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Abstract

This paper considers the identification and estimation of an extension of Roy’s

model (1951) of occupational choice, which includes a non-pecuniary component in

the decision equation and allows for uncertainty on the potential earnings. This

framework is well suited to various economic contexts, including educational and

sectoral choices, or migration decisions. We show that the effects of covariates on

earnings are identified under exclusion restrictions or at infinity. The non-pecuniary

component can then be point or set identified without any other exclusion restriction,

using the detailed structure of the model alone. Point identification is achieved if at

least one covariate is continuous, while bounds are obtained otherwise. As a result,

the distribution of the ex ante monetary returns can be point or set identified without

any instrument. We propose a three-stage semiparametric estimation procedure for

this model, which yields root-n consistent and asymptotically normal estimators. We

apply our results to the educational context, by providing new evidence from French

data that non-pecuniary factors are a key determinant of higher education attendance

decisions.
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1 Introduction

Self-selection is probably one of the major issue economists have to deal with when trying
to measure causal effects such as, among others, returns to education, returns to sectoral
choice as well as migration benefits. The seminal Roy’s model (1951) of occupational
choice can be seen as an extreme setting of self-selection, where agents choose the sector
which provides them with the higher wage. The idea underlying this model has been
very influential in the analysis of choices of participation to the labor market (Heckman,
1974), union versus nonunion status (Lee, 1978, Robinson & Tomes, 1984), public versus
private sector (Dustmann & van Soest, 1998), college attendance (Willis & Rosen, 1979),
migration (Borjas, 1987), training program participation (Ashenfelter & Card, 1985, Ham
& LaLonde, 1996) as well as occupation (Dolton et al., 1989).

The standard Roy model is, however, restrictive in at least two dimensions. First, non-
pecuniary aspects matter much in general. For instance, in the context of educational
choice, it is most often assumed that individuals consider not only the investment value of
schooling, which is related to wage returns, but also the non-pecuniary consumption value
of schooling, which is related to preferences and schooling ability. Recent empirical evi-
dence suggests that these non-pecuniary factors are indeed a key determinant of schooling
decisions (see, e.g., Carneiro et al., 2003, or Beffy et al., 2010). Non-pecuniary aspects such
as working conditions may also matter when choosing an occupation. Similarly, migration
decisions are likely to be driven both by the ex ante monetary returns and the psychic
costs associated with the decision to migrate (Bayer et al., 2010).1 Second, as emphasized
by a recent stream of the literature on schooling choices (see Cunha & Heckman, 2007,
for a survey), agents most often do not anticipate perfectly their potential earnings in
each sector at the moment of their decision. Because of ex ante uncertainty, their decision
depends on expectations of these potential earnings rather than on their true values.

In this paper, we explore what can be nonparametrically identified in a generalized Roy
model including these two aspects, when relying on its detailed structure. We first develop
two strategies for identifying the covariates effects on sector-specific earnings. The first
one is based on exclusion restrictions. We require either a standard instrument, i.e. a
variable affecting the selection probability but not the potential earnings, or sector-specific
variables a la Heckman & Sedlacek (1985, 1990). The second strategy is to use an ar-
gument at infinity, relying on a recent result from a companion paper (D’Haultfoeuille &
Maurel, 2009). We then turn to the identification of the non-pecuniary component. We

1We define ex ante monetary returns as the returns expected by the agent at the time of the choice.
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show that without any other exclusion restriction, this component is point identified as
soon as at least one covariate is continuous. When all covariates are discrete, we provide
bounds on this non-pecuniary component. Noteworthy, our results are neither based on a
large support condition on the covariates nor on parametric restrictions. Finally, we show
that the identification of the covariates effects and the non-pecuniary component conveys
information about the distribution of treatment effects. Even if no instrument is available,
we obtain bounds on the distribution of the monetary benefits anticipated by the agents,
which correspond in this setting to marginal treatment effects (see Heckman & Vytlacil,
2005). Standard average treatment effects are point identified if the probability of selection
ranges from zero to one, a result in line with the one of Heckman & Vytlacil (2005) in the
case of standard instrumental variable strategies.

On a related ground, a recent paper by Bayer et al. (2010) also considers the identification
of a generalized Roy model accounting for non-pecuniary factors. Our approach differs
from theirs in two main aspects. First, Bayer et al. (2010) do not account for ex ante un-
certainty, which may often be large. Second, their identification results are obtained under
alternative assumptions.2 They first show that the non-pecuniary factors associated with
each choice alternative and the unconditional wage distributions are identified provided
that the distribution of pecuniary returns has a finite lower bound. Although appealing
in that it does not require any exclusion restriction, this condition may be restrictive, in
particular when using log wages in utility functions, as for instance in Willis & Rosen
(1979).3 Bayer et al. (2010) alternatively prove identification under the assumption of in-
dependence between alternative-specific wages and the exclusion restriction that a variable
affects the non-pecuniary factors of each choice alternative but not the wage distributions.
When choosing not to use our argument at infinity, we also obtain identification of the
model with similar exclusion restrictions, but the independence condition is not needed in
our framework. This is convenient, since this assumption is restrictive, and much of the
literature considering identification of Roy and the closely related competing risks models
has produced alternative identification results without it (see, e.g., Heckman & Honoré,
1989, Heckman & Honoré, 1990, or Abbring & van den Berg, 2003).

Apart from identification, we also propose a three-stage semiparametric estimation proce-
dure under an index restriction on the effects of the covariates. The first two stages allow
to estimate the covariates effects on potential earnings and correspond to Newey’s method

2Another difference is that their framework readily extends to three sectors or more, while ours does
not.

3We also obtain identification of the full model without any exclusion restriction, using the aforemen-
tioned argument at infinity.
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(2009) for estimating semiparametric selection models. The originality of the proposed
estimation procedure lies in its third stage, which is devoted to the non-pecuniary compo-
nent. This stage simply amounts to estimate an instrumental linear model. The difference
with a standard IV linear model is that both the dependent variable and one of the re-
gressors have to be estimated, this involving in particular a non-parametric regression on
generated covariates. We show that the corresponding estimator is root-n consistent and
asymptotically normal. Monte Carlo simulations indicate that despite its multiple steps,
the estimator performs fairly well in finite samples. They also show that when one of the
regressors is restricted not to act on non-pecuniary factors, a constrained version of our
estimator is substantially more accurate.

Eventually, in the empirical section of the paper, we apply our semiparametric estima-
tion procedure to the context of higher education attendance decisions in France over the
nineties. In a similar spirit as Carneiro et al. (2003), we estimate a model a la Willis
& Rosen (1979), which is extended to account for non-pecuniary factors driving the at-
tendance decision. We use respectively the local average incomes for high school and
higher education graduates as sector-specific regressors, this yielding identification of the
covariates effects on earnings. As may be expected, we cannot reject at the 10% level
the assumption that the local average income for high school graduates only affects the
probability of attendance through the ex ante returns to higher education. This allows us
to apply our constrained estimator, leading to substantial gains of precision. Consistent
with the recent evidence on this question, our results suggest that non-pecuniary factors
are a key determinant of the decision to attend higher education. Comparing the influence
of non-pecuniary factors with the one of ex ante monetary returns to education, we obtain
that the median in the population of the non-pecuniary factors is about 2.5 times larger
than the median of the ex ante returns to higher education, thus highlighting the major
role played by non-pecuniary determinants in the decision to enroll in higher education.
Noteworthy, unlike Carneiro et al. (2003), these results are not driven by a factor structure
on the outcomes.

The remainder of the paper is organized as follows. Section 2 presents the extended Roy
model which is considered throughout the paper and displays our identification results for
the covariates effects on earnings and for the non-pecuniary component. Section 3 develops
a semiparametric estimation procedure for this model, and proves the root-n consistency
and asymptotic normality of the proposed estimators. Section 4 studies the finite-sample
performances of the estimators by simulations. Section 5 applies the preceding estimators
to recover an estimate of the influence of non-pecuniary factors on higher education at-
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tendance decision in France. Finally, Section 6 concludes. The proofs of our results are
deferred to Appendix A.

2 Identification

2.1 The setting

We consider an extension of the Roy model which is obtained by including ex ante uncer-
tainty as well as non-pecuniary factors in the seminal Roy’s model (1951) of occupational
choice. Suppose that there are two sectors 0 and 1 in the economy, and let Yk, k ∈ {0, 1},
denote the individual’s potential earnings in sector k. These earnings are not perfectly
observed by the individual at the time of her decision. Instead, she can only compute the
expectation E(Yk|X, η0, η1), where X are covariates observed by the econometrician and
(η0, η1) are sector-specific productivity terms known by the agent at the time of the choice
but unobserved by the econometrician. We maintain the following assumption throughout
the article.

Assumption 2.1 (Additive decomposition) We have, for k ∈ {0, 1}, E(Yk|X, η0, η1) =

E(Yk|X, ηk) = ψk(X) + ηk. Moreover, X ⊥⊥ (η0, η1).

The assumption that ηk is mean independent of X, i.e. E(ηk|X) is constant, is without
loss of generality. We reinforce here mean independence into independence, ruling out for
instance heteroskedasticity. Such an assumption is commonly made when studying sample
selection models (see, e.g., Newey, 2009) or the standard Roy model (see, e.g., Heckman
and Honoré, 1990). Besides, we let νk = Yk −E(Yk|X, η0, η1) denote the unexpected shock
on Yk and εk = ηk + νk denote the sector-specific residual.4 Apart from the independence
assumption, we do not impose any restriction on (η0, η1, ν0, ν1), thus departing from, e.g.,
Carneiro et al. (2003) who posit a factor structure on the unobservables. Such a restriction
is useful to identify the joint distribution of (η0, η1, ν0, ν1), and thus to test for comparative
advantage or to assess the importance of ex post uncertainty (see Cunha & Heckman,
2007). We do not consider these issues here.

Unlike Roy’s original model, we do not suppose that the sectoral choice is based only on
income maximization. Instead, we suppose that each individual chooses to enter the sector
which yields the highest expected utility, with the expected utility in sector k writing as

4Part of the residual νk may correspond to a measurement error rather than an unexpected shock. We
stick with the latter interpretation throughout the paper for convenience of exposition only.
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Uk = E(Yk|X, η0, η1) + Gk(X). Hence, Uk is assumed to be given by the sum of sector-
specific expected earnings E(Yk|X, η0, η1) and the non-pecuniary component associated
with sector k, Gk(X), which is supposed to depend on the covariates X. Along with the
covariates X, the econometrician observes the chosen sector D, which therefore satisfies

D = 1{U1 > U0}

= 1{η∆ > ψ0(X)− ψ1(X) +G(X)}, (2.1)

where G(X) = (G0 −G1)(X) and η∆ = η1 − η0. Finally, the econometrician also observes
the earnings in the chosen sector, that is

Y = DY1 + (1−D)Y0.

This model is quite general and can be applied to various economic settings, including
sectoral choice in the labor market, immigration or higher education attendance decisions
(see our application in Section 5). It is close to the class of generalized Roy models which
are considered in the treatment effects literature (see, e.g., Heckman & Vytlacil, 2005).5

The difference lies in the fact that in these models, the factor G is random and can be
correlated with (η0, η1, ν0, ν1) in an unspecified way. Imposing our structure has two main
advantages with respect to the treatment effects literature. First, we are able to recover
the non-pecuniary factors entering the selection equation, and compare them with the ex
ante monetary returns which correspond in this setting to the marginal treatment effects.
Second, our approach does not require any exclusion restriction between the selection
equation and the potential earnings. As is shown in the following, the availability of
sector-specific regressors allows to identify the covariates effects and the non-pecuniary
component. Identification can also be achieved without any exclusion restriction, using
arguments at infinity.

We maintain the following assumptions subsequently.

Assumption 2.2 (Normalization) There exists x∗ such that ψ0(x∗) = ψ1(x∗) = 0.

Assumption 2.3 (Restrictions on the errors, 1) E(|εk|) < ∞ for k ∈ {0, 1}. Moreover,
the distribution of η∆ admits a density, denoted by fη∆

, with respect to the Lebesgue mea-
sure.

5We refer here to the static treatment effects literature. See the extension by Heckman & Navarro
(2007), who consider the identification of dynamic discrete choice models used as underlying frameworks
for dynamic treatment effects.
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Assumption 2.2 is an innocuous normalization which stems from the fact that adding a
constant to ψk and subtracting it to ηk does not modify the model. Assumption 2.3 is a
technical condition which is usual in competing risks or Roy models (see, e.g., Heckman &
Honoré, 1990, or Lee, 2006).

2.2 Identification of the covariates effects on earnings

Before detailing our key result on the identification of the non-pecuniary component G,
we present in this subsection two alternative strategies to recover (ψ0, ψ1). The first is
rather standard and relies on exclusion restrictions, in a similar spirit as in, e.g., Heckman
& Honoré (1990). The second yields identification at infinity, and presents the advantage
of not requiring any exclusion restriction. The first strategy is based on the following
assumption.

Assumption 2.4 (Exclusion restrictions) ψ0 (resp. ψ1) depends only on X̃0 ⊂ X (resp.
on X̃1 ⊂ X). Moreover, X̃0 (resp. X̃1) and P (D = 1|X) are measurably separated, that
is, any function of X̃0 (resp. of X̃1) almost surely equal to a function of P (D = 1|X) is
almost surely constant.

The first part of Assumption 2.4 covers two rather different situations. The first one is
when X = (X̃0, Z) and X̃1 = X̃0. This corresponds to the standard instrumental setting
in sample selection models, where the instrument Z affects the probability of selection but
not the potential outcomes. In our framework, Z would be a determinant of the non-
pecuniary component but not of the potential earnings. The second situation corresponds
to the case where X = (X0, X1, Xc), X̃0 = (X0, Xc) and X̃1 = (X1, Xc). This occurs in
the presence of sector-specific regressors. In this case, no exclusion restriction between
the non-pecuniary factors and the potential earnings is required. This kind of exclusion
restrictions was previously used in particular by Heckman & Sedlacek (1985, 1990) when
estimating parametrically a multiple-sector Roy model of self-selection in the labor market.
We also rely on sector-specific regressors later on in our application.

Intuitively, the measurable separation requirement6 of Assumption 2.4 ensures that ψ0(X)

(or ψ1(X)) and P (D = 1|X) can vary in a sufficiently independent way. This assumption is
weak when, considering the two cases above, Z or (X0, X1) is continuous (see Florens et al.,
2008, for sufficient conditions in this case). However, it may not hold when Z (or (X0, X1))
is discrete. As an illustration, consider a standard instrumental setting where X̃0 and Z are

6We adopt here the terminology of Florens et al. (2008) (see their Assumption A4).
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binary and let Pij = P (D = 1|X̃0 = i, Z = j) for i, j ∈ {0, 1}. Then, provided that P10 and
P11 do not belong to {P00, P01}, there exists a function h such that h(P00) = h(P01) and
h(P10) = h(P11) but h(P00) 6= h(P10). In this case, the function g defined by g(0) = h(P00)

and g(1) = h(P10) is not constant. As a result, X̃0 and P (D = 1|X) are not measurably
separated.

Given the preceding exclusion restrictions and the additive decomposition assumption, it
is possible to identify ψ0 and ψ1 up to location parameters. Then full identification stems
from the normalization of Assumption 2.2. Note that Theorem 2.1 below does not provide
any result on the location parameters. In general, such parameters are identified only at
infinity, i.e. when P (D = 1|X) can be arbitrarily close to zero and one (see, e.g., Heckman,
1990).

Theorem 2.1 Suppose that Assumptions 2.1-2.4 hold. Then ψ0 and ψ1 are identified.

Alternatively, ψ0 and ψ1 can also be identified at the limit without any exclusion restriction,
under the following restrictions on the error terms.

Assumption 2.5 (Restrictions on the errors, 2) (i) X ⊥⊥ (ε0, ε1), (ii) for k ∈ {0, 1}, the
supremum of the support of εk is infinite and there exists bk > 0 such that E(exp(bkεk)) <

∞, (iii) for all u ∈ R,

lim
v→∞

P (ηk − η1−k > u|ηk + νk = v) = 1, k ∈ {0, 1}.

The first restriction reinforces the condition that X ⊥⊥ (η0, η1), by ruling out in particular
heteroskedasticity of the shocks (ν0, ν1). The second restriction is a light tail condition,
which is in practice fairly mild.7 The last one can be interpreted as a moderate dependence
condition between η0 and η1. When (η0, η1, ν0, ν1) is gaussian for instance, one can show
that it is equivalent to cov(η0, η1) < min(V (η0), V (η1)). In particular, when V (η0) = V (η1),
this condition is automatically satisfied, except in the degenerated case where η0 = η1.

Theorem 2.2 Suppose that Assumptions 2.1, 2.2 and 2.5 hold. Then ψ0 and ψ1 are
identified.

7If we consider the example of log-wages Yk = lnWk, the assumption is satisfied provided that there
exists bk > 0 such that E(W bk

k ) <∞. Hence, it holds even if wages have fat tails, Pareto-like for instance.
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Theorem 2.2 is based on a result by D’Haultfoeuille & Maurel (2009), and on the fact that
under Assumption 2.5,

lim
y→∞

P (D = k|X = x, Yk = y) = 1, for all x and k ∈ {0, 1}. (2.2)

In other words, individuals whose potential outcome in one sector tends to infinity will
choose this sector with a probability approaching one. Intuitively, this condition implies
that there is no selection issue when one of the potential outcome becomes arbitrarily
large. The idea of identification at infinity is similar to the one obtained by Heckman &
Honoré (1989) and Abbring & van den Berg (2003) in the related competing risks model.
Nevertheless, their results cannot be used here because their strategies break down when
turning to generalized Roy models.8

An appealing feature of Condition (2.2) is that it is testable (see D’Haultfoeuille & Maurel,
2009). Besides, this identification strategy does not rely on any support condition on X.
In particular, it may be applied even if X is discrete, while the first proposed strategy
generally fails in that case. On the other hand, estimators corresponding to this setting
have not been derived yet. Therefore, we restrict in the estimation part (Section 3) to the
case where exclusion restrictions are available.

2.3 Identification of the non-pecuniary component

We now turn to the identification of G. We suppose for that purpose that one of the
two frameworks displayed above can be used to identify (ψ0, ψ1), and that Assumption 2.3
holds. Letting T (X) = ψ0(X)− ψ1(X), we start from the following observations:

E[Dη∆|X] = E [1{η∆ ≥ T (X) +G(X)}η∆] =

∫ ∞
T (X)+G(X)

ufη∆
(u)du, (2.3)

E[D|X] =

∫ ∞
T (X)+G(X)

fη∆
(u)du. (2.4)

We first suppose that at least one of the components Xj of X, say X1, is continuous, and
impose the following regularity condition.

Assumption 2.6 X1 is continuous and (T + G)(.) is differentiable on its support with
respect to x1.

Let X−1 = (X2, ...) denote the other elements of X. Under Assumptions 2.3 and 2.6, the
functions q0(x1, x−1) = E(D|X1 = x1, X−1 = x−1) and E[Dη∆|X1 = x1, X−1 = x−1] are

8Lee (2006) and Lee & Lewbel (2009) obtain identification of competing risks models without using
arguments at the limit. Their strategy cannot be extended easily to generalized Roy models either.
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differentiable with respect to x1. Besides, letting x = (x1, x−1), we obtain

∂E[Dη∆|X1 = x1, X−1 = x−1]

∂x1

= (T (x) +G(x))
∂q0

∂x1

(x1, x−1).

Now, the definition of νi and the law of iterated expectations yield E(νk|D = k,X) = 0.
As a result, letting ε = Dε1 + (1−D)ε0, we get

E(ε|X) = E[Dε1 + (1−D)ε0|X]

= E[Dη1 + (1−D)η0|X]

= E [Dη∆|X] + E[η0]. (2.5)

Thus, letting g0(x1, x−1) = E(ε|X1 = x1, X−1 = x−1), we obtain

∂g0

∂x1

(x1, x−1) = (T (x) +G(x))
∂q0

∂x1

(x1, x−1). (2.6)

Because ε = Y −ψD(X) is identified, g0 and q0 are identified and we can use Equation (2.6)
to recover G(.). The only exception is when ∂q0

∂x1
is identically equal to zero, a case which

is ruled out by Assumption 2.7 below. Theorem 2.3 shows that, under this condition, G(.)

is identified.9

Assumption 2.7 For all u ∈ R, fη∆
(u) > 0 and for all x−1 in the support of X−1, the set

{x1/
∂(T+G)
∂x1

(x1, x−1) 6= 0} is not empty.

Theorem 2.3 Suppose that T (.) is identified and Assumptions 2.3, 2.6 and 2.7 hold. Then
G(.) is identified.

Now consider the case where X has a discrete distribution and takes M values x1, ..., xM .
Then one cannot take the derivative of g0 and q0 anymore. However, the strategy above can
be adapted to yield bounds on G. First, note that P (D = 0|X = x) = Fη∆

(T (x) +G(x)),
with Fη∆

denoting the cumulative distribution function of η∆. This equality implies that
we can sort the xi’s so that T (x1) +G(x1) < ... < T (xM) +G(xM).10 This provides a first

9If the second condition of Assumption 2.7 fails to hold, ∂G
∂x1

is still identified, as it is equal to − ∂T
∂x1

in this case. Note also that because Assumption 2.7 implies that ∂q0
∂x1

is not identically equal to zero, this
restriction can be tested in the data.

10This is without loss of generality. In case of ties between T (xi) + G(xi) and T (xi+1) + G(xi+1), one
may remove xi+1 from the set of x’s. Then the bounds on G(xi+1) follow directly from those on G(xi).

10



set of inequalities on (G(x1), ..., G(xM)). Besides, letting i < j, we have,

j−1∑
k=i

[T (xk+1) +G(xk+1)] [q0(xk+1)− q0(xk)]

≤ g0(xj)− g0(xi) = −
∫ T (xj)+G(xj)

T (xi)+G(xi)

ufη∆
(u)du

≤
j−1∑
k=i

[T (xk) +G(xk)] [q0(xk+1)− q0(xk)] .

These inequalities provide supplementary conditions for (G(x1), ..., G(xM)). Note that
we only get an upper bound for G(x1) and a lower bound for G(xM), but both for
G(x2), ..., G(xM−1).

2.4 Distribution of treatment effects

We now turn to the identification of the distribution of the ex ante treatment effect,
∆ = E(Y1 − Y0|X, η0, η1). The ex ante treatment effect is meaningful since it corresponds
to what agents act on (see Cunha & Heckman, 2007). Besides, it corresponds to the ex post
treatment effect if (i) agents perfectly observe or anticipate their potential outcomes (in
which case ν0 = ν1 = 0) or if (ii) the idiosyncratic shocks are equal across sectors (ν0 = ν1),
as postulated in standard regression models. To identify the ex ante treatment effect, we
start from

P (D = 0|X) = Fη∆
(T (X) +G(X)).

This shows that Fη∆
is identified over the support of T (X) +G(X). Now, the cumulative

distribution function of ∆ writes

F∆(u) = E [P (η∆ ≤ u+ T (X)|X)]

= E [Fη∆
(u+ T (X))] .

Hence, we can identify F∆(u) for all u such that the support of u + T (X) is included
in the support of T (X) + G(X). In particular, the complete distribution of the ex ante
treatment effect ∆ is identified as soon as T (X) +G(X) has a large support. In that case,
one can recover standard treatment effect parameters such as the average treatment effect
or the average treatment on the treated, by integrating the ex ante treatment effect over
the distribution of η∆. But even if this large support condition fails, it is still possible
to point identify a subset of the distribution of the ex ante treatment effect, and bound
F∆(u) for the rest of the distribution. Indeed, letting [M,M ] (resp. [P , P ]) denote the
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support of T (X) + G(X) (resp. of P (D = 0|X)), we have, by the monotonicity of Fη∆
,

F∆(u) ∈ [F∆(u), F∆(u)], where

F∆(u) = E
(
Fη∆

(u+ T (X))1{u+ T (X) ∈ [M,M ]}
)

+P × P (u+ T (X) > M) + 0× P (u+ T (X) ≤M), (2.7)

F∆(u) = E
(
Fη∆

(u+ T (X))1{u+ T (X) ∈ [M,M ]}
)

+1× P (u+ T (X) > M) + P × P (u+ T (X) ≤M). (2.8)

The distribution of the ex ante treatment effect on the treated can be identified in a similar
way, with

F∆|D=1(u) =
E{(Fη∆

(u+ T (X))− P (D = 0|X))× 1{G(X) ≤ u}}
P (D = 1)

. (2.9)

In our setting, the ex ante treatment effect ∆ is closely related to the marginal treatment
effect ∆MTE (Heckman & Vytlacil (2005)). Indeed, denoting by Sη∆

the survival function
of η∆, we have, under Assumption 2.7,

∆MTE(x, p) = E(Y1 − Y0|X = x, Sη∆
(η∆) = p)

= ψ1(x)− ψ0(x) + S−1
η∆

(p)

Thus, ∆ = (ψ1 − ψ0)(X) + η∆ coincides with ∆MTE(X,Sη∆
(η∆)). Besides, one is able to

identify ∆MTE(x, p) for all p in the support of P (D = 1|X), since in that case there exists
x̃ in the support of X such that S−1

η∆
(p) = (ψ0 − ψ1 +G)(x̃).

3 Semiparametric estimation

Although our identification results hold in a nonparametric setting, we focus here on semi-
parametric estimation in order to provide root-n consistent and asymptotically normal
estimators of ψ0(.), ψ1(.) and G(.). More precisely, we consider generalized Roy models
with a linear index structure of the form:11

Y0 = X ′β0 + ε0

Y1 = X ′β1 + ε1

D = 1{−δ0 +X ′(β1 − β0 − γ0) + η∆ > 0}.
(3.1)

In this setting, the non-pecuniary component G(X) is of the form δ0 +X ′γ0. Let γ0j (resp.
β0j, β1j) denote the j-th component of γ0 (resp. β0, β1). We also impose the following
conditions.

11We suppose without loss of generality that the constant is not included in X, so that ε0 and ε1 do not
necessarily have mean zero.
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Assumption 3.1 (Exclusion restrictions) There exists j1 and j2 such that β0j1 = β1j2 = 0,
γ0j1 6= β1j1 and γ0j2 6= −β0j2.

Assumption 3.2 (Regularity of X) The support of X is bounded. For all x−1 in the
support of X−1, the distribution of X1 conditional on X−1 = x−1 admits a continuously
differentiable and positive density on its support, which is a compact interval independent
of x−1. Besides, β11 − β01 − γ01 6= 0. Moreover, for all j, t 7→ E(Xj|X ′(β1 − β0 − γ0) = t)

is continuously differentiable. Finally, the support of X ′(β1 − β0 − γ0) is an interval.

Assumption 3.3 (i.i.d. sample) We observe a sample (Yi, Xi, Di)1≤i≤n of i.i.d. copies of
(Y,X,D).

Assumption 3.1 corresponds, in this semiparametric framework, to Assumption 2.4. The
case where j1 = j2 corresponds to the standard instrumental variable setting of sample
selection models, while j1 6= j2 applies when some covariates are sector-specific. Assump-
tion 3.2 corresponds to Assumptions 2.6 and 2.7. It ensures that at least one covariate
is continuous and has a nonzero effect on D (because β11 − β01 − γ01 6= 0). As shown in
Theorem 2.3, this condition is sufficient to provide point identification of G(.). We also
impose the support of X ′(β1 − β0 − γ0) to be an interval. This condition is sufficient to
point identify the single index model on D (see, e.g., Horowitz, 1998) that corresponds to
our first step estimator described below.

Let us assume, without loss of generality, that β11−β01−γ01 is strictly positive. We define
ζ0 = (β1−β0− γ0)/(β11−β01− γ01) (so that ζ01 = 1) and η̃∆ = (η∆− δ0)/(β11−β01− γ01).
We propose a three-stage estimation procedure of the model. The first and second stages
of our procedure rely on the fact that we can rewrite the model as

D = 1{X ′ζ0 + η̃∆ > 0}

Yk = X ′βk + εk, k ∈ {0, 1},
(3.2)

where Yk is observed when D = k, η̃∆ is independent of X and E(εk|D = k,X) only
depends on X ′ζ0.12 Besides, by Assumption 3.1, Xj1 (resp. Xj2) affects selection since
ζ0j1 6= 0 (resp. ζ0j2 6= 0) but not the potential earnings Y0 (resp. Y1). Hence, Equations
(3.2) correspond to Newey (2009)’s selection model and we follow his approach here. First,
we estimate ζ0 by a single index estimator ζ̂, for which we suppose Assumption 3.4 to be
satisfied. This is the case of many semiparametric estimators, such as the one of Klein &
Spady (1993) or Ichimura (1993). Secondly, we estimate β0 and β1 by series estimator, and

12Indeed, εk = ηk + νk with E(νk|D = k,X) = 0 by definition and E(η1|D = 1, X = x) = E(η1|η̃∆ >

−x′ζ0) (and similarly for k = 0). Note that in general, εk is not independent of X because νk is not.
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we suppose that it satisfies Assumption 3.5. This condition can be obtained under more
primitive assumptions (see Newey, 2009, p. S227).

Assumption 3.4 (Regularity of the first stage estimator) There exists (χi)1≤i≤n, i.i.d.
random variables such that E(χi) = 0, E(χiχ

′
i) exists and is non singular and

ζ̂ − ζ0 =
1

n

n∑
i=1

χi + oP

(
1√
n

)
.

Assumption 3.5 (Regularity of the second stage estimators) Let k ∈ {0, 1}, there exists
(χki)1≤i≤n, i.i.d. random variables such that E(χki) = 0, E(χkiχ

′
ki) exists and is non

singular and

β̂k − βk =
1

n

n∑
i=1

χki + oP

(
1√
n

)
.

Now let us turn to the estimation of (δ0, γ0). First note that actually, it suffices to estimate
δ0 and α0 ≡ β01−β11+γ01, since γ0 = β1−β0+α0ζ0. Equations (2.3), (2.4) and (2.5) applied
to the current index model show that E(D|X) and E(ε|X) only depend on U ≡ X ′ζ0.
Letting, with a slight abuse of notation, q0(u) = E(D|U = u) and g0(u) = E(ε|U = u), we
have, similarly to Equation (2.6),

g′0(U) = q′0(U)(δ0 + α0U). (3.3)

Integrating (3.3) between u0 in the support of U and U , we obtain:

g0(U) = λ̃0 + q0(U)δ0 +

[∫ U

u0

uq′0(u)du

]
α0,

where λ̃0 is the constant of integration. An integration by part yields

g0(U) = λ0 + q0(U)δ0 +

[
q0(U)U −

∫ U

u0

q0(u)du

]
α0, (3.4)

where λ0 = λ̃0 − u0q0(u0)α0. In other terms,

ε = λ0 +Dδ0 +

[
DU −

∫ U

u0

q0(u)du

]
α0 + ξ, E(ξ|X) = E(ξ|U) = 0. (3.5)

Let θ0 = (λ0, δ0, α0)′, V = DU −
∫ U
u0
q0(u)du and W = (1, D, V )′, so that ε = W ′θ0 + ξ.

We estimate θ0 with an IV estimator which, for technical reasons, includes some trimming.
We consider (unfeasible) instruments of the kind Z = 1{X ∈ X}h(U), where h(U) =
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(1, h1(U), h2(U))′ ∈ R3 and X is a set included in the support of X and such that {x′ζ0, x ∈
X} is a closed interval strictly included in the interior of the support of U . Then θ0 =

E(ZW ′)−1E(Zε), and we estimate it by

θ̂ =

(
1

n

n∑
i=1

ẐiŴ
′
i

)−1(
1

n

n∑
i=1

Ẑiε̂i

)
,

where ε̂i = Yi −X ′i(Diβ̂1 + (1−Di)β̂0), Ŵi = (1, Di, V̂i)
′ and

V̂i = DiÛi −
∫ Ûi

u0

q̂(u, ζ̂)du,

Ẑi = 1{Xi ∈ X}h
(
Ûi

)
.

Finally, Ûi = X ′i ζ̂ and

q̂(u, ζ) =

∑n
i=1 DiK

(
u−X′iζ
hn

)
∑n

i=1K
(
u−X′iζ
hn

) . (3.6)

where K(.) is a kernel function and hn the bandwidth parameter. The result on the third
step estimator θ̂ relies on the following conditions on h(.) and K(.).

Assumption 3.6 (Restrictions on the kernel) K(.) is nonnegative, zero outside a compact
set, continuously twice differentiable on this compact set and satisfies

∫
K(v)dv = 1 and∫

vK(v)dv = 0. Moreover, K(.) and K ′(.) are zero on the boundary of this compact set.

Assumption 3.7 (Regular instruments) hk(.) is twice differentiable and |h′′k| is bounded
for k ∈ {1, 2}.

Assumption 3.6 is satisfied for instance by the quartic kernelK(v) = (15/16)(1−v2)21[−1,1](v).
Assumption 3.7 is imposed to ensure that Ẑi−Zi is small for large sample sizes, and behaves
regularly.

Theorem 3.1 Suppose that nh6
n → ∞, nh8

n → 0 and that Assumptions 2.1, 2.3, 2.7,
3.1-3.7 hold. Then

√
n(θ̂ − θ0)

d−→ N
(
0, E(ZW ′)−1V (Zξ + Ω11 + Ω21)E(WZ ′)−1

)
,

where Ω11 is defined by Equation (7.8) in Appendix A and

Ω21 = α0Z(1− F0(U))1{U ≥ u0}(D − q0(U))/f0(U),

F0(.) and f0(.) denoting respectively the cumulative distribution function and the density
of U .
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Theorem 3.1 establishes the asymptotic normality of θ0 = (λ0, δ0, α0)′ and shows that
its asymptotic variance depends on the three variables Ω11, Ω21 and Zξ. The first one
corresponds to the contribution of the estimators of the first and second steps. The second
one arises because of the nonparametric estimation of q0(.) in V̂i. The third one corresponds
to the moment estimation of the linear instrumental model (3.5) in the last step. This
theorem guarantees that δ̂ is root-n consistent and asymptotically normal. As the proof of
the theorem shows, θ̂ can be linearized. Thus, by Assumptions 3.4 and 3.5, the estimator
of γ0, γ̂ = β̂1 − β̂0 + α̂ζ̂, is also root-n consistent and asymptotically normal.

Although δ0 and γ0 are identified without any exclusion restriction, imposing some restric-
tion on γ0 may still be useful to improve the accuracy of the estimators. Suppose that, e.g.,
X1 is excluded from the non-pecuniary component, so that γ01 = 0.13 In this case, we get
from the second stage α0 = β01 − β11, and thus γ0 is identified directly by β1 − β0 + α0ζ0.
Hence, γ0 can be estimated using only the first two steps, resulting in general in accuracy
gains (see our Monte Carlo simulations and application below for evidence on this point).
The third stage boils down to estimating δ0 only, through the instrumental linear model

ε−
[
DU −

∫ U

u0

q0(u)du

]
α0 = λ0 +Dδ0 + ξ, E(ξ|X) = E(ξ|U) = 0, (3.7)

where α0 in the left hand side can now be estimated by β̂01 − β̂11. One can show that the
corresponding estimator is also asymptotically normal.14

4 Monte Carlo simulations

In this section, we investigate the finite-sample performance of our semiparametric estima-
tion procedure by simulating the following model with sector-specific variables:

Y0i = X2iβ02 +X3iβ03 + η0i + ν0i

Y1i = X1iβ11 +X3iβ13 + η1i + ν1i

Di = 1{−δ0 +X1i(β11 − γ01) +X2i(−β02 − γ02) +X3i(β13 − β03 − γ03) + η1i − η0i > 0}.

The true values of the parameters are β02 = β03 = 1, β11 = 2, β13 = 0.5, γ01 = −0.5,
γ02 = 0.5, γ03 = −0.8 and δ0 = 0.8, so that Assumption 3.1 is satisfied with j1 = 1 and
j2 = 2. We simulate X1i and X2i independently and from a uniform distribution over [0, 4],
whileX3i is a discrete regressor drawn from a Bernoulli distribution with parameter p = 0.5.

13Of course, such an assumption can be tested by estimating the unrestricted model.
14The proof is very close to the one of Theorem 3.1 and is available from the authors upon request.

16



We let (η0i, η1i)
′ be joint normal, with zero mean and a variance Σ such that Σ11 = Σ22 = 1

and Σ12 = Σ21 = 0.5. (ν0i, ν1i)
′ are drawn from a heteroskedastic normal distribution,

with zero mean and a conditional matrix variance Ω(X) such that Ω11(X) = exp(X2/5),
Ω22(X) = exp(X1/5) and Ω12(X) = Ω21(X) = 0.5

√
Ω11(X)Ω22(X).

We implement the three-stage estimation procedure detailed in Section 3. We estimate in
the first stage ζ0 = (β1 − β0 − γ0)/(β11 − γ01) by Klein & Spady’s (1993) semiparametric
efficient estimator, with an adaptive gaussian kernel and local smoothing. In the second
stage, we implement Newey’s (2009) method in order to estimate separately β0 and β1.
The series estimator of the selection correction term was computed using the inverse Mills
ratio transform (see Newey, 2009, Equation (3.6)) and Legendre polynomials at order 6.
Using Legendre polynomials instead of simple power series avoids numerical trouble due to
multicollinearity. In the third stage, we finally implement our proposed estimators for δ0

and γ0 with the quartic kernel suggested in Section 3 and a bandwidth hn = 0.5σ(Û)n−1/7,
where σ(Û) is the estimated standard deviation of Û . We choose the functions h1(x) =

Φ(â0 + â1x) and h2(x) = xh1(x)−
∫ x
û0
q̂(u, ζ̂)du for the instruments, where Φ(.) denotes the

normal cumulative distribution, (â0, â1) is the probit estimator of D on (1, Û) and û0 is
the sample minimum of Û .15 Finally, no trimming was performed since it did not improve
the accuracy of the estimators in our setting.

The performance of the estimators for different sample sizes (namely n = 500, n = 1, 000

and n = 2, 000) are summarized in Panel A of Table 1 below, which reports for each
parameter its bias, standard deviation and root mean squared error (RMSE). The results
indicate that our procedure performs reasonably well in this context. As expected given the
sequential structure of the proposed estimation procedure, the non-pecuniary components
δ0 and γ0 are less precisely estimated than β0 and β1. Their estimators also display a
substantial bias until n = 1, 000, but this bias seems to decrease quickly for larger samples.

15For the sake of simplicity, we suppose in Section 3 that the functions h(.) are known to the econome-
trician. Assuming alternatively that these functions have to be estimated, as is the case here, does not
affect the root-n consistency and asymptotic normality of the estimators.
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Panel A Panel B Panel C

n Coeff. Bias Std dev RMSE Bias Std dev RMSE Bias Std dev RMSE

500 β02 -0.023 0.132 0.134 -0.011 0.118 0.118 -0.011 0.118 0.119

β03 -0.004 0.263 0.263 -0.003 0.214 0.214 0.007 0.221 0.222

β11 0.030 0.162 0.165 0.018 0.147 0.148 0.012 0.150 0.150

β13 0.000 0.193 0.193 -0.002 0.199 0.199 -0.016 0.208 0.208

γ01 0.024 1.631 1.631 0.057 1.144 1.145 (not estimated)

γ02 -0.128 0.918 0.926 -0.085 0.842 0.846 -0.057 0.186 0.194

γ03 0.037 0.425 0.426 0.020 0.386 0.387 -0.022 0.361 0.362

δ0 0.153 0.876 0.889 0.030 0.763 0.763 0.098 0.563 0.572

1,000 β02 -0.021 0.093 0.095 -0.012 0.083 0.084 -0.007 0.086 0.087

β03 -0.002 0.176 0.176 0.006 0.156 0.156 0.009 0.150 0.150

β11 0.021 0.112 0.114 0.012 0.102 0.103 0.011 0.105 0.106

β13 0.007 0.133 0.133 -0.005 0.145 0.145 -0.001 0.143 0.143

γ01 -0.016 1.137 1.137 0.061 0.792 0.794 (not estimated)

γ02 -0.086 0.643 0.649 -0.087 0.588 0.594 -0.042 0.133 0.139

γ03 0.020 0.289 0.290 0.007 0.275 0.275 0.001 0.239 0.239

δ0 0.148 0.591 0.609 0.038 0.520 0.521 0.070 0.412 0.418

2,000 β02 -0.021 0.067 0.070 -0.006 0.061 0.061 -0.009 0.060 0.060

β03 0.004 0.118 0.118 -0.004 0.110 0.110 -0.003 0.114 0.114

β11 0.014 0.078 0.079 0.010 0.073 0.073 0.013 0.072 0.073

β13 -0.005 0.092 0.092 0.001 0.102 0.102 -0.005 0.101 0.101

γ01 0.014 0.799 0.799 0.028 0.574 0.574 (not estimated)

γ02 -0.073 0.461 0.467 -0.053 0.425 0.428 -0.032 0.089 0.095

γ03 0.011 0.195 0.196 0.013 0.186 0.187 0.004 0.175 0.175

δ0 0.088 0.415 0.424 0.032 0.374 0.376 0.047 0.278 0.282

Note: Panel A corresponds to the unconstrained model, while in Panel B and Panel C, γ01 = 0. In Panel

B we suppose that the econometrician ignores this restriction, so that (δ0, γ0) are estimated with (3.5).

In panel C, the econometrician knows it, and estimates are based on (3.7). The results were obtained

with 1,000 simulations for each sample size.

Table 1: Monte Carlo simulations

We also investigate the effect of using an exclusion restriction on the non-pecuniary com-
ponent on the finite-sample performances of the estimators. For that purpose, we consider
the same specification as previously with the exception that γ01 = 0, and compare esti-
mates obtained when this restriction is known by the econometrician and when it is not.
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As explained in the previous section, we can recover γ0 in the former case with the first
step estimates alone, and use Equation (3.7) to estimate δ0 only. The properties of the
unconstrained and constrained estimators are displayed respectively in Panel B and C of
Table 1. Overall, using an exclusion restriction on G(.) leads to a substantial improvement
in the performances of the estimators of γ0 and δ0. In particular, the RMSE for γ02 de-
creases by about 80% between the two specifications. Although still estimated in the last
step, the estimator for δ0 performs significantly better than in the unconstrained setting,
with the RMSE decreasing by about 25%.

5 Application to the decision to attend higher education

In this section, we apply our identification results and semiparametric method to estimate
the relative importance of non-pecuniary factors and monetary returns to education in
the decision to attend higher education in France. We first briefly present in Subsection
5.1 the underlying schooling choice model on which we rely. Subsection 5.2 presents the
data we use. Subsection 5.3 provides some details on the computation of the streams of
earnings and on the implementation of our estimation method. Finally, Subsection 5.4 and
5.5 discuss the results and some robustness checks.

5.1 Decision to attend higher education and consumption value of schooling

We consider here a generalization of the Willis & Rosen’s model (1979) which accounts for
the non-pecuniary consumption value of schooling, in a semiparametric setting.16 After
completing secondary education, individuals are assumed to decide either to enter directly
the labor market with a high school degree (k = 0) or to attend higher education (k = 1).17

They are supposed to make their decisionD ∈ {0, 1} by comparing the expected discounted
16On a related ground, Carneiro et al. (2003) also estimate a generalization of the Willis & Rosen’s model

accounting for non-pecuniary factors affecting the decision to attend college. Nevertheless, they rely on a
completely different framework based on factor loadings, which is quite demanding in terms of identifying
conditions. Apart from the existence of regressors entering the selection equation only, they also hinge on
the availability in the NLSY 79 (National Longitudinal Survey of Youth 1979 ) of five different cognitive
ability measures in order to identify their factor model. Many datasets, including ours as well as, e.g., the
U.S. Current Population Survey, lack such measurements. See also Carneiro & Lee (2009) and Carneiro
et al. (2010) who estimate on the same dataset a semiparametric reduced-form model of college attendance
decision built on Heckman & Vytlacil (2005).

17The French higher education system includes the universities, which do not impose any entry selection,
as well as the Grandes Ecoles and specialized technical colleges, which are selective.
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streams of future log-earnings related to each alternative. When entering the labor market,
individuals receive a stream of log-earnings denoted by Y ∗k for each alternative k, and such
that

Y ∗k = ψk(X) + ηk + νk,

where ψk(.) is an unknown function of observed individual covariates X, (η0, η1) are indi-
vidual productivity terms which are supposed to be known by the individual at the time
of her decision but unobserved by the econometrician and (ν0, ν1) represent random shocks
with means zero, which are unobserved by both the individual and the econometrician.
The expected utility Uk of each schooling decision k is supposed to be given by

Uk = E(Y ∗k |X, ηk) +Gk(X),

where Gk(X) denotes the consumption value associated with the schooling decision k.18

After graduating from high school, individuals are supposed to make the decision which
yields the highest expected utility. Thus, the selection equation corresponds exactly to
Equation (2.1). As opposed in particular to the U.S., tuition fees are very low in most of
the French higher education institutions (on average around 200 euros per year over the
period of interest). This suggests that G1 −G0, which would in principle also account for
the direct costs of post-secondary schooling, can be interpreted in this context as a truly
non-pecuniary component, including the taste for schooling and preferences for future non-
wage job attributes (as they may depend on higher education attendance).

5.2 The data

We use French data from the Generation 1992 and Generation 1998 surveys in order to
estimate our schooling choice model.19 The Generation 1992 (resp. Generation 1998 )
survey consists of a large sample of 26,359 (resp. 22,021) individuals who left the French
educational system in 1992 (resp. 1998) and were interviewed five years later. The main
advantage of these two databases is that they contain information on both educational
and labor market histories (over the first five years following the exit from the educational
system). The surveys also provide a set of individual covariates used as controls in our
estimation procedure. As most of the individual covariates are observed in both dataset,
we exploit the pooled dataset hereafter.

18As opposed to the investment value of schooling, which corresponds in this case to the expected
discounted stream of future log-earnings.

19Beffy et al. (2010) also rely on these data to estimate the influence of expected returns when choosing
a college major.
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Higher education
attendees High school level

Variable Mean Std. dev. Mean Std. dev.

Initial monthly log wage (1992 French Francs) 8.75 0.44 8.50 0.39

Secondary schooling track
L (Humanities) 0.15 0.36 0.04 0.19
ES (Economics and Social Sciences) 0.17 0.38 0.04 0.19
S (Sciences) 0.32 0.47 0.06 0.23
Vocational 0.04 0.20 0.66 0.47
Technical 0.32 0.46 0.21 0.41

Born abroad 0.02 0.16 0.02 0.15
Father born abroad 0.11 0.32 0.11 0.32
Mother born abroad 0.10 0.31 0.10 0.30

Entering the labor market in 1992 0.46 0.50 0.51 0.50
Entering the labor market in 1998 0.54 0.50 0.49 0.50

Male 0.47 0.5 0.49 0.50

Father’s profession
Farmer 0.06 0.25 0.08 0.27
Tradesman 0.11 0.31 0.11 0.32
Executive 0.26 0.44 0.10 0.30
Intermediate occupation 0.12 0.32 0.09 0.29
Blue collar 0.17 0.38 0.30 0.46
White collar 0.21 0.41 0.25 0.44
Other 0.06 0.24 0.06 0.24

Age in 6th grade
≤ 10 0.10 0.29 0.03 0.17
11 0.84 0.37 0.72 0.45
≥ 12 0.07 0.25 0.25 0.43

Paris region 0.16 0.36 0.12 0.32

Number of higher education years 2.82 1.45 / /

Dropout rate 0.16 0.37 / /

Number of observations 19,143 5,082

Table 2: Descriptive statistics.

Our subsample of interest comprises respondents having at least passed the national high
school final examination. The labor market participation rate is fairly high for this sub-
sample. For individuals leaving school in 1992, it is equal to 99.7% for males and 95.9% for
females, while for those leaving education in 1998, it reaches 99.3% for males and 97.2%

for females. Thus, we decide to keep both males and females in our final sample. We drop
individuals who only worked as temporary workers or were out of the labor force during
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the observation length, as their wages are not observed in the data. This finally leaves us
with a large sample of 24,225 individuals. Although not common in the semiparametric
literature estimating this kind of models, working with many observations is especially
important for the semiparametric estimation procedure to perform well.20 We report in
Table 2 some descriptive statistics for the subsample of interest, according to higher edu-
cation attendance. 79% of our sample (with a slight increase over the period, respectively
77.2% for Generation 1992 and 80.6% for Generation 1998 ) attended higher education
after graduating from high school. In a same spirit as in Willis & Rosen (1979), we focus
on higher education attendance and not graduation. Hence, higher education dropouts
are included in the subsample of higher education attendees. We examine later on the
sensitivity of our results to the inclusion of dropouts in the sample.

The functions ψ0(.), ψ1(.) and G(.) are assumed to depend on the secondary schooling track,
whether the student is born abroad (and similarly for her parents), her year of entry into
the labor market (1992 or 1998), her gender, her parental profession, her age in 6th grade
(i.e., her age of entry into junior high school)21 and a dummy for living in Paris region
(at the time of entry into junior high school). Given that following a vocational secondary
schooling track seems to be a very strong predictor of higher education attendance (see
Table 2), we also include in the set of regressors interactions between this variable and
dummies for the year of entry into the labor market, gender and Paris region. Aside
from this common set of regressors, we also include sector-specific variables, by supposing
that the average local log-earnings of high school (resp. higher education) graduates affects
ψ0(.) (resp. ψ1(.)) alone. These variables, which are computed from the French Labor Force
Surveys (1990-2000), are used as proxies for local labor market conditions (at the level of
the French departements, which roughly correspond to U.S. counties) for the high school
and higher education graduates.22 Migration costs imply that labor market conditions in
the places where individuals live while studying are likely to be correlated with the earnings
perceived when entering the labor market.

20Papers in this literature usually rely on the NLSY 79 (see Cunha & Heckman, 2007), resulting in
samples of around 1,000 observations.

21We use this variable as a proxy for ability since most of its variation stems from grade retention, which
is quite common in France and mainly based on schooling performance. Students who neither repeat nor
advance a grade before junior high school enter it at 11.

22More precisely, these variables were constructed by taking the average log-wages in the departement
of residence at the time of entry into junior high school, weighted by the local rates of employment, over
a 5-year time span centered respectively in 1992 or in 1998.
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5.3 Computation of the streams of earnings and estimation method

For each alternative, the discounted streams of log-earnings are set equal to

Y ∗k =

t0,k+A∑
t=t0,k

τ tyk,t,

where yk,t denotes the flow of log-earnings received during year t, τ denotes the annual
discount factor and A is the duration of active life. We account for the opportunity costs
incurred when entering higher education by allowing the year of entry into the labor market
(t0,k) to vary according to the schooling choice. For a given year t, the variable yk,t is either
set equal to the log-wage wt earned during this period if the individual is employed at that
time, or to the unemployment log-benefits bt if the latter is unemployed. We set the
replacement rate equal to 0.7 as often done in the literature.

As already mentioned, we do not observe incomes during the whole life cycle in our data,
so that we cannot compute Y ∗ = DY ∗1 + (1−D)Y ∗0 . Still, we can recover an expectation
of this stream of income under additional assumptions on incomes dynamics. We suppose
here that

yk,t = ρk1{t− t0,k + 1 ≤ B}+ yk,t−1 + νk,t, (5.1)

where ρk denotes the alternative k-specific return to experience and νk,t is an alternative k-
specific unobserved individual productivity term which is assumed to be independently and
identically distributed over time, with mean zero. We introduce the dummy 1{t−t0,k+1 ≤
B} to account for non significant marginal returns to experience after B years of work (see,
e.g., Kuruscu, 2006, for a similar assumption on wage growth). We also suppose that νk,t
is independent of D, so that ρk is simply identified by ρk = E(yk,t − yk,t−1|D = k), for
t ≤ B + t0,k − 1.

Now, let τ̃k = τ t0,k
(

1−τA+1

1−τ

)
, Ck = τ t0,k

(
τ

(1−τ)2

) (
1− τB +BτA+1(τ − 1)

)
and

Yk = τ̃kyD,t0,D + ρkCk.

Because τ̃D, CD and ρD are identified for given τ , A and B, we can identify Y = DY1 +

(1 − D)Y0. Moreover, under (5.1), we have Yk = E(Y ∗k |X, η0, η1, νk,t0,k), which in turn
implies that E(Yk|X, η0, η1) = E(Y ∗k |X, η0, η1). In other terms, the model may be written
in terms of Yk instead of Y ∗k , and our identification strategy applies with Y instead of the
unobserved variable Y ∗.

In practice, we set τ = 0.95, A = 45 years, B = 25 years and estimate ρ0 and ρ1 to be
respectively 0.025 and 0.042. These estimates were obtained by regressing yk,t0,k+Tk−yk,t0,k
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on the number of years Tk for which the income is observed, on the subsample satisfying
D = k. Alternative specifications on some of these parameters are considered in Subsection
5.5.

We estimate the model relying on the three-stage semiparametric procedure detailed in
Section 3, with ψk(X) = X ′βk and G(X) = δ0 + X ′γ0. Identification is secured here
through the use of the average local log-earnings of high school and higher education
graduates as sector-specific regressors. We use for the first step a mixture of probit (see,
e.g., Coppejans, 2001) with K1 = 3 mixture components.23 The second step is performed
with Newey (2009)’s series estimator, with K2 = 9 approximating terms. We finally use
for the last step the same specifications as in the Monte Carlo simulations.24

We also estimate bounds on the distribution of the ex ante treatment effect ∆, namely
F∆(u) = E[Fη∆

(u+X ′(β0 − β1))]. For that purpose, we use the fact that, by (3.1),

P (D = 0|X) = Fη∆
(δ0 +X ′α0ζ0) .

Therefore, we can obtain an estimator F̂η∆
(.) on [M̂, M̂ ], the estimated support of δ0 +

X ′α0ζ0, by regressing nonparametrically 1−D on the index δ̂+X ′α̂ζ̂. On [M̂,+∞) (resp.
(−∞, M̂ ]), we simply set estimate Fη∆

(.) by [P̂ , 1] (resp. [0, P̂ ]), where P̂ (resp. P̂ ) is
the supremum (resp. infimum) of F̂η∆

(.). Finally, we estimate F∆(u) and F∆(u) with the
empirical analogs of (2.7) and (2.8). Bounds on the distribution of the ex ante treatment
effect on the treated are estimated similarly, using (2.9). In practice, we consider a kernel
estimator of Fη∆

with a gaussian kernel, and a bandwidth h̃n = 1.6σ(Û)n−1/5.

5.4 Results

The first step estimates of (ζ, β0, β1) are displayed in Table 6 in Appendix C. Overall, the
results for β0 and β1 display a quite similar pattern. In particular, the local average income
variables that we use as sector-specific variables have a strong positive effect, significant at
the 1% level, on earnings. Similarly, individuals entering the labor market in 1998 (relative
to 1992) have very significantly higher earnings, reflecting the business cycle. However,
some characteristics only affect the earnings of high school graduates or higher education
attendees. This is in particular the case of gender, with high school male graduates earning
significantly more than females. This is also the case of vocational secondary schooling

23We did not rely on Klein & Spady (1993)’s estimator as we did in the Monte Carlo simulations since
it becomes computationally cumbersome as the number of covariates increases.

24We estimated the model with several different values for the tuning parameters K1, K2 and the
bandwidth hn used in the estimation of q0 in the third step. Our results are robust to these specifications.
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tracks relative to technical tracks, which are positively related to earnings for high school
graduates, while this is only true for male higher education attendees. Conversely, parental
profession affects more significantly the earnings of higher education attendees than high
school graduates, with negative signs associated with inactive, deceased or unemployed
mother (referred to as “Other” in the Tables), relative to white collar professions. Similarly,
higher education attendees whose mother is employed in an agricultural profession also earn
significantly less.

The first column of Table 3 below reports the parameter estimates relative to the non-
pecuniary component G(.) which are obtained with the unconstrained specification, i.e.
without assuming any restriction on the non-pecuniary component. The coefficients cor-
responding to the local average income of higher education and high school graduates are
both not significant at the 10% level. This supports the idea that, as proxies for local
labor market conditions, these variables have no reason to enter the non-pecuniary factors
and should therefore only affect the probability of attendance through the ex ante returns.
It also suggests that the data is consistent with a constrained specification where, e.g.,
the coefficient related to the local average income of high school graduates is set equal to
zero.25 As already shown in Section 4, our estimation procedure performs substantially
better when using an exclusion restriction on G(.). Hence, we focus on the constrained
specification hereafter.

Several patterns emerge from the constrained estimates of G(.) displayed in the second
column of Table 3. First, as expected, the estimates are indeed substantially more precise
than with the unconstrained specification. The results suggest that individuals attending a
general secondary schooling track (namely L for Humanities, ES for Economics and Social
Sciences and S for Sciences), relative to a technical track, value positively higher education
attendance, with the related coefficients being significant at the 1% level.26 Conversely,
those getting a high school degree from a vocational major have a much lower probability
to attend higher education, with a parameter being nevertheless only significant at the
10% level. This pattern is consistent with the fact that the courses which are given in
vocational secondary schooling tracks and, to a lesser extent, in technical tracks, are much
more oriented towards the labor market than they are in general tracks. The positive
effect of entering the labor market in 1998 probably reflects the enlargement of access to

25We choose to impose the nullity of the coefficient associated with the local average income of high
school graduates rather than the one of higher education graduates since (i) its point estimate in the
unconstrained setting is much lower and (ii) the latter coefficient is close to the 10% significativity level.

26Recall that G(.) = G0(.)−G1(.), so that a negative sign for a given coefficient of G(.) implies a positive
valuation of higher education compared to high school graduation.
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higher education which took place in France during the nineties. Individuals living in the
Paris region also have a higher probability to attend higher education through these non-
pecuniary factors, reflecting the large supply of post-secondary institutions in this area.
Parental profession, in particular that of the father, has also a significant influence on the
non-pecuniary determinants of the decision to attend higher education. For instance, for
a given ex ante return to higher education, individuals whose father is employed, relative
to a white collar position, as an executive, a tradesman or in an intermediate occupation
have a higher propensity to enroll in higher education. This pattern suggests that part
of the intergenerational transmission of human capital acts through non-pecuniary factors
affecting the higher education attendance decision. Interestingly also, for a given level
of expected monetary returns, males have a significantly higher probability of attending
higher education (with a parameter significant at the 1% level), possibly reflecting higher
educational aspirations for males than for females (see, e.g., Page et al., 2007, for experi-
mental evidence on this point). Age in 6th grade, which is used as a proxy for schooling
ability, also affects the attendance decision through non-pecuniary factors. Relative to
those who were on time, individuals who were less than 10 (resp. more than 12) when
entering junior high school have a significantly higher (resp. lower) probability to get some
post-secondary education. These results may stem from a positive correlation between
schooling ability and taste (or motivation) for schooling. The positive effect on higher
education attendance of living in the Paris region is significantly weaker for the individ-
uals graduating from a vocational high school track. This result stresses once more the
important explanatory power of the secondary schooling track. Consistent with the results
of the unconstrained specification, the coefficient related to the local average income of
higher education graduates is small, and here only significant at the 10% level. Finally, an
estimation of the non-pecuniary component of each individual in the sample reveals that
for 84% of them, this component is negative. Hence, we find, in line with Carneiro et al.
(2003), that there is for most of the individuals what could be referred to as a psychic gain
of attending higher education.
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Variable Unconstrained Constrained

Constant (δ0) -0.185 (0.174) -0.026 (0.155)

Local average income
Higher education graduates -0.026 (0.017) -0.014* (0.008)
High school graduates 0.01 (0.012) 0

Secondary schooling track
L -0.288*** (0.087) -0.142*** (0.054)
ES -0.336*** (0.097) -0.172*** (0.058)
S -0.349*** (0.097) -0.175*** (0.061)
Vocational 0.62** (0.248) 0.293* (0.164)
Technical Ref. Ref.

Born abroad -0.084** (0.033) -0.031 (0.021)
Father born abroad -0.034* (0.02) -0.005 (0.011)
Mother born abroad 0.003 (0.014) -0.009 (0.013)

Entering the labor market in 1998 (relative to 1992) -0.272*** (0.084) -0.12** (0.051)

Male -0.062*** (0.015) -0.038*** (0.009)

Father’s profession
Farmer -0.029 (0.02) -0.023 (0.017)
Tradesman -0.053*** (0.02) -0.025** (0.011)
Executive -0.105*** (0.034) -0.054** (0.022)
Intermediate occupation -0.071*** (0.025) -0.035*** (0.011)
Blue collar 0.000 (0.012) -0.004 (0.008)
Other -0.036** (0.015) -0.023** (0.011)
White collar Ref. Ref.

Mother’s profession
Farmer 0.091** (0.039) 0.057 (0.037)
Tradesman 0.021 (0.019) -0.003 (0.011)
Executive -0.056*** (0.02) -0.023* (0.014)
Intermediate occupation -0.018 (0.013) -0.019* (0.011)
Blue collar 0.076*** (0.027) 0.019* (0.01)
Other 0.012 (0.014) -0.01 (0.007)
White collar Ref. Ref.

Age in 6th grade
≤ 10 -0.103*** (0.038) -0.047** (0.024)
11 Ref. Ref.
≥ 12 0.108*** (0.041) 0.056** (0.026)

Paris region -0.082*** (0.025) -0.03** (0.012)

Vocational × ...
Entering the labor market in 1998 0.068** (0.029) 0.034 (0.024)
Male -0.02 (0.021) 0.003 (0.014)
Paris region 0.126*** (0.048) 0.059** (0.029)

Standard errors, presented in parentheses, were computed by bootstrap with 200 sample
replicates. Significativity levels: ∗∗∗ (1%), ∗∗ (5%) and ∗ (10%).

Table 3: Determinants of non-pecuniary factors: parameter estimates.



The estimated distributions of the ex ante returns to higher education are displayed in
Figure 1 below, respectively for the whole sample and for the subsample of higher education
attendees. The streams of earnings were divided by 1,000 for scaling reasons, so that these
returns must be compared to values which range from 0.7 to 2. A first striking point
is that both distributions are point identified for most values. Differences between the
upper and lower bounds appear only for u ≥ 0.36, and still for these values the identifying
interval remains small until u ' 0.65.27 The upper bound of the distribution can be used
to compute a lower bound E on the average return to higher education E(Y1 − Y0).28 We
obtain E ' 0.12, which is quite large since it is close to one standard deviation of Y . We
also observe a large heterogeneity on these returns, with a range on the ex ante returns
E(Y1−Y0|X, η0, η1) which is similar to the one of Y . This substantial ex ante dispersion of
the returns to higher education is in line with the conclusion of Cunha & Heckman (2007,
p. 887) on U.S. data.
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Figure 1: Distribution of the ex ante returns to higher education.

As expected, the distribution of the ex ante return is shifted towards the right for the
subsample of higher education attendees, with a close to 10% probability of having a
negative ex ante return, versus 28% for the whole sample. Hence, about 10% of the

27Besides, the estimated cumulative distribution functions of the ex ante returns to higher education
are increasing, which provides a check for the validity of our specification.

28Indeed, an integration by part shows that

E(Y1 − Y0) =

∫ ∞
−∞

[1{u ≥ 0} − F∆(u)] du.

This integral can be bounded below by the corresponding integrals on F∆. Note that we cannot obtain a
finite upper bound on E(Y1 − Y0) here because limu→+∞ F̂∆(u) < 1.
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individuals attending higher education choose to do so despite a negative ex ante return
to higher education, stressing the important role played by non-pecuniary factors in this
schooling decision. In a same spirit, the probability of attending higher education would
fall by 11.1 percentage points (from the predicted access rate, equal to 83.1%, to the
probability of having a positive ex ante return, 72%) if non-pecuniary factors did not exist.
For comparison purposes, this decrease in higher education attendance rate is eight times
larger than, for instance, the 1.4 point decrease associated with a 10% permanent decrease
in labor market earnings of higher education attendees.

Several other results highlight the influence of non-pecuniary factors, relative to ex ante
monetary returns, in the decision to attend higher education. First, as shown in Table 4
reporting the quartiles of the distribution of ex ante returns and non-pecuniary factors, the
median non-pecuniary component (-0.326) is, in absolute terms, quantitatively much larger
than the median ex ante return to higher education (0.133). Aside from their large median
magnitude, non-pecuniary factors also have a fairly large dispersion, with an interquartile
range equal to 0.239 which is nevertheless smaller than the interquartile range for ex ante
returns (0.336).

Quartile Ex ante return Non-pecuniary factors

25% -0.069 -0.430
50% 0.133 -0.326
75% 0.267 -0.191

Table 4: Quartiles of ex ante returns and non-pecuniary factors.

Finally, Table 5 below reports the predicted probabilities of higher education attendance
which are obtained for fixed values of the non-pecuniary factors corresponding respectively
to the first and the last deciles of its sample distribution. These predicted attendance
rates show once more that non-pecuniary factors matter much when deciding whether to
attend higher education. Indeed, the predicted attendance rate falls steeply, by more than
32 points, when making G vary from its first to its last decile. These estimates therefore
suggest that the variation across individuals in non-pecuniary factors accounts for a very
substantial part of the observed decisions to attend higher education. Overall, in line with
recent evidence by Carneiro et al. (2003) and Beffy et al. (2010), non-pecuniary factors
appear to be a key determinant of the decision to attend higher education.
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Decile of G Predicted attendance rate

10%, G = −0.490 0.952
90%, G = 0.073 0.630

Table 5: Predicted higher education attendance rates prevailing for dif-
ferent values of G.

5.5 Robustness checks

We address in the following two potential concerns about our results, namely the validity
of our instrumental strategy and the robustness of our results to the assumptions made
when computing the streams of earnings.29

5.5.1 Validity of the instrumental strategy

The validity of the results discussed above hinges on the exclusion restrictions between
sectors. A reason why this identification strategy may not hold is that some individuals
who attended higher education might actually face labor market conditions similar to the
ones faced by those with a high school level. This might in particular be true for higher
education dropouts, who enter the labor market without any post-secondary diploma (see,
e.g., Kane & Rouse, 1995, for evidence from U.S. data of a small wage premium for some
college, relative to high school graduation). In order to cope with this potential concern,
we run our estimates without the 3, 092 higher education dropouts. By doing so, we focus
on higher education graduation rather than attendance, in a similar spirit as in Carneiro
et al. (2003). The resulting estimates of the non-pecuniary factors (see Panel 1, Table 7)
are very similar to previously. Secondary schooling track, gender, father’s profession and
year of entry into the labor market remain the main determinants of this non-pecuniary
component. The distribution of the ex ante return to higher education is also very similar
to previously (see Figure 2) and remains within the confidence intervals of that of the
baseline specification. Hence, the robustness of the results to the exclusion of higher
education dropouts from the sample supports our exclusion restrictions.

One might also suspect that variations across departements in sector-specific average in-
comes could be correlated with geographical variations in sector-specific labor market pro-
ductivity. If this were the case, the sector-specific regressors would be endogenous with

29Tables and figures that we refer to in this subsection are reported in Appendix C.
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respect to the potential earnings, thus resulting in biased estimates. In order to deal with
this issue, we include in the set of regressors the local proportion of individuals who grad-
uated from high school with honours. This variable, which is computed from the Panel
1989 dataset (French Ministry of Education), is used to control for differences across de-
partements in productivity levels.30 The estimates of the non-pecuniary factors (see Panel
2, Table 7) as well as of the distribution of the ex ante returns to education (see Figure 2)
are robust to this alternative specification, suggesting that our estimates are likely not to
be biased by the kind of mechanism discussed above.

5.5.2 Alternative computations of the streams of earnings

Finally, we also investigate the sensitivity of our results to the way the streams of earn-
ings are computed. We reestimate the model with τ = 0.97 instead of τ = 0.95 (as, e.g.,
Carneiro et al., 2003), and B = 30 instead of B = 25. Results are displayed respectively
in Panel 3 and 4 of Table 7. Once more, non-pecuniary components estimates are ro-
bust to this change. Standard errors, and thus the significance of some parameters, are
slightly more affected by the specification choice. We also estimate the distribution of the
ex ante returns to education with these alternative specifications (see Figure 3). Returns
with B = 30 are nearly indistinguishable from the ones with B = 25. The distribution
corresponding to τ = 0.97 slightly dominates them, but remains within the confidence in-
terval of the baseline specification. In a word, our results seem overall robust to alternative
computations of Y .31

6 Conclusion

This paper focuses on the effect of covariates on earnings and on the non-pecuniary com-
ponent in a generalized Roy model. Our main theoretical contribution is to prove that the
identification of the covariates effects entails the identification of the non-pecuniary compo-
nent. The detailed structure of the model is indeed sufficient to recover this parameter. In
particular, no exclusion restriction is required. Our approach does not hinge either on any
assumption on the information set of the agents, as we do not impose any restriction on

30The Panel 1989 is a longitudinal dataset that follows 22,000 students entering the 6th grade in 1989.
31We also estimate the streams of earnings where people are aware of their own annual increase ρi

of log-earnings, instead of just anticipating an average increase. We estimate ρi by OLS and compute
the corresponding streams of earnings. The signs of γ remain the same but no coefficient is significant
anymore. This can be explained by i) the importance of the errors on the estimated ρi and ii) the fact
that the sample we can use in this case comprises only 9,364 individuals.
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the sector-specific productivity terms, apart from their independence with the covariates.
Being agnostic on this issue is convenient since the determination of this information set
is still an ongoing body of research (see, e.g., Cunha & Heckman, 2007).

We also contribute to the treatment effects literature by providing set identification re-
sults for the distribution of the ex ante treatment effects, in the absence of instrumental
variables. We propose a three-stage semiparametric estimation procedure yielding root-n
consistent and asymptotically normal estimators, the last stage allowing to estimate the
non-pecuniary component from an instrumental linear model. Finally, relying on French
data, we apply our method to quantify the relative importance of non-pecuniary factors
and expected returns to schooling in the decision to attend higher education. Consistent
with the recent empirical evidence on this question, our main insight is that non-pecuniary
factors are a key determinant of the attendance decision. From a policy point of view,
our results suggest that a moderate increase in tuition fees, which is currently discussed
to help finance the French higher education system, would only have a small detrimental
effect on the higher education participation rate.

Aside from applying our results to the analysis of, e.g., public versus private sector or
migration decisions, another avenue for further research is the inference on the dependence
between the sector-specific unobservable components η0 and η1. From an economic point
of view, providing identification results on this dependence is especially worthwhile since
it conveys information about the relative importance of general vs. specific human capital.
This dependence, which has received much attention in competing risks models (see, e.g.,
Peterson, 1976, van den Berg, 1997, Abbring & van den Berg, 2003), has been identified in
generalized Roy models by imposing a factor model (see Carneiro et al., 2003). However,
it would be interesting to conduct an alternative analysis on this issue, without assuming
that the outcomes depend on a low-dimensional set of factors. We leave this question for
further research.
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7 Appendix A: proofs

Theorem 2.1

Recall that εk = ηk + νk for k ∈ {0, 1}. Because E(νk|X, η0, η1) = 0, we have E(νk|X,D =

k) = 0. Thus, by Assumptions 2.1 and 2.3,

E(ε1|D = 1, X = x) =
E(η1D|X = x)

P (D = 1|X = x)

=
E (η11{η∆ ≥ ψ0(x)− ψ1(x) +G(x)})

P (D = 1|X = x)
(7.1)

Now let us show that almost surely,

η∆ ≥ ψ0(x)− ψ1(x) +G(x)⇐⇒ Sη∆
(η∆) ≤ P (D = 1|X = x) (7.2)

where Sη∆
denotes the survival function of η∆. The first implication is obvious since Sη∆

is decreasing. Now suppose that Sη∆
(η∆) ≤ P (D = 1|X = x). Then η∆ ≥ infAx where

Ax = {u/Sη∆
(u) = P (D = 1|X = x)}. Now, for all interval I ⊂ Ax, P (η∆ ∈ I) = 0 by

definition of Ax. Hence, because ψ0(x)− ψ1(x) +G(x) ∈ Ax, almost surely,

η∆ ≥ infAx ⇒ η∆ ≥ ψ0(x)− ψ1(x) +G(x).

Hence, (7.2) holds. Then, by (7.1),

E(ε1|D = 1, X = x) =
E(η11{Sη∆

(η∆) ≤ P (D = 1|X = x)})
P (D = 1|X = x)

In other terms, there exists a measurable function h such that E(ε1|D = 1, X) = h(P (D =

1|X)). Now, by Assumption 2.4,

E(Y |D = 1, X) = ψ1(X̃1) + h(P (D = 1|X)).

Suppose that there exists ψ̃1 and h̃ such that

E(Y |D = 1, X) = ψ̃1(X̃1) + h̃(P (D = 1|X)).

Then
(ψ̃1 − ψ1)(X̃1) + (h̃− h)(P (D = 1|X)) = 0

By the measurably separation condition, this implies that ψ̃1 and ψ1 are almost surely equal
up to a constant. This constant is identified by Assumption 2.2. Thus, ψ1 is identified. ψ0

can be recovered by the same argument.
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Theorem 2.2

The proof relies on Theorem 2.1 of D’Haultfoeuille & Maurel (2009). Their Assumptions
1 and 2 are satisfied by Conditions (i) and (ii) of Assumption 2.5. All we have to check is
that Assumption 3 also holds. For that purpose, remark that for k ∈ {0, 1},

P (D = k|X = x, Yk = y) = P (D = k|X = x, εk = y − ψk(x))

= P (ηk − η1−k > ψ1−k(x)− ψk(x) +G(x)|ηk + νk = y − ψk(x)).

Thus, by Condition (iii) of Assumption 2.5,

lim
y→∞

P (D = k|X = x, Yk = y) = 1, for all x.

This implies that Assumption 3 of D’Haultfoeuille & Maurel (2009) holds, and the result
follows.

Theorem 2.3

First, note that

∂q0

∂x1

(x1, x−1) = −∂(T +G)

∂x1

(x1, x−1)fη∆
(T (x1, x−1) +G(x1, x−1)) .

Thus, by Assumption 2.7, ∂q0
∂x1

(x1, x−1) 6= 0 as soon as ∂(T+G)
∂x1

(x1, x−1) 6= 0. Hence, by
Equation (2.6), G(., x−1) is identified on the set Ax−1 = {x1/

∂(T+G)
∂x1

(x1, x−1) 6= 0}. If
Ax−1 is confounded with the support of X1 conditional on X−1 = x−1, then G(., .) is
identified. Otherwise, let us consider x1 6∈ Ax−1 . Because Ax−1 6= ∅ by assumption, either
Ax−1 ∩ (−∞, x1) or Ax−1 ∩ (x1,∞) is nonempty. Suppose without loss of generality that
the former set is nonempty, and let x1 denote its supremum. By definition, ∂(T+G)

∂x1
= 0 on

(x1, x1]. Thus,

G(x1, x−1) = −T (x1, x−1) +G(x1, x−1) + T (x1, x−1).

Besides, by definition of the supremum, there exists a sequence (xn1)n∈N which tends to
x1 and such that xn1 ∈ Ax−1 for all n. As a result, it follows from the continuity of
(T +G)(., x−1) implied by Assumption 2.6 that G(x1, x−1) is identified by

G(x1, x−1) = −T (x1, x−1) + lim
n→∞

G(xn1, x−1) + T (xn1, x−1).

The result follows.
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Theorem 3.1

Before establishing the result, let us introduce some notations. Let f(., ζ) denote the
density of X ′ζ, q(u, ζ) = E(D|X ′ζ = u), r(., ζ) = q(., ζ)×f(., ζ) and define f0(.) = f(., ζ0),
q0(.) = q(., ζ0) and r0(.) = q0(.)f0(.). Consider the kernel estimators

f̂(u, ζ) =
1

nhn

n∑
i=1

K

(
u−X ′iζ
hn

)
and r̂(., ζ) = q̂(., ζ)× f̂(., ζ), where q̂(., ζ) is defined by Equation (3.6). Let us also define
Zi(ζ) = 1{Xi ∈ X}h(X ′iζ) and, for any µ = (r(.), f(.), ζ, β̃0, β̃1),

Vi(µ) = DiX
′
iζ −

∫ X′iζ

u0

r(u)

f(u)
du.

We then let Wi(µ) = (1, Di, Vi(µ))′. Thus, Ŵi = Wi(µ̂) and Wi = Wi(µ0), with µ̂ =

(r̂(., ζ̂), f̂(., ζ̂), ζ̂, β̂0, β̂1) and µ0 = (r0, f0, ζ0, β0, β1). Similarly, let

εi(µ) = Yi −X ′i
(
Diβ̃1 + (1−Di)β̃0

)
.

Eventually, let g(Ai, θ, µ) = Zi(ζ)(εi(µ) −Wi(µ)′θ) and g(Ai, µ) = g(Ai, θ0, µ), with Ai =

(Di, Yi, Xi). Then E[g(A, µ0)] = 0 and
n∑
i=1

g(Ai, θ̂, µ̂) = 0.

Thus, θ̂ is a two step GMM estimator with a nonparametric first step estimator, and we
follow Newey & McFadden (1994)’s outline for establishing asymptotic normality. Some
differences arise however because of the estimation of ζ in the nonparametric estimator of
q0. The proof of the theorem proceeds in three steps.

Step 1. We first show that µ 7→
∑n

i=1 g(Ai, µ) can be linearized in a convenient way.
Recalling that Ui = X ′iζ0, we let

G(Ai, µ) = ξi
∂Zi
∂ζ

(ζ0)′ζ + Zi(ζ0)

[
−X ′i(Diβ̃1 + (1−Di)β̃0)−

(
DiX

′
iζ

−q0(Ui)X
′
iζ −

∫ Ui

u0

∂q

∂ζ
(u, ζ0)′ζ +

1

f0(u)
(r(u)− q0(u)f(u)) du

)
α0

]
.

Note that ∂q/∂ζ(., ζ0) exists under Assumptions 2.3 and 3.2, by Lemma 8.1. Let us also
define µ̃ = (r̃, f̃ , ζ̂, β̂0, β̂1) where r̃ = r̂(., ζ0) and f̃ = f̂(., ζ0). We shall prove that

1√
n

n∑
i=1

[g(Ai, µ̂)− g(Ai, µ0)−G(Ai, µ̃− µ0)] = oP (1). (7.3)
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For that purpose, we use the decomposition

g(Ai, µ̂)− g(Ai, µ0)−G(Ai, µ̃− µ0) = R1i +R2i +R3i +R4i +R5i

where, denoting by h′(.) the vector of derivatives of h(.) and q̃ = r̃/f̃ , we let

R1i = ξi1{Xi ∈ X}
(
h(Ûi)− h(Ui)− (Ûi − Ui)h′(Ui)

)
,

R2i = α0Zi(ζ0)

[∫ Ûi

Ui

q̂(u, ζ̂)du− q0(Ui)(Ûi − Ui)

]
,

R3i = α0Zi(ζ0)

∫ Ui

u0

q̂(u, ζ̂)− q̃(u)− ∂q

∂ζ
(u, ζ0)′(ζ̂ − ζ0)du,

R4i = α0Zi(ζ0)

∫ Ui

u0

q̃(u)− q0(u)− 1

f0(u)

(
r̃(u)− r0(u)− q0(u)(f̃(u)− f0(u))

)
du,

R5i = [εi(µ̂)− εi(µ0)− (Wi(µ̂)−Wi(µ0))′θ0]
[
Zi(ζ̂)− Zi(ζ0)

]
.

We now check that for all k ∈ {1, ..., 5}, 1√
n

∑n
i=1 Rki = oP (1).

−R1i: by Assumption 3.2, there exists C0 such that ‖X‖ ≤ C0, where ‖.‖ denotes the
euclidian norm. Then, by the Cauchy-Schwarz inequality, |Ûi − Ui| ≤ C0||ζ̂ − ζ0||. Thus,
by Assumptions 3.4 and 3.7,

√
n max
i=1,...,n

∣∣∣h(Ûi)− h(Ui)− (Ûi − Ui)h′(Ui)
∣∣∣ ≤ √

nM max
i=1,...,n

|Ûi − Ui|2

≤ MC2
0

√
n||ζ̂ − ζ0||2

= oP (1),

where M = ‖max |h′′|‖. Besides,
∑n

i=1 |ξi|/n = OP (1). Thus,∥∥∥∥∥ 1√
n

n∑
i=1

R1i

∥∥∥∥∥ = oP (1).

−R2i: Let S0 = {x′ζ0, x ∈ X}. By definition, S0 ( S, where S denotes the support of U .
Besides, by definition, Zi(ζ0) = Zi(ζ0)1{Ui ∈ S0}. Moreover, for all i such that Ûi ∈ S0,
there exists, by the mean value theorem, Ũi = tUi + (1 − t)Ûi, with t ∈ [0, 1], such that∫ Ûi

Ui
q0(u)du = q0(Ũi)(Ûi − Ui). Thus, when Ûi ∈ S0,

‖R2i‖ =

∥∥∥∥∥α0Zi(ζ0)1{Ui ∈ S0}

{∫ Ûi

Ui

[
q̂(u, ζ̂)− q0(u)

]
du+

∫ Ûi

Ui

q0(u)du− q0(Ui)(Ûi − Ui)

}∥∥∥∥∥
≤ C1

∣∣∣Ûi − Ui∣∣∣ [sup
u∈S0

∣∣∣q̂(u, ζ̂)− q0(u)
∣∣∣+ max

i:Ûi∈S

∣∣∣q0(Ũi)− q0(Ui)
∣∣∣]

≤ C0C1

∥∥∥ζ̂ − ζ0

∥∥∥ [sup
u∈S0

∣∣∣q̂(u, ζ̂)− q0(u)
∣∣∣+ max

i:Ûi∈S

∣∣∣q0(Ũi)− q0(Ui)
∣∣∣] ,

36



where C1 > 0 is a constant such that ‖α0Zi(ζ0)‖ ≤ C1, which exists by Assumptions 3.2
and 3.7. Besides, because q̂(., ζ̂) and q0(.) are bounded above by 1, we have, when Ûi 6∈ S0,

‖R2i‖ ≤ 2C0C1

∥∥∥ζ̂ − ζ0

∥∥∥1{Ui ∈ S0}.

Hence,

‖R2i‖ ≤ C0C1

∥∥∥ζ̂ − ζ0

∥∥∥ [sup
u∈S0

∣∣∣q̂(u, ζ̂)− q0(u)
∣∣∣+ max

i:Ûi∈S

∣∣∣q0(Ũi)− q0(Ui)
∣∣∣

+21{Ui ∈ S0, Ûi 6∈ S0}
]
. (7.4)

By Assumption 3.4,
√
n
∥∥∥ζ̂ − ζ0

∥∥∥ = OP (1). Let us now show that the term into brackets in

(7.4) is a oP (1). By Lemma 8.2, supu∈S0
|q̂(u, ζ̂)− q0(u)| = oP (1). Now fix ε > 0. Because

q0(.) is continuous by Assumption 2.3 and S is compact, q0(.) is uniformly continuous on
S. Thus, there exists δ > 0 such that for all (u, v) ∈ S2 satisfying |u − v| ≤ δ, we have
|q0(u)− q0(v)| ≤ ε. As a consequence,

P

(
max
i:Ûi∈S

∣∣∣q0(Ũi)− q0(Ui)
∣∣∣ ≤ ε

)
≥ P

(
max
i:Ûi∈S

∣∣∣Ũi − Ui∣∣∣ ≤ δ

)
.

Because |Ũi−Ui| ≤ |Ûi−Ui| ≤ C0

∥∥∥ζ̂ − ζ0

∥∥∥, the right-hand side tends to one. This proves
that

max
i:Ûi∈S

∣∣∣q0(Ũi)− q0(Ui)
∣∣∣ = oP (1).

It remains to show that

1

n

n∑
i=1

1{Ui ∈ S0, Ûi 6∈ S0} = oP (1). (7.5)

For all δ > 0, let Sδ = {s ∈ S0/∃s′ 6∈ S0/|s − s′| < δ}. Fix ε > 0 and let K > 0 be
such that P (Ui ∈ SK) < ε/2. For n large enough, P (C0

∥∥∥ζ̂ − ζ0

∥∥∥ > K) < ε/2. Because

|Ui − Ûi| ≤ C0

∥∥∥ζ̂ − ζ0

∥∥∥, we have, for n large enough,

P
(
Ui ∈ S0, Ûi 6∈ S0

)
≤ ε

2
+ P

(
Ui ∈ S0, Ûi 6∈ S0, C0||ζ̂ − ζ0|| ≤ K

)
≤ ε

2
+ P (Ui ∈ SK)

≤ ε.

Because ε was arbitrary, this proves that

E

[∣∣∣∣∣ 1n
n∑
i=1

1{Ui ∈ S0, Ûi 6∈ S0}

∣∣∣∣∣
]
→ 0.
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This establishes (7.5) since convergence in L1 implies convergence in probability. As a
result,

∑n
i=1 R2i/

√
n = oP (1).

−R3i: By the mean value theorem, there exists ζ̃u in the segment between ζ0 and ζ̂ such
that

q̂(u, ζ̂)− q̃(u) =
∂q̂

∂ζ
(u, ζ̃u)

′(ζ̂ − ζ0).

Because Ui is bounded, there exists C2 such that |Ui − u0| < C2. Thus,

|R3i| = ‖α0Zi(ζ0)‖

∣∣∣∣∣
[∫ Ui

u0

∂q̂

∂ζ
(u, ζ̃u)−

∂q

∂ζ
(u, ζ0)du

]′
(ζ̂ − ζ0)

∣∣∣∣∣1{Ui ∈ S0}

≤ C1C2

∥∥∥ζ̂ − ζ0

∥∥∥ sup
u∈S0

∥∥∥∥∂q̂∂ζ (u, ζ̃u)−
∂q

∂ζ
(u, ζ0)

∥∥∥∥ .
The supremum tends to zero in probability by Lemma 8.2. As a result,

∑n
i=1R3i/

√
n =

oP (1).

−R4i: following Newey & McFadden (1994, p. 2204), we have

|R4i| ≤ C11{Ui ∈ S0}
∫ Ui

u0

1

f̃(u)f0(u)
[1 + |q0(u)|]

[
|f̃(u)− f0(u)|2 + |r̃(u)− r0(u)|2

]
du

≤ 2C1C2

infu∈S0 f̃(u) infu∈S0 f0(u)

[(
sup
u∈S0

|f̃(u)− f0(u)|
)2

+

(
sup
u∈S0

|r̃(u)− r0(u)|
)2
]
.(7.6)

Assumption 3.2 implies that the density of Ui is positive in the interior of S. Thus,
infu∈S0 f0(u) > 0. By uniform consistency of f̃ on S0 (see, e.g., Lemma 8.10 of Newey &
McFadden, 1994) the ratio in the right-hand side of (7.6) is a OP (1). Thus it suffices to
show that supu∈S0

|f̃(u) − f0(u)| = oP (n−1/4) and similarly for r̃. The result follows from
Assumption 3.6, the rate condition on hn and Lemma 8.10 of Newey & McFadden (1994).

−R5i: first, note that∣∣εi(µ̂)− εi(µ0)− (Wi(µ̂)−Wi(µ0))′ θ0

∣∣1{Xi ∈ X}

=

∣∣∣∣X ′i(Di(β1 − β̂1) + (1−Di)(β0 − β̂0)) +

(
Di(Ui − Ûi) +

∫ Ûi

Ui

q̂(u, ζ̂)du

+

∫ Ui

u0

[
q̂(u, ζ̂)− q0(u)

]
du

)
α0

∣∣∣∣1{Xi ∈ X}

≤ C0

(∥∥∥β̂1 − β1

∥∥∥+
∥∥∥β̂0 − β0

∥∥∥+ 2|α0|
∥∥∥ζ̂ − ζ0

∥∥∥)+ C2|α0| sup
u∈S0

|q̂(u, ζ̂)− q0(u)|.

where the first term of the upper bound follows from the Cauchy-Schwarz inequality.

Besides, with probability approaching one, there exists a compact which contains Ûi and
Ui for all i. Thus, because h′ is continuous, there exists C3 > 0 such that, with probability
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approaching one, ∥∥∥Zi(ζ̂)− Zi(ζ0)
∥∥∥ ≤ C3

∥∥∥ζ̂ − ζ0

∥∥∥ .
Hence, with probability approaching one,∣∣∣∣∣ 1√

n

n∑
i=1

R5i

∣∣∣∣∣ ≤ [
C0C3

√
n
∥∥∥ζ̂ − ζ0

∥∥∥] [∥∥∥β̂1 − β1

∥∥∥+
∥∥∥β̂0 − β0

∥∥∥+ 2|α0|
∥∥∥ζ̂ − ζ0

∥∥∥
+C2|α0| sup

u∈S0

|q̂(u, ζ̂)− q0(u)|
]
.

By Assumption 3.4, the first term into brackets in the right-hand side is a OP (1). By
Lemma 8.2 and Assumptions 3.4 and 3.5, the second term is a oP (1). The result follows.

Step 2. Now, let us show that 1/
√
n
∑n

i=1G(Ai, µ̃ − µ0) can be linearized. Let κ0 =

(ζ0, β1, β0)′ and κ̂ = (ζ̂ , β̂1, β̂0)′. We have

G(Ai, µ̃− µ0) = P ′i (κ̂− κ0) + G̃(Ai, r̃, f̃),

with Pi = (P1i, P2i, P3i)
′ and

P1i = ξi
∂Zi
∂ζ

(ζ0)′ − α0Zi(ζ0)

(
DiX

′
i − q0(Ui)X

′
i −
∫ Ui

u0

∂q

∂ζ ′
(u, ζ0)du

)
P2i = −Zi(ζ0)DiX

′
i

P3i = −Zi(ζ0)(1−Di)X
′
i

G̃(Ai, r̃, f̃) = α0Zi(ζ0)

∫ Ui

u0

(1/f0(u))(r̃(u)− q0(u)f̃(u))du.

By the weak law of large numbers,

1

n

n∑
i=1

Pi
P−→ E [P ] .

Moreover, by Assumptions 3.4 and 3.5,

√
n (κ̂− κ0) =

1√
n

n∑
i=1

(χi, χ1i, χ0i)
′ + oP (1).

Thus, (
1

n

n∑
i=1

Pi

)′
√
n(κ̂− κ0) =

1√
n

n∑
i=1

Ω1i + oP (1), (7.7)

where
Ω1i = E[P ]′ (χi, χ1i, χ0i)

′ . (7.8)

Thus, it suffices to focus on the nonparametric part of G, G̃(Ai, r̃, f̃). The main insight
here is that G̃ is nearly the linearized part of the consumer surplus example of Newey &
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McFadden (1994, p. 2204), except that their b is replaced by Ui. Thus, it suffices to modify
slightly their proof (see Newey & McFadden, 1994, p. 2211) to satisfy Conditions (ii), (iii)
and (iv) as well as the technical requirements of their Theorem 8.11. As a result, we get

1√
n

n∑
i=1

G̃(Ai, r, f) =
1√
n

n∑
i=1

Ω2i + oP (1), (7.9)

where Ω2i = α0Zi(ζ0)(1 − F0(Ui))1{Ui ≥ u0}(Di − q0(Ui))/f0(Ui), F0(.) denoting the
cumulative distribution function of U . The result follows.

Step 3. Eventually, we establish the asymptotic normality of θ̂. By (7.3), (7.7) and (7.9)
and the central limit theorem,

1√
n

n∑
i=1

g(Ai, µ̂)
d−→ N (0, V (g(A, µ0) + Ω11 + Ω21)) .

Thus, by definition of θ̂ and g(Ai, θ, µ̂),[
1

n

n∑
i=1

Zi(ζ̂)Wi(µ̂)′

]
√
n(θ̂ − θ0)

d−→ N (0, V (g(A, µ0) + Ω11 + Ω21)) .

Now,

Zi(ζ̂)Wi(µ̂)′ = Zi(ζ0)Wi(µ0)′ + Zi(ζ̂)(Wi(µ̂)−Wi(µ0))′ + (Zi(ζ̂)− Zi(ζ0))Wi(µ0)′.

Besides, by Assumption 3.7,
∥∥∥Zi(ζ̂)− Zi(ζ0)

∥∥∥ ≤ C3

∥∥∥ζ̂ − ζ0

∥∥∥ for a given C3 > 0. Moreover,
reasoning as with R5i, we get

‖Wi(µ̂)−Wi(µ0)‖ ≤ 2C0

∥∥∥ζ̂ − ζ0

∥∥∥+ C2 sup
u∈S0

|q̂(u, ζ̂)− q0(u)|.

Finally, ‖Wi(µ0)‖ and
∥∥∥Zi(ζ̂)

∥∥∥ are bounded with probability approaching one. As a result,

1

n

n∑
i=1

Zi(ζ̂)Wi(µ̂)′ =
1

n

n∑
i=1

Zi(ζ0)Wi(µ0)′ + oP (1).

Thus, by the weak law of large numbers,

1

n

n∑
i=1

Zi(ζ̂)Wi(µ̂)′
P−→ E(Z(ζ0)W (µ0)′) = E(ZW ′).

Eventually, by Slutski’s lemma, and given that g(A, µ0) = Zξ,

√
n(θ̂ − θ0)

d−→ N
(
0, E(ZW ′)−1V (Zξ + Ω11 + Ω21)E(WZ ′)−1

)
.

This concludes the proof.
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8 Appendix B: technical lemmas

Lemma 8.1 Suppose that Assumptions 2.3 and 3.2 hold. Then, for all u ∈ S, the
support of U , ζ 7→ f(u, ζ) and ζ 7→ r(u, ζ), the density of X ′ζ and the derivative of
u 7→ E(D1{X ′ζ ≤ u}) respectively, admit partial derivatives at ζ0 which satisfy:

∂f

∂ζ
(u, ζ0) = − (E [X|U = u] f0(u))′ (8.1)

∂r

∂ζ
(u, ζ0) = − (E [DX|U = u] f0(u))′ (8.2)

Proof: let X−m = (X1, ..., Xm−1, Xm+1..., Xp) and fXm|X−m(., x) (resp. FXm|X−m(., x))
denote the density (resp. cumulative distribution function) of Xm conditional on X−m = x.
Let also δk denote the vector of dimension p, with 1 at the k-th component and 0 elsewhere.
We have

f(u, ζ + tδk) =

∣∣∣∣∣∣ E
[
fXm|X−m

(
u−X′−mζ−m−tXk

ζm
, X−m

)]
if k 6= m,

E
[
fXm|X−m

(
u−X′−mζ−m

ζm+t
, X−m

)]
if k = m.

Thus, by Assumption 3.2 and dominated convergence, ζ 7→ f(u, ζ) admits continuous
partial derivatives. Now, let F (., ζ) denote the cumulative distribution function of X ′ζ.
We have,

F (u, ζ + tδk) =

∣∣∣∣∣∣ E
[
FXm|X−m

(
u−X′−mζ−m−tXk

ζm
, X−m

)]
if k 6= m,

E
[
FXm|X−m

(
u−X′−mζ−m

ζm+t
, X−m

)]
if k = m.

Thus, by Assumption 3.2 and dominated convergence, ζ 7→ F (u, ζ) admits continuous
partial derivatives, and after some rearrangements,

∂F

∂ζk
(u, ζ0) = −E [Xk|U = u] f0(u).

By Assumption 3.2 once more, u 7→ ∂F/∂ζk(u, ζ0) is continuously differentiable and

∂2F

∂u∂ζ
(u, ζ0) = − (E [X|U = u] f0(u))′ .

Then (8.1) follows from ∂f/∂ζ = ∂2F/∂ζ∂u = ∂2F/∂u∂ζ.

The proof of (8.2) is similar, except that we use G0(u, ζ) = E(D1{X ′ζ ≤ u}) instead of
F (u, ζ). The partial derivatives of ζ 7→ G0(u, ζ) exist and satisfy

∂G0

∂ζ
(u, ζ) = −E (DX|U = u) f0(u)

= −Sη∆
(u+ δ0)E (X|U = u) f0(u).
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Then differentiability of u 7→ ∂G0/∂ζ(u, ζ) stems from Assumptions 2.3 and 3.2. Equation
(8.2) follows from the same argument as previously.

Lemma 8.2 Suppose that nh6
n →∞, nh8

n → 0 and Assumptions 3.2 and 3.6 hold. Then,
for all closed interval S ′ strictly included in the interior of S and for all ζu,n such that
supu∈S′ ‖ζu,n − ζ0‖ = OP (1/

√
n), we have,

sup
u∈S′
|q̂(u, ζu,n)− q0(u)| = oP (1) (8.3)

sup
u∈S′

∥∥∥∥∂q̂∂ζ (u, ζu,n)− ∂q

∂ζ
(u, ζ0)

∥∥∥∥ = oP (1) (8.4)

Proof: we first write

sup
u∈S′
|q̂(u, ζu,n)− q0(u)| ≤ sup

u∈S′
|q̂(u, ζu,n)− q̂(u, ζ0)|+ sup

u∈S′
|q̂(u, ζ0)− q0(u)| (8.5)

Let us first consider the the first term of the r.h.s. Since |q̂(u, ζu,n)| ≤ 1, we have

sup
u∈S′
|q̂(u, ζu,n)− q̂(u, ζ0)| = sup

u∈S′

∣∣∣(r̂(u, ζu,n)− r̂(u, ζ0)) + q̂(u, ζu,n)(f̂(u, ζ0)− f̂(u, ζu,n))
∣∣∣

f̂(u, ζ0)

≤ sup
u∈S′

1

f̂(u, ζ0)

[
|r̂(u, ζu,n)− r̂(u, ζ0)|+

∣∣∣f̂(u, ζu,n)− f̂(u, ζ0)
∣∣∣]

≤ 1

infu∈S′ f̂(u, ζ0)

[
sup
u∈S′
|r̂(u, ζu,n)− r̂(u, ζ0)|

+ sup
u∈S′

∣∣∣f̂(u, ζu,n)− f̂(u, ζ0)
∣∣∣] . (8.6)

Let us prove that
sup
u∈S′

∣∣∣f̂(u, ζu,n)− f̂(u, ζ0)
∣∣∣ = oP (1) (8.7)

The proof for r̂ is similar. By Assumption 3.6, there exists C4 > 0 such that |K(u)−K(v)| ≤
C4|u− v|. Thus,∣∣∣f̂(u, ζu,n)− f̂(u, ζ0)

∣∣∣ ≤ 1

nhn

n∑
i=1

∣∣∣∣K (u−X ′iζu,nhn

)
−K

(
u−X ′iζ0

hn

)∣∣∣∣
≤ C4C0 ‖ζu,n − ζ0‖

h2
n

≤ C4C0 supu∈S′ ‖ζu,n − ζ0‖
h2
n

= Op

(
1√
nh2

n

)
.

This establishes (8.7) since nh4
n →∞. Because

inf
u∈S′

f̂(u, ζ0) ≥ − sup
u∈S′

∣∣∣f̂(u, ζu,n)− f̂(u, ζ0)
∣∣∣+ inf

u∈S′
f0(u),
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and because infu∈S′ f0(u) > 0 by Assumption 3.2, we also have

1

infu∈S′ f̂(u, ζ0)
= Op(1).

By (8.6), the first term of (8.5) tends to zero.

As for the second term, we can obtain the same decomposition as (8.6). Then Assumptions
3.2 and 3.6, and conditions on hn ensure that we can apply Lemma 8.10 of Newey &
McFadden (1994), yielding supu∈S′ |f̂(u, ζ0)−f0(u)| = oP (1) and similarly for r̂(., ζ0). This
establishes (8.3).

Now, let us turn to (8.4). We use the same decomposition as (8.5). First, let us establish
that

sup
u∈S′

∣∣∣∣∂q̂∂ζ (u, ζ0)− ∂q

∂ζ
(u, ζ0)

∣∣∣∣ = oP (1) (8.8)

We have
∂q̂

∂ζ
(u, ζ0) =

1

f̂(u, ζ0)

[
∂r̂

∂ζ
(u, ζ0)− q̂(u, ζ0)

∂f̂

∂ζ
(u, ζ0)

]
.

and similarly for ∂q/∂ζ(u, ζ0). Thus,

∂q̂

∂ζ
(u, ζ0)− ∂q

∂ζ
(u, ζ0)

=
1

f̂(u, ζ0)

{[
∂r̂

∂ζ
(u, ζ0)− ∂r

∂ζ
(u, ζ0)

]
− ∂r

∂ζ
(u, ζ0)

[
f̂(u, ζ0)− f0(u)

f0(u)

]}

− q̂(u, ζ0)

f̂(u, ζ0)

[(
∂f̂

∂ζ
(u, ζ0)− ∂f

∂ζ
(u, ζ0)

)
− ∂f/∂ζ(u, ζ0)

f0(u)

(
f̂(u, ζ0)− f0(u)

)]

−∂f/∂ζ(u, ζ0)

f0(u)
(q̂(u, ζ0)− q0(u)) .

By what precedes, infu∈S′ f̂(u, ζ0) tends in probability to infu∈S′ f0(u) > 0, while
supu∈S′ |f̂(u, ζ0)− f0(u)| = oP (1). Besides, q̂(., ζ0) is bounded by 1 and by Lemma 8.1,
∂f/∂ζ(., ζ0) is continuous on the compact set S and thus is bounded on this set. Thus, it
suffices to prove that

sup
u∈S′

∣∣∣∣∣∂f̂∂ζ (u, ζ0)− ∂f

∂ζ
(u, ζ0)

∣∣∣∣∣ = oP (1) (8.9)

and similarly for r0. By Lemma 8.1, u 7→ ∂f/∂ζ(u, ζ0) is the derivative of −E(X|U =

u)f0(u). As a consequence, we can apply Newey & McFadden (1994)’s Lemma 8.10, using
as before Assumptions 3.2, 3.6, and conditions on hn. This yields (8.9). The same reasoning
applies to r0, yielding (8.8).
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Now, let us establish that

sup
u∈S′

∥∥∥∥∂q̂∂ζ (u, ζu,n)− ∂q̂

∂ζ
(u, ζ0)

∥∥∥∥ = oP (1)

Using a similar decomposition as previously and the preceding results, it suffices to prove
that

sup
u∈S′

∥∥∥∥∥∂f̂∂ζ (u, ζu,n)− ∂f̂

∂ζ
(u, ζ0)

∥∥∥∥∥ = oP (1) (8.10)

and similarly for r̂. By Assumption 3.6, there exists C5 > 0 such that |K ′(u) −K ′(v)| ≤
C5|u− v|. Thus,∥∥∥∥∥∂f̂∂ζ (u, ζu,n)− ∂f̂

∂ζ
(u, ζ0)

∥∥∥∥∥ ≤ 1

nh2
n

n∑
i=1

‖Xi‖
∣∣∣∣K ′(u−X ′iζu,nhn

)
−K ′

(
u−X ′iζ0

hn

)∣∣∣∣
≤ C5C

2
0 ‖ζu,n − ζ0‖
h3
n

= Op

(
1√
nh3

n

)
.

This proves (8.10) since nh6
n →∞. The same reasoning applies to r̂. The result follows.
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9 Appendix C: supplementary tables and figures

Variables ζ β0 β1

Local average income
Higher education graduates 1.541*** (0.087) 0 0.019*** (0.004)
High school graduates -1 (0) 0.022*** (0.004) 0

Secondary schooling track
L 9.348*** (0.452) -0.07* (0.039) -0.011 (0.025)
ES 9.899*** (0.416) -0.043 (0.04) -0.002 (0.027)
S 10.133*** (0.426) -0.055 (0.042) -0.012 (0.026)
Vocational -29.131*** (0.488) 0.247** (0.106) -0.086 (0.094)
Technical Ref. Ref. Ref.

Born abroad 1.727*** (0.46) -0.006 (0.017) 0.000 (0.010)
Father born abroad 1.26** (0.451) -0.011 (0.009) 0.011* (0.006)
Mother born abroad 1.591*** (0.464) -0.018* (0.011) 0.007 (0.007)

Entering the labor market in 1998 (relative to 1992) 9.133*** (0.447) 0.097*** (0.035) 0.173*** (0.024)

Male -0.298 (0.401) 0.043*** (0.008) -0.001 (0.003)

Father’s profession
Farmer 2.291*** (0.434) -0.012 (0.012) 0.014 (0.009)
Tradesman 1.289*** (0.43) -0.008 (0.009) -0.005 (0.005)
Executive 3.897*** (0.422) -0.025 (0.016) 0.005 (0.011)
Intermediate occupation 1.799*** (0.457) 0.000 (0.009) 0.004 (0.007)
Blue collar -0.49 (0.418) 0.008 (0.006) -0.007 (0.004)
Other 1.309*** (0.432) -0.013 (0.009) -0.008 (0.006)
White collar Ref. Ref. Ref.

Mother’s profession
Farmer -6.343*** (0.51) 0.042* (0.025) -0.038** (0.018)
Tradesman -0.328 (0.488) 0.008 (0.01) -0.002 (0.006)
Executive 1.279*** (0.469) -0.01 (0.012) -0.006 (0.006)
Intermediate occupation 0.899* (0.489) -0.001 (0.009) -0.001 (0.006)
Blue collar -1.075** (0.438) 0.006 (0.008) 0.002 (0.006)
Other -0.315 (0.411) -0.003 (0.006) -0.019*** (0.004)
White collar Ref. Ref. Ref.

Age in 6th grade
≤ 10 3.825*** (0.465) -0.028 (0.017) 0.007 (0.01)
11 Ref. Ref. Ref.
≥ 12 -5.07*** (0.425) 0.035* (0.018) -0.019 (0.013)

Paris region 1.181*** (0.453) 0.003 (0.012) -0.002 (0.004)

Vocational × ...
Entering the labor market in 1998 -1.012** (0.499) -0.033* (0.018) -0.021 (0.015)
Male 1.622*** (0.477) -0.016 (0.01) 0.022** (0.01)
Paris region -4.402*** (0.521) 0.023 (0.022) -0.013 (0.018)

Standard errors, presented in parentheses, were computed by bootstrap with 200 bootstrap
sample replicates. Significativity levels: *** (1%), ** (5%) and * (10%).

Table 6: First step estimates.



Variable Panel 1 Panel 2 Panel 3 Panel 4

Constant (δ0) -0.016 (0.171) 0.006 (0.175) -0.028 (0.164) -0.024 (0.155)

Local average income
Higher education graduates -0.01 (0.007) -0.013* (0.008) -0.01 (0.008) -0.014* (0.008)

Local rate of honours -0.014 (0.031)

Secondary schooling track
L -0.128*** (0.046) -0.132***(0.049) -0.117** (0.059) -0.142*** (0.054)
ES -0.154*** (0.05) -0.162*** (0.052) -0.15** (0.063) -0.172*** (0.058)
S -0.146*** (0.051) -0.164*** (0.054) -0.135** (0.066) -0.175*** (0.061)
Vocational 0.227 (0.226) 0.351** (0.173) 0.251 (0.175) 0.293* (0.165)
Technical Ref. Ref. Ref. Ref.

Born abroad -0.02 (0.02) -0.032 (0.02) -0.03 (0.022) -0.032 (0.021)
Father born abroad 0 (0.01) -0.005 (0.011) -0.006 (0.012) -0.005 (0.011)
Mother born abroad -0.011 (0.011) -0.006 (0.012) -0.009 (0.014) -0.009 (0.013)

Entering the labor market in 1998 (relative to 1992) -0.094*** (0.034) -0.106** (0.045) -0.113** (0.055) -0.12** (0.051)

Male -0.061*** (0.012) -0.043*** (0.008) -0.044*** (0.009) -0.038*** (0.009)

Father’s profession
Farmer -0.02 (0.016) -0.022 (0.016) -0.018 (0.018) -0.023 (0.017)
Tradesman -0.021** (0.009) -0.026** (0.013) -0.02* (0.012) -0.025** (0.011)
Executive -0.051** (0.023) -0.053** (0.022) -0.043* (0.024) -0.055** (0.022)
Intermediate occupation -0.034** (0.014) -0.04*** (0.015) -0.03** (0.013) -0.035*** (0.012)
Blue collar -0.009 (0.007) -0.007 (0.007) -0.005 (0.009) -0.004 (0.008)
Other -0.016 (0.011) -0.018 (0.011) -0.021* (0.012) -0.023** (0.011)
White collar Ref. Ref. Ref. Ref.

Mother’s profession
Farmer 0.049 (0.034) 0.045 (0.03) 0.049 (0.039) 0.057 (0.037)
Tradesman -0.008 (0.01) 0.002 (0.012) -0.006 (0.012) -0.003 (0.011)
Executive -0.017 (0.012) -0.018 (0.012) -0.017 (0.015) -0.023* (0.014)
Intermediate occupation -0.018 (0.012) -0.017 (0.011) -0.019 (0.012) -0.019* (0.011)
Blue collar 0.011 (0.007) 0.017* (0.01) 0.016 (0.01) 0.019* (0.01)
Other -0.008 (0.007) -0.01 (0.006) -0.009 (0.007) -0.01 (0.007)
White collar Ref. Ref. Ref. Ref.

Age in 6th grade
≤ 10 -0.037* (0.021) -0.039** (0.019) -0.033 (0.025) -0.047** (0.024)
11 Ref. Ref. Ref. Ref.
≥ 12 0.06* (0.036) 0.05** (0.024) 0.048* (0.028) 0.056** (0.026)

Paris region -0.024* (0.012) -0.023* (0.012) -0.018 (0.014) -0.03** (0.012)

Vocational × ...
Entering the labor market in 1998 0.019 (0.023) 0.04* (0.023) 0.02 (0.026) 0.034 (0.024)
Male 0.019 (0.016) 0.004 (0.015) 0.008 (0.015) 0.003 (0.014)
Paris region 0.045* (0.025) 0.052* (0.028) 0.038 (0.032) 0.059** (0.029)

In Panel 1, the higher education dropouts are excluded from the sample. In Panel 2, the local rate of honours is included in the
estimation. In Panel 3 and 4, the streams of income were computed using (τ = 0.97, B = 25) and (τ = 0.95, B = 30) respectively.
Standard errors, presented in parentheses, were computed by bootstrap with 200 sample replicates. Significativity levels: ∗∗∗ (1%), ∗∗

(5%) and ∗ (10%).

Table 7: Estimates of non-pecuniary factors: robustness checks.
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Figure 2: Ex ante returns to higher education: robustness of the instru-
mental strategy.
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Figure 3: Ex ante returns to higher education under alternative compu-
tations of the streams of earnings.
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