > 0, the following equation holds with probability approaching

zero.

n
∫ θ1`−ε

θ1

∫
θ2∈Θ2

exp(−n‖m̄(θ1, θ2)‖2
+)dθ2dθ1√

n
∫

θ2∈Θ2
exp(−n‖m̄(θ1` − ε, θ2)‖2

+)dθ2
= ĉ.

Suppose that there exist one, called ε∗ such that it holds with probability greater than zero; then

by mean value theorem, with probability greater than zero, there exists an ε∗∗ ≤ ε∗ such that
√

n(θ1` − ε∗ − θ1)
∫

θ2∈Θ2
exp(−n‖m̄(θ1 − ε∗∗, θ2)‖2

+)dθ2dθ1∫
θ2∈Θ2

exp(−n‖m̄(θ1` − ε∗, θ2)‖2
+)dθ2

= ĉ.

This cannot happen since the numerator and the denominator have different rates and ĉ
p→ c > 0.

Now I establish
√

n–consistency. I show that in the
√

n–neighborhood of θ1`, with probability

approaching one, there exists at least one solution to eq. (4).

Equation (4) can be written as

n
∫ θ̂∗1`

θ1

∫
θ2∈Θ2

exp(−n‖m̄(θ1, θ2)‖2
+)dθ2dθ1√

n
∫

θ2∈Θ2
exp(−n‖m̄(θ̂∗1`, θ2)‖2

+)dθ2
= ĉ`.

Let h1 =
√

n(θ1` − θ1`), consider a random variable qn indexed by h∗1 ∈ R.

qn(h∗1) =

∫ h∗1√
n(θ1−θ1`)

∫
θ2∈Θ2

exp(−n‖m̄(θ1` +
h1√

n , θ2)‖2
+)dθ2dh1∫

θ2
exp(−n‖m̄(θ1` +

h∗1√
n , θ2)‖2

+)dθ2

. (19)

I will show that for any ε > 0, limn→∞ P(qn(h∗1) > ε) can be made arbitrarily small if I let

h∗1 → −∞; and for any C > 0, limn→∞ P(qn(h∗1) < C) can be made arbitrarily small if I let h∗1 → +∞.

If those two statements are true, then by continuity of qn(·), the probability of exists one h̃1 such that

qn(h̃1) = c holds can be made arbitrarily close to one. By defining θ̂∗1` = θ1` + h̃/
√

n, I show that the

probability of eq. (4) having a solution approaches 1.

B.3.1. h∗1 → −∞. There are two cases: ΘI2(θ1`) = [θ2`, θ2u] and ΘI2(θ1`) = {θ2`}.
case 1. ΘI2(θ1`) = [θ2`, θ2u]. Consider the denominator first. For given h∗1 , by lemma A.8

∫
θ2∈Θ2

exp(−‖m̄(θ1`+
h∗1√

n
, θ2)‖2

+)dθ2 =
∫

θ2∈Θ2

exp(−‖∆n(θ1`+
h∗1√

n
, θ2)+

√
nE(θ1`+

h∗1√
n

, θ2)‖2
+)dθ2

=
∫

θ2∈[θ2`,θ2u ]
exp(−‖∆(θ1`, θ2) + Q1(θ1`, θ2)h∗1 + op(1)‖2

+)dθ2 + Op(1/
√

n)
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=
∫

θ2∈[θ2`θ2u ]
exp(−‖ψ(h∗1 , θ2) + op(1)‖2

+)dθ2 + Op(1/
√

n),

where ψ(h1, θ2) = ∆(θ1`, θ2) + Q1(θ1`, θ2)h1. Again, without loss of generality, I omit the sup–script

J for notation simplicity.

On the other hand, the numerator can be written as

∫ h∗1
√

n(θ1−θ1`)

∫
θ2∈Θ2

exp(−‖m̄(θ1` +
h1√

n
, θ2)‖2

+)dθ2dh1

=
∫ h∗1
√

n(θ1−θ1`)

∫
θ2∈Θ2

exp(−‖∆n(θ1` +
h1√

n
, θ2) +

√
nEm1(θ1` +

h1√
n

, θ2)‖2
+)dθ2dh1

=
∫ h∗1
√

n(θ1−θ1`)

∫
θ2∈[θ2`,θ2u ]

exp(−‖∆(θ1`, θ2) + Q1(θ1`, θ2)h1 + op(1)‖2
+)dθ2dh1 + Op(1/

√
n)

=
∫ h∗1
√

n(θ1−θ1`)

∫
θ2∈[θ2`,θ2u ]

exp(−‖ψ(h1, θ2) + op(1‖2
+)dθ2dh1 + Op(1/

√
n),

Hence

P(qn(h∗1) ≥ ε) = P

∫ h∗1√
n(θ1−θ1`)

∫
θ2∈[θ2`,θ2u ]

exp(−‖ψ(h1, θ2) + op(1‖2
+)dθ2dh1 + Op(1/

√
n)∫

θ2∈[θ2`θ2u ]
exp(−‖ψ(h∗1 , θ2) + op(1‖2

+)dθ2 + Op(1/
√

n)
≥ ε


≤ P

∫ h∗1√
n(θ1−θ1`)

∫
θ2∈[θ2`,θ2u ]

exp(−‖ψ(h1, θ2)‖2)dθ2dh1 + Op(1/
√

n)∫
θ2∈[θ2`,θ2u ]

exp(−‖ψ(h∗1 , θ2)‖2)dθ2 + Op(1/
√

n)
≥ ε| inf

θ2∈[θ2`,θ2u ]
ψ(h∗1 , θ2) ≥ 0


×P( inf

θ2∈[θ2`,θ2u ]
ψ(h∗1 , θ2) ≥ 0) + P( inf

θ2∈[θ2`,θ2u ]
ψ(h∗1 , θ2) < 0) + op(1).

limn→∞ P(infθ2∈[θ2`,θ2u ]
ψ(h∗1 , θ2) < 0) can be made arbitrarily small by letting h∗1 → −∞. It

remains to verify that the limit of the first probability on the right hand side goes to zero as

h∗1 → −∞. Note that

P

∫ h∗1√
n(θ1−θ1`)

∫
θ2∈[θ1`,θ2u ]

exp(−‖ψ(h1, θ2)‖2)dθ2dh1∫
θ2∈[θ1`,θ2u ]

exp(−‖ψ(h∗1 , θ2)‖2)dθ2
≥ ε


= P

(∫
θ2∈[θ1`,θ2u ]

[∫ h∗1

−∞
exp(−‖ψ(h1, θ2)‖2)dh1 − ε exp(−‖ψ(h∗1 , θ2)‖2)

]
dθ2d ≥ 0

)

≤ P

(
sup

θ2∈[θ1`,θ2u ]

{∫ h∗1

−∞
exp(−‖ψ(h1, θ2)‖2)dh1 − ε exp(−‖ψ(h∗1 , θ2)‖2)

}
≥ 0

)

= P

 sup
θ2∈[θ1`,θ2u ]

∫ h∗1
−∞ exp(−‖ψ(h1, θ2)‖2)dh1

exp(−‖ψ(h∗1 , θ2)‖2 > ε


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So It is sufficient to show that

lim
h∗1→−∞

P

 sup
θ2∈[θ2`,θ2u ]

∫ h∗1
−∞ exp(−‖ψ(h1, θ2)‖2)dh1

exp(−‖ψ(h∗1 , θ2)‖2)
> ε

 = 0.

This is true because supθ2∈[θ2`,θ2u ]
‖∆(θ1`, θ2)‖ is bounded in probability.

Case 2. ΘI2(θ1`) = {θ2`}.
In this case, following the above argument, and ignoring the supscript J for notational simplicity,

it can be shown that

qn(h∗1) =

∫ h∗1√
n(θ1−θ1`)

∫
h2∈R

exp(−‖∆(θ1`, θ2`) + Q(θ1`, θ2`)h)‖2
+)dh + op(1)∫

h2∈R
exp(−‖∆(θ1`, θ2`) + Q(θ1`, θ2`)(h∗1 , h2)′)‖2

+)dh2 + op(1)
.

The probability limit of right hand side can be made arbitrarily small as h∗1 decreases to −∞ by

similar argument as in case 1.

B.3.2. h∗1 → +∞. Now I show that when h∗1 → +∞, qn(h∗1) diverges with probability 1. Note that if

θ1` = θ1u, the conclusion holds immediately (this is because of the denominator converges to zero

and the numerator is bounded away from zero). So I focus on θ2u > θ1`.

qn(h∗1) =

∫ h∗1√
n(θ1−θ1`)

∫
θ2

exp(−n‖m̄(θ1` +
h1√

n , θ2)‖2
+)dθ2dh1∫

θ2
exp(−n‖m̄(θ1` +

h∗1√
n , θ2)‖2

+)dθ2

.

≥
∫ h∗1

0
∫

θ2
exp(−n‖m̄(θ1` +

h1√
n , θ2)‖2

+)dθ2dh1∫
θ2

exp(−n‖m̄(θ1` +
h∗1√

n , θ2)‖2
+)dθ2

.

If ΘI2(θ1`) is singleton, the the denominator is of order 1/
√

n, it follows from the similar argument

as in section 1 in the proof of lemma B.1 (with h∗1 taking the place of K) that qn(h∗1) diverges in

probability. If ΘI2(θ1`) is an interval, then the denominator is of order Op(1), it follows from the

similar argument as in the proof of lemma B.3 (with h∗1 taking the place of K) that qn(h∗1) diverges in

probability.

APPENDIX C. PROOFS IN SECTION 4

C.1. proof to lemma 4.1. The results follows from lemmas A.7 and A.8.The continuity of random

variable ξ A
` and ξB

` holds because the integration, exp(·) and ‖ · ‖+ are all continuous operations

and ∆ is continuous random process.
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C.2. Proof of theorem 4.1 . Lemmas C.1 to C.3 which will be used in the rest of the proof.

Lemma C.1. Suppose assumptions 3.5 and 4.3 are satisfied. Then for any θ ∈ ΘI , γjn(θ)
p→ 1 if

Em(j)(Wi, θ) = 0; γjn(θ)
p→ 0 if there exist a δ such that Em(j)(Wi, θ) < −δ.

Proof. Suppose j is a binding moment. If 1
n ∑i m(j)(Wi, θ) ≥ 0, then γjn(θ1`, θ2) = 1; so I only

consider the case 1
n ∑i m(j)(Wi, θ) < 0.

γjn(θ) = exp

− βn

n

∣∣∣∣∣ 1√
n ∑

i
m(j)(Wi, θ)

∣∣∣∣∣
2


= exp
(
− βn

n

∣∣∣∆nj(θ) +
√

nEm(j)(Wi, θ)
∣∣∣2) p→ 1.

The convergence is because ∆nj(θ1`, θ2)
d→ ∆j(θ1`, θ2) and βn/n→ 0 by assumption 4.3.

Now I consider the case in which there exist a δ such that Em(j)(Wi, θ) < −δ, then for large n

γjn(θ) = exp

− βn

n

∣∣∣∣∣ 1√
n ∑

i
m(j)(Wi, θ)

∣∣∣∣∣
2


= exp
(
− βn

n

∣∣∣∆nj(θ) +
√

nEm(j)(Wi, θ)
∣∣∣2) ≤ exp

(
− βn

n
∣∣∆nj(θ)−

√
nδ/2

∣∣2) p→ 0.

The term on the right hand side converges in probability to zero because βn → ∞ by assumption 4.3.

�

Lemma C.2. Suppose that assumptions 3.1 to 3.3, 3.5, 3.7, 3.8, 4.1 and 4.3 are satisfied. Then ω`n
p→ 0

and α`n/n = 1 + op(1) if ΘI2(θ1`) only contains countable disjoint singletons; ω`n
p→ 1 and α`n/

√
n =

1 + op(1) if ΘI2(θ1`) contains at least one interval with positive length.

Proof. Suppose first that ΘI2(θ1`) is an interval with positive length: θ2u > θ2`, then

Mn(θ1`) =
√

βn

∫
exp(−‖

√
βnn−1∆n(θ1`, θ2) +

√
βnEm1(θ1`, θ2)‖2

+)dθ2

=
√

βn

∫
θ2∈[θ2`,θ2u ]

exp(−‖
√

βnn−1∆n(θ1`, θ2) +
√

βnEm1(θ1`, θ2)‖2
+)dθ2

+
√

βn

∫
θ2 /∈[θ2`,θ2u ]

exp(−‖
√

βnn−1∆n(θ1`, θ2) +
√

βnEm1(θ1`, θ2)‖2
+)dθ2

= An + Bn.

I show An/
√

βn
p→ (θ2u − θ1`) first. Note that the unbinding moments automatically drop

out because βn → ∞. So for notational simplicity and without loss of generality, assume that
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Em1(θ1`, θ2) = 0 for all θ2 ∈ [θ2`, θ2u].

An/
√

βn =
∫

θ2∈[θ2`,θ2u ]
exp(−‖

√
βnn−1∆n(θ1`, θ2)‖2

+)dθ2
p→
∫

θ2∈[θ2`,θ2u ]
dθ2 = θ2u − θ2`.

Now I show there exist some C > 0 such that Bn ≤ C with probability approaching one. By

assumptions 3.3 and 3.7, for h2 > 0, there exists some C3 > 0 such that

‖
√

βnEm1(θ1`, θ∗2 +
h2√
βn
‖+ ≥ C3h2.

Hence I just need to show that for large n

∫
θ2>θ2u

√
βn exp(−‖

√
βnn−1∆n(θ1`, θ2) +

√
βnEm1(θ1`, θ2)‖2

+)dθ2

=
∫

h2∈R+
exp(−‖

√
βnn−1∆n(θ1`, θ2u +

h2√
βn

) +
√

βnEm1(θ1`, θ2u +
h2√
βn

)‖2
+)dh2

≤
∫

h2∈R
exp(‖

√
βnn−1∆n(θ1`, θ2u +

h2√
βn

)‖2 − ‖
√

βnEm1(θ1`, θ2u +
h2√
βn
‖2
+)dh2

≤
∫

h2∈R
exp(‖

√
βnn−1∆n(θ1`, θ2u +

h2√
βn

)‖2 − ‖C3h2‖2
+)dh2

p→ C∗ > 0.

The convergence holds because of assumption 3.5. Similar argument can be applied to the region

θ2 < θ2`.

Remember that ν(x) → 1 when x → 0; ν(x) → 0 exponentially when x → ∞. Since Mn(θ1`) =

Op(
√

βn) and
√

βn/ log n→ ∞ at polynomial rate (by assumption 4.3), it follows that

√
nω`n =

√
nν

(
Mn(θ1`)

log n

)
p→ 0,

and
α`n√

n
= (1−ω`n) +

√
nω`n

p→ 1.

When ΘI2(θ1`) contains only singletons, Mn(θ1`)/ log n = op(1), it follows that ω`n
p→ 1 and

α`n
n

=
1√
n
(1−ω`n) + ω`n

p→ 1.

�

Lemma C.3. Suppose that assumptions 3.1 to 3.3, 3.5, 3.7, 3.8 and 4.1 to 4.3 are satisfied. Then ξ̃`n
d→ ξ A

`

if ΘI2(θ1`) is a singleton. ξ̃`n
d→ ξB

` if ΘI2(θ1`) is an interval.

Proof. The convergence follows from lemmas C.1 and C.2. �
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Now I start to show the proposed confidence set has correct coverage probability.

Case 1. T > 0. In this case, ν
(

βn/nT̂
) p→ 1 and

√
nν
(

βn/nT̂
)

diverges. The values cI
k are

computed as,

P
(

cI
` ≤ ξ̃`n

)
= 1− α, P

(
cI

u ≤ ξ̃un

)
= 1− α. (20)

Let θλ = λθ1` + (1− λ)θ1u, λ ∈ [0, 1]. Let Pn(λ) be the probability of θλ belongs to the confidence

set.

Pn(λ) = P
(

θλ ∈ ΘI
αn

)
= P

(∫ θλ

θ1

f1n(θ1)dθ1 ≥
cI
`

αunDn
,
∫ θ1

θλ

f1n(θ1)dθ1 ≥
cI

u
α`nDn

)

= P

(
ξ̃`n + op(1) + α`nDn

∫ θλ

θ1`

f1n(θ1)dθ1 ≥ cI
`, αunDn

∫ θ1u

θλ

f1n(θ1)dθ1 + ξ̃un + op(1) ≥ cI
u

)
.

Note that if T > 0, then for any λ ∈ (0, 1), α`nDn
∫ θ1u

θλ
f1n(θ1)dθ1 or αunDn

∫ θλ
θ1`

f1n(θ1)dθ1 (or both)

diverges in probability. Hence Pn(λ) is minimized at λ∗ = 0 or λ∗ = 1 for large n. In both cases

limn→∞ Pn(λ∗) = 1− α because of eq. (20). This shows that

lim
n→∞

inf
λ∈[0,1]

inf
{Tn :
√

nTn≥log n}
Pn(λ) = 1− α.

Case 2. T = 0 . In this case,
√

nν
(

βn/nT̂
) p→ 0. The values cI

k are computed as,

P
(

cI
` ≤ ξ̃`n, cI

u ≤ ξ̃un

)
= 1− α. (21)

Again,

Pn(λ) = P(θλ ∈ ΘI
αn) = P(

∫ θλ

θ1

f1n(θ1)dθ1 ≥
cI
`

α`nDn
,
∫ θ1

θλ

f1n(θ1)dθ1 ≥
cI

u
αunDn

)

= P(ξ̃`n + op(1) + α`nDn

∫ θλ

θ1`

f1n(θ1)dθ1 ≥ cI
`, αunDn

∫ θ1u

θλ

f1n(θ1)dθ1 + ξ̃un + op(1) ≥ cI
u).

The validity is ensured by eq. (21) since θ1` = θλ = θ1u.

C.3. Proof of theorem 4.2. Let

ξ̂` = ω̂`ψn(ξ̂
A
` ) + (1− ω̂`)ξ̂

B
`

be computed from algorithm 1. The target is to show that,

ξ̂`
d→ ξ̃`n.

The proof needs Lemmas C.4 to C.9.
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Lemma C.4. Suppose that the assumptions required by theorem 4.2 are satisfied. Then θ̂`
p→ θ` when

ΘI2(θ1`) is a singleton.

Proof. This follows automatically from theorem 3.1. �

Lemma C.5. Suppose that the assumptions required by theorem 4.2 are satisfied. Then α̂`/α`n
p→ 1.

Proof. Suppose θ2u > θ2`, then

M̂` =
√

βn

∫
exp(−‖

√
βnn−1∆n(θ̂1`, θ2) +

√
βnEm1(θ̂1`, θ2)‖2

+)dθ2

=
√

βn

∫
θ2∈[θ2`,θ2u ]

exp(−‖
√

βnn−1∆n(θ̂1`, θ2) +
√

βnEm1(θ̂1`, θ2)‖2
+)dθ2

+
√

βn

∫
θ2 /∈[θ2`,θ2u ]

exp(−‖
√

βnn−1∆n(θ̂1`, θ2) +
√

βnEm1(θ̂1`, θ2)‖2
+)dθ2

= Â + B̂.

I show Â/
√

βn
p→ θ2u − θ2` and for some C > 0, B̂ ≤ C with probability 1. For some θ∗1` between

θ1` and θ̂1`

Â/
√

βn =
∫

θ2∈[θ2`,θ2u ]
exp(−‖

√
βnn−1∆n(θ̂1`, θ2) +

√
βnQ1(θ

∗
1`, θ2)(θ̂1` − θ1`) + op(1)‖2

+)dθ2

=
∫

θ2∈[θ2`,θ2u ]
exp(−‖

√
βnn−1∆n(θ̂1`, θ2) +

√
βnn−1Q1(θ

∗
1`, θ2)

√
n(θ̂1` − θ1`) + op(1)‖2

+)dθ2

p→ θ2u − θ2`.

The convergence in probability is because of assumption 4.3 and that θ̂1` is
√

n–consistent.

Now I show B̂/
√

βn → 0. For some constant C3,

∫
θ2>θ2u

√
βn exp(−‖

√
βnn−1∆n((θ̂1`, θ2) +

√
βnEm1((θ̂1`, θ2)‖2

+)dθ2

=
∫

h2∈R+
exp(−‖

√
βnn−1∆n(θ̂1`, θ2u +

h2√
βn

) +
√

βnEm1(θ̂1`, θ2u +
h2√
βn

)‖2
+)dh2

≤
∫

h2∈R
exp(‖

√
βnn−1∆n(θ̂1`, θ2u +

h2√
βn

)‖2 − ‖
√

βnEm1(θ̂1`, θ2u +
h2√
βn
‖2
+)dh2

≤
∫

h2∈R
exp(‖

√
βnn−1∆n(θ̂1`, θ2u +

h2√
βn

)‖2 − ‖C3h2‖2
+)dh2

p→ C∗ > 0.

50



The last inequality holds because (θ̂1`, θ2u + h2/
√

βn) /∈ ΘI for large sample as a result of θ̂1` is

roon–n–consistent and βn/n→ 0. Hence,

√
βnEm1(θ̂1`, θ2u +

h2√
βn

) ≥ C3h2.

Now consider the case where ΘI2(θ1`) is a singleton. The proof will be similar to the proof of part

Bn above.

The result that α̂`/α`n
p→ 1 follows by a similar argument as in lemma C.2. �

Lemma C.6. Suppose that the assumptions required by theorem 4.2 are satisfied, then supθ2∈Θ2
‖γ̂(θ̂1`, θ2)−

γn(θ1`, θ2)‖ = op(1).

Proof. It is sufficient to show the conclusion holds for each element γjn. Suppose first that Em(j)(Wi, (θ1`, θ2)) =

0 for some K > 0. I know that in this case γjn
p→ 1. It remains to show that γ̂jn(θ̂1`, θ2)

p→
1 too. If 1√

n ∑i m(j)(Wi, (θ̂1`, θ2)) ≥ 0, γ̂jn(θ̂1`, θ2) = 1; so I only consider the case in which
1√
n ∑i m(j)(Wi, (θ̂1`, θ2)) < 0.

γ̂jn(θ̂1`, θ2) = exp

− βn

n

∣∣∣∣∣ 1√
n ∑

i
m(j)(Wi, (θ̂1`, θ2))

∣∣∣∣∣
2


= exp
(
− βn

n

∣∣∣∆nj(θ) + Em(j)(Wi, (θ1`, θ2)) + Q1(θ1`, θ2)
√

n(θ̂1` − θ1`)
∣∣∣2) p→ 1.

The convergence is because ∆nj(θ1`, θ2)
d→ ∆j(θ1`, θ2),

βn
n → 0 by assumption 4.3, as well as

√
n(θ̂1` − θ1`) = Op(1). Note that the convergence holds uniformly over θ2 by assumptions 3.1

and 3.7.

Now I consider the case in which there exist a δ such that Em(j)(Wi, (θ1`, θ2)) < −δ, then for large

n,

γ̂jn(θ̂1`, θ2) = exp

− βn

n

∣∣∣∣∣ 1√
n ∑

i
m(j)(Wi, (θ̂1`, θ2))

∣∣∣∣∣
2


= exp
(
− βn

n

∣∣∣∆nj(θ) +
√

nEm(j)(Wi, (θ1`, θ2)) + Q1(θ1`, θ2)
√

n(θ̂1` − θ1`)
∣∣∣2)

≤ exp
(
− βn

n
∣∣∆nj(θ)−

√
nδ/2 + Q1(θ1`, θ2)

√
n(θ̂1` − θ1`)

∣∣2) .

The term on the right hand side converges in probability to zero. �
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Lemma C.7. Suppose that the assumptions required by theorem 4.2 are satisfied, then supθ2
‖Q̂(θ̂1`, θ2)−

Q(θ1`, θ2)‖ = op(1).

Proof. The uniform consistency of Q̂ follows from the assumption 4.4 and the compactness of Θ,

(see lemma 2.1, Newey and McFadden, 1994). �

Lemma C.8. Suppose that the assumptions required by theorem 4.2 are satisfied, then supθ2,θ′2,j,j′ |Ĥθ2,θ′2,j,j′ −
Hθ2,θ′2,j,j′ | = op(1).

Proof. This follows from assumptions 4.4 and 4.5 and the compactness of Θ. �

Let T1, T2 · · · be a sequence of compact subsets of R− such that ∪∞
t=1Tt = R−.

Lemma C.9. Suppose that the assumptions required by theorem 4.2 are satisfied, then ∆̂ w→ ∆ on L ∞(Tt ×
Θ2).

Proof. The weak convergence of ∆̂ follows from the consistency of Ĥθ2,θ′2,j,j′ to Hθ2,θ′2,j,j′ . �

Now I can show that ξ̂ A
`

d→ ξ A
` and ξ̂B

`
d→ ξB

` . Given lemmas C.5 to C.9, the convergences of ξ̂ A
`

and ξ̂B
` can be shown in a similar way as in Jun, Pinkse, and Wan (2009), Appendix F. Then the

convergence of ξ̂` follows from continuous mapping theorem.

Note first by Skorokhod representation theorem (see theorem 25.6, Billingsley, 1995), there exists

a copy (∆∗, ∆̂∗) of (∆, ∆̂) such that they have the same properties and for each ω in the sample space,

∆̂∗(ω)→ ∆∗(ω). Then by dominated convergence theorem (see theorem 16.4, Billingsley, 1995) and

the fact that exp(−‖ · ‖2
+) is integrable (since Q1(θ1`, θ2) < 0 for all θ2 ∈ [θ2`, θ2u]), the convergence

result follows.

C.4. Proof of theorem 4.3. Case 1. ΘI2(θ1`) is a singleton.

Let θI
α` be the left end point of ΘI

αn. Then

P
(

θ1n ∈ ΘI
αn

)
≤ P

(
θ1n ≤ θI

α`

)
= P

(∫ θ1n

θ1

f1n(θ1)dθ1 ≥
cI
`

α`nDn

)

= P

(
ξ` −

∫ 0

−h∗1

∫
exp(−‖∆(θ`) + κ(θ`) + Q(θ`)h‖2

+)dh ≥ cI
`,
∫ θ1

θ1n

f1n(θ1)dθ1 ≥
cI

u
α`nDn

)

= P

(
ξ` −

∫ 0

−h∗1

∫
exp(−‖∆(θ`) + κ(θ`) + Q(θ`)h‖2

+)dh ≥ cI
`

)
+ op(1).
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Hence as h∗1 → ∞,

fh(h∗1) = lim
n→∞

P
(

θ1n /∈ ΘI
αn

)
≥ lim

n→∞
P

(∫ −h∗1

−∞

∫
exp(−‖∆(θ`) + κ(θ`) + Q(θ`)h‖2

+)dh > cI
`

)
→ 1.

Case 2. ΘI2(θ1`) is an interval. Let θI
α` be the left end point of ΘI

αn. Then

P
(

θ1n ∈ ΘI
αn

)
≤ P

(
θ1n ≥ θI

α`

)
= P

(∫ θ1n

θ1

f1n(θ1)dθ1 ≥
cI
`

α`nDn

)

= P

(
ξ` −

∫ 0

−h∗1

∫
θ2∈[θ2`,θ2u ]

exp(−‖∆(θ1`, θ2) + κ(θ1`, θ2) + Q1(θ1`, θ2)h1‖2
+)dθ2dh1 ≥ cI

`

)
+ op(1).

It follows that as h∗1 → ∞,

fh(h∗1) = lim
n→∞

P
(

θ1n /∈ ΘI
αn

)
≥ lim

n→∞
P

(
−
∫ −h∗1

−∞

∫
θ2∈[θ2`,θ2u ]

exp(−‖∆(θ1`, θ2) + κ(θ1`, θ2) + Q1(θ1`, θ2)h1‖2
+)dθ2dh1 > cI

`

)
→ 1.

Note that the above argument does not depend on the length of the interval [θ1`, θ1u].

C.5. Proof of theorem 4.4. lemmas C.10 and C.11 show that the tuple (mg, Θg, Θg
I ) satisfies assump-

tions 3.1 to 3.3, 3.5, 3.7, 3.8 and 4.1 provided the tuple (m, Θ, ΘI) satisfy corresponding assumptions.

Then I can just apply theorems 4.1 and 4.2. Given assumption 4.7, without loss of generality, I

assume that g is strictly increasing in its first argument.

Lemma C.10. Suppose that assumptions 3.1, 3.2, 4.1, 4.2 and 4.6 to 4.8 are satisfied, then Θg
I satisfies

assumptions 3.1, 3.2, 4.1 and 4.2.

Proof. Remember that Θg and Θg
I are defined as,

Θg = {(θg
1 , θ

g
2 ) : θ ∈ Θ, θ

g
2 = θ2, θ

g
1 = g(θ)}, Θg

I = {(θg
1 , θ

g
2 ) : θ ∈ ΘI , θ

g
2 = θ2, θ

g
1 = g(θ)}.

Assumptions 3.1 and 3.2 holds straightforwardly by assumption 4.6. Assumption 4.1 is satisfied

because g is weakly monotone in θ2. Assumption 4.2 because g is strictly monotone in its first

argument.

�
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Lemma C.11. Emg
(j)(θ

g) ≤ 0 j = 1, 2, · · · , J if and only if θg ∈ Θg
I . Meanwhile, if assumptions 3.3

to 3.5, 3.7 and 3.8 are satisfied, then (mg, Θg
I , Θg) also satisfies assumptions 3.3 to 3.5, 3.7 and 3.8.

Proof. Let θg ∈ Θg
I be arbitrary. Then there exists a θ1 ∈ ΘI1 such that θ1 = g−1(θ

g
1 ; θ

g
2 ). It is also

known that θ
g
2 ∈ ΘI2, then it follows that (g−1(θ

g
1 ; θ

g
2 ), θ

g
2 ) ∈ ΘI , hence Em(j)(g−1(θ

g
1 ; θ

g
2 ), θ

g
2 ) ≤ 0.

To see the inverse, suppose that Emg
(j)(θ

g) ≤ 0 for some θg. If θg /∈ Θg
I1, then either θ

g
2 /∈ ΘI2

or θ
g
1 /∈ Θg

I1, or both. If θ
g
2 /∈ ΘI2, It is a contradiction already. If θ

g
1 /∈ Θg

I1, then g−1(θ
g
1 ; θ

g
2 ) /∈ ΘI1,

contradiction again. So I can conclude that θg ∈ Θg
I .

Assumptions 3.3, 3.5 and 3.7 holds for (mg, Θg, Θg
I ) because of the strict monotonicity of g in θ1

and the boundedness of the first derivative over Θ. I show that assumption 3.8 holds too. Without

loss of generality, let g is strictly increasing in its first argument and weakly increasing in θ2.

Let θ
g
1` is lower bound of Θg

I1. Let Θg
I2(θ

g
1`) = {θg∗

2 }. Let Jg be the set of moment equations

which are binding at (θg
1`, θ

g∗
2 ), i.e., Emg

(j)(θ
g
1`, θ

g∗
2 ) = 0 for all j ∈ Jg. But Em(j)(g−1(θ

g
1`, θ

g∗
2 ), θ

g∗
2 ) =

Emg
(j)(θ

g
1`, θ

g∗
2 ), so the j–th moment m(j) is also binding at (g−1(θ

g
1`, θ

g∗
2 ), θ

g∗
2 ). It follows that,

QgJg(θ
g
1`, θ

g∗
2 ) =

∂Emg

∂θg |θg=(θ
g
1`,θg∗

2 ) = QJ (g−1(θ
g
1`; θ

g∗
2 ), θ

g∗
2 )× G

where QJ (g−1(θ
g
1`; θ

g∗
2 ), θ

g∗
2 ) has maximum rank by assumption 4.8 and G is a d by d matrix takes

following form 

∂g−1

∂θ1

∂g−1

∂θ2
· · · ∂g−1

∂θd

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


Note that ∂g−1

∂θ1
6= 0. It is easy to verify that (QgJ )′(QgJ ) = G ′QJ ′QJ G is positive definite. �

C.6. Proof of theorem 4.5. When θ1` < θ1u, the conclusion follows immediately. Now consider the

case θ1` = θ1u. In this case, since ξ` = ξu = ξ and cII
` = cII

u = cII. Let θα
u and θα

u be the two end points

of the confidence set.

P([θ1`, θ1u] ⊆ ΘII
αn) = P(θα

` ≤ θ1` ≤ θα
u)

= P(
∫ θ1`

θ1

f1n(θ1)dθ1 ≤ 1− cII

αnDn
,
∫ θ1`

θ1

f1n(θ1)dθ1 ≥
cII

αnDn
)

= P(
∫ θ1

θ1`

f1n(θ1)dθ1 ≥
cII

αnDn
,
∫ θ1`

θ1

f1n(θ1)dθ1 ≥
cII

αnDn
)

= P(ξ ≥ cII) = 1− α.
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C.7. Proof of lemma 4.2.

Lemma C.12. Let 0 < M < +∞. Let A be the event that

min
h2∈[−M,M]

{‖∆X + ∆Y + h2‖2
+ + ‖∆X − ∆Z − h2‖2

+} < ‖∆X + ∆Y‖2
+ + ‖∆X − ∆Z‖2

+,

then P(A ) > 0.

Proof. Consider the even B = {0 < ∆X − ∆Z < −∆X − ∆Y < M}. Since ∆W are all independent

mean zero normal random variables, it is straightforward to see that P(B) > 0. Given B, for any

h2 ∈ (∆X − ∆Z,−∆X − ∆Y),

‖∆X + ∆Y + h2‖2
+ + ‖∆X − ∆Z − h2‖2

+ = 0 < ‖∆X + ∆Y‖2
+ + ‖∆X − ∆Z‖2

+.

So the conclusion follows directly. �

Lemma C.13. Let 0 < M < +∞. Then suph2∈[−M,M] |ĉPro(1, 1)− ĉPro(1, 1 + h2√
n )| = op(1).

Proof. Note that ĉPro(1, 1) is the 1− α quantile of

‖∆X,n + ∆Y,n + κ̂1(1, 1)‖2
+ + ‖∆X,n − ∆Z,n + κ̂2(1, 1)‖2

+,

and ĉPro(1, 1 + h2/
√

n) is the 1− α quantile of

‖∆X,n + ∆Y,n(1 + h2/
√

n) + κ̂1(1, 1 + h2/
√

n)‖2
+ + ‖∆X,n − ∆Z,n + κ̂2(1, 1 + h2/

√
n)‖2

+.

For κ̂, I use the ϕ
(1)
j function in Andrews and Soares (2010). Note that 1

n ∑n
i=1 m1i(Wi, (1, 1)) =

X̄ + Ȳ > −
√

log n/n with probability approaching 1, so κ̂1(1, 1)
p→ 0. The same conclusion holds

for κ̂2(1, 1). Likewise, 1
n ∑n

i=1 m1i(Wi, (1, 1+ h2/
√

n)) = X̄ + Ȳ(1+ h2/
√

n) = κ̂1(1, 1) + Ȳh2/
√

n >

−
√

log n/n with probability approaching 1 since |h2| ≤ M. So κ̂1(1, 1 + h2/
√

n)
p→ 0.

Then conclusion of the lemma follows because suph∈[−M,M] ∆W,n
h2√

n = op(1) and the continuity

of both random variables at their 1− α quantile. �

Now I show that the conclusion of the lemma 4.2 holds. For large n and some large constant

M > 0,

P(θPro,I
1α ≤ 1) = P(∃θ2 : (1, θ2) ∈ ΘPro,I

α )

= 1−P(∀θ2 : (1, θ2) /∈ ΘPro,I
α ) = 1−P(∀θ2 : nLn(1, θ2) > ĉPro(1, θ2))

= 1−P(∀θ2 : ‖∆X,n + ∆Y,nθ2 +
√

n(θ2 − 1)‖2
+ + ‖∆X,n − ∆Z,nθ2 −

√
n(θ2 − 1)‖2

+ > ĉPro(1, θ2))
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≥ 1−P(∀h2 ∈ [−M, M] : ‖∆X,n +∆Y,n(1+
h2√

n
)+ h2‖2

++ ‖∆X,n−∆Z,n(1+
h2√

n
)− h2‖2

+ > ĉPro(1, 1+
h2√

n
))

= 1−P(∀h2 ∈ [−M, M] : ‖∆X + ∆Y + h2‖2
+ + ‖∆X − ∆Z − h2‖2

+ > cPro(1, 1) + op(1))

= 1−P( min
h2∈[−M,M]

{‖∆X + ∆Y + h2‖2
+ + ‖∆X − ∆Z − h2‖2

+} > cPro(1, 1)) + o(1).

The second last equality comes from the fact that ∆W,n
d→ ∆W and ĉPro(1, 1 + h2√

n )
p→ ĉPro(1, 1)

uniformly over [−M, M].

Note that cPro(1, 1) is the (1− α) quantile of ‖∆X +∆Y‖2
++ ‖∆X−∆Z‖2

+, and because minh2∈[−M,M]{‖∆X +

∆Y + h2‖2
+ + ‖∆X − ∆Z − h2‖2

+} is continuous random variable,

P( min
h2∈[−M,M]

{‖∆X + ∆Y + h2‖2
+ + ‖∆X − ∆Z − h2‖2

+} > cPro(1, 1)|A )

< P(‖∆X + ∆Y‖2
+ + ‖∆X − ∆Z‖2

+ > cPro(1, 1)|A ) = α.

It follows,

P(θPro,I
1α ≤ 1) + op(1) ≥ P( min

h2∈[−M,M]
{‖∆X + ∆Y + h2‖2

+ + ‖∆X − ∆Z − h2‖2
+} > cPro(1, 1))

= P( min
h2∈[−M,M]

{‖∆X + ∆Y + h2‖2
+ + ‖∆X − ∆Z − h2‖2

+} > cPro(1, 1)|A )P(A )

+ P( min
h2∈[−M,M]

{‖∆X + ∆Y + h2‖2
+ + ‖∆X − ∆Z − h2‖2

+} > cPro(1, 1)|A C)P(A C)

≥ P( min
h2∈[−M,M]

{‖∆X + ∆Y + h2‖2
+ + ‖∆X − ∆Z − h2‖2

+} > cPro(1, 1)|A )P(A )

+ αP(A C) > αP(A ) + αP(A C) = 1− α.

So I can conclude that P(θPro,I
1α ≤ 1) > 1− α + o(1).

C.8. Proof of lemma 4.3. It can be shown that,

ΘPro,II
1α =

[ −2Ȳ
X̄(Ȳ + Z̄)

+ q(α, n), 2
]

.

where q(α, n) =
√

cPro
α
n (−1 + op(1)). Let θPro,II

1α = −2Ȳ
X̄(Ȳ+Z̄) + q(α, n). I want to show that P(θPro,II

1α ≤
1) > 1− α.

P([1, 2] ⊆ [θPro,II
1α , 2]) = P(θPro

α ≤ 1) = P(
−2Ȳ

X̄(Ȳ + Z̄)
− 1 ≤

√
cPro

α

n
+ op(

1
n
))

= P(
1
2
‖2∆n,X + ∆n,Y − ∆n,Z‖2

+ ≤ cPro
α + o(1)) = P(

1
2
‖2∆X + ∆Y − ∆Z‖2

+ ≤ cPro
α ) + o(1)
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≥ P(‖∆X + ∆Y‖2
+ + ‖∆X − ∆Z‖2

+ ≤ cPro
α ) + o(1)

> P(C ≤ cPro
α ) + o(1) = 1− α + o(1).

The strict inequality holds because ‖∆X + ∆Y‖2
+ + ‖∆X − ∆Z‖2

+ are continuously distributed on

(0,+∞) and P(C > ‖∆X + ∆Y‖2
+ + ‖∆X − ∆Z‖2

+) > 0, as shown in the following Lemma.

Lemma C.14. In example D, P(C ≥ ‖∆X + ∆Y‖2
+ + ‖∆X − ∆Z‖2

+) = 1 and the strict inequality holds

with positive probability.

Proof. Since when θ belongs to the interior of ΘI , κ(θ) = −∞ and C = 0, the sup is necessarily

achieved on the boundary of ΘI : ∂ΘI . P(C ≥ ‖∆X + ∆Y‖2
+ + ‖∆X − ∆Z‖2

+) = 1 because (1, 1)

belongs to the boundary.

In this example, C takes the form of

C = max{ sup
θ1∈[1,2]

θ1‖∆X + ∆Y‖2
+, sup

θ1∈[1,2]
‖(∆X + ∆Z)θ1 − 2∆Z‖2

+}.

Let A be the event such that ∆X + ∆Y > 0, ∆X − ∆Z < 0 and ∆X + ∆Z > 0, then under event A,

C = max{2(∆X + ∆Y)
2, 4∆2

X} ≥ 2(∆X + ∆Y)
2 > ‖∆X + ∆Y‖2

+ + ‖∆X − ∆Z‖2
+.

Event A occurs with probability strictly greater than 0 under this assumption that X, Y and Z are

independent. So I can conclude that

P(C = ‖∆X + ∆Y‖2
+ + ‖∆X − ∆Z‖2

+) ≤ 1−P(A) < 1.

�

APPENDIX D. ALGORITHM

D.1. Algorithm for theorem 4.2. Now I summarize the procedure of computing the confidence set.

Algorithm 1. Construct confidence set by simulation. Let S, R and B be a some positive integers.

(1) Estimation.

(a) Choose one initial value θ(0) ∈ Θ. One can choose θ(0) such that m̄(j)(θ(0)) = 0 for

some j.

(b) Construct an MCMC chain {θ(b)}B
b=0 based on fn using Metropolis–Hastings Algorithm

(See Robert and Casella, 2004, Chapter 7). Obtain a stationary chain {θ(b)}B
b=B′ .
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(c) Obtain the first component θ1(b) of θ(b) for all B′ ≤ b ≤ B. Then {θ1(b)}B
b=B′ are random

draws from the marginal quasi–posterior f1n.

(d) Sort {θ1(b)}B
b=B′ and compute θ̂1` and θ̂1u using eq. (4).

(2) Draw another stationary MCMC chain {θ2(b)} for θ2 from fn(θ̂1`, θ2) using Metropolis–

Hastings Algorithm.

(3) Take S random draws {θ2,s}S
s=1 from the chain {θ2(b)} with replacement.

(4) Replace Mn(θ1`) by

M̂` =

√
βn

S

S

∑
s=1

exp(−βn‖m̄(θ̂1`, θ2,s)‖2
+)

fn(θ̂1`, θ2,s)
.

(5) Compute α̂` and ω̂` using M̂` in place of Mn(θ1`).

(6) Compute θ̂2 = (1/S)∑S
s=1 θ2,s.

(7) For each (h1,s, θ2,s), compute γ̂(θ̂1`, θ2,s).

(8) Independently draw {(h1,s, h2,s)}S
s=1 from bivariate normal distribution with identity co-

variance matrix.12

(9) For each (h1,s, θ2,s), estimate Q̂1(θ̂1`, θ2,s) =
∂m̄(θ)

∂θ1
|θ1=θ̂1`,θ2=θ2,s

.

(10) Let Ĥ be a JS by JS matrix whose [(s− 1)× J + j] by [(s′ − 1)× J + j′]–th element equals

1
n

n

∑
i=1

[
m(j)(Wi, (θ̂1`, θ2,s))− m̄(j)(θ̂1`, θ2,s)

]
×
[
m(j′)(Wi, (θ̂1`, θ2,s′))− m̄(j′)(θ̂1`, θ2,s′)

]
.

(11) For r = 1, · · · , R, independently across r,

(a) Draw JS by 1 random vector zr, each element is drew independently from standard

normal distribution.

(b) Let z̃r = Ĥ1/2zr. Let ∆j,s,r be the ((s− 1)× J + j)–th element of z̃r.

(c) Compute

ξ̂B
`,r =

1
S

S

∑
s=1

exp(−∑J
j=1 γ̂j(θ̂1`, θ2,s)|∆j,s,r + Q̂1jh1,s|2+)1(h1,s < 0)

φ(h1,s) fn(θ̂1`, θ2,s)
.

(d) Draw a J–vector mean zero normal random variable wr with (j, j′) element in the

variance matrix equals to

1
n

n

∑
i=1

[
m(j)(Wi; θ̂1`, θ̂2)− m̄(j)(θ̂1`, θ̂2)

]
×
[
m(j′)(Wi; θ̂1`, θ̂2)− m̄(j′)(θ̂1`, θ̂2)

]
.

12One can choose covariance matrix be 2(Q̂′Q̂)−1 to improve the performance.
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(e) Compute

ξ̂A
`,r =

1
S

S

∑
s=1

exp(−∑J
j=1 γ̂j(θ̂1`, θ̂2)|wj,r + Q̂′(θ̂1`, θ̂2)hs|2+)1(h1,s < 0)

φ(h1,s)φ(h2,s)
.

(f) Compute ξ̂`,r = ω̂ψn(ξ̂ A
`,r) + (1− ω̂)ξ̂B

`,r.

(12) Obtain the simulated distribution for ξ̂u in a similar way (step 4 to step 11).

(13) Let ĉI
` and ĉI

u be computed using the maximization problem in eq. (13). If there are more

than one solutions, pick an arbitrary one.

(14) Construct the confidence interval Θ̂I
α = [F−1

1n (ĉI
`/(α̂`Dn)), F−1

1n (1− ĉI
u/(α̂uDn))].

APPENDIX E. PROOFS IN SECTION 5

E.1. Sketch of proof of theorem 5.1. For notation simplicity, I ignore the sup–script J .

What I need to show is that limn→∞ P(
√

n(θ̂1` − θ1`) < K) = P(U1 < K) for any K.

P(
√

n(θ̂1` − θ1`) < K) = P

(
ĉ < n

∫ θ1`+K/
√

n

θ

∫
exp(−‖

√
nm̄(θ)‖2

ρn)dθ

)

= P

(
ĉ <

∫ K

−∞

∫
exp(−‖∆n(θ` + h/

√
n) + Q`h + o(‖h‖)‖2

ρn)dh
)

= P

(
ĉ <

∫ U1

−∞

∫
exp(−‖∆n(θ` + h/

√
n) + Q`h + o(‖h‖)‖2

ρn)dh

+
∫ K

U1

∫
exp(−‖∆n(θ` + h/

√
n) + Q`h + o(‖h‖)‖2

ρn)dh
)

Now I show that ĉ−
∫ U1
−∞

∫
exp(−‖∆n(θ` + h/

√
n) + Q`h + o(‖h‖)‖2

ρn)dh
p→ 0, then the conclu-

sion follows. Let µ = (Q′Q)−1Q′∆.

∫ U1

−∞

∫
exp(−‖∆n(θ` + h/

√
n) + Q`h + o(‖h‖)‖2

ρn)dh

=
∫ U1

−∞

∫
exp(−‖∆` + Q`h‖2

ρn)dh + op(1) =
∫ U1

−∞

∫
exp(−‖∆` + Q`h‖2)dh + op(1)

=
∫ U1

−∞

∫
exp(−1

2
(h + µ)′(2Q′`Q`)(h + µ))dh + op(1) =

∫ U1+µ1

−∞

∫
exp(−1

2
ĥ′(2Q′`Q`)ĥ)dĥ + op(1)

=
∫ 0

−∞

∫
exp(−1

2
ĥ′(2Q′`Q`)ĥ)dĥ + op(1) =

1
2

√
π|(Q′`Q`)−1|+ op(1)

p→ π
√
|(2Q′`Q`)−1|.

the integrability of the left hand side can is ensured by lemma A.3. By assumption 5.4, I know

that ĉ−
∫ U1
−∞

∫
exp(−‖∆n(θ` + h/

√
n) + Q`h + o(‖h‖)‖2

ρn)dh
p→ 0. Then it follows that
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P(
√

n(θ̂1` − θ1`) < K) = P

(∫ K

U1

∫
exp(−‖∆n(θ` + h/

√
n) + Q`h + o(‖h‖)‖2

ρn)dh ≥ op(1)
)

= P
(
U1 ≤ K + op(1)

) p→ P (U1 ≤ K) .

APPENDIX F. GENERIC DIMENSION

In the main text, this results are stated for d = 2. In this section, I give a general results for any

d > 2. I state Theorems only. In appendix F.1, I outline the results for
√

n–consistent estimation. In

appendix F.2, I show a parallel result to theorem 4.1 holds, also.

F.1. Estimation. For generic d, I define the quantile

τ̂ = min
{

ĉ
nd/2Dn

,
1
2

}
, (22)

where ĉ
p→ c ≥ 0.

Theorem F.1 (consistency). Suppose that the conditions required by theorem 3.1 are satisfied. Suppose in

addition that τ̂ is defined in eq. (22), then θ̂1`
p→ θ1`.

Sketch of proof. By a similar argument in lemma A.1, it follows that for any η > 0, there exists a

C∗ > 0 such that limn→∞ P(nd/2Dn < C∗) < η. Following the proof to theorem 3.1, limn→∞ P(θ̂1` <

θ1` − ε)→ 0 for any ε > 0.

It remains to show that limn→∞ P(θ̂1` > θ1` + ε)→ 0 for any ε > 0. If θ1` = θ1u, then the proof is

same as before. When θ1` < θ1u, there exists a set

Bn = {θ : θ1 ∈ [θ1`, θ1` + ε],
√

n‖Em1(θ)‖+ ≤ δ∗},

for some δ∗ > 0. By the Lipschitz 3.4, there exists δ∗∗ > 0 such that µ(Bn) ≥ δ∗∗n−(d−1)/2, which

implies that Dn
∫

θ∈Bn
fn(θ)dθ ≥ Op(δ∗∗n−(d−1)/2). On the other hand, Dnτ̂ = ĉ/nd/2 ≤ Op(n−d/2).

So we can conclude that limn→∞ P(θ̂1` > θ1` + ε)→ 0. �

To derive the convergence rate, I require that ĉ
p→ c > 0. As in the main text, I define a estimator

θ̂∗1`

θ̂∗1` = max{F−1
1n
(
τ̂`(θ̂

∗
1`)
)

, θ̃1}, τ̂`(θ̂
∗
1`) = min

{
ĉUn(θ̂∗1`)√

nDn
,

1
2

}
, (23)

where

Un(θ1) =
∫

exp(−n‖m̄(θ1, θ2)‖2
+)dθ2.
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Let ΘI2n(θ1`) be an δ√
n expansion of ΘI2(θ1`) in Θ2:

ΘI2n(θ1`) =

{
θ2 : δ > 0 : d(θ2, ΘI2(θ1`)) ≤

δ√
n

}
.

For any set A ⊂ Rd−1, let µd−1(A) be the Lebesgue measure of A in Rd−1. For example, if

d = 3 and if A is a single point or a line in R2, then µd−1(A) = 0; if A is a rectangle in R2, then

µd−1(A) > 0. Write µn = µd−1(ΘI2n(θ1`)).

Lemma F.1. There exists a d∗ ∈ {0, 1, · · · , d− 1} such that µn = O(1/
√

nd∗).

Proof. Since ΘI2n(θ1`) is a (d− 1)–dimensional bounded set, the measure of which can at most be

O(1); if ΘI2(θ1`) is a singleton, then µn = O(1/
√

nd−1). �

For example, when d = 2, µn = 2δ/
√

n when ΘI2(θ1`) is singleton; µn = θ2u − θ2` + 2δ/
√

n

when ΘI2(θ1`) is an interval. It is d∗ that determines the rate at which the tail mass of the marginal

quasi–posterior decreases to zero.

Lemma F.2.
√

nd∗Un(θ1`) = Op(1). limC→0 limn→∞ P(
√

nd∗Un(θ1`) < C) = 0.

Sketch of proof. Note that with probability approaching one, we have

µn inf
θ2∈ΘI2n(θ1`)

exp(−‖m̄(θ1`, θ2)‖2
+) ≤ Un(θ1`) ≤ µn sup

θ2∈ΘI2n(θ1`)

exp(−‖m̄(θ1`, θ2)‖2
+).

I show that infθ2∈ΘI2n(θ1`)
exp(−‖m̄(θ1`, θ2)‖2

+) = Op(1). The sup is bounded by one already.

Note that for all θ2 ∈ ΘI2n(θ1`),

− ‖m̄(θ1`, θ2)‖+ = −‖∆n(θ1`, θ2) +
√

nEm1(θ1`, θ2)‖+

≥ −‖∆n(θ1`, θ2)‖+ − ‖
√

nEm1(θ1`, θ2)‖+ ≥ −‖∆n(θ1`, θ2)‖+ − δ.

The last inequality holds because by assumption 3.4, for all θ2 ∈ ΘI2n(θ1`), ‖
√

nEm1(θ1`, θ2)‖+ ≤
√

nd(θ2, ΘI2(θ1`)) ≤ δ. ∆n(θ1`, θ2) is stochastic bounded by assumption 3.5. �

I focus my attention to the models in which ΘI2(θ1`) and ΘI2(θ1u) satisfies assumption F.1.

Assumption F.1. The d∗ = 0 or d∗ = d− 1.

Assumption F.1 is more restrictive than assumption 4.1, which I made for the models with d = 2.

There, assumption 4.1 is made for the sake of notational simplicity; here assumption F.1 excludes the

cases in which ΘI2(θ1`) is not a singleton but has zero Lebesgue measure in Rd−1.

61



Theorem F.2 (
√

n–consistency). Suppose that assumptions 3.1 to 3.5, 3.7 to 3.10 and F.1 Suppose in

addition that θ̂∗1` is defined in eq. (23), then
√

n(θ̂∗1` − θ1`) = Op(1).

Sketch of proof. As before, let

qn(h∗1) =

∫ h∗1√
n(θ1−θ1`)

∫
θ2∈Θ2

exp(−n‖m̄(θ1` +
h1√

n , θ2)‖2
+)dθ2dh1∫

θ2∈Θ2
exp(−n‖m̄(θ1` +

h∗1√
n , θ2)‖2

+)dθ2

. (24)

I will show that for any ε > 0, limn→∞ P(qn(h∗1) ≥ ε) can be made arbitrarily small if I let

h∗1 → −∞; and for any C > 0, limn→∞ P(qn(h∗1) < C) can be made arbitrarily small if I let

h∗1 → +∞.

When d∗ = d− 1, ΘI2(θ1`) has positive measure in Rd−1. Consider h∗1 → −∞ first. It can be

shown that

P(qn(h∗1) ≥ ε) = P

∫ h∗1√
n(θ1−θ1`)

∫
θ2∈ΘI2(θ1`)

exp(−‖ψ(h1, θ2) + op(1)‖2
+)dθ2 + op(1)∫

θ2∈ΘI2(θ1`)
exp(−‖ψ(h∗1 , θ2) + op(1)‖2

+)dθ2 + op(1)
≥ ε


≤ P

∫ h∗1√
n(θ1−θ1`)

∫
θ2∈ΘI2(θ1`)

exp(−‖ψ(h1, θ2)‖2)dh1 + op(1)∫
θ2∈ΘI2(θ1`)

exp(−‖ψ(h∗1 , θ2)‖2) + op(1)
≥ ε| inf

θ2∈ΘI2(θ1`)
ψ(h∗1 , θ2) ≥ 0


×P( inf

θ2∈ΘI2(θ1`)
ψ(h∗1 , θ2) ≥ 0) + P( inf

θ2∈ΘI2(θ1`)
ψ(h∗1 , θ2) < 0) + op(1),

where ψ(h1, θ2) = ∆J (θ1`, θ2) + QJ1 (θ1`, θ2)h1 +
√

nEmJ (θ1`, θ2). Note that ‖√nEmJ (θ1`, θ2)‖+ is

bounded over ΘI2(θ1`). Hence limn→∞ P(infθ2∈ΘI2(θ1`)
ψ(h∗1 , θ2) < 0) can be made arbitrarily small

by letting h∗1 → −∞. It remains to verify that the limit of the first probability on the right hand side

goes to zero as h∗1 → −∞.

P

∫ h∗1√
n(θ1−θ1`)

∫
θ2∈ΘI2(θ1`)

exp(−‖ψ(h1, θ2)‖2)dh1∫
θ2∈ΘI2(θ1`)

exp(−‖ψ(h∗1 , θ2)‖2)
≥ ε


= P

(∫
θ2∈ΘI2(θ1`)

[∫ h∗1

−∞
exp(−‖ψ(h1, θ2)‖2)dh1 − ε exp(−‖ψ(h∗1 , θ2)‖2)

]
dθ2 ≥ 0

)

≤ P

(
sup

θ2∈ΘI2(θ1`)

{∫ h∗1

−∞
exp(−‖ψ(h1, θ2)‖2)dh1 − ε exp(−‖ψ(h∗1 , θ2)‖2)

}
≥ 0

)
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= P

 sup
θ2∈ΘI2(θ1`)

∫ h∗1
−∞ exp(−‖ψ(h1, θ2)‖2)dh1

exp(−‖ψ(h∗1 , θ2)‖2 > ε


The probability converges to zero as h∗1 → −∞ because supθ2∈ΘI2(θ1`)

‖∆(θ1`, θ2)‖ is bounded in

probability.

Now consider h∗1 → +∞. First note that the
√

nd∗ times the denominator in eq. (24) is Op(1),

following a similar argument in lemma F.2 . It remains to show that
√

nd∗ times the numerator in

eq. (24) diverges in probability as h∗1 → ∞.

√
nd∗

∫ h∗1
√

n(θ1−θ1`)

∫
θ2

exp(−n‖m̄(θ1` +
h1√

n
, θ2)‖2

+)dθ2dh1 ≥
√

nd∗+1
∫

θ∈C ∗n
exp(−n‖m̄(θ)‖2

+)dθ

≥
√

nd∗+1µ(C ∗n ) inf
θ∈C ∗n

exp(−n‖m̄(θ)‖2
+),

where

C ∗n = {θ : θ1` ≤ θ1` ≤ θ1 + h∗1/
√

n, θ2 ∈ ΘI2n(θ1`)}.

Note that there exists some C∗ such that
√

nd∗+1µ(C ∗n ) ≥ C∗h∗1 → ∞ as h∗1 → ∞. Note that

infθ∈C ∗n exp(−n‖m̄(θ)‖2
+) is Op(1) by assumption 3.5, we can conclude that numerator in eq. (24)

diverges in probability.

The case where d∗ = 0, i.e., ΘI2(θ1`) is a singleton, can be shown in a similar way as in lemma A.8.

�

F.2. Inference. In this section I discuss the inference about θ01. Lemma F.3 is analog to lemma 4.1.

Lemma F.3. Suppose that assumptions 3.1 to 3.5, 3.7 to 3.9, 4.2, 4.3 and F.1 are satisfied. If ΘI2 = {θ2`} is

a singleton, then

√
ndDnF1n(θ1`)

d→ ξA
` =

∫
h1≤0

∫
h2∈R

exp
(
−‖∆J (θ`) + QJ (θ`)h‖2

+

)
dh. (25)

If µd−1{ΘI2(θ1`)} > 0, then

√
nDnF1n(θ1`)

d→ ξB
` =

∫
h1≤0

∫
θ2∈ΘI2(θ1`)

exp
(
−‖∆J (θ1`, θ2) + QJ1 (θ1`, θ2)h1‖2

+

)
dθ2dh1. (26)

Proof. The proof is similar to the proof of lemma 4.1. �
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For inference, let τIII
` = cIII

` /(α`nDn) and τIII
u = cIII

u /(αunDn), where cIII
` and cIII

u are solution to

the following problem

(cIII
` , cIII

u ) = argmin
(c`,cu)∈R+×R+

∣∣∣∣F−1
1n

(
c`

α`nDn

)
− F−1

1n

(
1− cu

αunDn

)∣∣∣∣ (27)

s.t. P

(
c` ≤ ξ̃`n, cu ≤

√
nν

(
βn

nT̂

)
+ ξ̃un

)
= 1− α,

P

(
cu ≤ ξ̃un, cl ≤

√
nν

(
βn

nT̂

)
+ ξ̃`n

)
= 1− α.

If there are more than one solutions, I take an arbitrary one. I thus construct a confidence interval

for θ01 as ΘIII
αn = [F−1

1n
(
τIII
`

)
, F−1

1n
(
1− τIII

u
)
].

Theorem F.3 (Inference). Suppose that assumptions 3.1 to 3.5, 3.7 to 3.9, 4.1 to 4.3 and F.1 are satisfied.

Then

lim
n→∞

inf
θ01∈[θ1`,θ1u ]

P(θ01 ∈ ΘIII
αn) = 1− α.

Proof. The proof is similar to the proof of theorem 4.1. �

Θ̂III
α can be constructed using algorithm 1.
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