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Abstract

How much do trade frictions contribute to developing countries’ low and disparate agricultural
productivity? To answer this question, I develop a quantitative model of agricultural special-
ization, trade, and productivity. In the model, farmers in a small open economy grow many
crops in plots of varying qualities. Trade frictions within and across national borders reduce
productivity through two channels: they impede specialization based on comparative advantage
and increase the price of imported intermediate inputs. The model’s key parameters determine
land heterogeneity, barriers to trade, and consumption substitutability. To estimate them, I
construct a detailed data set on Peruvian agriculture with information about crop prices, yields,
land allocations, freight rates, and household expenditures. Using these estimates, I assess the
model’s performance at the baseline and produce counterfactuals in which isolated regions expe-
rience improved market access to Lima, Peru’s largest urban market. Moving an isolated region
from the 90th to the 50th percentile of the distribution of transport costs to Lima improves
that region’s Total Factor Productivity by almost 10.0 percent: 8.7 percent through improved
specialization and 1.2 percent by allowing for cheaper intermediate input use.
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1 Introduction

Farmers in developing countries face major barriers to trade in domestic and international markets
due to poor infrastructure, adverse geography, and the spatial dispersion characteristic of rural
populations. At the same time, agricultural productivity varies enormously across space. Differences
in agricultural productivity account for sizable productivity gaps between rich and poor countries.1

And within developing countries, where agriculture is vital to large fractions of the workforce, this
contrast is often mirrored in regional disparities. Comparing regions in Peru, the focus of this paper,
I calculate that the the 90-10 quantile ratio of Total Factor Productivity is about 8.2

Economic performance and market access are often linked together by researchers and policy
makers. The World Bank, for example, considers difficult market access one of the reasons be-
hind the uneven agricultural performance across developing countries (World Bank, 2008, p. 54).
A recent Inter-American Development Bank report reflects on how transport costs limit overall
exporting activity: “high domestic transport costs can push exports to concentrate in just a few
areas [...], while squeezing gains or simply locking out of trade large swaths of the country” (See
Mesquita Moreira, Blyde, Volpe, and Molina (2013), p. 3.)

My goal is to measure how trade frictions translate into low and disparate agricultural pro-
ductivity in developing countries. I extend recent advances in the trade literature to develop a
quantitative theory that relates productivity in agriculture to trade and specialization. In the the-
ory, farmers can grow many crops in land plots of different qualities. They can also trade their crops
and purchase intermediate inputs, at a cost, within and across national borders. When access to
markets is costly, farmers pay high prices for their purchases and collect low prices for their sales.
Productivity is then low because farmers find it difficult to specialize according to comparative
advantage and because they cut back their use of intermediate inputs.

To quantify the theory, I construct a detailed data set consisting of several sources of data on
Peruvian agriculture. First, I use government statistics on land allocation, production, and prices
to estimate crop-specific land quality across region, as well as within-region heterogeneity. Second,
to estimate within-country trade frictions, I combine data on within-country freight rates with data
on geography and the quality of the transportation network. Finally, I use household consumption
data to estimate the elasticity of substitution among crops in demand. Bringing the theory to data
I find that, in a typical isolated region in Peru, improving access to Lima, the country’s largest
market, improves total factor productivity by almost to 10 percent: 8.7 percent through improved
specialization and 1.2 percent by allowing for cheaper intermediate input use.

Peru is an ideal setting for this study. It is a middle income country where a few large, urban
markets are often the destination of traded agricultural produce. Eighty six percent of the national

1Gollin, Lagakos, and Waugh (2011); Restuccia, Yang, and Zhu (2008)
2Based on my quantitative model, I use Revenue TFP (TFPR) in the sense used by Hsieh and Klenow (2009), who

find that the 90-10 inter-quantile ratio of TFPR for manufacturing plants is about 4 in India and China. Agricultural
value-added per worker, a measure directly observable in the data at a coarser level of aggregation, points in the same
direction. The gap between the most productive region and the least productive one, according to that measure, is
about 12.
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highway system is unpaved, yet dirt roads coexist with modern highways. Geography also plays a
major role in shaping trade patterns: the country is divided in two by the Andes, with rainforests
to the east and deserts and fertile valleys to the west. Transport and geography in Peru produce
large variation in access to markets, as shipping crops even between relatively close locations can
be very costly.3 Geography also gives substantial scope for specialization because weather and land
quality change drastically within the country. Finally, about 25 percent of the labor force is still
employed in agriculture, similar to other developing countries.4

In addition to these substantive results for Peru, this paper also makes three methodological
contributions. First, it presents a theory that connects tightly with data on land allocations and
productivity. While trade models make predictions for both trade shares and factor allocations,
the latter are often ignored–either because the model being used only delivers simple expressions
for trade shares, or because the allocation of factors across activities is difficult to observe. My
approach allows me to focus attention on this other side of trade models and explore its implications
for productivity.

Second, I obtain a simple estimating equation for the elasticity of land allocation to the price
changes induced by trade. The estimating equation captures a basic economic intuition inherent
to models where factors of production are heterogeneous: as more land is allocated to a crop, the
average productivity of the land used to grow that crop decreases, with an elasticity directly related
to the heterogeneity of land. The equation also allows for a careful exploration of measurement
error in data sets commonly used in this line of research.

Third, I bring the model to data by estimating its parameters and then comparing simulations to
data. This approach contrasts with a current alternative in the literature, which sidesteps the need
for estimation by assuming that the model fits the data perfectly, and then exploits the structure
of the model to evaluate policy changes. By exploring the sources of error in the model, I am able
to learn about its strengths and weaknesses, as well as gain a more nuanced understanding of my
policy counterfactuals.

Contributions Relative to the Literature

A recent literature, exemplified by Gollin, Parente, and Rogerson (2007) has highlighted the role
of agriculture in understanding the low productivity of developing countries. Restuccia, Yang, and
Zhu (2008) have quantified how barriers to the use of modern intermediate inputs and barriers to
mobility of labor can generate the productivity gaps observed in the data.5 I contribute to this
literature by showing that the quality of transportation in developing countries is a friction that

3For example, in 2013 a 209 kilometer (130 mile) trip from the district of Uchumarca to the district of Chachapoyas
doubles the price of a kilogram of potatoes, due to freight rates alone (source Regional Direction of Agriculture, La
Libertad).

4The share of labor in agriculture in developing countries ranges from 64 percent in Sub-Saharan Africa to 22
percent in Eastern Europe and Latin America (See World Bank, 2008, p.27-28).

5Restuccia, Yang, and Zhu (2008) have also shown that there is large dispersion in agricultural labor productivity
across countries. They estimate that the GDP per worker in agriculture in the top 5 percent richest countries in the
world is 78 times larger than that of the bottom 5 percent. Gollin, Lagakos, and Waugh (2011) conclude that, despite
measurement and data quality problems, poor countries are disproportionately unproductive in agriculture.
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leads to a suboptimal use of modern inputs, and that alleviating this friction can lead to a more
productive allocation of land and labor.

Land heterogeneity is a key element in my model. Like Costinot, Donaldson, and Smith (2012)
and Fajgelbaum and Redding (2013), I treat unobserved land heterogeneity as draws from a Type II
extreme-value distribution. My focus, however, is quite different from those two papers. The first,
looks at the role of international trade in mitigating the effects of global warming, and the second
at the link between international trade and structural transformation. My goal is to understand
how market access –transportation costs– affect agricultural TFP. Hence, my model of technology
separates intermediate inputs from land, which allows me to separately measure the role of special-
ization and input use in accounting for productivity dispersion. Further, I solve the model without
resorting to the assumption that goods are differentiated by region; assuming such differentiation is
less attractive when within-country trade is a prominent feature of the data. Last, I briefly discuss
what restrictions the Fréchet distribution imposes on the observed land and revenue shares of each
crop, and how to verify that the data does not deviate systematically from them.6

This paper also contributes to a literature that applies quantitative trade models to questions
in developing economics. An example is Donaldson (2010), whose path-breaking work establishes
the causal effect of transportation infrastructure on welfare, showing in the process how to analyze
agriculture trade data through the lens of the Eaton and Kortum (2002) model. My work differs
on the microeconomic foundation of the model, which delivers different empirical implications. In
Donaldson (2010), there is a continuum of varieties of each crop, and the land is heterogeneous in its
productivity to grow each of these varieties. His model thus makes predictions about trade shares
for each crop and for welfare, the key parameter being the heterogeneity of land productivity across
the varieties of each crop. In contrast, I assume that there is a single variety of each crop, but there
is a continuum of land plots whose quality to grow each crop is heterogeneous in each region. Hence,
the model emphasizes the allocation of land across crops, and yields implications for productivity.
These are precisely the variables I observe, as opposed to within-country trade shares, which are
often hard to come by in developing countries. More broadly, In my model the key parameter is
the elasticity of land allocation to prices, which is linked to land quality heterogeneity. In practice,
my choices seem to reduce the impact of infrastructure on productivity.

I also draw from Costinot and Donaldson (2012) and Costinot and Donaldson (2011) whose inno-
vative work advanced the study of agricultural productivity combining Ricardian trade models with
data on productivity from the Global Agro-Ecological Zones (GAEZ) database (see IIASA/FAO
(2012)). In particular, Costinot and Donaldson (2011) study the productivity gains due to market
integration experienced by the United States in the period 1880-2002. My work complements theirs
in two aspects. First, I show how to relate land allocation shares to the information in the GAEZ
data set through a new, simple estimating equation. This allows me to apply econometric techniques
to deal with potential measurement error in the GAEZ data. Second, I study the consequences of
improving market access in an equilibrium with endogenous prices, where all outcomes are functions

6In Sotelo (2013) I study more systematically the deviations from the predictions implied by Fréchet heterogeneity
and draw some implications for modeling.
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of preferences, technology and market structure.
To calculate the effect of market access on factor productivity, I rely on model-based policy

counterfactuals. My strategy for doing so contrasts with a currently popular alternative in quan-
titative trade research. In the wake of Eaton and Kortum (2002) and Dekle, Eaton, and Kortum
(2008), much recent work has used models whose equilibrium predictions can be matched exactly
to data on trade shares, and has then exploited the model’s analytical properties to evaluate policy
counterfactuals. A main benefit of this strategy is that it circumvents the need to estimate most
of the underlying model parameters, with the exception of the elasticity of trade flows with respect
to trade barriers.7 I follow the opposite path: I start by estimating the technology and preferences
by comparing a set of moments of the model to disaggregated data and then use those estimates to
simulate the equilibrium. Naturally, the simulated equilibrium does not replicate the data exactly.
The discrepancy between predictions and observations gives me an opportunity to learn about the
model’s strengths and weaknesses, which are hidden in the more standard approach.

Finally, I also extend the results of a literature that studies agricultural productivity in the
context of models of international trade. Tombe (2012) finds that high import barriers together
with barriers to labor movement help account for poor countries’ low food imports, even when their
relative agricultural productivity is low compared to rich countries. Adamopoulos (2011) argues
that in a two sector model, low transport productivity can distort the allocation of resources within
and between sectors, leading to low productivity. By narrowing the focus to a single country, in
this paper I obtain more direct evidence of the mechanisms proposed in those papers. In particular,
after directly estimating within-country transportation costs, I measure their impact on resource
allocation and productivity.

The rest of the paper is as follows. In Section 2, I present a simple equilibrium framework and
the two main assumptions that allow me to connect it to data. In Section 3, I summarize how the
model guides the data analysis in three key propositions, and I construct a measure of productivity
consistent with the theory. In Sections 4 and 5, I present the data and connect it to the model. In
Section 6, I assess the model’s strengths and weakness in a simulation of the equilibrium. Finally,
in Section 7, I elicit the effect of market access on productivity by computing counterfactuals. All
derivations and proofs are contained in the Appendix.

2 Land Allocation and Trade in a Small, Open Economy

To study the link between trade frictions and agricultural productivity, I modify a standard model
of factor allocation and trade based on comparative advantage. In the model, the Home country
consists of many regions that differ in terms of their population and land endowment. Markets are
perfectly competitive, but trade across regions and with the rest of the world is costly. The quality
of land to grow different crops varies across, and also within regions; such heterogeneity is a source
of comparative-advantage. Trade frictions impede specialization and hence diminish productivity.

7For example, see Caliendo and Parro (2012), Parro (2013), Ossa (2011).
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To produce, farmers combine land with labor and an imported intermediate input. Regions farther
away from major ports use less of the intermediate input because its price is relatively high, which
also diminishes productivity.

I introduce assumptions on technology and the distribution of crop-specific land quality that
ensure that land allocation adjusts smoothly with changes in crop prices and average land quality.
With these assumptions, the model delivers simple equations that can be used for estimation.

2.1 Environment

2.1.1 Geography

I divide the world into Home –the focus of attention– and Foreign. Home consists of regions indexed
i = 1, . . . , I. I denote Foreign by i = F . When a region is treated as an importer, I use the index n.

2.1.2 Commodities

There are k = 1, . . . ,K agricultural goods (crops, for short). The rest of goods for consumption are
summarized in a “manufactured” good, denoted by M . There is also an intermediate input x, used
in agricultural production, which is imported from Foreign.

2.1.3 Agents

In each region i, there are three agents: a representative consumer, a representative producer and
a representative trader.

The representative consumer owns land and supplies labor. The consumer trades in local mar-
kets, where she rents its factor inputs and purchases consumption goods.

The representative producer also trades in local markets, where he hires labor, rents land, and
sells the output he produces.

The trader in i purchases goods in i’s local market, ships them to other regions in Home and
sells them there. The trader can also buy and sell goods for trade between region i and Foreign.

2.1.4 Preferences

I only specify the preferences for consumers at home. The consumer in region i spends a fraction b
of income on an agricultural aggregate, Ci,A, and the rest on manufactured goods, Ci,M :8

Ui = Cbi,AC
1−b
i,M . (1)

8Because Engel’s Law holds in the data this simplifying assumption will miss some key aspects of the data. I
will improve on it in future versions of the paper. The application of the AIDS of Deaton and Muellbauer (1980)
to household expenditure data has proven successful. Moreover, there is a recent literature that explains how non-
homotheticity reconciles trade models with observations on international trade. See Fieler (2011).
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The agricultural aggregate is

Ci,A =
(

K∑
k=1

a
1
σ
i,kC

σ−1
σ

i,k

) σ
σ−1

, (2)

where σ > 0 is the elasticity of substitution across agricultural goods. For each region i the weights
satisfy ai,k ≥ 0, so some goods may not be consumed there. I normalize the weights to add up to
one:

∑K
k=1 ai,k = 1. Also, for each crop k, there is some region i where ai,k > 0.

2.1.5 Endowments

The household in region i supplies labor inelastically to agriculture, Li,A, and to manufacturing,
Li,M .9 The household also supplies inelastically its endowment of heterogeneous land, which consists
of a continuum of plots. I denote the set of plots by Ωi, and all plots, indexed by ω, have size one.
The total amount (measure) of land in the region is Hi =

´
Ωi dω.

2.1.6 Agricultural Technology

To take the model to data requires making assumptions about the functional form of the production
function, as well as the distribution of land quality within regions. I make the following two
assumptions for tractability, but note that the workings of the rest of the model and the definition
of equilibrium are independent of these specific details.

Assumption 1. Crops are produced with a constant returns to scale technology that combines labor,
the imported intermediate and land. The suitability of plot ω in region i for producing crop k is
captured by an efficiency parameter Λi,k (ω) ≥ 0,

qi,k (ω) = φi,k (ω) (li,k (ω))α (xi,k (ω))β (Λi,k (ω))γ (3)

where qi,k (ω) is the output of crop k, li,k (ω) and xi,k (ω) are labor and intermediates per unit of
land, and φi,k (ω) is the share of plot ω allocated to k. The cost shares α, β and γ are the same for
all crops k, with α+ β + γ = 1.

The following assumption ensures that we obtain a structural equation for the allocation of land
across crops,

Assumption 2. The vector of land qualities for producing crops in region i, plot ω, (Λi,k (ω))k∈Ki,
is distributed as a set of i.i.d Fréchet random variables with parameters (γ̃Ai,k, θ),

P [Λi,k (ω) ≤ Λ] = e−γ̃
θAθi,kΛ−θ .

9This assumption is justified by recent research. To rationalize the data on labor allocation across agriculture and
non-agriculture requires large barriers to the movement of labor between sectors, given productivity data. See, for
example, Gollin, Lagakos, and Waugh (2011); Restuccia, Yang, and Zhu (2008); Tombe (2012). Lagakos and Waugh
(2013) provide an explanation based on the selection of workers into agriculture, in which a large, unproductive
agricultural workforce is an equilibrium outcome.
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I normalize γ̃ =
[
Γ
(
1− 1

θ

)]−1
. Let Ki denote the set of crops that can be grown in region i. Then

Λi,k (ω) = 0, for each plot ω, if and only if k /∈ Ki.

In this probabilistic representation of within-region land quality, θ is an inverse measure of land
heterogeneity. Note also the important difference between Λi,k (ω) and Ai,k. The random variable
Λi,k (ω) captures how good plot ω is to grow crop k. In contrast, the parameter Ai,k, shared by all
plots ω in region i, is directly linked to the average land quality for growing crop k in that region.
Thus, a high value of Ai,k means that the land quality of all plots in the region is high, although
between plots the actual land quality varies according to θ.

2.1.7 Manufacturing technology

Manufacturing uses only labor, with productivity Ti:

yi,M = Tili,M .

2.1.8 Rest of the World

Any region i in Home can trade crops with Foreign at fixed prices. Each region i also imports the
intermediate input from Foreign, which is the only producer.10

2.2 Markets

2.2.1 Markets and prices

Each region at Home has local markets for land, labor, the imported agricultural intermediate and
consumption goods. In region i, let wi,A and wi,M be the wages for agricultural and manufacturing
labor, ρi the price of the intermediate input, pi,M the price of the manufactured good, pi,k the price
of crop k, for all k, and let ri (ω) denote the rental rate of plot ω.

In Foreign, the price of crop k is pF,k, for all k, and the price of the intermediate input there is
ρF .

2.2.2 Trade costs

Labor is immobile across regions and sectors. Manufactured goods are costlessly traded within
Home, but cannot be traded between Home and Foreign.

Trade in agricultural goods is costly. I formalize this notion by introducing iceberg trade costs:
for a unit of crop k to arrive from i to n, dni,k ≥ 1 units must be shipped. I normalize dnn,k = 1,
all n, k, and dni,k > 1, all n 6= i, all k. I also assume that costs are symmetric, so dni,k = din,k, and
I impose the triangle inequality, i.e., dni,k ≤ dnj,k × dji,k.

10The assumption that Foreign is the only producer of intermediate inputs is a good representation of reality. In the
case of Peru, between 2008 and 2011, nearly 100 percent of the fertilizer used in production was imported (FAOSTAT).
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2.3 Consumer, producer and trader decisions

2.3.1 Consumers

The representative household inelastically supplies land and both kinds of labor. It uses all of its
income to purchase consumption goods. The consumer’s problem is, therefore, to maximize (1)
subject to the budget constraint

K∑
k=1

pi,kCi,k + pi,MCi,M = Ei, (4)

where expenditure Ei is equal to the household’s income from all sources

Ei = wi,ALi,A + wi,MLi,M +
ˆ

Ωi
ri (ω) dω.

2.3.2 Producers

The representative manufacturing firm in region i hires labor and produces output. The represen-
tative agricultural producer in region i rents land, hires labor and buys the imported intermediate
input. He decides how to allocate plots of land across crops, and how much labor and intermediates
to use in each plot. The producer’s problem is to choose {φi,k (ω) , li,k (ω) , xi,k (ω) , ω ∈ Ωi, all k},
to maximize profits,

max
{

K∑
k=1

pi,kqi,k −
ˆ

Ωi

K∑
k=1

φi,k (ω) [wi,Ali,k (ω) + ρixi,k (ω) + ri (ω)]dω
}
, (5)

where total output of crop k is

qi,k =
ˆ

Ωi
φi,k (ω)

[
(li,k (ω))α (xi,k (ω))β (Λi,k (ω))γ

]
dω

for all k, and
K∑
k=1

φi,k (ω) ≤ 1,

for all ω ∈ Ωi.

2.3.3 Trader decisions

DefineW = {1, . . . , I, F} to be the set of all regions in the economy. Let zni,k denote the shipments
of crop k from region i to region n ∈ W. The trader in i chooses {zni,k ≥ 0} to maximize profits

max
∑
n∈W

K∑
k=1

zni,k

(
pn,k
dni,k

− pi,k

)
.

Without loss of generality, I assume that the trader chooses zii,k = 0, for all crops.

9



2.4 Remarks

All agricultural technologies have constant returns to scale at the plot level, and all factors are paid
their marginal products, so all producers earn zero profits. The rental rate for each plot of land
adjusts to ensure that this is so, absorbing the difference between total revenue and the total cost of
labor and intermediate inputs. But note that land quality varies across plots, and as more land is
allocated to a crop, the average quality of land used in that crop decreases. Hence, at the regional
level, an increase in the amount of labor, intermediate inputs, and land allocated to the production
a crop does not increase its output in the same proportion.

The trading technology also displays constant returns to scale, and prices across regions must
adjust to eliminate arbitrage opportunities. Thus, traders also earn zero profits. Producers of
manufactured goods also make zero profits, for the same reason.

Last, I have made the stringent assumption that preferences are homothetic. While this has
some downsides that I discuss below, it has the advantage of allowing me to attribute all income to
a single representative consumer.

2.5 Competitive Equilibrium

Regions in Home take the prices in Foreign as given, and this price remains unchanged regardless
of how much is imported or exported.

Definition 1. A competitive equilibrium in this small economy with costly trade consists of

(a) prices pi,k for all crops k and pi,M for manufactured goods;

(b) wage rates wi,M and wi,A, input prices ρi, and rental rates for land ri (ω), for each ω ∈ Ωi;

(c) final goods consumption Ci,M and Ci,k for all crops k;

(d) labor input li,M and output yi,M for the manufactured good;

(e) inputs {φi,k (ω) , li,k (ω) , xi,k (ω) , ω ∈ Ωi}, and outputs qi,k for all crops k = 1, . . . ,K;

(f) shipments of each good zni,k, for regions n ∈ W, for each crop k and for the manufactured
good zni,M ;

for each region i = 1, . . . , I, such that,

1. the quantities in (c) solve the consumer’s problem, given income and prices;

2. the inputs and outputs in (d) solve the manufactured goods producer’s problem, given prices;

3. the inputs and outputs in (e) solve the agricultural producer’s problem, given prices;

10



4. the agricultural goods prices in (a) are consistent with profit-maximization by traders

pn,k ≤ dni,kpi,k

with equality if zni,k > 0, for all regions n, i ∈ W, for all crops k and the manufactured good
M ; and the intermediate input prices are

ρi = diF,xρF

for all regions i in Home;

5. local markets clear for labor, land, crops and manufactured goods:

Li,A =
K∑
k=1

ˆ
Ωi
φi,k (ω) li,k (ω) dω

Li,M = li,k

1 =
K∑
k=1

φi,k (ω) , all ω ∈ Ωi

Ci,k = qi,k −
∑
n∈W

zni,k +
∑
i′∈W

zii′,k
dii′,k

, all k = 1, . . . ,K

Ci,M = yi,M −
∑
n∈W

zni,M +
∑
i′∈W

zii′,M ;

6. trade with Foreign is balanced: the value of exports is equal to the value of imports

K∑
k=1

pF,k

I∑
i=1

zFi,k
dFi,k

=
K∑
k=1

pF,k

I∑
n=1

dnF,kznF,k + ρF

I∑
n=1

dnF,x

K∑
k=1

ˆ
Ωn
φn,k (ω)xn,k (ω) dω.

To complete the description of the equilibrium, we must make a choice of a numeraire. In what
follows, I normalize the international price of intermediate inputs to one, ρF = 1. The reason for
choosing an international price is that it is not affected by what happens within Home, because
we assumed that it is a small economy. Hence the unit of account will remain unchanged across
equilibria where policy parameters change, which is helpful for my application to Peruvian data.

3 Quantitative Implications of the Model

3.1 Farmers’ Choices and the Empirical Implications of the Model

To connect the model to data on land shares and yields across crops, I start by describing the optimal
behavior of the representative agricultural producer –here called a farmer– at the plot level. This
behavior is naturally represented in a probabilistic way exploiting Assumptions 1 and 2. The three
propositions at the end of this section condense the model’s empirical predictions, taking as given
the equilibrium prices and returns to factors.
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The farmer in region i seeks to maximize profits over all plots ω ∈ Ωi, as shown in expression
(5). As in standard trade theory, it is quite useful to work with unit cost functions to describe the
farmer’s choices. Note that, in doing so, we treat each plot as a separate factor of production, since
ri (ω) is plot specific.

For the Cobb-Douglas production function in (3), the unit cost function, which measures the
cost of producing a unit of crop k in plot ω, in terms of the numéraire, is:

ci,k (ω) = c̄i (ω)
(Λi,k (ω))γ ,

where we define
c̄i (ω) ≡ α−αβ−βγ−γwαi,Aρ

β
i (ri (ω))γ .

The function c̄i (ω), which involves only the input prices, is the same for all crops. The unit cost
function ci,k (ω) adjusts this value for the quality of plot ω in producing crop k.

Because of Assumption 2, typically only one crop maximizes profits in a given plot, although
in equilibrium each plot earns the farmer zero profits. Then it is optimal to specialize each plot ω
completely in a single crop k –an event I denote ω ∈ Ωi,k. This insight allows us to characterize
the crop choices for the whole region i in a probabilistic way. To see how, note that when plot ω is
specialized in the production of crop k, total output in that plot, as a function of input prices, is

qi,k (ω;wi,A, ρi, ri (ω)) = ri (ω)
γci,k (ω) ,

which we obtain by setting φi,k = 1 and noting that γ is the cost share of land. It follows that total
profits in plot ω ∈ Ωi,k are

[pi,k − ci,k (ω)]× qi,k (ω;wi,A, ρi, ri (ω)) = ri (ω)
γ

[
pi,k

(Λi,k (ω))γ

c̄i (ω) − 1
]
.

This expression shows that, for plot ω, all the variation in profits across crops is only due to
differences in output prices, pi,k, and land quality, Λi,k (ω). Input prices have no effect on relative
profitability.

Let ηi,k denote P [ω ∈ Ωi,k] ; then

ηi,k = P
[
k = arg max

k′
pi,k′

(
Λi,k′ (ω)

)γ]
. (6)

The result is summarized in the following proposition.

Proposition 1. Profit maximization, together with Assumptions 1 and 2, implies that the fraction
of land allocated to crop k is

ηi,k =

(
p

1
γ

i,kAi,k

)θ
Φθ
i

, (7)

12



where

Φi =

 ∑
k′∈Ki

(
p

1
γ

i,k′Ai,k′

)θ 1
θ

. (8)

Equation (7) implies that the relative land allocation between any two crops k and k′ depends
only on the price pi,k and the land quality Ai,k of those two crops. Note that in (7) pi,k is raised to
the power of 1/γ, while Ai,k does not, which reflects that the cost share of land is γ in production.
The prices and land qualities for all other crops are captured in, Φθ

i , the normalizing term defined
in equation (8).11 This implication is particularly useful when estimating θ, because it allows us to
work only with a subset of crops.

Equation (7) also gives the elasticity of land allocation with respect to prices. Ignoring its effect
on Φi, a one percent increase in pi,k increases crop k’s share of land by θ

γ percent. To interpret this
elasticity, recall that θ is an inverse measure of land quality heterogeneity. When θ is larger, land
is more homogeneous, and a given increase in pi,k produces a larger shift in the land use pattern.
The elasticity is also inversely proportional to γ, the output elasticity of land in the production
function. A smaller value for γ means that land is less important compared with other inputs, and
a given increase in pi,k produces a larger shift in land use.

Although farmers seek to maximize profits, due to perfect competition they will earn zero profits
in equilibrium. The rental rate of land in each plot, ri (ω), adjusts to ensure that this is so. We
can impose the zero profit condition, pi,k = ci,k (ω), to solve for ri,k (ω), the value of the rental rate
that would prevail in plot ω, if ω ∈ Ωi,k:

ri,k (ω) = γκyp
1
γ

i,kw
−α
γ

i,A ρ
−β
γ

i Λi,k (ω) ,

where we define κy = α
α
γ β

β
γ . As a consequence of profit maximization,

ri (ω) = max
k′

{
ri,k′ (ω)

}
,

and ri (ω) = ri,k (ω) happens with probability ηi,k.
While I do not observe rental rates directly in the data, I do observe the land yield, land

allocations, and revenue per unit of land across crops in all regions. To characterize yields and
revenues in the model –the objects of interest–, we must first calculate the optimal use of labor and
intermediate inputs, relative to land, when ω ∈ Ωi,k:

xi,k (ω) =
(
βpi,k
ρi

(
αρi
βwi,A

)α) 1
γ

Λi,k (ω) (9)

11This implication is similar to the independence of irrelevant alternatives assumption in consumer theory. See, for
example, Train (2003).
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and

li,k (ω) =

αpi,k
wi,A

(
βwi
αρi,A

)β 1
γ

Λi,k (ω) . (10)

Given prices, the demand for inputs other than land increases when land has better quality Λi,k (ω).
Equations (9) and (10) relate input use only to prices –taken as given by the farmer– and model
primitives.

We are now in a position to compute two measures of productivity for plot ω ∈ Ωi,k: physical
land yield, yi,k (ω), and revenue per unit of land, ψi,k (ω) = pi,kyi,k (ω). The optimal physical yield
is given by qi,k (ω) /φi,k (ω), from equation (3), evaluated at the optimal input demands given by
(9) and (10):

yi,k (ω) = κyΛi,k (ω)
(
pi,k
wi,A

)α
γ (pi,k

ρi

)β
γ

, (11)

where the constant κy is as defined above. This expression highlights that land yield is an endogenous
object that reflects the choices of farmers. 12 Multiplying the physical yield by the crop price gives
revenue per unit of land:

ψi,k (ω) = κyΛi,k (ω) p
1
γ

i,kw
−α
γ

i,A ρ
−β
γ

i . (12)

Equations (11) and (12) show that, taking prices as given, land yields and revenue per unit of land
are proportional to land quality.

Proposition 2 below formalizes the idea that yi,k (ω) and ψi,k (ω) inherit the properties of land
quality, conditional on ω ∈ Ωi,k. A takeaway of this proposition is that we cannot infer the value
of average land quality, Ai,k, just by looking at data on physical yields or revenue per unit of land.
Instead, these data can only inform us about aggregate land productivity in a region.

Proposition 2. A) The physical land yield of crop k, conditional on ω ∈ Ωi,k, denoted by yi,k (ω) |ω ∈

Ωi,k, is distributed like a Fréchet r.v, with parameters
(
γ̃κyp

−1
i,kw

−α
γ

i,A ρ
−β
γ

i Φi, θ

)
.

B) The revenue per unit of land for crop k, conditional on ω ∈ Ωi,k, denoted by ψi,k (ω) |ω ∈ Ωi,k,

is distributed like a Fréchet r.v., with parameters
(
γ̃κyw

−α
γ

i,A ρ
−β
γ

i Φi, θ

)
.

Note that no moment of the distribution of either conditional yield or conditional revenue per
unit of land will be informative about the relative values of crop-specific land quality. Particularly,
the expected yield and expected revenue per unit of land

E [yi,k (ω) |ω ∈ Ωi,k] = κy

(
wi,A
pi,k

)−α
γ
(
ρi
pi,k

)−β
γ
(

Φγ
i

pi,k

) 1
γ

(13)

12Kelly (2006) discusses how a high price of intermediates relative to the price of final output reduces the demand
for fertilizer in Africa.
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and
E [ψi,k (ω) |ω ∈ Ωi,k] = κyw

−α
γ

i,A ρ
−β
γ

i Φi, (14)

are uninformative about the relative values of Ai,k across crops. The first moments of both distribu-
tions are especially important: they are the objects in the model that correspond to the observations
on yield and revenues.

Propositions 1 and 2 summarize how each region will adjust to differences in relative prices
and relative land qualities. To illustrate, let us focus on what happens with average yields and
revenues per unit of land, when the relative price of some particular crop k̂ increases –as would
be the case if it engaged in trade with a region where that crop is more expensive. Proposition 1
tells us that in region i the amount of land allocated to crop k̂ increases, with an elasticity of θ

γ ,
while the land allocated to the rest of the crops decreases. Equation (13) then guides us through
the changes in physical yields. An increase in the price of crop k̂ reduces the relative price of labor
and intermediate inputs, and increases their use in production. This force, which pushes towards
higher productivity, is more than offset by a decrease in average land quality: as more land is used
to produce crop k̂, the corresponding average land quality must decrease. By the same reasoning,
the average land quality used in each of i’s other crops must increase, while for those crops the use
of labor and intermediates remains unchanged. Part A of Proposition 2 describes these changes
precisely. The increase in pi,k̂ increases the aggregate productivity parameter Φi, thus improving
the distribution of yields for all crops but k̂. Crop k̂’s yield actually falls, as Φi

pi,k̂
, which summarizes

the effect of an increase in pi,k̂, decreases.
Having established the change in the physical yields of each crop, it is straightforward to un-

derstand the change in the revenue per unit of land. For all crops whose price did not increase, the
proportional increase in revenue per unit of land is identical to the proportional increase in physical
yields. For crop k̂, the increase in the price pi,k̂, though partly countered by the decrease in crop
k̂’s physical yield, increases the revenue per unit of land. Assumptions 1 and 2 ensure that this
increase is identical to that of the rest of the crops, as part B of Proposition 2 indicates.

It is important to realize that the farmer’s economic behavior described by these propositions
would be predicted by any model of optimal use of heterogeneous factors. Increasing the amount of
land allocated to a given use will always decrease its productivity and would increase its productivity
in alternative uses. Assumptions 1 and 2 just put constraints on the exact amounts by which
productivity changes across alternative uses.

The two propositions together show that all within-region variation in relative prices and relative
land qualities only translates into observable variation in relative land allocations across crops, not
into observable variation in either measure of productivity. Formally, the Ai,k terms are included in
Φi, which summarizes the effect of land quality on the productivity of land. Everything else constant,
when region i is more productive for some crop, or when the price that the crop commands in i

increases, so does this measure of productivity.13 The productivity distributions for all crops then

13The variable Φ
1
θ
i in this model is akin to the expression

∑
i
Ti (widni)θ in Eaton and Kortum (2002), which

summarizes a destination country’s access to the world technology, given the cost of labor and trade costs. Donaldson
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shift to the right. This means that, although one might hope that observed land yields and revenues
per unit of land would be informative about unobserved land quality, the model imposes the strong
restriction that they are not.

Finally note that, in equilibrium, for a given value of Φi, land commands a higher rental rate
when labor and intermediates are cheaper. When the intermediate input price ρi is low, farmers
increase its use in production, thus increasing the output per unit of land. A low wage wi,A has an
analogous effect through the increased use of labor.14

In light of this discussion, the content of Proposition 3 is implied by Propositions 1 and 2. I
present it separately because it provides a simple way of empirically evaluating the adequacy of the
model. Let πi,k be the revenue share of crop k in region i’s total revenue, defined as

πi,k = pi,kqi,k∑
k′∈Ki pi,k′qi,k′

.

Then we summarize the relationship between land and revenue shares with the following proposition:

Proposition 3. Within a region, the land share and the revenue share that crop k commands are
equalized,

πi,k = ηi,k.

Proposition 3 is a direct consequence of Assumptions #1 and #2, about technology and the
probabilistic structure of the model. The model predicts that, within a region i, the share of land
allocated to crop k is equal to its share in the total agricultural revenue generated in that region.
This is an outcome that holds at any vector of prices –in particular the equilibrium vector of prices–
and is derived only from optimal farmer behavior. Looking for systematic deviations from this
prediction will be helpful in assessing how well the Fréchet structure in Assumption 2 fits the data.

To understand this result, suppose that the relative price of crop k in region i increases. Ac-
cording to the land allocation equation (7), the land share ηi,k increases with an elasticity of θ/γ
(holding Φi fixed.) The revenue share will also tend to increase, because the amount of land used
to grow crop k determines its total output. But what happens to the average revenue per unit of
land? As shown in equation (14), the average revenue per unit of land is always equalized across

(2010) exploits this object in his welfare calculations.
14Just like in any model of optimal resource allocation, in this model the return to land across crops is equalized at

the margin, across alternative uses. But the model implies more: the average return to land is also equalized across
crops. Formally, as shown in Appendix B:

E [ri,k (ω) |ω ∈ Ωi,k] = γκyw
−α
γ

i,A ρ
− β
γ

i Φi,

which does not depend on k. Because this expression is independent of k, it follows that the average rent is also

ri = γκyw
−α
γ

i,A ρ
− β
γ

i Φi.

Note that the assumption about the shape of the production function is not innocuous: for each crop k the ratio of
the expected return to land, ri, and the expected revenue per unit of land, E [ψi,k (ω) |ω ∈ Ωi,k], is equal to a constant,
γ. However, I emphasize that the restriction that γ is the same for all crops is not they key driver of Proposition
2: complete flexibility in this regard would only allow for crop-specific scale parameters, and still the data would be
uninformative about unobserved land quality.
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crops. This equalization ensures that the proportional increase in average revenue per unit of land
is identical for all crops, and captured by the increase in Φi. The change in the revenue share of
crop k, therefore, is entirely driven by the change in its land allocation.

3.1.1 Relation to Other Quantitative Trade Models

The previous set of propositions has a close parallel in two well-known results in the Eaton and
Kortum (2002) framework. That model predicts that the probability that a region i is region n’s
cheapest supplier for some good is equal to the share of region n’s total expenditure on region i’s
goods (analogous to Proposition 3 above). The reason is that, in that model, all differences in
productivity across suppliers translate into differences in the fraction of goods sold in a destination
(Proposition 1). This makes the distribution of unit costs of goods actually sold in region n identical
across suppliers (Proposition 2).

In contrast to the trade context, however, in my application both terms in Proposition 3 have
empirical counterparts. The reason is that the allocation of land has natural units of measurement
(hectares, for example), while it is less clear how to measure a fraction of goods in a continuum.

3.2 Aggregation, Market Access and Productivity

To close the model in general equilibrium, we must first aggregate the farmer’s and the consumer’s
choices at the regional level, given prices. To that end, I study two important objects: (i) aggregate
labor demand, and (ii) the aggregate value of production. This leads to a discussion of the economic
relation of market access and productivity. Finally, I obtain the household’s expenditure on each
good.

3.2.1 Aggregate Labor Demand

In region i, aggregate labor demand for the production of crop k is

Li,k = κlΦiw
− 1−β

γ

i,A ρ
−β
γ

i ηi,kHi,

where κl = α
1−β
γ β

β
γ . Since the land shares sum to one, the total demand for labor is:

Li,A = κlΦiw
− 1−β

γ

i,A ρ
−β
γ

i Hi. (15)

3.2.2 Agricultural Wages and the Total Value of Production

Because we take the stock of agricultural labor as fixed, we can use (15) to express the equilibrium
wage as a function of variables that are exogenous to farmers:

wi,A = κ
γ

1−β
l Φ

γ
1−β
i ρ

− β
1−β

i

(
Hi

Li,A

) γ
1−β

. (16)
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Now we are in a position to calculate the total value of production of crop k in region i,

Vi,k = pi,kE [yi,k (ω) |ω ∈ Ωi,k] ηi,kHi

= β
β

1−β ρ
− β

1−β
i p

θ
γ

i,kA
θ
i,kΦ

γ
1−β−θ
i H

γ
1−β
i L

α
1−β
i,A , (17)

where the second line uses (13) to substitute for E [yi,k (ω) |ω ∈ Ωi,k] and (16) to substitute for wi,A.
Summing across crops we obtain the total value of agricultural production in region i

Vi = β
β

1−β ρ
− β

1−β
i Φ

γ
1−β
i H

γ
1−β
i L

α
1−β
i,A . (18)

Equation (18) is the familiar revenue function. It relates the total revenue generated by region i to
the prices that are exogenous to the farmer and to the total stock of factors of production. It is a
representation of aggregate supply in region i.

To build intuition, consider for the moment the case where the imported intermediate plays no
role, so that β = 0 and α = 1− γ. Then equation (18) simplifies to

Vi = Φγ
iH

γ
i L

1−γ
i,A . (19)

With Φγ
i constant, the total value of agricultural production has constant returns to scale in labor

and land. The average productivity in agriculture depends on the distribution of land quality and
crop prices, both of which affect the exact allocation of land across crops. Equation (19) shows
exactly the sense in which Φi is a measure of TFPR. For a given stock of land and labor, higher
crop prices or a better allocation of land according to comparative advantage increase the total
value of production. I turn to an analysis of Φi in what follows.

3.2.3 The Economic Relation Between Market Access and Productivity

In the more general expression (18), with β > 0, the term ρ
− β

1−β
i Φ

γ
1−β
i can be thought of as the

TFPR of Land and Labor. It shows that in location i, agricultural productivity is higher because
Φi is higher or because the price of intermediates, ρi, is lower.

In the model, variation in ρi is entirely driven by transportation costs: imported intermediates
will be more costly in remote places. This is the first channel through which transport costs
lower productivity. The elasticity of TFPR with respect to the price of the intermediate input is
−β/ (1− β), which is higher the larger the cost share of intermediates.

The second channel is related to the farmers’ production and consumption choices. Poor market
access in this model is equivalent to high transportation costs to and from region i. High transport
costs increase the prices of the crops farmers purchase, and decrease the price of the crops they sell.
Both effects are summarized in the value of Φi. Because producers will tend to sell the goods for
which they have a comparative advantage and buy those in which they do not, high transport costs
will induce a negative correlation between pi,k and Ai,k across k, thus lowering Φi.

In Appendix H, I discuss a land-only model to clarify the link between trade and comparative
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advantage through the lens of the model. In such a model, for an autarkic region, the elasticity of
the relative price of two crops, pk

pk′
, with respect to their relative land qualities, Ak

Ak′
, is − θ

θ + σ − 1 .
In contrast, if a small region is integrated with the rest of the economy, then the relative price of
crop k is unrelated to land quality Ak. A reduction in the absolute value of the correlation between
pi,k and Ai,k increases the magnitude of Φ.

I emphasize, however, that Φi does not exclusively measure the the effect of specialization due
to comparative advantage. Rather, it reflects any factor that increases the productivity of land,
and is not explicitly modeled. Thus, if the quality of land in a region doubles –keeping prices
constant–, then Φi will also double, regardless of that region’s access to markets. The education
of the workforce, for example, or the presence of increasing returns to scale at the farm level can
generate differences in Φi across regions. We return to the impact of trade frictions in Section 7.

3.2.4 Expenditure on each good

Finally, consider regional demand for each good. The solution to the representative consumer’s
problem yields region n’s aggregate expenditure on crop k:

En,k = bak

(
pn,k
Pn

)−(σ−1)
En. (20)

where

Pn =
(

K∑
k=1

akp
1−σ
n,k

) 1
1−σ

(21)

is the price index for the agricultural aggregate Cn,A in region n. Expenditure on the manufactured
good is En,M = (1− b)En.

3.3 Computation of the Equilibrium

To compute the equilibrium, I apply an iterative algorithm.15 There are two prevailing ways of
computing equilibria in trade models, both of which my strategy differs from. The first approach
has been popular for many years in the literature of Computable General Equilibrium (CGE) models.
A key element in the CGE approach is the assumption –due to Armington (1969)– that goods are
differentiated by country of origin. Although not the original motivation for this assumption, its
use sidesteps the need to determine what producer is a destination’s cheapest supplier, because
every destination buys from every source. 16 The second, more recent approach, is due to Alvarez
and Lucas (2007) and is becoming popular to solve quantitative trade models based on Eaton
and Kortum (2002). Despite their richer microeconomic underpinnings, Arkolakis, Costinot, and
Rodriguez-Clare (2012) have shown that these newer models have a similar general equilibrium

15The algorithm is described in detail in Appendix I
16See Shoven and Whalley (1992), p. 81, for a discussion of the role of the Armington assumption in CGE trade

modeling.
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structure to that of the earlier CGE models. Hence, as expected, they also allow for computation
based on direct application of CGE methods.

My strategy, in contrast, needs to deal with the problem of finding the cheapest exporter for
each importing region, because in the equilibrium of my model some pairs of regions may not trade
at all.17 The algorithm starts with a guess for the crop and manufactured-good prices, and adjusts
them according to a tâtonnement process. At each step, the algorithm calculates each region i′s

desired net imports or exports of each good. Then, it attempts to satisfy all the desired net trades
of each region, in a way that is feasible according on traders’ profit maximization. The difference
between desired and feasible net trades plays the role of excess demand, and guides the update of
prices for the next iteration.18

4 Data

In this section I discuss the main data sets I have put together. In matching the model to data,
I use the administrative division of Peru to define the regions in the model. As of 2012, Peru is
hierarchically divided into 24 departments, 194 provinces and 1838 districts. Each region i in Home
in the model corresponds to a district in Peru. I use information on consecutive cross-sections, the
exact years depending on the sample and source. The size of each district is given by the total
amount of land used in agriculture; the quantiles of this size distribution are 2km2, 6.5km2 and
17.9km2.

I also select K = 51 crops that the Ministry of Agriculture uses when calculating countrywide
statistics and for which the data quality is better. These crops account for between 76 and 79
percent of the total gross value of agricultural production between the years 2008 and 2011. See
Table 1 for a summary of all data sources and samples.

National Statistics on Agriculture

These data are collected by the Peruvian Ministry of Agriculture (MINAG). For each district i, crop
k, and year t, the data set contains information on farm-gate prices, pi,k,t, physical yields, yi,k,t,
and land use, ηi,k,tHi,k,t. I average each variable at the district and crop level, and interpret these
averages as the objects pi,k, yi,k and ηi,kHi in the model.

I describe two samples, which I use for different purposes depending on their relative strengths.
Table 1 summarizes the characteristics of each sample

17Although I do not pursue this outcome in this paper, my approach has the desirable implication of being able to
generate zeros in the bilateral trade matrix. The absence of trade linkages between pairs of countries is an established
fact in the data that quantitative trade models often cannot generate (see Eaton, Kortum, and Sotelo (2012)).

18A current shortcoming of the algorithm is that I have no proof of global convergence, although the algorithm has
converged in practice. As discussed in Scarf and Hansen (1973), and Mas-Colell, Whinston, and Green (1995) p. 611,
some theory results exist for price adjustment mechanisms when preferences display the gross substitution property,
which my model satisfies.
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Wide sample

This is a cross-section of every district in Peru that produces agricultural goods. It is a balanced
panel containing the years 2008-2012. I use this sample to estimate underlying land quality for each
region and crop, Ai,k, which is useful to simulate the model. Descriptive statistics for this sample
are shown in Tables 11 and 12 in the Appendix.

Long sample

This is a sample of the districts contained in four out of 24 departments.19 The advantage of this
sample is that it includes the years 1997-2011, although the panel is unbalanced. I use it to get
more precise estimates of the long-run equilibrium values of ηi,k and pi,k, which are necessary to
improve the estimation of θ, the land heterogeneity parameter.

Global Agro-Ecological Zones (GAEZ)

I describe the data set briefly –Costinot and Donaldson (2011) provide a more detailed discussion
of it. The goal of the GAEZ project is to assess the agricultural potential for land cells in a fine
partition of the World. FAO and IIASA have developed a methodology to estimate the potential
land yield (see IIASA/FAO (2012)). That is, they estimate the land yield that would prevail if all
land in a cell is entirely devoted to growing a crop. This method transforms information on land
types, water resources and weather conditions into potential yields, through a model of agricultural
production. Importantly, actual statistics on agricultural production are not inputs into the model.
Hence, the database contains truly independent measures of potential agricultural productivity.

To access the data on potential land yields, the user must make a choice about management
conditions: low, medium and high level of inputs. In estimation, I use both low and medium input
levels, and show that the results are robust to the choice of management conditions.

Geography and the Transportation Network

To construct the road network of Peru, I use the georeferenced data set put together by the Peruvian
Ministry of Transportation (MTC). The system of roads in Peru is classified in three subsystems:
National, Departmental, Rural. For each road in each subsystem, the data set contains its exact
location and its quality (dirt, graded and paved roads).

Freight Rates

I use a sample of freight rates between 45 pairs of districts, averaged over the years 2010-2013,
where at least one of the districts in the pair belongs to the department of La Libertad. 20 Most of
the freight rates are expressed in terms of local currency per unit of weight.

19The departments are Arequipa, Huánuco, La Libertad, Puno. They account for 22 percent of the total value of
production in 2008.

20The scope of the data is restricted this way because the source is the Direccion Regional de Agricultura de La
Libertad.
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Although this is a relatively small sample it is an informative one. For each pair, I observe
the freight rates for several goods, for each month in the year, so I have some confidence in the
precision of the estimates. Also, there is substantial geographic variation within La Libertad: some
districts are in the coast while others in the mountains; in the sample, some pairs are connected by
paved highways and others by low-quality roads. Finally, La Libertad is an important agricultural
producer and accounts for 8 percent of the total value of agricultural production in Peru.

National Household Surveys (ENAHO)

This survey is conducted by the Instituto Nacional de Estadistica e Informatica (INEI); it is Peru’s
main tool for learning about living standards. Every quarter, INEI samples households and applies
a survey about income, expenditures, living conditions, etc. In this paper, I focus on the following
two modules:

Food Consumption Module

INEI applies this module to all households. Respondents give a detailed account of their expen-
ditures on food consumption during the previous fifteen days. Categories are narrow and can be
partially matched to the government statistics database. This allows me to examine the consump-
tion patterns of households in terms of those crops.

5 The Connection between the Model and Agricultural Data

In this section, I first provide a brief discussion of the empirical content of Proposition 3, which is
the model prediction that land and revenue shares are equalized within regions. I show that even
if that prediction does not hold exactly in the data, we can proceed using the model as a good
approximation to reality.

Next, I explain the estimation of the model’s parameters, which I obtain by comparing selected
moments in the model with informative micro data. The estimation consists of three main parts.
First, I estimate the heterogeneity parameter θ by fitting the model’s land allocation equation, using
exogenous yield estimates from from the GAEZ project. Once I have obtained an estimate of θ, I
calculate the levels of land quality, Ai,k, relying solely on Peruvian national statistics data. Second,
I estimate a statistical model of transportation costs, following the approach in Donaldson (2010):
I project freight rates (for a sample district pairs) on road and geography data, and estimate the
cost of traversing roads of different qualities, and with different slopes. Using these estimates, I
predict freight rates for all possible origin-destination pairs in the country. Third, I combine expen-
diture household data with my previous estimates of land quality, Ai,k, to estimate the elasticity of
substitution between crops in demand.

Based on these estimates, in the last part of this Section I calculate TFPR for each district
in the country, and show its substantial dispersion. I defer the simulations of the equilibrium to
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Section 7, where I assess the overall fit of the model, and carry out counterfactuals to dissect the
effect of market access on productivity.

5.1 The model of land heterogeneity is consistent with the data

Figure 2 shows the relation between ηi,k and πi,k, in a log scale. The data show a clear positive
relation between the two shares, although there are obvious departures from the model’s prediction.
In Table 2, I regress πi,k on ηi,k, without an intercept, as implied by the theory. The slope estimate
is 1.017 (0.001) and R2 = 0.97. The coefficient is close to 1, but one can easily reject the null
hypothesis that the coefficient is different from 1. At this point, however, the motivation for such a
regression is unclear, and so is the source of uncertainty in the estimates. I instead interpret these
statistics as evidence that the model does not do extreme violence to the data and, although it does
ignore part of the data variation, we can proceed with some confidence.21

5.2 Estimation of α and β

My goal is to calibrate α, β and γ to national income shares. Currently, I use data on technical
requirements for growing a set of crops and interpret them through the lens of the model.22 Ignoring
the variation across crops, I focus on the averages and estimate α̂ = 0.5 , β̂ = 0.3 and γ̂ = 1−α̂−β̂=
0.2. Importantly, these estimates are in line with others in the literature. As a check, I compare my
estimates to those in Hayami and Ruttan (1985), –later quoted in Restuccia, Yang, and Zhu (2008)–,
who estimate for that, for a sample of countries, the labor cost share is 0.42, the intermediate input
share is 0.4 and the land share is 0.18. Importantly, the land share is almost the same.23

5.3 Estimation of θ using National Statistics and GAEZ data

The farmer’s land-allocation decision is the basis for the estimation of theta. Recall that the fraction
of land allocated to crop k is described by equation (7), which I repeat here

ηi,k =

(
p

1
γ

i,kAi,k

)θ
Φθ
i

(22)

Now we tie this expression to the data on unconditional yields produced by GAEZ, following
a similar logic to that of Costinot, Donaldson, and Smith (2012). Using the model, we calculate
the physical land yield given prices, but unconditional on ω ∈ Ωi,k. That is, we calculate the
yield that would be obtained using labor and land optimally, but allocating all land in region i to

21In Sotelo (2013) I explore the deviations from the prediction in more detail. Also see Appendix G for this same
exercise in the shares’ natural scale.

22The source of data is Direccion Regional de Arequipa, a department that accounts for approximately 6% of the
total value of agricultural production.

23The relative values of α and γ are also in line with those used in the GTAP 8 database. See Hertel, Tsigas and
Narayanan (2013).
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the production of crop k. I denote it by ỹi,k, omitting the dependence on prices. To obtain it, we
calculate the unconditional expectation of yi,k (ω) in (11)

ỹi,k = κyAi,kp
(α+β)
γ

i,k w
−α
γ

i,A ρ
−β
γ

i .

I assume that this object corresponds to the measures produced by the GAEZ project, although it is
not an object that we would observe in equilibrium. To connect it to the data, I assume that there
exist prices pGk , wGA , ρG that rationalize the technological assumptions used by IIASA and FAO to
construct the GAEZ dataset.24 Then we relate each observation in the GAEZ data to objects in
the theory, particularly Ai,k:

ỹGi,k = κyAi,k
(
pGk

) (α+β)
γ

(
wGA

)−α
γ
(
ρG
)−β

γ eui,k

where ỹGi,k is the GAEZ measure of unconditional yields, and eui,k is a term that captures the
possibility that the true Ai,k is measured with error. Using (22) to substitute for Ai,k in the
expression for ỹGi,k, we obtain an expression that relates GAEZ yield measures to observed land
allocations and prices:

log
(
p

1
γ

i,kỹ
G
i,k

)
= 1
θ

log ηi,k + kG + ιk + ιi + ui,k. (23)

where, ιk is a dummy that absorbs
(
pGk

)−α+β
γ , ιi absorbs log Φi, and k is a constant that absorbs

log κy + log

[(
wGA

)−α
γ
(
ρG
)−β

γ

]
.

I construct the left-hand side of equation (23) imposing the restriction that the coefficient on log-
prices is 1

γ . The reason is that I want to focus attention on the coefficient of log ηi,k which is the
only coefficient informative of θ in the regression.

What is the economic interpretation of this estimating equation? Suppose we observe that in
region i a large fraction of land is allocated to crop k. Because farmers optimally allocate more
land to crops for which land is better suited –equation (22)– we would predict that Ai,k is relatively
large, too. By the same logic we would predict a large GAEZ estimate of potential productivity.
But the farmers can also choose to allocate a large fraction of land to a crop when its price is high;
that is why the dependent variable in the estimating equation “values” the GAEZ productivities at
the equilibrium prices.

In estimating equation (23), I take a particular stand on what is the source of error ui,k. There
is reason to believe that the GAEZ data are a noisy measure of potential productivity ỹi,k. For
example, there are regions that actually grow a crop in the national statistics, which nonetheless

24Note that I assume that the prices that rationalize the GAEZ data are independent of i. I take the stance that,
although the GAEZ data set models input use as a function of input prices relative to output prices, they do not have
a model for the spatial variation of those prices.
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show zero potential productivity in the GAEZ data set. Another reason for measurement error is
the way I process the GAEZ data and assign it to each Peruvian district, as explained below.25

Note that the unobserved heterogeneity Λi,k (ω) does not, by itself, generate an error term. In
the model, there is a continuum of plots in each region, which means that the model’s predictions
about endogenous variables, like land allocation, must hold exactly. Hence, land-quality hetero-
geneity cannot serve as motivation for the error, unless one abandons the assumption that there is
a continuum of plots.

Before discussing the results, note that the model allows us to estimate θ based only on a
sub-sample of goods: assuming that the Fréchet draws are i.i.d. allows us to write optimal land
allocation to crop k only as a function of its price and land quality, pi,k and Ai,k, together with
a region-wide shifter motivated by Φi. We do not need to take into account the prices and land
qualities of all other crops.26

Sample and Results

To estimate equation (23) we need data on crop prices pi,k, land allocations ηi,k and GAEZ potential
productivity measures ỹGi,k. Data on pi,k and ηi,k come from the Peruvian Ministry of Agriculture.
Since this model is best thought of as a description of the long-run, I focus on the long sample
of National Statistics which averages more than ten years, and contains information for four de-
partments. Averaging a longer time series reduces the variation induced by weather shocks, pests,
etc.

To construct the ỹGi,k data at the district level, I overlay the administrative division of Peru on
top of the GAEZ grid. To deal with the fact that the boundaries of both divisions do not coincide,
I further partition the GAEZ grid according to Peru’s map. It often happens one cell gets assigned
to more than one district; also, on many occasions, this procedure assigns pieces from more than
one cell to a single district, in which case I assign the maximum cell value to that district.27 The
crops included in the regression are those that are both observed in national statistics and in the
GAEZ dataset.

Table 3 shows the results of estimating equation (23). The coefficient on land allocation is
0.483, which implies an estimate θ̂= 2.06. Figure 3 shows the variation that identifies θ̂: it relates
log

(
p

1
γ

i,kỹ
G
i,k

)
to log ηi,k after removing district and crop fixed effects. The coefficient is precisely

25This motivation for the error is related, but conceptually different from, a common treatment of errors in the
quantitative trade literature. Here we assume that the theoretical object of interest is measured with noise, and
hence we try to predict it with observables. In contrast, the typical approach in trade assumes that the proxies for
trade costs in a trade-flow equation (e.g. distance between countries) are measured correctly, but do not capture all
variation in trade costs. See Head and Mayer (2013) for a detailed exposition.

26In a study of trade and multinational production, Ramondo and Rodriguez-Clare (2013) extend the unobserved
heterogeneity approach to a multivariate Fréchet distribution.

27To match the GAEZ grid to the districts, I use the actual administrative division of Peru, from which I cannot
observe what fraction of the land is actual agricultural land. The quartiles of the administrative district-size dis-
tribution are 93.8km2, 210.6km2 and 497.7km2. Due to the way it is projected, the cell size in the GAEZ grid is
approximately 86.km2 at the Equator, but it grows larger at higher latitudes. The fact that the total agricultural
land is usually much smaller than the total amount of land in a district justifies using the maximum GAEZ value for
each district that contains more than one GAEZ cell.
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estimated. This value of θ̂ implies a large elasticity of land allocation with respect to prices:
θ/γ ≈ 2

0.2 = 10. To understand this magnitude, consider an exogenous change in the relative price
of two crops –as could happen, for example, with a change in international prices. If the price
of potatoes relative to tomatoes increases by one percent, then the allocation of land to potatoes
relative to tomatoes increases by about 10 percent.28

Note that a key assumption to obtain estimating equation (23) is that ηi,k is observed without
error. If that is not the case, then the estimate of 1/θ is subject to attenuation bias, which means
that the estimate of θ is too large. In Appendix G, I discuss how to treat the estimating equation
in a way similar to an errors-in-variables model. I discuss the possibility of bounds identification for
dealing with measurement error in and ηi,k, exploiting the method proposed by Leamer (1978).29
30

5.4 Absolute and Relative Values of Land Quality Parameters, Ai,k

To estimate the Ai,k parameters I rely heavily on the model structure. As I have discussed in detail
in Section 3, Assumption #2 imposes strong restrictions on what data are informative about land
quality. The only way to learn about the relative values of the parameters Ai,k is by comparing
land allocations across crops, within a region. In contrast, data on revenue per unit of land and
physical yields are informative about the common component of all Ai,k within a region. Recall,
that relative values of Ai,k are not directly observable, except for the limiting case where θ → ∞,
in which the observed land yield of crop k fully reveals Ai,k.

My approach, which extracts the model parameters using data on the endogenous variables, is
an alternative to the use of external measures of productivity.31 Costinot, Donaldson, and Smith

28Santos Silva and Tenreyro (2006) have argued that to estimate constant elasticity models by taking logarithms
and running a linear regression, one must make more stringent assumptions about the error than would be necessary
if one used, for example, a Poisson Pseudo Maximum-Likelihood estimator. I will explore alternative estimators in
future versions of the paper.

29Chapter 7, p. 239; see also Cameron and Trivedi (2005), pp. 906-908, and the references there.
30Another possibility, which I leave for the future, is to exploit, time-series variation to study the farmers’ land

allocation changes in reaction to exogenous variation in prices. Together with the assumption that the potential
productivity does not vary much over time –so we can subsume it in a time-invariant crop fixed effect– we can use
directly the land allocation equation

log ηi,kt = θ log pi,kt + ai,k + bi,t + ui,kt,

where ai,k = logAi,k and bi,t = log

[(∑
k

(
p

1
γ

i,ktAi,k

)θ) 1
θ

]
.

31The idea of combining the model structure with data on endogenous variables to estimate the model’s primitives
has antecedents in the trade literature. My approach is a variation on Eaton and Kortum (2002), who recover the
productivity parameters in a Ricardian trade model from the fixed effects in a gravity equation. Waugh (2010) discusses
the correct econometric specification of the gravity equation, and Levchenko and Zhang (2011) refine this technique
in a many-sector, many-factor model. Using a different model, Anderson and Yotov (2010) show also how to use the
model structure to recover model parameters. See Head and Mayer (2013) for an evaluation of recent approaches
to the estimation of gravity equations in trade. Closer to my approach, Costinot, Donaldson, and Komunjer (2012)
exploit the Eaton-Kortum model to relate bilateral trade flows to the level of productivity in the source country. In a
growth and talent allocation context, Hsieh, Hurst, Jones, and Klenow (2013) back out the frictions to the allocation
of labor across occupations using the structure that a Fréchet distribution for unobserved talent imposes.
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(2012) and Costinot and Donaldson (2011), for example, use directly the potential quality measures
produced by the GAEZ project. This method has the benefit that the productivity measures
are independent of the model, insofar as the researcher only needs to choose how to interpret the
productivity data. The main shortcoming of this method is that, although constructed with extreme
care, the GAEZ measures are an imperfect measure of actual land quality. For my application, there
is an additional complication: GAEZ does not estimate potential productivity data for some goods
that are important in my database.

I start by relating the aggregate regional data on output and factor endowments in region i to
that region’s aggregate level of productivity. Under the assumption that labor is immobile between
sectors and districts, we can use equation (18), and solve for Φi as a function of observable variables:

Φi = κ
− 1−β

γ
y κ

α
γ

l H
− 1−β

γ

i

(
Hi

Li

)α
γ

V
1−β
γ

i ρ
β
γ

i . (24)

Equation (24) strips from the total value of production, Vi, the contribution of endowments, Hi, Li,
and the intermediate input (through its price ρi). This residual is informative about the aggregate
level of productivity, as shown in the distribution of yields and revenues in Proposition 2. A higher
value of Vi relative to inputs will lead us to infer a higher land quality for all crops in i, because it
means that region i produces more value for a given factor use.32

Just like aggregate output and endowments are informative of a common component of land
quality for all crops in region i, data on prices and land allocations are informative about the relative
land qualities within that region. Using equation (7) to solve for Ai,k we obtain:

Ai,k = p
− 1
γ

i,k η
1
θ
i,kΦi, (25)

which we can take to data because pi,k and ηi,k are measured directly, and equation (24) tells us how
to measure Φi with the regional aggregates. It is clear that these estimates, Âi,k, are independent
of the unit of account in the data, since equation (25) is homogeneous of degree zero in prices.

Let us take a moment to interpret this equation. As already said, the residual Φ̂i shifts all
estimates Âi,k proportionally, based on how much output is produced in i, compared to its endow-
ments. A large value of ηi,k requires a higher land quality for crop k, relative to the other crops, to
rationalize it. But we must also net out the effect of a large price pi,k, which also tends to generate

32Recall that equation (14) relates the expected yield in crop k to Φi:

E [ψi,k (ω) |ω ∈ Ωi,k] = κyΦiw
−α
γ

i ρ
− β
γ

i .

In principle, solving for Φi from this equation, we obtain one estimate of Φi, for each k ∈ Ki, conditional on wages
and the price of intermediates:

Φ̂i
(
ψ̂i,k
)

= ψ̂i,k

κyw
−α
γ

i ρ
− β
γ

i

.

But note also that the theory predicts no variation in E [ψi,k (ω) |ω ∈ Ωi,k] across crops. The within-region variation
in the expected yield is the same as the variation around the model’s prediction in Figure (2). The approach I follow
in the paper amounts to constructing an average of all the Φ̂i

(
ψ̂i,k
)
, where each crop is weighted by the fraction of

land allocated to it.
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a large land allocation to crop k.
There is an alternative interpretation of equation (25) that will help understand the results of

the simulations in Sections 6 and 7. The estimate of Ai,k combines information on prices and land
allocations. In this estimation, how important is the variation in land allocations relative to the
variation in prices? Variation in land allocations is more important the larger 1/θ. Given γ, a lower
value of θ (high heterogeneity) gives less importance to land allocations in the estimation of Âi,k.
Thus, with lower values of θ the model will simulate land allocations that are closer to the data.

Last, note that the estimation of Ai,k is not free of error; the observations for pi,k, ηi,k, and the
aggregate variables used to infer Φi are themselves estimates, just like the values of θ and γ. Even
if the model is correct, we are ignoring the sampling variation and hope for an unbiased estimate
of Ai,k, at best.

Sample and Results

My primary goal in obtaining Âi,k is coverage, so I sacrifice precision in the estimation to be able to
obtain an estimate for every region in the country. Hence, I use the wide sample of national statistics,
which contains repeated cross-sections from 2008-2011 and covers the whole country. Data on pi,k,
and ηi,k are averages across time. I use the corresponding data on land yields, yi,k, to construct
the total value of production in region i, Vi =

∑
k∈Ki pi,kyi,kηi,kHi. The data on agricultural labor

comes from the 2007 population census. I delay the description of the intermediate input price to
later in this section.

Table 5 shows, for each crop k, the summary statistics of the estimates of Ai,k. The estimates
vary substantially between crops, reflecting the fact that the price of a ton of output also varies
much between crops. For example, the average price of a kilogram of coffee in the data is 6.45 LCU,
while that of cassava is 0.46 LCU; accordingly, Āi,coffee=2.63 and Āi,cassava=2, 088, 482.

5.5 Estimation of Transportation Costs

The goal of this section is to produce an estimate of the iceberg trade costs between any two pairs
of regions in Peru, and for each good in the data set. The first step is to estimate a statistical model
of transport costs: I project a sample of within-country freight rates on data about the quality and
geography of the road that connects each origin-destination pair in the sample. Because data on
geography and road quality are available for the whole country, I then use this estimated model
to predict the freight rates for all possible origin-destination pairs in Peru. The second step is to
transform predicted freight rates –measured in local currency per kilogram– into iceberg trade costs
by comparing them to the average farm-gate price of each crop in the data.

5.5.1 Projection of Freight Rates on Road and Geography Data

I follow Donaldson (2010) and represent the transportation network with a graph. To form the
graph, I combine GIS data on (i) the exact location of the capital of each district i, (ii) a fine grid
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of altitude33, and (iii) the shape, length and quality of the road network, which I group into high
quality (paved), medium quality (graded) and low quality (unpaved).

Each region i in the model corresponds to a node in the graph. The rest of the nodes represent
the connections between segments in the road network. For example, if a highway splits in two, my
procedure places a node at the point where the split occurs. Two nodes are connected if at least one
of the two following conditions is met: (i) there is a segment of road of any quality that connects
them or (ii) they are two district capitals at most 100 km. apart.34

I use the sample of freight rates to estimate a statistical transport cost model, which will give
estimates of the relative costs of traversing roads of different qualities and with different slopes. Let
fni be the observed freight rate of shipping a kilogram of goods from region i to region n. I estimate
the following equation by non-linear least squares:

E [log fni|geography, roads] = β0 + βdistance × log (effective distanceni (λ)) . (26)

where βdistance translates effective distance into freight rates. For a given choice of the parameter
vector λ, “effective distanceni” is the lowest-cost path between regions n and i, calculated according
to Dijkstra’s algorithm, which minimizes the following weighted sum of distances:

effective distanceni (λ) =
∑

q∈{high, med, low}

∑
edge∈Eq,ni(λ)

[exp (λssedge) · (λqdistanceedge)] . (27)

In equation (27), Eq,ni (λ) is the set of edges of quality q that form part of the optimal route between
i and n; λq is the cost of traversing a kilometer of road of quality q, and λs is the effect of traversing
an edge with slope sedge. Without loss, we normalize the weight of high-quality distance, λhigh, to
one.35

Figure 4 compares the fit of three versions of the model: (i) a model that constrains λq = 1 and
λs = 0, (ii) a model that constrains only λs = 0, and (iii) a completely unconstrained model. It
is clear that taking into account the quality and geography of the road substantially improves the
estimation. Table 6 shows the point estimates of each model.36 I focus attention on the completely
unrestricted model (column 3), which is the one I use to predict freight rates out of sample. I
find that λ̂med = 3.09, λ̂low = 9.416, λ̂s = 15.7 and β̂distance = 0.857. To interpret these values,
suppose that the route between two regions n and i is completely paved and flat. If that same
route were unpaved, and the slope were at the 90th percentile in the sample (0.023), the freight cost

would increase by a factor of
(
exp

(
λ̂s · 0.023

)
λ̂low

)β̂distance = 9.31. With these estimates at hand,
we predict freight rates for the whole country based on its geography and the quality of its road

33The size of each cell in the grid is 30 arc-seconds by 30 arc-seconds.
34If there is no road, I use the straight-line distance and assign low quality to the connection.
35Expression (27) emphasizes that the optimal road depends on the actual value of λ. The reason is that, given λ,

Dijkstra’s algorithm chooses among alternative ways of reaching n from i, over the network, and these choices may
change with the relative cost,λ. In the extreme, if λmed = λlow = 1, the algorithm minimizes the simple distance
between two points. As λmed and λlow grow, the algorithm gives priority to high-quality edges.

36The standard errors remain to be computed.
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network.

5.5.2 Transformation of Freight Rates into Iceberg Costs

Let f̂ni be the predicted freight rate between n and i. To transform f̂ni into an iceberg cost d̂ni,k,
we divide f̂ni by crop k’s average producer price, p̄k:

d̂ni,k = 1 + f̂ni
p̄k
.

This calculation delivers a unitless estimate, as p̄k and f̂ni are measured in units of currency per
weight. Note that the freight rate is constant across crops for a given origin-destination pair, and
therefore the iceberg trade cost is inversely related to the observed price of the crop. This captures
the fact that goods with higher value to weight are more likely to be traded.37

For any region i in Home, the cost of trading with Foreign is captured by the cost of trading
with the closest international port. To find the closest international port, I select the three main sea
ports by value and find the closest to region i according to the predicted freight rate f̂o(i)i, where
o (i) is the port closest to i. Thus, I compute for each good:

d̂iF,k =
f̂o(i)i + p̄k

p̄k
.

Results

Table 7 summarizes the distribution of d̂ni,k, by crop k, pulling together across all pairs of regions.
The most salient feature of the table is that my estimates of dni,k are low, which has two possible
explanations. First, as suggested by Figure 4, the model of transportation is unable to replicate
transportation costs at the higher end of the sample. Second, as has been discussed at large in the
trade literature, actual transportation costs are only a small fraction of the total costs needed to
rationalize trade flows relative to a frictionless benchmark.38 When we evaluate the model at the
baseline equilibrium, it will become clear that these measures of transportation costs generate too
much specialization and too high intermediate input use.

5.6 The Price of Intermediate Inputs

The cost of intermediate inputs in region i, ρi, has two components: the price of the input bundle
at the port and the cost of transporting it to region i. To calculate the price of the good at the
port, I construct a bundle of fertilizers and average their price. This is akin to assuming that, to
obtain a unit of intermediate, farmers combine all available fertilizers in fixed, equal proportions, as
with a Leontieff production function. In Table 8 I show the unit FOB price and the import quantity
of each fertilizer I include in the input bundle. I take the simple average in the bottom row to be

37See Hummels and Skiba (2004)
38For example, Chaney (2011) has recently explored the implications of networks in trade. Allen (2012) has shown

that information costs are an important part of total trade costs.
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ρF .39 Then I multiply the cost of the bundle of the input by the each region’s cost of trading with
Foreign, d̂iF,x

ρi = d̂iF,xρF .

5.7 Estimation of Domestic Demand Parameters

I set σ = 3, with the notion that substitution in consumption is relatively easy between similar
crops (e.g., grains) but not between different crops (e.g., vegetables versus grains). I am currently
working on estimating σ by combining household expenditure and unit-value (consumption price)
data, with the estimates Âi,k, which the model suggests should be good instruments for unit prices.
40 Estimation of the other parameters is described in the Appendix.

5.8 Assessing the Sources of Productivity

At this point we have estimated the transportation costs, f̂ni, which allow us to calculate the cost
of the intermediate input in each region, ρi. We have also measured the productivity component
Φi implied by the aggregate regional data. We are in a position to assess the contribution of each
to agricultural productivity.

The first column in Table 4 shows the estimates of TFPR. The variation in TFPR is large: the
difference between the 90th and the 10th percentile of the distribution is a factor of 8.

According to the Table (third column), the variation in ρ
− β

1−β
i is relatively small, and hence

accounts for a small part of the variation in TFPR. Consider the 90th and 10th percentiles in the
distribution of access to intermediate inputs. The ratio of the effect of this channel is 0.98

0.93 = 1.05,
which means that moving from the 90th to the 10th percentile increases value productivity by 5
percent.

The effect of Φi is much larger (middle column), but we must bear in mind two caveats. First, I
obtain the component as a residual: all the variation in labor and land productivity that cannot be
accounted for by variation in ρi is attributed to Φi. Second, as discussed above, Φi captures more
than the effect of specialization based on comparative-advantage, as better land quality on average
will translate into a higher value of Φi, regardless of trading possibilities. Therefore, to elicit the
effect of trade policy on productivity, we work with counterfactuals in Section 7.

39The data on costs of production described in Section 5.2 contains information regarding the cost share of different
types of intermediates. For the goods for which I have data on production costs, the cost share of fertilizer is a
large fraction of the cost share of intermediates. FAOSTAT data for the years 2008 and 2009 show: (i) the fertilizers
included in the Table account for more than 95 percent of total imports of fertilizer, (ii) imported fertilizer is more
than 99 percent of consumption, (iii) exports are about 3 percent of consumption (all measured by weight). Taken
together, this evidence suggests that the assumption that intermediate inputs are imported from abroad is not too
far from reality.

40A value of σ = 3 seems to be on the higher end of plausible values, as compared, for example, with Behrman
and Deolalikar (1989), who estimate 1.2 for the elasticity of substitution between broad food groups, at low levels of
income. My preliminary results, which also suggest that σ̂ = −1.2, point in the same direction.
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6 Simulation and Evaluation of the Model

The first task is to simulate the model and compare its predictions to the data.41 We identify the
features of the data that the model is able to replicate and we study why the model cannot capture
other aspects.

6.1 Fitting Farm-Gate Prices and Land Allocations

I start by comparing equilibrium crop prices, pi,k, in the model and in the data. Since the national
statistics database focuses on producers, we only observe farm-gate prices for the crops that are
being produced in a given region. The comparisons I show next are only for those observations.
This is important because, to the extent that the model predicts a higher price in an non-producing
region –which we would expect in reality–, we will not be able to observe such price variation in the
following figures. All we can examine is whether the model can replicate producer prices, which I
think is a tougher test of the model’s performance.

The top panel of Figure 5 shows the relation between price data and predictions, combining
between-region and between-crop variation (in a log scale). There is a clear, positive relation
between model and data. We would expect the model to be able to capture this relation because,
when we estimated the Ai,k parameters, we allowed them to capture the crop-specific variation
in prices. For example, if on average a ton of potatoes is cheaper than a ton of asparagus, then
on average Âi,potatoes will be larger than Âi,asparragus. Table 5 already suggests the outcome, as
it shows large differences in Âi,k between crops. Note, however, that the model predicts too high
prices relative to the data.

Consider now the bottom panel of Figure 5, which compares land allocation ηi,k in the data and
model (in a log scale). The top panel shows clearly that, at the baseline parametrization, the model
predicts extreme patterns of specialization relative to the data. This is shown by the spread of the
predictions, which is much larger than in the data.

Generally, the model will not reproduce exactly the endogenous variables, even when we es-
timated many of the parameters of the model by looking precisely at those data, in particular
producer prices. The key is that prices are equilibrium outcomes, too, and neither preferences,
technology nor geography are exact representations of reality.

The model does not match the data perfectly for at least four reasons reasons. First, in Section
5, I estimated transport costs to be quite modest. The model did not do a good job of fitting the
larger freight-rate observations. More importantly, as has been argued in the literature, freight-rates
are just a small part of the story when it comes to trade frictions. Hence, in the simulation, the
model allows every region in Peru to reap almost entirely the international or urban price for the
cash crops they sell there; through the factor markets, this raises the prices of all other crops. Low
transportation costs also induce too much specialization, which increases productivity.

41Calculating the equilibrium with more than 1800 districts and 51 crops is a computationally daunting task. In
this version of the paper, therefore, by aggregating the Peruvian data at the province level, I reduce the number of
regions to 194. The number of crops remains the same.
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Second, recall that the elasticity of land allocation with respect to prices is relatively large,
θ/γ ≈ 2

0.2 = 10. Such a large magnitude explains why the model predicts extreme patterns of
specialization we observed before. Recall that unbiased estimation of θ by means of estimating
equation (23) requires that ηi,k be measured without error. If not, attenuation bias will yield too
high an estimate of θ. If we simulate the model with too little heterogeneity (high θ) and too low
transportation costs, the model will deliver too much specialization and too high producer prices.
This is the rationale for the alternative calibration.

Third, I estimate the scale productivity parameters, Ai,k, by taking the land allocation equation
as correct and then calculating the values of Ai,k to reflect both pi,k and ηi,k, with relative importance
determined by θ. The land allocation equation is only true under the extreme assumptions that
(i) the land productivity is, in fact, distributed like a set of i.i.d. Fréchet random variables and
(ii) the technology is Cobb-Douglas and constant across crops. As has been discussed before, these
assumptions have empirical implications that are not perfectly reflected in the data and at this
stage we pay the price of tractability.42

Finally, I assume that farmers are entirely driven by expected profit maximization, which is at
odds with reality, as discussed in the development literature. The primary concern is that cropping
choices also reflect farmers’ intention to diversify risk, so the model predicts too much specialization.

6.2 The Rationale for an Alternative Parametrization

The performance of the model, in terms of its predictions, can be improved. The model predicts
too much specialization and too high equilibrium prices (in terms of the numéraire). A large part
of the performance of the model can be traced back to the θ̂ estimate, which implies that land
allocation is too sensitive to changes in relative prices, and to the low estimates of d̂ni,k, which allow
for too large trade integration both within Peru and with the rest of the world. In what follows, I
compare the baseline parametrization with an alternative one. In the alternative parametrization,
first, I set θ̂′ = 1.25, lower than the baseline θ̂ = 2.06, and which goes in line with the possibility of
attenuation bias in the estimation of equation (23). Second, I increase trade frictions according to

d̂′ni,k = 1 + δ
(
d̂ni,k − 1

)
,

which means that I increase the trade frictions preserving the order in that distribution, and set
δ = 7. This value of δ sets the average level of simulated prices to the one in the data. The value
of θ̂′ aims at improving the fit the data on land shares.

With this in mind, consider the top panel of Figure 6, which compares farm-gate price data with
simulated prices under the alternative parametrization. The model does now better at reproducing
the level of prices relative to the numéraire. Also, there is a small increase in the correlation between

42Choosing parameters to fit bilateral trade flows perfectly is the approach followed by Dekle, Eaton, and Kortum
(2008) and, more recently, Caliendo and Parro (2012), Parro (2013), Ossa (2011). This approach brings other benefits
that I cannot exploit, chief among them, the ability to compute counterfactuals without estimating all the primitives
in the model.
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data and simulation within crops, as shown in Table 9. In that table, as a measure of fit, we regress
the price data on the model simulation using crop fixed effects, because we want to remove the
variation that is due to the fact that some crops are simply more expensive than others on average.
The fact that in Column (1) the estimate is positive, but larger than one (1.77) means that the
baseline model generates the right correlation, but too little price variation relative to the data.
Column (3) shows that the alternative parametrization the slope estimate is closer to, but smaller
than, 1.

In contrast, Panel B shows that increasing trade frictions and increasing the heterogeneity
improves the prediction about land allocations substantially: there is less specialization and a
tighter relation between model and data. This improvement is quantified in Table 10, which pools
between and within-crop variation. Regressing data on land shares on the model’s prediction, we see
that both models generate the right correlations, although the alternative parametrization improves
on the baseline.

Being assured that the model gets the main correlations right –even if it could be improved– we
now turn to a counterfactual to evaluate the effect of market access on productivity.

7 The Effect of Improving Market Access

In this section I ask: What are the effects of improving the access of an isolated region to a large
market? In a more realistic counterfactual, which I will pursue in a future version of this paper,
the extent of market access improvement is governed by the estimates of the transport cost model
in Section 5. Those estimates show what is the reduction in freight rates that occur, for example,
if a dirt road is paved. The feasibility of the conterfactual will be then clear, and the exercise will
be more in line with the spirit of the paper, which emphasizes the general equilibrium interactions
of small productive units.

To gain a quick sense of the magnitudes involved, I select a small and isolated region and evaluate
the effect of improving its connection to Lima, the largest urban market in the country. I proceed in
two steps. First, in the distribution of freight rates of shipping to Lima, f̂Lima,i, I identify the region
that corresponds to the 90th percentile of that distribution. Denote that region by i1. Second, to
capture an improvement in the transportation network, I reduce the freight rate of trading to and
from Lima, f̂Lima,i1 and f̂i1,Lima, to the 50th percentile of the distribution of f̂Lima,i.

I will compare the estimated productivity gain from in both parametrizations. As will become
clear, the alternative parametrization, gives more room for productivity gains.

Productivity Gains Under the Baseline Parametrization

Productivity is improved by almost 10 percent. Let us start by decomposing the effect on value
productivity of land and labor. Recall that in this model, the equilibrium TFPR of land and labor
is proportional to

ρ
− β

1−β
i Φ

γ
1−β
i ,
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as shown in equation (18). The first term, ρ
− β

1−β
i , captures the effect of access to intermediate

inputs (the first channel in the theory). This comes about because, in this particular example,
Lima becomes the closest port –in the sense of lowest cost– and so the price of the intermediate
input decreases from 1.182 to 1.149 in terms of the numéraire, ρF . The productivity increase due to
this channel is approximately 0.43 for every percent point decrease in the price of the intermediate:

≈ − β

1− β × percent change in ρi

= 1.2%

The second channel comes from better land use, due to improved specialization. The percent
change on value productivity is γ

1−β for each percentage point increase in Φi:

≈ γ

1− β × percent change in Φi

= 8.7%

The total increase in value productivity is almost 10 percent.

Productivity Gains Under the Alternative Parametrization

Under the alternative, when we set θ̂′ = 1.25 and δ = 7, the total gain in TFPR is about 35 percent.
In this scenario, 4.4 percent is gained by having access to cheaper intermediate inputs –the price
drops from 2.27 to 2.04–, while 30.7 percent is gained by a better land allocation.

Why do the gains triple when moving from the baseline to the alternative parametrization?
Most of the increase in the productivity gains come from the change in the Φi term. As discussed
before, when trade costs are high as in this parametrization, there is a negative relationship between
prices and land quality. Such relationship arises because the market for each crop tends to clear
locally. Lowering the trade costs that the region faces to trade with a large market severs the link
between that region’s local prices and its land quality, inducing farmers in that region to allocate
more land to those crops in which they are better or for which they can now reap a higher price.

8 Conclusion

In this paper, I estimate the effect of market access on agricultural productivity by tightly connecting
data on Peruvian agriculture with a model of trade and specialization. The model makes predictions
about land allocations across crops within a region and gives precise indications of how to interpret
other geographically disaggregated data on crop prices and yields.

The central message of the paper is that barriers to market access have a negative effect on
farmers’ productivity, especially by preventing them from allocating land to its most valuable use.
Take the distribution of costs of trading with Lima, Peru’s largest urban market. According to my
baseline estimation, moving a remote region from the 90th to the 50th percentile of that distribution
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increases Revenue TFP by about 10 percent. Under an alternative parametrization – which improves
the model’s fit of the data – the productivity increase is approximately 35 percent. Hence, the
isolation of low-productivity regions suggests that trade frictions help account for within-country
dispersion in productivity.

A broader contribution of this paper is to develop an applied equilibrium framework to study
the interaction between urban and rural economies that are not completely integrated. In future
work, I will extend this tool and apply it to other important questions at the intersection of trade,
regional, and development economics. My approach, for example, is well suited to study the spatial
effect of a shock to world food prices, as trade frictions isolate some areas from world-market
volatility and prevent stronger supply responses from those farmers. Moreover, since Engel’s Law is
a prominent feature in consumption data, augmenting the model in this paper to incorporate non-
homothetic preferences will shed light on how income inequality shapes the urban-rural exchange
within countries.

Finally, in this paper I have uncovered two puzzling features of the data. First, I documented
that to make sense of observed prices and land allocations, we need large barriers to the movement of
goods across space. But these barriers are an order of magnitude larger than those implied by freight
rate data, which raises the immediate question of what additional frictions they capture. Second,
I estimated large geographic dispersion in productivity within Peru. Why can this productivity
dispersion persist in the long run, especially if people can move within a country? This paper
suggests that there is a payoff to frameworks that jointly explain barriers to trade and barriers to
labor mobility from less to more productive farming pursuits.
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Table 2: An Empirical Assessment of Proposition #3: Equalization of Land and Revenue Share
(1)

log πik
log ηik 1.017∗∗∗

(0.00119)
Observations 22717
R2 0.970
Adjusted R2 0.970
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 3: Estimation of Inverse Heterogeneity θ
(1)

log ỹikp
1/γ
ik

log ηik 0.483∗∗∗
(0.0656)

Crop FE Yes
Observations 640
R2 0.851
Adjusted R2 0.801
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 4: Summary Statistics of the Estimates of Value Productivity and its Components
Value Productivity Φ

γ
1−β ρ

−β
1−β

count 1751.00 1751.00 1751.00
mean 3.51 6.13 0.96
std 3.46 5.96 0.02
min 0.03 0.05 0.81
10.0% 0.93 1.63 0.93
50% 2.43 4.27 0.96
90% 7.37 12.98 0.98
max 43.54 73.31 1.00

Value Productivity is the model-based measure β
β

1−β Φ
γ

1−β
i ρ

− β
1−β

i .
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Table 5: Summary Statistics of the Estimates of Land Quality, Âi,k
count mean std min 10.0% 50% 90% max

achiote 83.00 92.11 245.39 0.02 0.16 6.76 254.22 1655.83
apple 417.00 33212.91 219530.80 0.13 8.95 310.80 32188.76 2775583.97
asparragus 77.00 12516.62 71009.09 0.48 9.34 203.70 5193.63 594706.70
avocado 580.00 25054.63 230033.49 0.00 2.03 143.04 14062.67 5022709.61
banana 553.00 867464.82 3684655.11 0.52 674.45 55407.80 1400240.02 44298477.87
barley grain 1112.00 4467.06 20078.43 0.07 11.62 333.26 7606.31 375235.69
cacao 240.00 5.43 23.52 0.00 0.02 0.38 7.47 231.09
canahua 87.00 154.94 605.56 0.00 0.25 9.07 253.02 4407.37
cassava 605.00 2135658.75 24609250.39 0.21 194.36 18127.43 620113.50 419824888.51
chocho 425.00 84.56 465.81 0.00 0.12 4.27 118.21 7081.56
coconut 176.00 1653012.74 10982079.93 28.61 1109.94 30113.91 1168967.72 136411196.36
coffee 329.00 2.73 8.71 0.00 0.01 0.34 5.23 100.52
cotton branch 190.00 463.63 1639.91 0.02 3.54 84.37 629.01 18265.62
dry bean 983.00 2740.42 57181.16 0.00 0.23 7.57 344.86 1304334.94
dry faba bean 1007.00 535.95 3717.85 0.01 1.12 24.47 632.26 96761.76
dry pallar 86.00 550.98 2207.90 0.08 0.39 32.64 683.89 18966.21
dry pea 927.00 321.81 2882.22 0.00 0.74 12.89 248.94 59290.32
dry zarandaja 56.00 863.43 1502.04 0.01 13.15 371.31 2115.04 8424.54
garbanzo beans 40.00 32.79 48.96 0.02 0.15 5.10 89.71 212.73
garlic 319.00 919.28 8078.27 0.00 0.01 1.19 150.24 103901.98
grape 184.00 9444.55 31220.54 0.01 3.27 544.37 21304.34 321182.84
green bean 186.00 4312.90 12440.97 0.05 9.78 468.38 11345.38 132596.08
green faba bean 733.00 17299.04 101986.56 0.17 25.89 589.80 24406.42 1974391.61
green pea 787.00 2183.41 10271.46 0.01 4.46 114.47 2858.53 139932.64
key lime 471.00 210570.76 2132120.87 0.21 27.69 1222.64 123494.76 40151483.30
kiwicha amaranth 131.00 19.80 107.16 0.00 0.04 0.54 13.37 920.22
lentil 98.00 53.66 167.95 0.02 0.16 2.72 105.94 1023.32
maize (amilaceo) 1205.00 1286.94 11056.93 0.00 1.65 33.78 1185.46 270781.79
maize (choclo) 827.00 107170.22 983639.15 0.33 41.21 1567.24 65751.07 24149886.19
maize (yellow hard) 784.00 81366.18 387685.02 0.08 105.33 4892.28 143491.95 7920207.66
mango 321.00 411525.82 2676759.70 0.08 279.02 10261.34 393930.52 41661778.95
mashua 513.00 81788.90 333932.25 0.67 97.03 2772.08 170315.85 4544737.25
oca 846.00 57667.81 324632.41 1.04 40.99 1521.64 84452.90 7100334.29
oil palm 17.00 1418494.54 2551171.95 623.03 25987.13 170687.66 3784236.12 9358622.37
olive 53.00 4697.60 14570.01 0.00 1.80 232.55 8686.91 103458.71
onion 466.00 561702.65 3506826.69 0.02 55.29 3342.55 376010.74 51318013.32
orange 558.00 6671274.44 53859829.70 0.14 143.70 4638.83 485633.62 623610746.69
papaya 346.00 356338.48 2284115.16 1.69 100.51 6665.46 215326.96 32116991.94
pecan 33.00 1.08 3.60 0.00 0.00 0.12 1.27 20.13
pineapple 204.00 133462.08 429556.72 4.90 308.15 7633.06 225257.06 3155568.68
potato 1357.00 153164.54 1002180.63 0.01 101.87 3950.06 187529.28 24443177.41
quinoa 673.00 94.74 2005.73 0.00 0.04 0.75 22.11 51975.60
rice 367.00 96492.78 414723.48 1.30 83.34 7099.09 179183.44 6052610.84
sorghum 5.00 231563.69 330597.69 139.30 13638.26 46569.40 587960.54 785356.58
soy 84.00 249.73 738.53 0.05 3.28 26.69 391.07 4657.77
sweet potato 369.00 1138676.55 5675634.16 0.03 136.30 11647.73 1470353.26 73746544.01
tangerine 173.00 139871.53 600850.21 17.49 483.90 8819.21 302566.47 5467275.46
tea 4.00 60439.21 56517.66 158.52 12086.52 53558.65 114296.34 134481.00
tomato 390.00 208494.54 1744028.92 0.06 43.96 2969.91 105382.66 23873396.81
ulluco 1027.00 9827.06 41248.40 0.24 19.00 700.22 16308.55 568679.84
wheat 1119.00 9865.68 119939.03 0.02 3.32 98.54 2536.53 3383171.19
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Table 6: Estimates of the Transportation Model
λq = 1, λs = 0 λs = 0 Unconstrained

Effective Distance, βdistance 0.272 0.897 0.857
Relative Cost of Low Quality Road, λmed 1.000 4.672 3.09
Relative Cost of Low Quality Road, λlow 1.000 12.843 9.416
Effect of Slope, λs 0.000 0.000 15.700
Intercept, β0 -3.465 -7.8665 -7.569
Correlation

(
fni, f̂ni

)
0.319 0.569 0.581

Number of observations 1345 1345 1345
Standard Errors remain to be computed.
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Table 7: Summary Statistics of the Estimates of Iceberg Trade Costs, d̂ni,k
mean std 10.0% 50% 90% max

achiote 1.15 0.08 1.07 1.14 1.23 1.60
apple 1.38 0.19 1.17 1.35 1.58 2.53
asparragus 1.14 0.07 1.06 1.13 1.22 1.57
avocado 1.27 0.14 1.12 1.25 1.42 2.09
banana 1.74 0.38 1.33 1.69 2.14 3.98
barley grain 1.35 0.18 1.16 1.33 1.55 2.43
cacao 1.07 0.04 1.03 1.07 1.11 1.28
canahua 1.18 0.09 1.08 1.17 1.28 1.72
cassava 1.54 0.28 1.24 1.51 1.84 3.21
chocho 1.15 0.08 1.07 1.14 1.23 1.61
coconut 1.84 0.43 1.37 1.79 2.30 4.39
coffee 1.07 0.03 1.03 1.06 1.10 1.27
cotton branch 1.14 0.07 1.06 1.13 1.22 1.57
dry bean 1.14 0.07 1.06 1.13 1.22 1.57
dry faba bean 1.22 0.11 1.10 1.21 1.34 1.90
dry pallar 1.12 0.06 1.05 1.12 1.19 1.50
dry pea 1.19 0.10 1.09 1.18 1.30 1.78
dry zarandaja 1.21 0.11 1.09 1.20 1.32 1.84
garbanzo beans 1.11 0.06 1.05 1.10 1.17 1.44
garlic 1.11 0.05 1.05 1.10 1.17 1.43
grape 1.22 0.11 1.10 1.20 1.33 1.87
green bean 1.30 0.15 1.13 1.28 1.47 2.22
green faba bean 1.45 0.23 1.20 1.42 1.69 2.81
green pea 1.29 0.15 1.13 1.27 1.45 2.18
key lime 1.47 0.24 1.21 1.44 1.73 2.91
kiwicha amaranth 1.12 0.06 1.05 1.11 1.19 1.48
lentil 1.15 0.07 1.07 1.14 1.23 1.59
maize (amilaceo) 1.20 0.10 1.09 1.19 1.32 1.83
maize (choclo) 1.45 0.23 1.20 1.42 1.70 2.82
maize (yellow hard) 1.43 0.22 1.19 1.41 1.67 2.75
mango 1.55 0.28 1.25 1.52 1.85 3.23
mashua 1.63 0.32 1.28 1.59 1.97 3.55
oca 1.56 0.28 1.25 1.52 1.86 3.25
oil palm 2.13 0.58 1.50 2.06 2.74 5.56
olive 1.16 0.08 1.07 1.15 1.24 1.64
onion 1.47 0.24 1.21 1.44 1.73 2.91
orange 1.60 0.31 1.27 1.56 1.92 3.42
papaya 1.56 0.29 1.25 1.53 1.87 3.28
pecan 1.04 0.02 1.02 1.03 1.05 1.14
pineapple 1.61 0.31 1.27 1.57 1.95 3.47
potato 1.53 0.27 1.24 1.50 1.82 3.14
quinoa 1.12 0.06 1.05 1.11 1.18 1.48
rice 1.38 0.19 1.17 1.35 1.58 2.52
sorghum 1.51 0.26 1.23 1.48 1.79 3.06
soy 1.19 0.10 1.09 1.18 1.30 1.78
sweet potato 1.60 0.31 1.27 1.56 1.93 3.42
tangerine 1.55 0.28 1.25 1.52 1.86 3.25
tea 1.52 0.26 1.23 1.49 1.80 3.09
tomato 1.43 0.22 1.19 1.41 1.67 2.76
ulluco 1.45 0.23 1.20 1.42 1.69 2.81
wheat 1.28 0.14 1.12 1.26 1.43 2.11
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Table 8: The Intermediate Input Bundle
Input Name Unit Price Import Quantity

(LCU / Kg) (Tons)
Potassium chloride 1.529 52742.80
Diammonium phosphate (DAP) 2.144 87398.30
Ammonium nitrate 1.158 117545.50
Ammonium sulfate 0.705 112678.80
Magnesium and potassium sulphate 1.009 16075.60
Potassium sulphate 2.916 36281.90
Superphosphate 1.599 1647.00
Urea 1.349 277113.70
Average 1.551

Source: Ministry of Agriculture of Peru, Monthly Bulletin. Year 2008

Table 9: Within-Crop Regression of Price Data on Model Simulation
(1) (2) (3)

Baseline High Trade Barrier High Heterogeneity and Trade Barriers
model 1.770 0.733 0.669

(0.0411) (0.0143) (0.0145)
R2 within 0.334 0.415 0.365
R2 between 0.724 0.817 0.755
R2 overall 0.692 0.750 0.690
N 3739 3739 3739
Standard errors in parentheses

Table 10: Pooled Regression of Land Allocation Data on Model Simulation
(1) (2) (3)

Baseline High Trade Barrier High Heterogeneity and Trade Barriers
etamodel 0.180 0.229 0.352

(0.0104) (0.0120) (0.0123)
R2 0.0744 0.0895 0.180
N 3739 3739 3739
Standard errors in parentheses
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Figure 1: Map of Peru
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Figure 2: Comparison of Land Shares, ηi,k, and Revenue Shares, πi,k
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Figure 3: Estimation of θ
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Figure 4: Comparison of Freight Rate Predictions (Constrained and Unconstrained Transportation
Model)
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Figure 5: Baseline Parametrization: Fitting Price and Land Allocation Data in the
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Figure 6: Alternative Parametrization: Fitting Price and Land Allocation Data
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