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abstract

This paper considers estimation of the coefficient vector in a semiparametric
monotone index model where one needs to condition on control variables to deal
with unobserved heterogeneity. Examples that fit this framework are weakly-
separable models with sample selection, triangular endogeneity, or a partially-
linear index specification. The proposed estimator is based on a local ranking of
the observations, given nonparametric estimates of the controls. Rank estimation
is conceptually elegant, demands mild shape restrictions that can readily follow
from an economic model, and offers robustness against contamination of the data.
At the same time, it does not require estimating nuisance functions. Sufficient
conditions are given under which the estimator converges to a Gaussian process
at the parametric rate. In doing so, distribution theory is derived for two-step
estimators that does not require the objective function to be differentiable. These
results should prove complementary to the asymptotic theory that underlies the
estimators derived from smooth moment conditions. The theory is also generalized
to cover three-step estimators whose criterion function depends on the local-rank
estimator, by deriving an estimator of a nonparametric transformation model.
Simulation experiments serve to illustrate the implementation of the procedure
and to evaluate its small-sample effectiveness.
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i introduction

There is now a large literature on semiparametric estimation of econometric models.

Motivated by a desire to relax functional-form assumptions while simultaneously cir-

cumventing the curse of dimensionality, modeling approaches featuring index restrictions

are particularly widespread; see Stoker (1986), Powell, Stock, and Stoker (1989), and

Ichimura (1993) for seminal work, Powell (1994) and Horowitz (2009) for overviews, and

Horowitz and Lee (2002) for a critical assessment of such approaches. A particular class

of estimators for these models is based on pairwise comparisons of observations. Rank-

based estimation techniques fall into this category, as do pairwise-differencing methods.

Inference procedures based on ranks are known to have superior robustness properties

over other methods such as (semiparametric) least squares or maximum likelihood, for

example. At the same time, their implementation does not require the estimation of

nuisance functions or the choice of smoothing and trimming parameters. Examples of

rank estimators can be found in Han (1987), Cavanagh and Sherman (1998), and Khan

and Tamer (2007), among others.

In many important problems, conditioning on control variables—or, simply, controls

for short—is required to obtain moment conditions that identify the parameters of in-

terest. In several such situations, a prior estimation step is needed to construct an

empirical counterpart to these identifying restrictions. A prime example of this scenario

is the instrumental-variable estimation of a linear structural equation with endogenous

regressors via two-stage least-squares; another one is the estimation of a linear model in

the presence of sample selection through the familiar Heckman (1979) procedure. This

type of methods has been extended to semiparametrically-specified nonlinear models.

Ai and Chen (2003), for example, have derived theory for GMM estimators defined by

conditional moment restrictions. For pairwise-differencing estimators, Aradillas-López,

Honoré, and Powell (2007) have extended the work by Ahn and Powell (1993) and

Honoré and Powell (1994) to allow for the inclusion of controls into a class of estimators

for nonlinear models that is defined through assumptions of concavity and smoothess

on the associated criterion functions.

Here, I consider including nonparametrically-specified controls into rank estimators.

I will focus on a modification of a class of estimators proposed by Cavanagh and Sherman

(1998). However, the distribution theory will apply more generally to estimators that

maximize U-processes of order two; see Jochmans (2010) for details. The resulting

estimator is based on a local ranking of observations, which is to be understood as

ranking only those observations whose controls are approximately equal. It can be
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applied to many popular econometric models, including binary-choice models, censored

regression models, and transformation models. Because of the step-function nature of

the objective function that is inherent to any estimator based on ranks, the large-sample

behavior of its maximizer can not be readily established using the results available in the

literature. Therefore, I derive distribution theory that takes into account the influence

of the first-step nonparametric estimation error while allowing the maximand to be

non-differentiable. The theory builds on the work by Sherman (1993,1994a,1994b) and

generalizes the aforementioned results of Aradillas-López, Honoré, and Powell (2007).

This extension is not merely technical, as the requirements of smoothness and concavity

in the latter paper can substantially restrict the scope of the approach if one is unwilling

to impose additional parametric structure; see, for example, Honoré and Powell (2005)

for a discussion.

The work that is most closely related to what follows is Blundell and Powell (2004),

who suggest a three-step estimator for the index coefficients in a semiparametric binary-

choice model with triangular endogeneity. While their procedure is also applicable to a

more general class of models, the rank approach advocated here essentially sidesteps the

need for their second estimation step, which involves a nonparametric regression on both

the covariates and nonparametrically generated regressors. In addition to this and the

other favorable properties of rank procedures mentioned earlier, the local-rank estimator

builds on weaker shape and smoothness restrictions. The theory laid out below is useful

in a variety of applications because such weak shape restrictions often follow under mild

assumptions that do not involve a parametric specification of link functions or of the

distribution of the model’s latent components. The structural dynamic-optimization

problem of Hong and Shum (2010), for example, is open to local-rank estimation. In

their model, the relevant shape restriction involves the first-order conditions to a utility-

maximization problem and follows directly from economic principles.

The paper proceeds as follows. I first state the general form of the model and

argue for its usefulness by means of three examples. Next, the local-rank estimator

is introduced and intuition for its form is provided. An analysis of its large-sample

properties follows. Conditions are given under which the estimator is consistent and

converges at the parametric rate. The limiting distribution is derived and a consistent

estimator of its variance is given. I then turn to the estimation of other parameters of

interest in a third estimation round. The usefulness of such an additional estimation

step is motivated using a nonparametric transformation model, and asymptotic theory

for this estimator is obtained. The paper ends with an overview of results from Monte
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Carlo experiments in models with triangular endogeneity or sample selection. Three

appendices contain intermediate lemmata, proofs, and a description of the optimization

routine used to compute the local-rank estimator.

ii the model and motivating examples

Let the vector of observable random variables D ≡ (Y,X,E, Z) have distribution P.

Define the vector-valued function

ϑ0(E,Z) ≡ g(E)− µa(E)(Z)

for chosen functions g : Rdim(E) → Rdim(ϑ0) and a : Rdim(E) → Rdim(ϑ0); µa(E)(z)

denotes the expectation of a(E), given Z = z, and dim(A) refers to the dimension of

a vector A. Suppose that the outcome variable, Y , is a scalar whose mean conditional

on realizations of the covariates X and ϑ0(E,Z) depends on X only through the linear

index X ′θ0. Some overlap between X and (E,Z) will be allowed. Then, in line with the

conventional notation for multiple-index models (see, e.g., Ichimura and Lee, 1991),

Y = µY
(
X ′θ0, ϑ0(E,Z)

)
+ ξ (2.1)

for a conditional-mean function µY : R1+dim(ϑ0) → R and a disturbance ξ that has mean

zero given realizations of X and ϑ0(E,Z). This model is semiparametric because the

functions µY and ϑ0 are unknown. Our intention is to infer θ0 (up to normalizations)

from a random sample without imposing additional parametric structure. The main

statistical restriction that will be maintained is a weak-monotonicity condition. It will

be assumed that µY (x′θ0, ϑ) is nondecreasing and nonconstant in x′θ0 for each value ϑ

of the control.

Two special cases of particular interest are covered by these assumptions. The first

one has the outcome variable generated as

Y = f
(
X ′θ0 + g[ϑ0(E,Z)], U

)
, U⊥(X,E,Z), (2.2)

where U is a latent disturbance vector, f : R1+dim(U) → R is weakly increasing in

its first argument, and g : Rdim(ϑ0) → R is smooth, but f and g are otherwise left

unspecified. This is a partially-linear-index formulation of the generalized regression

model introduced by Han (1987) and, in the absence of ϑ0(E,Z), it can be seen to cover

many popular models; standard versions of binary-choice models, censored regression

models, and duration models are a few examples. The model as specified in (2.2) can

[4]



be understood to extend Han’s in a manner analogous to how Robinson (1988) modified

the linear regression model to allow some covariates to affect the outcome variable in

a nonparametrically-specified way. Besides the nonlinearity, another difference with

Robinson’s model is that ϑ0(E,Z) depends on the unobserved conditional expectation

µa(E)(Z), which will have to be estimated, leading to the presence of generated regressors.

If the distribution of U is parametrically specified, this model fits the framework of

Aradillas-López, Honoré, and Powell (2007) for various f .

A second special case arises on modifying (2.2) to

Y = f(X ′θ0, U), U⊥X|ϑ0(E,Z) = ϑ for all ϑ, (2.3)

which allows ϑ0(E,Z) to influence the distribution of Y through the distribution of

U . This formulation captures models with nonparametric control functions and can

be of use when estimating certain simultaneous-equation systems such as a generalized

regression model with sample selection or with endogenous covariates, bringing us closer

to the main points of focus in Ahn and Powell (1993) and Blundell and Powell (2004);

see the examples below. In all these cases, avoiding parametric specifications on f and

the error distribution circumvents several instances of misspecification and allows for

generality in the nature of the process under consideration.

To motivate the generic structure of the model it is useful to sketch some situations

of practical interest that can be cast into it.

Example 1 (decisions based on expectations). Suppose that agents choose Y based on

observable characteristics X and on their expectations about the realization of a random

variable E, given realizations of Z. Unless X and Z are independent, ignoring the effect

of expectations on outcomes will generally cause inferential statements on the impact

of X to be biased. However, provided that observations on E are available, µE(z) is

nonparametrically identified and estimable, and can thus be conditioned upon by the

econometrician.

One potential application of this framework is in market-entry models with few players,

where a firm’s decision to enter the market depends on its anticipation of the other

players’ decision ; see, e.g., Berry (1992) and Aradillas-López (2010). Accounting for

the impact of expectations on outcomes can be traced back at least as to Manski (1991),

who considered the estimation of preference parameters in a parametric discrete-choice

setting; see also Ahn and Manski (1993) and Ahn (1997).

The next example is a nonlinear model with sample selection.
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Example 2 (endogenous sample selection). Suppose that Y ∗ is determined through a

model of the form Y ∗ = f(X ′θ0, U2) but that only Y ≡ EY ∗ is observed along with

(X,E,Z), where

E = 1(g(Z) ≥ U1), (U1, U2)⊥(X,Z), and the cdf FU1 is strictly increasing on R.

Here, the mean of Y given (X,E,Z) = (x, 1, z) varies with z. Conditioning on Z = z

can make the identification and estimation of θ0 troublesome if X and Z have elements in

common. However, independence implies that U2|(X,E,Z) = (x, 1, z)
L
= U2|g(z) ≥ U1,

so that U2 is i.i.d. given g(Z) = g(z) and E = 1. The invertibility of FU1 implies

that conditioning on g(Z) = g(z) is identical to conditioning on µE(Z) = µE(z), as

g(z) = F−1
U1

(µE(z)). This leads to a double-index formulation for the mean of Y given

realizations of (X,Z) in the subpopulation with E = 1, with indices X ′θ0 and µE(Z).

Self selection is a common worry when dealing with microeconomic data; see, e.g., Olley

and Pakes (1996) and Borjas (1987) for relevant and well-known applications. The

pioneering contributions on the estimation of parametric linear sample-selection models

are Gronau (1973) and Heckman (1974, 1979). Various semiparametric alternatives have

since then been formulated. A recent suggestion is in Newey (2009), which also contains

further references. The approach most closely related to what follows is Ahn and Powell

(1993), who derived a pairwise-differenced least-squares estimator while allowing for a

nonparametric selection equation as in Example 2. A nonparametric proposal for a

model with an additively-separable disturbance was made by Das, Newey, and Vella

(2003). In the context of nonlinear models, however, the issue has received relatively

little attention; some nonparametric identification results, conditional on selection, are

given in Newey (2007).

The final illustration concerns endogeneity bias as induced by simultaneity or by

measurement error in covariates, for example.

Example 3 (triangular endogeneity). Assume that the outcome variable is generated

as Y = f(X ′θ0, U2), where X partitions as (X ′1, E
′)′. Suppose that E depends on Z =

(X ′1, X
′
2)′ through

E = µE(Z) + U1,

and that the distributional exclusion restriction U2|(X,E,Z) = (x, e, z)
L
= U2|U1 = u1

holds. Then U2 and E are dependent through their dependence on U1, rendering a

single-index-based estimator inconsistent. Here, ϑ0(E,Z) = E − µE(Z) = U1 has an

interpretation as an omitted variable. It follows that the conditional mean of Y has a

multiple-index representation as in (2.1).
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Endogeneity remains a pervasive problem in models with non-additive disturbances;

Chesher (2007) outlines some of the most recent attacks. Example 3 is essentially an

application of the control-function approach to identification in simultaneous-equation

models as put forward by Smith and Blundell (1986) and many others in a parametric

setting, by Blundell and Powell (2004) in a semiparametric binary-choice model, and by

Chesher (2003) and Imbens and Newey (2009) in a fully nonparametric framework. An

extensive overview, a thorough discussion, and many more references are provided by

Blundell and Powell (2003).

iii local-rank estimation

This section introduces a local-rank estimator to learn about θ0 from a random sample

of observations from P. As with virtually all semiparametric approaches, we will at best

be able to identify and estimate θ0 up to normalizations. Therefore, a constant term is

excluded from X and, hereafter, θ0 refers to its versor, i.e., θ0/‖θ0‖, where ‖·‖ will be

used to indicate both the Euclidean norm and the matrix norm.

To describe the estimator, denote the data by {Di}ni=1, let Vi ≡ (Yi, Xi), and let

Wi ≡ (Ei, Zi). For a deterministic function m : R → R that is increasing on R and

for each θ in Θ ≡ {θ ∈ Rdim(X) : ‖θ‖ = 1}, define the score contribution of the pair of

observations (i, j) as

s(Vi, Vj, θ) ≡ m(Yi) 1(X ′iθ > X ′jθ) + m(Yj) 1(X ′iθ < X ′jθ). (3.1)

Also, let ϑ̂(w) indicate a nonparametric estimator of ϑ0(w). The proposed estimator of

θ0, then, is defined as

θ̂ ≡ arg max
θ∈Θ

q̂n(θ),

where the objective function is the following ‘weighted average’ of score contributions

q̂n(θ) ≡
(
n

2

)−1 n∑
i=1

∑
i<j

s(Vi, Vj, θ)

σ
dim(ϑ0)
k

k
( ϑ̂(Wi)− ϑ̂(Wj)

σk

)
t(Zi)t(Zj). (3.2)

Here, k : Rdim(ϑ0) → R is a chosen symmetric kernel function and σk is an associated

(scalar) bandwidth that goes to zero as n grows large. The function t : Rdim(Z) → R+

serves to trim away observations for which ϑ̂(w) is an unreliable estimator; the necessity

for its inclusion will become clear below.

The estimator has an interpretation that explains its form. Monotonicity implies

that a ranking of the conditional expectation of m(Y ) given realizations of X and ϑ0(W )
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allows one to deduce an ordering on the associated indices X ′θ0.1 Moreover,

µm(Y )

(
x′1θ0, ϑ

)
> µm(Y )

(
x′2θ0, ϑ

)
⇒ x′1θ0 > x′2θ0, (3.3)

in obvious notation. Consequently, one fruitful approach to learning about θ0 is choosing

as an estimate that value that best mimics (3.3) in the sample.2 Denote the density of

Y given (X,ϑ0(W )) by pY |X,ϑ0(W ). Because

µm(Y )

(
x′θ0, ϑ

)
=

∫
m(y) pY |X,ϑ0(W )(y|x, ϑ) dy,

it is easy to see that the expected score function in (3.1) is concordant with (3.3) when

evaluated at θ0, but not necessarily at any other θ ∈ Θ. As the model only enforces

an ordering conditional on the control, the score function should be fed only pairs (i, j)

for which ϑ0(Wi) − ϑ0(Wj) lies in a shrinking neighborhood of zero. In (3.2), this is

achieved by means of the kernel weights, with nonparametric estimates of the control

substituting for the unobserved ϑ0(Wi) and ϑ0(Wj).

The data-dependent weighting constitutes the main difference with the estimator

advocated by Cavanagh and Sherman (1998), whose objective function is recovered

from (3.2) on assigning the same weight to each pair of observations in the sample.

Accordingly, θ̂ has an interpretation as a two-step local implementation of their approach

to estimating monotone single-index models. Conditions under which this procedure

leads to asymptotically-valid inferential statements about θ0 will be given below.

Before plunging into the large-sample theory, however, a word on the function m.

While an obvious choice would be simply to set m(Y ) = Y , its presence is not vacious.

One attractive feature of specifying θ̂ in terms of general m is that it covers more robust

choices. It is well known that estimation based solely on ranks can enjoy a larger

degree of robustness than do other methods, although this robustness will typically

come at a cost in terms of efficiency loss.3 Choosing m thus allows to strike a certain

1The ordering need not be complete, as the reverse statement in (3.3) only holds under a strength-
ening of the assumption of weak monotonicity to invertibility. This would lead us back to what is
essentially Blundell and Powell’s (2004) model.

2The need for location and scale normalizations manifests itself here, as (3.3) conveys no information
on an intercept term and continues to be satisfied for all positive-scalar multiples of θ0. For a discussion
on the need for normalizations in semiparametric estimation, see Horowitz (2009).

3Not surprisingly, rank estimators generally do not achieve semiparametric efficiency bounds such
as those derived for binary-choice models and censored regression models by Chamberlain (1986) and
Cosslett (1987), or the efficiency bound for the single-index model computed by Newey (1990) (as cited
by Ichimura, 1993). Nevertheless, efficiency can be improved by a weighting approach. Moreover,
Subbotin (2008b) has demonstrated that properly-weighted versions of rank estimators can achieve the
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balance between robustness and efficiency. To illustrate, the influence of outliers could

be dampened by setting m(Y ) = y 1(Y < y) + Y 1(y ≤ Y ≤ y) + y 1(y < Y ) for chosen

bound values y and y.4 As a limiting case, inference about θ0 could be based solely on

the sign of Y .

iv large-sample properties

Let P be the product measure P ⊗ P on the product space supp(D) ⊗ supp(D). By

analogy to P, define Pn as the empirical measure generated by independent sampling

from P and define Pn similarly, that is, as the random probability measure that places

mass 1/n(n − 1) on each ordered pair (Di, Dj). Following the notational conventions

from the literature on empirical processes, write P[f(·)] = f(P) for the expectation of

a measurable function f under P. Similarly, refer to the expectation under the product

measure as P[f(·, ·)] = f(P,P).

Observe that, for each θ in Θ, q̂n(θ) is a U-statistic of order two; exploit symmetry

to write it compactly as

q̂n(θ) =

(
n

2

)−1 n∑
i=1

∑
i<j

ĥ(Di, Dj, θ) = Pn[ ĥ(·, ·, θ)].

A large block of the available distribution theory for estimators defined as maximizers of

U-processes was derived by Sherman (1993, 1994b); see also Pollard (1984) and Arcones

and Giné (1993). The problem here differs from his setup in two important respects.

The first is the presence of kernel weights in q̂n(θ), the second is its dependence on a

first-step nonparametric estimator.

While, in principle, any nonparametric estimator—such as, inter alia, series-, nearest-

neighbor-, or locally-linear regression—could be used to form the weights, here, I work

semiparametric efficiency bound for certain models, including the nonlinear regression model and the
binary-choice model. Presumably, a similar argument can be applied here. Croux and Dehon (2010)
study robustness and efficiency of rank-based measures of statistical association.

4Cavanagh and Sherman (1998) also discussed the use of the rank of Yi, that is, m(Yi) =∑n
k=1 1(Yi > Yk); see also Sherman (1994b). Here, the use of the rank function would translate

into an objective function of the form

1
6

(
n

3

)−1 n∑
i=1

∑
j 6=i

∑
k 6=i,j

1(Yi > Yk) 1(X ′iθ > X ′jθ)

σ
2dim(ϑ0)
k

k
( ϑ̂(Wi)− ϑ̂(Wj)

σk

)
k
( ϑ̂(Wi)− ϑ̂(Wk)

σk

)
.

Notice the additional weighting to ensure that Yi is ranked only relative to observations k for which
ϑ̂(Wk)− ϑ̂(Wi) converges to zero as n→∞. While I restrict m to be deterministic, ruling out the rank
function, this case could be dealt with under suitable modifications to the arguments that follow.
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with a kernel estimator. It takes the form

ϑ̂(w) ≡ g(e)− µ̂a(E)(z) = g(e)−

∑n
i=1 a(Ei) l

(
z−Zi
σl

)
∑n

i=1 l
(
z−Zi
σl

) , (4.1)

for a kernel function l : Rdim(Z) → R and a smoothing parameter σl. The Nadaraya-

Watson estimator will prove a convenient choice for our purposes. However, the limiting

distribution of θ̂ will not depend on the particular choice for the first-step estimator, so

long as it satisfies certain conditions.

Because bias induced by kernel weighting can be dealt with under the usual regularity

and smoothness conditions on the kernels and density functions involved, the largest

chunk of our subsequent endeavors will be devoted to establishing the impact of first-

step estimation error on the asymptotic variance of θ̂. In doing so, it will be useful to

interpret q̂n(θ) as an approximation to

qn(θ) ≡
(
n

2

)−1 n∑
i=1

∑
i<j

s(Vi, Vj, θ)

σ
dim(ϑ0)
k

k
(ϑ0(Wi)− ϑ0(Wj)

σk

)
t(Zi)t(Zj) = Pn[h(·, ·, θ)].

This would be the objective function of choice if ϑ0(w) was directly observable; the

difference q̂n(θ)− qn(θ) is entirely due to the noise in ϑ̂(w).5

4.1 Distribution theory

I begin by stating conditions on the kernel function and bandwidth sequence used in

the construction of the first-step estimator. For vectors A and B of equal length, let

|A| ≡
∑dim(A)

j=1 A(j) and let BA ≡
∑J

j=1(B(j))A
(j)

.

Assumption 1. For a positive integer l , l is a symmetric l th-order kernel function.

That is, l(η) = l(−η),
∫

l(η) dη = 1,
∫
ηl l(η) dη = 0 for |l| = 0, . . . , l − 1, and∫

‖ηl ‖ ‖l(η)‖ dη <∞. In addition, l is bounded and a-Hölder for some a > 0.

Assumption 2. The bandwidth σl is nonnegative and proportional to n−λ, where λ ∈
( 1

2l ,
1−ε

2dim(Z)
) for some ε > 0.

A kernel that satisfies Assumption 1 may be composed by making use of formulae

provided by Müller (1984). As usual, a larger number of regressors requires both a

kernel of a higher order and a bandwidth that shrinks to zero more slowly.

The dimension of Z also affects the degree of differentiability that is required from

its density, as is apparent from the following assumption.

5The trimming in qn(θ) is obsolete because ϑ0(W ) is assumed known. It is maintained here for
convenience, however, as this infeasible criterion function will be of use later on.
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Assumption 3. Let Z have Lebesgue density pZ and let Z be a compact subset of

supp(Z) so that infz∈Z pZ(z) > 0 and supz∈Z pZ(z) < ∞. Then, for each z in Z ,

pZ(z) and µa(E)(z) are l -times continuously differentiable with bounded derivatives. In

addition, under P, the function a has an envelope whose fourth moment exists and whose

conditional variance given Z = z is continuous in z.

In addition to imposing smoothness conditions, Assumption 3 introduces a subset of the

support of the regressors on which pZ is known to be bounded away from zero. This

is a technical requirement that prevents the denominator of the first-step estimator

from getting arbitrarily close to zero. It also avoids µ̂a(E)(z) from converging too slowly

due to boundary effects. The demand for all components of Z to be continuous is

motivated primarily by notational simplicity. The presence of discrete regressors would

require a rewriting of Assumption 3 in terms of conditional densities and a corresponding

adjustment to the kernel function in (4.1); see, e.g., Ahn (1997) for details. It is well

known that the speed of convergence of nonparametric estimators does not depend

on the number of discrete regressors present but does deteriorate with the number of

continuously distributed ones.

Assumptions 1–3, in tandem, lead to a uniform rate of convergence and a linear

representation result for µ̂a(E)(z)− µa(E)(z).

Lemma 1. Let Assumptions 1–3 hold. Then

(i) sup
z∈Z

∥∥∥µ̂a(E)(z)− µa(E)(z)
∥∥∥ = Op

(√ nε/2

nσ
dim(Z)
l

)
; and

(ii) µ̂a(E)(z)− µa(E)(z) =
1

nσ
dim(Z)
l

n∑
i=1

[a(Ei)− µa(E)(z)]

pZ(z)
l
(z − Zi

σl

)
+Op

( nε/2

nσ
dim(Z)
l

)
uniformly over Z .

Lemma 1 is similar to Theorem 1 in Aradillas-López, Honoré, and Powell (2007) and

will prove useful in handling the sample noise in ϑ̂(w).

The next assumption brings us to the second estimation step and is concerned with

identification.

Assumption 4. The vector X has at least one component whose distribution conditional

on the remaining dim(X) − 1 components and the control has an everywhere positive

Lebesgue density, and the support of X given ϑ0(W ) = ϑ is not contained in a proper

linear subspace of Rdim(X) a.e. ϑ.
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Semiparametric point identification of (scaled) index coefficients, in general, requires

stronger conditions on the distribution of the covariates to hold than in parametric

problems; see, again, Horowitz (2009) for a discussion. Assumption 4 is a straightforward

modification to the support conditions in Manski (1985), Han (1987), Cavanagh and

Sherman (1998), and many others. Besides the conventional ‘full-rank’ condition, which

serves to prevent problems of global underidentification, it requires one covariate to

have a density with large support, given realizations of the remaining covariates and the

control. This is stronger than necessary but implies that the set{
(x1, x2)∈supp(X|ϑ0(W )= ϑ)×supp(X|ϑ0(W )= ϑ) : sgn[(x1−x2)′θ] 6= sgn[(x1−x2)′θ0]

}
has non-zero measure under P for all ϑ in supp(ϑ0(W )) and each θ in Θ except for

θ = θ0. This will lead to θ0 uniquely maximizing the large-n probability limit of q̂n(θ).

Assumption 5 helps to ensure that the objective function is well behaved.

Assumption 5. The second moment of m(Y ) under P exists and the function t is

of the form t(z) = 1(z ∈ Z ) i(z), where i : Rdim(Z) → R+
0 is bounded and l -times

differentiable with bounded derivatives.

Refer to Assumption 3 to recall that the trimming set serves to keep the kernel weights

well defined. The fixed trimming procedure prescribed here comes at a cost in terms of

asymptotic efficiency as it implies that a fraction of the data is ignored asymptotically.

It is, however, convenient for proving consistency and asymptotic normality of the local-

rank estimator and has been applied elsewhere; Ichimura (1993) and Newey (1994a) are

two of many examples. Arguably, the analysis below could be adjusted to allow for

this fraction to converge to zero slowly with the sample size, as in Stoker (1991), for

example.

The second-step kernel and bandwidth are governed by the next two assumptions.

Assumption 6. For a positive integer k , k is a symmetric k th-order kernel function.

That is, k(η) = k(−η),
∫

k(η) dη = 1,
∫
ηkk(η) dη = 0 for |k| = 1, . . . , k − 1, and∫

‖ηk‖ ‖k(η)‖ dη <∞ for |k| ∈ {0, k }. In addition, k is bounded, of bounded variation,

and twice differentiable with bounded derivatives k′ and k′′.

Assumption 7. The bandwidth σk is nonnegative and proportional to n−κ, where κ ∈
( 1

2k ,
1−ε−2dim(Z)λ
2(dim(ϑ0)+2)

).

Imposing symmetry on k is natural given that the weight that is assigned to the score

contribution of a pair of observations should not depend on the order in which these
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observations enter s.6 Assumptions 6 and 7 have a similar purpose as do Assumptions 1

and 2, that is, aid in ensuring the bias induced by kernel-weighting to be asymptotically

negligible.

To state the accompanying smoothness condition on the density of the control, and

to support our future work, additional notation is useful. Let

τ(d, θ) ≡ h(d,P, θ) and τ(d, θ) ≡ lim
n→∞

τ(d, θ) = t(z) ϕ(v, ϑ0(w), θ),

where

ϕ(v1, ϑ, θ) ≡
∫

s(v1, v2, θ) t(z2) dP(V,Z)|ϑ0(W )(v2, z2|ϑ) pϑ0(W )(ϑ)

and h(d,P, θ) refers to the expectation of h(·, ·, θ) given its first argument. Notice that

ϕ(Vi, ϑ0(Wi), θ) is the expected score contribution of observation i in the subpopulation

for which ϑ0(w) = ϑ0(Wi) (and z ∈ Z ), scaled by the density of the control evaluated

at the same point.

The second-step analog of Assumption 3 now follows.

Assumption 8. For each θ in Θ, v in supp(V ), and w in supp(W ), the function

ϕ(v, ϑ0(w), θ) is (k + 1)-times differentiable in its second argument, and the derivatives

are uniformly bounded. Furthermore, the first derivative, ∇ϑϕ(v, ϑ0(w), θ), is l -times

differentiable in z, and the derivatives are uniformly bounded.

This differentiability condition, in combination with the previous assumptions, implies

that τ(d, θ) = τ(d, θ) + O(1/
√
n) uniformly over Θ. The limiting objective function for

our problem then is

q(θ) ≡ plim
n→∞

q̂n(θ) = τ(P, θ),

where the convergence is again uniform.

The above conditions suffice for θ̂ = arg maxθ∈Θ q̂(θ)
p→ arg maxθ∈Θ q(θ) = θ0.

7

Theorem 1 summarizes our progress so far.

Theorem 1. Let Assumptions 1–8 hold. Then ‖θ̂ − θ0‖ = Op(1).

6Symmetry of k has additional advantages. First, it implies symmetry of h and thus leads to
{h(, ·, ·, θ) : θ ∈ Θ} being a U-process with a symmetric ‘kernel’; this is convenient for the large-sample
analysis. Second, it facilitates the construction of a higher-order kernel. In any case, most garden-
variety kernels are symmetric; see, e.g., Li and Racine (2007) for a discussion.

7Clearly, the consistency of θ̂ for θ0 holds under weaker assumptions; all that is required is that
τ(d, θ) = τ(d, θ) + O(1) uniformly over Θ and that θ0 is the sole global maximizer of q(θ) on Θ. The
higher-order kernel and differentiability conditions, and the undersmoothing will, however, prevent bias
terms from appearing in the asymptotic distribution of

√
n(θ̂ − θ0).
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Continuing on to the asymptotic distribution of the local-rank estimator requires

establishing the impact of the first-step estimation error, which calls for a somewhat

more delicate argument. Let

ζ(w, θ) ≡ −t(z)[a(e)− µa(E)(z)]′ δ(z, θ), δ(z, θ) ≡
∫
∇ϑϕ(v, ϑ0(w), θ) dP(V,W )|Z(v, w|z).

The vector-valued derivative ∇ϑϕ(v, ϑ0(w), θ) is a measure of variability of the expected

score to changes in the components of the control; δ(z, θ) is its expected value given

Z = z. The more sensitive this latter function is to changes in the control, the greater

the extent to which first-step estimation noise affects the asymptotic variance of θ̂; this

point will be made more precise below.

The following lemma shows that q̂n(θ) asymptotically behaves like the sum of two

U-statistics and is key in deriving the limiting distribution of
√
n(θ̂ − θ0).

Lemma 2. Let Assumptions 1–8 hold. Then

q̂n(θ) = qn(θ) + 2ζ(Pn, θ) + Op

( 1√
n

)
uniformly over Θ.

Recall that qn(θ) is the infeasible criterion function in which ϑ̂(w) does not appear.

Lemma 2 thus implies that we can handle the variation that is induced through the

first estimation step separately from the analysis of an infeasible estimator that assumes

ϑ0(w) to be observable.

The proof to asymptotic normality builds on Lemmata A and B in the Appendix.

The first of these deals with qn(θ) and uses Assumption 9. The second auxiliary lemma

concerns ζ(w, θ) and relies on Assumption 10.

Assumption 9. Let N denote a neighborhood of θ0. For each d in supp(D) and θ in

N , all mixed second partial derivatives of τ(d, θ) exist and there exists an integrable

function Mτ (d) so that ‖∇θθτ(d, θ) − ∇θθτ(d, θ0)‖ ≤ Mτ (d) ‖θ − θ0‖. In addition,

the moments P[‖∇θτ(·, θ0)‖2] and P[‖∇θθτ(·, θ0)‖] exist, and P[∇θθτ(·, θ0)] is negative

definite.

Assumption 10. For each θ in N and w in supp(W ), all mixed second derivatives

of ζ(w, θ) exist and there exists an integrable function Mζ(w) so that ‖∇θθζ(w, θ) −
∇θθζ(w, θ0)‖ ≤ Mζ(w) ‖θ − θ0‖. In addition, P[‖∇θζ(·, θ0)‖2] and P[‖∇θθζ(·, θ0)‖]
exist.
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These last two assumptions postulate conditions that allow for expansions of τ(d, θ) and

ζ(w, θ) in a neighborhood of θ0. They are in line with conventional restrictions which,

in the context of rank regressions, first appeared in Assumption A4 of Sherman (1993).

Also imposed is the existence of certain moments of the derivatives of τ(·, θ) and ζ(·, θ)
under P. This allows the application of a standard law of large numbers and a central

limit theorem.

All the necessary ingredients are now available to validate the linear representation

√
n(θ̂ − θ0) = −∇θθτ(P, θ0)−1 2√

n

n∑
i=1

ς(Di, θ0) + Op(1),

where ς(d, θ0) ≡ ∇θτ(d, θ0)+∇θζ(w, θ0). On noting that−2∇θθτ(P, θ0)−1ς(·, θ0) has zero

mean and finite variance under P, the main result of this subsection follows. Theorem

2 provides it.

Theorem 2. Let Assumptions 1–10 hold. Then

√
n(θ̂ − θ0)

L→ N
(
0,Υ−1Σ Υ−1

)
,

where Σ ≡ P
[
ς(·, θ0)ς(·, θ0)′

]
and Υ ≡ 1

2
∇θθτ(P, θ0) .

The two-step local-rank estimator converges in probability to θ0 at the parametric rate,

and
√
nθ̂ converges in distribution to a Gaussian process that is centered at θ0. The

influence-function representation is convenient for evaluating the impact of having to

settle with noisy estimates of the control, which is captured by the term ∇θζ(w, θ0) in

ς(d, θ0). Notice that this adjustment does not depend on the particular form of the first-

step estimator used. This is in line with Newey’s (1994b) treatment of semiparametric

estimators with estimated nuisance functions under conventional smoothness conditions

on the objective function. The effect on the asymptotic variance of working with ϑ̂(w)

rather then with ϑ0(w) is apparent from the form of Σ.

On letting θ̃ ≡ arg maxθ∈Θ qn(θ), an immediate consequence of the analysis that

leads to Theorem 2 is that

√
n(θ̂ − θ̃) = −∇θθτ(P, θ0)−1 2√

n

n∑
i=1

∇θζ(Wi, θ0) + Op(1),

from which the next result follows easily.

Corollary 1. Let Assumptions 4–9 hold and let ϑ̂(w) = ϑ0(w). Then Theorem 1 still

holds and Theorem 2 continues to go through on replacing ς(d, θ0) by ∇θτ(d, θ0).
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Corollary 1 essentially provides the asymptotic distribution for the local-rank estimator

when the control is observable. This result is of interest in its own right, as it can be

applied when dealing with nonseparable versions of Robinson’s (1988) partially-linear-

index model. Of course, in such a situation, one would work with an objective function

from which the trimming functions have been removed.

4.2 Variance estimation

In order to conduct inference an estimator of the asymptotic variance in Theorem 2 is

needed. The derivation of such an estimator is a somewhat more cumbersome task than

in conventional estimation problems due to the non-smooth nature of the objective

function. I follow a kernel-based approach in the spirit of Abrevaya (1999b), among

others. An alternative would be to rely on numerical-derivative methods (see, e.g.,

Pakes and Pollard, 1989 or Sherman, 1993), to use derivatives of a smoothed objective

function (as in Chen, 2002), or simply to use the bootstrap, although this latter option

would be computationally more demanding.8

For ease of notation, let I(x,w) ≡ (x′θ0, ϑ0(w)′)′ and write pI(I(x,w)) for the density

of I(X,W ) at I(x,w). Define

X (x,w) ≡ t(z) µt(Z)(I(x,w))
[
x−

µt(Z)X(I(x,w))

µt(Z)(I(x,w))

]
and let S(y1, ι) ≡ m(y1)−

∫
m(y2) dPY |I(X,W )(y2|ι); observe that S(Y, ι) has mean zero.

Impose the additional regularity conditions below.

Assumption 11. The functions S(y, ι) and pI(ι) are differentiable with respect to ι and

the second moment of t(Z)X under P exists.

We can then obtain the following result.

Lemma 3. Let Assumption 11 hold. Then the components of ς(d, θ) are

∇θτ(d, θ0) = X (x,w) S
(
y, I(x,w)

)
pI
(
I(x,w)

)
and

∇θζ(w1, θ0) = −
∫

X (x2, w2) S2

(
y, I(x2, w2)

)′
pI
(
I(x2, w2)

)
dPI(X,W )|Z(I(x2, w2)|z1)

× [a(e1)− µa(E)(z1)],

while Υ =
∫ [

X (x,w) X (x,w)′
]

S1

(
y, I(x,w)

)
pI
(
I(x,w)

)
dP(x,w), Here, S1(y, ι) and

S2(y, ι) denote the derivatives of S(y, I(x,w)) with respect to the indices, evaluated at ι.

8Numerical-derivative methods are known to give unstable results. A strategy based on a smoothed
objective function is straightforward to implement; conditions for consistency are easily found. Recent
work by Subbotin (2008a) is concerned with validity of the bootstrap in rank estimation problems.
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Except for the presence of trimming, the form of ∇θτ(d, θ0) and ∇θθτ(P, θ0) are natural

generalizations of the building blocks of the asymptotic variance of the estimator in

Cavanagh and Sherman (1998); compare them with the expressions in Ichimura and Lee

(1991), for example. A further beautification of the formula for the influence function is

hindered, however, due to the presence of the term that arises from the nonparametric

estimation of µa(E)(z).

Now let j : R1+dim(ϑ0) → R be a kernel indexed by the bandwidth σj. A kernel

estimator of pI
(
I(x,w)

)
, for example, is

p̂I
(
Î(x,w)

)
≡ 1

nσ
dim(ϑ0)+1
j

n∑
i=1

j
( Î(x,w)− Î(Xi,Wi)

σj

)
for Î(x,w) ≡ (x′θ̂, ϑ̂(w)′)′. Estimators of all the objects in Lemma 3 are collected in

the Appendix. These can be combined and averaged across observations to obtain the

plug-in estimators Υ̂ and Σ̂, say.

Suppose that j is constructed in concordance with Assumption 12.

Assumption 12. The function j is twice differentiable with bounded derivatives, j′ and

j′′,
∫

j(η) dη = 1, and σj is nonnegative and proportional to n−j for a positive scalar j .

Then the consistency of the estimator of the asymptotic variance can be established

under standard regularity conditions.

Assumption 13. Both µt(Z)(ι) and µt(Z)X(ι) are once continuously differentiable while

µm(Y )(ι) and pI(ι) are twice continuously differentiable.

Theorem 3 states the consistency result.

Theorem 3. Let Assumptions 1–13 hold. Then

Υ̂−1Σ̂ Υ̂−1 p→ Υ−1Σ Υ−1

provided that j < 1−ε/2−λdim(Z)
2(dim(ϑ0)+3)

.

The slow rate at which σj is restricted to approach zero is due to the presence of the

first-step estimator, which retard convergence. This is in contrast to Abrevaya (1999b),

where the shrinkage speed of σj was dominated by a
√
n-consistent plug-in estimator.

Another difference with his result is that the second term in ς(·, θ0) causes Υ̂ and Σ̂ to

require the same degree of smoothing to be consistent.
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4.3 Comments and extensions

While the focus here has been on a particular estimator, the distribution theory just

derived can be applied to a much broader class of estimators. Because the regularity

conditions used here do not impose smoothness of the objective function, this class

includes rank-based approaches as well as pairwise-difference techniques. Examples of

estimators that can be augmented with nonparametric controls in this manner are Han’s

(1987) maximum-rank correlation estimator, the partial-rank estimator of a duration

model with covariate-dependent censoring introduced by Khan and Tamer (2007), and

the estimator of Abrevaya (1999a) for the two-period panel data transformation model.

It suffices to merely redefine the score function s for both the consistency and asymptotic

normality results go through, provided that s is Euclidean with a square-integrable

envelope; see Jochmans (2010) for details. Lemma 3 and Theorem 3 generalize on

redefining S(y, ι) in light of this change.

Similarly, one could pursue modifications of rank estimators that maximize higher-

order U-processes to deal with controls. An example of an estimator open to such an

exercise is Bhattacharya’s (2008) monotone permutations estimator. The key difference

between his proposal and Cavanagh and Sherman’s (1998) is that it ranks observations

within m-tuples of data points, where m ≥ 2. While such a procedure might improve

the accuracy of inferences for m > 2—as is suggested by his Monte Carlo evidence—

the computational burden rapidly becomes insurmountable as m increases, even for very

small n. In addition, it is not clear a priori that such a finite-sample improvement carries

over to inference from a kernel-weighted version of a higher-order U-process. The reason

is that a local ranking within an m-tuple would require the inclusion of m − 1 kernel

weights in the objective function.

Throughout the large-sample analysis the bandwidths were taken to be deterministic

functions of n. From a practical point of view, however, it would be of interest to have

theoretical guidance on choosing the smoothing parameters when dealing with small

samples. Allowing for such data-dependent bandwidths is technically challenging as

they enter the objective function nonlinearly and their convergence rates are interrelated.

These problems are not unique to our framework and many others—including Ahn and

Powell (1993), Ahn (1997), and Aradillas-López, Honoré, and Powell (2007)—faced them

as well. Common practice so far has been to employ cross-validation techniques in the

hope that they would work well; see, e.g., Newey, Powell, and Walker (1990) and Härdle,

Hall, and Ichimura (1993). I follow the same strategy below. However, these are not

necessarily optimal smoothing choices for estimating the index parameters.
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Other questions that are left for future work relate to testing the specification. As an

example, test statistic for omitted regressors or for the validity of the index restrictions

could be formed by extending the proposals of Fan and Li (1996) for single-index models.

The properties of such a test would, however, not follow straightforwardly as ϑ0(w)

is not estimable at rate
√
n. Similarly, for testing the key monotonicity assumptions

underlying the local-rank estimator or Blundell and Powell’s (2004) approach, one could

pursue modifications of a variety of tests for the shape of a nonparametric regression

curve; see, for example, Ghosal, Sen, and van der Vaart (2000).

v three-step estimation of additional parameters

Besides being of direct use, the estimator just analyzed and the distribution theory

underlying it can be helpful in learning about other parameters of interest. I discuss

two applications here.

5.1 Transformation models

Many econometric models, and duration models in particular, have an outcome variable

that is assumed to be generated through an invertible transformation of covariates and a

latent disturbance. One example is Ridder’s (1990) generalized accelerated failure-time

model. A generic formulation of the transformation model, augmented with controls, is

ψ0(Y ) = X ′θ0 + g[ϑ0(W )] + U, U⊥X|ϑ0(W ) = ϑ for all ϑ, (5.1)

where ψ0 : R → R is an unknown strictly monotonic function, normalized increasing,

and the coefficient vector has already been normalized to live in Θ. Notice that (5.1) fits

the general specification in (2.1) and so, under Assumptions 1–10, θ̂ is an asymptotically-

linear estimator of the scaled index coefficients in the transformation model. In this

subsection our primary interest lies in additionally infering ψ0(y) at various values y in

supp(Y ).

Doing so requires an additional normalization because the location of the distribution

of U is not identified. A convenient choice is to set ψ0(y0) to zero for some chosen

baseline value y0. Following the discussion in Chen (2002), a local-rank estimator of

ψ0(y)− ψ0(y0) = ψ0(y) is

ψ̂(y) ≡ arg max
ψ∈Ψ

q̂yn(ψ, θ̂),

where the parameter space, Ψ, is a compact subset of the real line and, for (ψ, θ) in
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Ψ×Θ,

q̂yn(ψ, θ) ≡
(
n

2

)−1 N∑
i=1

∑
i<j

sy(Vi, Vj, ψ, θ)

σ
dim(ϑ0)
k

k
( ϑ̂(Wi)− ϑ̂(Wj)

σk

)
t(Zi)t(Zj). (5.2)

This function differs from (3.2) only in the score contributions that are being averaged,

which now also depends on an additional unknown parameter. Here,

sy(Vi, Vj, ψ, θ) ≡
1

2

[
1(Yi ≥ y)− 1(Yj ≥ y0)

]
1
[
(Xi −Xj)

′θ ≥ ψ
]

+
1

2

[
1(Yj ≥ y)− 1(Yi ≥ y0)

]
1
[
(Xj −Xi)

′θ ≥ ψ
]
.

(5.3)

The motivation behind the estimator comes from an insight that is similar to that

envoked before. Moreover, because∫
1(y1 ≥ y2) pY |X,ϑ0(W )(y1|x1, ϑ) dy1 = 1− Pr

[
U ≤ ψ0(y2)− x′1θ0 − g(ϑ)

]
,

it follows that (x1 − x2)′θ0 ≥ ψ0(y) if∫
1(y1 ≥ y) pY |X,ϑ0(W )(y1|x1, ϑ) dy1 −

∫
1(y2 ≥ y0) pY |X,ϑ0(W )(y2|x2, ϑ) dy2 ≥ 0;

notice that the function g does not appear directly. In (5.2), this implied ordering is

enforced on the sample of data using a plug-in estimate of θ0. The weights again serve to

keep the pairwise comparisons in check. So, ψ̂(y) constitutes a feasible three-step local-

rank estimator of ψ0(y). Given the effort made so far, deriving the pointwise asymptotic

behavior of ψ̂(y) requires little additional work.

Restricting the extra notational burden to a minimum, and keeping the analogy to

our old problem as tight as possible, write

q̂yn(ψ, θ) =

(
n

2

)−1 n∑
i=1

∑
i<j

ĥ
y
(Di, Dj, ψ, θ) = Pn[ ĥ

y
(·, ·, ψ, θ)]

and let qyn(ψ, θ) ≡ Pn[hy(·, ·, ψ, θ)], where hy(·, ·, ψ, θ) is just ĥ
y
(·, ·, ψ, θ) with ϑ0(Wi)

replacing ϑ̂(Wi) for each i = 1, . . . , n. To establish the large-sample distribution of ψ̂(y)

for fixed y, we will also be needing the functions

τ y(d, ψ, θ) ≡ hy(d,P, ψ, θ) and τ y(d, α, θ) ≡ lim
n→∞

τ(d, ψ, θ) = t(z) ϕy(v, ϑ0(w), ψ, θ),

where

ϕ(v, ϑ, θ) ≡
∫

sy(v1, v2, ψ, θ) T (z2) dP(V,Z)|ϑ0(W )(v2, z2|ϑ) pϑ0(W )(ϑ).
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As before, τ y(·, ψ, θ̂) is the kernel of the empirical process that drives the asymptotic

behavior of ψ̃(y) ≡ arg maxψ∈Ψ qyn(ψ, θ̂). Under Assumption 15 below, it converges to

τ y(d, ψ, θ̂) sufficiently fast so that the bias induced by kernel weighting is a non-issue,

asymptotically. The variability of the first-step kernel estimator affects the limiting

distribution of ψ̂(y) through the partial derivatives of

ζ
y
(w,ψ, θ) ≡ −t(z)[a(e)− µa(E)(z)]′ δ

y
(z, ψ, θ),

where

δ
y
(z, ψ, θ) ≡

∫
∇ϑϕ

y(v, ϑ0(w), ψ, θ) dP(V,W )|Z(v, w|z).

The interpretation of these quantities is again clear on noting their resemblance with

ζ(w, θ) and δ(z, θ) above.

Now, maintain Assumptions 1–10 and consider the following additional restrictions.

Assumption 14. There exist values yL and yU in supp(Y ) so that, for some ε > 0,

[ψ0(yL − ε), ψ0(yU + ε)] ⊂ Ψ, and Ψ is a known compact interval of R.

Assumption 15. For each y in [yL, yU], ψ in Ψ, v in supp(V ), and w in supp(W ),

ϕy(v, ϑ0(w), ψ, θ) is (k +1)-times differentiable in its second argument over an Op(1/
√
n)

neighborhood of θ0, with the derivatives being uniformly bounded. Furthermore, the first

derivative vector, ∇ϑϕ
y(v, ϑ0(w), θ), is l -times differentiable in z, and the derivatives

are uniformly bounded.

Assumption 16. Let Ny denote a neighborhood of (ψ0(y), θ0). For each y in [yL, yU], d

in supp(D), and (ψ, θ) in Ny, all mixed third partial derivatives of τ y(d, ψ, θ) exist and

there is an integrable function My
τ (d) so that ‖∇ψψτ

y(d, ψ, θ) − ∇ψψτ
y(d, ψ0(y), θ)‖ ≤

My
τ (d)‖ψ − ψ0(y)‖. In addition, P[∇ψτ

y(·, ψ0(y), θ0)2], P[‖∇ψψτ
y(·, ψ0(y), θ0)‖] and

P[‖∇ψθτ
y(·, ψ0(y), θ0)‖] exist, and P[∇ψψτ

y(·, ψ0(y), θ0)] < 0.

Assumption 17. For each y in [yL, yU], w in supp(W ), and (ψ, θ) in Ny, all mixed

third partial derivatives of ζ
y
(w,ψ, θ) exist and there exists an integrable functionMy

ζ(w)

so that ‖∇ψψζ
y
(w,ψ, θ)−∇ψψζ

y
(w,ψ0(y), θ)‖ ≤ My

ζ(w) ‖ψ − ψ0(y)‖. In addition, the

moments P[‖∇ψζ
y
(·, ψ0(y), θ0)‖2], P[‖∇ψθζ

y
(·, ψ0(y), θ0)‖], and P[‖∇ψψζ

y
(·, ψ0(y), θ0)‖]

exist.

The first of these assumptions, imposing compactness of the parameter space, is standard

when analyzing estimators that have no closed-form solution.9 The need for Assumption

9The same assumption was made on Θ, albeit implicitely. One of the attractive features of the scale
normalization on the index coefficients maintained here is that it implies (i) Θ to be compact; and (ii)
θ0 to be interior to Θ.
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15 has already been discussed. Assumptions 16 and 17 comprise smoothness conditions

and the existence of moments analogous to Assumptions 9 and 10, guaranteeing limit

quantities to be well defined. The need for mixed third- rather than second partial

derivatives of τ y(d, ψ, θ) to exist stems from the presence of θ.

These assumptions imply that, for each y in [yL, yU], plimn→∞ q̂yn(ψ, θ̂) = qyn(ψ, θ0)

for qyn(ψ, θ0) ≡ τ y(P, ψ, θ0) uniformly over Ψ. The limiting function is continuous in ψ

and reaches its unique global maximum on Ψ at ψ0(y). This statement follows imme-

diately from Assumption 4, the same assumption that was previously envoked for the

consistency of θ̂. Consequently, we have that

ψ̂(y) = arg max
ψ∈Ψ

q̂yn(ψ, θ̂)
p→ arg max

ψ∈Ψ
qyn(ψ, θ0) = ψ0(y);

ψ̂(y) is consistent for ψ0(y) for each y in [yL, yU].

Furthermore, by smoothness of the objective function, the use of a bias-reducing

kernel, and the
√
n-consistency of θ̂, the estimation error in ψ̂(y) asymptotically behaves

like the sample average of a zero-mean random variable. Moreover,

ψ̂(y)− ψ0(y) = −∇ψψτ
y
(
P, ψ0(y), θ0

)−1 2

n

n∑
i=1

[
ςy(Di, ψ0(y), θ0) + %y(Di, ψ0(y), θ0)

]
,

up to Op(1/
√
n), for functions ςy

(
d, ψ0(y), θ0

)
≡ ∇ψτ

y
(
d, ψ0(y), θ0

)
+∇ψζ

y(
w,ψ0(y), θ0

)
and

%y
(
d, ψ0(y), θ0

)
≡ 1

2
∇ψθτ

y
(
P, ψ0(y), θ0

)
υ(d, θ0),

where υ(d, θ0) is shorthand for the influence function of θ̂ evaluated at d. This latter

term renders the asymptotic variance of our current problem more complicated than

before and arises because of the additional noise induced by having to estimate θ0 next

to ϑ0(w). Nevertheless, Assumptions 16 and 17 imply that, when multiplied by
√
n,

the sample average above converges to a zero-mean random variable whose variance is

finite. From this, the next asymptotic-normality result follows.

Theorem 4. Let Assumptions 1–10 and 14–17 hold. Then, for each y in [yL, yU], we

have that (i) ‖ψ̂(y)− ψ0(y)‖ = Op(1); and that (ii)

√
n
(
ψ̂(y)− ψ0(y)

) L→ N (0,Υ(y)−1Σ(y) Υ(y)−1
)
,

where Σ(y) ≡ P
[(
ςy(·, ψ0(y), θ0)+%y(·, ψ0(y), θ0)

)(
ςy(·, ψ0(y), θ0)+%y(·, ψ0(y), θ0)

)′]
and

Υ(y) ≡ 1
2
∇ψψτ

y(P, ψ0(y), θ0).
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Under regularity conditions, a consistent estimator of the asymptotic variance can again

be obtained via nonparametric techniques, using a plug-in estimator for υ(Di, θ0), i =

1, . . . , n. Theorem 4 deals with pointwise asymptotics. The result can be strengthened

to hold uniformly over Ψ by considering a strategy based on rearrangement as proposed

by Chernozhukov, Fernández-Val, and Galichon (2009). This additional step is required

because a higher-order kernel k was used to eliminate asymptotic bias. Because such

functions have to take on negative values on subsets of their support, it can be shown

that ψ̂(y), as a function of y, is no longer guaranteed to be monotonic.

Our analysis of the transformation model ends with a derivative result to Theorem

4 that parallels Corollary 1.

Corollary 2. Let Assumptions 4–9 and Assumptions 14–16 hold, and let ϑ̂(w) = ϑ0(w).

Then Theorem 4(i) still holds and Theorem 4(ii) continues to go through on replacing

ςy(d, ψ0(y), θ0) by ∇ψτ
y(d, ψ0(y), θ0).

5.2 Policy parameters

Many quantities of interest have as an elementary building block µf(Y )(X
′θ0, ϑ0(W )) for

a function f : R → R that will depend on the problem at hand. While such type

of parameters may be identified nonparametrically, knowledge of the index structure

allows for dimensionality reduction in estimation and a relaxation of support conditions

required for identification.

One important area of application is in triangular models. There, policy parameters

typically take the form of partial means over the control. As an illustration, the average

structural function at X = x (Stock, 1989; Blundell and Powell, 2003, 2004) is defined

as

µ̃Y (x) ≡
∫
µY (x′θ0, ϑ) pϑ0(W )(ϑ) dϑ 6=

∫
µY (x′θ0, ϑ) pϑ0(W )|X(ϑ|x) dϑ = µY (x)

and provides the expected value of the outcome for exogenously determined values of

the covariates. This function can aid in the construction of counterfactual quantities or

summary measures, by averaging µ̃Y (X) over a chosen distribution for the covariates

in an additional step, for example. In models of the form in (2.2) or (2.3), another

parameter that can be recovered by marginal integration over the control is the quantile

structural function (Imbens and Newey, 2009). The value of the αth-quantile structural

function at X = x is that qα that solves

α = µ̃1(Y≤qα)(x), µ̃1(Y≤q)(x) ≡
∫
µ1(Y≤q)(x

′θ0, ϑ) pϑ0(W )(ϑ) dϑ.

[23]



This second example also illustrates how index restrictions allow a relaxation of support

conditions that are needed to ensure that µf(Y )(x
′θ0, ϑ0(W )) is identified over the entire

support of the density of the control; see Imbens and Newey (2009) for the original

discussion. The method of marginal integration has been considered by Newey (1994a)

and Linton and Nielsen (1995). Mammen, Rothe, and Schienle (2010) recently extended

these results to averages over generated regressors. Our model falls into this latter

category.

While our primary motivation for the inclusion of ϑ0(W ) into the analysis was to

merely control for heterogenous effects, knowledge of µf(Y )(X
′θ0, ϑ0(W )) can also be of

use to learn about the impact of the control on the outcome variable. Recall Manski’s

(1991) approach to infering the effect of expectations on outcomes (cfr. Example 1).

While in his model—as in Ahn’s (1997)—this influence was specified to run through

index parameters, here, counterfactual analyses can be performed semiparametrically.

For example, the expected ceteris paribus effect of a change in expectations on outcomes

at (X,W ) = (x,w) is ∇ϑµY (x′θ0, ϑ0(w)). Summary measures for the population or

policy-relevant variables can again be formed by looking at the mean or the quantiles

of the distribution of ∇ϑµY (X ′θ0, ϑ0(W )) obtained on integrating out the covariates or

the control using a chosen distribution.

vi small-sample assessment

To shed some light on the practical implementation of the local-rank estimator, and to

position it against alternative techniques, Monte Carlo experiments are useful. Here,

I report on results from applications to a model with an endogenous covariate and a

model with sample selection.

6.1 A triangular model

The prime example of a control-function application is the estimation of the index

coefficients in a linear simultaneous-equation model. I generated data from the following

underlying model. Outcomes Y and E are related through

Y = X1θ
(1)
0 + Eθ

(2)
0 + U1, E = X1γ

(1)
0 +X2γ

(2)
0 + U2 (6.1)

for disturbances (U1, U2) and regressors (X1, X2). These random variables were drawn

as (
U1

U2

)
∼ N

(
1 ρU
ρU 1

)
and

(
X1

X2

)
∼ N

(
1 ρX
ρX 1

)
, (6.2)
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respectively. This configuration is as in Example 3, with the conditional-mean functions

for the outcome variables linear in parameters. The variable E is endogenous in the

equation for Y unless ρU = 0. The disturbance U2 can be interpreted as an omitted

regressor which captures unobserved heterogeneity across units. So, here, Z = (X1, X2)′

and

ϑ0(E,Z) = U2 = E −X1γ
(1)
0 +X2γ

(2)
0

is the control function.

The designs for which I report results in Tables 1–3 below have θ0 = (.7071,−.7071)′,

so ‖θ0‖ = 1, estimated from a sample of size n = 100. The strength of the dependence

between the latent variables and the covariates considered are all combinations of ρU and

ρX in {−.50,−.25, .25, .50}. To manipulate the explanatory power of the instrumental

variables I vary the concentration parameter (Basmann, 1963), µ2
0, from 100 to 20.

Given that there are two elements in Z, these values lead to an F -statistic of 50 and

10, respectively (evaluated at the true γ0). This latter value is commonly taken as the

rule-of-thumb cut-off between weak and strong instruments in two-stage least squares

(2SLS) regressions; see Stock, Wright, and Yogo (2002) for a motivation and formal

derivation. To keep the explanatory power of the instruments fixed across simulation

runs I used

γ0 =

√
µ2

0∑n
i=1 π

′
0(X1i, X2i)′(X1i, X2i)π0

π0

to generate observations on E. Here, π0 is a bivariate coefficient vector that was set

to either (2, 2)′ (balanced design; Table 1), (2, 1)′ (skewed-left design; Table 2), or

(1, 2)′ (skewed-right design; Table 3). The variation in π0 enables shifting the relative

importance of X1 and X2 as sources of exogenous variation in E, and thus influences

the degree to which the regressors in the equation for Y covary.

For this setup, 2SLS (θ̂2SLS) is the optimally-weighted GMM estimator, and it gives

a useful benchmark to evaluate the performance of other techniques against. The other

estimators are the kernel-weighted pairwise-differenced least-squares estimator of Ahn

and Powell (1993) (θ̂AP), its nonlinear analog proposed by Blundell and Powell (2004)

(θ̂BP), and the local-rank estimator (θ̂RK) for m(Y ) = Y .10 Including the Ahn-Powell

estimator allows evaluating the impact of introducing kernel-weights on the one hand,

and the efficiency cost of avoiding the linearity assumption on the other.

10Recall that 2SLS is equivalent to adding the residual from a least-squares regression of E on Z
to the second-step regression model. For 2SLS and the Ahn-Powell estimator, I rescaled the point-
estimates by their norm to ensure that they lie in Θ. For 2SLS, a constant term was also included in
the first- and second estimation step.
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To ensure that a proper comparison between the kernel-based estimators can be

made, all were computed using the same kernel k and bandwidth σk, and the same

estimates of ϑ0(E,Z). As is agreed upon in the literature, bias-reducing kernels only

give a worthwhile improvement over kernels of order two for reasonably large samples;

see, e.g., Jones and Signorini (1997). In additional simulation experiments not reported

on here I reached the same conclusion. Thus, because n = 100, the results below

were obtained by means of the standard-normal density function as kernel in the first

and second estimation step, with each of their arguments scaled down by their empirical

standard deviation.11 The bandwidths σl and σk were obtained using least-squares cross-

validation methods; see, again, Li and Racine (2007) for details. The cross-validated σk

relates to a nonparametric mean regression of Y on X1, E, and ϑ̂(E,Z). The resulting

estimates also serve as inputs for θ̂BP.

Tables 1–3 give the bias, standard deviation (STD), interquartile range (IQR), root

mean-squared error (RMSE), and root mean-absolute error (RMAE) of the estimators

considered. The numbers were obtained over 10, 000 Monte Carlo runs. Only the local-

rank estimator requires an optimization procedure. To obtain the point estimates I

modified the maximum-score algorithm of Manski and Thompson (1986). The procedure

is described in the Appendix and was found to perform well. For the case of only two

regressors, as here, the procedure is guaranteed to find a global maximizer of q̂n(θ).

Start with the balanced design with the concentration parameter set to 100. Both

θ̂2SLS and θ̂AP have very small bias, and none consistently outperforms the other in

terms of this measure. The Blundell-Powell estimator and the local-rank estimator have

a larger bias throughout, with that of the former by far being the largest. Nevertheless,

the average of the local-rank estimates is still very close to the true parameter values.

When looking at the STD, θ̂AP and θ̂RK perform best. The standard error of 2SLS goes

up by a factor of as much as four compared to the ones of these two approaches. The

STD of θ̂BP also tends to be larger than that of the other kernel-based estimators. In

terms of IQR, all of θ̂2SLS, θ̂AP, and θ̂RK are roughly equally precise. The Blundell-Powell

estimator has the highest mid spread throughout. For the combined measures of bias

and variability, that is, RMSE and RMAE, kernel-weighted least-squares does best; θ̂BP

is on the other side of the spectrum. The local-rank estimator performs well according to

both statistics of estimator risk, consistently reporting numbers that are close to those

of the Ahn-Powell estimator. In allmost all designs, too, it outperforms 2SLS.

11It is well established that the choice of the particular form of the kernel matters far less than does
the choice of the bandwidth in nonparametric estimation. Indeed, in additional experiments, I found
very similar results as given here when using the quartic kernel and the cosine kernel.
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On weakening the instrument strength by setting µ2
0 = 20 all estimators report higher

bias numbers, but their relative performance remains largely unaltered. Moreover, θ̂2SLS

and θ̂AP continue to provide the most accurate point estimates, on average; θ̂RK remains

close to θ̂AP throughout. The Blundell-Powell estimator has the largest bias across all

entries. Lowering the concentration parameter affects the variability of the estimators

too. This effect is particularly noticable on 2SLS, whose STD and IQR go up by 100%

or more. This is well documented in the literature. The other estimators’ volatility is

far less influenced by this design change. In fact, in some cases, their STD and IQR can

be seen to decrease. Measured by their RMSE and RMAE, the Ahn-Powell estimator

and the local-rank estimator perform best overal, as they also did when µ2
0 = 100. This

implies that, when evaluating performance in terms of estimator risk, these estimators

are to be prefered over the optimal GMM estimator for the linear model with endogenous

regressors, at least in the designs considered here.

When the main source of exogenous variation in E comes from X1, the covariate in

the main equation of interest, and µ2
0 is reset to 100, θ̂2SLS and θ̂AP tend to report slightly

higher biases. The average error of the Blundell-Powell estimator, in contrast, has a

tendency to decrease relative to the balanced design. The local-rank estimator reacts

more erratic to this parameter shift, with its average across simulation runs sometimes

being further away from the true value, and sometimes closer to it. Nevertheless, the bias

remains reasonably small and comparable in magnitude to that of θ̂AP. When looking at

the STD and IQR we can see that the kernel-based estimators behave differently than

does 2SLS. The latter’s precision decreases, as would be expected; the former’s does so

to a much smaller extent and actually decrease in many of the situations. In terms of

RMSE, θ̂AP and θ̂RK report the best numbers, often drastically superior to θ̂2SLS. Now,

also θ̂BP positions itself competitively against 2SLS. The same pattern, although less

pronounced, emerges when looking at the RMAE.

Lowering µ2
0 to 20 has a similar effect as it did in the balanced case. That is, the

bias increases and there is a mixed effect on the precision of the estimators. A look

at the results for the skewed-right design in Table 3 reveals them to be in line with

what has been observed before. The most important difference compared to Table 2 is

that 2SLS tends to be less variable. This should be no surprise as, here, more of the

exogenous variation in E comes from X2, the instrumental variable that was excluded

from the equation for Y . So, we find that the local-rank performs solid across the

designs considered, positioning itself competitively against the alternative procedures

considered.

[30]



Figure 1: Estimates of the transformation function in the triangular model
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Figure 2: Estimates of the transformation function in the triangular model (contd.)
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Figures 1–2 collect estimates of the transformation function in the balanced design

with µ2
0 = 100. For each of the combinations of ρX and ρU considered in Table 1 one

estimate of ψ0 was calculated at equally-distant points in [−1.85, 1.85], with a step size of

.05, using θ̂RK as the first-step estimator.12 The kernel function and bandwidth used to

perform the weighting in the second estimation step were taken to be the same as those

in the first step, and y0 = 0 for graphical elegance. Pointwise 95% confidence bounds

are also reported. The standard errors used to form the bounds were obtained as the

standard deviation of the empirical distribution function of the estimator obtained over

200 bootstrap replications.

Given the small sample size, the estimator does fairly well. All graphs suggest ψ̂ to

be fairly antisymmetric around y0, overestimating (underestimating) ψ0(y) for y < y0

(y > y0). Not surprisingly, ‖ψ̂(y) − ψ0(y)‖ is largest for y furthest away from y0.

Given the design, the empirical density of y has its largest concentration of mass around

zero, implying that very few observations contribute to q̂yn(ψ, θ̂) for y in the tails of

the aformentioned distribution. This leads to ψ̂ being essentially flat on the edges of

the interval considered. The little information in the data about the transformation

function in these areas is also reflected in the standard errors, with the confidence

intervals tending to become more wide as y moves further away from y0. Nevertheless,

the confidence bounds appear informative about the shape of ψ0. They present clear

evidence against ψ0 being highly-nonlinear and tend to contain ψ0 on a large subset of

the interval considered.

6.2 A sample-selection model

The second Monte Carlo experiment is centered around the linear sample-selection model

Y = E × (X1θ
(1)
0 +X2θ

(2)
0 + U1), E = 1(X1γ

(1)
0 +X2γ

(2)
0 +X3γ

(3)
0 ≥ −U2). (6.3)

Here, the disturbances (U1, U2) were again standard-normal with correlation ρU , as in

(6.4). The designs considered vary in the dependence between these disturbances and

in the correlation between the regressors, which were drawn as X1

X2

X3

 ∼ N
 1 ρX1X2 ρX1X3

ρX1X2 1 ρX2X3

ρX1X3 ρX1X2 1

 . (6.4)

In this setup, which fits into Example 2, Z = (X1, X2, X3)′ and

ϑ0(e, z) = µE(z) = Pr[E = 1|Z = z],

12The Blundell-Powell estimator could be used here as well, but its higher variability is transmitted
into the rank estimator of the transformation function.
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which is free of E.

Throughout, θ0 was kept fixed at (.7071,−.7071)′ and γ0 was set as in the previous

Monte Carlo exercise, with π0 = (1, 1, 1, )′ and µ2
0 = 300. Several combinations of

ρU , ρX1X2 , ρX1X3 , and ρX2X3 in {−.50,−.25, .25, .50} were considered. For each design

point, θ0 was again estimated 10, 000 times from a sample of n = 500. With the

chosen parameter constellations, this resulted in an average sample size of about 250

observations for the second estimation step. The standard deviation on this effective

sample size ranged from 70 to 90 observations across designs. In Tables 4 and 5, the

column for ñ contains the average effective number of observations used in the second

estimation step; the standard deviation around this mean is stated in parenthesis below

each entry.

The estimators reported on are the three kernel-weighted estimators from before,

that is, θ̂AP, θ̂BP, and θ̂RK. The Ahn-Powell estimator, which was designed with the

linear sample-selection model in mind, would be the optimal choice from this set. The

choice for the kernel functions and the data-driven procedure to select the bandwidths

from the previous Monte Carlo experiment was maintained here.

Tables 4 and 5 show that the Ahn-Powell estimator tends to perform well, reporting

solid numbers throughout. Overal, the results do not lean in favor of one estimator

in particular. The local-rank estimator again closely mimics the kernel-weighted least-

squares estimator, with the differences between their respective bias and spread being

consistently small. In several design, the Blundell-Powell also performs well. In other

cases, however, it is heavily biased and behaves very volatile. As a consequence, also its

RMSE and RMAE takes on large values in such cases. The numbers are particularly

worrysome when X1 and X2 are negatively correlated. The performance is worst when

ρX1X2 equals −.50, the strongest negative correlation considered. In such cases the bias

of θ̂BP can be as much as 35 times larger than that of the others. Similarly, its variance

inflates by a factor of 10 compared to those of θ̂AP and θ̂RK. No such variability across

the designs is observed for these latter two estimators.

Thus, the local-rank estimator performs well. It was found not to be dominated by

the optimal GMM estimator for the triangular model and its performance was similar to

that of the Ahn-Powell estimator, both when estimating the triangular model and the

sample-selection model. It compares favorably Blundell and Powell (2004), which is the

most general alternative currently available, being more stable in performance across

designs, and often much less biased and far less volatile. The local-rank estimator thus

seems a strong candidate for the estimation of weakly-separable models with controls.
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appendix a: preliminaries and intermediate lemmata

Euclidean properties. The class of functions H ≡ {s(·, ·, θ)t(·)t(·)k((· − ·)/σk) :

θ ∈ Θ} with σk > 0 and limn→∞ σk = 0 is Euclidean for the envelope H(·, ·) ≡
supη∈Rdim(ϑ0)‖k(η)‖ ‖[m(·) + m(·)]t(·)t(·)‖. To see this, notice that H is a subclass

of the class H ≡ {s(·, ·, θ)t(·)t(·)k((· − ·)/σ) : θ ∈ Θ, σ > 0} = S K , with S ≡
{s(·, ·, θ)t(·)t(·) : θ ∈ Θ} and K ≡ {k((· − ·)/σ) : σ > 0}. By Assumption 6,

the class K is Euclidean for the constant envelope supη∈Rdim(ϑ0)‖k(η)‖; see Example

2.10 in Pakes and Pollard (1989). Likewise, the class S is Euclidean for the envelope

‖[m(·) + m(·)]t(·)t(·)‖. This follows by Assumption 5 together with the discussion in

Cavanagh and Sherman (1998). The envelope H(·, ·), then, follows from Lemma 2.14 in

Pakes and Pollard (1989).

To prevent some expressions in the Appendix from becoming overly lenghty, it is useful

to define ahead the functions H′(·, ·) ≡ supη∈Rdim(ϑ0)‖k′(η)‖ ‖[m(·) + m(·)]t(·)t(·)‖ and

H′′(·, ·) ≡ supη∈Rdim(ϑ0)‖k′′(η)‖ ‖[m(·) + m(·)]t(·)t(·)‖, where notation has been abused

slightly to keep the analogy to H(·, ·) transparent. Notice that these functions are well

behaved because, by Assumption 6, both k′ and k′′ are bounded.

Lemma A. Let Assumptions 5–9 hold. Then qn(θ)− qn(θ0) is

(θ−θ0)′
∇θθτ(P, θ0)

2
(θ−θ0)+

(θ − θ0)′√
n

[
2
√
n∇θτ(Pn, θ0)+Op(1)

]
+Op(‖θ−θ0‖2)+Op

( 1

n

)
uniformly over Op(1/

√
σ

dim(ϑ0)
k n) = Op(1) neighborhoods of θ0.

Lemma B. Let Assumption 10 hold. Then

ζ(Pn, θ)− ζ(Pn, θ0) =
(θ − θ0)′√

n

[√
n∇θζ(Pn, θ0)

]
+ Op(‖θ − θ0‖2)

uniformly over Op(1) neighborhoods of θ0.

Estimators of the components of the influence function. Rosenblatt-Parzen

kernel estimates of pI(I(x, z)) and its first derivative are

p̂I(Î(x, z)) ≡ 1

nσ
dim(ϑ0)+1
j

n∑
i=1

j
( Î(x,w)− Î(Xi,Wi)

σj

)
and (A.1)

p̂′I(Î(x,w)) ≡ 1

nσ
dim(ϑ0)+2
j

n∑
i=1

j′
( Î(x,w)− Î(Xi,Wi)

σj

)
, (A.2)
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respectively.

Nadaraya-Watson estimates of µt(Z)(I(x,w)), µt(Z)X(I(x,w)), and µm(Y )(I(x,w)) are

given by

µ̂t(Z)(Î(x,w)) ≡ 1

nσ
dim(ϑ0)+1
j

n∑
i=1

t(Zi)

p̂I
(
Î(x,w)

) j
( Î(x,w)− Î(Xi,Wi)

σj

)
, (A.3)

µ̂t(Z)X(Î(x,w)) ≡ 1

nσ
dim(ϑ0)+1
j

n∑
i=1

t(Zi)Xi

p̂I
(
Î(x,w)

) j
( Î(x,w)− Î(Xi,Wi)

σj

)
, and (A.4)

µ̂m(Y )(Î(x,w)) ≡ 1

nσ
dim(ϑ0)+1
j

n∑
i=1

m(Yi)

p̂I
(
Î(x,w)

) j
( Î(x,w)− Î(Xi,Wi)

σJ

)
, (A.5)

respectively

Then X̂ (x,w) ≡ t(z) µ̂t(Z)(Î(x,w))
[
x− bµt(Z)X(bI(x,w))bµt(Z)(bI(x,w))

]
and

Ŝ
(
y, Î(x,w)

)
≡ m(y)− µ̂m(Y )(Î(x,w)) (A.6)

constitute plug-in estimates of X (x,w) and S(y, I(x,w)), respectively. On differentiating

this latter quantity, we find estimates of S1(y, I(x,w)) and S2(y, I(x,w)). For the former

quantity, for example, the estimate Ŝ1(y, Î(x,w)) is

1

nσ
dim(ϑ0)+2
j

n∑
i=1

m(Yi)

p̂I(Î(x,w))
j1

( Î(x,w)− Î(Xi,Wi)

σj

)
−
µ̂m(Y )(Î(x,w)) p̂I1(Î(x,w))

p̂I(Î(x,w))
(A.7)

where j1 and p̂I1 are the first components of j′ and p̂′I , respectively. Observe that the

derivatives of Ŝ(y, Î(x,w)) are free of y.

Finally, for ν(x,w) ≡ X (x,w) S2(y, I(x,w))pI(I(x,w)) and µν(X,W )(z), the necessary

kernel estimates are

ν̂(x,w) ≡ X̂ (x,w) Ŝ2(y, Î(x,w)) p̂I(Î(x,w)) and (A.8)

µ̂ν(X,W )(z) ≡
n∑
i=1

ν̂(Xi,Wi) ωi(z), (A.9)

where ωi(z) ≡ l
(
z−Zi
σl

)/∑N
i=1 l

(
z−Zi
σl

)
.

Lemma C. Let the conditions for Lemma 3 and Assumptions 12–13 hold. Then, if j <
1−ε/2−λdim(Z)

2(dim(ϑ0)+3)
, the kernel estimators in (A.1)–(A.9) consistently estimate their population

counterparts.
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appendix b: proofs

Proof of Lemma 1. The proof follows from standard kernel-smoothing arguments;

see, e.g., Collomb and Härdle (1986) and Aradillas-López (2010).

Proof of Theorem 1. Given random sampling, and by the construction of Θ, showing

consistency of θ̂ for θ0 amounts to verifying that (i) supθ∈Θ

∥∥q̂n(θ)− q(θ)
∥∥ = Op(1); and

that (ii) q(θ) is continuous and reaches its unique global maximum on Θ when evaluated

at θ0; see, e.g., Newey and McFadden (1994).

To show (i), observe that the triangle inequality provides the bound

sup
θ∈Θ

∥∥∥q̂n(θ)− q(θ)
∥∥∥ ≤ sup

θ∈Θ

∥∥∥q̂n(θ)− qn(θ)
∥∥∥+ sup

θ∈Θ

∥∥∥qn(θ)− q(θ)
∥∥∥

+ sup
θ∈Θ

∥∥∥q(θ)− q(θ)
∥∥∥, (B.1)

where q(θ) ≡ P[h(·, ·, θ)].

The first right-hand side term in (B.1) captures the estimation error in the controls.

Recall that q̂n(θ)− qn(θ) = Pn
[

ĥ(·, ·, θ)− h(·, ·, θ)
]

or, equivalently,

1

n(n− 1)

n∑
i=1

∑
j 6=i

s(Vi, Vj, θ)t(Zi)t(Zj)

σ
dim(ϑ0)
k

[
k
( ϑ̂(Wi)− ϑ̂(Wj)

σk

)
− k
(ϑ0(Wi)− ϑ0(Wj)

σk

)]
.

Take a first-order expansion of k
( bϑ(Wi)−bϑ(Wj)

σk

)
around

ϑ0(Wi)−ϑ0(Wj)

σk
and next exploit

symmetry to write supθ∈Θ‖q̂n(θ)− qn(θ)‖ as

sup
θ∈Θ

∥∥∥(n
2

)−1 n∑
i=1

∑
j 6=i

s(Vi, Vj, θ)t(Zi)t(Zj)

σ
dim(ϑ0)+1
k

[ϑ̂(Wi)− ϑ0(Wi)]
′ k′(∗)

∥∥∥,
where k′(∗) is k′ evaluated in a dim(ϑ0)-vector that lies inbetween

bϑ(Wi)−bϑ(Wj)

σk
and

ϑ0(Wi)−ϑ0(Wj)

σk
; the ∗-notation will be reserved for such purposes throughout. Then

sup
θ∈Θ

∥∥∥q̂n(θ)− qn(θ)
∥∥∥ ≤ 2 Pn[H′(·, ·)]

supz∈Z ‖µ̂a(E)(z)− µa(E)(z)‖
σ

dim(ϑ0)+1
k

=
1

σ
dim(ϑ0)+1
k

Op
(√ nε/2

nσ
dim(Z)
l

)
= Op(1).
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The first step follows by Assumption 6 and the Euclidean properties of the class S

above, and the next two transitions follow by Lemma 1(i) and by Assumptions 2 and 7,

respectively.

The second right-hand side term in (B.1) involves a zero-mean U-process of order

two. Because the class H is Euclidean for an envelope whose second moment exists by

Assumption 5, Corollary 7 of Sherman (1994b) can be applied to get

sup
θ∈Θ

∥∥∥qn(θ)− q(θ)
∥∥∥ = sup

θ∈Θ

∥∥∥Pn[h(·, ·, θ)
]
− P

[
h(·, ·, θ)

]∥∥∥ =
1

σ
dim(ϑ0)
k

Op
( 1√

n

)
= Op(1),

with the last transition following again by Assumption 7.

For the non-stochastic term in (B.1), finally, recall that q(θ) = τ(P, θ). Standard

kernel-smoothing arguments, as validated by Assumptions 6–8, can be used to show

that supθ∈Θ‖τ(P, θ)‖ = supθ∈Θ‖τ(P, θ)‖ + O(1). Because such arguments will be used

at various subsequent stages of the Appendix, it is detailed only here. First, rewrite

τ(d, θ) as a kernel-weighted average of ϕ(v, ϑ0(W ), θ) under P, i.e.,

τ(d, θ) = t(z)

∫
ϕ(v, ϑ, θ)

σ
dim(ϑ0)
k

k
(ϑ0(w)− ϑ

σk

)
dϑ.

Next, observe that, by a mean-value expansion of ϕ(v, ϑ, θ) around ϑ0(w) followed by a

change of variable from ϑ to η ≡ ϑ0(w)−ϑ
σk

,

sup
θ∈Θ

∥∥∥τ(d, θ)− τ(d, θ)
∥∥∥

≤ sup
θ∈Θ

∥∥∥t(z) ϕ(v, ϑ0(w), θ)− τ(d, θ)
∥∥∥+ σk sup

θ∈Θ

∥∥∥t(z)

∫
∇ϑϕ(v, ∗, θ) η k(η) dη

∥∥∥
≤ σk t(z)

∫
sup
θ∈Θ

∥∥∇ϑϕ(v, ∗, θ)
∥∥ ∥∥η∥∥ ∥∥k(η)

∥∥ dη = O(σk).

Then, by dominated convergence and Assumption 7,

sup
θ∈Θ

∥∥∥q(θ)− q(θ)
∥∥∥ = O(σk) = O(1).

This establishes (i).

Assumption 4 ensures (ii). This can be shown by small modifications to the argument

in Cavanagh and Sherman (1998); see also Manski (1985) and Han (1987), among others.

Because the details are standard and lengthy, they are omitted here.
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Proof of Lemma 2. Let dn(θ) ≡ q̂n(θ) − qn(θ). The proof then boils down to

characterizing dn(θ) up to Op(1/
√
n). The point of departure is a second-order expansion

of q̂n(θ) around
ϑ0(Wi)−ϑ0(Wj)

σk
. On invoking symmetry,

dn(θ) =

(
n

2

)−1 n∑
i=1

∑
j 6=i

s(Vi, Vj, θ)t(Zi)t(Zj)

σ
dim(ϑ0)+1
k

[ϑ̂(Wi)− ϑ(Wi)]
′ k′
(ϑ0(Wi)− ϑ0(Wj)

σk

)
up to a remainder term rn(θ), say, that captures the contribution of

[ ϑ̂(Wi)− ϑ̂(Wj)

σk

− ϑ0(Wi)− ϑ0(Wj)

σk

]′
K ′′(∗)

[ ϑ̂(Wi)− ϑ̂(Wj)

σk

− ϑ0(Wi)− ϑ0(Wj)

σk

]
to dn(θ). The remainder term can be ignored for our purposes because

rn(θ) ≤ 2 Pn[H′′(·, ·)]
supz∈Z ‖µ̂a(E)(z)− µa(E)(z)‖2

σ
dim(ϑ0)+2
k

= Op

( 1√
n

)
.

The inequality follows from the Euclidean properties of the class S together with As-

sumption 6, and the rate of convergence can be seen to hold on combining Lemma 1(i)

with Assumption 7.

Next, recall that Lemma 1(ii) implies that

ϑ̂(Wi)− ϑ0(Wi) = − 1

nσ
dim(Z)
l

n∑
k=1

[a(Ek)− µa(E)(Zi)]

pZ(Zi)
l
(Zi − Zk

σl

)
+Op

( nε/2

nσ
dim(Z)
l

)
for each Zi ∈ Z . Plug this expression into dn(θ) and use Assumptions 1–3 and 6–7 to

write

dn(θ) =
1

3

(
n

3

)−1 n∑
i=1

∑
j 6=i

∑
k 6=i,j

ḃ(Di, Dj, Dk, θ) + Op

( 1√
n

)
, (B.2)

where ḃ(Di, Dj, Dk, θ) is defined as

−s(Vi, Vj, θ)t(Zi)t(Zj)

σ
dim(ϑ0)+1
k σ

dim(Z)
l

[a(Ek)− µa(E)(Zi)]
′

pZ(Zi)
k′
(ϑ0(Wi)− ϑ0(Wj)

σk

)
l
(Zi − Zk

σl

)
.

The influence of the remainder term in the linear representation of ϑ̂(w) − ϑ0(w) on

dn(θ) is

rn(θ) =

(
n

2

)−1 n∑
i=1

∑
j 6=i

s(Vi, Vj, θ)t(Zi)t(Zj)

σ
dim(ϑ0)+1
k

k′
(ϑ0(Wi − ϑ0(Wj))

σk

)
Op
( nε/2

nσ
dim(Z)
l

)
,
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on recycling constructive notation. In (B.2), rn(θ) is absorbed into the Op(1/
√
n) term;

argue as in the proof to Theorem 1 to see that

sup
θ∈Θ

∥∥rn(θ)
∥∥ ≤ 2 Pn[H′(·, ·)]

σ
dim(ϑ0)+1
k

Op
( nε/2

nσ
dim(Z)
l

)
= Op

( 1√
n

)
.

Likewise, uniformly over Θ, the contributions of the terms with k = i or k = j to dn(θ)

are bounded by∥∥∥(n
2

)−1 n∑
i=1

∑
j 6=i

ḃ(Di, Dj, Di, θ)

n

∥∥∥ ≤ 4 l(0)
∑n

i=1

∑
j 6=iH′(Di, Dj) ‖a(Ei)− µa(E)(Zi)‖

n2(n− 1)σ
dim(ϑ0)+1
k σ

dim(Z)
l

= Op
(n[dim(ϑ0)+1]κ+dim(Z)λ

n

)
= Op

( 1√
n

)
and∥∥∥(n

2

)−1 n∑
i=1

∑
j 6=i

ḃ(Di, Dj, Dj, θ)

n

∥∥∥ ≤ 4 l(0)
∑n

i=1

∑
j 6=iH′(Di, Dj) ‖a(Ej)− µa(E)(Zj)‖

n2(n− 1)σ
dim(ϑ0)+1
k σ

dim(Z)
l

= Op
(n[dim(ϑ0)+1]κ+dim(Z)λ

n

)
= Op

( 1√
n

)
,

respectively, and are thus asymptotically negligible.

To make further progress it is useful to ‘symmetrize’ the third-order U-statistic in

(B.2). To this end, let

b(Di, Dj, Dk, θ) ≡ ḃ(Di, Dj, Dk, θ) + ḃ(Di, Dk, Dj, θ) + ḃ(Dj, Di, Dk, θ)

+ ḃ(Dk, Di, Dj, θ) + ḃ(Dj, Dk, Di, θ) + ḃ(Dk, Dj, Di, θ)

and rewrite (B.2) as

dn(θ) =
1

3

(
n

3

)−1∑
ι3

b(Di, Dj, Dk, θ) + Op

( 1√
n

)
,

where ι3 = (i, j, k) ranges over the n(n − 1)(n − 2) ordered triplets of distinct integers

from the set {1, 2, . . . , n}. It is immediately verified that ‖b(P,P,P, θ)‖2/n is O(1) so

that

dn(θ) =
1

3
b(P,P,P, θ) +

1

n

n∑
i=1

[
b(Di,P,P, θ)− b(P,P,P, θ)

]
+ Op

( 1√
n

)
(B.3)

[42]



by Lemma A.3 in Ahn and Powell (1993). (B.3) further simplifies upon calculation

of the expectations involved, which requires evaluating each of the six components of

b(Di,P,P, θ).

The contribution of the first four components of b(·, ·, ·, θ) to b(Di,P,P, θ) is asymp-

totically negligible. To see this, consider the first of these components, ḃi,j,k(Di,P,P, θ),

in obvious shorthand notation; the remaining three can be dealt with similarly. Observe

that, uniformly over Θ,∥∥∥ḃi,j,k(Di,P,P, θ)
∥∥∥≤ t(Zi)

∥∥∥∫ [a(e)− µa(E)(Zi)]

pZ(Zi)σ
dim(Z)
l

l
(Zi − z

σl

)
pE|Z(e|z) pZ(z)d(e, z)

∥∥∥
×

∥∥∥∫ −s(Vi, v, θ)t(z)

σ
dim(ϑ0)+1
k

k′
(ϑi − ϑ

σk

)
pD|ϑ(d|ϑ)pϑ(ϑ) d(d, ϑ)

∥∥∥.
The explicit conditioning on ϑi ≡ ϑ0(Wi) is feasible as ϑ0(w) is noise-free. By iterated

expectations and Assumptions 1–3, the first of these right-hand side terms is

t(Zi)
∥∥∥∫ [µa(E)(z)− µa(E)(Zi)]

pZ(Zi)σ
dim(Z)
l

l
(Zi − z

σl

)
pZ(z) dz

∥∥∥ = O(σl
l ) = O

( 1√
n

)
,

as can be shown using standard arguments. Next, iterate expectations on the second

right-hand side term and use the definition of ϕ to write

sup
θ∈Θ

∥∥∥ḃi,j,k(Di,P,P, θ)
∥∥∥ ≤ O( 1√

n

)
sup
θ∈Θ

∥∥∥∫ ϕ(Vi, ϑ, θ)

σ
dim(ϑ0)+1
k

k′
(ϑi − ϑ

σk

)
dϑ
∥∥∥.

On changing variable from ϑ to η = ϑi−ϑ
σk

and integrating by parts,

sup
θ∈Θ

∥∥∥∫ ϕ(Vi, ϑ, θ)

σ
dim(ϑ0)+1
k

k′
(ϑi − ϑ

σk

)
dϑ
∥∥∥ = sup

θ∈Θ

∥∥∥∫ ∇ϑϕ(Vi, ϑi − ησk, θ)k(η) dη
∥∥∥

= sup
θ∈Θ

∥∥∥∇ϑϕ(Vi, ϑ0(Wi), θ)
∥∥∥+O(σk

k ),

where the last transition follows again by a k th-order expansion and Assumption 8.13

Deduce from this and Assumption 7 that

sup
θ∈Θ
‖ḃi,j,k(Di,P,P, θ)‖ = O

( 1√
n

)
, sup

θ∈Θ
‖ḃj,i,k(P, Di,P, θ)‖ = O

( 1√
n

)
,

sup
θ∈Θ
‖ḃi,k,j(Di,P,P, θ)‖ = O

( 1√
n

)
, sup

θ∈Θ
‖ḃk,i,j(P, Di,P, θ)‖ = O

( 1√
n

)
,

(B.4)

13The term ϕ(Vi,ϑi−ησk,θ)
σk

k(η)
∣∣+∞
−∞ vanishes because k(η)

‖η‖→∞−→ 0 by Assumption 6.
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so that it remains only to work out ḃj,k,i(P,P, Di, θ) and ḃk,j,i(P,P, Di, θ).

Iterate expectations and argue as in the previous paragraph to write ḃj,k,i(P,P, Di, θ)

as

−
∫

t(Z)
[a(Ei)− µa(E)(z)]′

σ
dim(Z)
l pZ(z)

[
∇ϑϕ(v, ϑ0(w), θ) +O(σk

k )
]
l
(z − Zi

σl

)
dP(v, w).

Integrate (V,E) against the density p(V,E)|Z and recall that O(σk
k ) = O(1/

√
n). Next,

use an l th-order expansion around Zi, a change of variable, and Assumption 2 to see

that

ḃj,k,i(P,P, Di, θ) = −t(Zi)
[
a(Ei)− µa(E)(Zi)

]′
δ(Zi, θ) + O

( 1√
n

)
= ζ(Wi, θ) + O

( 1√
n

)
,

(B.5)

Also, because ḃk,j,i(P,P, Di, θ) has an identical structure,

ḃk,j,i(P,P, Di, θ) = −t(Zi)
[
a(Ei)− µa(E)(Zi)

]′
δ(Zi, θ) + O

( 1√
n

)
= ζ(Wi, θ) + O

( 1√
n

)
,

(B.6)

by the same reasoning.

Combine (B.4), (B.5), and (B.6) with (B.3) to obtain

dn(θ) = −2

3
b(P,P,P, θ) +

2

n

n∑
i=1

ζ(Wi, θ) + Op

( 1√
n

)
.

The proof is complete on noting that

b(P,P,P, θ) = O
( 1√

n

)
;

use the fact that
∫

a(e) pE|Z(e|z) de = µa(E)(z) to deduce that the dominant term in

both (B.5) and (B.6) has mean zero conditional on Z = Zi.

Proof of Lemma A. Let dn(θ) ≡ qn(θ) − qn(θ0) and let d(θ) ≡ P[dn(θ)]. Then,

by an application of a Hoeffding decomposition (see, e.g., Serfling, 1980; Sherman,

1993,1994b),

dn(θ) = d(θ) + 2
[
τ(Pn, θ)− τ(Pn, θ0)− d(θ)

]
+ Pn

[
r(·, ·, θ)

]
, (B.7)
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where, on letting b(Di, Dj, θ) ≡ [h(Di, Dj, θ) − h(Di, Dj, θ0)], the remainder takes the

form

r(Di, Dj, θ) ≡ d(θ) + b(Di, Dj, θ)− b(Di,P, θ)− b(P, Dj, θ).

Observe that d(θ) = τ(P, θ)−τ(P, θ0). Furthermore, by the arguments used in the proof

of Lemma 2,

τ(d, θ) = t(z) ϕ(v, ϑ0(w), θ) +O(σk
k ) = τ(d, θ) + O

( 1√
n

)
(B.8)

uniformly over Θ. The current proof then parallels the proofs in Sherman (1993) and

Jochmans (2010), with some modifications.

fix θ in N . Call upon the differentiability of τ(d, θ) as postulated under Assumption

9 to expand τ(d, θ) around θ0. Then

τ(d, θ)− τ(d, θ0) = (θ − θ0)′∇θτ(d, θ0)

+
1

2
(θ − θ0)′∇θθτ(d, θ0)(θ − θ0)

+
1

2
(θ − θ0)′

[
∇θθτ(d, ∗)−∇θθτ(d, θ0)

]
(θ − θ0) + O

( 1√
n

) (B.9)

on linking τ(d, θ)− τ(d, θ0) to τ(d, θ)− τ(d, θ0) through (B.8).

Envoke the Lipschitz condition in Assumption 9, take expectations, and use the fact

that ∇θτ(P, θ0) = 0 by the first-order condition for a maximum of the limiting objective

function to see that

d(θ) = (θ − θ0)′
∇θθτ(P, θ0)

2
(θ − θ0) + O(‖θ − θ0‖2) + O

( 1√
n

)
(B.10)

uniformly over Op(1) neighborhoods of θ0.

Subtract (B.10) from (B.9) and average across observations. Then

τ(Pn, θ)− τ(Pn, θ0)− d(θ) =
(θ − θ0)′√

n

[√
n∇θτ(Pn, θ0) + Op(1)

]
+ Op(‖θ − θ‖2) (B.11)

uniformly over Op(1) neighborhoods of θ0 because∥∥(θ − θ0)′[∇θθτ(Pn, ∗)−∇θθτ(Pn, θ0)](θ − θ0)
∥∥ ≤Mτ (Pn)

∥∥θ − θ0

∥∥3

and (θ − θ0)′[∇θθτ(Pn, θ0)−∇θθτ(P, θ0)](θ − θ0) = Op(1) by Assumption 9 (that is, the

integrability of the Lipschitz constant) and a law of large numbers, respectively.
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Combine the Euclidean properties of the class H with Corollary 17 and Corollary 21

in Nolan and Pollard (1987) to see that the class {σdim(ϑ0)
k r(·, ·, θ) : θ ∈ Θ} is Euclidean

for an envelope whose second moment under P exists. Further observe that r(·, ·, θ) is

P-degenerate on supp(D)⊗ supp(D), that r(·, ·, θ0) = 0, and that ‖r(·, ·, θ0)‖ is bounded

by a multiple of [H(P,P)+H(·, ·)]/σdim(ϑ0)
K ; refer to the bound as H (·, ·)/σdim(ϑ0)

k . Apply

Theorem 3 in Sherman (1994a) with, in his notation, Θn = Θ, γn = 1, and any α ∈ (0, 1)

to see that

Pn[r(·, ·, θ)] = Op
( 1

σ
dim(ϑ0)
k n

)
= Op(1)

uniformly over Θ. Reset γn = Pn[H (·, ·)]/σdim(ϑ0)
k and let δn = 1/

(√
σ

dim(ϑ0)
k n

)
. Then,

on setting α sufficiently close to unity, by another application of the same theorem, in

tandem with Assumption 7,

Pn[r(·, ·, θ)] =
Pn[H (·, ·)]
σ

dim(ϑ0)
k

Op
((γnδn)α

n

)
= Op

( 1

n

)
(B.12)

uniformly over Op
(

1/

√
σ

dim(ϑ0)
K n

)
= Op(1) neighborhoods of θ0.

Plug (B.10), (B.11), and (B.12) into (B.7). The proof is complete on collecting

terms.

Proof of Lemma B. Let dn(θ) ≡ ζ(Pn, θ) − ζ(Pn, θ0). Envoke Assumption 10 to

expand ζ(w, θ) around θ0. On averaging,

dn(θ) = (θ − θ0)′ ∇θζ(Pn, θ0) + (θ − θ0)′
∇θθζ(Pn, ∗)

2
(θ − θ0).

Refer to the Lipschitz continuity in Assumption 10 and a law of large numbers to

dispense with the quadratic term. Rearrange to complete the proof.

Proof of Theorem 2. Combine Lemma 2 with Lemmata A and B. On collecting

terms,

q̂n(θ) = qn(θ0) + (θ − θ0)′
∇θθτ(P, θ0)

2
(θ − θ0) + (θ − θ0)′

2Dn√
n

+ Op(‖θ − θ0‖2) + Op

( 1

n

)
uniformly over Op

(
1/

√
σ

dim(ϑ0)
k n

)
neighborhoods of θ0, where Dn ≡

√
nς(Pn) + Op(1).

√
n-consistency follows immediately from Theorem 1 in Sherman (1994a). Next, refer to

Assumptions 9 and 10 to see that Dn
L→ N (0,Σ). Then, because ∇θθτ(P, θ0) is negative

definite, the asymptotic-distribution result follows on applying Theorem 2 in Sherman

(1994a).
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Proof of Corollary 1. Kill the randomness in the first-step estimates, i.e., set µ̂a(E)(z)

to µa(E)(z) for each z in Z . Then Lemma 2 becomes superfluous and the result follows

from the proof to Theorem 2 on replacing Dn by
√
n∇θτ(Pn, θ0) + Op(1) .

Proof of Lemma 3. The strategy followed is similar to the arguments that lead to

Theorem 4 in Sherman (1993) and to those used in the proof of Theorem 1 in Abrevaya

(1999b). Observe that τ(d1, θ) can be written as

t(z1)

∫
x′θ<x′1θ

t(z) S
(
y1, I(x2, w1)

)
pI
(
I(x2, w1)

)
pX,Z|I(X,W )

(
x2, z2|I(x2, w1)

)
d(x2, z2)

+t(z1)

∫
t(z2)

∫
m(y2) dPI(I(x2, w2)) pI

(
I(x2, w1)

)
pX,Z|I(X,W )

(
x2, z2|I(x2, w1)

)
d(x2, z2).

The second term is free of θ. Hence, on letting u(i) be the unit vector with ith-element

equal to one, because ∇θ(i)τ(d1, θ0) = limh→0
1
h
[τ
(
d1, θ0 +hu(i)

)
−τ
(
d1, θ0

)
] by definition,

∇θ(i)τ(d1, θ0) equals

t(z1)

∫
t(z2)(x

(i)
1 −x

(i)
2 ) S

(
y1, I(x2, w1)

)
pI
(
I(x1, w2)

)
pX,Z|I(X,W )

(
x2, z2|I(x1, w1)

)
d(x2, z2)

for each i = 1, . . . , dim(X). Perform the integration and stack the components to get

the expression for ∇θτ(d1, θ0) as stated in the lemma.

Next, rearrange and differentiate under the integral to get

∇θζ(w1, θ0) =

∫
∇θϑτ(d2, θ0) dPD|Z(d2|z1)

[
µa(E)(z1)− a(e1)

]
=

∫
X (x2, w2) S2

(
y2, I(x2, w2)

)′
pI
(
I(x2, w2)

)
dPX,W |Z(x2, w2|z1)

×
[
µa(E)(z1)− a(e1)

]
.

The second transition above follows again from an application of the moment condition∫
S(y, I(x,w)) dPI(X,W )(I(x,w)) = 0.

Finally, calculations similar to those used to arrive at the expression for ∇θτ(d, θ0)

in combination with the existence of the second moment of t(Z)X lead to the expression

for the second-derivative term ∇θθτ(P, θ0).

Proof of Lemma C. Let D ≡ supp(Y ) × supp(X) × supp(E) × Z . To see that

p̂I(Î(x,w)) is consistent for pI(I(x,w)), apply the triangle inequality to get that∥∥p̂I
(
Î(x,w)

)
−pI

(
I(x,w)

)∥∥ ≤ ∥∥p̂I
(
Î(x,w)

)
−p̂I

(
I(x,w)

)∥∥+
∥∥p̂I
(
I(x,w)

)
−pI

(
I(x,w)

)∥∥
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uniformly over D . For the first right-hand side term,

sup
d∈D

∥∥∥ 1

nσ
dim(ϑ0)+1
j

n∑
i=1

j
( Î(Xi,Wi)− Î(x,w)

σj

)
− j
(I(Xi,Wi)− I(x,w)

σj

)∥∥∥
≤ 1

n

n∑
i=1

∥∥∥j′
(
∗
)∥∥∥ 1

σ
dim(ϑ0)+2
j

max
{∥∥Xi − x

∥∥ ∥∥θ̂ − θ0

∥∥, 2 sup
z∈Z

∥∥µ̂a(E)(z)− µa(E)(z)
∥∥}

=
1

σ
dim(ϑ0)+2
j

max
{
Op
( 1√

n

)
, Op

(√ nε/2

nσ
dim(Z)
l

)}
= Op(1)

by Assumptions 2 and 12, Lemma 1, and Theorem 2 provided that j is smaller than

(1−ε/2−λdim(Z))/2(dim(ϑ0)+2). The second right-hand side term is free of generated

regressors and thus Op(1) uniformly over D by standard arguments; see, e.g., Silverman

(1978).

Showing that µ̂t(Z)(Î(x,w)), µ̂t(Z)X(Î(x,w)), and µ̂m(Y )(Î(x,w)) are consistent then

reduces to proving the consistency of their numerators. Because of Assumption 13, this

follows by the same arguments as in the previous paragraph. This is so because the

presence of t(Zi), t(Zi)Xi, and m(Yi) creates no additional difficulty. The consistency

of X̂ (x,w) for X (x,w), then, follows from Slutsky’s theorem. The same conclusion can

be drawn for Ŝ(y, Î(x,w)).

For the derivative estimates Ŝj
(
y, Î(x,w)

)
, j = 1, 2,

sup
d∈D

∥∥Ŝj
(
y, Î(x,w)

)
− Ŝj

(
y, I(x,w)

)∥∥+ sup
d∈D

∥∥Ŝj
(
y, I(x,w)

)
− Sj

(
y, I(x,w)

)∥∥
is an upper bound for supd∈D

∥∥Ŝj(y, Î(x,w))−Sj(y, I(x,w))
∥∥. Under Assumption 13, the

second part of this bound can again be dispensed with by following Silverman (1978).

For the first part, the only new terms involve p̂Ij(Î(x,w)). So, it remains to establish

that supd∈D‖p̂Ij(Î(x,w)) − pIj(I(x,w))‖ = Op(1) for j = 1, 2. Because j′′ exists and is

bounded, a mean-value expansion—again in combination with Assumptions 2 and 12,

Lemma 1, and Theorem 2—provides the result.

finally, turn to supd∈D

∥∥µ̂bν(X,W )(z)− µν(X,W )(z)
∥∥, which is no greater than

sup
d∈D

∥∥µ̂bν(X,W )(z)− µ̂ν(X,W )(z)
∥∥+ sup

z∈Z

∥∥µ̂ν(X,W )(z)− µν(X,W )(z)
∥∥.

Because ν̂(x,w)
p→ ν(x,w) uniformly over D by Slutsky’s theorem, and because l is
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bounded (Assumption 1),

sup
d∈D

∥∥µ̂bν(X,W )(z)− µ̂ν(X,W )(z)
∥∥ = sup

d∈D

∥∥∥ n∑
i=1

ωi(z)
[
ν̂(Xi,Wi)− ν(Xi,Wi)

]∥∥∥
≤

n∑
i=1

‖ωi(z)‖ sup
d∈D

∥∥∥ν̂(x,w)− ν(x,w)
∥∥∥ = Op(1).

Observe that µ̂ν(X,W )(z) is again a Nadaraya-Watson estimator of µν(X,W )(z). Deduce

that supz∈Z

∥∥µ̂ν(X,W )(z)− µν(X,W )(z)
∥∥ = Op(1) to complete the proof.

Proof of Theorem 3. Let υ(d, θ) ≡ −Υ−1ς(d, θ). Combine the kernel estimates

of the components of this influence function to obtain the plug-in estimates υ̂(Di, θ̂),

i = 1, . . . , n. Then we can write Υ−1Σ Υ−1 = P[υ(·, θ0)υ(·, θ0)′] and Υ̂−1Σ̂ Υ̂−1 =

Pn[υ̂(·, θ̂)υ̂(·, θ̂)′].

By Lemma 1, Lemma C, Theorem 2, and Slutsky’s theorem,

Pn

[
υ̂(·, θ̂)υ̂(·, θ̂)′

]
= Pn

[
υ(·, θ0)υ(·, θ0)′

]
+ Op(1). (B.13)

Also, Assumptions 9–10 and the law of large numbers imply that

Pn

[
υ(·, θ0)υ(·, θ0)′

] p→ P
[
υ(·, θ0)υ(·, θ0)′

]
. (B.14)

Put together, (B.13) and (B.14) yield Υ̂−1Σ̂ Υ̂−1 = Υ−1Σ Υ−1 + Op(1). The proof is

complete.

Proof of Theorem 4. Fix y in [yL, yU]; then ψ0(y) is interior to Ψ which is a compact

interval by Assumption 14. By Assumption 4, qy(ψ, θ0) is continuous in ψ and uniquely

maximized at ψ0(y). The proof to these claims is again identical as to when the control

is absent. For the consistency of ψ̂(y) for ψ0(y) it remains only to establish the uniform

convergence of q̂yn(ψ, θ̂) to qy(ψ, θ0).

Let qy(ψ, θ) ≡ P[hy(·, ·, ψ, θ)]. Apply the triangle inequality to obtain

sup
ψ∈Ψ

∥∥∥q̂yn(ψ, θ̂)− qy(ψ, θ0)
∥∥∥ ≤ sup

ψ∈Ψ

∥∥∥q̂yn(ψ, θ̂)− qyn(ψ, θ̂)
∥∥∥+ sup

ψ∈Ψ

∥∥∥qyn(ψ, θ̂)− qy(ψ, θ̂)
∥∥∥

+ sup
ψ∈Ψ

∥∥∥qy(ψ, θ̂)− qy(ψ, θ0)
∥∥∥+ sup

ψ∈Ψ

∥∥∥qy(ψ, θ0)− qy(ψ, θ0)
∥∥∥.
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Observe that the class {sy(·, ·, ψ, θ) : ψ ∈ Ψ, θ ∈ Θ} is Euclidean for the constant

envelope of unity; use Example 2.11 in Pakes and Pollard (1989). Consequently, by

applying the same arguments as in the proof to Theorem 1,

sup
ψ∈Ψ

∥∥∥q̂yn(ψ, θ̂)− qyn(ψ, θ̂)
∥∥∥ = Op(1) and sup

ψ∈Ψ

∥∥∥qyn(ψ, θ̂)− qy(ψ, θ̂)
∥∥∥ = Op(1).

Next, by Theorem 2 and Assumption 4, ‖θ̂−θ0‖ = Op(1/
√
n) and qy(ψ, θ) is continuous

in θ. Hence,

sup
ψ∈Ψ

∥∥∥qy(ψ, θ̂)− qy(ψ, θ0)
∥∥∥ =

1

σ
dim(ϑ0)
k

Op
( 1√

n

)
= Op(1),

on employing Assumption 7. For the remaining component, finally, use Assumptions 6,

7, and 15 to obtain

sup
ψ∈Ψ

∥∥∥qy(ψ, θ0)− qy(ψ, θ0)
∥∥∥ = O(σk) = O(1)

by applying the usual trick. Thus, supψ∈Ψ‖q̂yn(ψ, θ̂)− qy(ψ, θ0)‖ = Op(1); statement (i)

of Theorem 4 follows.

The proof of Theorem 4(ii) proceeds in three steps. first, recall the symmetry of

hy(·, ·, α, θ) and the Euclidean properties of the classes K and {sy(·, ·, α, θ) : ψ ∈ Ψ, θ ∈
Θ}. Then, for each y in [yL, yU],

q̂yn(ψ, θ̂)− qyn(ψ, θ̂) =
2

n

n∑
i=1

ζ
y
(Wi, ψ, θ̂) + Op

( 1√
n

)
(B.15)

uniformly over Ψ. Notice that (B.15) can be shown by applying the same arguments as

those contained in the proof of Lemma 2.

To handle qyn(ψ, θ̂), proceed as in the proof of Lemma A. fix (ψ, θ) in Ny, define

the functions dyn(ψ, θ) ≡ qyn(ψ, θ)− qyn(ψ0(y), θ) and dy(ψ, θ) ≡ P[dyn(ψ, θ)], and apply a

Hoeffding decomposition. The resulting approximation is

dyn(ψ, θ) = dy(ψ, θ) + 2
[
τ y(Pn, ψ, θ)− τ y(Pn, ψ0(y), θ)− dy(ψ, θ)

]
and the remainder term that can be dispensed with in the usual way. Start with

dy(ψ, θ) = τ y(P, ψ, θ) − τ y(P, ψ0(y), θ). Envoke Assumptions 6, 7, and 15 to write
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τ y(d, ψ, θ) as τ y(d, ψ, θ) + O(1/
√
n). Taylor-expand τ y(d, ψ, θ) around ψ0(y) and then

around θ0. On taking expectations,

dy(ψ, θ) = (ψ − ψ0(y))∇ψθτ
y(P, ψ0(y), θ0)(θ − θ0) + (ψ − ψ0(y))2∇ψψτ

y(P, ψ0(y), θ0)

2

+ O((ψ − ψ0(y))2) + Op(‖θ − θ0‖2) + O
( 1√

n

)
uniformly over Op(1) neighborhoods of (ψ0(y), θ0); make use of the Lipschitz condition

in Assumption 16 and notice that ∇ψτ
y(P, ψ0(y), θ0) = 0. On evaluating at θ̂,

dy(ψ, θ̂) = (ψ − ψ0(y))∇ψθτ
y(P, ψ0(y), θ0)υ(Pn, θ0) + (ψ − ψ0(y))2∇ψψτ

y(P, ψ0(y), θ0)

2

+ O((ψ − ψ0(y))2) + Op

( 1√
n

)
(B.16)

follows by applying Theorem 2 and absorbing all terms that are asymptotically negligible

into the Op(1/
√
n) term. Similarly,

τ y(Pn, ψ, θ)− τ y(Pn, ψ0(y), θ)− dy(ψ, θ̂) = (ψ − ψ0(y))∇ψτ
y(Pn, ψ0(y), θ0)

+ O((ψ − ψ0(y))2) + Op

( 1√
n

)
(B.17)

uniformly over Op(1) neighborhoods of ψ0(y).

Finally, consider ζ
y
(Pn, ψ, θ̂). Taylor-expand around ψ0(y) and θ0, in turn. Use the

Lipschitz condition and the finiteness of the population moments in Assumption 17 to

dispense with ∇ψψζ
y
(Pn, ψ0(y), θ0). Because ‖θ̂ − θ0‖ = Op(1/

√
n) by Theorem 2 and

∇ψθζ
y
(Pn, ψ0(y), θ0)

p→ ∇ψθζ
y
(P, ψ0(y), θ0) = 0 by the law of large numbers,

ζ
y
(Pn, ψ, θ̂)− ζ

y
(Pn, ψ0(y), θ̂) = (ψ − ψ0(y))

[
∇ψζ

y
(Pn, ψ0(y), θ0) + Op(1)

]
+ Op

(
(ψ − ψ0(y))2

)
.

(B.18)

uniformly over Op(1) neighborhoods of ψ0(y).

Combine (B.15)–(B.18) and rearrange to see that, uniformly over Op(1/

√
σ

dim(ϑ0)
k n)

neighborhoods of ψ0(y), q̂yn(ψ, θ̂)− q̂yn(ψ0(y), θ̂) equals

(ψ − ψ0(y))2∇ψψτ
y(P, ψ0(y), θ0)

2
+ (ψ − ψ0(y))

2Dyn√
n

+ Op((ψ − ψ0(y))2) + Op

( 1

n

)
,

where Dyn ≡
√
n[ςy(Pn, ψ0(y), θ0)+%y(Pn, ψ0(y), θ0)]+Op(1). By Assumptions 16 and 17,

Dyn
L→ N (0,Σ(y)). The proof is complete on unleashing Theorems 1 and 2 in Sherman

(1994a), in turn, on the above expression.
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Proof of Corollary 2. The result follows on making the same modifications to the

proof of Theorem 4 as exposed in the proof of Corollary 1.

appendix c: computational details14

The optimization routine consists of a user-determined maximum number of rounds.

Each such round consists of a series of iterations, followed by a series of stability checks,

with maxima again set by the user.

A single iteration, say the kth, proceeds as follows. For an initial value for θ̂, θk ∈ Θ

say, an orthonormal set of dim(X)-vectors δk = (δ
(1)
k , · · · , δ(dim(X)−1)

k )—each of which is

orthogonal to θk—is drawn. The great circles connecting θk to a δ
(l)
k (l = 1, . . . , dim(X)−

1), that is, the sets of points θk(λ) for λ ∈ [0, 2π) and

θ
(l)
k (λ) ≡ cos(λ) θk + sin(λ) δ

(l)
k ,

provide a collection of orthogonal search directions along Θ. Next, Q̂N(θ) is sequentially

maximized along each of these directions.15 The first sequence starts at θk and delivers

θ
(1)
k , the lth sequence starts at θ

(l−1)
k and delivers θ

(l)
k .

If q̂n(θ
(dim(X)−1)
k ) > q̂n(θk), the (k + 1)th iteration commences with starting value

θk+1 = θ
(dim(X)−1)
k . This process continues until a given set of search directions provides

no further increase in the objective function. The final point estimate that results from

this routine is declared a trial maximizer of q̂n(θ).

Next, the trial maximizer is subjected to a number of stability checks. These are

necessary because the behavior of q̂n(θ) is only investigated along a finite number of

search directions, so that the trial maximizer may, in fact, be only a local maximizer.

A stability check consists of drawing at random an orthonormal set of search directions

from Θ—each again being orthogonal to the trial maximizer—and evaluating the ob-

jective function along these directions. If an increase in q̂n(θ) is found, the check is

terminated and the algorithm reverts to the next round, iterating around the new point

estimate. If all checks are passed, the trial maximizer is declared stable and called θ̂.

As the number of stability checks increases to infinity, the randomization in drawing

14The algorithm discussed in this section is a modified version of the optimization routine for the
maximum-score estimator introduced by Manski and Thompson (1986).

15Because in any given direction q̂n(θ) takes at most 2n(n−1)+2 different values (see below), there
is generally a subinterval of [0, 2π) on which the objective function is maximized. Any of these points
may be chosen as the new (intermediate) maximizer, but the mean or median of this subinterval seem
natural choices. The results in the main text where obtained by using the latter.
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search directions ensures that θ̂ will be the global maximizer of q̂n(θ) with probability

approaching one.

Evaluating the objective function along the great circle connecting θk and δ
(l)
k boils

down to computing q̂n(θ
(l)
k (λ)) for λ ∈ [0, π). For λ ∈ [π, 2π), the corresponding val-

ues of the objective function follow immediately. This is so because q̂n(θ
(l)
k (λ + π)) =

q̂n(−θ(l)
k (λ)) and

q̂n(−θ(l)
k (λ)) =

1

n(n− 1)

n∑
i=1

m(Yi)− q̂n(θ
(l)
k (λ)). (C.1)

The first right-hand side term in the above expression does not contain any unknown

parameters and q̂n(θ
(l)
k (λ)) has already been computed. Because the weights do not

depend on λ, it suffices to focus on the dynamics of s(·, ·, θ(l)
k (λ)).

Fix a pair of observations (i, j) and consider λij, the solution to (Xi−Xj)
′θ

(l)
k (λ) = 0

on [0, π). If (Xi − Xj)
′θk is nonzero, λij is unique and partitions [0, π) into two sub-

intervals, each on which d(Di, Dj, θ
(l)
k (λ)) is constant. Moreover,

(Xi −Xj)
′θk > 0⇒

{
(Xi −Xj)

′θ
(l)
k (λ) > 0 if λ ∈ [0, λij)

(Xi −Xj)
′θ

(l)
k (λ) < 0 if λ ∈ (λij, π)

while

(Xi −Xj)
′θk < 0⇒

{
(Xi −Xj)

′θ
(l)
k (λ) < 0 if λ ∈ [0, λij)

(Xi −Xj)
′θ

(l)
k (λ) > 0 if λ ∈ (λij, π)

If (Xi −Xj)
′θk = 0, then λij = 0 and

(Xi −Xj)
′θk > 0⇒ (Xi −Xj)

′δ
(l)
k > 0 for all λ ∈ [0, λ),

(Xi −Xj)
′θk < 0⇒ (Xi −Xj)

′δ
(l)
k < 0 for all λ ∈ [0, λ).

It then follows that, for a given λ, s
(
Di, Dj, θ

(l)
k (λ)

)
equals

m(Yi)
[
1
(
(λij − λ)(Xi −Xj)

′θk > 0
)

+ 1
(
(Xi −Xj)

′δ
(l)
k > 0

)
1
(
(Xi −Xj)

′θk = 0
)]

+m(Yj)
[
1
(
(λij − λ)(Xi −Xj)

′θk < 0
)

+ 1
(
(Xi −Xj)

′δ
(l)
k < 0

)
1
(
(Xi −Xj)

′θk = 0
)]
.

Because λij = λji, there are at most n(n − 1)/2 unique such λij. They partition [0, π)

into n(n − 1) + 1 intervals, each on which the objective function is constant in λ. The

dynamics of the score contributions as a function of λ displayed above, together with

(C.1), make it easy to compute q̂n(θ) on the entire interval [0, 2π) and along any given

direction.
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Honoré, B. E. and J. L. Powell. (1994). Pairwise difference estimators of censored and truncated

regression models. Journal of Econometrics, 64:241–278.
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