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Abstract

This paper proposes a new identi�cation and estimation method for the extended Roy model, in which

the agents maximize their utility rather than just outcome. The identi�cation results substantially relax

conventional functional form restrictions. No functional form restriction is imposed on the distribution

of the potential outcomes. Hence it allows for nonseparable functional forms and/or disturbances of

an arbitrary dimension. The utility functions are allowed to be nonlinear so that it can accommodate

important features of utility functions such as the concavity of the utility functions. The identi�cation

method does not require the instrument to have a large support. I show that (i) when the instrument is

continuous, possibly having a bounded support, the model is point-identi�ed on a certain identi�cation

region, and that (ii) when only discrete instruments are available, sharp bounds for the model are

obtained. The key assumption of the method is the monotonicity of the selection with respect to the

instrument. Based on the identi�cation result, I propose a nonparametric estimation procedure that

builds upon a simulation-based method proposed by Dette et al. (2006). The estimator is easy to

implement in practice because it only uses a closed form formula and straightforward simulations. I show

that the estimator possesses a standard nonparametric rate of convergence, and examine its e�cacy in

�nite samples by Monte Carlo simulations.
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1 Introduction

Self-selection has been at the core of econometrics and empirical economics for decades. The Roy model is

a structural model of self-selection that has been used to control for self-selection bias in a large class of

applications. Examples include the choice of schooling (Willis and Rosen, 1979), immigration (Borjas, 1987),

labor union status (Lee, 1978).

Also, the Roy model provides a useful framework to estimate heterogeneous treatment e�ects. The Roy

model shares the potential outcome framework in common with the Rubin causal model (Holland (1986)),

which is the standard model for causal inference. Thus it is straightforward to apply the Roy model to causal

inference. See Heckman and Vytlacil (2005) and Eisenhauer et al. (2011)for detailed discussion.

In this paper, I propose a new identi�cation and estimation method for the extended Roy model. Consider

a binary choice from two states. Let d ∈ {0, 1} index the states. Each agent is endowed with a pair of potential
outcomes (Y0, Y1) associated with the respective state. However, the researcher observes the realized outcome

Y only, which is given by

Y = DY1 + (1−D)Y0

where D is the selection indicator.

Suppose that there are observed vectors X and Z. I assume

(Y0, Y1)|X,Z ∼ FY0Y1|X (1)

where FY0Y1|X is an unknown conditional distribution function, and

D = 1{U1(Y1, X, Z) > U0(Y0, X, Z)} (2)

where U0 and U1 are unknown utility functions, and 1{·} is the indicator function. I will refer to (1) and (2)

as the outcome equation and the selection equation, respectively.

The outcome equation speci�es the joint distribution of the potential outcomes conditional on observed

variables. The only restriction imposed in (1) is that the conditional joint distribution of the potential

outcomes given X and Z is independent of Z. That is, I assume that Z is independent of the potential

outcomes conditional on X almost surely. It is a standard assumption imposed on the instrumental variables.

In this paper, I use Z as the instrumental variables for the endogenous variable D.

The outcome equation (1) relaxes conventional functional form restrictions. The standard formulation of

the outcome equation in the literature is an additively separable form. For d ∈ {0, 1},

Yd = md(X) + εd (3)

where md is an unknown function, εd is an unobservable disturbance, and X ⊥ (ε0, ε1). (E.g., Heckman

(1990), Maurel and D'Haultfoeuille (2011), and French and Taber (2011)). In additively separable models, the

e�ect of X on Yd is assumed to be homogeneous across agents after conditioning on observables, which is hard

to justify with economic theory in many applications. Furthermore, due to the independence assumption, the

covariance between Y0 and Y1 is not a�ected by X, which can be too restrictive. Equation (1) relaxes these

functional form assumptions and enables a �exible speci�cation of the e�ect of X. Furthermore, (1) does

not restrict the dimension of unobserved disturbances so that it allows for general unobserved heterogeneity.

The selection equation (2) is also very general. It extends the Roy model studied in Heckman and
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Honore (1990) to accommodate utility functions. In their paper, the agents are assumed to choose the state

with the higher potential outcome. By assuming that the agents maximize their utility rather than the

outcome, it is possible to consider utility components other than the outcome such as costs of choosing each

state or nonpecuniary preferences. In particular, it can accommodate important features of utility functions

such as concavity and/or nonadditive utility factors. While there have been many papers allowing for utility

components other than the outcome (Bayer et al. (2011), Maurel and D'Haultfoeuille (2011), and French and

Taber (2011)), this the �rst paper that allows the potential outcome to enter the utility function nonlinearly

and nonadditively.

However, it should be noted that the selection equation in (2) assumes that unobserved heterogeneity

in the selection comes only from the potential outcomes. For instance, it rules out the agents' imperfect

expectation of the potential outcome or unobserved heterogeneity in preferences. ? refer to such a model

as the extended Roy model to distinguish from the generalized model in which additional unobserved het-

erogeneity in the selection is allowed. In general, the additional unobserved heterogeneity in the generalized

Roy model complicates the identi�cation of the joint distribution of the potential outcomes because there are

always two sources of unobserved heterogeneity: one is the unrealized potential outcome, and the other is

the unobserved heterogeneity in the selection equation. Even under more assumptions such as large support

assumptions, separating the two unobserved heterogeneities and identifying the joint distribution is not an

easy task, which is discussed in a companion paper (Park (2012)). Since this paper aims to identify the joint

distribution of (Y0, Y1) under few functional form assumptions, it assumes the extended Roy model.

The parameters of interest are the joint distribution of the potential outcomes, FY0Y1|X , and the utility

functions. The two parameters are nonparametrically identi�ed under mild conditions. One of the main

contributions of this paper is to identify the joint distribution of the potential outcomes. The joint distri-

bution, as opposed to the marginal distribution, of the potential outcomes in the extended or generalized

Roy model is not identi�ed in the literature.1 But the identi�cation of the joint distribution of the potential

outcomes is of great important in treatment e�ect analysis. If we think of choosing state 1 as participating

in a treatment and state 0 as not, Y1 − Y0 can be thought of as the causal e�ect of the treatment on the

outcome. Idneti�cation of two marginal distributions of Y0 and Y1 is not enough to identify the distribution

of Y1−Y0. So the treatment analysis has to detour this problem. An example of this problem is the quantile

treatment e�ects (QTE). The QTE is widely used to capture the heterogeneity of the treatment e�ects.

A natural way to de�ne the QTE is QY1−Y0|X(τ |x), where τ ∈ (0, 1) and QA|B(τ |b) represents the τ -th

quantile of A conditional on B being b for generic random variables A and B. However, due to the lack of

the identi�cation of the joint distribution, the QTE is de�ned as QY1|X(τ |x)−QY0|X(τ |x) in Chernozhukov

and Hansen (2005). In general, the two parameters are di�erent. Hence, in a rigorous sense, the commonly

used QTE can be misleading. The identi�cation of the joint distribution presented in this paper enables

researchers to use the proper QTE.

Identi�cation of utility functions without linearity assumption is another important contribution of this

paper to the literature. In many empirical applications, the causal e�ect of a treatment on the welfare is as

important as the treatment e�ect on the outcome. (Eisenhauer et al. (2011)) Using the utility functions in

(2), we can de�ne the causal e�ect of a treatment on the welfare by U1(Y1, X, Z) − U0(Y0, X, Z). Without

linearity of utility functions in the potential outcomes, the welfare e�ect can not be expressed in terms of

the usual treatment e�ect. Nonlinearity of utliity functions is important to understand welfare implication

1In Heckman and Honore (1990), the joint distribution is identi�ed in the original Roy model. But it does not extend to
the extended or generalized Roy model. Vijverberg (1993) tries to infer the correlation coe�cient between Y0 and Y1 using the
positive semi-de�niteness of the covariance matrix.
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of a treatment on heterogeneous agents. For example, consider the choice of attending college. Those who

are from rich families may have little marginal utility from the wage increment by college degree, and care

more about other non-pecuniary bene�ts such as pride, building social network, etc. In such cases, they

may attend college even though the wage increase by college attendance is negative. That is, the treatment

e�ect (on the outcome) can be negative even when the welfare e�ect is positive. On the other hand, it is

also possible that the poor do not attend college due to �nancial constraints even though the wage increase

is substantially positive. This example shows that the welfare e�ect of a treatment can be totally di�erent

from the treatment e�ect, and also the direction of the di�erence can be heterogeneous.

The key assumption of this paper is the uniformity assumption introduced in Heckman and Vytlacil

(2005); Heckman et al. (2006) or the monotonicity assumption in Imbens and Angrist (1994) and Vytlacil

(2003). These assumptions imply that the response to a change in the instrumental variable, Z, should be

in the same direction for all the agents. It rules out, for example, the case in which the change in Z makes

state 0 more attractive relative to state 1 for some agents, while it makes state 1 more attractive relative to

state 0 for the others. A change in Z should be either in favor of state 0 or state 1 for all the agents. It will

be discussed in more detail in the body of this paper. To explain the intuition of the identi�cation method,

suppose that when Z increases, state 0 becomes more attractive and some agents will change their selection

from state 1 to state 0. The researcher observes the changes in the distribution of observed outcomes using

the variation in Z. I exploit the idea that the in�ow into state 0 and the out�ow out of state 1 sum to zero.

Matching the in�ows and out�ows of two states gives the key equation used for the identi�cation.

My identi�cation strategy is totally di�erent from the prevalent identi�cation method using the so-called

�identi�cation at in�nity� argument. The identi�cation at in�nity argument relies on the idea that the

selection problem disappears when a state is chosen with probability one. To make the choice probability

arbitrarily close to one, a su�ciently large variation in instrumental variables should be assumed. It bears

two potential problem due to its nature of utilizing events in the limit. First, it requires a large support

assumption on instruments, which often fails to hold in practice. Second, the estimation based on the

identi�cation-at-in�nity is �irregular� in the sense that it relies on observations near in�nity. (Andrews and

Schafgans (1998); Khan and Tamer (2010))

This paper addresses the two central problems of the identi�cation-at-in�nity method. First, the identi-

�cation method proposed in this paper does not require any support condition on the instrumental variable.

Instead, it gives di�erent identi�cation results for di�erent types of instruments. When the instrument is

continuous, possibly having a bounded support, the model is point-identi�ed. When only discrete instru-

ments are available, bounds for the model are obtained and shown to be sharp. Second, the estimation

method based on the new identi�cation strategy possesses a standard nonparametric rate of convergence.

The estimation procedure using the identi�cation-at-in�nity argument is irregular, potentially resulting in a

slower rate of convergence.

I propose a simulation-based estimator for the model with a continuous instrument. The method proceeds

in two steps. In the �rst stage, the distribution function of observed outcomes and its derivatives with respect

to the instrument are estimated by a local linear estimator. In the second stage, the parameters of interest are

estimated by solving equations obtained from the �rst stage estimates. I adopt and extend the simulation-

based method proposed by Dette et al. (2006); Dette and Scheder (2006); Dette and Volgushev (2008) to

solve the equations under the monotonicity assumption. The estimator is easy to implement because it only

uses a closed-form formula and straightforward simulations. I derive its rate of convergence and conduct a

set of Monte Carlo simulations to examine its e�cacy in �nite samples.
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The remainder of the paper is organized as follows. Section 2 presents the identi�cation results. Subsec-

tions 2.1 and 2.2 provide a point-identi�cation result for continuous instruments and a partial identi�cation

result for discrete instruments, respectively. In Section 3, I develop a nonparametric estimator based on the

identi�cation results and derive the convergence rate of the estimator. Section 4 presents Monte Carlo sim-

ulation results to check the performance of the estimator in �nite samples and compares it with benchmark

estimators. Section 6 summarizes the results and provides some future research directions. Appendix A

proves an asymptotic theory for the simulation-based estimator used in Section 3 under high-level assump-

tions. Appendix B provides a high-level conditions for stochastic equicontinuity. Tables are deferred to the

end of the paper.

2 Identi�cation

Suppose that Yd ∈ R for each d ∈ {0, 1} and let X ∈ X ⊂ RmX and Z ∈ Z ⊂ RmZ . I call X and Z covariates

and instruments, respectively. Throughout this paper, I assume that mZ = 1 for simplicity of notation.

Generalization to the case of mZ > 1 is straightforward.

We need a normalization because utility functions are identi�ed only up to a monotone transformation.

Assume that the utility function U1 in equation (2) is strictly increasing in Y1 for any X and Z almost

surely. Then there exists the inverse of U1 with respect to Y1 with X and Z being �xed, denoted by U−1
1 .

Let h = U−1
1 ◦ U0. Then, the selection equation (2) can be written as follows:

D = 1{Y1 > h(Y0, X, Z)} (4)

Now h can be regarded as a utility function normalized in units of Y1.

The model can be summarized by the following three equations.

(Y0, Y1)|X,Z ∼ FY0Y1|X

D = 1{Y1 > h(Y0, X, Z)}

Y = DY1 + (1−D)Y0

The parameters of interest are the joint distribution of the potential outcomes, FY0Y1|X , and the utility

function, h. For identi�cation, I assume that the researcher observes the joint distribution of the state choice

D, realized outcome Y , covariates X, and instrument Z.

Now I �x notation. Throughout this paper, random variables are denoted by upper case letters and their

realizations by lower case letters. Let Gd for d ∈ {0, 1} be the conditional distribution function of observed

outcomes in state d:

Gd(y|x, z) = Pr (Y ≤ y,D = d|X = x, Z = z)

Note that Gd is identi�ed by de�nition because it is a distribution function of observed variables. When it is

obvious, the conditioning variables are abbreviated. For example, Pr (·|x, z) abbreviates Pr(·|X = x, Z = z).

Let supp(·) represent the support of a random variable. Also, supp(·|·) signi�es the conditional support of a
random variable conditional on another random variable.

In the following subsections, I present two identi�cation results. One is a point-identi�cation result when

the instrument is continuous, and the other is a partial identi�cation result when the instrument is discrete.

5



2.1 Continuous Instrumental Variable

First I consider a continuous instrument case. Throughout this section, I �x X at x and the results are

conditional on x. The following assumptions are used:

Assumption 2.1. The following assumptions hold conditional on X = x with probability one:

(a) (Y0, Y1) is independent of the instrument Z.

(b) The distribution of (Y0, Y1) has a density fY0Y1|X and a support equal to R2.

(c) h is strictly increasing in Y0 for any Z.

(d) h is strictly increasing in Z for any Y0.

(e) The distribution of Z has a density fZ|X .

(f) h is di�erentiable with respect to Z for any Y0.

Assumption 2.1(a) is the standard assumption on the instrumental variables. Assumption 2.1(b) guar-

antees that observed distributions have well-de�ned densities and allows one to ignore the indecisive case

of Y1 = h(Y0, x, z). This assumption can be weakened, for example, to incorporate mixed continuous and

discrete distribution by specifying a tie breaking rule. The support is mild. To identify parameters locally

at a certain point, the support assumption can be relaxed. In the case of bounded support, Bayer et al.

(2011) presents an identi�cation strategy that utilizes the boundedness of the support. Assumption 2.1(c)

is an axiom of utility and naturally satis�ed in most applications.

Assumption 2.1(d) imposes a monotonicity of selection in the instrument, which is the key for the iden-

ti�cation. It is the Roy model's version of the monotonicity assumption in Imbens and Angrist (1994) and

Vytlacil (2003). Intuitively speaking, it implies that when the instrument increases, the utility for state 0

increases more or decreases less than that for state 1. A more general assumption is the so-called uniformity

assumption. The uniformity assumption in this model is stated as follows.

Assumption (Uniformity). Let x and distinct z, z′ be given. Suppose that either of the following statements

is true

(i) h(Y0, x, z) ≥ h(Y0, x, z
′) for any Y0 almost surely.

(ii) h(Y0, x, z) ≤ h(Y0, x, z
′) for any Y0 almost surely.

Note that under the uniformity assumption, it is allowed that h is increasing in Z at one value of Z, but

decreasing in Z at a di�erent value of Z. The direction is testable by testing the direction of the propensity

score, Pr(D = 1|X,Z), with respect to Z. Though the uniformity assumption is more general, I will assume

the monotonicity assumption in the rest of the paper for the convenience of proofs. It is easy to replace the

monotonicity assumption with the uniformity assumption.

Assumption 2.1(f) guarantees the di�erentiability of Gd with respect to z. I denote the derivative of Gd

with respect to z by

G
(1)
d (yd|x, z) =

∂

∂z
Gd(yd|x, z)

Let h−1(y1, x, z) be the inverse function of h(y0, x, z) with respect to y0 at (x, z). That is, y1 = h(y0, x, z) is

equivalent to y0 = h−1(y1, x, z). Assumption 2.1(c) guarantees that h−1 is uniquely de�ned.

The following is an intermediate result, which is used for the identi�cation of underlying parameters.

Lemma 2.1. Under Assumption 2.1, if y1 = h(y0, x, z), then

G0(y0|x, z) +G1(y1|x, z) = FY0Y1|X(y0, y1|x)
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and

G
(1)
0 (y0|x, z) +G

(1)
1 (y1|x, z) = 0

.

Proof. Using the selection equation and Assumption 2.1(a), the observed distribution functions, G0 and G1,

can be written as

G0(y0|x, z) = Pr (Y ≤ y0, D = 0|x, z)

= Pr (Y0 ≤ y0, Y1 ≤ h(Y0, x, z)|x) (5)

and

G1(y1|x, z) = Pr (Y ≤ y1, D = 1|x, z)

= Pr (Y1 ≤ y1, Y1 > h(Y0, x, z)|x) (6)

Note that conditioning on Z disappears because Z a�ects G0 and G1 only via h by the independence

assumption between Z and (Y0, Y1) conditional on X.

By the monotonicity of h in Y0, Y0 ≤ y0 and Y1 ≤ h(Y0, x, z) imply

Y1 ≤ h(Y0, x, z)

≤ h(y0, x, z)

= y1

Thus,

G0(y0|x, z) = Pr (Y0 ≤ y0, Y1 ≤ h(Y0, x, z)|x, z)

= Pr (Y0 ≤ y0, Y1 ≤ y1, Y1 ≤ h(Y0, x, z)|x)

Similarly,

G1(y1|x, z) = Pr (Y1 ≤ y1, Y1 > h(Y0, x, z)|x)

= Pr (Y0 ≤ y0, Y1 ≤ y1, Y1 > h(Y0, x, z)|x)

Therefore,

G0(y0|x, z) +G1(y1|x, z) = Pr (Y0 ≤ y0, Y1 ≤ y1, Y1 ≤ h(Y0, x, z)|x)

+ Pr (Y0 ≤ y0, Y1 ≤ y1, Y1 > h(Y0, x, z)|x)

= Pr(Y0 ≤ y0, Y1 ≤ y1|x)

= FY0Y1|X(y0, y1|x)

which proves the �rst statement of the lemma.
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The probability (5) can be expressed as an integral as follows:

G0(y0|x, z) =

ˆ y0

−∞

ˆ h(v0,x,z)

−∞
fY0Y1|X(v0, v1|x)dv1dv0

Di�erentiating this with respect to z yields

G
(1)
0 (y0|x, z) =

ˆ y0

−∞

(
∂h(v, x, z)

∂z

)
fY0Y1|X(v, h(v, x, z)|x)dv (7)

Similarly, we can write G1(y1|x, z) as

G1(y1|x, z) =

ˆ h−1(y1,x,z)

−∞

ˆ y1

h(v0,x,z)

fY0Y1|X(v0, v1|x)dv0dv1

Now di�erentiate this with respect to z to obtain

G
(1)
1 (y1|x, z) =

(
∂h−1(y1, x, z)

∂z

)ˆ y1

h(h−1(y1,x,z),x,z)

fY0Y1|X(h−1(y1, x, z), v1|x)dv1

+

ˆ h−1(y1,x,z)

−∞

(
−∂h(v0, x, z)

∂z

)
fY0Y1|X(v0, h(v0, x, z)|x)dv0

Observe that the range of the �rst integral is simply a point {Y1 = y1} because h(h−1(y1, x, z), x, z) = y1.

Since the set {Y1 = y1} is of measure zero with respect to the Lebesgue measure, any integral over this set

with respect to a measure that is absolutely continuous with respect to the Lebesgue measure yields zero

under Assumption 2.1(b). Hence,

G
(1)
1 (y1|x, z) = −

ˆ h−1(y1,x,z)

−∞

(
∂h(v, x, z)

∂z

)
fY0Y1|X(v, h(v, x, z)|x)dv (8)

Combining equations (7) and (8), we have

G
(1)
0 (y0|x, z) +G

(1)
1 (y1|x, z) =

ˆ y0

h−1(y1,x,z)

(
∂h(v, x, z)

∂z

)
fY0Y1|X(v, h(v, x, z)|x)dv (9)

It is now clear that if y1 = h(y0, x, z),

G
(1)
0 (y0|x, z) +G

(1)
1 (y1|x, z) = 0

Figure I illustrates the �rst result of the lemma. Let x and z be given and put Y0 and Y1 on the vertical

and horizontal axes, respectively. The utility function is a upward sloping curve on the plane. Any point

below the curve satis�es Y1 < h(Y0, x, z). Hence the agents whose potential outcomes lie below the curve

will choose state 0. Furthermore, Y0 will be observed for the agents below the curve. For an arbitrary y0,

the probability measure on the shaded area represents G0(y0|x, z). By the same argument, the probability

measure on the shaded area above the curve gives G1. In particular, when y1 = h(y0, x, z), the two areas

jointly make a rectangle. Therefore, the probability measure on the rectangle equals to the sum of the two

observed probability measures as in the lemma.

8



Figure I

Figure II
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Figure III

Now consider an increase in Z by ε for an arbitrary positive ε. Since h is strictly increasing in z, the

utility function shifts upward as in Figure II. An increase in Z will increase the utility of choosing state 0 and

so more agents will choose state 0. With y0 being �xed, G0(y0|x, z + ε)−G0(y0|x, z) captures the increase
in the probability measure of the agents who choose state 0 and receive an outcome less than or equal to y0.

The shaded area in Figure II represent the subpopulation who changed the choice from state 1 to state 0

due to the increase in Z. If the increase in Z is in�nitesimal, G
(1)
0 (y0|x, z) captures the in�nitesimal increase

in the distribution function G0. The shaded area in Figure II will shrink to a curve that is depicted as a

bold line in Figure III. Note that any point on the bold line satis�es Y1 = h(Y0, x, z), which implies that the

utilities for both states are the same. Therefore G
(1)
0 (y0|x, z) can be viewed as the density of the event that

Y0 is less than or equal to y0 and two states are indi�erent.

Similarly, G
(1)
1 (y1|x, z) is the density of the event that Y1 is less than or equal to y1 and two states are

indi�erent. Note that G
(1)
1 is negative because G1 decreases as Z increases. As Figure III shows, G

(1)
0 (y0|x, z)

and G
(1)
1 (h(y0, x, z)|x, z) capture the same density, though the signs are di�erent. Based on this idea, the

following theorem proves the identi�cation of h.

Theorem 2.1. Under Assumption 2.1, h is identi�ed for any (y0, x, z) ∈ supp(Y0, X, Z).

Proof. Let (y0, x, z) ∈ supp(Y0, X, Z) be given. By Lemma 2.1, we know that if y1 = h(y0, x, z), then

G
(1)
0 (y0|x, z) +G

(1)
1 (y1|x, z) = 0 (10)
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I prove that (10) holds only if y1 = h(y0, x, z). Pick any y′1 > y1. From (8), we have

G
(1)
1 (y′1|x, z)−G

(1)
1 (y1|x, z) = −

ˆ h−1(y′1,x,z)

h−1(y1,x,z)

(
∂h(v, x, z)

∂z

)
fY0Y1|X(v, h(v, x, z)|x)dv

By Assumption 2.1, ∂h∂z > 0 and fY0Y1|X > 0. Thus, the integrand is strictly positive on a neighborhood of

y1 = h(y0, x, z). Since h
−1(y′1, x, z) > h−1(y1, x, z), we have

G
(1)
1 (y′1|x, z) < G

(1)
1 (y1|x, z)

By exactly the same reasoning, for y′′1 < y1,

G
(1)
1 (y′′1 |x, z) > G

(1)
1 (y1|x, z)

Therefore equation (10) has a unique solution, and we already know that the solution is h(y0, x, z). Since

G
(1)
0 and G

(1)
1 are identi�ed, h(y0, x, z) is also identi�ed.

Equation (10) is the key equation for identi�cation of h(y0, x, z). As I mentioned previously, G
(1)
0 captures

the density of in�ow toward state 0 caused by an increase in Z and G
(1)
1 the out�ow out of state 1. Since

there are only two choice options, the in�ow and the out�ow must sum to zero. Figure III shows that the

zero-sum condition holds when y1 = h(y0, x, z). The theorem states that for each y0 there is unique y1 that

satis�es the zero-sum condition in (10) and the solution is h(y0, x, z).

Now I consider the identi�cation of FY0Y1|X . Though I do not require a large support assumption on Z,

the support of Z does a�ect the identi�cation region. Let Z(x) be the support of Z conditional on X = x.

Also de�ne

H(x) = {(y0, y1) ∈ supp(Y0, Y1|x) : y1 = h(y0, x, z) for some z ∈ Z(x)}

Intuitively speaking, an agent whose potential outcomes lie in H(x) is indi�erent between the two states at

a certain value of Z in Z(x). In other words, an agent outside H(x) chooses one state no matter what the

value of Z is. Since identi�cation relies on the changes in the choice caused by Z, such agents outside H(x)

do not provide any information for identi�cation. Hence, H(x) is the identi�cation region for FY0Y1|X .

Theorem 2.2. Under Assumption 2.1, FY0Y1|X(y0, y1|x) is identi�ed for any x ∈ X and (y0, y1) ∈ H(x).

Proof. Suppose that (y0, y1) ∈ H(x) is given. Then, there exists ζ ∈ Z such that y1 = h(y0, x, ζ). By Lemma

2.1,

FY0Y1|X(y0, y1|x) = G0(y0|x, ζ) +G1(y1|x, ζ)

Since G0 and G1 are observed, only unknown is ζ. By Theorem 2.1, h is identi�ed at (y0, x, z) for any

z ∈ Z(x). Hence ζ is also identi�ed. Therefore FY0Y1|X is identi�ed.

Consider a large support assumption that H(x) includes the support of (Y0, Y1) conditional on X = x.

Under the large support assumption, FY0Y1|X is point identi�ed everywhere on its support.

Even if the large support assumption fails, useful treatment e�ect parameters can still be identi�ed. Let

QY1−Y0|X(τ |x) be the τth quantile of Y1 − Y0 conditional on X = x for τ ∈ [0, 1]. The following result gives

the conditions under which QY1−Y0|X(τ |x) is identi�ed with a bounded support of the instrument.
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Assumption 2.2. Suppose that Z(x) = [z, z̄] where −∞ < z < z̄ <∞. Assume that the following inequality

holds almost surely.

h(Y0, x, z) ≤ Y0 +QY1−Y0|X(τ |x) ≤ h(Y0, x, z̄)

Corollary 2.1. Under Assumption 2.1 and 2.2, QY1−Y0|X(τ |x) is identi�ed.

Proof. It su�ces to show that Pr(Y1 − Y0 ≤ QY1−Y0|X(τ |x)|x) is identi�ed. Note that

Pr(Y1 − Y0 ≤ QY1−Y0|X(τ |x)|x) = Pr(Y1 − Y0 ≤ QY1−Y0|X(τ |x), Y1 ≤ h(Y0, x, z)|x)

+ Pr(Y1 − Y0 ≤ QY1−Y0|X(τ |x), Y1 > h(Y0, x, z)|x) (11)

By Assumption 2.2, Y1 ≤ h(Y0, x, z) implies Y1 − Y0 ≤ QY1−Y0|X(τ |x). Thus, the �rst term in (11) can be

written as

Pr(Y1 − Y0 ≤ QY1−Y0|X(τ |x), Y1 ≤ h(Y0, x, z)|x) = Pr(Y1 ≤ h(Y0, x, z)|x)

= Pr(D = 0|x, z)

Note that Pr(D = 0|x, z) is an observed probability, so it is identi�ed.

Now I prove that the second term in (11) is also identi�ed. Note that Y1−Y0 ≤ QY1−Y0|X(τ |x) implies that

Y1 ≤ h(Y0, x, z̄) almost surely by Assumption 2.2. For any y1 ∈ [h(y0, x, z), h(y0, x, z̄)], by the intermediate

value theorem, there exists ζ ∈ Z(x) such that y1 = h(y0, x, ζ). Hence a point (y0, y1) such that Y1 −
Y0 ≤ QY1−Y0|X(τ |x) and Y1 > h(Y0, x, z) is an element of H(x) almost surely. Since the conditional joint

distribution function of (Y0, Y1) conditional on X = x is identi�ed on H(x) by Theorem 2.2, the second term

in (11) is identi�ed.

Remark 2.1. The relationship Y1 = Y0 +QY1−Y0|X(τ |x) can be depicted as a diagonal line on two dimensional

plane of (Y0, Y1). Assumption 2.2 states that the diagonal line lies in H(x). For heuristic explanation,

suppose that the utility function h is additively separable in Y0 and nonpecuniary preference: h(Y0, X, Z) =

Y0+ϕ(X,Z). In this case, Assumption 2.2 is equivalent to a simple assumption that QY1−Y0|X(τ |x) = ϕ(x, z)

for some z ∈ Z(x). That is, the support of ϕ(x, Z) is the identi�cation region for QY1−Y0|X(τ |x).

2.2 Discrete Instrumental Variable

In this subsection, I consider the case in which the instrumental variable is discrete. In this case, point-

identi�cation of the model is impossible. Instead, bounds are obtained. Suppose that Z takes a value from

Z = {0, 1, · · · ,K}.

Assumption 2.3. Conditional on X = x, the following assumptions hold with probability one:

(a) The distribution of (Y0, Y1) is absolutely continuous with respect to the Lebesgue measure with a

density fY0Y1|X .

(b) h is strictly increasing in Y0 for any Z.

(c) h is strictly increasing in Z for any Y0.

Assumption 2.3 is the same as Assumption 2.1 except for the support condition on Z and the di�eren-

tiability condition. As the derivatives of the observed distributions in the continuous instrument case play

the key role, the di�erentials with respect to Z in the observed distributions are important in discrete case.
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For z ∈ {1, 2, · · · ,K} and d ∈ {0, 1}, de�ne

∆Gd(y0|x, z) = Gd(y0|x, z)−Gd(y0|x, z − 1)

using expression (5), this can be written as

∆G0(y0|x, z) = Pr (Y0 ≤ y0, h(Y0, x, z − 1) ≤ Y1 < h(Y0, x, z)|x) (12)

It is obvious that ∆G0(y0|x, z) is non-negative and non-decreasing in y0. Similarly, we have

∆G1(y1|x, z) = G1(y1|x, z)−G1(y0|x, z − 1)

= Pr (Y1 ≤ y1, Y1 ≥ h(Y0, x, z)|x} − Pr{Y1 ≤ y1, Y1 ≥ h(Y0, x, z − 1)|x)

= −Pr (Y1 ≤ y1, h(Y0, x, z − 1) ≤ Y1 < h(Y0, x, z)|x) (13)

Note that it takes a non-positive value and is non-increasing in y1.

Theorem 2.3. Under Assumption 2.3, for z ∈ {1, 2, · · · ,K}, the upper bound for h(y0, x, z) is given by

hU (y0, x, z) = inf{y1 : ∆G0(y0|x, z) + ∆G1(y1|x, z) ≤ 0} (14)

and the lower bound for h(y0, x, z − 1) by

hL(y0, x, z − 1) = sup{y1 : ∆G0(y0|x, z) + ∆G1(y1|x, z) ≥ 0} (15)

Furthermore, the bounds are sharp.

Proof. I prove the theorem for the upper bound only. The lower bound can be shown similarly. I will

establish that for y1 ≥ h(y0, x, z),

∆G0(y0|x, z) + ∆G1(y1|x, z) ≤ 0

If the claim is true, hU (y0, x, z) ≥ h(y0, x, z). Suppose that y0, y1, x and z are �xed. If y1 ≥ h(y0, x, z),

Y0 ≤ y0 and Y1 < h(Y0, x, z) imply Y1 ≤ y1. Thus, we have

∆G0(y0|x, z) = Pr (Y0 ≤ y0, h(Y0, x, z − 1) ≤ Y1 < h(Y0, x, z)|x)

≤ Pr (Y1 ≤ y1, h(Y0, x, z − 1) ≤ Y1 < h(Y0, x, z)|x)

= −∆G1(y1|x, z)

Note that by Assumption 2.3(a) a strict inequality can be replaced with a weak one and vice versa.

To show that the bound is sharp, I will illustrate that any value smaller than hU (y0, x, z) can be also

smaller than h(y0, x, z) under certain circumstances. Let ȳ1 be an arbitrary value smaller than hU (y0, x, z).

By de�nition, ∆G0(y0|x, z) + ∆G1(ȳ1|x, z) > 0. Fix a small ε > 0 and let A = {(Y0, Y1) : h(Y0, x, z − 1) ≤
Y1 < h(Y0, x, z)}. Also let

A0(ε) = A ∩ {Y0 ≤ y0, Y1 > h(y0, x, z)− ε}

A1(ε) = A ∩ {Y0 > y0, Y1 ≤ h(y0, x, z)− ε}
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Suppose that Pr (A0(ε)|x) = Pr (A1(ε)|x) + ∆G0(y0|x, z) + ∆G1(ȳ1|x, z). Since A0(ε) and A1(ε) are disjoint

regions having a positive Lebesgue measure, their probabilities can be manipulated easily without hurting

any assumptions imposed for the theorem. A simple but tedious algebra gives

∆G0(y0|x, z) + ∆G1(h(y0, x, z)− ε|x, z) = Pr (A0(ε)|x)− Pr (A1(ε)|x)

Thus,

∆G1(h(y0, x, z)− ε|x, z) = ∆G1(ȳ1|x, z)

Since ∆G1(y1|x, z) is strictly monotone, ȳ1 = h(y0, x, z)− ε < h(y0, x, z). Therefore, h
U is sharp.

Note that there is no bound for the boundary values of Z. That is, h(y0, x, 0) has no lower bound and

h(y0, x,K) has no upper bound. This is related to the identi�cation region H(x) as discussed in the previous

section.

The following theorem gives bounds for the joint distribution function. The bounds extend the bounds

proposed by Peterson (1976) to a general censoring scheme that includes an instrument.

Theorem 2.4. For �xed (y0, y1, x), let

FUYoY1|X(y0, y1|x) = inf
z∈Z
{G0(y0|x, z) +G1(y1|x, z)}

FLY0Y1|X(y0, y1|x) = sup
z∈Z

{
G0(yL0 (z)|x, z) +G1(yL1 (z)|x, z)

}
where

yL0 (z) = min {y0, inf{t : ∆G0(t|x, z) + ∆G1(y1|x, z) ≤ 0}}

yL1 (z) = min {y1, inf{t : ∆G0(y0|x, z) + ∆G1(t|x, z) ≤ 0}}

Under the assumptions of Theorem 2.3,

FLY0Y1|X(y0, y1|x) ≤ FY0Y1|X(y0, y1|x) ≤ FUY0Y1|X(y0, y1|x)

and the bounds are sharp.

Proof. For any z ∈ Z,

G0(y0|x, z) = Pr{Y0 ≤ y0, Y1 < h(Y0, x, z)|x}

≥ Pr{Y0 ≤ y0, Y1 ≤ y1, Y1 < h(Y0, x, z)|x} (16)

and

G1(y1|x, z) = Pr{Y1 ≤ y1, Y1 ≥ h(Y0, x, z)|x}

≥ Pr{Y0 ≤ y0, Y1 ≤ y1, Y1 ≥ h(Y0, x, z)|x} (17)
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Since

Pr{Y0 ≤ y0, Y1 ≤ y1, Y1 < h(Y0, x, z)|x}

+ Pr{Y0 ≤ y0, Y1 ≤ y1, Y1 ≥ h(Y0, x, z)|x}

= Pr{Y0 ≤ y0, Y1 ≤ y1|x}

we have

G0(y0|x, z) +G1(y1|x, z) ≥ Pr{Y0 ≤ y0, Y1 ≤ y1|x}

for any z ∈ Z.
Note that yL1 (z) is the minimum of y1 and the lower bound for h(y0, x, z) given in Theorem 2.3. Thus

Y1 ≤ yL1 (z) implies Y1 ≤ h(y0, x, z) as well as Y1 ≤ y1.

G1(yL1 (z)|x, z) = Pr{Y1 ≤ yL1 (z), Y1 ≥ h(Y0, x, z)|x}

≤ Pr{Y1 ≤ h(y0, x, z), Y1 ≤ y1, Y1 ≥ h(Y0, x, z)|x}

≤ Pr{Y0 ≤ y0, Y1 ≤ y1, Y1 ≥ h(Y0, x, z)|x}

The last inequality holds because Y1 ≤ h(y0, x, z) implies Y0 ≤ y0 when Y1 ≥ h(Y0, x, z) holds due to the

monotonicity of h. By switching the role of Y0 and Y1, it can be shown that

G0(yL0 (z)|x, z) ≤ Pr{Y0 ≤ y0, Y1 ≤ y1, Y1 < h(Y0, x, z)|x}

Therefore, for any z ∈ Z,

G0(yL0 (z)|x, z) +G1(yL1 (z)|x, z) ≤ Pr{Y0 ≤ y0, Y1 ≤ y1|x}

Now I show that the bounds are sharp. I will provide an example in which the bounds are actually

the same as the object. Suppose that there exists ζ ∈ {0, 1, 2, · · · ,K} such that y1 = h(y0, x, ζ). By the

monotonicity of h, Y0 ≤ y0 and Y1 < h(Y0, x, ζ) imply Y1 ≤ h(y0, x, ζ) = y1. Hence, the inequality in (16)

holds as an equality. Similarly, (17) becomes an equality for z = ζ. Therefore,

G0(y0|x, ζ) +G1(y1|x, ζ) = Pr{Y0 ≤ y0, Y1 ≤ y1|x} = FY0Y1|X(y0, y1|x) (18)

which implies

FUY0Y1|X(y0, y1|x) = FY0Y1|X(y0, y1|x)

Note that

yL1 (z) = min{y1, h
U (y0, x, z)}

where hU is the bound for h de�ned in Theorem 2.3. Hence, if y1 = h(y0, x, ζ),

hU (y0, x, ζ) ≥ h(y0, x, ζ) = y1

and so

yL1 (ζ) = y1
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Similarly, it can be shown that yL0 (ζ) = y0. Then,

FLY0Y1|X(y0, y1|x) ≥ G0(y0|x, ζ) +G1(y1|x, ζ)

= FY0Y1|X(y0, y1|x)

Hence, the bounds are sharp.

3 Estimation

In this section, I consider the estimation of the model with a continuous instrument. Suppose that we

observe a random sample of {(Di, Yi, Zi, Xi) : i = 1, . . . , n} where Di ∈ {0, 1}, Yi ∈ R, Zi ∈ Z ⊂ R and

Xi ∈ X ⊂ RmX . The identi�cation results imply that h(y0, x, z) is the unique solution to

G
(1)
0 (y0|x, z) +G

(1)
1 (y1|x, z) = 0

for �xed (y0, x, z). Meanwhile, for given (y0, y1, x), FY0Y1|X(y0, y1|x) is the solution to

FY0Y1|X(y0, y1|x) = G0(y0|x, ζ) +G1(y1|x, ζ)

for some ζ, where ζ solves y1 = h(y0, x, z) for the given (y0, y1, x).

I propose a nonparametric estimator based on the identi�cation results. The estimation method proceeds

in two steps. In the �rst stage, the conditional distribution function of the observed outcome and the choice,

Gd(yd|x, z), and its derivative with respect to the instrument are estimated by a local linear estimator. Local
linear estimators are a standard nonparametric method extensively studied in statistics and econometrics.

For example, see Fan and Gijbels (1996), Ruppert and Wand (1994) and the references therein. In particular,

the local linear estimator of a conditional distribution function is considered in Yu and Jones (1998), Hall

et al. (1999).

In the second stage, I solve equations that are obtained from the �rst stage estimation. I adopt and extend

the simulation-based method proposed in Dette et al. (2006), Dette and Scheder (2006), and Dette and

Volgushev (2008). The estimator is computationally attractive: it only requires straightforward simulations

and calculations of closed-form expressions. It does not require any numerical optimization. Furthermore,

it is applicable to a more general estimation problem of numerically solving equations. Thus, the results

obtained here might be of theoretical and practical interest in their own right.

I start by �xing some notation that is used throughout the section. Let Wi ≡ (X ′i, Zi)
′ and W ⊂ Rm

be the support of W . For a positive integer l, G
(l)
d (y|w) stands for ∂l

∂zl
Gd(y|w) for w = (x′, z)′. Similarly,

f
(l)
W (w) is the lth derivative of fW with respect to z, where fW is the probability density of W .

Let ι = (ι1, · · · , ιm) be a m-dimensional vector of non-negative integers. Let |ι| =
∑m
j=1 ιp. For v =

(v1, · · · , vm) ∈ Rm and a function µ : Rm → R, de�ne

vι = vι11 × · · · × vιmm

and
∂ιµ

∂vι
=

∂|ι|µ

∂vι11 · · · ∂v
ιm
m
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3.1 First Stage Estimation

The �rst stage estimation is to estimate the conditional distribution function of (Y,D) conditional on W .

Let (y, d, w) be given. We know that

E [1{Yi ≤ y,Di = d}|Wi] = Gd(y|Wi)

If we write β0 = Gd(y|w) and β1 = ∂Gd(y|w)
∂w , by Taylor's theorem, we can approximate the right hand side

by

Gd(y|Wi) ≈ β0 + β′1(Wi − w) (19)

for Wi ≈ w.2

I consider a product kernel with equal bandwidth across variables. Let k be a kernel function de�ned on

R and b be a sequence of positive numbers converging to zero. For v = (v1, · · · , vm) ∈ Rm, de�ne

Kb(v) =
1

bm

m∏
j=1

k
(vj
b

)
(20)

Based upon the approximation (19), one can estimate the parameters by solving the following weighted

least squares problem

β̂ = arg min
(a0,a1)

n∑
i=1

[1{Di = d, Yi ≤ y} − a0 − a′1(Wi − w)]
2
Kb(Wi − w) (21)

where β̂ =
(
β̂0, β̂

′
1

)′
is an estimator of β = (β0, β

′
1)′.

The solution to the problem (21) has a closed-form solution. It is convenient to work with matrix notation.

De�ne matrices W and Y as follow:

W =


1 (W1 − w)′

...
...

1 (Wn − w)′

 and Y =


1{D1 = d, Y1 ≤ y}

...

1{Dn = d, Yn ≤ y}


Further, de�ne K = diag{Kb(W1 − w), . . . ,Kb(Wn − w)}. Then the solution to the weighted least squares

problem (21) can be written as

β̂ = (W′KW)−1W′KY (22)

I make the following assumptions.

Assumption 3.1. Let y ∈ R, d ∈ {0, 1} and w ∈ W be given. Suppose that Gd(y|w) ∈ (0, 1). At (y, d, w),

the following assumptions hold

(a) ∂ιGd
∂wι is bounded and continuous over W for any |ι| ≤ 3.

(b) ∂ιfW
∂wι is bounded and continuous on W for |ι| = 0, 1.

2Here I consider a �rst-order expansion because the higher-order derivatives are not of interest and would make the notation
and calculation complicated if included. However, it is possible to approximate up to a higher order. The estimator has smaller
bias at a cost of larger variance. This extension is straightforward and well-studied. For example, see Ruppert and Wand (1994)
and Fan and Gijbels (1996) among others.
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(c) k is a symmetric, positive, second order kernel function. The following constants are �nite for j ≤ 8.

κj =

ˆ
ujk(u)du

νj =

ˆ
ujk2(u)du

(e) As n→∞, b→ 0 but nbm+2 →∞.

Theorem 3.1. Under Assumption 3.1, for d ∈ {0, 1},

E
[
Ĝd(y|w)−Gd(y|w)|W

]
= b2B0(y, d, w) + op(b

2)

E
[
Ĝ

(1)
d (y|w)−Gd(y|w)|W

]
= b2B1(y, d, w) + op(b

2)

where

B0(y, d, w) =
κ2

2
Trace

(
∂2

∂w∂w′
Gd(y|w)

)
and

B1(y, d, w) =
1

2

{
κ4G

(2)
d (y|w)f

(1)
W (w) + κ2

2

∂G
(1)
d (y|w)

∂x′
∂fW (w)

∂x

}

+
1

6

{
κ4G

(3)
d (y|w)fW (w) + κ2

2Trace

(
∂2G

(1)
d (y|w)

∂x∂x′

)
fW (w)

}

Moreover,

var
[
Ĝd(y|w)|W

]
=

1

nbm
V0(y, d, w) + op

(
1

nbm

)
var

[
Ĝ

(1)
d (y|w)|W

]
=

1

nbm+2
V1(y, d, w) + op

(
1

nbm+2

)
where

V0(y, d, w) =
νm0

fW (w)
Gd(y|w) [1−Gd(y|w)]

V1(y, d, w) =
νm−1

0

ν2κ2
2fW (w)

Gd(y|w) [1−Gd(y|w)]

Proof. The conditional mean squared error for a local linear estimator is derived in, e.g., Ruppert and Wand

(1994) and Fan et al. (1997). Particularly for the estimates of the derivatives, see Lu (1996).

The theorem shows the rate of convergence of Ĝd and Ĝ
(1)
d . Let rn represent the convergence rate of

Ĝ
(1)
d . That is,

rn = max

{
b2,

1√
nbm+2

}

3.2 Estimation of the utility function

In this section, the estimation of h(y0, w) is discussed. For given (y0, w), de�ne

µh(y1) = G
(1)
0 (y0|w) +G

(1)
1 (y1|w)
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Since (y0, w) is �xed, µh is a function of y1. By Theorem 2.1, we know that h(y0, w) is the unique solution

to

µh(·) = 0 (23)

Also, it is shown that µh is strictly decreasing in y1 by the proof of Theorem 2.1. Using the �rst stage

estimates of G
(1)
0 and G

(1)
1 , a natural estimate of µh is

µ̂h(y1) = Ĝ
(1)
0 (y0|w) + Ĝ

(1)
1 (y1|w)

Note that µ̂h might not be decreasing in y1 because the �rst stage estimate is not shape-restricted. A natural

way to estimate h(y0, w) is to �nd y1 such that

µ̂h(y1) = 0 (24)

To obtain the numerical solution to equation (24), I use a simulation-based method, which is explained in

detail in Appendix A below.

Let F ∗h be a distribution function chosen by the researcher and T ∗h be a random variable with the

distribution function F ∗h . Using the monotonicity assumption that µh is strictly decreasing,

Pr (µh(T ∗h ) ≥ 0) = Pr(T ∗h ≤ µ−1
h (0))

= F ∗h (µ−1
h (0))

It leads to

µ−1
h (0) = (F ∗h )

−1
(Pr(µh(T ∗h ) ≥ 0)) (25)

Note that F ∗h is known. Let {t∗hj : j = 1, . . . , n} be a generated random sample from F ∗h . Replace µh with

µ̂h and approximate the probability of the event {µh(T ∗h ) ≥ 0} by

1

n∗

n∗∑
j=1

1
{
µ̂h(t∗hj) ≥ 0

}
(26)

Since h(y0, w) = µ−1
h (0), using (25) and (26), de�ne an estimator for h(y0, w) by

ĥ(y0, w) = (F ∗h )
−1

 1

n∗

n∗∑
j=1

1
{
µ̂h(t∗hj) ≥ 0

}
Note that it only requires drawing a random sample from a known distribution and calculations of closed-form

expressions in (26). Hence it is computationally very accessible.

The choice of F ∗h does not a�ect the �rst-order asymptotics as long as it satis�es the assumptions below,

which are mild. Hence one may choose a distribution function that is tractable. In addition, since µh is

evaluated at each point of the generated sample, it is desirable that the support of Y1. One possible choice is

a uniform distribution over the range of the observations of Y1, for example [QY1|W (0.01|w), QY1|W (0.99|w)].

I make the following assumptions.

Assumption 3.2. Suppose that the following assumptions hold:

(a) ∂ιGd(y|w)
∂wι is bounded and continuous over (y, w) ∈ R×W for any |ι| ≤ 3.
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(b) ∂Gd(y|w)
∂y is bounded and continuous over (y, w) ∈ R×W.

(c) supu∈Rm |u′uK(u)| <∞
(d) There exists a positive sequence δn such that δn log(n) = o(1).

(e) F ∗h has a continuous and bounded density f∗h and f∗h > 0 on a neighborhood of h(y0, w).

(f) µh(T ∗h ) has a bounded density f∗µ.

(g) 1√
n∗

= o (rn)

Remark 3.1. Assumptions 3.2 (a) and (b) are a stronger version of the boundedness condition in Assumption

3.1. Since Ĝ
(1)
d (y|w) is evaluated at di�erent values for the estimation of h, the boundedness condition has to

be strengthened accordingly. While the boundedness condition in Assumption 3.1 is with respect to w ∈ W,

Assumptions 3.2 (a) and (b) are with respect to both y and w.

Theorem 3.2. Let y0 ∈ R and w ∈ W be given. Under Assumptions 3.1 and 3.2,

ĥ(y0, w)− h(y0, w) = −

(
∂G

(1)
1 (h(y0, w)|w)

∂y1

)−1

[µ̂h(h(y0, w))] + op(rn)

Proof. It is a direct result of Lemma A.1, which is given in Appendix. Assumption A.1 (a) and (b) are

satis�ed because µh(y1) is strictly monotone and di�erentiable in y1. Assumption A.1 (c) and (d) follow

from Theorem 3.1 and Lemma B.2, respectively. Finally, (e), (f) and (g) are assumed in Assumption 3.2.

Remark 3.2. Theorem 3.2 implies that the convergence rate of ĥ(y0, w) is the same as that of µ̂h. Since

µ̂h(y1) = Ĝ
(1)
0 (y0|w) + Ĝ

(1)
1 (y1|w)

it follows from Theorem 3.1 that the bias and the standard error of µ̂h have an order of b2 and 1√
nbm+2

,

respectively. Therefore, the convergence rate of ĥ(y0, w) is rn = max
{
b2, 1√

nbm+2

}
, which is the standard

rate of convergence for nonparametric estimators of �rst-order derivatives.

3.3 Estimation of the joint distribution

In this subsection, I consider the estimation of FY0Y1|X(y0, y1|x) for �xed (y0, y1, x). By Theorem 2.2, we

know that

FY0Y1|X(y0, y1|x) = G0(y0|x, ζ) +G1(y1|x, ζ)

where ζ satis�es y1 = h(y0, x, ζ). So a natural estimator of FY0Y1|X(y0, y1|x) is

F̃Y0Y1|X(y0, y1|x) = Ĝ0(y0|x, ζ) + Ĝ1(y1|x, ζ) (27)

However, it is infeasible because ζ is unknown. To estimate ζ for �xed (y0, y1, x), de�ne

µζ(z) = G
(1)
0 (y0|x, z) +G

(1)
1 (y1|x, z)

It is clear that ζ satis�es µF (ζ) = 0. We can use the simulation-based estimator that is used to estimate

h(y0, w). Let F ∗ζ be a distribution function chosen by the researcher and T ∗ζ be a random variable with the

distribution function F ∗ζ . Draw a random sample {t∗ζj : j = 1, . . . , n∗} from F ∗ζ . De�ne the simulation-based
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estimator of ζ by

ζ̂ =
(
F ∗ζ
)−1

 1

n∗

n∗∑
j=1

1
{
µ̂ζ(t

∗
ζj) ≥ 0

}
Plug ζ̂ into (27) to obtain

F̂Y0Y1|X(y0, y1|x) = Ĝ0(y0|x, ζ̂) + Ĝ1(y1|x, ζ̂)

The following assumptions are required.

Assumption 3.3. Suppose that the assumptions of Theorem 3.1 hold. Further assume that

(a) On a neighborhood of w, fW is bounded away from zero.

(b) The kernel k is uniformly continuous.

(c) There exists a sequence of positive numbers δn such that δn = o(b), δn log(n) = o(1) and rn = o(δn).

(d) F ∗ζ has a continuous and bounded density f∗ζ and f∗ζ > 0 on a neighborhood of ζ.

(e) µζ(T
∗
ζ ) has a bounded density f∗µ.

(f) 1√
n∗

= o (rn)

Theorem 3.3. Under Assumptions 3.1 and 3.3,

F̂Y0Y1|X(y0, y1|x)− FY0Y1|X(y0, y1|x) = Ĝ0(y0|x, ζ)−G0(y0|x, ζ) + Ĝ1(y1|x, ζ)−G1(y1|x, ζ)

+

(
G

(1)
0 (y0|x, ζ) +G

(1)
1 (y1|x, ζ)

G
(2)
0 (y0|x, ζ) +G

(2)
1 (y1|x, ζ)

)
µ̂ζ(ζ) + op(rn)

Proof. Note that

F̂Y0Y1|X(y0, y1|x)− FY0Y1|X(y0, y1|x) = Ĝ0(y0|x, ζ̂) + Ĝ1(y1|x, ζ̂)−G0(y0|x, ζ̂)−G1(y1|x, ζ̂)

+G0(y0|x, ζ̂) +G1(y1|x, ζ̂)−G0(y0|x, ζ)−G1(y1|x, ζ) (28)

By Lemma A.1, along the same line as the proof of Theorem 3.2, we can show that

ζ̂ − ζ =
[
G

(2)
0 (y0|x, ζ) +G

(2)
1 (y1|x, ζ)

]−1

µ̂ζ(ζ) + op(rn) (29)

Since ζ̂ − ζ = Op(rn) and rn = o(δn), ζ̂ ∈ N (ζ, δn) with probability approaching to one. By Lemma B.3, we

have

Ĝd(yd|x, ζ̂)−Gd(yd|x, ζ̂) = Ĝd(yd|x, ζ)−Gd(yd|x, ζ) + op(rn) (30)

By the delta-method,

Gd(yd|x, ζ̂)−Gd(yd|x, ζ) = G
(1)
d (yd|x, ζ) ·

[
ζ̂ − ζ

]
+ op

(∣∣∣ζ̂ − ζ∣∣∣)
Hence,

G0(y0|x, ζ̂) +G1(y1|x, ζ̂)−G0(y0|x, ζ)−G1(y1|x, ζ) =

(
G

(1)
0 (y0|x, ζ) +G

(1)
1 (y1|x, ζ)

G
(2)
0 (y0|x, ζ) +G

(2)
1 (y1|x, ζ)

)
µ̂ζ(ζ) + op(rn) (31)
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From (28), (30) and (31), we have

F̂Y0Y1|X(y0, y1|x)− FY0Y1|X(y0, y1|x) = Ĝ0(y0|x, ζ)−G0(y0|x, ζ) + Ĝ1(y1|x, ζ)−G1(y1|x, ζ)

+

(
G

(1)
0 (y0|x, ζ) +G

(1)
1 (y1|x, ζ)

G
(2)
0 (y0|x, ζ) +G

(2)
1 (y1|x, ζ)

)
µ̂ζ(ζ) + op(rn)

Remark 3.3. It follows from (29) that the convergence rate of ζ̂ is the same as that of Ĝ
(1)
0 + Ĝ

(1)
1 . By

Theorem 3.1, we know that the convergence rate of ζ̂ is rn. Since F̂Y0Y1|X depends not only on ζ̂ but also on

Ĝ0 + Ĝ1, we have to compare the relative orders of ζ̂ and Ĝd. Theorem 3.1 gives that the orders of the biases

of Ĝd and Ĝ
(1)
d are the same, but the orders of their standard errors are di�erent: Ĝ

(1)
d is slower. Hence the

convergence rate of F̂Y0Y1|X is at least as slow as Ĝ
(1)
d . It is also possible that the estimation error in Ĝd is

of negligible order relative to ζ̂ if b2 = o( 1√
nbm+2

), which requires that the bandwidth is small enough.

4 Monte Carlo experiment

This section presents some Monte Carlo experiment results to demonstrate the �nite-sample performance

of the nonparametric estimator proposed in Section 3. Using the nonparametric estimation procedure, I

estimate two parameters, the utility function and the treatment e�ect, which are of principal interest in

practice. I consider six di�erent designs of experiments. In the �rst three designs, the assumptions needed

for the nonparametric estimator are satis�ed. In the other designs, the selection equation has another

random component so that the extended Roy model assumption is violated. I also estimate the model

using two benchmark methods : one is Heckman's two-step estimator (Heckman (1979)) for a parametric

model with a normal distribution assumption, and the other is a semiparametric estimator based on the

identi�cation-at-in�nity method proposed in Heckman (1990) and Andrews and Schafgans (1998).

4.1 Data Generating Processes

I consider six designs. Design (A) is the standard parametric model given by

Yd = αd +Xβd + εd (32)

D = 1{Y1 > Y0 + Zδ} (33)

where X and Z are independent standard normal random variables and (ε0, ε1) follows a bivariate normal

distribution independently of X and Z. Parameter values are set as α0 = α1 = 0, β1 = 1, β0 = 0.5, δ = 1

and (
ε0

ε1

)
∼ N

((
0

0

)
,

(
1 0.5

0.5 1

))
(34)

In Design (B), skewed disturbance terms are considered. The selection equation is given by (33) and the

outcome equation is similar to the speci�cations above except that the disturbance term εd is replaced by

εskewd . The new disturbance term εskewd is generated from the following formula

εskewd =
exp(εd)− E [exp(εd)]√

var[exp(εd)]
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where εd is generated according to (34). That is, εskewd is a bivariate log-normal distribution with its mean

and variance normalized to zero and one, respectively. All the parameter values are the same as Design (A).

Finally, Design (C) is to accommodate nonlinear utility functions. The outcome equation is given by (32)

and (34), while the selection equation takes the form of

D = 1{U(Y1) > U(Y0) + Zδ}

where U(y) = − exp(−y). Note that this design incorporates a quasi-linear constant absolute risk aversion

(CARA) utility function U . All the parameter values are the same as the base design.
For the robustness check, I consider three misspeci�ed cases, which are deviations from the preceeding

designs. For Designs (D) and (E), I generate data from the selection equation with an additional random

error ξ of the following form:

D = 1{Y1 > Y0 + Zδ + ξ}

where ξ is an standard normal random variable independent of all variables. For Design (F), I consider

D = 1{U(Y1) > U(Y0) + Zδ + ξ}

The outcome equations for Designs (D), (E), (F) are the same as that of Design (A), (B), (C), respectively.

For each design, a hypothetical data is generated for di�erent sample sizes of n ∈ {200, 500, 1000}. The
estimated parameters are the utility function h(y0, x, z) at (y0, x, z) = (0, 0, 0) and the median treatment

e�ect, median(Y1 − Y0|X = 0).

4.2 Estimation Procedure

The preliminary tuning parameters used in the estimation are as follows. In the �rst stage, the conditional

distribution function and its derivatives are calculated by the local linear estimator with the Gaussian kernel.

I estimate the model for di�erent bandwidths of {0.5, 1.0, 1.5, 2.0, 2.5}.
The size of the generated sample for numerical inversion method, n∗, is set equal to 1000. In general,

the larger n∗, the better as long as the computing time and cost permits. In practice, I suggest to set n∗ no

lower than the sample size of the data. It is generated from a uniform distribution over the interval between

upper and lower 0.5 percentile values.

h(y0, x, z) is estimated at y0 = 0, x = 0 and z = 0. Following are the procedures that I use to estimate

h(y0, x, z) at a �xed (y0, x, z).

1. F ∗Y is set as the uniform distribution function over [QY1(0.05), QY1(0.95)], where QY1 is the sample

quantile of Y conditional on D = 1.

2. Draw a random sample {y∗j : j = 1, 2, · · · , n∗Y } from F ∗Y , where n
∗
Y = 1000. I just used an equally-

spaced grid.

3. Calculate µ̂h(y∗j ) = Ĝ
(1)
0 (y0|x, z) + Ĝ

(1)
1 (y∗j |x, z) for each j = 1, 2, · · · , n∗Y . Using the closed-form

formula for local linear estimators, the calculation is easy to implement.

4. Let n̄Y be the number of µ̂h's such that µ̂h(y∗j ) ≤ 0.

5. F ∗
−1

Y (n̄Y /n
∗
Y ) is the estimate of h(y0, x, z).
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Table 1 exhibits the results of estimation of h.

The estimation of median(Y1 − Y0|x) requires a di�erent procedure. Since FY0Y1|X(y0, y1|x) is the esti-

mated object, an extra step is needed to calculate median(Y1 − Y0|x) from FY0Y1|X . Let me �rst explain

how to estimate FY0Y1|X(y0, y1|x) for a �xed (y0, y1, x).

1. Let F ∗Z be a uniform distribution over [QZ(0.05), QZ(0.95)].

2. Draw a random sample {z∗j : j = 1, 2, · · · , n∗Z} from F ∗Z , where n
∗
Z = 1000.

3. Calculate µ̂F (z∗j ) = Ĝ
(1)
0 (y0|x, z∗j ) + Ĝ

(1)
1 (y1|x, z∗j ) for j = 1, 2, · · · , n∗Z using the formula for the local

linear estimators.

4. Let n̄Z be the number of non-positive Ĝ
(1)
2 (y0, y1|x, z∗j )'s among {Ĝ(1)

2 (y0, y1|x, z∗j ) : j = 1, 2, · · · , n∗Z}
and z̄∗ be the n̄zth smallest element of {z∗j : j = 1, 2, · · · , n∗Z}.

5. Using the estimates calculated in the second step, Ĝ0(y0|x, z̄∗) + Ĝ1(y1|x, z̄∗) is the �nal estimate of
FY0Y1|X(y0, y1|x).

The resulting FY0Y1|X may be outside [0, 1]. One may adjust the estimates to satisfy the restriction, but I

don't in the simulations.

To calculate median(Y1 − Y0|x), I estimate FY0Y1|X(y0, y1|x) at 200× 200 points of (y0, y1). The points

divides R2 into 201×201 squares and the probability measure on each square can be calculated. Then I treat

(Y0, Y1) as a discrete random variable distributed on 201 × 201points, which represent the squares. Under

the presumption that (Y0, Y1) is discrete, we know the whole distribution of the random variable. Hence we

can calculate the distribution of Y1 − Y0 and so the median of Y1 − Y0.

4.3 Benchmark and alternative methods

As a benchmark, I also estimate the model using Heckman's two-step method (Heckman (1979)). It is a

widely used method to adjust selection bias in many empirical studies. Let me brie�y explain how Heckman's

two step estimator works. In the �rst step, the selection equation is modeled as follows:

Di = 1{π0 +Xiπ1 + Ziπ2 ≥ ξi} (35)

with

ξi|Xi, Zi ∼ N(0, 1)

and it is estimated by the probit model. In the second stage, using the �rst stage estimates and the normal

distribution assumption, the selection bias in the outcome equation is adjusted. For each d ∈ {0, 1},

E [Yi|Xi, Zi, Di = d] = αd +Xiβd + σλ (π̂0 +Xiπ̂1 + Ziπ̂2)

where λ is the inverse Mills ratio. By regressing Y on X, Z and λ (π̂0 +Xπ̂1 + Zπ̂2), we can estimate αd

and βd accounting for the selection bias.

Note that the �rst step is correctly speci�ed in Design (A). Meanwhile, in Design (B), it is misspeci�ed

because the disturbance ξ is not normally distributed, which results in misspeci�cation bias in the �rst stage.

In Design (C), it is also misspeci�ed not only because the disturbance is not normal, but also because the

selection equation is not linear in X and Z.
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I also estimate the model with a semiparametric method based on the identi�cation-at-in�nity argument

proposed by Andrews and Schafgans (1998). The basic idea is that state 1 will be chosen with a probability

close to 1 if Zi is low enough. Hence, using the observations for which Zi is smaller than a certain threshold, we

can estimate the model without selection bias. For the subsample such that Di = 1, I compute Ŷi = Yi−Xiβ̂1

using the estimate of βd obtained by Heckman's two-step estimator. The estimate of α1, α̃1, is de�ned by

α̃1 =

∑n
i=1 Ŷi1{Di = 1, Zi ≤ γn}∑n
i=1 1{Di = 1, Zi ≤ γn}

where γn is a threshold. That is, α̃1 is the sample mean of Ŷi conditional on Di = 1 and Zi being smaller than

the threshold. The threshold is de�ned by a sample quantile of Z and I consider three di�erent quantiles:

0.02, 0.05 and 0.1. Similarly, α̃0 can be computed using the observations for which Di = 0 and Zi is larger

than a threshold, which is set as either 0.98, 0.95 or 0.9 sample quantile of Z. In theory, the threshold

should approach toward 0 or 1 as the sample size increases. However there is no theory how to choose the

threshold. I also tried 1% threshold level, but I encountered some cases in the simulations in which I could

not calculate the estimator because
∑n
i=1 1{Di = 1, Zi ≤ γn} = 0.

It should be noted that the estimator requires a consistent preliminary estimator for βd, which is usually

taken from Heckman's two-step estimator. In Designs (B), (C), (E), (F), Heckman's two-step estimator is

not consistent. To prevent possible misspeci�cation error in computing Ŷi, I only estimate Designs (A) and

(D). Also note that the large support assumption holds because the support of Z is the whole real line. Even

though all assumptions for the estimator are satis�ed, it is known that the estimator has a slower rate of

convergence because the e�ective sample size used to estimate α̃d is smaller than the whole sample size. For

example, if the sample size is 1000 and the extreme 5% observations are used, the e�ective sample size used

to calculate α̃d is only 50.

One obstacle of the comparison is that these estimators do not estimate median(Y1 − Y0|x) and U(Yd)

directly. Though it is possible to use α̂1− α̂0 or α̃1− α̃0 as estimators for median(Y1−Y0|x) under additional

distributional assumptions, it makes the comparison even unclearer because the bias of α̂1 (or α̃1) can be

canceled by that of α̂0 (or α̃0). Hence, I report the root mean squared error (RMSE), bias, and standard

error of the respective intercept estimator rather than those of the di�erence of the two intercept estimators.

I could not �nd any legitimate comparison benchmark for the utility function as a function of Y0. The

�rst-stage probit model in (35) treats Y0 as a part of disturbance term.

4.4 Results

I calculate the root mean squared error (RMSE), the bias and the standard error (SE) of the estimators,

based on 1,000 times of repetitions. Table 1 presents the results for the estimates of the utility function, h.

In all the deisgns, the bias is quite small regardless of the sample size and the bandwidth. The standard

error heavily depends on the sample size and the bandwidth, which is consistent with the theory. It is hard

to compare the results across di�erent designs because the shape of the underlying parameters a�ects the

results.

It should be addressed that the biases in the latter three designs are not severe even though the model is

misspeci�ed. On the other hand, the standard errors in the latter three designs are larger than those in the

correctly-speci�ed �rst three designs. The increase in the standard error is rather natural, since the models

include additional randomness in the selection equation. This shows that the estimator does not su�er from
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severe misspeci�cation error up to an additional independent randomness in the selection equation.

Table 2 shows the performance of the median treatment e�ect estimates.The performance is remarkably

good and consistent with theory in all the settings. Even in the misspeci�ed designs, the estimator shows

nice performances.

Table 3 summarizes the performance of Heckman's two-step estimator. As expected, in Designs (A) and

(D), the estimator performs very well as the parametric assumptions are all satis�ed. However, in the other

designs, the estimates su�er from misspeci�cation errors, having large biases. Notably, the estimates of αd

have larger biases than those of βd. This implies that a misspeci�cation error might be more critical when

estimating treatment e�ects that are associated with the intercepts rather than the slope coe�cients.

Table 4 presents the results of the semiparametric estimator proposed by Andrews and Schafgans (1998).

I only estimate Designs (A) and (D) because the preliminary estimates, β̂d, are not consistent in the other

designs, which violates an assumption required for the consistency of the estimator. The results are sensitive

to the threshold level. As the threshold level increases, the e�ective sample size used in the estimation

decreases and thus the standard errors become larger. But the bias gets smaller as the e�ective sample size

becomes smaller. This is because the identi�cation-at-in�nity argument may not hold for non-extreme values

of Z.

Table 5 allows us to compare the RMSE's of the three estimators. For comparison, I use the results of my

nonparametric estimator for the bandwidth of the smallest RMSE and Andrews-Schafgans' semiparametric

estimator for the e�ective sample size being 10% of the whole sample size. Direct comparison is somewhat

di�cult because the targetting parameters are di�erent. Furthermore, my estimator is nonparametric while

the others are parametric and semi-parametric, respectively. In general, nonparametric estimators tend to

show larger standard errors compared to parametric or semiparametric estimators. This explains why the

RMSE's of the nonparametric estimator are larger than those of the other estimators in Designs (A) and

(D). However, in Designs (B) and (C) in which Heckman's two-step estimator shows high RMSE due to the

misspeci�cation error, the nonparametric estimator has smaller RMSE's than those of the parametric esti-

mator. In Designs (E) and (F), where both of estimators are misspeci�ed, still the nonparametric estimator

works �ne.

For more detailed analysis, the biases of the estimators are reported in Table 6. As expected by the

theory, the nonparametric estimator has quite small biases in correctly-speci�ed settings. In the misspeci�ed

setting in Designs (D), (E) and (F), the biases are still very small. While, Heckman's two-step estimator

is very accurate in Designs (A) and (D) in which the parametric assumptions are satis�ed. But, in the

other designs, the bias is not ignorable, which is a consequence of the misspeci�cation. Andrews-Schafgans'

estimator performs well, but its biases tend to be larger than those of the nonparametric estimator. Though

the bias would diminish as the threshold gets higher, in practice the bias can not be eleminated completely.

Overall, the nonparametric estimator developed in this paper performs well in all simulation designs,

while the parametric estimator can be biased when the parametric assumptions fail. Most importantly, the

nonparametric estimator outperforms Andrews-Schafgans' semiparametric estimator even when the model

is correctly speci�ed.

Finally, it is notable that the computational cost of the estimation is fairy low. For the sample size of

1000, one iteration for the estimation of h takes less than one second and one iteration for the estimation of

the median treatment e�ect takes about 6 seconds. The code is written and run in MATLAB on a desktop

PC with 3GHz CPU.
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5 Application to Hybrid Maize Adoption

Agriculture is the most important sector and maize is a major food crop in Malawi. Hybrid maize is a variety

of maize that has been developed to improve agricultural yield. To resolve the food security problem and

foster economic growth, the government has implemented a large-scale agricultural input subsidy programs

since the 1980s. Even though one of the principal goals of the government's programs is to encourage farmers

to plan hybrid maize, the adoption rate is still around 60%.

In this section, I investigate the farmers' adoption decision of hybrid maize in the framework of the

extended Roy model. I attempt to answer two policy-relevant questions : First, does hybrid maize really

improve yield? Second, how much subsidy is needed to maximize yield? Regarding the �rst question,

I estimate the treatment e�ect of hybrid maize on yield. I also estimate the relationship between the

e�ectiveness of hybrid maize and other agricultural inputs such as soil quality and the amount of fertilizer

use. The estimation results suggest that hybrid maize is e�ective in improving yields in general. Then,

why do farmers not plant hybrid maize? There must be a cost of planting hybrid maize, which dominates

the yield increment. It naturally raises the second question. Since the utility function is estimated, the

subjective cost of planting hybrid maize directly follows. I calculate the optimal subsidy level that depends

on observable characteristics of farmers.

5.1 Decision to Adopt Hybrid Maize

This subsection describes how farmers' decisions to adopt hybrid maize can be analyzed within the framework

of the Roy model. Suppose that farmers face a discrete choice between planting traditional maize or hybrid

maize. Let D = 1 represent planting hybrid maize and D = 0 traditional maize. Both types of seeds yield

the same type of crop. Only the amount of crop di�ers. For d ∈ {0, 1}, Yd signi�es the potential yield of

maize for each type of maize seed. The potential outcomes are heterogeneous across farmers. Thus, the

returns to planting hybrid maize is also heterogeneous. I do not impose any functional form restrictions on

the distribution of the potential yields:

(Y0, Y1)|X ∼ FY0Y1|X

where X includes the amount of fertilizer, the area of plot, years of schooling of the farmer, and soil quality

dummy.

Knowing their own potential yields, the farmers take more components into account. They have to buy

hybrid maize seeds from the market if they decide to plant hybrid maize, while they can just use the previous

year's crop as seeds if plant traditional maize. I assume that the farmer's decision is made according to the

following selection equation:

D = 1{Y1 > h(Y0, X, Z)}

h is the utility function measured in terms of yield of hybrid maize. It can be interpreted as the yield from

hybrid maize that is equivalent to Y0 from traditional maize. If h(Y0, X, Z) is higher than Y0, there are

some obstacles that hinder the farmers from planting hybrid maize. Let φ(Y0, X, Z) = h(Y0, X, Z)− Y0 and

rewrite the selection equation as

D = 1{Y1 > Y0 + φ(Y0, X, Z)}
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Note that it nests the usual extended Roy model speci�cation

D = 1{Y1 > Y0 + φ(X,Z)}

where φ(X,Z) is the cost of planting hybrid maize, which does not allow interaction between (X,Z) and Yd.

φ(Y0, X, Z) captures the cost of planting hybrid maize.

On the other hand, the cost φ(Y0, X, Z) can be viewed as the optimal subsidy level to maximize the

yield. Consider a policy such that subsidy S, measured in terms of Y1, is o�ered to farmers who plant hybrid

maize. This policy a�ects the selection, so the selection equation becomes

D = 1{Y1 + S > h(Y0, X, Z)} (36)

If the policy maker's objective is to maximize the yield, the optimal subsidy S∗ must induce

D = 1{Y1 > Y0} (37)

When S = φ(Y0, X, Z), the selection equation (36) becomes (37). Therefore, we can calculate the optimal

subsidy level that follows the estimation of h.

I use distance to road as an instrumental variable. In Malawi, the maize market is monopolized by

a government-owned corporation, the Agricultural Development Marketing Corporation (ADMARC). AD-

MARC monopolizes the distribution of agricultural inputs and sets crop prices. There are local private

buyers/sellers that intermediates the farmers and ADMARC. To plant hybrid maize, the farmers must ei-

ther buy the seeds from a local private seller or travel to an outlet post of ADMARC. Hence, the cost of

planting hybrid maize is correlated with the distance to road. Its relevance has been con�rmed in various

studies on hybrid maize adoption. Among papers on the adoption of hybrid maize in Malawi, Zeller et al.

(1998) �nd that the traveling cost to the market is one of the signi�cant determinants of hybrid maize

adoption and Chirwa (2005) obtains a similar result with the distance to the nearest market. Suri (2011)

examined the e�ect of hybrid seed using Kenyan data and used the distance to the nearest fertilizer seller as

an instrument. Also, since covariates include geographic variables such as the area of plot and soil quality,

the potential indirect e�ect of the instrument on the yield is controlled.

5.2 Data

The data comes from the Integrated Household Survey (IHS) in Malawi conducted by the Government of

Malawi through the National Statistical O�ce jointly with the World Bank. The survey is conducted roughly

every 5 years and the latest one is third round in 2010 and 2011. As the sample households in each round

have no link, I only use the latest survey as a cross-sectional data. The sample households are nationally

representative, drawn from all regions over Malawi. The survey provides a detailed information on a huge

number of households : it covers 12,271 households and provides various demographic, agricultural and

geographic variables for each household.3

Here are some sample exclusion criteria. I excluded the plots if a crop other than traditional local maize

or hybrid maize is planted; or if multiple crops are planted. Further, recycled hybrid maize is excluded

because it is known that recycled hybrid maize has little di�erence from the traditional one. I excluded

3For more detailed information, visit http://go.worldbank.org/6A7GUDQ1Q0
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the observations whose yield is not measured in a metric unit - kilogram or ton. All observations with any

missing items are removed.

My sample includes the farmers who planted maize - either traditional or hybrid - in the rainy season in

2009-2010. The unit of observation is a plot. There are several reasons that I use a plot as the unit. First,

the information on agricultural activities - for example, the amount of fertilizer use, the amount of yield -

are recorded for each plot. Second, a farmer may have multiple plots and may decide to plant di�erent types

of maize seeds on di�erent plots. Therefore, a plot is the unit in which the decision to use hybrid seeds is

made. Therefore, it is natural to consider a plot as the unit.

The descriptions of the variables are given in Table 7. Table 8 shows some descriptive statistics of related

variables. Note that it is clear that hybrid maize yields more than traditional maize, and the hybrid maize

users live closer to road on average than the traditional maize users.

Preliminarily, some frequently used models are estimated. First, I estimate a probit model to see determi-

nants of the adoption of hybrid maize under parametric assumptions and the results are reported in Table 9.

The coe�cient to the distance to road is signi�cantly negative. This result supports the relationship between

the cost of hybrid maize and the distance to road. Next, I regress yield on the adoption of hybrid maize and

other variables and the results are reported in Table 10. OLS results suggest that hybrid maize has a positive

e�ect on yield. I also estimate an instrumental variable regression model treating hybrid maize adoption as

an endogenous variable and the distance to road as an excluded variable. Still the results indicate hybrid

maize increases yields. Though, the regression results can be limited in a sense that the e�ect of hybrid

maize on yields is assumed to be merely a constant shift in the intercept. Heckman's two-step estimator

allows for the coe�cients di�er across two types of maize. Table 11 reports the estimated coe�cients using

Heckman's two-step estimator. The implied e�ect of hybrid maize on yields is calculated and reported in

Table 12.

5.3 Estimation

I estimate the full nonparametric model. In the �rst stage, I estimate the distribution of observed harvest

conditional on covariates and the instrument, Gd(y|x, z), and its derivative with respect to the instrument

using a local linear estimator. I use a product kernel using Gaussian kernel. The bandwidth parameters are

chosen by cross validation method as follows. First, since di�erent bandwidths should be applied to di�erent

variables according to their degrees of dispersion, the bandwidth of a variable is �xed to be proportional

to the standard deviation of the variable up to a coe�cient. Then I compute the coe�cient that applies

to all variables by a cross-validation method. Another problem is that in the estimation of Gd(y|w), the

theoretically optimal bandwidth may be di�erent for di�erent values of y. Since it is hard to di�erentiate

the bandwidths according to y, the bandwidth parameter is chosen to minimize the average squared error

over di�erent values of y and applied to all y. The average squared error is calculated on empirical deciles of

observed Y and then summed over the nine points except for 0th decile and 10th decile. I denote the deciles

as {y(1), y(2), · · · , y(9)}.
Then, the standard leave-one-out cross-validation method is used. Without using the ith observation,

estimate Gd(y|w) at y ∈ {y(1), · · · , y(9)} and w = Wi by a local linear estimator. Denote it as Ĝd,−i(y(j)|Wi).

The bandwidth parameter is chosen to minimize

n∑
i=1

9∑
j=1

∑
d∈{0,1}

(
1{Yi ≤ y(j), Di = d} − Ĝd,−i(y(j)|Wi)

)2
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among candidate values of {0.3, 0.4, · · · , 3.0}. In noncomputable cases due to matrix singularity, I impute the
squared error as 1. When including discrete variables, e.g., dummy for soil quality, the bandwidth parameter

is cross-validated for the subsample of each type of soil quality. The cross validation results are given in

Table 13.

Then I estimate two parameters: one is the median treatment e�ect of hybrid maize, median(Y1−Y0|X),

and the other is the optimal subsidy level, h(Y0, X, Z)−Y0. The median treatment e�ect is estimated at �ve

di�erent levels of fertilizer use: the median of fertilizer use, 54.95 Kg/Acre, and deviations from the median,

34.95, 44.95, 64.95 and 74.95 Kg/Acre. After estimating the median e�ect using the whole sample, I use a

subsample to incorporate the soil quality. Soil quality is given as a binary code - good or poor. Using the

subsample for each type of soil quality, the median treatment e�ect is estimated at �ve di�erent levels of

fertilizer use. Meanwhile, Y0 is �xed at its median.

The detailed estimation procedure is the same as described in the previous section. 90% con�dence

interval for each estimate is calculated based on the bootstrap of 1000 repetitions. The program is available

for Matlab upon request. A program for Stata is in progress.

5.4 Results

The estimation results for the median treatment e�ect are given in Table 14. It suggests that the median

treatment e�ect is positive in the whole sample estimates and the subsample estimates conditional on good

soil quality. The con�dence intervals support the positive treatment e�ect of hybrid maize. However, when

the soil quality is poor, the estimates are negative. The con�dence intervals are too wide to tell the sign of

the estimates. This implies that hybrid maize does not always increase the yield.

The e�ects of fertilizer and soil quality are positive from the estimates. In each panel, as the amount

of fertilizer use increases, the estimated treatment e�ect strictly increases. Though the con�dence intervals

overlap with each other, they are also increasing as a whole. The e�ect of soil quality is also clearly positive.

The estimates for good soil are strictly larger than those for poor soil.

All estimates of the optimal subsidy level are positive. They show that the farmers do not plant hybrid

maize even though it yields more. In each panel, the optimal subsidy level increases as the distance to road

increases, which is consistent with intuition. Since the farmers living far from road are likely to face higher

transaction cost of buying hybrid maize, a higher level of subsidy is needed for them to plant hybrid maize

relative to the farmers close to road.

There is a pattern that the optimal subsidy level is higher for the farmers with less years of schooling.

There can be two possible reasons: �rst, highly educated farmers are more likely to be from a rich family.

Hence, the borrowing constraint upon buying hybrid maize might be weaker for highly educated farmers.

Another explanation is that highly educated farmers are more willing to adopt a new technology, which

results in a lower psychological cost of adopting hybrid maize.

Finally, I make a remark on the con�dence intervals. The con�dence intervals are wider than desirable.

This is a common problem with a fully nonparametric approach when multiple conditioning variables are

used. In general, functional form restrictions help construct tighter intervals and allow one to use more

conditioning variables. A semiparametric estimation method is an interesting topic to pursue.
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6 Conclusion

In this paper I have developed a new identi�cation method for the extended Roy model that identi�es the

joint distribution of the potential outcomes and the utility function. The key assumptions are that the utility

function is deterministic conditional on the potential outcomes and observables and that the e�ect of the

instrument on the selection is monotone. In a companion paper, I study the identi�cation of the Roy model

with unobserved heterogeneity in preferences.

An advantage of the identi�cation is that it allows one to relax conventional functional form restrictions on

the outcome equation and the utility function such as linearity and additive separability. Another advantage

of the identi�cation method is that no support assumption is required so that instruments with a bounded

or �nite support can be used. A point-identi�cation result is given if the instrument is continuous, possibly

having a bounded support. Sharp bounds for the model are obtained if the instrument is discrete.

In addition, I have developed a nonparametric estimator based on the identi�cation method using the

simulation-based estimator proposed in Dette et al. (2006). It is computationally attractive. I showed that

the simulation-based estimator has a standard nonparametric rate of convergence and examined the e�cacy

of the estimator in �nite sample shown by Monte Carlo simulations.

Appendix

A A simulation-based estimator

In this section, I introduce a simulation-based estimator for the solution to a monotone equation. Consider

a strictly increasing function µ : T → R where T ⊂ R. Suppose that the parameter of interest, θ ∈ T , is the
unique solution to

µ(·) = s

for a given s ∈ R. Let µ̂ be a preliminary estimator of µ, which is not necessarily increasing. Many

applications of such a setup can be found in economics. A typical example is estimation of quantile functions

(e.g., Dette and Volgushev (2008),Chernozhukov et al. (2010)). Economic models with monotonicity are

common. For example, in Berry and Haile (2012), market share is a monotone function of price.

In general, estimating θ using µ̂ is numerically formidable. One possible way is to impose a shape

restriction when estimating µ. It requires a constrained optimization. Another alternative is the minimum

distance estimation to �nd θ that minimizes the distance between µ̂ and s. For example, the estimator

minimizing the distance de�ned by the squared deviation is given by

θ̂ = min
t∈T

(µ̂(t)− s)2

It also requires numerical optimization procedure. Furthermore, frequently used methods, such as Newton-

Rhapson method, require estimation of the derivative of µ. If µ̂ is not monotone, the criterion function is

nonconvex, which makes the optimization more complicated. Another simple way to estimate θ using the

monotonicity is to �nd the smallest or largest value that µ̂ intersects s, e.g.,

θ̂ = inf{t : µ̂(t) ≥ 0}
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It is an ad hoc way to resolve the problem of multiple solutions. Furthermore, it does not give any guideline

how to �nd such a value. For example, in the case of µ̂ being the Nadaraya-Watson estimator, it is very

di�cult, if not impossible, to evaluate µ̂ at all point.

The method I introduce in this section provides a simple way to solve monotone equations. I extend

the estimator proposed by Dette et al. (2006) in several directions. First, in their papers, the �rst stage

estimator is limited to kernel-type regression estimators. In contrast, I consider a general class of �rst-stage

estimators under primitive conditions. Second, I relax the di�erentiability assumption in Dette et al. (2006)

that µ is twice di�erentiable at θ. I replace the di�erentiability condition with a mild condition that µ is not

'�at' on a neighborhood of θ. Third, I relax the compactness of T and accommodate possibly unbounded T .
Lastly, I drop redundant smoothing parameters so that the e�ect of the smoothing parameter is eliminated

in �nite samples.

Let F ∗ be a distribution function chosen by the researcher and T ∗ be a random variable with the

distribution function F ∗ and a support T ∗. Suppose that T ∗ is included in T so that µ(T ∗) is well-de�ned

almost surely. For a �xed s, de�ne

π(s) = Pr (µ(T ∗) ≤ s) (38)

Since µ is increasing and s = µ(θ), µ(T ∗) ≤ s is equivalent to T ∗ ≤ θ. Thus we have

π(s) = Pr (T ∗ ≤ θ)

= F ∗(θ)

or

θ = F ∗
−1

(π(s)) (39)

Since F ∗ is chosen by the researcher, F ∗
−1

is known. Hence, in (39), π(s) is the only unknown object. Let

π̃(s) be an estimator of π(s) obtained by replacing µ in (38) with µ̂. That is,

π̃(s) = Pr (µ̂(T ∗) ≤ s)

Even though the distribution of T ∗ is known, computing π̃ is not an easy task. Instead of integrating µ̂ with

respect to the true F ∗, we approximate the integral by a Monte Carlo integration. Let {t∗j : j = 1, . . . , n∗}
be a generated random sample from F ∗. De�ne a simple estimator of π(s) by

π̂(s) =
1

n∗

n∗∑
j=1

1{µ̂(t∗j ) ≤ s}

Relative to π̃, π̂ is a�ected by the additional randomness from the Monte Carlo approximation. However,

one can take n∗ to be arbitrarily large and π̂ can be arbitrarily close to π̃. Note that still the randomness in

µ̂ remains in π̃.

The choice of F ∗ is important for practical reasons. First, F ∗ should be selected so that it is easy

to simulate a random sample from F ∗ and calculate the inverse F ∗
−1

. Second, F ∗ is a solution selection

mechanism. For an extreme example, consider two distribution functions F ∗1 and F ∗2 that have disjoint

supports. Let T ∗1 and T ∗2 be the support of F ∗1 and F ∗2 , respectively. Suppose that t1 ≤ t2 for any t1 ∈ T ∗1
and t2 ∈ T ∗2 . Let θ̂1 and θ̂2 be the estimator of θ using the same �rst-stage estimate, but di�erent distribution
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functions, F ∗1 and F ∗2 , respectively. Then it is always true that θ̂1 ≤ θ̂2 because F ∗
−1

1 (π1) ≤ F ∗
−1

2 (π2) for

any π1 and π2 on [0, 1]. However, under the assumptions state below, F ∗ has no e�ect on the �rst-order

asymptotic result that follows.

In Dette et al. (2006), the limit theory is shown by the delta method based on a Taylor expansion. This

approach can not be applied to the estimator because I do not require di�erentiability and not smooth the

estimator. Thus the proof of the limit theory in this paper is based on stochastic equicontinuity arguments,

which is di�erent from Dette et al. (2006).

To simplify notation, de�ne

N (t, ε) = {t̃ ∈ T : |t− t̃| ≤ ε}

The following assumptions are used to derive the limit theory for θ̂.

Assumption A.1. Let s ∈ R be given. De�ne ∆n(t) = µ̂(t)− µ(t).

(a) µ(t) < s for t < θ and µ(t) > s for t > θ. Furthermore,

lim
ε→0

1

ε
inf

t/∈N (θ,ε)
|µ(t)− µ(θ)| > 0

(b) There exists a positive constant Cµ such that

Cµ = lim
ε→0

inf
t∈N (θ,ε)

|µ(t)− µ(θ)|
|t− θ|

(c) E[∆2
n(t)]1/2 = O(rn) uniformly over T .

(d) For a positive sequence δn such that δn = o(1) and rn = o(δn),

sup
t∈N (θ,δn)

|∆n(t)−∆n(θ)| = o(rn)

(e) F ∗ has a support T ∗ ⊂ T and a density f∗ with respect to the Lebesgue measure; and f∗(t) > 0 on a

neighborhood of θ.

(f) µ(T ∗) has a bounded density f∗µ.

(g) 1√
n∗

= o(rn)

Remark A.1. Assumptions A.1(a) and (b) are actually weaker than the monotonicity and di�erentiability

assumptions, respectively. The second part of Assumptions A.1(a) guarantees that θ is the unique solution

to µ(·) = s and that µ(t) is reasonably distinguishable from µ(θ) if t is away from θ. Assumptions A.1(b)

requires that µ is not '�at' on a neighborhood of θ. If µ is �at, we can not estimate θ̂ accurately no matter

how accurate µ̂ is. Conversely, if Cµ = ∞, the estimator is very accurate relative to µ̂. Cµ = ∞ occurs

if µ(θ) = 0 and limt→θ µ(t) 6= 0, in which there is a jump at θ so it is very easy to distinguish θ from its

neighborhood.

Remark A.2. Uniformity of the convergence rate in the mean squared error is much weaker than the uni-

form convergence of µ̂ itself, e.g., see Assumption 2 in Chernozhukov et al. (2010). For most standard

nonparametric methods, Assumptions A.1(c) is easy to verify. Assumption A.1(d) is the so-called stochastic

equicontinuity. It regulates that µ̂ around the true value θ be smooth enough.

Remark A.3. Without Assumption A.1(e) that the estimator converges to the true parameter θ. If F ∗ puts

no probability measure on a neighborhood of θ, the estimator does not converge to θ. Assumption A.1(f)

implies that π(s) is uniformly continuous in s.
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Lemma A.1. Under Assumption A.1,

θ̂ − θ = C−1
µ [−∆(θ)] + op(rn)

Proof. By Taylor's theorem and the inverse function theorem, we have

θ̂ − θ = F ∗
−1

(π̂(s))− F ∗
−1

(π(s))

= (f∗(θ))
−1

(π̂(s)− π(s)) + o (|π̂(s)− π(s)|)

Hence, it su�ces to show

π̂(s)− π(s) = f∗(θ)C−1
µ [∆(θ)] + op(rn)

By the central limit theorem, it is easy to show that

π̂(s)− π̃(s) =
1

n∗

n∗∑
j=1

1
{
µ̂(t∗j ) ≤ s

}
− Pr

(
µ̂(t∗j ) ≤ s

)
= Op

(
1√
n∗

)

and by AssumptionA.1(e), π̂(s)− π̃(s) = op(rn).

Now it remains to show that π̃(s)− π(s) = f∗(θ)C−1
µ [∆(θ)] + o(rn). For the sequence δn in Assumption

A.1(c), let Nn = N (θ, δn) ∩ T . Observe that

π̃(s)− π(s) =

ˆ
1 {µ̂(T ∗) ≤ s} dF ∗ −

ˆ
1 {µ(T ∗) ≤ s} dF ∗

=

ˆ
Nn

1 {µ̂(T ∗) ≤ s} dF ∗ −
ˆ
Nn

1 {µ(T ∗) ≤ s} dF ∗

+

ˆ
N cn

1 {µ̂(T ∗) ≤ s} dF ∗ −
ˆ
N cn

1 {µ(T ∗) ≤ s} dF ∗

≡ Π1 + Π2

where

Π1 =

ˆ
Nn

1 {µ̂(T ∗) ≤ s} dF ∗ −
ˆ
Nn

1 {µ(T ∗) ≤ s} dF ∗

Π2 =

ˆ
N cn

1 {µ̂(T ∗) ≤ s} dF ∗ −
ˆ
N cn

1 {µ(T ∗) ≤ s} dF ∗

I will establish that

Π1 = f∗(θ)C−1
µ [−∆n(θ)] + op(rn) (40)

and

Π2 = op(rn) (41)

Note that, for any t ∈ R,

1{µ̂(t) ≤ s} −
ˆ

1{µ(t) ≤ s}

= 1{µ̂(t) ≤ s < µ(t)} − 1{µ(t) ≤ s < µ̂(t)}

= 1{∆(t) ≤ s− µ(t) < 0} − 1{0 ≤ s− µ(t) < ∆(t)} (42)
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I �rst show equation (40). Let C∆ = supt∈Nn |∆(t)−∆(θ)|. If t ∈ Nn, we have ∆(θ) − C∆ ≤ ∆(t) ≤
∆(θ) + C∆. Moreover, by AssumptionA.1(a), if t ∈ Nn,

|s− µ(t)| = |µ(θ)− µ(t)|

≥ Cµ |θ − t|

Hence for t ∈ Nn and t ≥ θ, ∆(t) ≤ s − µ(t) implies ∆(θ) − C∆ ≤ Cµ(θ − t). For t ∈ Nn and t < θ,

s− µ(t) < ∆(t) implies Cµ(θ − t) < ∆(θ) + C∆. Therefore we have

−1{0 ≤ Cµ(θ − t) < ∆(θ) + C∆} (43)

≤ 1{∆(t) ≤ s− µ(t) < 0} − 1{0 ≤ s− µ(t) < ∆(t)}

≤ 1{∆(θ)− C∆ ≤ Cµ(θ − t) < 0} (44)

Using these bounds and equation (42), bounds for Π1 are given by

−
ˆ

1{0 ≤ Cµ(θ − T ∗) < ∆(θ) + C∆}dF ∗ (45)

≤ Π1

≤
ˆ

1{∆(θ)− C∆ ≤ Cµ(θ − T ∗) < 0}dF ∗ (46)

I will prove that both (45) and (46) have the same limit. First, note that equation (46) can be written as

Pr
(
θ < T ∗ ≤ θ + C−1

µ (−∆(θ) + C∆)
)

= F ∗
(
θ + C−1

µ (−∆(θ) + C∆)
)
− F ∗(θ)

By the Taylor theorem, it becomes

f∗(θ)C−1
µ [−∆n(θ) + C∆] + op (|−∆n(θ) + C∆|)

Since ∆(θ) = O(rn) and C∆ = o(rn) by Assumption A.1(b) and (c), we have that the upper bound converges

to

f∗(θ)C−1
µ [−∆n(θ)] + op (rn)

Similarly, the limit of the lower bound is also given by

f∗(θ)C−1
µ [−∆n(θ)] + op (rn)

By the sandwich principle, we have

Π1 = f∗(θ)C−1
µ [−∆n(θ)] + op (rn)

as in (40).

Now I show that Π2 = o(rn). Since |Π2| ≤ 1, it su�ces to show E[|Π2|] = o(rn). If t ∈ N c
n, by Assumption

A.1(a),

|µ(θ)− µ(t)| ≥ |µ(θ)− µ(θ ± δn)|

≥ Cµδn
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Note that equation (42) implies that

|1{µ̂(t) ≤ s} − 1{µ(t) ≤ s}| ≤ 1{∆(t) ≤ s− µ(t) < 0}+ 1{0 ≤ s− µ(t) < ∆(t)}

= 1{|∆(t)| > |s− µ(t)|}

Using the fact that 1{a ≥ b} ≤ a2

b2 for any positive real numbers a and b,

1{|∆(t)| > |s− µ(t)|} ≤ ∆2(t)

(s− µ(t))
2

Using these inequalities, we obtain

E [|Π2|] ≤ E

[ˆ
N cn
|1{µ̂(T ∗) ≤ s} − 1{µ(T ∗) ≤ s}|dF ∗

]

≤
ˆ
N cn

E
[
∆2(T ∗)

]
(s− µ(T ∗))2

dF ∗

Since E
[
∆2(T ∗)

]1/2
is uniformly O(rn) by Assumption A.1(b), the nominator is uniformly O(r2

n). Let

U = s − µ(T ∗) and F ∗U be the implied distribution function. For T ∗ ∈ N c
n, |U | ≥ Cµδn. Hence, by a

change-of-variable method,

ˆ
N cn

1

(s− µ(T ∗))2
dF ∗ =

ˆ ∞
Cµδn

1

U2
dF ∗U +

ˆ −Cµδn
−∞

1

U2
dF ∗U

By Assumption, the density of F ∗U is bounded and let Cf∗ ≥ f∗U . So we can bound

ˆ ∞
Cµδn

1

U2
dF ∗U ≤

ˆ ∞
Cµδn

Cf∗

U2
dU

=
Cf∗

Cµδn

and similarly,
´ −Cµδn
−∞

1
U2 dF

∗
U ≤

Cf∗

Cµδn
. Hence

E [|Π2|] ≤ O
(
r2
n

δn

)
= o(rn)

Thus we get the desired result as in equation (41).

A.1 Algorithm for the method

In practice, the estimator proceeds as follows:

1. Pick a distribution function F ∗ to satisfy the required assumptions. Draw a random sample {t∗j : j =

1, 2, · · · , n∗} from F ∗.

2. Compute µ̂(t∗j ) for j = 1, 2, · · · , n∗. If µ̂ has a closed form formula, it is easy to compute.
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3. Compute

θ̂ = F ∗
−1

 1

n∗

n∗∑
j=1

1{µ̂(t∗j ) ≤ s}


4. To solve µ(·) = s′ for a di�erent s′ 6= s, reuse {µ̂(t∗j ) : j = 1, 2, · · · , n∗} and just repeat Step 3 unless

there is any reason for F ∗ to fail any of the assumptions.

When choosing F ∗, there are several desirable attributes of F ∗. For the sake of computational ease, it should

be easy to compute the inverse of F ∗. Note that F ∗
−1

is used twice in the algorithm. First, to draw a random

sample from F ∗, it is usually carried out by take F ∗
−1

on a uniform random sample. Also, in Step 3, F ∗
−1

is needed. If there is any information such as θ lies in a certain region, one can utilize the information by

restricting the support of F ∗ to the region. On the other hand, if the support of F ∗ is too large that some

points are far from observations, there can be numerical singularity condition when computing µ̂. In general,

when there is no additional information, a uniform distribution on the range of observations is a standard

choice. Anyhow, the e�ect of F ∗ disappears in the limit.

B Lemmas for Stochastic Equicontinuity

In this section, I verify the stochastic equicontinuity conditions using high-level assumptions. To accommo-

date an abstract random element, I introduce triangular arrays of random processes: let ξ ∈ Ξ be a generic

random element. For each n = 1, 2, . . ., let Ψn be a class of measurable functions from Ξ to R. Also assume
that Ψn can be indexed by a set T . That is,

Ψn = {ψn(·, t) : t ∈ T}

for some function ψn : Ξ× T → R.
For a random sample {ξ1, . . . , ξn}, I simplify the notation by writing ψni(t) instead of ψn(ξi, t). The

triangular array of random processes {ψni(t) : t ∈ T, i = 1, . . . , n} is said to be i.i.d. within each row if

and only if {ξ1, · · · , ξn} is i.i.d. for each n. Call a measurable mapping ψ̄n : Ξ → R an envelope for Ψn if

|ψni(ξ, t)| ≤ ψ̄n(ξ) for all t ∈ T . De�ne Lp norm between two processes as follows:

‖ψn(·, t)‖p =

[ˆ
|ψn(ξ, t)|p dP(ξ)

]1/p

for p ∈ [1,∞) and ‖ψn(·, t)‖∞ refers to the supremum norm using the notion of essential supremum.

To deal with the abstract space, I de�ne a measure for the complexity of Ψn's.

De�nition B.1. For each ε > 0, the L1-covering number, N1(ε,Ψn), is the smallest value of J for which there

exists ψ
(1)
n , · · · , ψ(J)

n ∈ Ψn such that for any ψn ∈ Ψn, there always exists j
∗ that satis�es

∥∥∥ψn − ψ(j∗)
n

∥∥∥
1
≤ ε.

Following are the conditions imposed.

Assumption B.1. Let Ψn be a class of real-valued measurable functions de�ned on Ξ. Suppose that there

is an envelope function ψ̄n : Ξ → R for Ψn with
∥∥ψ̄n∥∥∞ < ∞. Let{ψni(t) ∈ Ψn : t ∈ T, i = 1, · · · , n} be a

triangular array of random processes that are i.i.d. within each row. Suppose that the following are true.
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(a) There exist positive constants C1 and C2 such that

N1(ε
∥∥ψ̄n∥∥∞ ,Ψn) ≤ C1ε

−C2

(b) Letρn be a sequence such that ‖ψn‖2
√

log(n)
n = o(ρn).

Lemma B.1. Under Assumption B.1,

sup
t∈T

∣∣∣∣∣ 1n
n∑
i=1

ψni(t)− E [ψni(t)]

∣∣∣∣∣ = op(ρn) (47)

Proof. It can be proved using Theorem 2.37 in Pollard (1984). Using his notation, the stochastic process fni

is taken to be 1

‖ψ̄n‖∞
ψni and let Fn =

{
1

‖ψ̄n‖∞
ψni : ψn ∈ Ψn

}
. I prove that

sup
t∈T

∣∣∣∣∣ 1n
n∑
i=1

fni(t)− E [fni(t)]

∣∣∣∣∣ = op(
∥∥ψ̄n∥∥∞ ρn)

To check the covering number condition, let Jn = N1(ε
∥∥ψ̄n∥∥∞ ,Ψn) and {ψ(j)

n : j = 1, . . . , Jn} be the
approximating functions as in De�nition B.1. It implies that there exists a subset {ψ(1)

n , · · · , ψ(Jn)
n } of Ψn

such that for any ψn ∈ Ψn there always exists j ∈ {1, . . . , Jn} satisfying
∥∥∥ψn − ψ(j)

n

∥∥∥
1
≤ ε

∥∥ψ̄n∥∥∞. By

dividing every element of {ψ(1)
n , · · · , ψ(Jn)

n } by
∥∥ψ̄n∥∥∞, we can construct a subset {f (1)

n , · · · , f (Jn)
n } of Fn.

Now consider an arbitrary fn ∈ Fn. By hypothesis, for ψn =
∥∥ψ̄n∥∥∞ fn, there exists j ∈ {1, . . . , Jn} such

that
∥∥∥ψn − ψ(j)

n

∥∥∥
1
≤ ε

∥∥ψ̄n∥∥∞. It is straightforward to show that there must exist

∥∥∥fn − f (j)
n

∥∥∥
1

=
1∥∥ψ̄n∥∥∞

∥∥∥ψn − ψ(j)
n

∥∥∥ ≤ ε
Thus, we have N1(ε

∥∥ψ̄n∥∥∞ ,Ψn) = N1(ε,Fn). Therefore, Assumption B.1(a) implies the covering number

condition in Pollard (1984).

By construction, it is obvious that |fni| ≤ 1 almost surely for all n. Furthermore, ‖fni‖2 ≤
σn
‖ψ̄n‖∞

for all

n. Using his notation, let δn = σn
‖ψ̄n‖∞

and αn =
‖ψ̄n‖∞ρn

δ2n
. Observe that

nδ2
nα

2
n = n

ρ2
n

σ2
n

and by Assumption B.1(b), we havelog(n) = o
(
n
ρ2n
σ2
n

)
. Hence, all the conditions for Theorem 2.37 in Pollard

(1984) are satis�ed. As a direct result of the theorem, we have

sup
t∈T

∣∣∣∣∣ 1n
n∑
i=1

fni(t)− E [fni(t)]

∣∣∣∣∣ = op

(
ρn∥∥ψ̄n∥∥∞

)

By multiplying
∥∥ψ̄n∥∥∞ on both sides, we have the desired result:

sup
t∈T

∣∣∣∣∣ 1n
n∑
i=1

ψni(t)− E [ψni(t)]

∣∣∣∣∣ = op (ρn)
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The following lemma is used to verify Assumption A.1 (d) to prove Theorem 3.2.

Lemma B.2. Let (y0, w) be given and θ = h(y0, w). Under Assumption 3.1 and 3.2,

sup
y∈N (θ,δn)

∣∣∣Ĝ(1)
d (y|w)− Ĝ(1)

d (θ|w)−G(1)
d (y|w) +G

(1)
d (θ|w)

∣∣∣ = op(rn)

The proof is long and provided in Subsection B.1.

For the estimation of the joint distribution, the following lemma is used to prove Theorem 3.3.

Lemma B.3. Let (y0, y1) ∈ R2 and x ∈ X be given. Under Assumptions 3.1 and 3.3, we have

sup
z∈N (ζ,δn)

∣∣∣Ĝd(y|x, z)− Ĝd(y|x, ζ)−Gd(y|x, z) +Gd(y|x, ζ)
∣∣∣ = op(rn) (48)

and

sup
z∈N (ζ,δn)

∣∣∣Ĝ(1)
d (y|x, z)− Ĝ(1)

d (y|x, ζ)−G(1)
d (y|x, z) +G

(1)
d (y|x, ζ)

∣∣∣ = op(rn) (49)

B.1 Proof of Lemma B.2

Let

β =

(
Gd(y|w),

∂Gd(y|w)

∂w′

)′
and recall that the weighted-least-square estimate of β by solving the weigh problem (21) is given by

β̂ = (W′KW)−1W′KY (50)

Note that Y is a vector of 1{Yi ≤ y,Di = 1}. De�ne a random variable Ri(y) by

Ri(y) = 1{Yi ≤ y,Di = 1} −Gd(y|Wi)

By construction, E[Ri(y)|W] = 0 and |Ri(y)| ≤ 1.

By the Taylor theorem,

Gd(y|Wi) = Gd(y|w) +
∂Gd(y|w)

∂w′
(Wi − w) +Qi(y, w)

where Qi(y, w) is the remainder term given by

Qi(y, w) =
1

2
(Wi − w)′

∂2Gd(y|w̄i)
∂w∂w′

(Wi − w)

for some intermediate value w̄i that lies between Wi and w. By Assumption 3.2(a),

|Qi(y, w)| ≤ C

2
‖Wi − w‖2

for some constant C.
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Now we can write

1{Yi ≤ y,Di = d} = Gd(y|w) +
∂Gd(y|w)

∂w′
(Wi − w) +Qi(y, w) +Ri(y)

or

Y = Wβ + Q + R (51)

where Q and R are the vectors of Qi's and Ri's, respectively. Plug the expression (51) into the formula (50)

to obtain

β̂ − β = (W′KW)−1W′K(Q + R) (52)

To study the asymptotic behaviors of β̂ − β, it is useful to adopt the following normalization. Let B be

a (m+ 1)× (m+ 1) diagonal matrix de�ned by

B =

(
1 0

0 bIm

)

where Im is an m×m identity matrix and b is the bandwidth. Rewrite equation (52) as

β̂ − β = B−1

(
1

n
W′bKWb

)−1
1

n
W′bK(Q + R) (53)

where Wb = WB−1, the vector of deviations of Wi's from w normalized by the bandwidth, i.e.,

Wb =


1

(
Wi−w
b

)′
...

...

1
(
Wn−w
b

)′


We are interested only in Ĝ
(1)
d (y|w)−G(1)

d (y|w). Since Zi is the mth element ofWi, Ĝ
(1)
d (y|w)−G(1)

d (y|w)

is the (m + 1)th element of β̂ − β. Hence, I particularly let ωn(w) be the (m + 1)th diagonal element in(
1
nW

′
bKWb

)−1
. Further, the (m+ 1)th element of 1

nW
′
bK(Q + R) can be written as

1

n

n∑
i=1

(
Zi − z
b

)
Kb(Wi − w) [Ri(y) +Qi(y, w)]

Therefore, the formula for Ĝ
(1)
d (y|w)−G(1)

d (y|w) is

Ĝ
(1)
d (y|w)−G(1)

d (y|w) =
ωn(w)

bn

n∑
i=1

(
Zi − z
b

)
Kb(Wi − w) [Ri(y) +Qi(y, w)] (54)

For each t ∈ [−1, 1], de�ne

ψni(t) =
1

b

(
Zi − z
b

)
Kb(Wi − w) [Ri(θ + δnt) +Qi(θ + δnt, w)−Ri(θ)−Qi(θ, w)] (55)
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Then, for any y ∈ N (θ, δn),

Ĝ
(1)
d (y|w)− Ĝ(1)

d (θ|w)−G(1)
d (y|w) +G

(1)
d (θ|w) =

ωn(w)

n

n∑
i=1

ψni(t)

for some t ∈ [−1, 1] such that y = θ + δnt.

Therefore, what we want to show becomes

sup
t∈[−1,1]

∣∣∣∣∣ωn(w)

n

n∑
i=1

ψni(t)

∣∣∣∣∣ = op(rn)

By the results in Ruppert and Wand (1994) and Lu (1996), we know that

ωn(w) =
1

κ2fW (w)
+ op(1)

and

E[ψni(t)] = b2κ2fW (w) [B1(θ + δnt, d, w)−B1(θ, d, w)] + o(rn)

where B1 is the leading term of the bias as de�ned in Theorem 3.1. By Assumption 3.1, B1 is bounded and

continuous in y. Hence, as δn = o(1),

B1(θ + δnt, d, w)−B1(θ, d, w) = o(1)

uniformly and so E[ψni(t)] is o(rn) uniformly over t ∈ [−1, 1].

Note that

sup
t∈[−1,1]

∣∣∣∣∣ωn(w)

n

n∑
i=1

ψni(t)

∣∣∣∣∣ = |ωn(w)| sup
t∈[−1,1]

∣∣∣∣∣ 1n
n∑
i=1

ψni(t)

∣∣∣∣∣
≤ |ωn(w)| sup

t∈[−1,1]

∣∣∣∣∣ 1n
n∑
i=1

ψni(t)− E[ψni(t)]

∣∣∣∣∣
+|ωn(w)| sup

t∈[−1,1]

|E[ψni(t)]|

Now it remains to show that

sup
t∈[−1,1]

∣∣∣∣∣ 1n
n∑
i=1

ψni(t)− E[ψni(t)]

∣∣∣∣∣ = op(rn)

The proof closely follows Lemma B.1. Let Ψn = {ψn(t) : t ∈ [−1, 1]}.

Lemma B.4. Under the assumptions of Lemma B.2,

sup
t∈[−1,1]

∣∣∣∣∣ 1n
n∑
i=1

ψni(t)− E[ψni(t)]

∣∣∣∣∣ = op(rn)

Proof. I verify each condition for Lemma B.1. C will denote a generic positive constant with di�erent values

in di�erent places. First, I claim that Qi(y, w) is of negligible order compared to the term arising from Ri(y).
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By Assumption 3.2(a), there exists a positive constant C such that

(Wi − w)′
∂2Gd(y|w̄i)
∂w∂w′

(Wi − w) ≤ C(Wi − w)′(Wi − w)

Using the standard change-of-variable method for kernel estimators, let Wi = w + bU and w̄i = w + bū.

Then,

Qi(y, w) =
b2

2
U ′
∂2Gd(y|w + bū)

∂w∂w′
U

≤ Cb2U ′U

for some positive constant C. By Assumption 3.2 (c), U ′U is bounded when multiplied by the kernel function.

While Ri(y) does not shrink, the order of Qi(y, w) is b2, which converges to zero. Therefore, the leading

term of ψni(t) is associated with Ri(y).

STEP 1. We know that |Ri(y)| ≤ 1 for any y. Also note that∣∣∣∣(Zi − zb

)
Kb(Wi − w)

∣∣∣∣ ≤ 1

bm
sup
u∈Rm

|uK(u)|

Therefore, ∣∣∣∣1b
(
Zi − z
b

)
Kb(Wi − w) {Ri(θ + δnt)−Ri(θ)}

∣∣∣∣ ≤ C

bm+1

for a positive constant C. Since Qi(y, w) of negligible order,
∥∥ψ̄n∥∥∞ has an order of 1

bm+1 .

STEP 2. In this step, I calculate the covering number. To calculate the L1-distance between two elements

of Ψn, take arbitrary t and t
′ from [−1, 1]. Without loss of generality, suppose that t < t′. Then

Ri(θ + δnt)−Ri(θ + δnt
′) = 1{θ + δnt < Yi ≤ θ + δnt

′, Di = d}

−Gd(θ + δnt
′|Wi) +Gd(θ + δnt|Wi)

Thus,

E [|Ri(θ + δnt)−Ri(θ + δnt
′)| |Wi] ≤ 2 |Gd(θ + δnt

′|Wi)−Gd(θ + δnt|Wi)|

≤ 2 sup
(y,w)∈R×W

∣∣∣∣∂Gd(y|w)

∂y

∣∣∣∣ δn|t− t′|
and by the same algebra as in STEP 1, we can show that

E

∣∣∣∣1b
(
Zi − z
b

)
Kb(Wi − w) {Ri(θ + δnt)−Ri(θ + δnt

′)}
∣∣∣∣ ≤ C

bm+1
|t− t′|

Also, it follows from STEP 1 that the term containing Qi is ignorable. Hence, we have

‖ψni(t)− ψni(t′)‖1 ≤
C

bm+1
|t− t′|

For any ε ∈ (0, 1), let εn = bm+1
∥∥ψ̄n∥∥∞ ε and let J be the greatest integer smaller than or equal to 2C

εn
.

Always we can take a set {tj ∈ [−1, 1] : j = 1, 2, · · · , J} such that for any t ∈ [−1, 1] there always exists

j∗ ∈ {1, 2, · · · , J} satisfying |t − tj∗ | ≤ εn
C . Then, for any ψni(t) ∈ Ψn, there always exists ψni(tj∗) ∈ Ψn
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such that

‖ψni(t)− ψni(tj∗)‖1 ≤ C

bm+1
|t− tj∗ |

≤ εn
bm+1

=
∥∥ψ̄n∥∥∞ ε

Hence {ψ(j)
ni ∈ Ψn : ψ

(j)
ni = ψn(·, tj), j = 1, 2, · · · , J} satis�es the condition in De�nition B.1. Since J ≤ 2C

εn
=

2C
κ̄1ε

, the assumption is veri�ed.

STEP 3. Now I compute the order of E
[
ψ2
ni(t)

]1/2
. The algebra is exactly the same as the algebra used

to calculate the variance in Theorem 3.1. Note that

E[R2
i (θ + δnt)|Wi] = var[1{Yi ≤ θ + δnt,Di = d} − 1{Yi ≤ θ,Di = d}|Wi]

≤ |Gd(θ + δn|Wi)−Gd(θ|Wi)|

≤ Cδn

for some constant C. Hence, the leading term of E[ψ2
ni(t)] is

E

[
1

b2

(
Zi − z
b

)2

K2
b (Wi − w)R2

i (θ + δnt)

]
=

Cδn
b2

E

[(
Zi − z
b

)2

K2
b (Wi − w)

]

≤ Cδn
bm+2

Still Qi is of smaller order than Ri by the same reasoning as in the previous steps. Therefore, ‖ψni‖2 has

an order of
√

δn
bm+2 .

STEP 4. Finally I verify Assumption B.1(b). In our case, ρn is replaced with rn. We want to show that

‖ψni‖2

√
log(n)

n
= o(rn)

Since rn ≥ 1√
nbm+2

, by Assumption 3.2(d),

‖ψni‖2

√
log(n)

n
=

√
δn log(n)√
nbm+2

= o(rn)

as desired.

B.2 Proof of Lemma B.3

Equation (48) and (49) can be proved along the same lines. Since the proof for equation (49) is more involved,

I only prove the equation. For ease of notation, let wζ = (x′, z)′. From the expression (53), we have

Ĝ
(1)
d (y|w)−G(1)

d (y|w) =
ωn(w)

n

n∑
i=1

1

b

(
Zi − z
b

)
Kb(Wi − w) {Ri(y) +Qi(y, w)} (56)
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Corollary 2 in Masry (1996) implies that

sup
z∈N (ζ,δn)

∣∣∣∣ωn(w)− 1

κ2fW (w)

∣∣∣∣ = op(1)

Since fW is bounded and continuous and δn = o(1),

sup
z∈N (ζ,δn)

∣∣∣∣ 1

κ2fW (w)
− 1

κ2fW (wζ)

∣∣∣∣ = o(1)

Thus,

sup
z∈N (ζ,δn)

∣∣∣∣ωn(w)− 1

κ2fW (wζ)

∣∣∣∣ = op(1)

For each t ∈ [−1, 1], de�ne

φni(t) =
1

b

{(
Zi − zt

b

)
Kb(Wi − wt)−

(
Zi − ζ
b

)
Kb(Wi − wζ)

}
Ri(y)

+
1

b

(
Zi − zt

b

)
Kb(Wi − wt)Qi(y, wt)

−1

b

(
Zi − ζ
b

)
Kb(Wi − wζ)Qi(y, wζ)

where zt = ζ + δnt and wt = (x′, zt)
′. Let Φn be the family of φni's, i.e.,

Φn = {φni(t) : t ∈ [−1, 1]}

Since

sup
z∈N (ζ,δn)

∣∣∣Ĝ(1)
d (y|w)− Ĝ(1)

d (y|wζ)−G(1)
d (y|w) +G

(1)
d (y|x,wζ)

∣∣∣
=

(
1

κ2fW (wζ)
+ op(1)

)
sup

t∈[−1,1]

∣∣∣∣∣ 1n
n∑
i=1

φni(t)

∣∣∣∣∣
≤

(
1

κ2fW (wζ)
+ op(1)

)
sup

t∈[−1,1]

∣∣∣∣∣ 1n
n∑
i=1

φni(t)− E[φni(t)]

∣∣∣∣∣
+

(
1

κ2fW (wζ)
+ op(1)

)
sup

t∈[−1,1]

|E[φni(t)]|

it su�ces to show

sup
t∈[−1,1]

∣∣∣∣∣ 1n
n∑
i=1

φni(t)− E[φni(t)]

∣∣∣∣∣ = op(rn) (57)

and

sup
t∈[−1,1]

|E[φni(t)]| = o(rn) (58)

(57) is shown in Lemma below. To see (58), note that 1
κ2fW (wζ)E[φni(t)] is the bias of Ĝ

(1)
d (y|wt) −

Ĝ
(1)
d (y|wζ). By Theorem 3.1, we know

E[φni(t)] = κ2fW (wζ)
[
b2 (B1(y, wt)−B1(y, wζ)) + o(b2)

]
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Since B1 is continuous in w and |wt − wζ | ≤ δn, it follows that

sup
t∈[−1,1]

|E[φni(t)]| = o(rn)

Lemma B.5. Under the assumptions of Theorem 3.1 and Lemma B.3,

sup
t∈[−1,1]

∣∣∣∣∣ 1n
n∑
i=1

φni(t)− E [φni(t)]

∣∣∣∣∣ = op(rn)

Proof. It is a result of Lemma B.1. As in Lemma B.4, Qi(y, w) is of smaller order than Ri(y), so will be

ignored when calculating convergence rates. Also, C will denote a generic positive constant, which may

represent di�erent values in di�erent places.

STEP 1. For z ∈ N (ζ, δn),∣∣∣∣(Zi − zb

)
Kb(Wi − w)−

(
Zi − ζ
b

)
Kb(Wi − wζ)

∣∣∣∣ ≤ C

bm
|z − ζ

b
|

≤ Cδn
bm+1

for some positive constant C. Since |Ri(y)| ≤ 1,∣∣∣∣1b
{(

Zi − z
b

)
Kb(Wi − w)−

(
Zi − ζ
b

)
Kb(Wi − wζ)

}
Ri(y)

∣∣∣∣ ≤ Cδn
bm+2

I will set the envelope function φ̄n = C̄δn
bm+2 for a su�ciently large positive constant C̄.

STEP 2. I calculate the covering number. For t, t′ ∈ [−1, 1], by the same algebra used in STEP 1,

|φni(t)− φni(t′)| ≤
Cδn
bm+2

|t− t′|

Thus, ‖φni(t)− φni(t′)‖1 ≤
C1δn
bm+2 |t− t′| for a positive constant C1.

Let ε > 0 be given. And let J be the largest integer such that J ≤ 2C1ε
C̄

. We can take a partition

{t1, t2, · · · , tJ} on [−1, 1] such that {N (tj ,
C̄ε
C1

) : j = 1, 2, · · · , J} covers [−1, 1]. Consider a �nite subset of

Φn, {φni(t1), φni(t2), · · · , φni(tJ)}. For any φni(t) ∈ Φn, there exists j
∗ ≤ J such that |t− tj∗ | ≤ C̄ε

C1
. Then,

‖φni(t)− φni(tj∗)‖1 ≤ C1δn
bm+2

|t− tj∗ |

≤ C̄δn
bm+2

ε

=
∥∥φ̄n∥∥∞ ε

Thus, Assumption B.1 (a) is satis�ed.

STEP 3. I calculate the order of ‖φni‖2. Since the terms associated with Qi(y, w) are of negligible order,
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the leading term of |φni(t)|2 is

1

b2

{(
Zi − zt

b

)
Kb(Wi − wt)−

(
Zi − ζ
b

)
Kb(Wi − wζ)

}2

R2
i (y)

=
1

b2

(
Zi − zt

b

)2

K2
b (Wi − wt)R2

i (y) +
1

b2

(
Zi − ζ
b

)2

K2
b (Wi − wζ)R2

i (y)

− 2

b2

(
Zi − zt

b

)(
Zi − ζ
b

)
Kb(Wi − wt)Kb(Wi − wζ)R2

i (y)

The same algebra used to calculate the variances in Theorem 3.1 yields

E

[
1

b2

(
Zi − zt

b

)2

K2
b (Wi − wt)R2

i (y)

]
=
κ2

2f
2
W (wt)

bm+2
V1(y, wt) + o

(
1

bm+2

)

and

E

[
1

b2

(
Zi − ζ
b

)2
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where V1 is the leading term of variance de�ned in Theorem 3.1. By Assumption3.1, V1 is continuous in w.

Since |wt − wζ | ≤ δn = o(1),

f2
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Assumption 3.3 implies that there exists a positive constant C such that
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for any t ∈ [−1, 1]. By Assumption 3.3, we have δn
b = o(1). Thus it follows that
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and a straightforward but tedious calculus yields
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Therefore, the order of ‖φni‖2 is
√

δn
bm+2 . By Assumption 3.3,
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√
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Hence, Assumption B.1(b) is satis�ed.
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Table 1: Estimation of the utility function

n = 200 n = 500 n = 1000
b RMSE bias SE RMSE bias SE RMSE bias SE

Design (A)
0.5 0.768 0.073 0.765 0.409 0.036 0.408 0.281 0.004 0.281
1 0.398 0.001 0.398 0.232 0.010 0.232 0.172 0.002 0.172
1.5 0.368 -0.003 0.368 0.222 0.003 0.222 0.161 0.004 0.161
2 0.367 -0.005 0.367 0.223 0.001 0.223 0.161 0.004 0.161
2.5 0.369 -0.006 0.369 0.226 0.000 0.226 0.162 0.004 0.162

Design (B)
0.5 0.387 0.126 0.366 0.172 0.086 0.148 0.128 0.074 0.104
1 0.220 0.079 0.205 0.145 0.081 0.121 0.115 0.073 0.089
1.5 0.219 0.067 0.209 0.144 0.072 0.125 0.113 0.067 0.091
2 0.224 0.061 0.215 0.147 0.067 0.130 0.114 0.063 0.095
2.5 0.228 0.058 0.220 0.149 0.065 0.135 0.115 0.061 0.097

Design (C)
0.5 0.419 -0.015 0.419 0.247 0.017 0.246 0.182 0.006 0.182
1 0.303 0.008 0.303 0.182 0.027 0.180 0.136 0.022 0.135
1.5 0.299 0.014 0.299 0.183 0.031 0.181 0.136 0.030 0.132
2 0.303 0.018 0.302 0.187 0.034 0.184 0.139 0.033 0.135
2.5 0.308 0.021 0.307 0.191 0.034 0.187 0.142 0.035 0.137

Design (D)
0.5 1.056 0.147 1.045 0.643 0.044 0.642 0.448 0.032 0.447
1 0.550 0.032 0.549 0.331 0.023 0.330 0.225 0.007 0.225
1.5 0.489 0.017 0.489 0.295 0.016 0.294 0.200 0.004 0.200
2 0.478 0.008 0.478 0.288 0.014 0.288 0.196 0.002 0.196
2.5 0.480 0.006 0.480 0.288 0.014 0.288 0.195 0.002 0.195

Design (E)
0.5 0.840 0.268 0.797 0.394 0.113 0.377 0.238 0.087 0.221
1 0.356 0.088 0.345 0.210 0.074 0.197 0.148 0.061 0.135
1.5 0.321 0.065 0.314 0.197 0.062 0.187 0.137 0.050 0.127
2 0.315 0.055 0.310 0.198 0.056 0.190 0.136 0.046 0.128
2.5 0.317 0.050 0.313 0.200 0.053 0.192 0.137 0.043 0.130

Design (F)
0.5 0.853 0.079 0.850 0.529 0.013 0.528 0.383 0.025 0.382
1 0.465 0.030 0.465 0.293 0.031 0.291 0.210 0.022 0.209
1.5 0.425 0.028 0.424 0.266 0.032 0.264 0.187 0.024 0.186
2 0.422 0.027 0.421 0.263 0.033 0.261 0.184 0.028 0.182
2.5 0.421 0.026 0.420 0.265 0.033 0.263 0.184 0.031 0.182
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Table 2: Simulation results for the median treatment e�ect

n = 200 n = 500 n = 1000
b RMSE bias SE RMSE bias SE RMSE bias SE

Design (A)
0.5 0.376 -0.012 0.375 0.236 0.015 0.236 0.185 -0.007 0.185
1 0.275 -0.008 0.275 0.168 0.007 0.168 0.113 0.005 0.113
1.5 0.253 -0.008 0.252 0.155 0.005 0.155 0.104 0.008 0.103
2 0.249 -0.007 0.248 0.157 0.004 0.157 0.107 0.006 0.107
2.5 0.250 -0.006 0.250 0.158 0.004 0.158 0.110 0.005 0.110

Design (B)
0.5 0.182 -0.002 0.182 0.119 0.000 0.119 0.090 -0.012 0.090
1 0.175 -0.006 0.175 0.118 -0.005 0.118 0.084 -0.014 0.083
1.5 0.168 0.002 0.168 0.116 0.006 0.115 0.084 0.001 0.084
2 0.168 0.017 0.167 0.119 0.028 0.115 0.089 0.032 0.083
2.5 0.173 0.027 0.170 0.125 0.043 0.117 0.096 0.049 0.083

Design (C)
0.5 0.277 0.007 0.277 0.167 0.032 0.164 0.125 0.024 0.122
1 0.217 0.039 0.213 0.137 0.056 0.125 0.104 0.056 0.087
1.5 0.206 0.053 0.199 0.138 0.068 0.120 0.113 0.073 0.086
2 0.205 0.061 0.195 0.140 0.072 0.120 0.117 0.078 0.087
2.5 0.205 0.063 0.195 0.141 0.072 0.121 0.116 0.075 0.089

Design (D)
0.5 0.450 0.011 0.450 0.286 0.008 0.286 0.194 -0.005 0.194
1 0.334 -0.001 0.334 0.213 0.004 0.213 0.143 -0.001 0.143
1.5 0.312 -0.001 0.312 0.199 0.002 0.199 0.134 0.000 0.134
2 0.306 -0.002 0.306 0.196 0.003 0.196 0.132 0.000 0.132
2.5 0.305 -0.001 0.305 0.196 0.004 0.196 0.133 0.000 0.133

Design (E)
0.5 0.260 -0.010 0.260 0.154 -0.009 0.154 0.110 -0.015 0.109
1 0.226 -0.009 0.226 0.148 -0.007 0.148 0.108 -0.007 0.108
1.5 0.223 0.003 0.223 0.146 0.013 0.145 0.105 0.016 0.104
2 0.222 0.014 0.222 0.147 0.027 0.144 0.108 0.032 0.103
2.5 0.224 0.019 0.223 0.150 0.035 0.146 0.112 0.042 0.104

Design (F)
0.5 0.372 0.012 0.372 0.231 0.019 0.230 0.165 0.011 0.164
1 0.282 0.020 0.281 0.182 0.037 0.179 0.132 0.037 0.127
1.5 0.268 0.030 0.267 0.176 0.046 0.170 0.129 0.048 0.120
2 0.267 0.036 0.265 0.174 0.049 0.167 0.128 0.049 0.118
2.5 0.266 0.038 0.263 0.173 0.050 0.166 0.127 0.048 0.117
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Table 3: Simulation results for Heckman's two-step estimator

n = 200 n = 500 n = 1000
RMSE bias SE RMSE bias SE RMSE bias SE

Design (A)
α̂0 0.180 0.009 0.180 0.110 0.002 0.110 0.079 0.001 0.079
α̂1 0.178 -0.005 0.178 0.114 0.002 0.114 0.078 -0.002 0.078

β̂0 0.109 0.000 0.109 0.071 -0.001 0.071 0.048 -0.001 0.048

β̂1 0.107 0.006 0.107 0.071 0.003 0.071 0.049 0.001 0.049

Design (B)
α̂0 0.334 -0.257 0.214 0.300 -0.267 0.137 0.281 -0.265 0.094
α̂1 0.339 -0.264 0.213 0.298 -0.265 0.136 0.290 -0.273 0.100

β̂0 0.137 -0.025 0.134 0.096 -0.028 0.092 0.068 -0.028 0.062

β̂1 0.146 0.031 0.142 0.094 0.030 0.088 0.071 0.030 0.064

Design (C)
α̂0 0.239 0.197 0.136 0.208 0.190 0.084 0.198 0.187 0.063
α̂1 0.300 0.260 0.149 0.283 0.267 0.093 0.273 0.265 0.064

β̂0 0.091 0.029 0.087 0.063 0.027 0.057 0.047 0.027 0.039

β̂1 0.216 -0.186 0.111 0.199 -0.186 0.072 0.195 -0.188 0.050

Design (D)
α̂0 0.225 0.000 0.225 0.142 0.001 0.142 0.098 0.004 0.097
α̂1 0.223 -0.008 0.223 0.139 -0.001 0.139 0.099 -0.003 0.099

β̂0 0.114 -0.003 0.114 0.071 -0.001 0.071 0.048 0.001 0.048

β̂1 0.107 -0.003 0.107 0.070 -0.002 0.070 0.050 0.000 0.050

Design (E)
α̂0 0.340 -0.176 0.291 0.250 -0.181 0.173 0.217 -0.175 0.128
α̂1 0.343 -0.178 0.293 0.261 -0.190 0.179 0.225 -0.183 0.131

β̂0 0.139 -0.010 0.138 0.092 -0.008 0.091 0.063 -0.009 0.062

β̂1 0.144 0.004 0.144 0.089 0.012 0.088 0.066 0.011 0.065

Design (F)
α̂0 0.229 0.125 0.192 0.176 0.126 0.122 0.148 0.124 0.082
α̂1 0.274 0.177 0.209 0.226 0.187 0.128 0.201 0.179 0.092

β̂0 0.093 0.014 0.092 0.059 0.015 0.057 0.043 0.015 0.040

β̂1 0.195 -0.161 0.109 0.174 -0.160 0.069 0.166 -0.159 0.050
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Table 4: Simulation results for Andrews-Schafgans' semiparametric estimator

n = 200 n = 500 n = 1000
γn RMSE bias SE RMSE bias SE RMSE bias SE

Design (A)
2% 0.482 0.039 0.480 0.315 0.040 0.313 0.218 0.012 0.218

α̃0 5% 0.316 0.041 0.314 0.205 0.042 0.200 0.148 0.036 0.144
10% 0.236 0.065 0.227 0.155 0.066 0.140 0.123 0.063 0.105

2% 0.494 0.019 0.493 0.318 0.021 0.317 0.219 0.021 0.218
α̃1 5% 0.322 0.035 0.320 0.209 0.038 0.205 0.149 0.043 0.143

10% 0.245 0.062 0.237 0.159 0.062 0.146 0.121 0.063 0.104

Design (D)
2% 0.512 0.064 0.508 0.331 0.045 0.328 0.230 0.040 0.226

α̃0 5% 0.342 0.080 0.333 0.219 0.061 0.210 0.160 0.059 0.149
10% 0.253 0.092 0.236 0.172 0.078 0.154 0.135 0.082 0.107

2% 0.512 0.032 0.511 0.325 0.028 0.324 0.237 0.049 0.232
α̃1 5% 0.333 0.050 0.329 0.218 0.051 0.212 0.156 0.058 0.145

10% 0.251 0.074 0.240 0.171 0.075 0.153 0.133 0.079 0.107
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Table 5: Comparison of RMSE

Nonparametric Hekcman's 2-step Andrews-Schafgans
n med(Y1 − Y0|X = 0) α0 α1 α0 α1

Design (A)
200 0.249 0.181 0.179 0.236 0.245
500 0.155 0.110 0.114 0.155 0.159
1000 0.104 0.079 0.078 0.123 0.121

Design (B)
200 0.168 0.332 0.335
500 0.116 0.299 0.295 N.A.
1000 0.084 0.280 0.289

Design (C)
200 0.205 0.238 0.301
500 0.137 0.209 0.283 N.A.
1000 0.104 0.199 0.272

Design (D)
200 0.305 0.226 0.224 0.253 0.251
500 0.196 0.143 0.139 0.172 0.171
1000 0.132 0.097 0.100 0.135 0.133

Design (E)
200 0.222 0.338 0.342
500 0.146 0.249 0.261 N.A.
1000 0.105 0.216 0.225

Design (F)
200 0.266 0.224 0.278
500 0.173 0.174 0.228 N.A.
1000 0.127 0.148 0.202

The table reports the root mean squared error of three estimators. The bandwidth for the nonparametric estimator is chosen

to minimize RMSE among �ve values considered in the simulations and the threshold level for Andrews-Schafgans' estimator

is �xed at 10% which gives the smallest RMSE among the levels considered in the simulations.
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Table 6: Comparison bias

Nonparametric Heckman's 2-step Andrews-Schafgans
n med(Y1 − Y0|X = 0) α0 α1 α0 α1

Design (A)
200 -0.007 0.011 -0.004 0.039 0.019
500 0.005 0.002 0.003 0.040 0.021
1000 0.008 0.001 -0.002 0.012 0.021

Design (B)
200 0.002 -0.253 -0.260
500 0.006 -0.266 -0.263 N.A.
1000 -0.014 -0.264 -0.271

Design (C)
200 0.061 0.198 0.259
500 0.056 0.192 0.266 N.A.
1000 0.056 0.190 0.264

Design (D)
200 -0.001 0.000 -0.007 0.064 0.032
500 0.003 0.002 0.000 0.045 0.028
1000 0.000 0.004 -0.002 0.040 0.049

Design (E)
200 0.014 -0.174 -0.176
500 0.013 -0.180 -0.189 N.A.
1000 0.016 -0.174 -0.183

Design (F)
200 0.038 0.125 0.176
500 0.050 0.128 0.186 N.A.
1000 0.048 0.125 0.178

The table reports the bias of three estimators. The bandwidth for the nonparametric estimator is choosen to minimize RMSE

among {0.5, 1.1.5, 2.0, 2.5} and the threshold level for Andrews-Schafgan's estimator is �xed at 2% which gives the smallest bias

among the levels considered in the simulations.
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Table 7: Description of Variables

label description Unit
yield Log of maize harvest per acre Log(Kg/Acre)
hybrid Indicator variable for planting hybrid maize binary
fertil Amount of fertilizer used per 10 acres Kg/(10*Acre)
labor Days of labor worked on the plot per 10 acres Days/(10*Acre)
area Area of plot Acre
rain09 Rainfall over July 2009 to June 2010 mm/100
avgrain Rainfall over the last decade mm/100
road Distance to secondary road network Km

soil − good Dummy for soil quality. 1 if good binary
soil − poor Dummy for soil quality. 1 if poor binary

edu Years of schooling of head of household, with top code 15. years
sex Dummy for sex of head of household. 1 if male binary

Table 8: Summary Statistics

All Non-hybrid Hybrid
mean median std. dev. mean median std. dev. mean median std. dev.

hybrid 0.5561 1 0.4970 0 0 0 1 1 0
yield 5.9386 5.9915 0.9534 5.7092 5.7978 0.8915 6.1218 6.1598 0.9619
fertil 8.0522 5.4945 21.0635 5.2878 3.3333 8.7661 10.2591 7.1429 26.9417
labor 7.3329 5.2941 12.1202 7.0105 5.2381 13.6382 7.5902 5.3333 10.7544
area 1.0217 0.8700 0.8332 1.0697 0.9500 0.8121 0.9833 0.8100 0.8480
rain09 9.2221 8.6000 1.8383 9.0004 8.3700 1.6594 9.3992 8.8100 1.9521
avgrain 8.5536 8.3100 0.8601 8.4358 8.1600 0.7973 8.6477 8.4000 0.8964
edu 5.4910 6.0000 4.4037 4.5153 4.0000 4.1352 6.2699 7.0000 4.4576
road 1.2247 1.6572 1.7528 1.4944 1.9657 1.6631 1.0094 1.3913 1.7930

soil − good 0.4607 0 0.4986 0.4674 0 0.4992 0.4553 0 0.4982
soil − poor 0.0958 0 0.2944 0.0917 0 0.2887 0.0992 0 0.2990

sex 0.7744 1 0.4180 0.7464 1 0.4353 0.7967 1 0.4026
sample size 2212 982 1230
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Table 9: Probit regression

coe�cient t-stat
fertil 0.0250 7.18 ***
labor -0.0047 -1.78 *
area -0.0459 -1.36
rain09 -0.0214 -0.59

soil − good -0.0568 -0.97
soil − poor 0.1003 1.02

edu 0.0390 5.57
sex 0.0791 1.16

avgrain 0.1469 1.89 *
road -0.0605 -3.60 ***

constant -0.0605 -3.60 ***
sample size 2212

Dependent variable is hybrid.

Table 10: OLS and IV regression results

OLS IV regression
coe�cient t-stat coe�cient t-stat

hybrid 0.2683 7.16 *** 1.0172 2.39 **
fertil 0.0114 11.38 *** 0.0097 6.59 ***
labor 0.0045 2.56 ** 0.0052 2.67 ***
area -0.1808 -8.12 *** -0.1600 -5.96 ***
rain09 0.0394 3.92 *** 0.0234 1.65 **

soil − good 0.0665 1.73 ** 0.0774 1.84 **
soil − poor -0.2136 -3.30 *** -0.2416 -3.36 ***

edu 0.0294 6.62 *** 0.0150 1.57
sex 0.0815 1.82 ** 0.0693 1.41

constant 5.2503 49.22 *** 5.0562 31.72
sample size 2212 2212
adj. R2 0.2036 0.0632

Dependent variable is yield. For instruments, road and avgrain are used.
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Table 11: Heckman's two-step estimator

Non-hybrid Hybrid
coe�cient t-stat coe�cient t-stat

fertil 0.0022 3.88 *** 0.0040 1.22
labor -0.0006 -0.60 0.0077 1.11
area -0.0260 -2.07 ** -0.0862 -1.20
rain09 0.0766 3.94 *** -0.0623 -1.83

soil − good -0.0293 -0.52 0.1671 1.40
soil − poor -0.3490 -3.62 *** -0.2516 -1.26

edu 0.0135 1.13 -0.0325 -1.68 *
sex 0.0463 0.73 0.0808 0.57

constant 4.8974 24.06 *** 8.2951 12.91 ***
sample size 982 1230

Dependent variable is yield.

Table 12: Average treatment e�ect using Heckman's two-step estimator

Average treatment e�ect of hybrid maize
Other regressors �xed at their mean 1.7760
Other regressors �xed at their median 1.7879

The average treatment e�ects are calculated using the results in Table 11. They imply the expected di�erence in yields between

hybrid maize and non-hybrid maize when other regressors are �xed at their mean or median.
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Table 13: Cross-validation results

b Sum of squared errors
whole sample poor soil quality good soil quality

0.3 7614.2 5233.1 4040.4
0.4 6782.1 3970.5 3614.2
0.5 6570.1 4678.1 3422.2
0.6 6504.5 4771.0 3440.8
0.7 6446.3 4805.2 3327.1
0.8 6404.6 4849.3 3213.5
0.9 6376.5 4869.8 3201.8
1.0 6340.7 4830.8 3105.9
1.1 6332.2 4723.0 3025.4
1.2 6332.7 4441.2 2980.6
1.3 6337.6 3991.5 2958.6
1.4 6341.5 3652.0 2945.1
1.5 6342.2 3523.4 2933.7
1.6 6340.0 3486.3 2922.2
1.7 6335.9 3474.7 2911.1
1.8 6331.1 3520.0 2901.6
1.9 6332.7 3518.1 2894.5
2.0 6326.4 3518.7 2889.6
2.1 6325.1 3518.4 2886.4
2.2 6326.4 3519.0 2884.3
2.3 6329.6 3519.8 2882.8
2.4 6334.0 3520.4 2881.7
2.5 6338.9 3520.5 2881.0
2.6 6343.9 3520.1 2880.7

2.7 6348.7 3519.2 2880.8
2.8 6353.2 3518.0 2881.4
2.9 6357.5 3516.9 2882.6
3.0 6361.6 3516.4 2884.1

The minimum values are reported in bold.

57



Table 14: Median treatment e�ect of hybrid maize

fertil median treatment e�ect 90% C.I.
whole sample

34.95 Kg/acre 0.5123 -0.0904 2.1093
44.95 Kg/acre 0.5725 0.0603 2.4709
54.95 Kg/acre 0.9944 0.2109 2.7421
64.95 Kg/acre 1.4162 0.3013 2.8626
74.95 Kg/acre 1.9888 0.4219 2.9832

good soil quality
34.95 Kg/acre 0.8533 -0.2297 2.1660
44.95 Kg/acre 1.0830 0.1969 2.7896
54.95 Kg/acre 1.3784 0.3938 3.0850
64.95 Kg/acre 2.1004 0.5907 3.2819
74.95 Kg/acre 2.7896 0.7876 3.4131

poor soil quality
34.95 Kg/acre -0.3892 -1.0009 1.2511
44.95 Kg/acre -0.3058 -0.8897 1.6125
54.95 Kg/acre -0.1112 -0.6950 2.0017
64.95 Kg/acre 0.1390 -0.5560 2.2520
74.95 Kg/acre 0.3892 -0.4170 2.4188

The results are conditional on other variables being �xed at their respective median. The �nal two columns report the lower

bound and the upper bound of 90% con�dence interval calculated from bootstrap of 1000 repetitions.

Table 15: Optimal Subsidy Level

distance optimal subsidy level 90% C.I.
no schooling

1km 0.3808 -0.1367 1.7904
5km 0.3928 -0.1367 1.8931
10km 0.4887 -0.1534 1.9348

6 years of schooling
1km 0.2909 -0.1367 1.1406
5km 0.3328 -0.1256 1.3572
10km 0.3808 -0.1256 1.7043

9 years of schooling
1km 0.2249 -0.1367 1.0434
5km 0.2789 -0.1339 1.1684
10km 0.3508 -0.1145 1.4655

The results are conditional on other variables being �xed at their respective median. The �nal two columns report the lower

bound and the upper bound of 90% con�dence interval calculated from bootstrap of 1000 repetitions.
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