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Abstract

This paper studies multidimensional matching between workers and jobs. Workers differ in manual

and cognitive skills and sort into jobs that demand different combinations of these two skills.

To study this multidimensional sorting, I develop a theoretical framework that generalizes the

unidimensional notion of assortative matching. I derive the equilibrium in closed form and use this

explicit solution to study biased technological change. The key finding is that an increase in worker-

job complementarities in cognitive relative to manual inputs leads to more pronounced sorting and

wage inequality across cognitive relative to manual skills. This can trigger wage polarization and

boost aggregate wage dispersion. I then estimate the model for the US and identify sizeable

technology shifts: during the 1990s, worker-job complementarities in cognitive inputs increased by

15% whereas complementarities in manual inputs decreased by 41%. In addition to this bias in

complementarities, there has also been a strong cognitive skill -bias in production. Counterfactual

exercises suggest that these technology shifts can account for observed changes in worker-job

sorting, wage polarization and a significant part of the increase in US wage dispersion.
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his input (especially on Section 3) as well as Jérôme Adda, Vasco Carvalho, Hector Chade, David Levine, George Mailath,
Kristoffer Nimark and Anja Prummer for their comments. I thank Carl Sanders for making his data on occupational
skill usage available to me. The paper has benefitted from discussions with seminar participants at the EUI, UPF,
ESSET 2012 Gerzensee, XVII Workshop on Macroeconomic Dynamics Vigo, EEA 2013 Gothenburg, Matching: Theory
and Estimation Paris, Barcelona GSE Winter Workshop, UPenn, Penn State, Minneapolis Fed, Washington University
St. Louis, Bonn University. Most of this work was carried out while visiting UPF, Barcelona. This research has been
supported by a grant from the DAAD (German Academic Exchange Service).

https://sites.google.com/site/ilselindenlaub/research/LindenlaubJMP.pdf?attredirects=0&d=1


1 Introduction

Technological progress has drastically changed the task composition of work and hence the structure of

labor demand. Across the board, workers spend less time performing manual tasks such as assembling

cars and more time performing cognitive tasks such as computer programming or selling products

and services.1 During the 1980s, a blue-collar worker in the car industry might have spent some

time on cognitive tasks such as reporting to his supervisor, but he mainly engaged in manual labor

on the assembly line. Ten years later, a newly-developed machine carries out his manual task.

Programming the machine requires more cognitive than manual skills, and thus a different skill mix

than the worker can offer. So, who operates this machine? What is the worker’s new job? And, how

does this technological shift affect wages and inequality? This is a multidimensional assignment

problem where workers with different bundles of manual and cognitive skills sort into jobs that

require different combinations of these skills.

This paper develops a general theoretical framework for multidimensional sorting that extends

the unidimensional notion of positive assortative matching. I derive the equilibrium allocation as well

as equilibrium wages in closed form. I use this explicit solution to analyze the impact on equilibrium

outcomes as cognitive (as opposed to manual) inputs become more important in production, capturing

one of the main recent technological shifts. I then take this model to the data to study technological

change in the US during the 1990s. Using this theoretical framework of multidimensional sorting, I

can infer from data on observed equilibrium outcomes the degree to which underlying technological

determinants have changed over time, and I can study their effects on sorting and wage inequality.

A key insight from this model is that workers face a sorting trade-off. Whether to take a job that

better fits their cognitive or their manual skills depends on worker-job complementarities in cognitive

versus manual tasks.2 Task-biased technological change, which increases the level of complementarities

between cognitive skills and skill demands (relative to those in the manual dimension), puts this trade-

off to work. Sorting improves along the cognitive dimension but the opposite is true in the manual

dimension, where matches are characterized by a poorer fit between workers’ skills and job demands.

In light of the previous example, the blue-collar worker who was replaced by a machine may now

be employed as a car salesman. This new job is tailored to his cognitive skills but a poor fit with

his manual abilities. The new allocation benefits workers with high cognitive abilities but harms

those with manual know-how. This makes wages more convex in cognitive but less convex in manual

skills, thereby fueling wage inequality along the cognitive dimension but compressing inequality in

the manual dimension.

I estimate this model for the US and identify sizeable technological shifts: I find that during

the 1990s, complementarities in cognitive inputs increased by 15% whereas complementarities in

manual inputs decreased by 41%, in line with cognitive task-biased technological change. Moreover,

there was significant cognitive skill-biased technological change that affected the productivity of skills

independent of the task, leaving worker-job complementarities unchanged.

1See Autor et al. [2003] for an empirical analysis of the changing skill content of tasks.
2The meaning of complementarities in this context is that workers with high cognitive skills are particularly produc-

tive in jobs that put significant weight on cognitive ability, and similar in the manual dimension.
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The key findings are that these technological shifts may account for both observed wage polariza-

tion (i.e. stagnant lower tail but expanding upper tail wage inequality) and much of the increase in

wage dispersion. More precisely, counterfactual exercises show that task-biased technological change

can account for wage polarization. The reason this technology shift affects upper and lower tail wage

inequality differently is that winners (i.e. workers with high cognitive skills) are clustered in the up-

per part of the wage distribution while those adversely affected (workers with mainly manual skills)

are concentrated in the lower part. In turn, cognitive skill-biased technological change, which does

not affect the curvature of the wage schedule, fuels inequality across the whole distribution. It can

account for a significant part of the increase in US wage dispersion over the 1990s.

Biased technological change, and particularly task-biased change, is considered an important force

behind recent wage inequality trends in the developed world (Acemoglu and Autor [2011]). The idea is

that technological advances like the development of computers have replaced workers in manual tasks

but created stronger complementarities between skills and job attributes in cognitive tasks. However,

even though two intrinsically different skills are involved (manual and cognitive), the literature has

analyzed this technological change only in one-dimensional settings. In these frameworks, an adverse

technology shock reduces firms’ demand for medium-skilled workers (who presumably hold manual

skills). As a result, their relative wages drop and so do employment shares in medium-skilled jobs –

a phenomenon that is referred to as labor market polarization.3

One advantage of these one-dimensional models is their tractability. However, it is important to

note that collapsing agents’ multiple characteristics into a single index is not innocuous. A notable

study that rejects the single index model is by Willis and Rosen [1979]. They show that worker

performance depends on a bundle of different skills including intellectual and manual skills. Some

people are strong in both skills (e.g. mechanical engineers or surgeons) and others specialize. This

points to the main reason for requiring matching models with multidimensional heterogeneity: In the

data, characteristics are not perfectly correlated, which is why agents can only be partially ordered.

Thus, it is problematic to aggregate different attributes into a single one-dimensional index, according

to which agents are ranked and matched.4

To assess the (quantitative) importance of multidimensional matching in the labor market, one

needs a tractable theoretical framework. While the literature on optimal transport has studied the

existence and uniqueness of multidimensional assignments under transferable utility, existing studies

provide little insights into the characteristics of the equilibrium and comparative statics.5 This paper

makes a first attempt at developing a tractable framework that allows for both.

Section 2 introduces the general theoretical framework. I develop an assignment model where

workers and jobs match in pairs. Workers possess manual and cognitive skills. Each worker performs

3See, for instance, Costinot and Vogel [2010] and Acemoglu and Autor [2011]. In the literature, task-biased techno-
logical change is often referred to as routinization, meaning that new machines replace those workers performing routine
tasks (e.g. Autor et al. [2003], Autor et al. [2006], Autor and Dorn [2012]). Routine skills also capture manual skills.
To fit their analysis more closely, the two skills here could be interpreted as routine and non-routine.

4More recently, results by Papageorgiou [2013] also favor the specialization hypothesis over a single index model.
5In non-technical terms, the optimal transport problem involves finding a measure-preserving map that carries one

distribution into another at minimal cost, relying on linear programming. See, for instance, Gretsky et al. [1992], Villani
[2009], Chiappori et al. [2010] and Ekeland [2010].
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two tasks, a manual and a cognitive one. Jobs, in turn, differ in productivities or skill demands

for each task. Within this task-based framework, I propose a generalization of positive assortative

matching (PAM) and negative assortative matching (NAM) to the multidimensional setting. In non-

technical terms, my definition of PAM means that, ceteris paribus, workers with more cognitive skills

match with jobs whose cognitive task is more demanding, and similarly in the manual dimension.

This captures, for instance, that the best scientists usually work in the best universities (universities

put a lot of weight on intellectual skills but little on manual dexterity) whereas the best mechanics

often work in professional motor sports (which require manual skills more than intellectual abilities). I

then state conditions on the production function such that the equilibrium is assortative. Intuitively,

if there are complementarities of skills and productivities within tasks but not across tasks, then

the optimal assignment satisfies PAM. These properties are shown in full generality without any

assumptions on the distributions or specific functional forms of the production technology.

To study biased technological change, one ideally has a closed form solution that is amenable to

comparative statics and estimation. Toward this goal, Section 3 specifies the environment to Gaus-

sian distributions and linear-quadratic technology. Using this notion of assortative matching, I develop

a technique to solve for equilibrium assignment and wage function in closed form.

It is important to note that notwithstanding many parallels to the one-dimensional setting, there

is also an important difference: with multidimensional heterogeneity, there is no complete order of

types. As a result, there is no unique PAM allocation that clears the labor market. This is why,

contrary to one-dimensional matching in Becker [1973], super or submodularity of technology is not

sufficient to pin down the output-maximizing PAM allocation. Instead, the parametric specification

of the production function (i.e. the relative level of complementarities across tasks and not only their

signs) is crucial to determine the unique equilibrium assignment.

This strong link between technology and assignment creates the main technical difficulty in solving

the model. But it also allows for a richer analysis than one-dimensional matching and offers a natural

framework to study task-biased technological change, which focuses on complementarities. Worker-job

complementarities determine the optimal PAM allocation from many existing ones. They range from

strong assortativeness to significant mismatch between worker and job traits in one or both task(s),

capturing a much richer set of assignments than one-dimensional PAM.

Section 4 uses the closed form to analyze task-biased technological change, which demonstrates

how these matching patterns (and ulitmately wages) are shaped by technology. I also contrast these

results with those for more standard skill-biased technological change. The latter only increases the

relative productivity of workers’ cognitive skills without affecting worker-job complementarities.

Section 5 brings this model to the data. I focus on the US economy during the 1990s. I first con-

struct bivariate skill and skill demand distributions, combining data from the National Longitudinal

Survey of Youth (NLSY) and the O*NET. I then estimate the model by Maximum Likelihood to

quantify technological change during this period and to decompose changes in wage inequality into

those driven by different technological and distributional shifts.

I also highlight in which dimensions the multidimensional model offers a richer interpretation of

the data than a similar model with one-dimensional traits. The one-dimensional model misses several
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important margins: first, it misses the manual-cognitive sorting trade-off, and closely related, the

differential impact of biased technological change on manual and cognitive returns. Moreover, it fails

to account for a sizeable group of generalists (holding both types of skills) whose cognitive skills allow

them to buffer against adverse shocks to manual skills.

Section 6 places the main contribution of the paper into the literature. Section 7 concludes. The

Appendix contains all proofs, data details and estimation results.

2 Theoretical Framework for Multidimensional Sorting

Toward the goal of developing a theoretical framework for multidimensional sorting, this section

outlines the general model absent specific assumptions about underlying distributions or production

technology. To make the results most intuitive, I will focus here on two-dimensional heterogeneity.

Notice that this section fully generalizes to N-dimensional heterogeneity.6

2.1 Environment

Agents: There are two types of agents, firms and workers. All are risk-neutral. There is a continuum

of each type. Every worker is endowed with a skill bundle of cognitive and manual skills, x =

(xC , xM ) ∈ X ⊆ R2
+. Points in X represent worker types. Denote the joint c.d.f. of (xC , xM ) by

H(xC , xM ), which is assumed to be absolutely continuous with respect to the Lebesgue measure. In

turn, each firm (which I use interchangibly with job) is endowed with both cognitive and manual

skill demands, y = (yC , yM ) ∈ Y ⊆ R2
+. yC (respectively yM ) corresponds to the productivity or

skill requirement of cognitive task C (respectively manual task M). Points in Y represent firm types.

Denote the joint c.d.f. of (yC , yM ) by G(yC , yM ), which is also assumed to be absolutely continuous.

Assume that overall masses of firms and workers coincide.7

Production: Every firm produces a single homogenous final good by combining all inputs. Denote

the technology by F (xC , xM , yC , yM ). It is assumed that F is twice continuously differentiable.

Labor market: Firms and workers match pairwise and only once. The labor market is competitive.

2.2 Definitions

Matching Function: The sorting between workers and firms is described by a map x∗ = ν(y), where

ν(y) is the worker type that firm y optimally chooses to hire (’*’ indicates an equilibrium object).

The focus here is on a bijective C1 map ν : R2
+ → R2

+, which can be uniquely characterized by its

inverse µ ≡ ν−1. I call µ the matching function, which describes the assignment of workers to firms.

Assortative Matching: What makes assignment problems tractable in the one-dimensional world

is the concept of assortative matching : There, PAM (NAM) is defined by a monotonically increasing

(decreasing) matching function, denoted as y = µ(x), meaning that better (worse) workers work in

better firms. This concept captures two aspects: (a) purity of matching (i.e. µ(x) is one-to-one), and

6All proofs for this section are given for N-dimensional heterogeneity.
7Otherwise, there is equilibrium unemployment or idle firms, which unnecessarily complicates the model.
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(b) direction of sorting. Here, I aim to define a multidimensional version of assortative matching that

also incorporates these two features. As in the one-dimensional setting, here assortativeness involves

properties of the first derivative of the matching function (i.e. of its Jacobian), given by:

Jµ ≡ Dxy
∗ =

[
∂y∗C
∂xC

∂y∗C
∂xM

∂y∗M
∂xC

∂y∗M
∂xM

]

I define multidimensional positive and negative assortative matching as follows:

Definition 1 (Assortative Matching with Multidimensional Types) The sorting pattern is

PAM (NAM) if Dxy
∗ is a P-matrix (P−-matrix), i.e. if

[i]
∂y∗C
∂xC

> (<) 0 [ii]
∂y∗M
∂xM

> (<) 0 [iii] Det(Jµ) =
∂y∗C
∂xC

∂y∗M
∂xM

−
∂y∗C
∂xM

∂y∗M
∂xC

> 0 (1)

First, I will give the intuition and then the technical details. To illustrate most arguments in this

paper, I will focus on P-matrices and PAM.8 In economic terms, PAM means that intellectual types

work in firms where workers need to perform complex intellectual tasks (part [i]). Similarly, workers

with strong manual skills work in firms that attach considerable weight to the manual task (part

[ii]). Moreover, inequality [iii] dictates that these within-task matching forces dominate between-task

matching forces. Otherwise, scientists would work in the best garages whereas the best mechanics

would work at leading universities. Hence, this definition captures the direction of sorting, which

under PAM is a positive relation between worker and firm traits along the natural sorting dimensions.

Definition 1 also captures the fact that the assignment is pure, defined as follows:

Definition 2 (Pure Matching) Matching is pure if µ is one-to-one almost surely.

In economic terms, pure matching means that two firms of the same type choose the same worker.

Technically, purity is closely related to the properties of the Jacobian of the matching function and

particularly to the P-matrix property of the Jacobian.9 Gale and Nikaido [1965] link the P -matrix

property of the Jacobian of a function to the function’s injectivity, giving a sufficient condition for

purity in the current setting: if Dxy
∗ is a P -matrix (or P−-matrix), then the matching function is

globally one-to-one. The P -matrix property is also sufficient for global invertibility, justifying my

approach to consider µ = ν−1 as the matching function instead of ν.10

Definition 1 is a natural generalization of one-dimensional assortative matching, capturing the

same two aspects: the direction of sorting in each task dimension (given by [i] and [ii] in (1)) and

purity of the assignment (guaranteed by the determinant condition [iii]). In both the one-dimensional

and multidimensional settings, PAM implies purity.

8Generally, a matrix is a P -matrix if all its principal minors are positive. Hence, every positive definite matrix is a
P -matrix but the converse statement only holds for symmetric matrices. In turn, matrix M is P− if −M is P .

9P-matrices have so far not been exploited in the matching literature but have been used in other fields of economics
to rule out multiple equilibria. See, for instance, Simsek et al. [2005].

10See Theorem 1.1 in Chua and Lam [1972] and the references therein for the equivalence of the class of globally
one-to-one and continuous functions from Rn into Rn and the class of globally homeomorphic functions from Rn to Rn.
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The figure below provides a graphical illustration of multidimensional PAM, using a discrete 2x2

example: Each side of the market has two attributes that can be high (H) or low (L). Hence, there

are four worker and four firm types. In each subfigure, the left panel represents worker types and the

right panel firm types. Dots indicate types. Assume that all dots carry the same mass of agents, and

suppose worker and firm types of the same color match. In subfigure (a), matching is characterized

by PAM (which implies purity). In subfigure (b), matching is pure (i.e. every agent matches with

a single preferred type) but PAM is violated along the C dimension. In subfigure (c), matching is

neither positive assortative nor pure because agents are indifferent between several matches.
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(c) No Purity, No PAM

2.3 The Firm’s Problem

A firm with given productivity bundle (yC , yM ) chooses a worker with skill bundle (xC , xM ) in order

to maximize profits. It takes the wage schedule as given, meaning that wages are not a function of pro-

ductivities. In this section, I derive the firm’s problem and optimality conditions heuristically, taking

as given that the wage function (denoted by w(xC , xM )) is twice continuously differentiable. Below,

I show conditions under which w(xC , xM ) satisfies this property. The firm’s problem is given by:

max
(xC ,xM )∈X

F (xC , xM , yC , yM )− w(xC , xM ) (2)

The FOCs of this maximization problem read

FxC (xC , xM , yC , yM )− wxC (xC , xM ) = 0 (3)

FxM (xC , xM , yC , yM )− wxM (xC , xM ) = 0 (4)

where subscripts denote derivatives. Equations (3) and (4) hold only at the equilibrium assignment.
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2.4 The Equilibrium

I focus on a competitive equilibrium, which is defined as follows.

Definition 3 (Equilibrium) An equilibrium is characterized by a matching function µ : X → Y ,

and a wage function w : X → R+, satisfying:

(i) Optimality: Price-taking firms maximize profits (2) by choosing (xC , xM ) for a given w(xC , xM ).

(ii) Market Clearing: Feasibility of µ requires that when x ∼ H then y∗ ∼ G.

Optimality of the firm’s choice is a standard requirement of a competitive equilibrium. Market

Clearing requires that the amount of workers of type (xC , xM ) demanded across all firm types cannot

exceed the measure of such workers in the economy.

Existence of the equilibrium in the Walrasian assignment problem was proven in Gretsky et al.

[1992]. Since the focus of this paper is on the characterization of the equilibrium, the reader is

referred to their proof for general existence (Theorem 4 of their paper).11 In what follows, I focus on

a differentiable equilibrium where µ is C1 and w is C2. The differentiable equilibrium can be shown

to exist in various multivariate environments with absolutely continuous distributions. I will discuss

some of them below, with particular emphasis on the case with Gaussian distributions.

2.5 The Equilibrium Assignment

This section relates properties of the production technology to properties of the equilibrium as-

signment (y∗C , y
∗
M ) = µ(xC , xM ), which I will explicitly denote by y∗C = yC(xC , xM ) and y∗M =

yM (xC , xM ). This assignment is only optimal if the second-order conditions of the firm’s problem,

evaluated at (y∗C , y
∗
M ), i.e. negative semi-definite Hessian, are satisfied. Using these necessary second-

order conditions for optimality, I show that if technology features the following complementarities

D2
xyF =

 +
FxCyC 0

0
+

FxMyM

 (5)

then the equilibrium assignment satisfies PAM (i.e. Dxy
∗ is a P -matrix). For NAM, a similar

statement holds when replacing complementarities by substitutabilities.12 Moreover, under the same

condition, the assignment is a global maximum:

Proposition 1 (Assortativeness and Global Maximum) If D2
xyF is a diagonal P-matrix (P−-

matrix), then the equilibrium assignment satisfies PAM (NAM), and is globally unique.

The proof is in Appendix A.1. To gain intuition into the assortativeness result, consider PAM. If there

is complementarity between skills and productivities within both the cognitive task (FxCyC > 0) and the

11Closely related existence results are given in Chiappori et al. [2010] and Ekeland [2010]. Their work extends
Gretsky’s existence result on the endowment economy where every seller is endowed with a given type of good to a
production economy where sellers can choose the type of good they want to sell.

12The presented condition is related to the twist condition from optimal transport but is not equivalent. See Section 6.
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manual task (FxMyM > 0) and interfering between-task complementarities are absent (FxCyM = FxMyC
= 0), then it is optimal that workers and firms match in a positive assortative way: Agents with strong

intellectual skills work in firms that value these skills (and similarly for the manual dimension).13

This sorting result, which ensures a positive relation between skills and productivities along nat-

ural dimensions (i.e. within cognitive and manual tasks), is obtained under strong restrictions on

the complementarities in production. The intuition is that, in the multidimensional world, sorting

occurs along all skill and productivity dimensions, i.e. also between tasks; that is, between manual

productivity and cognitive skill,
∂y∗M
∂xC
6= 0, and also between cognitive skill demands and manual abil-

ity,
∂y∗C
∂xM

6= 0. Allowing for complementarities between, say, manual skill demands and cognitive skills

(FxCyM > 0) might render a positive relation between these two attributes,
∂y∗M
∂xC

> 0. This may come

at the expense of negative sorting in the manual task,
∂y∗M
∂xM

< 0, especially when skills are negatively

correlated, violating PAM.

It is important to note that the stated sufficient condition for PAM is distribution-free. If one

is willing to impose restrictions on the distributions, this condition can be considerably weakened,

allowing for across-task complementarities or substitutatabilities (FxCyM , FxMyC 6= 0). In Section D

of the Appendix, I show that a weaker version of (5) applies to settings where skills and productivities

are (i) uniformly distributed, (ii) identically distributed or (iii) normally distributed. For (i) and (ii),

the sufficient condition for PAM is that the matrix of cross-partials of F is a symmetric P-matrix

(i.e. positive definite) and for (iii) a diagonally dominant P-matrix.

This section closes with a comparison to the one-dimensional setting. With one-dimensional traits,

the requirement of a negative definite Hessian collapses to the requirement on the second-order con-

dition, given by −Fxy ∂µ(x)∂x < 0. If Fxy is positive, then matching is PAM. Purity is given by strict

monotonicity of matching function µ and the sorting direction by its positive slope. Similarly in

this model, I impose conditions on the matrix of cross-partials D2
xyF to obtain PAM. The differ-

ence is that with multiple dimensions not only the signs but also the relative magnitudes of different

complementarities need to be restricted in order to ensure assortative matching.

2.6 The Equilibrium Wage Function

This section derives conditions for the existence of a unique wage schedule that supports the equi-

librium assignment. The equilibrium wage is the solution of a system of partial differential equations

(PDEs), which are given by the first-order conditions of the firm, (3) and (4), evaluated at the equilib-

rium assignment. To solve a system of PDEs, integrability conditions of the system need to be specified

in order to make the system involutive (i.e. formally integrable). For the linear system of first-order

PDEs given above, there is only one integrability condition. It is given by the commutativity of mixed

13Similarly, in the case of NAM, assortative matching within tasks dominates assortativeness across tasks, only in
this case high productivity workers are matched with low productive firms.
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partial derivatives and obtained by cross-differentiating (3) and (4), when evaluated at (y∗C , y
∗
M ):

wxCxM = wxMxC

⇔ FxCyC
∂y∗C
∂xM

+ FxCyM
∂y∗M
∂xM

= FxMyC
∂y∗C
∂xC

+ FxMyM
∂y∗M
∂xC

. (6)

This condition is equivalent to the requirement that the Hessian of the firm’s problem is symmetric.

The next proposition states the result on existence and uniqueness of the equilibrium wage function.

Proposition 2 (Existence and Uniqueness of the Wage Function) There exists a unique wage

function (up to a constant) that decentralizes the equilibrium assignment if and only if the equilibrium

assignment satisfies (6).

The proof relies on Frobenius’ Theorem. Both theorem and proof are stated in the Appendix A.2.

Integrability condition (6) has technical and economic implications. Technically, given (6), there

exists a C2 wage function w, justifying the differentiation-based approach above.

Condition (6) also carries an important economic message. It highlights a crucial difference

between multidimensional and one-dimensional settings. With multiple dimensions, there is a stronger

link between technology and assignment. The equilibrium assignment (i.e. the Jacobian of the

matching function) does not only depend on the signs of the cross partial derivatives, Fxiyj , i, j ∈
{C,M}, but also on their strength. Changing the strength (but not the signs) of Fxiyj will induce

worker reallocation without necessarily violating PAM or NAM. Matching multidimensional types

thus generates something similar to an intensive margin even though firms and workers match in pairs.

In the one-dimensional setting, there is no integrability condition because the wage is the solution

to a single ordinary differential equation. In such a setting, the assignment depends only on the sign

of Fxiyi , not on its level: supermodularity (submodularity) of the technology implies PAM (NAM).

Given PAM (NAM), there exists a unique measure-preserving increasing (decreasing) map of skills to

productivities, which can be pinned down by labor market clearing alone. Under PAM, this map is

given by y = G−1(H(x)). However, with multiple traits, there is no complete order of types. Hence,

there is no unique measure-preserving positive (or negative) assortative map of skills to productivities.

The optimal assignment must be jointly determined by labor market clearing and the firm’s problem.

This is central to the closed form derivation below.

3 Quadratic-Gaussian Model

A main goal of this paper is to apply this multidimensional sorting framework to the empirically

relevant phenomenon of biased technological change. This section takes an important step toward

achieving this objective. It specifies the environment to Gaussian distributions and quadratic technol-

ogy and develops a technique to compute the multidimensional assignment and corresponding wage

explicitly. The closed form solution then allows me to focus on the economics of multidimensional

sorting, characterizing equilibrium properties and analyzing comparative statics.
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PAM provides the crucial link between the previous general section on multidimensional sorting,

this section on the closed form and the next section on the application: First, PAM puts a useful

structure on the equilibrium assignment that helps to solve multidimensional assignment models

similarly to one-dimensional problems. Second, despite the imposed structure, PAM is flexible enough

to allow for a wide range of assignment patterns. I will show how technology and distributions generate

a rich set of positive assortative matchings, which is at the heart of the paper’s application below.

3.1 Environment

Let skills (xC , xM ) and productivities (yC , yM ) follow bivariate standard normal distributions:

[
xC

xM

]
∼ N

([
0

0

]
,

[
1 ρx

ρx 1

])
,

[
yC

yM

]
∼ N

([
0

0

]
,

[
1 ρy

ρy 1

])

Denote the bivariate distribution functions of skills and productivities by Φx(xC , xM ) and Φy(yC , yM ),

respectively. Assume, ρx, ρy ∈ (−1, 1). I focus on the bi-linear technology

F (xC , xM , yC , yM ) = αxCyC + βxMyM = α(xCyC + δxMyM ) (7)

where α and β are task-weights that indicate the level of worker-job complementarities or substi-

tutabilities across tasks. Notice that δ ≡ β
α indicates the relative level of complementarities across

tasks. Without loss of generality, set α ≥ β such that δ ∈ [0, 1], meaning that worker-firm comple-

mentarities in the cognitive task are weakly stronger than in the manual task.14

Technology (7) captures that there is within-task complementarity but between-task complemen-

tarity is shut down. Based on the results in Section 2, certain properties of the equilibrium assignment

are already known at this point without having to check second-order conditions of the firm’s prob-

lem.15 Under (7), D2
xyF is a diagonal P -matrix. Consequently, the equilibrium assignment is unique

and satisfies PAM. These properties will prove useful in the construction of the equilibrium.

Notice that this model can be generalized in various ways. It can be solved in closed form under

F (xC , xM , yC , yM ) = αxCyM + βxMyC + γxCyC + δxMyM (8)

allowing for non-zero between-task complementarity (Appendix D.0.1). Moreover, I can allow for

non-standard normally distributed variables or even arbitrary marginal distributions that are linked

via Gaussian copulas (see Online Appendix). However, here I focus on the simplest environment

that conveys the full intuition. I solve this assignment problem in two steps. First, I construct the

equilibrium assignment and then the wage schedule that supports it. Appendix B provides the details.

14Nothing hinges on this restriction but it simplifies interpretation, and moreover, is in line with the data.
15Analogously to the general model, the firm’s problem is given by: max(xC ,xM )∈X α(xCyC + δxMyM ) − w(xC , xM ).
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3.2 The Equilibrium Assignment Functions

The objective is to compute equilibrium assignment functions y∗C = yC(xC , xM ) and y∗M = yM (xC , xM )

in closed form. They must be consistent with both labor market clearing and the firm’s optimality.

Due to the incomplete order of types in the multidimensional setting, there are many possibilities of

how to match workers with firms in a positive assortative way. This is the main difficulty in solving for

the assignment. What matters for pinning it down is not only the sign but also the relative strength

of skill-productivity complementarities across tasks, captured by δ. By temporarily converting the

two-dimensional problem to two separate one-dimensional problems, I make the model tractable. I

do the matching in the transformed space and then re-transform as follows :

I first apply a measure-preserving transformation that un-correlates the Gaussian variables. In

particular, let x be a p-variate random vector with mean µ and nonsingular covariance matrix Σ. Then,

z = Σ−
1
2 (x− µ) (9)

has mean 0 and covariance matrix Ip. Matrix Σ−
1
2 is the inverse of any square root of the covariance

matrix, i.e. Σ
1
2 (Σ

1
2 )T = Σ. Denote by Σx (respectively Σy) the covariance matrix of skills (resp.

productivities). Apply (9) to the standard bivariate normal skills and productivities

zx =

[
zxC
zxM

]
= Σ

− 1
2

x

[
xC

xM

]
and zy =

[
zyC
zyM

]
= Σ

− 1
2

y

[
yC

yM

]
(10)

where zx and zy are the vectors of uncorrelated skills and productivities, respectively. The labor

market clearing condition can now be specified in terms of uncorrelated variables, which is consistent

with labor market clearing in (x,y) because the applied transformation is measure-preserving. Since

the equilibrium assignment will satisfy PAM, I map skills to productivities in an increasing way

(1− Φ(zyC ))(1− Φ(zyM )) = (1− Φ(zxC ))(1− Φ(zxM )) (11)

where Φ again denotes the standard normal c.d.f. The interpretation of (11) is that if firm (zyC , zyM )

matches with worker (zxC , zxM ), then the mass of workers with better skills than (zxC , zxM ) must be

equal to the mass of firms that are more productive than (zyC , zyM ) (due to PAM).16

The market clearing condition (11) implicitly defines the vector-valued matching function of trans-

formed variables, denoted by µz : R2 → R2. The objective is to back out two real-valued assignment

functions of this vector-valued matching function. To do so, set equal the quantiles of the marginal

skill and productivity distributions within the cognitive and within the manual dimension

Φ(zyi) = Φ(zxi) ∀ i ∈ {C,M} (12)

which gives a system of two equations. In principle, there are many possible ways to match up the

16I will verify below that market clearing in transformed variables (zx, zx), which is based on purity and PAM, gives
rise to an assignment in (x, y) that also admits purity and PAM.
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marginals in (11) but due to PAM (i.e. positive diagonal elements of Dxy
∗), this is the only sensible

way. System (12) can be be retransformed into original variables, explicitly solving for productivities

yC and yM as functions of skills xC and xM , which constitutes the candidate equilibrium assignment[
y∗C
y∗M

]
= Σ

1
2
y Σ
− 1

2
x

[
xC

xM

]
(13)

where Dxy
∗ = Σ

1
2
y Σ
− 1

2
x is the Jacobian of the matching function. System (13) is the candidate

equilibrium assignment, mapping bivariate skills into bivariate productivities. By (11), it is measure-

preserving (i.e. in line with labor market clearing). Notice, however, that a covariance matrix has

an infinite number of square roots because it is a symmetric positive definite matrix. Hence, there

are many matchings that satisfy market clearing and that are potentially in line with PAM. How to

pick the optimal one? I use the degree of freedom in computing the square roots to take into account

a firm’s optimal choice, which depends on the relative level of skill-productivity complementarities,

captured by δ.17 The Appendix shows how Σ
1
2
y Σ
− 1

2
x can be parameterized by δ, such that the resulting

assignment is consistent with the firm’s optimality for any level of complementarities across tasks.

Proposition 3 (Equilibrium) The equilibrium assignment µ is given by[
y∗C
y∗M

]
= Σ

1
2
y Σ
− 1

2
x

[
xC

xM

]
=

[
J11(ρx, ρy, δ) J12(ρx, ρy, δ)

J21(ρx, ρy, δ) J22(ρx, ρy, δ)

]
︸ ︷︷ ︸

Dxy∗

[
xC

xM

]
(14)

where J11, J12, J21, J22 have closed forms. For δ = 1: J11 = J22 and J12 = J21. For δ = 0: J22 6=
J11 = 1 and J21 6= J12 = 0. For δ ∈ (0, 1): the assignment lies in between these two polar cases. The

square roots, Σ
1
2
y , Σ

1
2
x , are obtained from a rotation of the spectral square roots. They range between

the spectral square root (for δ = 1) and the Cholesky square root (for δ = 0).

See Appendix B.2 for the proof and explicit expressions. With symmetric technology (δ = 1), the

equilibrium assignment is fully symmetric across the two tasks. The spectral square root, which is

the unique symmetric positive definite square root of the covariance matrix, is used to compute this

assignment. In the completely asymmetric case (δ = 0), only the cognitive task matters for produc-

tion. The Cholesky square root is the unique lower triangular square root, and hence asymmetric. It

delivers an asymmetric assignment, which is optimal when technology exhibits extreme asymmetries.

Last, when there are some asymmetries in the production technology δ ∈ (0, 1), then the assignment

is in-between these two polar cases (more intuition below).

There are two main messages from this proposition. First, the assignment can be computed in

closed form and is a linear map from skill bundles to productivity bundles. Second, there is a much

stronger link between technology and assignment compared to the one-dimensional case, where the

17This is done by taking into account the integrability condition (6), under which a wage schedule exists that induces

firms to choose this assignment. With this bilinear technology, (6) collapses to
∂y∗C
∂xM

= δ
∂y∗M
∂xC

.
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matching function only depends on underlying distributions (through skill correlation ρx and produc-

tivity correlation ρy). Unlike in 1-d, here also the relative level of skill-productivity complementarities

enters the assignment, which is captured by covariance square roots that adjust to the level of δ.

3.3 The Equilibrium Wage Function

I close the model by computing the wage function that supports the assignment found above. In this

quadratic-Gaussian model, the wage function admits a highly tractable closed-form solution.

Proposition 4 (Equilibrium Wage Schedule) The equilibrium wage function is given by

w(x) =
1

2
αxT J̃x + w0 (15)

where w0 is the constant of integration.

See Appendix B.3 for the proof and explicit expression. J̃ is a matrix of parameters closely related to

the equilibrium assignment. It contains the assignment coefficients from the Jacobian of the matching

function, Jµ. For the special case of symmetric tasks (δ = 1), the two coincide, J̃ = Jµ, emphasizing

the tight link between allocation and wages, which is typical for assignment models. The wage function

is a quadratic form in standard normal variables, which allows me to compute the moments of the

wage distribution in closed form. The next sections extensively discuss the properties of the wage

function and how they depend on distributions and technology through the assignment.

3.4 Properties of the Equilibrium

This section discusses equilibrium properties of the benchmark case with symmetric tasks (δ = 1).

The next section on the application of task-biased technological change (task-biased TC hereinafter)

examines in detail the case of asymmetric task weights (δ 6= 1). To analyze the sorting properties of

this equilibrium, it is useful first to define the concepts of perfect assortativeness and mismatch.

Definition 4 (Perfect Assortativeness and Mismatch) An assignment in task i ∈ {C,M} is

perfectly assortative if xi = yi. An assignment is characterized by mismatch if |yi−xi| 6= 0. Mismatch

is said to be increasing in |yi − xi|.

Perfect assortativeness means that a worker’s skills perfectly match a firm’s skill requirements for

a certain task. The opposite of perfect assortativeness is structural mismatch, which I define as

the dissimilarity between skills and skill demands in a given match. Notice that mismatch in this

frictionless economy has nothing to do with inefficiencies. Instead, it refers to the misfit between

workers’ and firms’ traits. I can now state the following properties of the equilibrium assignment.

Proposition 5 (Equilibrium Sorting) (i) The equilibrium assignment is characterized by PAM.

(ii) For a perfect fit of skill supply and demand (ρx = ρy), sorting is perfectly assortative in both tasks,

i.e. yC = xC and yM = xM . In turn, for the poorest fit of skill supply and demand (i.e. maximal

|ρx − ρy|), mismatch along both task dimensions is maximized.
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By construction, the equilibrium assignment satisfies PAM, meaning that workers with more

intellectual skills work in jobs that value them and similarly on the manual dimension. This stems

from the technology that features worker-firm complementarities in each task. Interestingly, the degree

of assortativeness depends on the underlying distributions. This is illustrated by two polar cases.

First, when skill supply and demand perfectly overlap (ρx = ρy), then every worker matches with the

firm that needs exactly his skills. On the other hand, if there is a large discrepancy between skills

needed and skills supplied (|ρx − ρy| → 2), then the labor market can only clear under considerable

mismatch, with every worker being in a job for which he is either under or overqualified.

These results are illustrated in Figure 1, which displays contour plots of two standard normal

distributions for various skill and productivity correlations. For the sake of illustration, assume that

workers are represented by blue contour lines and firms by red ones. In the middle panel, there is

a perfect fit of skill supply and demand distributions, which would lead to perfect matches between

workers and jobs. The panels at the left and right show the other extreme case, where skill demand

and supply are most misaligned. Focus on the left panel. In this economy, workers are specialists

(they are either good in the manual or in the cognitive task but not in both) whereas firms want

generalists. The labor market clears under PAM but matches are characterized by a poor fit between

workers’ and firms’ attributes.
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Figure 1: Contour Plots of Skill and Productivity Distributions

The Jacobian of the matching function offers an alternative graphical way of looking at equilibrium

sorting properties. In the graph below, I plot productivity in the cognitive task (left) and the manual

task (right) as a function of both skills. The constant slopes of the lines stem from the linearity of

the assignment functions. The slope of solid lines resembles the assortativeness of the match (they

show how strongly skills and productivities relate within tasks) and the slope of dotted lines indicates

the degree of mismatch in a pair (they show how strongly skills and productivities relate between

tasks). Assortativeness forces are given by the diagonal elements of the Jacobian Jµ (J11 and J22),

and mismatch forces are given by the off-diagonal elements of the Jacobian, (J12 and J21).
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The assignment in the upper panel is perfectly assortative where only the right skill contributes

to the match: the straight lines have slope one and the dotted lines lie on the x-axis, i.e. yC = xC

and yM = xM . This assignment results when underlying distributions are identical (ρx = ρy). The

lower panel displays the other extreme. Here matches are characterized by maximum mismatch with

the wrong skill dimensions contributing almost as much to the match as the assortative dimensions:

the slopes of straight and dotted lines are similar. Such an assignment corresponds to the left and

right panels in the previous figure where the underlying distributions differ significantly. Notice that

despite considerable mismatch, PAM is satisfied ((i) positively sloped straight lines, (ii) straight lines

steeper than dotted lines). One advantage of my multidimensional notion of assortative matching is

that, despite the imposed structure, it is flexible enough to allow for a rich set of assignment patterns,

ranging from perfect assortativeness to significant mismatch.
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Figure 2: Perfect Assortativeness (upper panel) and Mismatch (lower panel) within PAM

The next result summarizes a selected set of properties of the wage function.

Proposition 6 (Equilibrium Wages) .

(i) Wages are convex in skills. (ii) The wage distribution is positively skewed.

The central idea of assignment models is that the allocation of workers to firms shapes wages, and hence,

wage inequality. Since sorting is positive assortative (implying that J̃ in (15) is a symmetric P - ma-

trix or positive definite) wages are convex. Convex wages mean that workers with large (absolute)

quantities of skills earn disproportionally more than workers with small (absolute) quantities of skills.

Notice that skills are not the only force behind high earnings. Due to PAM, skill differences are mag-

nified because skilled workers are matched to more productive firms, convexifying the wage schedule.
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On the other hand, if sorting were negative assortative, the wage function would be concave.18

An alternative measure of wage inequality is the skewness of the wage distribution. In line with

many empirical wage distributions, the model’s wage distribution is positively skewed, indicating that

a large fraction of workers earns little while a small fraction earns disproportionally much. The force

behind positive skewness is again PAM, which is the driving factor of wage inequality in an economy.

It can also be shown that the average performance of an economy depends on the assignment

of workers to firms and thus on underlying distributions. The average wage (and also output) is

maximized when skill supply and demand are perfectly aligned (ρx = ρy). Intuitively, at that point,

every worker obtains the perfect firm match in both tasks. In turn, the economy performs most

poorly on average when misalignment between skills and skill requirements is largest.

This section illustrated how sorting depends on an economy’s skill and productivity distributions

and how this feeds into wages. It was shown that PAM is the major force behind wage inequality.

The next section revisits the key message from Proposition 3 that the assignment not only depends

on distributions but also on technology (through the relative level of firm-worker complementarities

across tasks). I will use the closed form and the developed sorting framework to examine the central

application of this paper: How does task-biased technological change affect assignment and wages?

How are these effects mitigated or reinforced by the underlying distributions?

4 Biased Technological Change

This section uses the closed form to study the central economic question raised in this paper. I

analyze the effects of task-biased TC and also contrast them with skill-biased TC.

4.1 Task-Biased Technological Change

Task-biased TC is viewed as an important force behind recent wage inequality shifts in the developed

world. The idea behind task-biased TC is that technological advances have replaced workers in

performance of manual tasks but created stronger complementarities between skills and job attributes

in cognitive tasks. The literature also refers to this technological change as routinization, where

workers performing routine tasks are increasingly substituted by computers and machines.19 Notice

that task-biased TC does not imply that the prevalence of routine tasks in the production process

has diminished over time – quite the opposite (Acemoglu and Autor [2011]). What has changed is

the technology to perform them.

Even though two intrinsically different skills are involved (manual and cognitive), task-biased TC

is analyzed in the literature only in one-dimensional settings. Contrary to these models, my model

does not assume that manual skills are only used by medium-skilled workers. Instead, I make the

more natural assumption that both types of skills are used on every job yet in different proportions.20

18Even though this is not the focus here, it is worth mentioning that in this model, wage data is sufficient to determine
the direction of sorting. In several one-dimensional models, this is not the case (see e.g. Eeckhout and Kircher [2011]).

19See, e.g. Autor et al. [2003], Autor et al. [2006] and Autor and Dorn [2012]. There is a close mapping between
manual and routine skills on the one hand, and between cognitive and non-routine skills on the other.

20This is similar to the skill weights approach by Lazear [2009].
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In the presented model, task-biased TC can be captured by a relative decrease in skill-productivity

complementarities in the manual task. Recall the technology F (xC , xM , yC , yM ) = α(xCyC+δxMyM )

where δ = β
α indicates relative complementarities in the manual task. Consider a change from δ to

δ′ such that δ′ < δ = 1. Then, δ′ is called task-biased relative to δ, with the bias favoring the

cognitive task. Moreover, to obtain clean analytical results, I will focus on cases where ρx, ρy ≤ 0 or

ρx, ρy ≥ 0.21 The next result summarizes the effect of task-biased TC on the equilibrium assignment.

Proposition 7 (Task-Biased TC and Sorting) Suppose there is cognitive task-biased TC (0 <

δ′ < δ = 1): (i) Sorting becomes more (less) pronounced in the cognitive (manual) task (i.e. |yC−xC |
decreases, |yM−xM | increases). (ii) As δ → 0, perfect assortativeness is achieved in the cognitive task

(yC = xC) but manual mismatch becomes maximal. (iii) Given a perfect fit of supply and demand

(ρx = ρy), task-biased TC has no effect on the assignment. For the poorest fit (maximal |ρx − ρy|),

assignment changes are largest.

As long as δ > 0, the equilibrium assignment will satisfy PAM. Hence, all matching patterns

discussed in this section can be analyzed in the proposed sorting framework.

For most underlying distributions, the equilibrium assignment will be such that workers do not

obtain their perfect job matches. This is because such a situation is simply not feasible. However,

in a multidimensional world, agents can decide in which dimension (cognitive or manual) sorting is

more important. This decision depends on technology and in particular on relative levels of worker-

firm complementarities across tasks. In the task with relatively large complementarities, perfect

assortativeness is strongly desired whereas in the task with weaker complementarities, mismatch is

tolerated. This trade-off is what I call mismatch-assortativeness trade-off across tasks.

Task-biased TC, which is defined as a change in relative complementarities, puts this trade-off

to work. Consider, for instance, the development and increasing use of computers, which makes

cognitive skills more productive in jobs that demand them. On the other hand, computers perform

several manual tasks, replacing workers with manual know-how. As a result, sorting becomes more

pronounced in the cognitive task at the expense of mismatch in the manual task (part (i)). The amount

of worker reallocation depends on both, the size of the shock (part(ii)) and underlying distributions

(part(iii)). How the size of the shock matters is illustrated in the figure below, which has a similar

structure to that in Figure 2. The upper panels plot cognitive sorting, i.e. yC as a function of xC and

xM before (left panel) and after task-biased TC (as δ goes to zero). The lower panels plot manual

sorting, i.e. yM as a function of xM and xC and have the same structure.

The slope of the straight lines indicates how strong the sorting forces are within tasks. The slope

of the dotted lines is an indicator of how strong sorting forces are between tasks. Due to the bilinear

technology, the within-force is desirable whereas the between-force is not (it reflects mismatch). Before

task-biased TC, cognitive and manual tasks receive identical weights in production (δ = 1), hence,

the left panels in both figures are identical. Going from left to right, relative complementarities in the

21This can be relaxed but I would have to rely more on simulations. Moreover, the restriction captures the empirically
relevant case for the US. See below.
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Figure 3: Effects of TBTC on Sorting in Cognitive (upper panel) and Manual Dimension (lower panel)

cognitive task increase: the economy converges to the perfectly assortative allocation in the cognitive

task. But this comes at the expense of significant misalignment between workers’ skills and firms’

skill needs in the manual task, with manual productivity responding even more strongly to changes

in the cognitive than in the manual skill.

Besides the size of the technological shock, what matters for the sorting response to task-biased

TC is the shape of the underlying distributions (part (iii)). If skill supply and demand are perfectly

aligned (ρx = ρy), task-biased TC has no effect on the assignment. This is because sorting in

both tasks is perfectly assortative to start with (yC = xC and yM = xM ). Thus, the worker-firm

assignment in the cognitive task cannot further improve as δ decreases. On the other hand, the

amount of resorting in response to task-biased TC is maximized when skill supply and demand differ

considerably. In this situation, the initial assignment is convoluted by mismatch in both tasks. Hence,

there is much to gain from improving cognitive sorting in response to task-biased TC.

It follows from this discussion that there are two sources of structural mismatch in the economy,

technology and distributions. The first source stems from asymmetries in production technology

(Proposition 7). The second is due to discrepancy between skill and productivity distributions or, in

other words, between supply and demand (ρx 6= ρy, Proposition 5). It arises because the frictionless

labor market must clear no matter how different skill and productivity distributions are.

Clearly, these assignment changes feed into wage changes, summarized by the next result.
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Proposition 8 (TBTC and Wages) Suppose there is cognitive task-biased TC (0 < δ′ < δ = 1):

(i) Aggregate Wage Inequality: The effect on the wage variance is ambiguous.

(ii) Wage Curvature: If |ρx| < |ρy|, wages become more convex in cognitive but less convex in manual

skills. For a perfect fit of supply and demand (ρx = ρy), changes in the curvature are smallest. In

turn, for the poorest fit (i.e. maximal |ρx − ρy|), curvature changes are largest.

Task-biased TC has ambiguous effects on the variance (part(i)). The wage variance is sensitive

to the level of technology. It increases in both technology parameters α and β. Since cognitive task-

biased TC can either be driven by an increase in cognitive task-weight α or by a decrease in manual

task-weight β, the overall effect depends on the relative magnitude of these two changes.

Task-biased TC also affects wage inequality by altering the curvature of the wage schedule (part (ii)):

Wages convexify in cognitive skills but become less convex in manual skills (for the empirically rel-

evant case |ρy| ≥ |ρx|, see below). Intuitively, this technology shift favors workers with high levels

of cognitive skills, driving up wage inequality in the cognitive dimension. On the other hand, man-

ual workers are adversely affected by task-biased TC. Those with many manual skills are hit most

severely, compressing wage inequality in this dimension. The magnitude of these effects depends on

the amount of worker-job reallocation in response to task-biased TC. If there is considerable misfit in

initial worker-job matches (which is the case when |ρx − ρy| is large), then the reallocation response

is strong. These allocation shifts translate into larger wage inequality movements.

To the extent that manual specialists are medium-income earners whereas cognitive specialists

are high-income earners, the discussed (de)convexification fuels upper tail but compresses lower tail

inequality.22 This is reminiscent of wage polarization from the one-dimensional literature, which refers

to expanding upper tail but compressing lower tail inequality, relevant for the empirics below.

Notice an important difference from the one-dimensional setting is that in my model, there exist

generalists. Generalists have a second (i.e. cognitive) skill, which offer them a shield against shocks to

manual skills. They gain over manual specialists, who additionally lose relative to low-skilled workers

and cognitive specialists in the economy (see Online Appendix for a formal statement).

4.2 Skill-Biased Technological Change

An important advantage of the specified technology is its tractability. On the downside, it generates

a non-monotonous wage schedule in skills, which would be difficult to reconcile with the data.23

To make the model more suitable for empirical analysis, I augment the production technology by

non-interaction skill terms and a constant, given by

F (xC , xM , yC , yM ) = xC(αyC+λ)+xM (βyM +η)+f0 = α(xCyC+δxMyM )+λ(xC+κxM )+f0 (16)

where δ = α
β is the relative manual task weight, λ, η are skill weights, κ = η

λ is the relative manual

skill weight and f0 is a constant.24 The assignment is unaffected by this new technology but the wage

22I think of manual (cognitive) specialists as workers who have manual (cognitive) but low cognitive (manual) skills.
23Under the previous technology, the wage is folded around (0, 0), e.g. workers (-1,-1) and (1,1) earn the same.
24Notice that including additional non-interaction productivity terms in the technology would not affect wages.
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becomes a non-homogenous quadratic form in standard normal variables,

w(xC , xM ) =
1

2
α(x−h)′J̃(x−h)+C = α

(
1

2
J11x

2
C + J12xCxM +

1

2
δJ22x

2
B

)
+λ(xC+κxM )+w0. (17)

See Appendix C.2 for the derivation and expressions h, J̃ , C. Non-interaction skill terms can shift the

location of the minimum wage to the left, allowing for a wage schedule that is increasing ∀xC , xM ≥
xC , xM , where xC , xM are, for instance, the lowest observed skills in the data. Moreover, I include

a constant f0, which then translates into a non-zero constant in the wage function w0, guaranteeing

non-negative wages to all agents in the economy.25

Technology (16) gives rise not only to a more realistic wage schedule, it also allows for a sensible

definition of skill-biased technological change (skill-biased TC hereinafter), independently of task-

biased TC that works through complementarities in production. Consider a change in relative manual

skill weight from κ to κ′ with κ′ < κ. Then, κ′ is called skill-biased relative to κ, with the bias favoring

cognitive skills. This shift increases the productivity of cognitive skills independent of a job’s cognitive

skill demands. For instance, advancements in communication technology (e.g. google) benefit both

the secretary and the CEO even though their tasks require different levels of cognitive skill.

Proposition 9 (Skill-Biased Technological Change) Suppose there is cognitive skill-biased TC

(κ′ < κ). Then: (i) The assignment is unaffected. (ii) The curvature of the wage function is

unaffected. (iii) The effect on the wage variance is ambiguous.

Skill-biased TC has no impact on the assignment, reiterating that what matters for the assignment is

the relative level of complementarities across tasks. Moreover, from (17) it is clear that it also has no

impact on the curvature of the wage function, which solely depends on task-bias paramaters. Finally,

similar to task-biased TC, the effect of skill-biased TC on the wage variance is ambiguous. However,

for the empirically relevant case below with negative skill correlation (ρx < 0) and relatively large

cognitive skill weight (−ρxλ > η), wage dispersion unambiguously increases with skill-biased TC. In

this case, the decline in κ affects the variance mainly through the increase in cognitive skill weight λ,

shifting the wage schedule without affecting its curvature. Compared to task-biased TC, skill-biased

TC does not compress lower tail wage inequality but fuels inequality across the whole distribution.

The next section brings the model to the data, which will allow me (a) to quantify skill-biased and task-

biased TC over time and (b) to disentangle their roles in observed allocation and wage inequality shifts.

5 Quantitative Analysis

In this section, I first I estimate the model by Maximum Likelihood (ML), providing insights of

how technology in the US has evolved over time. Then I use various counterfactual experiments

to decompose wage inequality shifts into those driven by (i) task-biased technological change, (ii)

skill-biased technological change and (iii) changes in underlying distributions.

25With the previous technology, wages were always positive (see Online Appendix). However, when including non-
interaction terms, wages can become negative. Hence, the inclusion of the constant.
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5.1 The Data

I use the National Longitudinal Survey of Youth 1979 (NLSY) as the main data source. The NLSY

follows a (single) cohort since 1979, interviewed every year until 1994 and since then biennially.

The reason for using the NLSY is that it contains detailed information on respondents’ occupations,

training and degrees, which I will use to construct a skill supply distribution. I supplement the

NLSY by O*NET data to learn about occupational skill requirements. This data will be crucial for

constructing a skill demand distribution, where I interpret occupations as the empirical counterpart

of my model’s firms.26 The analysis in this paper covers the period 1992-2000.27 I restrict the sample

to employed male and female workers in non-military occupations who work more than twenty hours

per week and forty weeks per year. For the analysis, I consider hourly wages, computed as yearly

gross labor income divided by yearly hours worked and adjusted by the CPI. Additionally, my analysis

requires measures of workers’ cognitive and manual skills (xC , xM ) as well as occupations’ cognitive

and manual skill requirements (yC , yM ).

To construct these bivariate distributions, I rely heavily on the O*NET data, which provide

detailed information on skill requirements for a large number of occupations. This information can

be classified into two categories, manual and cognitive, and then aggregated to two task measures

for each occupation. They indicate the level of skills needed to perform manual and cognitive tasks,

which I interpret as the (yC , yM )-bundle from my model (see Table 3 in Appendix E for examples).28 I

then merge these scores into occupations of employed workers in the NLSY, which yields the bivariate

skill demand distribution. Constructing the bivariate skill distribution is involved. Data on manual

skills are not readily available. Moreover, the literature provides little guidance on this issue.29 To

impute agents’ manual and cognitive skills, I use information on their college degrees, apprenticeships

and vocational degrees, degrees of government programs and training on-the-job paid for by firms,

provided by the NLSY.30 From this information, I can proxy a manual and cognitive skill for each

agent (see Appendix E.1 for details). After data cleaning and sample restrictions, I am left with

around 2700 yearly observations.

The Online Appendix provides summary statistics of bivariate skill and productivity distributions

in 1992. In order to align the data with the model, I transform empirical skill and productivity dis-

tributions into Gaussian copulas, which takes out marginal characteristics (means and variances) and

leaves the correlation as the only distributional parameter (see Online Appendix). The correlations

between the transformed variables are plotted below (standard errors in parentheses). Manual and

26The O*NET is the U.S. Department of Labor Occupational Characteristics Database.
27This period is chosen for two reasons: First, there is a consensus in the literature that task-biased TC started around

the beginning of the 1990s when computers and advanced technology became widely spread. I choose the starting year
1992 because this is when I begin observing task-biased TC in the data, i.e. a technological shift away from manual
and towards cognitive task inputs in production. Second, years beyond 2000 are excluded because NLSY occupations
are recoded in 2002, which complicates the measurement of sorting.

28This data as well as the crosswalk linking O*NET occupational codes to NLSY occupational codes come from
Sanders [2012]. Yamaguchi [2012] uses a similar approach to classify manual and cognitive occupational inputs.

29Yamaguchi [2012] and Sanders [2012] estimate the bivariate skill distribution from their models. In turn, I aim to
provide information on the skill distributions that is independent of the model.

30I only consider training paid by a firm because it is presumably related to the occupation performed by the worker.
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cognitive skills are negatively correlated, indicating that a worker with high cognitive skills has little

manual dexterity and vice versa. Occupations’ skill requirements are more strongly negatively cor-

related than skills. The interpretation is that jobs in the US demand workers with higher degrees of

specialization than available workers can offer. In light of the model, it is crucial that these empirical

correlations are not equal as the model predicts a non-trivial effect of technological change on sorting

and wages, which will be analyzed below.
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Figure 4: US Skill and Productivity Correlations in 1992

5.2 Estimation

I estimate the model by Maximum Likelihood (ML). The closed form solution is particularly useful for

this purpose since it allows me to specify an exact expression for the likelihood function. Denote the

parameter vector by θ = ((J11, J12, J21, J22), (α, β, λ, η, w0), (s, t, u)), which is to be estimated. The

first set of parameters corresponds to the coefficients of the assignment functions (i.e. the Jacobian of

the matching function), the second set are technology paramaters, the last set relates to measurement

errors of the wage and assignment, respectively. The data vector is given by z = (z1, ..., zn) where

∀ i = 1, ...n, zi = (wi, yCi, yMi, xCi, xMi). The log-likelihood function for this model is given by:

lnL(θ|z) = −
n∑
i=1

(wi − (12αJ11x
2
Ci + αJ12xCixMi + 1

2βJ22x
2
Mi + λxCi + ηxMi + w0))

2

2s2

−
n∑
i=1

(yCi − (J11xCi + J12xMi))
2

2t2
−

n∑
i=1

(yMi − (J21xCi + J22xMi))
2

2u2
− n ln(stu)− 3n

2
ln 2π (18)

See Appendix E.2 for details. Notice that another advantage of this model is that all parameters are

identified.31 I estimate the model year by year. Appendix E.2 reports detailed estimation results.

31My model circumvents non-identification of similar linear-quadratic Gaussian models arising due to collinearity
(pointed out by Brown and Rosen [1982] and Ekeland et al. [2004]). There, the identification problem stems from an
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5.3 Technological Change in the US

Identifying unobserved worker-job/firm complementarities from observed equilibrium outcomes has

been of independent interest and the focus of a growing literature on the identification of sorting.32 Us-

ing my model as a measuring instrument, I can identify from data on wages and worker-job assignment

the underlying technological determinants of the US economy and how they changed over time. Recall

F (xC , xM , yC , yM ) = αxCyC + βxMyM + λxC + ηxM + f0

which is the specified production function, where α, β are complementarity weights, λ, η are skill

weights, and f0 is a constant. Table 1 contains the ML-estimates of these technology parameters for

the years 1992 and 2000. The estimation results suggest that production technology features comple-

mentarities between worker and job attributes in both tasks (α and β are positive; see Appendix E.2

for the results of the remaining years). Moreover, the 1990s were characterized by task-biased TC in

favor of cognitive tasks: Complementarities between cognitive worker and job attributes have gone

up by 15% whereas complementarities in manual inputs have decreased by 41%. Relative manual

complementarities, δ = β
α , dropped from 0.55 to 0.29 – a decline of 47%.

α β λ η w0

1992 2.7291
(0.6090)

1.5009
(0.7244)

2.7962
(0.1668)

0.2079
(0.1677)

15.1680
(0.2380)

2000 3.1358
(1.0472)

0.8954
(0.8028)

4.7352
(0.2641)

−0.1773
(0.2632)

18.4752
(0.3792)

Standard errors in parenthesis.

Table 1: Maximum Likelihood Estimates of Technology Paramaters

Besides these shifts in relative task complementarities, there was also a change in the skill-bias of

technology, indicated by the skill weights η and λ. Over the 1990s, the US economy was characterized

by a strong cognitive skill-biased TC. The cognitive skill weight λ increased sharply (+68%) whereas

the manual weight η decreased (however, η is statistically insignificant). In sum, these estimates

suggest that during the 1990s, the US faced two major technological shifts: first, a bias in favor of the

cognitive task and, second, a bias favoring cognitive skills. Additionally, there was a positive trend

(indicated by an increase in w0), which had an impact on all workers independent of their skills.

Notice that apart from technological change, there was a change in distributions: workers were

less specialized in 2000 compared to 1992 (ρx = −0.2079 in 1992 and ρx = −0.05 in 2000, see Online

Appendix). On the other hand, the change in skill demand was negligible.

5.4 The Role of Technological Change in US Wage Inequality Shifts

Observed wage inequality shifts in the data can occur for many reasons. The advantage of estimating

a structual model is that the effects of various sources can be disentangled. This section conducts

additional quadratic term in production technology. More generally, my model avoids such collinearity problem because
the curvature of w(x) in x is not the same as the curvature of technology F (x, y) in x.

32See Abowd et al. [1999] and also Eeckhout and Kircher [2011].
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counterfactual exercises to decompose the impact of task-biased TC, skill-biased TC and changes

in underlying distributions on wage inequality. For instance, to study how much of the change in

wage inequality is due to task-biased TC alone, I keep both skill-bias parameters λ and η as well as

distributional parameters ρx and ρy at their 1992-levels and only feed the estimated changes in the

task-bias into the model (given by α, β); similarly, for skill-biased TC and the change in distributions.

5.4.1 Wage Polarization

A growing literature documents wage polarization in the US. This phenomenon refers to a slow-down

in lower tail wage inequality and a boost in upper-tail inequality. Figure 5 plots hourly wages by

wage percentile for 1992 and 2000 (solid and dashed line, respectively), illustrating that inequality

disproportionally increased in the upper part of the distribution with little action in the lower part.
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Figure 5: Wage Polarization in the US (Data)

What might have caused this specific change in the wage distribution? Panels (a) and (b) in

Figure 6 analyze whether wage polarization can possibly be triggered by estimated technology shifts

in task and skill-bias. Panel (a) shows that task-biased TC matches fairly well the increase in upper

tail wage inequality and exactly matches the halt in lower tail inequality. Skill-biased TC can only

match the expanding upper tail inequality. It fails to account for stagnating inequality in the lower

part of the distribution, overpredicting the increase in lower tail wage inequality.

The model offers an explanation for why only task-biased TC can account for wage polarization.

Through an increase in cognitive input complementarities (α goes up) and a decrease in manual input

complementarities (β goes down), task-biased TC affects the curvature of the wage schedule. Wages

become more convex in cognitive but less convex in manual skills. This fuels wage inequality in the

cognitive but compresses inequality in the manual dimension. Polarization occurs because differently

skilled workers are not uniformly distributed across the wage distribution. Instead, workers with

high cognitive skills are concentrated in the upper part of the wage distribution. This is why these

differential wage changes lead to a disproportionate increase in upper tail inequality.
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(a) Data and Model (Task-Biased TC)
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(b) Data and Model (Skill-Biased TC)

Figure 6: Wage Polarization 1992-2000: Data, Task-Biased TC and Skill-Biased TC

To see this, I plot the c.d.f.’s of the empirical wage distributions for low-skilled workers, manual

specialists, generalists and cognitive specialists in 1992 and 2000 (Figure 7).33 Cognitive specialists

and generalists form the group of high-income earners in the US economy. In 1992, the wage dis-

tribution of cognitive specialists first-order stochastically dominates the distribution of generalists,

which in turn dominates the distributions of manual specialists and low-skilled workers. Strikingly,

in the course of the 1990s, there is no increase in lower tail inequality (the difference between low-

skilled and manual wages remains nearly unchanged). In turn, the first order stochastic dominance of

wage distributions of cognitive specialists and generalists over distributions of low-skilled and manual

specialists has become more pronounced over time (compare panels (a) and (b)). This implies that

generalists and cognitive specialists gain significantly relative to low and medium income earners,

fueling upper tail wage inequality.34
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Figure 7: Wage Distributions by Worker Group (Data)

33Low-skilled are defined as xC < E(xC), xM < E(xM ), manual specialists as xC < E(xC), xM > E(xM ) etc.
34Figure 10 in Appendix E.2 makes the same point with wage densities.
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Recall from Proposition 8 that task-biased TC affects the curvature of cognitive and manual

returns (and hence polarization) through two channels. First, there is a direct effect through changes

in worker-job complementarities. Second, there is an indirect effect through re-sorting of workers to

jobs. Due to task-biased TC, sorting along the cognitive dimension should improve whereas sorting

along the manual dimension is expected to deteriorate. To evaluate these predictions, recall that the

sorting patterns are fully captured by the assignment coefficients of the matching function, given by:[
y∗C
y∗M

]
=

[
J11 J12

J21 J22

]
︸ ︷︷ ︸

Jµ

[
xC

xM

]

Jµ is estimated via ML. If it is a P-matrix (i.e. with positive diagonal elements and positive determi-

nant) then sorting satisfies PAM. In Figure 8, I plot the assignment estimates for the year 1992 in blue

(left panels). For the year 2000, I only plot the estimates whose change was statistically significant

compared to 1992 (in red, right panels). See Appendix E.2 for the estimates. The structure is as in

Figure 3: the slope of the solid lines indicates assortativeness (diagonal elements of Jµ, J11 and J22)

whereas the steepness of the dashed lines indicates mismatch (off-diagonal elements of Jµ, J12 and J21).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

xi

y C
(x

i)

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

xi

y C
(x

i)

 

 

J11xC 1992
J12xM 1992

J11xC 1992
J12xM 1992
J11xC 2000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

xi

y M
(x

i)

 

 

J22xM 1992
J21xC 1992

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

xi

y M
(x

i)

 

 

J22xM 1992
J21xC 1992
J21xC 2000

Figure 8: Maximum Likelihood Assignment Estimates 1992 and 2000: Cognitive Dimension (upper
panel), Manual Dimension (lower panel)
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Both in 1992 and 2000, sorting satisfies PAM with a positive relationship between skills and

skill requirements in both tasks (given by positively sloped solid lines). This is in line with estimated

worker-job complementarities (i.e. α, β > 0).35 Moreover, the sorting changes over time are consistent

with task-biased TC: assortativeness in the cognitive task significantly increased between 1992 and

2000, indicated by a steeper red solid line in the upper right panel. In turn, there is a statistically

significant deterioration in the manual fit, indicated by a steeper red dashed line (lower right panel).

Quantitatively small assignment changes were expected: given that skill supply and demand (i.e. ρx

and ρy) are fairly well aligned in 1992, my model predicts minor effects of task-biased TC on sorting.

In sum, task-biased TC leads to less convex manual returns but more convex cognitive returns

because of two effects, a direct one operating through the change in complementarities and an indirect

one through worker-job reallocation. Since cognitive (but not manual) workers are concentrated in

the upper part of the wage distribution, these wage movements trigger wage polarization. In turn,

for skill-biased TC neither of the two effects is at work. Thus, skill-biased TC has no effect on the

curvature of the wage schedule but simply shifts it. As a result, skill-biased TC triggers an increase in

wage inequality across the whole wage distribution. For more analysis, see Figure 11 in Appendix E.2.

5.4.2 Wage Dispersion

The proposed model – despite being frictionless – does a decent job in matching the increase in US

wage dispersion during the 1990s. It generates an increase of 126%, compared to an increase of 145%

in the data. Moreover, the model matches well the shape of this shift. Only in terms of the level of

variance is the model off (the data variance in 1992 is 6.7 times higher than the model’s variance).

A possible reason is that the model is frictionless whereas search frictions are believed to play an

important role in wage dispersion (e.g. Uren and Virag [2011]). Moreover, in the data not only skills

but many other factors impact wage dispersion, which are not part of my model. To be able to make

a better comparison between the variance change in data and model, I normalize the model variance

so that it has the same level as the data variance in 1992 (Figure 9).

Notice that the driving force in wage inequality increase is the within-variance of manual workers,

E[V ar(w|xB)], as opposed to their between-variance, V ar(E[w|xB]). This multidimensional model

offers a natural way to think about these concepts since, for instance, every group of workers with

similar manual skills has a whole distribution of wages due to differences in their cognitive skills.

Technological change in favor of cognitive inputs exacerbates this within-group wage dispersion. In

contrast, between-wage dispersion of manual types contributes little to overall variance or its shift

(indicating that the driving force of wage inequality is the cognitive and not the manual skill).36

Table 2 reports a decomposition for the shift in wage variance. The results suggest that skill-

biased TC was the driving force behind the increase in wage dispersion, generating a boost of 119%.

Compared to skill-biased TC, the role of task-biased TC is moderate, only achieving an increase of

35Moreover, the solid lines are steeper than the dashed lines, fullfilling the requirement on the determinant of Jµ.
36The within and between variance predictions of the model can be computed since closed forms are available.

Regarding the data, I first categorize workers into thirty bins depending on their manual skills, and then compute the
wage variance within and across bins. The results are robust using more or fewer than thirty bins.
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Figure 9: US Wage Dispersion over 1992-2000 (Data and Model)

7% over this period. The model offers two explanations to why task-biased TC played a minor role

for wage dispersion. First, over the 1990s, the increase in cognitive task-weight α is accompanied

but a strong decrease in manual task weight β. The first force fuels wage inequality while the second

one compresses it, which is why the net effect of task-biased TC on wage dispersion is small. To

the contrary, the changes in the skill bias are mainly due to the increase in cognitive skill weight λ,

which shifts the wage schedule (instead of impacting its curvature) and fuels inequality across the

whole distribution. The second reason for the minor impact of task-biased TC is that sorting shifts

are quantitatively small (see above). Stronger re-sorting would have triggered more inequality.

Data Model Task-Bias (α, β) Skill-Bias (η, λ) Distributions (ρx, ρy) Trend (w0)
∆V ar(w) + 145% +126% +7% +119% -4% –

Table 2: Change in Wage Variance over 1992-2000 (Data versus Model)

Besides technological progress, distributions also changed during the 1990s. There was a shift in

skill supply, with workers becoming less specialized, but skill demand remained constant (see Online

Appendix). At odds with the observed increase in inequality, the change in skill distribution had a

negative effect on wage variance. Finally, the TFP shifter does not affect wage dispersion because it

enters as a constant in the wage function.

In sum, this exercise shows that technological change rather than changes in distributions mattered

for US wage inequality shifts.37 Skill-biased TC accounts for a significant portion of the increase in

wage dispersion. On the other hand, task-biased TC played a critical role for wage polarization, being

particularly important for stagnating lower tail wage inequality.

37Notice that similar to the variance exercise, the change in distributions had little effect on the change in the curvature
of the wage function, which is why it is not included here.
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5.5 Comparison to the One-Dimensional Assignment Model

In what sense does the multidimensional model provide a richer understanding of the data than a

comparable one-dimensional model? In order to address this question, I specify the one-dimensional

analogue of my model and estimate it using cognitive skills and skill requirements only. I interpret

cognitive skills as a proxy for years of schooling, commonly the single worker characteristic in one-

dimensional settings.38

To ensure comparability of the two models, I assume standard normal distributions xC , yC ∼
N(0, 1) and technology F (xC , yC) = αxCyC + λxC + f0. It is immediate that the wage is given by

w(xC) = α
x2C
2

+ λxC + w0 (19)

where w0 is the constant of integration. I estimate paramaters α, λ,w0 by OLS, using (19). During

the 1990s, α increased by 88% and λ by 74% (see the Online Appendix for details), suggesting that

technological change favored workers with high cognitive skills.

The one-dimensional model captures well the convexification in cognitive returns, indicated by an

increase in α. However, it misses that manual returns have become concave (see previous section).

As a result, this model overpredicts the change in wage dispersion during 1992-2000. It predicts an

increase of 220%, compared to an observed increase of 145%.

Moreover, the one-dimensional model misses the fact that not all workers with manual skills

suffer from cognitive-biased technological change. Looking at the data through a two-dimensional

lense suggests that generalists (who hold above average skills in both dimensions) experienced a

substantial real wage increase of 27% over the 1990s. Their second skill offers a buffer against shocks

to manual skills. Notice that generalists form a sizeable group, almost one fifth of the US workforce

in 1992 (see Online Appendix). This suggests that the distinction between generalists and specialists

is important. Yet it falls short of the one-dimensional model.

Finally, this model cannot account for reallocation of workers to jobs in response to technological

change unless technology shifts so drastically that negative instead of positive assortative matching

becomes optimal.39 For changing (but still positive) α, the model predicts no shift in assignment.

Moreover, since there is only one skill, the one-dimensional model entirely misses the assortativeness-

mismatch trade-off across skills, which was present in the US during the 1990s.

6 Literature Review

This work contributes to literature of two types: that concerning multidimensional matching under

transferable utility (including hedonic models and optimal transport); and that concerning task-biased

technological change. I will now discuss those papers that are most relevant to my research.40

38This is justified since I construct skills from educational attainment (i.e. degrees) and training data.
39This would be the case if α switches from positive to negative, which is according to the estimates not the case.
40I do not discuss papers with non-transferable utility because there is little relation.
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Multidimensional Matching. Variations of the quadratic-Gaussian model have been studied

in several contexts. Building on Tinbergen [1956], Ekeland et al. [2004] analyze the econometric iden-

tification of hedonic models with focus on a quadratic-Gaussian setting. They discuss an identification

problem which arises in that model because wage function and production technology have the same

curvature in x. To address this collinearity issue, the authors propose a change of the environment,

for instance, by considering Gaussian mixtures. My model circumvents this problem by specifying

a production technology without quadratic loss terms. Additionally, to make my model suitable for

empirical analysis I include non-interaction skill terms in the technology such that marginal wages

can be positive over the whole observed skill support. Olkin and Pukelsheim [1982] solve a related

Gaussian example but in a symmetric setting (i.e. δ = 1). Bojilov and Galichon [2013] extend the

quadratic-Gaussian setting to include unobserved heterogeneity.

My contribution to this literature is as follows. First, I develop a framework for multidimensional

sorting that extends the unidimensional notion of (positive) assortative matching (PAM). Second,

using this notion of PAM, I develop a technique for deriving the equilibrium in closed form, which

can be used not only for the quadratic-Gaussian model (as I illustrate) but also in other settings

(Appendix D.0.2). Third, I use PAM to characterize equilibrium sorting. Moreover, I study a new

application (i.e. technological change) in this setting. Last, I make the model amenable to empirical

analysis and bring it to the data.

This paper also relates to literature on multidimensional matching on the marriage market. Choo

and Siow [2006] propose a transferable utility model of the marriage market to estimate the mar-

riage matching function from observed matches in the US. Their model allows for multidimensional

(un)observed heterogeneity under the assumption that there is no interaction between unobservable

characteristics of partners (separability assumption).41 More recently, Galichon and Salanié [2010]

study optimal matching in a model with multidimensional (un)observed characteristics. Under the

same separability assumption, the authors show that optimal matching on observable characteristics

is non-pure. In related work, Dupuy and Galichon [2012] extend their set-up to continuous types.

These studies differ from my research in terms of objective and modeling choices. Choo and

Siow [2006] estimate the gains from marriage, i.e. their focus is empirical. In turn, Galichon and

Salanié [2010] and Dupuy and Galichon [2012] develop techniques to estimate complementarities in

the surplus function from observed matches. They pursue this objective without providing a closed

form. Conversely, my paper aims at developing a multidimensional sorting framework that allows

for closed form characterization and comparative statics. In the above-mentioned papers, modeling

devices are (un)observed heterogeneity and extreme value distributions of unobserved traits. I rely on

observed heterogeneity and Gaussian copulas. Notice, however, that there is an important conclusion

common to the papers by Galichon and Salanié [2010], Dupuy and Galichon [2012] and my own: With

multidimensional matching, there is a trade-off between matching along different characteristics that

41Decker et al. [2013] analyze the existence and uniqueness of equilibrium, provide a closed form as well as comparative
statics of the Choo-Siow model. Chiappori et al. [2012] also provide a closed form of a multidimensional matching model
and then test predictions of how spouses trade off education and non-smoking. Their assumptions are as follows: (i)
Smoking status (binary) and education (continuously uniform) are independent. (ii) In the surplus, the disutility of
smoking is proportional to the surplus generated by the spouses’ skills.
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depends on complementarity weights in the surplus function.

McCann et al. [2012] develop a model of marriage, educational and occupational choices when

agents have both cognitive and social skills. This discussion focusses on their marriage market.42

Under the assumption of complete overlap in distributions (i.e. equal male-female sex ratio by type)

and their specified technology they prove that matching is positively assortative in both dimensions.

When looking at this result through the lens of my model, it can be shown that it is captured by

Proposition 11 (b) in Appendix D.0.2. Similarly, this model would capture sorting results from the

environment specified in Eeckhout and Kircher [2012], if they extended their model to a fully bi-

dimensional setting where firms and workers not only sort on the quality but also on the quantity

dimension (Proposition 11 (a), Appendix D.0.2). This suggests that the developed sorting framework

is useful for deriving closed forms beyond the quadratic-Gaussian case.

Finally, this paper relates to the literature on optimal transport. In non-technical terms, the

optimal transport problem involves finding a measure-preserving map that carries one distribution

into another at minimal cost, using linear programming.43 A tight link has been established between

the following two formulations of the assignment problem: a hedonic pricing problem with transferable

utility (like the problem in this paper) and an optimal transport problem. Shapley and Shubik [1971]

show this equivalence in a discrete and Gretsky et al. [1992] in a continuous setting.44

Different from Gretsky et al. [1992], in the multidimensional assignment problems of Chiappori

et al. [2010] and Ekeland [2010], sellers can also choose the characteristics of the good they sell.45Apart

from providing existence and uniqueness results, both papers establish purity of the assignment:

Their sufficient condition for purity is the twist condition, which states that DxF (x,y) is injective

with respect to y. Notice that the P -matrix property of D2
xyF (x,y) from my paper is sufficient for

the twist condition to hold. Since D2
xyF (x,y) is the Jacobian of DxF (x,y), the P -matrix property

ensures that DxF (x,y) is injective (by Gale and Nikaido [1965]). While this literature has developed

powerful general tools to study multidimensional matching problems, it provides little guidance on

how to solve them explicitly. This is what my paper seeks to address.

Task-Biased Technological Change. Costinot and Vogel [2010] and Acemoglu and Autor

[2011] use one-dimensional assignment models to analyze (amongst other issues) task-biased TC. In

these frameworks, an adverse technology shock reduces firms’ demand for medium-skilled workers

and hence their relative wages. This fuels upper-tail but compresses lower tail wage inequality – a

phenomenon referred to as wage polarization.46

Instead of implicitly assuming that manual skills are only used by medium-skilled workers, I make

42In their paper, the marriage market is the only one in which choices are based on two characteristics on both sides
of the market, and hence, where a comparison to my set-up makes sense.

43Optimal transport has a long tradition in mathematical theory. See Villani [2009] for a recent reference book.
44Additionally, both show the equivalence to a third formulation, namely the market game. Notice that the examples

provided in Gretsky et al. [1992] are restricted to one-dimensional types. See also Dizdar and Moldovanu [2012] for recent
work on the intersection of multidimensional matching and mechanism design that makes use of the twist condition.

45In that setting, Chiappori et al. [2010] establish a similar equivalence, namely between hedonic pricing, stable
matching and the optimal transport problem.

46In their frameworks, task-biased TC also leads to employment polarization, which is beyond the scope of my model
since jobs and workers match one-to-one in a frictionless and competitive labor market.
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the assumption that every worker has both skills, yet in different proportions. This makes it possible

to distinguish between generalists and different types of specialists, thereby capturing that generalists

can shield against adverse shocks to manual inputs. Moreover, by including a second dimension, I

can analyze the differential effect of task-biased TC on sorting and wage inequality in manual and

cognitive skills. I identify a new channel of how this technology shift affects wage inequality and

polarization: task-biased TC endogenously changes the allocation of workers to jobs, improving the

fit of worker-firm pairs along the cognitive task relative to the manual task dimension. It is noteworthy

that this assortativeness-mismatch trade-off across tasks takes place despite pairwise matching and

without violating positive assortative matching.47 Finally, my paper adds a unified framework of

task-biased TC and the more standard skill-biased TC to the literature, allowing me to distinguish

between their effects both theoretically and quantitatively.

There is plenty of empirical evidence on labor market polarization in developed countries but little

structural analysis into the causes of this phenomenon. An exception is Boehm [2013] who studies

wage polarization in an empirical Roy model where a variety of abilities determine three occupation-

specific skills (for low, medium and high-skilled occupations). Also using NLSY data, he finds that

the US has undergone a relative decrease in the medium-skill price and wage polarization.

7 Conclusion

Technological change has drastically changed the structure of production in favor of cognitive relative

to manual inputs in the developed world. How does this shift affect worker-job assignments, wages

and inequality? This is a multidimensional assignment problem where workers with different bundles

of manual and cognitive skills sort into jobs that require different combinations of these skills. To

make this issue tractable, this paper develops a theoretical framework for multidimensional sorting

that extends the unidimensional notion of assortative matching. I derive the equilibrium allocation

as well as equilibrium wages in closed form. I then analyze the impact on these equilibrium outcomes

as cognitive (as opposed to manual) inputs become more prevalent in production, capturing one of

the main recent technological shifts. Finally, I take this model to the data to study technological

change in the US during the 1990s. The empirical analysis reveals that technological change was

strongly biased toward cognitive inputs. Counterfactual exercises suggest that this technology shift

can account for observed changes in worker-job sorting, wage polarization and wage dispersion.

It is worth pointing out that the theoretical framework developed here is of independent interest

and can be used beyond this paper’s application to technological change. It could be applied to a va-

riety of matching problems that involve multidimensional heterogeneity, not only in the labor but

also in the marriage or education markets. To broaden the applicability of this theory even fur-

ther, it would be important to extend this framework to settings with search frictions (see the On-

line Appendix for first insights on sorting conditions in such an environment) and to settings where

the two sides of the market have different numbers of characteristics, preventing pure matching. These

are challenging problems that form part of my ongoing research agenda.

47Contrary to Costinot and Vogel [2010] and Acemoglu and Autor [2011], there is no intensive margin here.

32



A Proofs General Model (Section 2)

A.1 The Equilibrium Assignment

In order to prove Proposition 1, the following Lemma and Corollary are useful. Notice that the proofs

will be given for N-dimensional heterogeneity where firm are characterized by y = (y1, ..., yN ) ∈ Y ⊂
RN+ (with abs. continuous c.d.f. G(y)) and workers are characterized by x = (x1..., xN ) ∈ X ⊂ RN+
(with abs. continuous c.d.f. H(x)).

Lemma 1 (P-Matrix Property) If D2
xyF (x,y) is a diagonal P -matrix (P−-matrix), then Jµ(x) ≡

Dxy
∗ is a P -matrix (P−-matrix).

Throughout the proof I will make the following assumption:

Assumption 1 D2
xyF is a diagonal P -matrix.

Proof. It will be shown that under Assumption 1, optimality of the firm’s choice requires that the

Jacobian of the matching function, Dxy
∗, is a P -matrix. The proof for the case when D2

xyF is a

P−-matrix is analogous and therefore omitted. I proceed in several steps.

1. The Hessian evaluated at the equilibrium assignment, given by H∗ = D2
xxF (x,y∗)−D2

xxw(x),

is negative semi-definite. These are the necessary second order conditions for optimality.

2. Det(H∗) > 0. Differentiate the first order conditions, evaluated at the optimal assignment

y∗ = µ(x), with respect to the skill vector x, which gives

H∗ = D2
xxF (x,y∗)−D2

xxw(x) = −(D2
xyF (x,y∗))(Dxy

∗) (20)

where Dxy
∗ is the Jacobian of the matching function. Since D2

xyF is a P -matrix everywhere

(and, hence, also along the equilibrium allocation y∗), it is non-singular and hence the inverse

(D2
xyF (x,y∗))−1 exists. From (20), it is given by

(D2
xyF (x,y∗))−1 = −(Dxy

∗)(D2
xxF (x,y∗)−D2

xxw(x))−1. (21)

It follows that (D2
xxF (x,y∗)−D2

xxw(x))−1 exists, and thus Det(H∗) 6= 0. Then, by Step 1, it must

be Det(H∗) > 0. Hence, −H∗ is a P -matrix.

3. If Dxy
∗ is sign-symmetric then it is a P-matrix. Suppose that Dxy

∗ is sign symmetric, i.e.
∂y∗i
∂xj

∂y∗j
∂xi

> 0, ∀i, j ∈ {1, 2, ..., N}, i 6= j. For sign-symmetric matrices, positivity of principal minors

and stability are equivalent (see Theorem 2.6. in Hershkowitz and Keller [2005]). In the following,

I show that Dxy
∗ has positive eigenvalues, i.e. is stable. From (20) −H∗ = (D2

xyF (x,y∗))(Dxy
∗),

which has all positive eigenvalues (Step 2). Denote M = D2
xyF (x,y∗), J = Dxy

∗. Denote the eigen-

values of −H∗ by λH . They must obey the characteristic equation det(MJ − λHI) = 0. Since M



is a P-matrix (Assumption 1), it is invertible and the characteristic equation can be reformulated as

det(R−λHM−1) = 0, where λH is the generalized eigenvalue of the square matrices (J,M−1). Given

(J,M−1), the generalized Schur decomposition factorizes both matrices J = QSZ
′

and M−1 = QTZ
′
,

where (Q,Z) are orthogonal matrices and (S, T ) are upper triangular matrices with the eigenvalues

of (J,M−1) on their diagonals.48 The (real) generalized eigenvalues can be computed as λHi = Sii
Tii

.

Notice that Tii > 0 ∀i because M is a diagonal P-matrix, which implies stability (i.e. positive real

part of eigenvalues) and λM
−1

= 1
λM

. For λHi > 0, it must be that Sii > 0, i.e. J = Dxy
∗ has positive

eigenvalues, i.e. is stable.

4. Dxy
∗ is sign-symmetric. To see this, notice that by symmetry of the Hessian and Fxiyj = 0, i, j ∈

{1, 2, ..., N}, i 6= j,

H∗ij = H∗ji

⇔ Fxiyi
∂y∗i
∂xj

= Fxjyj
∂y∗j
∂xi

∀ i, j ∈ {1, 2, ..., N}, i 6= j, (22)

and hence Dxy
∗ is sign-symmetric, i.e.

∂y∗i
∂xj

∂y∗j
∂xi

> 0 ∀i, j ∈ {1, 2, ..., N}, i 6= j. Moreover, Dxy
∗ is

stable (see Step 3). A sign-symmetric and stable matrix is a P -matrix (Theorem 2.6. in Hershkowitz

and Keller [2005]), which proves the result.

Corollary 1 (Assortativeness and Local Maximum) .

If D2
xyF (x,y) is a diagonal P-matrix (P (−)-matrix), then (i) the assignment µ satisfies PAM (NAM)

and (ii) it is a local maximum.

Proof.

(i) Assortativeness: Follows from the definition of assortativeness (Definition 1) and Lemma 1.

(ii) Local Maximum: If the Jacobian of a function is a P-matrix (or a P (−)-matrix), then the function

is injective (one-to-one) on any rectangular region of Rn (Gale and Nikaido [1965], Theorem 4). It

follows from Lemma 1 and the Gale-Nikaido theorem that the solution to the firm’s problem a local

maximum.

Proof of Proposition 1.

(i) Assortativeness: Follows directly from Corollary 1.

(ii) Global Maximum: It will be shown that the solution to the firm’s problem is a global maximum.

I proceed by contradiction. Consider a firm y which optimally chooses worker x, i.e. y = µ(x).49

Consider another firm y′, y′ 6= y, for which worker x′, x 6= x′, is an optimal choice, and hence

y′ = µ(x′). Let y = µ(x) and y′ = µ(x′) be the local optima from Corollary 1. Now suppose that

worker x′ is also an optimal choice for firm y, that is x′ satisfies the optimality (first-order) conditions

48If J has complex eigenvalue, S is quasi-upper triangular.
49More precisely, this is x = ν(y). But recall that ν−1 = µ is the unique inverse and hence the assignment can be

completely characterized by the inverse µ.



of both firms:

Fx(x′,y) = wx(x′) (23)

Fx(x′,y′) = wx(x′). (24)

I will show that, under Assumption 1, (23) and (24) cannot hold simultaneously. It suffices to show

that the function Fx = (FxC , FxM ) is one-to-one, i.e. Fx(x,y) = Fx(x,y′) implies y = y′. By

Assumption 1, D2
xyF (x,y∗) is a P-matrix. Moreover, Fx is defined over a rectangular region on R4.

It follows from the Gale-Nikaido Theroem (Gale and Nikaido [1965]) that Fx is injective with respect

to y. Thus, (23) and (24) cannot hold simultaneously because

Fx(x′,y) = Fx(x′,y′) (25)

only if y = y′, contradicting the assumption that y 6= y′. It follows that the singleton solution to the

firm’s problem found in Corollary 1 is not only a local but also a global maximum.

A.2 The Wage Function

In technical terms, Proposition 2 states: Given a continuously differentiable assignment y∗ = µ(x),

condition (6) is necessary and sufficient for the existence of a unique solution to the system (3) and

(4), given by w(x), such that w(x) = w0.
50

Proof of Proposition 2.

The proof is based on Frobenius Theorem. Consider a system of linear first-order partial differential

differential equations

∂uρ

∂xi
= ψρi (x, u) i = 1, ..., N ; ρ = 1, ..., n (26)

where u : RN → Rn. Consider the following theorem.

Theorem 1 (Frobenius Theorem) The necessary and sufficient conditions for the unique solution

uα = uα(x) to the system (26) such that u(x0) = u0 to exist for any initial data (x0, u0) ∈ RN+n is

that the relations

∂ψαi
∂xj

−
∂ψαj
∂xi

+
∑
β

(
∂ψαi
∂uβ

ψβj −
∂ψαj
∂uβ

ψβi

)
= 0 ∀i, j = 1, ..., N, α, β = 1, ..., n. (27)

hold where ψβi = ∂uβ

∂xi
, ψβj = ∂uβ

∂xj
.

Applying Frobenius’ Theorem to this model implies: u = w, x = (x1, x2, ...xN ) and

50w0 is the reservation wage of the least productive worker x, set s.t. he is indifferent between working and not working.



ψi(x, u) = Fxi(x,y(x)). Notice that n = 1 because w is a real-valued function. Then, (27) reduces to

∂ψi
∂xj
− ∂ψj
∂xi

= 0

which in the presented 2-dimensional model is given by

FxCxM + FxCyC
∂y∗C
∂xM

+ FxCyM
∂y∗M
∂xM

− FxMxC − FxMyC
∂y∗C
∂xC

+ FxMyM
∂y∗M
∂xC

= 0. (28)

(28) coincides with condition (6) from the main text since FxCxM = FxMxC . Hence, given (6), the

involutivity condition from Frobenius theorom is satisfied. A unique (local) solution to the system of

linear partial differential equations (3) and (4) exists.

B Proofs of Quadratic-Gaussian Model (Section 3)

B.1 Labor Market Clearing under PAM (or NAM)

Having applied the measure-preserving transformation (9) to skills and productivities, the labor

market clearing of transformed variables under PAM reads∫ ∞
zyC

∫ ∞
zyM

g(ẑyC , ẑyM )dẑyMdẑyC =

∫ ∞
zxC

∫ ∞
zxM

h(ẑxC , ẑxM )dẑxMdẑxC (29)

where h and g denote the standard normal p.d.f.’s of the uncorrelated skills and productivities,

respectively. Equation (11) follows immediately, taking into account that the z′s are independent

and standard normally distributed. Similarly, under NAM, the market clearing would read∫ ∞
zyC

∫ ∞
zyM

g(ẑyC , ẑyM )dẑyMdẑyC =

∫ zxC

−∞

∫ zxM

−∞
h(ẑxC , ẑxM )dẑxMdẑxC .

B.2 The Equilibrium Assignment

The following two lemmas are building blocks for the proof of Proposition 3.

Lemma 2 (Continuum of Square Roots) (i) There exists a continuum of square roots of the

covariance matrix Σ, denoted by S. Denote its elements by Σ
1
2 ∈ S, where Σ

1
2 (Σ

1
2 )T = Σ.

(ii) The elements of S can be computed by applying an orthonormal transformation to any given

square root. In particular, let R be an orthogonal matrix, i.e. its columns are mutually orthogonal

unit vectors. Hence, R−1 = RT . Then, Σ
1
2R(Σ

1
2R)T = Σ

1
2RRT (Σ

1
2 )T = Σ

1
2 (Σ

1
2 )T = Σ.

Proof.

(i) The existence of an infinite number of square roots of the covariance matrix follows from its



symmetry. The following non-linear system

Σ
1
2 (Σ

1
2 )T =

[
a b

c d

][
a c

b d

]
=

[
1 ρ

ρ 1

]
= Σ (30)

or,

a2 + b2 = 1

c2 + d2 = 1

ac+ bd = ρ

is underdetermined. Thus, it either has none or an infinite number of solutions. Since Σ is positive-

definite, one square root can be computed using the spectral square root decomposition

Σ = CDC ′

⇔ Σ
1
2 = CD

1
2C ′ (31)

where D is a diagonal matrix with the eigenvalues of Σ as diagonal entries and C is a matrix of

orthonormal eigenvectors of Σ. Since the spectral square root is one solution to (30), it follows that

the system has an infinite number of solutions.

(ii) follows directly from orthonormality of R, as stated in the Lemma.

The next lemma states how the orthogonal transformation matrices Ri, i ∈ {x, y} can be parameter-

ized by δ.

Lemma 3 (Orthogonal Transformation Matrices) The system of equations to be solved is given by:

α2
x + β2x = 1 (32)

α2
y + β2y = 1 (33)

∂y∗C
∂xM

= δ
∂y∗M
∂xC

(34)

where αx, βx, αy, βy are the elements of the orthogonal transformation matrices:

Rx =

[
αx −βx
βx αx

]
, Ry =

[
αy −βy
βy αy

]



(i) For all δ ∈ [0, 1], the solution to system (32)-(34) is given by αx = ±1, βx = 0 and

αy = ±
(1 + δ)

(√
1+ρy
1−ρx +

√
1−ρy
1+ρx

)
√

(1− δ)2
(√

1+ρy
1+ρx

−
√

1−ρy
1−ρx

)2
+ (1 + δ)2

(√
1+ρy
1−ρx +

√
1−ρy
1+ρx

)2 (35)

βy =
√

1− α2
y. (36)

(ii) For ρx ≤ ρy, set αi > 0. For ρx > ρy, set αi < 0, where i ∈ {x, y}.

Proof.

To solve (32)-(34), first express the off-diagonal elements of Dxy
∗,

∂y∗C
∂xM

and
∂y∗M
∂xC

, as functions of

the unknowns. To this end, I compute a candidate equilibrium assignment from (13) where I use

rotations of the spectral square root (given by (31)) to uncorrelate skills and productivities. They

are given by:

Σ
1
2
i =

[
1
2(
√

1 + ρi +
√

1− ρi) 1
2(
√

1 + ρi −
√

1− ρi)
1
2(
√

1 + ρi −
√

1− ρi) 1
2(
√

1 + ρi +
√

1− ρi)

][
αi −βi
βi αi

]
, ∀ i ∈ {x, y}. (37)

Using (37), the candidate equilibrium assignment can be computed from (13) as:

[
y∗C
y∗M

]
=


1
2

(
(αyαx + βyβx)

(√
1+ρy√
1+ρx

+

√
1−ρy√
1−ρx

)
+ (βyαx − αyβx)

(√
1+ρy√
1−ρx

−
√

1−ρy√
1+ρx

))
1
2

(
(αyαx + βyβx)

(√
1+ρy√
1+ρx

−
√

1−ρy√
1−ρx

)
− (βyαx − αyβx)

(√
1+ρy√
1−ρx

+

√
1−ρy√
1+ρx

))
1
2

(
(αyαx + βyβx)

(√
1+ρy√
1+ρx

−
√

1−ρy√
1−ρx

)
+ (βyαx − αyβx)

(√
1+ρy√
1−ρx

+

√
1−ρy√
1+ρx

))
1
2

(
(αyαx + βyβx)

(√
1+ρy√
1+ρx

+

√
1−ρy√
1−ρx

)
− (βyαx − αyβx)

(√
1+ρy√
1−ρx

−
√

1−ρy√
1+ρx

))


︸ ︷︷ ︸
Dxy∗

[
xC

xM

]

(38)

(i) The underdetermined system (32)-(34) has one degree of freedom. I exploit it by setting βx = 0,

which immediately gives αx = ±1 from equation (32). It remains to determine two unknowns, αy, βy,

from two equations (33) and (34). From (33), βy = ±
√

1− α2
y. Using this relation along with

αx = ±1, βx = 0 and candidate assignment (38), integrability condition (34) reads:(
αy

(√
1 + ρy
1 + ρx

−
√

1− ρy
1− ρx

)
−
√

1− α2
y

(√
1 + ρy
1− ρx

+

√
1− ρy
1 + ρx

))
=

δ

(
αy

(√
1 + ρy
1 + ρx

−
√

1− ρy
1− ρx

)
+
√

1− α2
y

(√
1 + ρy
1− ρx

+

√
1− ρy
1 + ρx

))
(39)

Reorganizing terms and solving for αy yields:

αy = ±
(1 + δ)

(√
1+ρy
1−ρx +

√
1−ρy
1+ρx

)
√

(1− δ)2
(√

1+ρy
1+ρx

−
√

1−ρy
1−ρx

)2
+ (1 + δ)2

(√
1+ρy
1−ρx +

√
1−ρy
1+ρx

)2 (40)



Using (40), βy can be backed out from (33)51

βy =
√

1− α2
y. (41)

(ii) Rearranging (39) yields:

αy(1− δ)
(√

1 + ρy
1 + ρx

−
√

1− ρy
1− ρx

)
=
√

1− α2
y(δ + 1)

(√
1 + ρy
1− ρx

+

√
1− ρy
1 + ρx

)
(42)

While RHS ≥ 0, ∀ρx, ρy, LHS Q 0 for ρy Q ρx. It follows that αy ≥ 0 for ρx ≤ ρy and αy < 0 for

ρx > ρy.

Proof of Proposition 3.

Computing the Assignment:

(i) For δ = 1, from (35)

αy = ±1. (43)

The orthogonal transformation (37) delivers:

[
1
2(
√

1 + ρi +
√

1− ρi) 1
2(
√

1 + ρi −
√

1− ρi)
1
2(
√

1 + ρi −
√

1− ρi) 1
2(
√

1 + ρi +
√

1− ρi)

][
±1 0

0 ±1

]
= ±

[
1
2(
√

1 + ρi +
√

1− ρi) 1
2(
√

1 + ρi −
√

1− ρi)
1
2(
√

1 + ρi −
√

1− ρi) 1
2(
√

1 + ρi +
√

1− ρi)

]
for i ∈ {x, y}.

(44)

To see that these are the spectral square roots of the covariance matrix (or minus one times them), I

derive them below using the spectral square root decomposition, which is given by

Σ = CDC ′

⇔ Σ
1
2 = CD

1
2C ′ (45)

where D is a diagonal matrix with the eigenvalues of Σ as diagonal entries and C is a matrix of

orthonormal eigenvectors of Σ. The matrix Σ
1
2 in (45) is called the spectral square root of Σ. Notice

that for Σ
1
2 to be positive-definite, the positive square roots of the diagonal entries of D are used.

From (45) it follows that Σ
1
2
y is given by:

Σ
1
2
y =

 √1
2

√
1
2√

1
2 −

√
1
2

[ √1 + ρy 0

0
√

1− ρy

] √1
2

√
1
2√

1
2 −

√
1
2

 =

[
1
2

(√
1 + ρy +

√
1− ρy

)
1
2

(√
1 + ρy −

√
1− ρy

)
1
2

(√
1 + ρy −

√
1− ρy

)
1
2

(√
1 + ρy +

√
1− ρy

) ]
(46)

51Notice that βy = −
√

1 − α2
y is also possible but does not affect the result, which is why I focus on the positive

square root.



Moreover, since

Σ−
1
2 = CD−

1
2C ′ = C

[
1√
λ1

0

0 1√
λ2

]
C ′. (47)

where λ1, λ2 are the eigenvalues of Σ and C is a matrix of the corresponding orthonormal eigenvectors,

the matrix Σ
− 1

2
x is given by

Σ
− 1

2
x =

 √1
2

√
1
2√

1
2 −

√
1
2

[ 1√
1+ρx

0

0 1√
1−ρx

] √1
2

√
1
2√

1
2 −

√
1
2

 =

 1
2

(
1√

1+ρx
+ 1√

1−ρx

)
1
2

(
1√

1+ρx
− 1√

1−ρx

)
1
2

(
1√

1+ρx
− 1√

1−ρx

)
1
2

(
1√

1+ρx
+ 1√

1−ρx

) 
(48)

It follows that the Jacobian of the matching function is given by:

Dxy
∗ = (Σ

1
2
yRy)(Σ

1
2
xRx)−1 = Σ

1
2
y Σ
− 1

2
x =


1
2

(√
1+ρy√
1+ρx

+

√
1−ρy√
1−ρx

)
1
2

(√
1+ρy√
1+ρx

−
√

1−ρy√
1−ρx

)
1
2

(√
1+ρy√
1+ρx

−
√

1−ρy√
1−ρx

)
1
2

(√
1+ρy√
1+ρx

+

√
1−ρy√
1−ρx

)
 (49)

The assignment is then computed using (13).

(ii) For δ = 0, it follows from Lemma 3 that Ry and Rx are respectively given by

Ry =

 αy −
√

1− α2
y√

1− α2
y αy

 =

[
±1

2

(√
(1 + ρy)(1 + ρx) +

√
(1− ρy)(1− ρx)

)
−1

2

(√
(1 + ρy)(1− ρx)−

√
(1− ρy)(1 + ρx)

)
1
2

(√
(1 + ρy)(1− ρx)−

√
(1− ρy)(1 + ρx)

)
±1

2

(√
(1 + ρy)(1 + ρx) +

√
(1− ρy)(1− ρx)

) ]
(50)

Rx =

[
αx −

√
1− α2

x√
1− α2

x αx

]
=

[
±1 0

0 ±1

]
. (51)

Let Σ
1
2
y and Σ

1
2
x be the spectral square roots of skill and productivity covariance matrices, given by

(46) and by the inverse of (48), respectively. Then,

Σ
1
2
yRy =

[
1
2

(√
1 + ρy +

√
1− ρx

)
1
2

(√
1 + ρy −

√
1− ρx

)
1
2

(√
1− ρx(ρy +

√
1− ρ2y) +

√
1 + ρx(ρy −

√
1− ρ2y)

)
1
2

(√
1− ρx(−ρy +

√
1− ρ2y) +

√
1 + ρx(ρy +

√
1− ρ2y)

) ]

(Σ
1
2
xRx)−1 =

 1
2

(
1√

1+ρx
+ 1√

1−ρx

)
1
2

(
1√

1+ρx
− 1√

1−ρx

)
1
2

(
1√

1+ρx
− 1√

1−ρx

)
1
2

(
1√

1+ρx
+ 1√

1−ρx

)  . (52)



It can be shown that the Jacobian is then given by:

Dxy
∗ = Σ

1
2
yRy(Σ

1
2
xRx)−1 =

 1 0

ρy − ρx
√

1−ρ2y√
1−ρ2x

√
1−ρ2y√
1−ρ2x

 (53)

In the following, it is shown that (53) is equivalent to Ly(Lx)−1 where Li, i ∈ {x, y}, is the Cholesky

square root of skill and productivity covariance matrices, which is the unique lower triangular matrix

Li such that Li(Li)
T = Σi, i ∈ {x, y}. By definition, Li is a square root of Σi. Under the assumption

of standard normality, Li is given by:

Li =

[
1 0

ρi

√
1− ρ2i

]
∀ i ∈ {x, y} (54)

Hence,

Ly(Lx)−1 =

[
1 0

ρy
√

1− ρ2y

][
1 0

ρx
√

1− ρ2x

]−1
=

 1 0

ρy − ρx
√

1−ρ2y√
1−ρ2x

√
1−ρ2y√
1−ρ2x

 (55)

which coincides with (53). The equilibrium assignment is then given by (13)[
y∗C
y∗M

]
= (Σ

1
2
yRy)(Σ

1
2
xRx)−1

[
xC

xM

]

= (Ly)(Lx)−1

[
xC

xM

]

=

[
1 0

ρy
√

1− ρ2y

][
1 0

ρx
√

1− ρ2x

]−1 [
xC

xM

]

=

 1 0

ρy − ρx
√

1−ρ2y√
1−ρ2x

√
1−ρ2y√
1−ρ2x

[ xC

xM

]
(56)

(iii) The equilibrium assignment is obtained by using the suitable rotation matrices from Lemma 3

for each value of δ ∈ (0, 1) together with the candidate equilibrium assignment (13).

Consistency of the Assignment Functions from (i)-(iii) with the Equilibrium. Three properties have

to be verified: (a) Consistency with market clearing; (b) the assignment satisfies PAM; (c) the inte-

grability condition is satisfied. (a) Market clearing is satisfied by (11) and because the transformation

(9) is measure-preserving. (b) Verifying the PAM-property amounts to checking that Dxy
∗ is a P-

matrix. Using Lemmas 2 and 3 equilibrium assignment (38) can be simplified by substituting in the



expressions for α’s and β’s:

[
y∗C
y∗M

]
=

[
J11(ρx, ρy, δ) J12(ρx, ρy, δ)

J21(ρx, ρy, δ) J22(ρx, ρy, δ)

]
︸ ︷︷ ︸

Dxy∗

[
xC

xM

]
=


1+δ

√
1−ρ2y√
1−ρ2x√

1+2δ(ρxρy+
√

1−ρ2y
√

1−ρ2x)+δ2

δ

(
ρy−ρx

√
1−ρ2y√
1−ρ2x

)
√

1+2δ(ρxρy+
√

1−ρ2y
√

1−ρ2x)+δ2

ρy−ρx

√
1−ρ2y√
1−ρ2x√

1+2δ(ρxρy+
√

1−ρ2y
√

1−ρ2x)+δ2

δ+

√
1−ρ2y√
1−ρ2x√

1+2δ(ρxρy+
√

1−ρ2y
√

1−ρ2x)+δ2


︸ ︷︷ ︸

Dxy∗

[
xC

xM

]
(57)

Taking derivatives yields:

∂y∗C
∂xC

> 0 (58)

∂y∗M
∂xM

> 0 (59)

∂y∗C
∂xC

∂y∗M
∂xM

−
∂y∗C
∂xM

∂y∗M
∂xC

=

√
1− ρ2y
1− ρ2x

> 0 for ρy << 1 (60)

where (58) and (59) follow immediately from (57). Hence, Dxy
∗ is a P-matrix. (c) The assignment

was derived under the integrability condition (34), i.e. it is satisfied.

B.3 The Equilibrium Wage Function

Proof of Proposition 4. .

I proceed by guess and verify. The guess is that equilibrium wage function is given by the sum of

marginal products integrated along the assignment paths

w(xC , xM ) = α

(∫ xC

0
J11x̂Cdx̂C +

1

2
xM

∫ xC

0
J12dx̂C +

1

2
δxC

∫ xM

0
J21dx̂M + δ

∫ xM

0
J22x̂Mdx̂M

)
=

1

2
α

(
J11x

2
C + J12xMxC +

1

2
δJ22x

2
M

)
+ w0

where w0 is the constant of integration, which I set to zero.52 J11, J12, J21, J22 are the elements of the

matching function’s Jacobian, which are given by (57). Using the assignment (57) explicitly, this is

w(xC , xM ) = 1
2α[xC xM ]


1+δ

√
1−ρ2y√
1−ρ2x√

1+2δ(ρxρy+
√

1−ρ2y
√

1−ρ2x)+δ2

δ

(
ρy−ρx

√
1−ρ2y√
1−ρ2x

)
√

1+2δ(ρxρy+
√

1−ρ2y
√

1−ρ2x)+δ2

δ

(
ρy−ρx

√
1−ρ2y√
1−ρ2x

)
√

1+2δ(ρxρy+
√

1−ρ2y
√

1−ρ2x)+δ2

δ

(
δ+

√
1−ρ2y√
1−ρ2x

)
√

1+2δ(ρxρy+
√

1−ρ2y
√

1−ρ2x)+δ2


︸ ︷︷ ︸

≡J̃

[
xC

xM

]
= 1

2α[xC xM ]

[
J11 J12

δJ21 δJ22

]
︸ ︷︷ ︸

≡J̃

[
xC

xM

]

(61)

52Type (xC , xM ) = (0, 0) is the least productive worker. He produces zero output. w0 is his reservation wage, making
the least productive worker, (xC , xM ) = (0, 0), indifferent between working and not working.



which is equivalent to expression (15) in Proposition 4, taking into account w0 = 0. The guess needs

to be verified. Given (61), the partial derivatives of the wage with respect to skills xC , xM are given by

∂w(xC , xM )

∂xC
= α(J11xC + J12xM ) (62)

∂w(xC , xM )

∂xM
= αδ (J22xM + J21xC) (63)

which coincide with the first-order conditions of the firm,

∂w(xC , xM )

∂xC
= αy∗C (64)

∂w(xC , xM )

∂xC
= αδy∗M (65)

evaluated at the equilibrium assignment (57). Moreover, the integrability condition

∂2w(xC , xM )

∂xC∂xM
=
∂2w(xC , xM )

∂xM∂xC

⇔ J12 = δJ21 (66)

is satisfied by construction of the equilibrium assignment, which gives uniqueness of (61) by Propo-

sition 2.

Proof of Proposition 5. .

(i) See Proof of Proposition 3 (last part, under Consistency of the Assignment Functions from (i)-(iii)

with the Equilibrium.).

(ii) For ρx = ρy, (35) yields

αy = ±1

and hence, βy = 0. Substituting this (along with αx = ±1, βx = 0) into the candidate assignment

given by (13) yields y∗C = xC and y∗M = xM and, hence,
∂y∗C
∂xC

=
∂y∗M
∂xM

= 1 and
∂y∗C
∂xM

=
∂y∗M
∂xC

= 0. Hence,

there is perfect assortativeness according to Definition 4.

The second result is that the maximum mismatch is achieved at |ρx − ρy| → 2, i.e. J22 ≡
1
2

(√
1+ρy√
1+ρx

+

√
1−ρy√
1−ρx

)
and abs(J21) ≡ abs

(
1
2

(√
1+ρy√
1+ρx

−
√

1−ρy√
1−ρx

))
have suprema at ρx = 1, ρy = −1

as well as ρx = −1, ρy = 1. I show this in two steps.



1. Step: No interior maximum:

max
ρx,ρy

1

2

(√
1 + ρy√
1 + ρx

+

√
1− ρy√
1− ρx

)

ρy :

(
1√

1 + ρy
√

1 + ρx
− 1√

1− ρy
√

1− ρx

)
= 0 (67)

ρx :
1

2

(
−
√

1 + ρy

(1 + ρx)
3
2

+

√
1− ρy

(1− ρx)
3
2

)
= 0 (68)

Solving the system of first order conditions (67) and (68) (necessary for an interior solution) yields

ρ2x + 1 = 0. A contradiction. There is no interior maximum. Likewise, maximize J21 with respect to

ρx and ρy:

max
ρx,ρy

1

2

(√
1 + ρy√
1 + ρx

−
√

1− ρy√
1− ρx

)

ρy :

(
1√

1 + ρy
√

1 + ρx
+

1√
1− ρy

√
1− ρx

)
= 0 (69)

ρx :
1

2

(
−
√

1 + ρy

(1 + ρx)
3
2

−
√

1− ρy
(1− ρx)

3
2

)
= 0 (70)

where it is immediate that (69) does not omit a solution for −1 < ρy < 1,−1 < ρx < 1.

2. Step: Suprema at the boundary. First, focus on J22. Fix ρx = 1 − ε, ε > 0. Maximize J22 with

respect to ρy.

max
ρy

1

2

(√
1 + ρy

2− ε
+

√
1− ρy
ε

)
(

1

(2− ε)
√

1 + ρy
− 1

ε
√

1− ρy

)
= 0

⇔ ρy = −(2− ε)2 − ε2

(2− ε)2 + ε2
≈ −1

Now fix ρx = −1 + ε, ε > 0.

max
ρy

1

2

(√
1 + ρy

ε
+

√
1− ρy
2− ε

)
(

1

ε
√

1 + ρy
− 1

(2− ε)
√

1− ρy

)
= 0

⇔ ρy =
(2− ε)2 − ε2

(2− ε)2 + ε2
≈ 1



Morever, the same value of J22 is achieved at (ρx, ρy) = (1 − ε,− (2−ε)2)−ε2
(2−ε)2)+ε2 ) and (ρx, ρy) = (−1 +

ε, (2−ε)
2−ε2

(2−ε)2+ε2 ).

Then, focus on J21. In a similar way, fixing ρx to (i) ρx = 1− ε and (ii) ρx = −1 + ε, and maximizing

with respect to ρy gives (i) ρy = − (−2+ε)2−ε2
(−2+ε)2+ε2 ≈ −1 and (ii) ρy = (−2+ε)2−ε2

(−2+ε)2+ε2 ≈ 1. Both points give the

same absolute value of J21. Both steps together imply that mismatch in the manual task, defined as

|yM − xM | = |yM − cxC − dxM | is maximal for |ρx − ρy| → 2.

Proof of Proposition 6. .

(i) Wages are convex in skills: Recall, the wage function is given by

w(xC , xM ) =
1

2
α[xC xM ]

[
J11 J12

δJ21 δJ22

]
︸ ︷︷ ︸

≡J̃

[
xC

xM

]

where J11, J12, J21, J22 are the elements of the matching function’s Jacobian given in (57). The Hessian

of the wage function is given by

H(w) =
1

2
αJ̃

Since the Jacobian of the matching function is a P-matrix, i.e. J11, J22 > 0, J11J22 − J12J21 > 0. By

assumption, δ > 0, α > 0, so that δJ22 > 0 and Det(H(w)) = 1
2αδ(J11J22 − J12J21) > 0. Hence, the

Hessian is positive-definite and the wage function is convex.

(ii) The moments of the wage distribution are given by

E(w(xC , xM )) = tr(J̃Σx) =
1

2
J11 + J12ρx +

1

2
δJ22 (71)

V ar(w(xC , xM )) = 2tr(J̃ΣxJ̃Σx) =
1

2
((J11 + J12ρx)2 + 2(J11ρx + J12)(J12 + δJ22ρx) + (J12ρx + δJ22)

2)

(72)

E

(w − E(w)√
V ar(w)

)3
 =

E(w3)− 3E(w)V ar(w)− E(w)3

V ar(w)
3
2

=
8tr(J̃ΣxJ̃ΣxJ̃Σx)

(2tr(J̃ΣxJ̃Σx))
3
2

(73)

where J11, J12, J21, J22 are defined in (57), J̃ denotes the Hessian of the wage function and where

tr(J̃ΣxJ̃ΣxJ̃Σx) =(J11 + J12ρx)((J11 + J12ρx)2 + (J11ρx + J12)(J12 + δJ22ρx))

+ 2(J12 + δJ22ρx)(J11ρx + J12)(J11 + 2J12ρx + δJ22)

+ (J12ρx + δJ22)((J12 + δJ22ρx)(J11ρx + J12) + (J12ρx + δJ22)
2)



See e.g. Magnus [1978] for the derivation of moments of quadratic forms in normal variables. For the

symmetric case, δ = 1, these expressions simplify to

E(w(xC , xM )) = tr(JµΣx) =
1

2

(√
(1 + ρx)(1 + ρy) +

√
(1− ρx)(1− ρy)

)
V ar(w(xC , xM )) = 2tr(JµΣxJµΣx) = 1 + ρxρy

E(w3) = tr(JµΣx)3 + 6tr(JµΣx)tr(JµΣxJµΣx) + 8tr(JµΣxJµΣxJµΣx)

E

(w − E(w)√
V ar(w)

)3
 =

E(w3)− 3E(w)V ar(w)− E(w)3

V ar(w)
3
2

=
8tr(JµΣxJµΣxJµΣx)

(2tr(JµΣxJµΣx))
3
2

=

(√
(1 + ρy)(1 + ρx) +

√
(1− ρy)(1− ρx)

) (
2 + 2ρxρy −

√
(1− ρ2y)(1− ρ2x)

)
(1 + ρxρy)

3
2

.

where, as before, Jµ denotes the Jacobian of the matching function.

Skewness: JµΣxJµ and ΣxJµΣx are two positive definite matrices. Since the trace of the product

of two positive-definite matrices is positive and since the variance is positive, the result follows.

Finally, a result mentioned in the main text is that the average wage is maximized at ρx = ρy

and has two infima at ρx = −1, ρy = 1 and ρy = −1, ρx = 1. To see this, maximize E(w(xC , xM ))

with respect to ρy and ρx yields:

max
ρx,ρy

1

2

(√
(1 + ρx)(1 + ρy) +

√
(1− ρx)(1− ρy)

)
ρx : ρx = ρy

ρy : ρx = ρy

The Hessian of this maximization problem is given by:

H(E(w)) =

 −1
8

( √
1−ρy

(1−ρx)
3
2

+

√
1+ρy

(1+ρx)
3
2

)
1
8

(
1√

1−ρx
√

1−ρy
+ 1√

1+ρx
√

1+ρy

)
1
8

(
1√

1−ρx
√

1−ρy
+ 1√

1+ρx
√

1+ρy

)
−1

8

( √
1−ρx

(1−ρy)
3
2

+
√
1+ρx

(1+ρy)
3
2

)


Notice that H11(E(w)) < 0 and Det(H(E(w))) simplifies to

Det(H(E(w))) = ((1− ρy)(1 + ρx)− (1− ρx)(1 + ρy))
2 ≥ 0

Hence, the Hessian is negative semi-definite ∀ρx, ρy. Hence, E(w(xC , xM )) is concave. At ρx = ρy,

Det(H(E(w))) = 0, indicating that ρx = ρy are (degenerate) maxima. Due to concavity of E(w), its

infimum is achieved at the boundary of the domain −1 < ρx < 1,−1 < ρy < 1. E(w) has two infima

at ρx = −1, ρy = 1 and ρy = −1, ρx = 1.



C Proofs on Technological Change

C.1 Task-Biased Technological Change (Section 4.1)

Proof of Proposition 7. .

Notice that I focus on the cases for which ρx, ρy < 0 or ρx, ρy > 0. I will make explicit where this

assumption is needed to arrive at clean analytical expressions.

(i) Follows from proof of Proposition 5 part (i). Notice that for this result to hold, it is not necessary

to impose the restriction ρx, ρy < 0 or ρx, ρy > 0.

(ii) Mismatch-Assortativeness Trade-Off Across Tasks. It needs to be shown that as δ′ < δ = 1,

|yC − xC | decreases and |yM − xM | increases. Recall that the Jacobian of the matching function is

given as in (57):

[
J11(ρx, ρy, δ) J12(ρx, ρy, δ)

J21(ρx, ρy, δ) J22(ρx, ρy, δ)

]
︸ ︷︷ ︸

Dxy∗

=


1+δ

√
1−ρ2y√
1−ρ2x√

1+2δ(ρxρy+
√

1−ρ2y
√

1−ρ2x)+δ2

δ

(
ρy−ρx

√
1−ρ2y√
1−ρ2x

)
√

1+2δ(ρxρy+
√

1−ρ2y
√

1−ρ2x)+δ2

ρy−ρx

√
1−ρ2y√
1−ρ2x√

1+2δ(ρxρy+
√

1−ρ2y
√

1−ρ2x)+δ2

δ+

√
1−ρ2y√
1−ρ2x√

1+2δ(ρxρy+
√

1−ρ2y
√

1−ρ2x)+δ2


︸ ︷︷ ︸

Dxy∗

(74)

I will show this claim in two steps:

1. Step:

J11 ≥ 1 for |ρx| ≥ |ρy|

J12 ≥ 0 for ρx ≤ ρy
J21 ≥ 0 for ρx ≤ ρy
J22 ≥ 1 for |ρx| ≥ |ρy|

This follows from (74), since

J11 =
1 + δ

√
1−ρ2y√
1−ρ2x√

1 + 2δ(ρxρy +
√

1− ρ2y
√

1− ρ2x) + δ′2
≥ 1

⇔

1 + δ

√
1− ρ2y√
1− ρ2x

2

≥ 1 + 2δ(ρxρy +
√

1− ρ2y
√

1− ρ2x) + δ
′2

⇔ 2δ

√
1− ρ2yρ2x − ρxρy

√
1− ρ2x√

1− ρ2x
+ δ

′2

(
1− ρ2y
1− ρ2x

− 1

)
≥ 0 for |ρx| ≥ |ρy|



J12 =

δ

(
ρy − ρx

√
1−ρ2y√
1−ρ2x

)
√

1 + 2δ(ρxρy +
√

1− ρ2y
√

1− ρ2x) + δ2
≥ 0

⇔ ρy
√

1− ρ2x − ρx
√

1− ρ2y ≥ 0 for ρx ≤ ρy.

Notice that for δ = 1, J11 = J22 and J12 = J21.

2. Step: At δ = 1,

∂J11
∂δ
≥ 0 for |ρx| ≥ |ρy|

∂J12
∂δ
≥ 0 for ρx ≤ ρy

∂J21
∂δ
≥ 0 for ρx ≥ ρy

∂J22
∂δ
≥ 0 for |ρx| ≤ |ρy|

where

∂J11
∂δ

=

√
1−ρ2y√
1−ρ2x

− δ +

(
δ

√
1−ρ2y√
1−ρ2x

− 1

)
(ρxρy +

√
1− ρ2y

√
1− ρ2x)

(1 + 2δ(ρxρy +
√

1− ρ2y
√

1− ρ2x) + δ2)
3
2

∂J11
∂δ
|δ=1 =

(√
1−ρ2y√
1−ρ2x

− 1

)(
1 + ρxρy +

√
1− ρ2y

√
1− ρ2x

)
(2 + 2(ρxρy +

√
1− ρ2y

√
1− ρ2x))

3
2

≥ 0 for |ρx| ≥ |ρy|

∂J12
∂δ

=

(
ρy − ρx

√
1−ρ2y√
1−ρ2x

)
(1 + ρxρy +

√
1− ρ2y

√
1− ρ2x)

(1 + 2δ(ρxρy +
√

1− ρ2y
√

1− ρ2x) + δ2)
3
2

≥ 0 for ρx ≤ ρy

∂J21
∂δ

= −

(
ρy − ρx

√
1−ρ2y√
1−ρ2x

)
(ρxρy +

√
1− ρ2y

√
1− ρ2x + δ)

(1 + 2δ(ρxρy +
√

1− ρ2y
√

1− ρ2x) + δ2)
3
2

≥ 0 for ρx ≥ ρy

∂J22
∂δ

=

1− δ
√

1−ρ2y√
1−ρ2x

+

(
δ −
√

1−ρ2y√
1−ρ2x

− 1

)
(ρxρy +

√
1− ρ2y

√
1− ρ2x)

(1 + 2δ(ρxρy +
√

1− ρ2y
√

1− ρ2x) + δ2)
3
2

∂J22
∂δ
|δ=1 =

(
1−
√

1−ρ2y√
1−ρ2x

)(
1 + ρxρy +

√
1− ρ2y

√
1− ρ2x

)
(2 + 2(ρxρy +

√
1− ρ2y

√
1− ρ2x))

3
2

≥ 0 for |ρx| ≤ |ρy|

which together with Step 1 establishes the result.



(iii) Sorting when δ = 0. In the cognitive task, yC = xC , follows from (53) in proof of Proposition 3.

In turn, in the manual task, there is maximal mismatch |yM − xM |. To see this, notice that

J22|δ=0 =

√
1− ρ2y√
1− ρ2x

≥
δ +

√
1−ρ2y√
1−ρ2x√

1 + 2δ(ρxρy +
√

1− ρ2y
√

1− ρ2x) + δ2
= J22|δ 6=0 for |ρx| ≥ |ρy|

since √
1− ρ2y√
1− ρ2x

≥
δ +

√
1−ρ2y√
1−ρ2x√

1 + 2δ(ρxρy +
√

1− ρ2y
√

1− ρ2x) + δ2

(1− ρ2y)(1 + 2δ(ρxρy +
√

1− ρ2y
√

1− ρ2x) + δ2) ≥ (1− ρ2x)δ2 + 2δ
√

1− ρ2y
√

1− ρ2x + (1− ρ2y)

(1− ρ2y)(2δ(ρxρy +
√

1− ρ2y
√

1− ρ2x) + δ2) ≥ (1− ρ2x)δ2 + 2δ
√

1− ρ2y
√

1− ρ2x

2(ρxρy(1− ρ2y)− ρ2y
√

1− ρ2x
√

1− ρ2y + δ2(ρ2x − ρ2y)) ≥ 0 for |ρx| ≥ |ρy|.

Since J22|δ 6=0 ≥ 1 if |ρx| ≥ |ρy|, the result follows. Also,

J21|δ=0 = ρy − ρx

√
1− ρ2y√
1− ρ2x

≥
δ

(
ρy − ρx

√
1−ρ2y√
1−ρ2x

)
√

1 + 2δ(ρxρy +
√

1− ρ2y
√

1− ρ2x) + δ2
= J21|δ 6=0 for ρx ≤ ρy

since for ρx < ρy,

ρy − ρx

√
1− ρ2y√
1− ρ2x

>

δ

(
ρy − ρx

√
1−ρ2y√
1−ρ2x

)
√

1 + 2δ(ρxρy +
√

1− ρ2y
√

1− ρ2x) + δ2

⇔
√

1 + 2δ(ρxρy +
√

1− ρ2y
√

1− ρ2x) + δ2 > δ

⇔ 2δ(ρxρy +
√

1− ρ2y
√

1− ρ2x) > 0.

Clearly, for ρx = ρy, J21|δ 6=0 = J21|δ=0. Since J21|δ 6=0 ≥ 0 if ρx ≤ ρy, the result follows.

(iv) Task-biased TC has no effect on sorting for ρx = ρy. Follows from (ii) in proof of Proposition 5.

Furthermore, task-biased TC has maximal effects on reallocation (i.e. , ∂J11
∂δ |δ=1,

∂J12
∂δ |δ=1,

∂J21
∂δ |δ=1

and ∂J22
∂δ |δ=1 are largest) when |ρx − ρy| is maximal. To see this, I first show that these expressions

do not have an interior maximum. Notice that ∂J11
∂δ |δ=1 = ∂J22

∂δ |δ=1 and ∂J12
∂δ |δ=1 = ∂J21

∂δ |δ=1. So, it



suffices to show this for two of the four expressions. Recall that

r ≡ ∂J11
∂δ
|δ=1 =

√
1−ρ2y√
1−ρ2x

− 1

2
3
2 (2 + 2δ(ρxρy +

√
1− ρ2y

√
1− ρ2x))

1
2

(75)

s ≡ ∂J12
∂δ
|δ=1 =

ρy − ρx
√

1−ρ2y√
1−ρ2x

2
3
2 (2 + 2δ(ρxρy +

√
1− ρ2y

√
1− ρ2x))

1
2

(76)

Then,

∂r

∂ρx
=

ρx

√
1−ρ2y

(1−ρ2x)
3
2

(1 + ρxρy +
√

1− ρ2x
√

1− ρ2y)− 1
2

(√
1−ρ2y√
1−ρ2x

− 1

)(
ρy − ρx

√
1−ρ2y√
1−ρ2x

)
2

3
2 (1 + ρxρy +

√
1− ρ2y

√
1− ρ2x)

3
2

(77)

∂r

∂ρy
=

− ρy√
1−ρ2y
√

1−ρ2x
(1 + ρxρy +

√
1− ρ2x

√
1− ρ2y)− 1

2

(√
1−ρ2y√
1−ρ2x

− 1

)(
ρx − ρy

√
1−ρ2x√
1−ρ2y

)
2

3
2 (1 + ρxρy +

√
1− ρ2y

√
1− ρ2x)

3
2

(78)

∂s

∂ρx
=

−
√

1−ρ2y√
1−ρ2x

(
1 +

ρ2x
1−ρ2x

)
(1 + ρxρy +

√
1− ρ2x

√
1− ρ2y) + 1

2

(
ρy − ρx

√
1−ρ2y√
1−ρ2x

)2

2
3
2 (1 + ρxρy +

√
1− ρ2y

√
1− ρ2x)

3
2

(79)

∂s

∂ρy
=

(
1 +

ρyρx√
1−ρ2x
√

1−ρ2y

)
(1 + ρxρy +

√
1− ρ2x

√
1− ρ2y) + 1

2

(ρx
√

1−ρ2y−ρy
√

1−ρ2x)
2

√
1−ρ2y
√

1−ρ2x

2
3
2 (1 + ρxρy +

√
1− ρ2y

√
1− ρ2x)

3
2

(80)

Expression (77) is negative for all ρx, ρy < 0 and positive for all ρx, ρy > 0. At ρx = ρy = 0, the

expression is zero, indicating a minimum (i.e. no reallocation when ρx = ρy). Expression (78) is

positive for all ρx, ρy < 0 and negative for all ρx, ρy > 0. At ρx = ρy = 0, the expression is zero,

indicating a minimum (i.e. no reallocation when ρx = ρy). Hence, (75) has no interior maximum.

Also, (80) is positive ∀ρx, ρy. Evaluating (79) at the corners ρx → 1 and ρx → −1 yields a strictly

positive and a strictly negative expression. Hence, (76) has no interior maximum. The supremum of

(75) and (76) must be in the corner. In a second step, it can be shown that (75) and (76) are most

positive or negative for ρx = ±1 and ρy = 0 as well as ρx = 0 and ρy = ±1.

Proof of Proposition 8. .

(i) The results follow from simulations of the closed forms (71) and (73). Available upon request.

(ii) Wage Curvature. Wages are convex in xC and xM since

∂2w(xC , xM )

∂x2C
= αJ11 > 0

∂2w(xC , xM )

∂x2M
= βJ22 > 0.



Consider task-biased TC (δ decreases), triggered by an increase in α (one could additionally assume

β decreases). For |ρx| < |ρy|, J11 < 1 and ∂J11
∂δ < 0 as well as J22 < 1 and ∂J22

∂δ > 0, where J11, J22

are defined as in (74). It follows that for |ρx| < |ρy|,

∂ ∂
2w(xC ,xM )

∂x2C

∂α
= J11 + α

∂J11
∂δ

∂δ

∂α
> 0

∂ ∂
2w(xC ,xM )
∂x2M

∂α
= β

∂J22
∂δ

∂δ

∂α
< 0.

Hence, due to task-biased TC, wages become more convex in xC but less convex in xM . Notice that

additionally decreasing β reinforces the effects. Finally, the result that that the curvature changes

are largest follows from Proposition 7 part (iv).

C.2 Skill-Biased Technological Change (Section 4.2)

The wage function under the augmented technology

F (xC , xM , yC , yM ) = α(xCyC + δxMyM + λxC + δηxM ) + f0 (81)

is given by

w(xC , xM ) = α

(
1

2
x′J̃x + θ′x

)
+ w0 =

1

2
α(x− h)′J̃(x− h) + C (82)

where

J̃ ≡

[
J11(ρx, ρy, δ) J12(ρx, ρy, δ)

δJ21(ρx, ρy, δ) δJ22(ρx, ρy, δ)

]
, θ ≡

[
λ

η

]
, x ≡

[
xC

xM

]
, h = −J̃−1θ, C = w0 −

1

2
αθ′J̃−1θ

Proof of Proposition 9. (i) It is immediate that assignment (57) satisfies the first-order conditions

of the firm under (81). (ii) (82) satisfied integrability condition (6), i.e. is the unique wage schedule

supporting the assignment. From (82), skill-biased TC parameters λ and η do not affect the curvature

of the wage function. (iii) Under (82), the variance of the wage distribution is given by:

V ar(w) = α2(1−ρ2x)

(
(J21 + J11ρx)2 +

J2
11

2
(1− ρ2x)

)
+(1−ρ2x)λ2+α22

(
J11
2
ρ2x + ρxJ12 +

δJ22
2

)2

+(ρxλ+η)2

(83)

For ρx > 0, V ar(w) positively depends on λ and η (i.e. the effect of skill-biased TC on V ar(w) is

ambiguous). For ρx < 0 and −ρxλ > η, V ar(w) positively depends on λ and negatively on η (i.e. in

this case, the effect of skill-biased TC on V ar(w) is unambiguously positive). To derive (83), notice

E(w|xM ) = α

(
J11
2
E(x2C |xM ) + J12xME(xC |xM ) +

δJ22
2
x2M

)
+ ηxM + λE(xC |xM )

= α

(
J11
2

(ρ2xx
2
M + (1− ρ2x)) +

δJ22
2
x2M

)
+ ρxxM (αJ12xM + λ) + ηxM



V ar(E(w|xM )) = α2V ar(x2M )

(
J11
2
ρ2x + ρxJ12 +

δJ22
2

)2

+ V ar(xM )(ρxλ+ η)2

= α22

(
J11
2
ρ2x + ρxJ12 +

δJ22
2

)2

+ (ρxλ+ η)2 (84)

since cov(x2M , xM ) = E(x3M )− E(xM )E(x2M ) = 0. Moreover,

V ar(w|xM ) = V ar(xC |xM )(α2J12x
2
M + λ2) + V ar(x2C |xM )

α2J2
11

4
+ cov(x2C , xC |xM )(α2J11J12xM + λ)

where

V ar(xC |xM ) = E(x4C |xM )− (E(x2C |xM ))2 = 4ρ2xx
2
M (1− ρ2x) + 2(1− ρ2x)2

cov(x2C , xC |xM ) = E(x3C |xM )− E(x2C |xM )E(xC |xM ) = 2ρxxM (1− ρ2x).

Hence,

V ar(w|xM ) = α2(1− ρ2x)(x2M (J12 + ρxJ11)
2 +

J2
11

2
)(1− ρ2x)) + (1− ρ2x)(ρxJ11λxM + λ2)

E(V ar(w|xM )) = α2(1− ρ2x)((J12 + ρxJ11)
2 +

J2
11

2
(1− ρ2x)) + (1− ρ2x)λ2. (85)

(83) follows from adding (84) and (85), i.e. V ar(w) = E(V ar(w|xM )) + V ar(E(w|xM )).

D Relaxed Sufficient Conditions for PAM

Section 2 provides a distribution-free sufficient condition for assortative matching, under which be-

tween-task complementarities are shut down. In turn, this section makes assumptions on the skill

and productivity distributions, under which the sufficient conditions for PAM/NAM can be relaxed,

allowing for non-zero between-task complementarities. The first subsection deals with Gaussian dis-

tributions. The subsequent one with independent uniform distributions or arbitrary but overlapping

skill and productivity distributions.

D.0.1 Gaussian Distributions

Suppose the skill and productivity distribution are bivariate standard Gaussian and the technology

is given by:

F (xC , xM , yC , yM ) = γ(xCyC + αxCyM + βxMyC + δxMyM ) (86)

In this setting, with non-zero between-task complementarities, the sufficient condition for PAM/NAM

is stated in the following proposition.



Proposition 10 (Sufficient Condition for PAM in Gaussian-Quadratic Setting) Suppose that

(xC , xM ) and (yC , yM ) follow bivariate Gaussian distributions and the technology is given by (86). If

D2
xyF (x,y) =

[
FxCyC FxCyM
FxMyC FxMyM

]
=

[
1 α

β δ

]

is a strictly diagonal dominant P-matrix (P−-matrix) by row and column, then the equilibrium as-

signment satisfies PAM (NAM).

Proof. A matrix M is strictly diagonally dominant if |mii| >
∑

j 6=i |mij |, i = 1, 2, ..., n and row

diagonally dominant if |mii| >
∑

j 6=i |mji|, i = 1, 2, ..., n. In this setting, D2
xy is strictly diagonally

dominant if 1 ≥ δ > |α| and 1 ≥ δ > |β|, which is assumed to hold. The proof will be given for PAM

and standard Gaussian distributions. The proof for NAM is equivalent (just match up the marginal

cdf’s in a decreasing instead of increasing way). The extension to non-standard Gaussian variables

is given in the Online Appendix.

Under (86), integrability condition (6), which needs to be satisfied in order for a unique wage

schedule to exist, is given by:

∂2w(xC , xM )

∂xC∂xM
=
∂2w(xC , xM )

∂xM∂xC

⇔ J12 + αJ22 = βJ11 + δJ21 (87)

where J11 ≡
∂y∗C
∂xC

, J12 ≡
∂y∗C
∂xM

, J21 ≡
∂y∗M
∂xC

, J22 ≡
∂y∗M
∂xM

denote the elements of the matching function’s

Jacobian. Using (87), the equilibrium assignment follows Proposition 3. It is given by

J11 =
4

2Z
√

1− ρ2x
((1 + αρy)

√
1− ρ2x + (δ + αρx)

√
1− ρ2y)

J12 =
4

2Z
√

1− ρ2x
((β + δρy)

√
1− ρ2x − (δρx + α)

√
1− ρ2y)

J21 =
4

2Z
√

1− ρ2x
((α+ ρy)

√
1− ρ2x − (ρx + β)

√
1− ρ2y)

J22 =
4

2Z
√

1− ρ2x
((δ + βρy)

√
1− ρ2x + (1 + βρx)

√
1− ρ2y)

where

Z ≡

√√√√((1 + δ)

(√
1 + ρy

1− ρx
+

√
1− ρy
1 + ρx

)
+ (α + β)

(√
1 + ρy

1− ρx
−

√
1− ρy
1 + ρx

))2

+

(
(1− δ)

(√
1 + ρy

1 + ρx
−

√
1− ρy
1− ρx

)
+ (α− β)

(√
1 + ρy

1 + ρx
+

√
1− ρy
1− ρx

))2

.

PAM holds since ∀ρx, ρy,

J11 > 0 if 1 ≥ δ > |α|

J22 > 0 if 1 ≥ δ > |β|

Det(Jµ) = J11J22 − J12J21 > 0 if 1 ≥ δ > |β|, |α|,



where determinant of the matching’s function Jacobian reads

J11J22 − J12J21 =
16

2Z
√

1 − ρ2x
[(1 − ρ2x) ((1 + αρy)(δ + ρyβ) − (ρy + α)(ρyδ + β))︸ ︷︷ ︸

≡X

+
√

1 − ρ2x

√
1 − ρ2y ((1 + αρy)(1 + ρxβ) + (δ + αρx)(δ + ρyβ) + (ρy + α)(δρx + α) + (ρx + β)(ρyδ + β))︸ ︷︷ ︸

≡Y

+ (1 − ρ2y) ((δ + αρx)(1 + ρxβ) − (ρx + β)(δρx + α))︸ ︷︷ ︸
≡Z

]

where X and Z are positive under diagonal dominance and where Y can be expressed as:

Y = 1 + α2 + β2 + δ2 + 2βρx + 2δ(β + ρx)ρy + 2α(δρx + ρy + βρxρy)

It remains to show that Y is positive. Notice that Y is linear in each of the correlations, ρx and ρy.

Hence, the infimum of Y must be in a corner. If Y is positive in all corners, then Det(Jµ) > 0. To

simplify this argument, I evaluate Y at ρx ± 1 and ρy ± 1 (since if Y is positive at the corners it is

also positive arbitrarily close to the corners)

Y |ρx=ρy=1 = ((1 + δ) + (α+ β))2 > 0

Y |ρx=ρy=−1 = ((1 + δ)− (α+ β))2 > 0

Y |ρx=1,ρy=−1 = ((1− δ)− (α− β))2 > 0

Y |ρx=−1,ρy=1 = ((1− δ)− (α− β))2 > 0

which proves the result.

D.0.2 Non-Gaussian Distributions

This section states the sufficient condition for PAM

Proposition 11 For (a) independent uniform skills x ∼ U([x, x]N ) and productivities y ∼ U([y, y]N )

or (b) whenever G=H, if D2
xyF (x,y) is a P-matrix everywhere and, moreover, positive definite along

the equilibrium path, then the equilibrium assignment is PAM.

Proof. I prove this result in four steps:

1. Step: There exists a feasible PAM allocation. Consider (a). Denote by HxC , HxM , GyC , GyM the

marginal cdf’s of xC , xM , yC and yM , respectively. Due to independence, the market clearing in line

with PAM can be specified as

(1−HxC (xC))(1−HxM (xM )) = (1−GyC (yC))(1−GyM (yM )).

Because of PAM, match up the marginals within each dimension

HxC (xC) = GyC (yC)

HxM (xM ) = GyM (yM )



which gives the assignment functions:

yC =
y − y
x− x

xC − x
y − y
x− x

+ y (88)

yM =
y − y
x− x

xM − x
y − y
x− x

+ y (89)

Both (88) and (89) are in line with PAM since ∂yC
∂xC

> 0 and ∂yM
∂xM

> 0 as well as ∂yC
∂xC

∂yM
∂xM
− ∂yC

∂xM

∂yM
∂xC

> 0.

Consider (b). A PAM allocation is given by yC = xC and yM = xM , which is clearly feasible.

2. Step: The PAM allocation from Step 1 satisfies the firms’ necessary second-order conditions for

optimality under the P-matrix property of D2
xy. Recall from the proof of Lemma 1 that the Hessian

of the firm’s problem is given by:

H∗ = D2
xxF (x,y∗)−D2

xxw(x) = −(D2
xyF (x,y∗))(Dxy

∗) (90)

In the PAM allocations from Step 1, Dxy
∗ is a diagonal matrix. Since D2

xyF is a P-matrix, the ma-

trix product (D2
xyF (x,y∗))(Dxy

∗) is positive-definite and, hence, the Hessian (90) is negative-definite.

3. Step: The PAM allocation from Step 1 satisfies the integrability condition (6). Hence, there exists

a unique wage schedule supporting this allocation. To see this, first focus on (a). Since Dxy
∗ is

diagonal, (6) collapses to

FxCyM
∂y∗M
∂xM

= FxMyC
∂y∗C
∂xC

(91)

which must hold at the equilibrium path. Using (88) and (89), this simplifies condition (91) to

FxCyM
y − y
x− x

= FxMyC
y − y
x− x

which holds under the assumption of positive-definiteness of D2
xyF (FxCyM = FxMyC ) along the

equilibrium path.

Consider (b). Under the assignment yC = xC and yM = xM , (6) collapses to

FxCyM = FxMyC

which again holds under the assumption of positive-definiteness of D2
xyF (FxCyM = FxMyC ) along the

equilibrium path. Hence, for both (a) and (b), there exists a unique wage schedule that support the

PAM allocation from Step 1.

4. Step. Since D2
xyF is a P-matrix everywhere, the equilibrium is globally unique (Proposition 1).

Hence, the PAM allocation from Step 1 is the uniqe equilibrium.



E Quantitative Analysis

E.1 Construction of Skill and Productivity Distributions

As far as the productivity distribution is concerned (i.e. the distribution of y’s), I use the data

by Sanders (2012) who classifies occupational skill requirement into two categories, manual and

cognitive. He then aggregates this large amount of information, using Principal Component Analysis,

to get two task scores for each occupation (i.e. yC and yM ). Using this procedure, task scores

are obtained for over 400 occupations. The scores have an ordinal interpretation and allow to rank

occupations according to their manual and cognitive skill requirements. I interpret these occupational

task scores as the (yC , yM )-bundle from my model. I drop the observations whose (yC , yM )-bundles

are missing. Table 3 provides some examples of occupations and their manual and cognitive skill

requirements, starting with low-skilled jobs (requiring low amounts of both skills), followed by manual

jobs, generalist jobs (requiring a fair amount of both skills) and purely cognitive jobs. Summary

statistics of the (yC , yM )-bundles are given in the Online Appendix.

Occupation Cognitive score (yC) Manual score (yM )

Ushers, Lobby Attendants, and Ticket Takers .1846 .3149
Telephone Operators .2994 .1383
File Clerks .3190 .3099
Legal Secretaries .3796 .0731

Brickmasons, Blockmasons, Stonemasons .1705 .8360
Helpers–Pipelayers, Plumbers, Pipefitters, Steamfitters .1759 .6792
Helpers–Carpenters .1984 .7187
Dancers .3374 1

Radiologic Technicians .4280 .6470
Machinists .4303 .7152
Physical Therapist Assistants .4758 .5494
Electricians .4879 .8146

Economists .6149 .0334
Public Relations and Fundraising Managers .6199 .0587
Judges, Magistrate Judges, and Magistrates .6752 .0517
Physicists 1 .1113

Table 3: Examples of Occupations’ Manual and Cognitive Skill Requirements

To construct the skill distribution, I proceed as follows. College, apprenticeships and training

qualify workers for particular occupations. I match the data on college degrees and apprenticeships

to occupations, using standard cross-walks. Then, the (yC , yM )-bundles from the O*NET data can

be used to learn about the skills required for these occupations. I assume that if a worker is trained

in a particular occupation (through college, an apprenticeship or on-the-job training), then he also

holds the skills required for that occupation. For instance, if a worker holds a degree in economics

and the occupation economist has skill requirements (yC = 1.34, yM = −1.58), then he holds the

skills (xC = 1.34, xM = −1.58).

To construct the skill distribution in a given year, I use each worker’s occupational training

experiences up to the previous year as well as his educational history, giving a vector of manual and



cognitive skills for every agent in the data.53 To obtain a single cognitive and a single manual skill

from the skill vectors, I take the maximum skills from the vectors.54 For instance, if a worker who is

economist by training (with skills (xC = 1.34, xM = −1.58)) had a previous career as a dancer (with

skills (xC = −0.25, xM = 2.2)), then he holds the skill bundle (xC = 1.34, xM = 2.2), implying that

he is qualified for both jobs with high cognitive and jobs with high manual skill requirements.

In the NSLY, there are observations to whom I cannot assign any skills either because there is no

information on training or degrees. These agents might be educated and the information is simply

missing. Or they are low-skilled and do not have any degrees. In many cases, the latter is true:

Skills are missing for low-skilled workers who have never received a degree or training. The number

of observations that are not assigned any skills from education or training is non-negligible. During

the period considered (1992-2000), this affects 20%-30% of the NLSY observations.

If the skill information is missing but if the workers have received some education, I assign them

cognitive and manual skills through a random draw from the distribution of skills of similarly educated

people. For instance, if the skill data of a worker with high school degree in the US is missing, he gets

a random draw of cognitive and manual skills of the distribution of other high school graduates who

do have skill data.55 On the other hand, if the worker with missing skill information has no education

at all (high school drop out), then I assign to him the lowest cognitive and the lowest manual skill

from the data set.56 Finally, to reduce the discreteness of the skill distributions and better align them

with the continuous distributions of the model, I add random noise to each skill observation, which

is in size 5% of the variance of the corresponding skills. Similarly, for the productivity distribution.

E.2 Maximum Likelihood Estimation

The system of equations used for the ML-estimation is given by

w =
1

2
αJ11x

2
C + αJ12xCxM +

1

2
βJ22x

2
M + λxC + ηxM + w0 + εw

yC = J11xC + J12xM + εC

yM = J21xC + J22xM + εM

where I assume measurement errors εw, εC , εM with εw ∼ N(0, s2), εC ∼ N(0, t2), εM ∼ N(0, u2). Then,

w|xC , xM ∼ N(
1

2
αJ11x

2
C + αJ12xCxM +

1

2
βJ22x

2
B + λxC + ηxM + w0 + εw, s

2) (92)

yC |xC , xM ∼ N(J11xC + J12xM , t
2) (93)

yM |xC , xM ∼ N(J21xC + J22xM , u
2). (94)

53I do not use the training received in the current year to avoid an extremely high correlation between skills and skill
requirements, which might be mechanical if a worker receives some training in nearly every job.

54Taking averages leads to similar results in the analysis.
55I might over-estimate the skills of those workers with missing data if their skills are missing because they have not

acquired any skills after high school. However, drawing the missing skills from the lower part of the distribution of
other high school graduates leads to similar results in the following analysis.

56To decrease the discreteness of the distribution, I let them randomly draw their manual and cognitive skills from
below the tenth percentile of the economy’s marginal skill distributions. Nothing in the analysis hinges on the tenth
percentile. The reason why I chose it is to assign low skills to low-skilled workers.



Denote the parameter vector by θ = (J11, J12, J21, J22, α, β, λ, η, w0, s, t, u) and the data vector z =

(z1, ...zn) where ∀i = 1, ...n, zi = (wi, yCi, yMi, xCi, xMi); n is the number of observations. Due to

conditional independence of w, yC , yM given [xC , xM , α, β, J11, J12, J21, J22, λ, η, w0], the likelihood

function is given by

L(θ|z) = Πn
i=1[wi, yCi, yMi|xCi, xMi, α, β, J11, J12, J21, J22, λ, η, w0] (95)

= Πn
i=1[wi|xCi, xMi, α, β, J11, J12, J21, J22, λ, η, w0]

×Πn
i=1[yCi|xCi, xMi, J11, J12, J21, J22]×Πn

i=1[yMi|xCi, xMi, J11, J12, J21, J22]

From (95), one obtains (18) when using (92)-(94) and taking logs. The parameter estimates are

obtained by maximizing (18) with respect to θ.

α β λ η w0 J11 J12 J21 J22 s t u
1992 2.7291

(0.6090)
1.5009
(0.7244)

2.7962
(0.1668)

0.2079
(0.1677)

15.1680
(0.2380)

0.3627
(0.0178)

−0.0957
(0.0173)

−0.1687
(0.0175)

0.3309
(0.0176)

8.6916
(0.1151)

0.9150
(0.0121)

0.9137
(0.0121)

1993 1.9176
(0.5815)

0.6535
(0.7168)

2.9093
(0.1685)

−0.0327
(0.1677)

15.7141
(0.2405)

0.3824
(0.0175)

−0.1125
(0.0172)

−0.1954
(0.0173)

0.3311
(0.0172)

8.8081
(0.1163)

0.9051
(0.0120)

0.9025
(0.0119)

1994 1.1832
(0.5479)

0.3048
(0.8175)

3.0329
(0.1683)

−0.0196
(0.1682)

16.3309
(0.2386)

0.4202
(0.0170)

−0.1045
(0.0170)

−0.2409
(0.0172)

0.2957
(0.0173)

8.8550
(0.1176)

0.8929
(0.0119)

0.9096
(0.0121)

1996 3.4585
(0.7968)

2.6730
(1.1946)

3.8010
(0.2396)

−0.4512
(0.2379)

15.9802
(0.3398)

0.4238
(0.0188)

−0.1342
(0.0182)

−0.2573
(0.0190)

0.2935
(0.0192)

11.3905
(0.1670)

0.8890
(0.0130)

0.9088
(0.0133)

1998 3.3866
(0.6682)

1.2076
(0.9832)

3.8139
(0.2173)

0.2278
(0.2170)

17.2972
(0.3117)

0.4680
(0.0168)

−0.0773
(0.0164)

−0.2756
(0.0173)

0.3198
(0.0173)

11.1818
(0.1515)

0.8643
(0.0117)

0.8931
(0.0121)

2000 3.1358
(1.0472)

0.8954
(0.8028)

4.7352
(0.2641)

−0.1773
(0.2632)

18.4752
(0.3792)

0.4870
(0.0168)

−0.0986
(0.0167)

−0.2695
(0.0170)

0.3675
(0.0171)

13.4909
(0.1842)

0.8624
(0.0118)

0.8761
(0.0119)

Standard errors in parentheses

Table 4: Maximum Likelihood Estimates for Years 1992-2000
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Figure 10: Wage Densities by Worker Group (Data)
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(b) Model (TBTC)
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(c) Model (SBTC)

Figure 11: (De)Convexification of Wages 1992-2000: Data and Model (TBTC and SBTC). This figure
displays the wage as a function of cognitive skills (upper panels) and manual skills (lower panels),
comparing data and model, where the model is simulated separately for task-biased TC and skill-
biased TC. To construct these figures, I use conditional wages. For instance, in the upper panels, the
plotted wage is the residual wage from regression wages on manual skills. Task-biased TC gets the
shifts in the curvature of the returns qualitatively right. In line with the data, task-biased TC makes
cognitive (but not manual) returns more convex. To the contrary, skill-biased TC causes cognitive
returns to become simply steeper (but not more convex) and manual returns to become more convex.
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Pierre-André Chiappori, Sonia Oreffice, and Climent Quintana-Domeque. Matching with a handicap:

The case of smoking in the marriage market. Working Paper, 2012. URL http://ideas.repec.

org/p/hka/wpaper/2011-017.html.

Eugene Choo and Aloysius Siow. Who marries whom and why. Journal of Political Economy, 114(1):

175–201, February 2006. URL http://ideas.repec.org/a/ucp/jpolec/v114y2006i1p175-201.

html.

http://ideas.repec.org/a/ecm/emetrp/v67y1999i2p251-334.html
http://ideas.repec.org/a/ecm/emetrp/v67y1999i2p251-334.html
http://ideas.repec.org/h/eee/labchp/5-12.html
http://ideas.repec.org/p/nbr/nberwo/15150.html
http://ideas.repec.org/p/nbr/nberwo/15150.html
http://ideas.repec.org/a/tpr/qjecon/v118y2003i4p1279-1333.html
http://ideas.repec.org/a/aea/aecrev/v96y2006i2p189-194.html
http://ideas.repec.org/a/aea/aecrev/v96y2006i2p189-194.html
http://ideas.repec.org/a/ucp/jpolec/v81y1973i4p813-46.html
http://ideas.repec.org/p/nbr/nberte/0018.html
http://ideas.repec.org/a/spr/joecth/v42y2010i2p317-354.html
http://ideas.repec.org/p/hka/wpaper/2011-017.html
http://ideas.repec.org/p/hka/wpaper/2011-017.html
http://ideas.repec.org/a/ucp/jpolec/v114y2006i1p175-201.html
http://ideas.repec.org/a/ucp/jpolec/v114y2006i1p175-201.html


L. Chua and Y. Lam. Global homeomorphism of vector-valued functions. Journal of Mathematical

Analysis and Applications, 39(3):600–624, 1972.

Arnaud Costinot and Jonathan Vogel. Matching and inequality in the world economy. Journal

of Political Economy, 118(4):747–786, 08 2010. URL http://ideas.repec.org/a/ucp/jpolec/

v118y2010i4p747-786.html.

Colin Decker, Elliott H. Lieb, Robert J. McCann, and Benjamin K. Stephens. Unique equilibria and

substitution effects in a stochastic model of the marriage market. Journal of Economic Theory, 148

(2):778–792, 2013. URL http://ideas.repec.org/a/eee/jetheo/v148y2013i2p778-792.html.

Deniz Dizdar and Benny Moldovanu. Surplus division and efficient matching. Working Paper, Uni-

versity of Bonn, 2012.

Arnaud Dupuy and Alfred Galichon. Personality traits and the marriage market. IZA Discussion

Papers 6943, Institute for the Study of Labor (IZA), October 2012. URL http://ideas.repec.

org/p/iza/izadps/dp6943.html.

Jan Eeckhout and Philipp Kircher. Identifying sorting–in theory. Review of Economic Studies, 78(3):

872–906, 2011. URL http://ideas.repec.org/a/oup/restud/v78y2011i3p872-906.html.

Jan Eeckhout and Philipp Kircher. Assortative matching in large firms: Span of control over more

versus better workers. Working Paper, 2012.

Ivar Ekeland. Existence, uniqueness and efficiency of equilibrium in hedonic markets with multidi-

mensional types. Economic Theory, 42:275–315, 2010.

Ivar Ekeland, James J. Heckman, and Lars Nesheim. Identification and estimation of hedonic models.

Journal of Political Economy, 112(S1):S60–S109, February 2004. URL http://ideas.repec.org/

a/ucp/jpolec/v112y2004is1ps60-s109.html.

David Gale and Hukukane Nikaido. The jacobian matrix and global univalence of mappings. Mathe-

matische Annalen, 159(2):81–93, 1965.
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