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1 Introduction

Many strategic interactions occur under incomplete information about relevant fundamentals af-

fecting preferences and technology: For example, firms make real and nominal decisions under

limited information about the demand for their products an the cost for their inputs; consumers

choose consumption bundles with limited information about their own needs and other consumers’

behavior (think of a buyer choosing which platform to join in a multi-sided market); traders choose

portfolios with limited information about the profitability of stocks and the riskiness of bonds;

voters choose candidates with limited information about their valiance.

Such limited information may either reflect limits on what is known to society as a whole

(the long-run profitability of stocks, for example, is unknown to anyone), or individual constraints

on the amount of information that each single decision maker can process. Time and cognitive

capacity is limited, implying that the information that individuals use for most of their decisions

is significantly less precise than what is in the public domain. Furthermore, in many situations of

interest, individuals experience diffi culty decomposing their own beliefs. While they may remember

the sources of information they paid attention to, they may be unable to recall the effect of each

single source. Such inability need not be relevant for a single decision maker (as long as posterior

beliefs are a suffi cient statistics for the information contained in the different sources). However,

such inability plays a major role in a strategic setting, for it impacts the decision makers’ability

to coordinate with one another.

This paper investigates how attention is allocated to a large number of information sources

in the presence of strategic effects. It relates possible ineffi ciencies in the equilibrium allocation

of attention to primitive conditions and shows how the allocation of attention is affected by the

inability to perfectly recall the inferences that come from the specific sources of information.

The analysis is conducted within the family of Gaussian-quadratic economies extensively used

in the literature (see, e.g., Angeletos and Pavan, 2007, and the references therein). The informa-

tion structure, instead, is taken from a recent paper by Myatt and Wallace (2012). Agents have

access to an arbitrarily large set of information sources. Each source is defined by its "accuracy"

(equivalently, by the "sender noise", defined to be the precision of the content of the source) and

by its "transparency" (equivalently, by the extent to which additional attention to the source leads

to a marginal reduction in the idiosyncratic interpretation of its content).

Combining the flexibility of the payoff structure of Angeletos and Pavan (2007) with the flex-

ibility of the information structure of Myatt and Wallace (2012) provides an ideal framework to

identify possible ineffi ciencies in the equilibrium allocation of attention. It is also ideal to investi-

gate how the allocation of attention is affected by bounded recall, that is, by the agents’inability to

decompose their posterior beliefs into the inferences based on the individual sources of information.

Formally, this impossibility implies a measurability constraint on the agents’ strategies. Agents

allocate attention to various sources of information but their actions (investment and consumption
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decisions) must be measurable in their posterior beliefs (as opposed to the individual signals that

generate them). Such a restriction appears relevant in complex environments, with a large number

of sources, where it is unlikely that agents be able to recall the influence of each single source and

respond separately to changes in their informational content (see, e.g., Kahneman (1973, 2011),

and Kahneman, Slovic and Tversky (1982) for studies documenting such a diffi culty).

In the first part of the paper, I consider the case of perfect recall, where agents are able to

identify the influence of each source on their posterior beliefs. I show that there exists a unique

symmetric equilibrium and is such that any source that receives positive attention is characterized

by a ratio between its transparency and its marginal cost of attention exceeding a critical threshold.

In the special case where the marginal cost of attention is the same across all sources (as is neces-

sarily the case when the attention cost depends only on the total amount of time spent listening to

the sources), the result thus extends the finding in Myatt and Wallace (2012) that only the most

transparent sources receive attention to the more flexible payoff specification considered here.

I then compare the equilibrium allocation of attention to the effi cient allocation of attention

(defined to be the one that maximizes the ex-ante utility of a representative agent). I show that

in economies that are effi cient in their use of information, possible ineffi ciencies in the allocation of

attention originate in the dispersion of individual actions around the mean action. In particular,

the attention allocated to any given source is ineffi ciently low in economies where agents suffer from

the dispersion of individual actions, whereas it is ineffi ciently high in economies where they benefit

from such a dispersion. Likewise, the attention allocated to any given source is ineffi ciently low in

economies where the sensitivity of individual actions to fundamentals under complete information

falls short of the first-best level and is ineffi ciently high in economies where such a sensitivity exceeds

the first-best level.

The above results extend findings in Colombo, Femminis and Pavan (2013) to the more gen-

eral information structure considered in the present paper. The most interesting result, however,

pertains economies in which ineffi ciencies in the allocation of attention originate in the equilibrium

use of information. I show that, when agents are excessively concerned about aligning their actions

with the actions of others, they allocate too much attention to sources that are highly transparent

and too little attention to sources whose transparency is low but whose accuracy is high.

The above results can be interpreted by understanding that what creates a discrepancy between

the equilibrium and the effi cient allocation of attention is the interaction of two forces: (i) the value

that each agent assigns to reducing the dispersion of her actions around the mean action relative

to the value that the planner assigns to the same reduction (as shown in Colombo, Femminis and

Pavan (2013), the planner takes into account externalities that the individual fails to internalize);

and (ii) the reduction in the dispersion of individual actions that obtains when agents respond to

the increase in attention by following the equilibrium strategy, relative to the reduction that obtains

when they respond by following the effi cient strategy (as shown in Angeletos and Pavan (2007),

ineffi ciencies in the equilibrium use of information in turn originate in a discrepancy between the
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equilibrium and the effi cient value of coordination). The above results build on these insights and

adapt them to the general information structure considered in the paper.

In the second part of the paper, which contains the core results, I then show how the above

conclusions are affected by the inability to decompose posterior beliefs. The first insight is that, with

bounded recall, the benefit that each individual assigns to an increase in the attention allocated

to any given source combines the familiar reduction in the dispersion of her action around the

mean action (Colombo, Femminis and Pavan (2013)), with the change in the distribution of the

individual’s own average action around its complete-information counterpart. This second effect

is absent under perfect recall and has important implications. Compared to the benchmark with

full recall, agents reduce the attention allocated to sources of low and high publicity (these are

sources or relatively low and high transparency) and increase the attention they allocate to sources

of intermediate publicity.

To understand the result, observe that sources of low publicity are sources whose ratio between

transparency and accuracy is low. They may serve well in predicting the fundamentals but are poor

coordination devices because of their high sensitivity to idiosyncratic interpretations. In a world

of perfect recall, paying a lot of attention to such sources is justified by the possibility to identify

their effect on posterior beliefs thus limiting the impact of such idiosyncratic interpretations on the

dispersion of individual actions around the mean action. Such a possibility is absent with bounded

recall.

Sources of high publicity, instead, are sources whose ratio between transparency and accuracy

is high. They may not serve well in predicting the underlying fundamentals but are powerful

coordination devices. With bounded recall, however, paying a lot of attention to such sources may

lead to a high volatility of an agent’s average action around its complete-information counterpart.

Because such a volatility contributes negatively to payoffs, agents marginally cut the attention

allocated to such sources to redirect it towards sources of intermediate publicity.

I conclude by investigating how bounded recall affects the (in)effi ciency of the equilibrium

allocation of attention. Ineffi ciencies now originate not only in the discrepancy between the private

and the social value of reducing the dispersion of individual actions in the cross section of the

population but also in the discrepancy between the private and the social value in reducing the

dispersion of average actions around their complete-information counterparts. Despite these novel

effects, economies in which agents value coordination more than the planner continue to feature an

excessively high allocation of attention to sources whose publicity is higher than average and an

excessively low attention to sources whose publicity is lower than average. The opposite conclusion

holds in economies where agents value coordination less than the planner.

The rest of the paper is organized as follows. I briefly review the pertinent literature below.

Section 2 contains all results for the case with full recall, while Section 3 contains the results for

the case of bounded recall. Section 4 concludes. All proofs are in the Appendix at the end of the

document.
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1.1 Related literature

The paper belongs to the literature on information acquisition in coordination games. The closest

works are Myatt and Wallace (2012) and Colombo, Femminis and Pavan (2013). The first paper

shares with the present one the specification of the information structure but considers a more

restrictive payoff specification which is meant to capture strategic interactions resembling Keynes’

beauty contests. Allowing for a more flexible payoff specification is essential to the questions

addressed in this paper. In fact, the beauty-contest specification of Myatt and Wallace (2012)

makes the game a potential game where the potential function is social welfare. This specification

is appropriate for the analysis in that paper (which is primarily positive), but does not permit one

to identify sources of ineffi ciency in the equilibrium allocation of attention.

The payoff specification in the present paper is the same as in Colombo, Femminis and Pavan

(2013)– which in turn is the same as in Angeletos and Pavan (2007, 2009). The information

structure is, however, more general. That paper identifies sources of ineffi ciency in the acquisition

of private information in an environment with a single perfectly private and a single perfectly public

signal. The precision of the public signal is exogenous and processing public information is costless.

In contrast, in the present paper, agents have access to an arbitrary large number of information

sources; processing the information of each source is costly (albeit the cost may vary with the

source); each source is defined by its accuracy and its transparency; and the publicity of a source is

determined endogenously by the attention allocated to the source by all decision makers. This richer

information structure permits one to identify which dimension (accuracy versus transparency) is

favored in equilibrium, how this selection depends on the payoff structure, and of whether effi ciency

requires more or less weight to each of these dimensions. It is also instrumental to the analysis of

the effects of bounded recall on the allocation of attention.

Related are also Hellwig and Veldkamp (2009), Chahrour (2012), and Llosa and Venkateswaran

(2013). Hellwig and Veldkamp are the first to examine how complementarities in actions lead to

complementarities in information acquisition. The information structure in that paper is different

from the one in the present paper in that it assumes that the publicity of each source (the extent

to which its noise is correlated across agents) is exogenous and that the attention allocated to each

source is a binary choice. This last property is responsible for equilibrium multiplicity. In contrast,

the (symmetric) equilibrium is unique in this paper, as well as in the other papers cited above.

Chahrour (2012) studies optimal central bank disclosures in an economy where processing

information is costly and where agents may miscoordinate on which sources they pay attention to.

The framework in that paper and the questions addressed are quite different from the ones in the

present paper.

Llosa and Venkateswaran (2012) compare the equilibrium acquisition of private information to

the effi cient acquisition of private information in three business-cycles models. As in the present

paper, they find that effi ciency in the use of information is no guarantee of effi ciency in the acquisi-
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tion. That paper, however, does not seek to identify general sources of ineffi ciency in the acquisition

process and instead focuses on the comparison of different business cycle specifications.

All works mentioned above consider games with a continuum of actions and continuous payoffs.

Information acquisition in games of regime change (where payoffs are discontinuous and players

have binary actions) is examined in Szkup and Trevino (2013) and in Yang (2013). The first paper

considers a canonical information structure with one perfectly private and one perfectly public

signal and where the latter is costless to process. The latter considers a very flexible information

structure and shows how the possibility to learn asymmetrically across states (which is particularly

appealing in discontinuous games) leads to multiple equilibria.

The paper is also related to the literature on rational inattention as pioneered by Sims (see,

e.g., Sims (2003, 2011) for an overview and Máckowiak and Wiederholt (2009) for an influential

business cycle application). The closest paper is Máckowiak and Wiederholt (2012). That paper

compares the equilibrium allocation of attention to the effi cient allocation of attention assuming

that decision makers can absorb any information as long as the reduction in entropy is below a

given capacity threshold. In contrast, in the present paper, I consider a smooth cost function. The

information structure is also different and permits me to investigate which dimension (transparency

versus accuracy) receives more weight in equilibrium and whether such weight is socially effi cient.

Importantly, none of the above papers considers the effects of bounded recall on the allocation

of attention, which is the focus of this paper and its distinctive contribution.

Finally, the paper is related to the literature that investigates the effects of limited memory on

individual decision making (see, e.g., Mullainathan (2002), Wilson (2004), and Kocer (2010)). This

literature, however, does not investigate how bounded memory influences the allocation of attention

in a strategic setting, nor the discrepancy between the equilibrium and the effi cient allocation of

attention. The effects of bounded recall in strategic interactions are examined in the literature

on dynamic (and repeated) games with imperfect information (see, e.g., Mailath and Samuelson

(2006) and the references therein). The formalization of bounded recall as well as the questions

addressed in that literature are however very different from what I do in the present paper.

2 Perfect Recall

2.1 Environment

Agents, Attention, and Information. The economy is populated by a continuum of agents of

measure one, indexed by i and uniformly distributed over [0, 1] . Each agent i has access to N ∈ N
sources of information about an underlying fundamental variable θ which is drawn from a Normal

distribution with mean zero and precision πθ ≡ σ−2
θ (σ2

θ is thus the variance of the distribution).
1

1That the prior mean is zero simplifies the formulas, without any important effect on the results.
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The information contained in each source n = 1, ..., N is given by

yn = θ + εn,

where εn is normally distributed, independent of θ and of any εs, s 6= n, with mean zero and

precision ηn. The parameter ηn thus controls for the quality of the n-th source of information.

By paying attention zi ≡ (zin)Nn=1 ∈ RN+ to the various sources, each agent i ∈ [0, 1] then receives

xi ≡ (xin)Nn=1 ∈ RN private signals about θ with each signal n = 1, ..., N given by

xin = yn + ξin,

where ξin is idiosyncratic noise, normally distributed, with mean zero and precision tnz
i
n, indepen-

dent of θ, ε ≡ (εn)Nn=1, and of ξ
j
s , with s = 1, ..., N for j 6= i, and with s = 1, ..., n− 1, n+ 1, ..., N

for j = i. The parameter ηi ∈ R+ thus proxies the accuracy of the source (the "sender’s noise" in

the language of Myatt and Wallace (2012)), whereas the parameter tn proxies the transparency of

the source (the extent to which a marginal increase in the attention allocated to the source reduces

its idiosyncratic interpretation by the agents).

Actions and Payoffs. Let ki ∈ R denote agent i’s action, K ≡
∫
j k

jdj the mean action,

and σ2
k ≡

∫
j

[
kj −K

]2
dj the dispersion of individual actions in the cross-section of the population.

Each agent’s payoff is given by the (expectation of) the Bernoulli utility function

u
(
ki,K, σk, θ

)
− C(zi)

where C(zi) denotes the attention cost incurred by the agent. I assume that C is increasing, convex

and continuously differentiable.2

As is standard in the literature, I assume that U is approximated by a second-order polynomial

and that dispersion σk has only a second-order non-strategic external effect, so that ukσ = uKσ =

uθσ = 0 and that uσ (k,K, 0, θ) = 0, for all (k,K, θ).3 The quadratic specification of the utility

function ensures the linearity of the agents’best responses and simplifies the analysis.

In addition to the above conditions, I assume that partial derivatives satisfy the following

conditions: (i) ukk < 0, (ii) α ≡ −ukK/ukk < 1, (iii) ukk + 2ukK + uKK < 0, (iv) ukk + uσσ < 0,

2As explained in Myatt and Wallace (2012), the assumption that C is convex need not be compatible with an

entropy-based cost function (that is, a cost function increasing in the coeffi cient of mutual information between y and

xi, as assumed in certain models of rational inattention). With that type of cost-function, equilibrium uniqueness

cannot be guaranteed for suffi ciently high degrees of coordination. However, even in that case, social welfare continues

to be concave in the allocation of attention, meaning that the effi cient allocation of attention remains unique. Besides,

all our key results pertaining (a) the comparison between the equilibrium allocation of attention and the effi cient

allocation of attention and (b) the comparison of the equilibrium with full recall and the equilibrium with bounded

recall are established by looking at the gross private benefit of increasing the attention allocated to any given source.

As such, all these results extend to a situation where the attention cost is concave.
3The notation uk denotes the partial derivative of u with respect to k, whereas the notation ukK denotes the cross

derivative with respect to k and K. Similar notation applies to the other arguments of the utility function.
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and (v) ukθ 6= 0. Condition (i) imposes concavity at the individual level, so that best responses are

well defined. Condition (ii) implies that the slope of best responses is less than one, which in turn

guarantees uniqueness of the equilibrium actions, for any given allocation of attention. Conditions

(iii) and (iv) guarantee that the first-best allocation is unique and bounded. Finally, Condition (v)

ensures that the fundamental θ affects equilibrium behavior, thus making the analysis non-trivial.

Timing. Agents simultaneously choose the attention they allocate to the various sources of

information. They then receive private information. Finally, they simultaneously commit their

actions.

2.2 The equilibrium allocation of attention

To solve for the equilibrium allocation of attention, I start by describing how an agent’s action is

affected by the quality of her information, which in turn is affected by the attention allocated to

the different sources of information. These first steps parallel the analysis in Angeletos and Pavan

(2009, Proposition 3).

First note that, under complete information about θ, the unique equilibrium features each

agent taking an action ki = κ where κ ≡ κ0 + κ1θ with κ0 ≡ −uk(0,0,0,0)
ukk+ukK

and κ1 ≡ −ukθ
ukk+ukK

. Now

consider the problem of an agent j ∈ [0, 1] with information xj who allocated attention zj to the

various sources of information. Optimality requires that the agent’s action kj satisfies

kj = E[(1− α)κ+ αK | zj , xj ], (1)

where α ≡ ukK
|ukk| measures the slope of individual best responses to aggregate activity.

Now suppose that all agents allocate attention z to the various sources of information. The

precision of each source s = 1, ..., N is then given by

πs ≡
ηszsts
zsts + ηs

which is increasing in the accuracy ηs of the source, in its transparency ts, and in the attention zs
allocated to it.

Next, let

ϕjs ≡ εs + ξis

denote the total noise in the information that agent j receives from source s, and denote by

ρs ≡ corr(ϕjs, ϕis) =
zsts

zsts + ηs

the correlation in the noise among any two different agents i, j ∈ [0, 1], i 6= j. Using the terminology

in Myatt and Wallace (2012), hereafter I will refer to ρs as to the source’s endogenous publicity.

Finally, let

C ′n(z) ≡ ∂C(z)

∂zn
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denote the marginal cost of increasing the attention allocated to the n-th source of information.

The following result is then true:

Proposition 1 There exists a unique symmetric equilibrium. In this equilibrium, the attention ẑ

that each agent i ∈ [0, 1] allocates to the various sources of information is such that, for any source

n = 1, ..., N that receives strictly positive attention4

C ′n(ẑ) =
|ukk|

2

(κ1γn(ẑ))2

(ẑn)2 tn
(2)

where

γn(z) ≡
(1−α)πn(z)
1−αρn(z)

πθ +
∑N

s=1
(1−α)πs(z)
1−αρs(z)

with πs(z) =
ηszsts
zsts + ηs

and ρs(z) =
πs(z)

ηs
, s = 1, ..., N. (3)

Given the equilibrium allocation of attention ẑ, the equilibrium actions are given by

ki = k(xi; ẑ) = κ0 + κ1

(∑N
n=1γn(ẑ)xin

)
all i ∈ [0, 1], all xi ∈ RN . (4)

To understand the result, note that, when all agents follow the strategy in (4), in equilibrium,

the dispersion of individual actions in the cross section of the population is given by

V ar[k −K | z, k(·; z)] = κ2
1

N∑
s=1

γ2
s (z)

zsts
.

Differentiating V ar[k −K | z, k(·; z)] with respect to zn while keeping fixed the strategy k(·; z) as
defined in (4) (for all agents, including agent i), then reveals that the private benefit of increasing

the attention allocated to each source of information is given by

|ukk|
2

∣∣∣∣ ∂∂znV ar[k −K | z, k(·; z)]
∣∣∣∣ =
|ukk|

2

(κ1γn(z))2

(zn)2 tn
. (5)

In other words, in equilibrium, the marginal benefit that each agent assigns to paying more attention

to any given source of information coincides with the marginal reduction in the dispersion of the

individual’s action around the mean action, weighted by the importance |ukk|/2 that the individual
assigns to such a reduction. Importantly, the reduction in dispersion is computed by holding fixed

the equilibrium strategy k(·; z). This is intuitive, given that, from the usual envelope arguments,

the individual expects her information to be used optimally once collected. As I show below,

this interpretation helps understanding the sources of ineffi ciency in the equilibrium allocation of

attention.
4For any source that receives no attention, the following condition must hold:

C′n(ẑ) ≥
|ukk|
2

(κ1)
2(1− α)2tn[

πθ +
∑N
s=1

(1−α)ηsẑsts
(1−α)ẑsts+ηs

]2 .
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Also note that, fixing the equilibrium allocation of attention ẑ, the influence κ1γn that each

source exerts on the equilibrium actions always increases with the source’s precision (given by πn)

and it increases with the source’s endogenous publicity (given by ρn) when agents value positively

aligning their actions with the actions of others (i.e., when α > 0), whereas it decreases when they

value it negatively (i.e., when α < 0). In turn, both the precision πn and the publicity ρn of any

given source increase with the source’s accuracy ηn and with its transparency tn. Finally, note that

when α → 0 the sensitivity of the equilibrium actions to each source of information converges to

κ1δn with

δn ≡
πn

πθ +
∑N

s=1 πs
.

This makes sense, for this limit corresponds to a single decision maker’s problem, in which case the

relative influence of any two sources of information converges to their relative informativeness as

captured by the ratio between the two sources’precisions. In contrast, when α→ 1, γn → 0 for all

n = 1, ..., N. This also makes sense: as the agents’concern about aligning their actions with the

actions of others grows large, they ignore all sources of information that contain idiosyncratic noise

and simply base their actions on the common prior.

I now turn to the equilibrium allocation of attention. To facilitate the intuition, consider the

case where πθ = 0 (this corresponds to an improper prior over the entire real line) and where the

attention cost depends on z only through the total attention assigned to the various sources of

information. That is, assume that there exists a strictly increasing, differentiable, convex function

c : R+ → R+ such that, for any z ∈ RN+ , C(z) = c
(∑N

s=1zs

)
. The relative attention allocated to any

two sources of information n, n′ ∈ {1, ..., N} that receive strictly positive attention in equilibrium
is then given by

ẑn
ẑn′

=
γn
γn′

√
tn′

tn

Substituting for γn and γn′ , I then have that

ẑn =
ηn
tn

(
1

ηn′

√
tn′tnẑn′ +

√
tn −

√
tn′

(1− α)
√
tn′

)
(6)

Any two sources with the same transparency thus receive attention proportional to their accuracy.

More generally, (6) suggests that the attention that a source receives in equilibrium is increasing

in its accuracy, but nonmonotone in its transparency. The intuition is the following. When trans-

parency is low, paying a lot of attention to a source is not worth the cost, given that the reduction

in the idiosyncratic interpretation of its content is small. Likewise, when transparency is high,

reducing the attention allocated to the source leads only to a small increase in its idiosyncratic

interpretation. As a result, attention is maximal for intermediate degrees of transparency.

This intuition is confirmed in the following proposition which extends results in Myatt and

Wallace (2012) to the more flexible payoff specification considered here (note that the result does

not require any assumption on the cost function, in addition to those assumed in the model setup):
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Corollary 1 There exists a threshold R > 0 such that, in the unique symmetric equilibrium, for

any source that receives positive attention

tn
C ′n(ẑ)

> R,

whereas for any source that receives no attention tn/C ′n(ẑ) ≤ R.

In the special case where the cost is linear and all sources receive positive attention in equilib-

rium, I can arrive to a close-form characterization for the attention allocated to the various sources

of information.

Example 1 Suppose that C(z) = c̄ ·
∑N

s=1zs for some c̄ ∈ R++ and assume that c̄ is suffi ciently

small that all sources receive positive attention in equilibrium. The attention that each source

receives is then given by

ẑn =
ηn√

tn(1− α)

(1− α)κ1

√
|ukk|

2c̄ +
∑N

s=1
ηs√
ts

πθ +
∑N

s=1 ηs
− 1√

tn

 . (7)

The example illustrates the general properties discussed above that attention is increasing in

accuracy but nonmonotone in transparency. It also shows that, under the assumed cost function,

as the value of coordination α increases, the attention allocated to sources of low transparency

decreases, whereas the attention allocated to sources of high transparency increases.5 Finally, it

shows that the total amount of attention decreases with the coordination motive, α.6

2.3 The effi cient allocation of attention

I now turn to the allocation of attention that maximizes the ex-ante utility of a representative

agent, hereafter referred to as the effi cient allocation of attention.

First, observe that, for any allocation of attention z, the effi cient use of information consists in

all agents following the unique strategy k∗(·; z) that solves the functional equation7

k (x; z) = E [(1− α∗)κ∗ + α∗K | z, x ] for all (z, x), (8)

5Formally,

∂ẑn
∂α

< 0 if
√
tn ≤

(
πθ +

∑N
s=1 ηs∑N

s=1
ηs√
ts

)
and

∂ẑn
∂α

> 0 if the previous inequality is reversed.

6This is not immediate to see, but can be verified by differentiating Ẑ =
∑
n ẑn with respect to α and using the

property that (
N∑
j=1

ηj√
tj

)2

≤
N∑
j=1

ηj
tj

N∑
s=1

ηs.

7The result about the effi cient use of information follow from Angeletos and Pavan (2009).
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where κ∗ = κ∗0 + κ∗1θ is the first-best allocation
8, K = E [k (x; z) | z, θ, ε] is the average action, and

α∗ ≡ uσσ − 2ukK − uKK
ukk + uσσ

(9)

is the socially optimal degree of coordination (that is, the level of complementarity, or substitutabil-

ity, that the planner would like the agents to perceive in order for the equilibrium of the economy to

coincide with the effi cient allocation.) Because (8) differs from the equilibrium optimality condition

(1) only by the fact that α is replaced by α∗ and κ by κ∗, it is then immediate that the effi cient

strategy takes the linear form

k∗(x; z) = κ∗0 + κ∗1

(∑N
n=1γ

∗
n(z)xn

)
, (10)

where γ∗n(z) is defined as γn(z) but with α∗ replacing α.

Next note that, for any given attention z, welfare under the effi cient use of information k∗(·; z)
can be expressed as

w∗(z) ≡ E[u(κ∗, κ∗, 0, θ)]− L∗(z)− C(z),

where E[u(κ∗, κ∗, 0, θ)] is expected welfare under the first-best allocation and where

L∗(z) ≡ |ukk + 2ukK + uKK |
2

V ar[K − κ∗ | z, k∗(·; z)] +
|ukk + uσσ|

2
V ar[k −K | z, k∗(·; z)]

combines the welfare losses that derive from the volatility of the average action K around its first-

best counterpart with the losses that derive from the dispersion of individual actions in the cross

section of the population.

I now turn to the effi cient allocation of attention. This is instrumental to the understanding

of what ineffi ciency, if any, arises in the way attention is allocated in equilibrium, and on how such

ineffi ciency relates to the way information is then used in equilibrium.

Using the envelope theorem and observing that, holding constant the strategy k∗(·; z), the
volatility of the aggregate action around its complete-information counterpart, V ar[K − κ∗ |
z, k∗(·; z)], is independent of the attention allocated to the various sources of information, I then
have that the (gross) social benefit of increasing the attention allocated to any source n is given

by9

|ukk + uσσ|
2

∣∣∣∣ ∂∂znV ar[k −K | z, k∗(·; z)]
∣∣∣∣ =
|ukk + uσσ|

2

(κ∗1γ
∗
n(z))2

(ẑn)2 tn
(11)

8The scalars κ∗0 and κ
∗
1 are given by κ

∗
0 =

uk(0,0,0)+uK(0,0,0)
−(ukk+2ukK+uKK)

and κ∗1 =
ukθ+uKθ

−(ukk+2ukK+uKK)
, respectively.

9As in the equilibrium case, the expression in (11) applies to sources that receive strictly positive attention (that is,

for which zn > 0). The marginal benefit of increasing the attention allocated to a source that receives zero attention

is simply the limit of the right-hande side of (11) as zn → 0 which is equal to

|ukk + uσσ|
2

(κ∗1)
2(1− α∗)2tn[

πθ +
∑N
s=1

(1−α∗)ηszsts
(1−α∗)zsts+ηs

]2 .

11



where ∂V ar[k−K | z, k∗(·; z)]/∂zn is computed holding fixed the effi cient strategy k∗(·; z) that maps
information into individual actions. In other words, the social benefit of allocating more attention

to any given source is given by the reduction in the dispersion of individual actions around the

mean action that obtains when agents allocate more attention to that source, weighted by the

social aversion to dispersion |ukk + uσσ|/2. The following result then follows from the arguments

above:

Proposition 2 Suppose that the planner can control the agents’ actions. There exists a unique

allocation of attention z∗ that maximizes welfare and is such that, for any source n that receives

positive attention,10

C ′n(z∗) =
|ukk + uσσ|

2

(κ∗1γ
∗
n(z∗))2

(z∗n)2 tn

where κ∗1γn(z∗) represents the influence of the source under the effi cient use of information, with

γ∗n(z) ≡
(1−α∗)πn(z)
1−α∗ρn(z)

πθ +
∑N

s=1
(1−α∗)πs(z)
1−α∗ρs(z)

=

(1−α∗)ηnzntn
(1−α∗)zntn+ηn

πθ +
∑N

s=1
(1−α∗)ηszsts

(1−α∗)zsts+ηs

.

Comparing the private benefit (5) to the social benefit (11) of allocating more attention to any

given source of information then permits me to establish the following conclusion:

Corollary 2 Let ẑ denote the equilibrium allocation of attention. Suppose that the planner can

control the agents’ actions. Then, starting from ẑ, forcing the agents to pay more attention to a

source n that receives positive attention in equilibrium (i.e., for which ẑn > 0) increases welfare if

|ukk|(κ1γn(ẑ))2 < |ukk + uσσ|(κ∗1γ∗n(ẑ))2 (12)

and decreases it if the inequality in (12) is reversed, where κ1γn(ẑ) and κ∗1γ
∗
n(ẑ) denote, respectively,

the sensitivity of the equilibrium and of the effi cient strategy to the n-th source of information, when

the attention allocated to the various sources is ẑ. Likewise, forcing the agents to pay attention to

a source n that receives no attention in equilibrium (i.e., for which ẑn = 0) increases welfare if

|ukk + uσσ|
2

(κ∗1)2(1− α∗)2tn[
πθ +

∑N
s=1

(1−α∗)ηsẑsts
(1−α∗)ẑsts+ηs

]2 > C ′n(ẑ)

and decreases it if the inequality is reversed.

10As in the equilibrium case, for any source that receives no attention, the following condition must hold:

C′n(z
∗) ≥ |ukk + uσσ|

2

(κ∗1)
2(1− α∗)2tn[

πθ +
∑N
s=1

(1−α∗)ηszsts
(1−α∗)zsts+ηs

]2 .
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To understand the result, recall from the analysis above that both the private and the social

(gross) marginal benefit of allocating more attention to any given source of information come

from the marginal reduction in the dispersion of individual actions around the mean action.11

The magnitude of this reduction depends on the sensitivity of individual actions to the source of

information, which is given by κ1γn under the equilibrium strategy and by κ∗1γ
∗
n under the effi cient

strategy. The weight that the planner assigns to reducing the cross-sectional dispersion of individual

actions is |ukk + uσσ|, while the weight that the individual agent assigns to reducing the dispersion
of her action around the mean action is |ukk|.

Increasing the attention allocated to a source that receives positive attention in equilibrium

then increases welfare if and only if the marginal reduction in the dispersion of actions under the

equilibrium strategy, weighted by the importance that each agent assigns to dispersion, falls short

of the marginal reduction in dispersion under the effi cient allocation, weighted by the importance

that the planner assigns to dispersion.

Likewise, forcing the agents to pay attention to a source that receives no attention in equilibrium

increases welfare if and only if the marginal cost exceeds the private benefit of reducing dispersion,

but falls short of the social benefit.

Put it differently, effi ciency in the allocation of attention requires both (i) effi ciency in the use

of information and (ii) alignment between the private and the social value of reducing the dispersion

of individual actions, which obtains when and only when uσσ = 0.

The following result generalizes and extends a result in Colombo, Femminis and Pavan (2013)

to the more flexible information structure considered in this paper. Let ẑ denote the equilibrium

allocation of attention and z∗ the allocation of attention that maximizes welfare when the planner

can control the use of information. Furthermore, let #N̂ denote the cardinality of the set of sources

that receive positive attention in equilibrium, and #N∗ the cardinality of the set of sources that

receive positive attention when the planner can control both the allocation of attention and the use

of information.

Proposition 3 Let ẑ denote the equilibrium allocation of attention and z∗ the allocation of atten-

tion that maximizes welfare when the planner can control the agents’actions.

(i) Consider economies that are effi cient in their use of information (κ = κ∗ and α = α∗). The

attention allocated to each source is ineffi ciently low if uσσ < 0 and ineffi ciently high if uσσ > 0

(meaning that, for any n, z∗n ≥ ẑn if uσσ < 0 and z∗n ≤ ẑn if uσσ > 0, with the inequalities strict if

ẑn > 0).

(ii) Consider economies that are effi cient under complete information and where ineffi ciencies

in the allocation of attention originate in the way information is used in equilibrium (κ = κ∗,

uσσ = 0 but α 6= α∗). When α > α∗, agents pay too much attention to sources that are transparent

11Both marginal reductions are computed holding constant, respectively, the equilibrium and the effi cient use of

information, that is, the mappings k(·; z) and k∗(·; z), by usual envelope arguments.
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and too little attention to sources that are opaque (Formally, there exists R∗ > 0 such that, if

tn/C
′
n(ẑ) > R∗, then z∗n ≤ ẑn, whereas, if tn/C ′n(ẑ) < R∗, then ẑn ≤ z∗n, with the inequalities strict

if ẑn > 0). The opposite conclusions hold for α < α∗. Furthermore, when C(z) = c
(∑N

s=1zs

)
with

c(·) increasing, convex, and differentiable, the equilibrium total attention is ineffi ciently low and too
few sources receive positive attention meaning that

∑N
s=1ẑs ≤

∑N
s=1z

∗
s and #N̂ ≤ #N∗) if α > α∗,

whereas the opposite is true if α < α∗.

(iii) Consider economies in which the ineffi ciency in the allocation of attention originates in

the ineffi ciency of the complete-information actions (uσσ = 0, α = α∗, but κ 6= κ∗). The attention

allocated to each source is ineffi ciently low if κ∗1 > κ1 and ineffi ciently high if κ∗1 < κ1 (meaning

that, for any n, z∗n ≥ ẑn if κ∗1 > κ1 and z∗n ≤ ẑn if κ∗1 < κ1, with the inequalities strict if ẑn > 0).

Let’s start with part (i). Because in these economies the equilibrium use of information is

effi cient, the marginal reduction in the dispersion of individual actions under the equilibrium strat-

egy coincides with the marginal reduction under the effi cient strategy. That the equilibrium use

of information is effi cient, however, does not guarantee that the private and the social marginal

benefit of increasing the attention allocated to a source of information are the same. The reason is

that the private benefit fails to take into account the direct, non-strategic, effect that the dispersion

of individual actions has on payoffs, as captured by uσσ. Because this externality has no strategic

effects, it is not internalized and is thus a source of ineffi ciency in the allocation of attention. In

particular, the attention given in equilibrium to each source falls short of the effi cient level (weakly)

in the presence of a negative externality from dispersion, uσσ < 0, while it exceeds the effi cient

level (weakly) in the presence of a positive externality, uσσ > 0.

Next, consider part (ii) and take an economy for which α > α∗. Because there are no direct

externalities from dispersion (i.e., uσσ = 0), the weight that each agent assigns to a reduction in the

dispersion of her action around the mean action coincides with the weight assigned by the planner.

The discrepancy between the private and the social value of increasing the attention allocated to any

given source then comes from the ineffi ciency of the equilibrium use of information; in particular,

from the fact, in these economies, equilibrium actions are too sensitive to sources that are relatively

public, (i.e., for which ρn is high) and too little sensitive to sources that are relatively private (i.e.,

for which ρn is low). The publicity of a source is, however, endogenous, for it depends on the

attention allocated to it. Taking into account how attention depends on the primitive properties of

the sources, the proposition then shows that agents pay too much attention to those sources that

are highly transparent relative to their cost and too little attention to those sources that are either

opaque or for which the attention cost is high.

To see this last result more explicitly, consider an economy satisfying the conditions in Example

1 above, where all sources receive strictly positive attention in equilibrium. It is easy to see that,

as long as the difference α− α∗ is not too high so that the planner also wants the agent to assign
positive attention to all sources, then the effi cient allocation of attention satisfies the analog of the
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conditions in (7) with α∗ replacing α. It is then also easy to see that z∗n > ẑn for those sources for

which
√
tn <

πθ +
∑N

s=1 ηs∑N
s=1

(
ηs/
√
ts
)

whereas z∗n < ẑn for those sources for which the above inequality is reversed.

The proposition also shows that, when the cost depends only on the total attention, (a) too few

sources receive some attention in equilibrium and (b) the total amount of attention that each agent

devotes to the various sources is ineffi ciently low. The opposite conclusions hold for economies

where the value that the agents assign to coordinating their actions falls short of the effi cient one,

i.e., for which α < α ∗.

Lastly, consider part (iii). When κ1 < κ∗1, the complete-information equilibrium responds too

little to changes in the fundamentals relative to the first-best allocation, κ∗. As a result, the agents’

incentives to learn about θ are ineffi ciently low, and hence in equilibrium all sources of information

receive too little attention relative to what is effi cient.

I conclude this section by looking at how welfare changes with the attention allocated to

the various sources of information (around the equilibrium level) when the agents’ actions are

determined by the equilibrium rule k(·; ẑ) as opposed to the effi cient rule k∗(·; ẑ).
In the Appendix, I show that, in this case, the gross marginal benefit of inducing the agents to

increase the attention allocated to any given source is

|ukk + uσσ|
2

(κ1γn(ẑ))2

(ẑn)2 tn
+ |ukk + uσσ|κ2

1(α− α∗)
{∑N

s=1

(
γs(ẑ)

(1− α)ẑsts

)
∂γs(ẑ)

∂zn

}
(13)

+
|ukk + 2ukK + uKK |κ2

1

πθ

(
κ∗1 − κ1

κ1

){∑N
s=1

∂γs(ẑ)

∂zn

}
.

The first term in (13) is the direct marginal effect of a reduction in the cross-sectional dispersion

of individual actions that obtains as a result of an increase in zn, holding fixed the equilibrium use of

information k(·; ẑ). The second term combines the marginal effects of changing the equilibrium rule
k(·; ẑ) on (a) the volatility of the aggregate action K around its complete-information counterpart

κ and (b) the dispersion of individual actions. Finally, the last term, which is relevant only in

economies that are ineffi cient under complete information, captures the effect of changing the rule

k(·; ẑ) on the way the "error" due to incomplete information K − κ covaries with the ineffi ciency
of the complete-information allocation. Clearly, by usual envelope arguments, these last two terms

are absent in economies where the equilibrium use of information is effi cient (that is, in economies

where k(·; z) = k∗(·; z), which is the case if and only if α = α∗ and κ = κ∗) or, alternatively, when

the planner can dictate to the agents how to use their information.

Comparing (13) to the private value (5) of increasing the attention allocated to any given source

(evaluated at the equilibrium level), then permits me to arrive to the following result.

Proposition 4 Suppose that the planner cannot change the way the agents use their information

in equilibrium.
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(a) Consider economies that are either effi cient in their use of information (κ = κ∗ and α =

α∗) or in which the ineffi ciency in the allocation of attention originates in the ineffi ciency of the

complete-information actions (uσσ = 0, α = α∗, but κ 6= κ∗). The same conclusions hold true

as for the case where the planner can dictate to the agents how to use their information (as in,

respectively, parts (i) and (iii) of Proposition 3).

(b) Consider economies that are effi cient under complete information and in which ineffi ciencies

in the allocation of attention originate in the way information is used in equilibrium (κ = κ∗,

uσσ = 0 but α 6= α∗). There exists a threshold M > 0 such that, starting from the equilibrium

allocation of attention ẑ, inducing the agents to increase the attention allocated to any source for

which ẑn > 0 increases welfare if

sign {α− α∗} = sign

{
C ′n(ẑ)

tn
−M

}

and decreases it otherwise.

Consider first part (b) and take an economy where agents are over-concerned about aligning

their actions (α > α∗). In these economies, equilibrium actions are too sensitive to sources that are

highly transparent and too little sensitive to sources that are relative opaque. Now use Proposition

1 to observe that the sensitivity κ1γn of the equilibrium actions to each source is increasing in the

attention allocated to that source and decreasing in the attention allocated to any other source.

By inducing the agents to reallocate their attention from sources of high transparency to sources

of low transparency, the planner then also induces the agents to use their information in a more

effi cient manner. This effect thus reinforces the conclusions in Proposition 3 for the case where the

planner can control the way agents map their information into their actions.

Now, consider part (a) and focus on economies in which the ineffi ciency in the allocation of

attention originates in the ineffi ciency of the complete-information allocation. Specifically, suppose

that the complete-information equilibrium actions respond too little to variations in the fundamen-

tals (i.e., κ1 < κ∗1). Relative to the case where the planner can control the agents’actions, the

extra benefit

|ukk + 2ukK + uKK |κ2
1

πθ

(
κ∗1 − κ1

κ1

){∑N
s=1

∂γs(z)

∂zn

}
of inducing the agents to pay more attention to any given source comes from the fact that the

equilibrium actions then become more responsive to that source and less to any other source. The

net effect of this adjustment is to partially correct the ineffi ciency of the complete-information

allocation by bringing the aggregate action K,on average, closer to its first-best counterpart κ∗.

This novel effect then adds to the benefit of reducing the dispersion of individual actions in the

cross-section of the population thus reinforcing the conclusions of Proposition 3.
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3 Bounded Recall

3.1 Environment

Suppose now that agents are unable to keep track of the influence of individual sources on posterior

beliefs. I model this situation as follows. Agents understand how their beliefs are affected by the

attention they allocate to the various sources. However, when it comes to committing their actions,

they respond only to variations in their posterior beliefs (as opposed to responding separately to

variations in the individual sources). Apart from this modification, the environment is the same as

in the previous section.

Given the attention zj allocated to the different sources and the information xj ≡ (xj1, ..., x
j
N )

received from them, agent j’s posterior beliefs about θ continue to be Normal with mean

x̄j(xj ; zj) =
∑N

n=1
δn(zj)xin, with δn(zj) ≡ πn(zj)

πθ +
∑N

s=1 πs(z
j)
and πs(zj) ≡

ηsz
j
sts

zjsts + ηs

and precision πθ +
∑N

s=1 πs(z
j). Each signal xjn = θ + εn + ξjn has the same statistical properties

as in the previous section. The only difference is that agent j is now unable to decompose x̄j into

the various signals xj . This is equivalent to assuming that, given the attention zj , agent j receives

a single signal

Xj(xj ; zj) ≡ x̄j(xj ; zj)∑N
s=1 δs(z

j)
=

(
πθ + πX(z#)

πX(z#)

)
x̄j(xj ; zj) = θ +

∑N

n=1

πn(zj)

πX(zj)
(εn + ξjn)

with precision

πX(zj) ≡
∑N

s=1
πs(z

j).

Bounded recall then amounts to imposing that agent j’s actions be measurable in the sigma algebra

generated by the random variable Xj(zj). Importantly, note that this restriction matters only

because of strategic effects. In fact, because x̄j is a suffi cient statistics for (x̄j , xj) with respect to

θ, in the absence of strategic effects, the agent’s actions and payoff would be the same as in the

case of perfect recall.

3.2 Equilibrium allocation of attention

Following steps similar to those in Section 2.2, I can establish the following result. Let

ρX(z) ≡
∑N

s=1

πs(z)

πX(z)
ρs(z)

denote the weighted average of the endogenous publicity of the various sources of information,

where the weights are the relative precisions.
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Proposition 5 There is a unique symmetric equilibrium. In this equilibrium, given the attention

z# allocated to the various sources, individual actions are given by

ki = k(x̄i; z#) = κ0 + κ1γ(z#) · x̄j (14)

all i ∈ [0, 1], where

γ(z) ≡

 (1−α)πX(z)
1−αρX(z)

πθ + (1−α)πX(z)
1−αρX(z)

(πθ + πX(z#)

πX(z#)

)
.

Furthermore, for any i ∈ [0, 1] and any source n = 1, ..., N that receives strictly positive atten-

tion in equilibrium,

C ′n(z#) = −|ukk|
2

∂

∂zn
V ar

[
k −K; z#, k(·; z#)

]
− |ukk|

2
(1− α)

∂

∂zn
V ar

[
K − κ; z#, k(·; z#)

]
(15)

where the derivatives are computed holding fixed the mapping k(·; z#) given by (14).

There are important differences relative to the case of perfect recall. First, the marginal

benefit of increasing the attention allocated to each source now has two components. The first

one is the marginal reduction in the dispersion of individual actions around the mean action. This

component is similar to the one in the model with perfect recall, and is computed holding fixed

all agents’ strategies by the usual envelope reasoning. Importantly, in a symmetric equilibrium,

the reduction of dispersion of individual actions around the mean action is the same irrespective

of whether one changes only the individual’s allocation of attention or all agents’ allocation of

attention (this observation, which is formally proved in the appendix, will turn out to be important

when comparing the equilibrium with the effi cient allocation of attention).12

The second component reflects the fact that, with bounded recall, not only the second moment

but also the first moment of the distribution of each agent’s own action is affected by the allocation

of attention (this even if one holds fixed the mapping k(·; z#) by usual envelope arguments). The

reason is that a change in the allocation of attention changes the weights δn that the posterior

mean x̄j assigns to the different sources, and hence impacts the first moment of the distribution

of x̄j . The second component in the right-hand side of (15) thus represents the marginal benefit

of bringing an agent’s own average action, which in a symmetric equilibrium coincides with the

average action in the cross-section of the population, closer to the complete-information equilibrium

action. Importantly, note that, while the weight the individual assigns to reducing the dispersion of

his own action around the mean action continues to be given by the curvature of individual payoffs

ukk, the weight the individual assigns to reducing the volatility of his average action around the

12This property was also true in the model with bounded recall. There the result was obvious given that the

distribution of the average action K was independent of the allocation of attention. In contrast, with bounded recall,

the distribution of the average action depends on the allocation of attention, even holding fixed the agents’strategies.

The reason is that the allocation of attention impacts the weights assigned by the posterior means to the various

sources of information and hence the mean of the distribution of the agents’posteriors.
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complete-information equilibrium is given by |ukk|(1−α) = −(ukk+ukK), which takes into account

also the response of the agent’s action to variations in the average action.

The next result specializes the analysis to the case of an improper prior. The role of an improper

prior is to make the sensitivity of the equilibrium actions to the posterior means invariant to the

quality of information (formally, when πθ = 0, γ = 1, irrespective of the allocation of attention).

Because, in practice, the role of a proper prior can be recovered by assuming there exists a source

that is infinitely transparent and hence almost public, the results below do not appear particularly

sensitive to the simplification assumed.

Corollary 3 Assume πθ = 0. In the unique symmetric equilibrium, for any source of information

that receives strictly positive attention

C ′n(z#) =
|ukk| (κ1)2

(πX(z#))
2

η2
ntn(

z#
n tn + ηn

)2

{
1

2
+ α

[
ρn(z#)− ρX(z#)

]}
. (16)

As with perfect recall, an increase in the coordination motive α thus raises the marginal benefit

of increasing the attention allocated to sources of information that are more public than average (i.e.,

for which ρn > ρX) and decreases the benefit of allocating attention to sources that are less public

than average (i.e., for which ρn < ρX). As a result, an increase in the coordination motive induces

the agents to concentrate their attention to a smaller number of information sources. Furthermore,

as one can easily see from (16), any source that receives positive attention is characterized by a

suffi ciently high degree of endogenous publicity, relative to the mean level. Namely, for any source

that receives positive attention

ρn > ρX −
1

2α
.

The next result, which is one the key predictions of the paper, shows how bounded recall

changes the allocation of attention relative to the benchmark with perfect recall.

Proposition 6 Suppose πθ = 0. Let ẑ be the allocation of attention in the unique symmetric

equilibrium of the game with perfect recall. There exists ρ′, ρ′′ with 0 ≤ ρ′ < ρX(ẑ) < ρ′′ ≤ 1 (

ρ′′ < 1 for α large enough) such that, starting from ẑ, any agent with bounded recall is better off by

(a) locally increasing the attention to any source for which ρn(ẑ) ∈ [ρ′, ρ′′] and (b) locally decreasing

the attention to any source for which ρn(ẑ) /∈ [ρ′, ρ′′] .

Recall that the endogenous publicity of a source is given by

ρn(ẑ) =
πn(ẑ)

ηn
=

ẑntn
ẑntn + ηn

.

Sources of low publicity are thus sources whose endogenous precision πn(ẑ) is small relative to the

source’s exogenous accuracy. A low publicity in turn may reflect either a low transparency or little

attention allocated by the agent. The information contained in such sources is thus subject to
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significant idiosyncratic noise. In a world with perfect recall, paying attention to such sources may

however be justified by the source’s high accuracy, which permits the decision maker to forecast

well the underlying fundamentals. With bounded recall, the predictive power of such sources is,

however, diminished by the impossibility to respond separately to variations in the sources’content.

Sources of high publicity are, instead, sources of potentially low accuracy but which receive sig-

nificant attention under full recall because of their transparency. These sources thus serve primarily

as coordination devices. With bounded recall, however, the coordination value of such sources is

again diminished by the impossibility to respond separately to variations in the source’s content. As

a result, bounded recall induces the decision maker to reallocate attention from sources of extreme

publicity to sources of intermediate publicity.

Using the relationship between the equilibrium publicity of a source and its exogenous trans-

parency, the following result translates the conclusions in the previous proposition in terms of

transparency.

Corollary 4 Suppose πθ = 0. Let ẑ be the allocation of attention in the unique symmetric equi-

librium of the game with perfect recall. There exists t′, t′′ ∈ R+ such that, starting from ẑ, any

agent with bounded recall is better off by (a) locally increasing the attention to any source for which

tn ∈ [t′, t′′] and (b) locally decreasing the attention to any source for which tn /∈ [t′, t′′] .

3.3 Effi cient allocation of attention

Now consider the effi cient allocation of attention in the presence of bounded recall. First note

that, because the planner’s problem is concave, it is never optimal to induce different agents to

allocate different attention to the various sources of information. This in turn means that, for any

symmetric allocation of attention z, effi ciency in the agents’actions requires that, for any agent

i ∈ [0, 1], almost any x̄i

ki = k∗∗(x̄i; z) = κ∗0 + κ∗1γ
∗∗(z)x̄i (17)

with

γ∗∗(z) =

 (1−α∗)πX(z)
1−α∗ρX(z)

πθ + (1−α∗)πX(z)
1−α∗ρX(z)

(πθ + πX(z#)

πX(z#)

)
where πX and ρX are as defined above. This implies that, for any z, the maximum welfare that

can be achieved by having the agents follow the rule k∗∗(·; z) defined by (17 (17) is given by

w∗(z) ≡ E[u(κ∗, κ∗, 0, θ)]− L∗(z)− C(z), (18)

where u(κ∗, κ∗, 0, θ) continues to denote welfare under the first-best allocation and where

L∗(z) ≡ |ukk + uσσ|
2

V ar[k −K | z, k∗∗(·; z)] +
|ukk + 2ukK + uKK |

2
V ar[K − κ∗ | z, k∗∗(·; z)]

continues to denote the welfare losses due to incomplete information. Using the fact that |ukk +

2ukK + uKK | = (1− α∗) |ukk + uσσ|, I then have the following result.
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Proposition 7 Suppose that the planner can dictate to the agents how to respond to their posterior

beliefs. Let z∗∗ denote the allocation of attention that maximizes welfare in the presence of bounded

recall. Then, for any source that receives strictly positive attention,

C ′n(z∗∗) = −|ukk + uσσ|
2

∂

∂zn
V ar[k −K | z∗∗, k∗∗(·; z∗∗)]

− (1− α∗) |ukk + uσσ|
2

∂

∂zn
V ar[K − κ∗ | z∗∗, k∗∗(·; z∗∗)]

where all derivatives are computed holding fixed the mapping from the agents’posteriors into their

actions, as given by (17).

To appreciate how bounded recall affects the ineffi ciency in the allocation of attention (as

identified in Propositions 2 and 3 in the previous section), it is useful to consider a diffused prior,

in which case the results are particularly sharp.

Proposition 8 Suppose that the prior is diffused (i.e., πθ = 0). Let z# denote the allocation of

attention in the unique symmetric equilibrium and z∗∗ the allocation of attention that maximizes

welfare when the planner can dictate to the agents how to respond to their posterior beliefs. (a)

The same conclusions as in parts (i) and (iii) of Proposition 3 hold for the comparison between z#

and z∗∗.

(b) Consider economies in which the complete-information actions are first-best effi cient (i.e.,

κ = κ∗) and in which there are no externalities from the dispersion of individual actions (i.e.,

uσσ = 0). Suppose α > α∗. Then, starting from z#, the planner would like the agents to reduce

the attention allocated to sources whose publicity is higher than average (i.e., for which ρn(z#) >

ρX(z#)) and increase the attention allocated to sources whose publicity is lower than average (i.e.,

for which ρn(z#) < ρX(z#)) and for which z#
n > 0 . The opposite conclusion holds for economies

in which α < α∗.

The result in part (a) follows from arguments similar to those for perfect recall. Thus consider

part (b). Note that, under bounded recall, in such economies, the individual actions are always

effi cient (meaning that k∗∗(·; z) = k(·; z), for any z), despite possible discrepancies between the
equilibrium degree of coordination (α) and the effi cient degree of coordination (α∗).13 Furthermore,

because there are no externalities from dispersion (uσσ = 0), the importance that each agent assigns

to reducing the dispersion of her action around the mean action coincides with the importance

assigned by the planner. Possible discrepancies between the private and the social value of increasing

the attention allocated to any given source now originate in the discrepancy between the importance

that the individual and the planner assign to reducing the volatility of the average action around the

complete-information counterpart (which coincides with the first-best allocation by assumption).

As I show in the Appendix, increasing the attention allocated to any given source increases such a

13To see this, note that, when πθ = 0, under bounded recall, γ = 1 = γ∗ for all z, independently of α.
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volatility if the source’s publicity is higher than average and decrease it if it is lower. Now economies

where agents coordinate too much (α > α∗) are also economies in which agents care less than the

planner about reducing such a volatility. As a result, in these economies, the planner would like

the agents to reduce the attention allocated to sources whose publicity is higher than average and

increase the attention to sources whose publicity is lower than average.

4 Conclusions

I compared the equilibrium allocation of attention to the effi cient allocation of attention in a flexible,

yet tractable, model featuring a rich set of payoff interdependencies and an arbitrary number of

information sources differing in their accuracy and transparency. I then examined the effects of

bounded recall, defined to be the inability to keep track of the effects of individual sources on

posterior beliefs.

In future work, it would be interesting to endogenize the agents’ability to recall and examine

how the latter is influenced by the accuracy and transparency of the different sources. It would

also be interesting to extend the analysis to a dynamic setting where agents choose whether or

not to pay additional attention to the various sources as a function of their current beliefs. Both

extensions are challenging but worth examining.

A last word concerns the welfare effects of bounded recall. As it is the case with other distortions

too, equilibrium welfare can be higher with bounded recall because it may induce the agents to

allocate their attention more effi ciently. In future work it would be interesting to characterize the

conditions under which this happens.
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[11] Máckowiak, B. and M. Wiederholt, 2009, Optimal Sticky Prices under Rational Inattention,

American Economic Review, 99, 769-803.
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Appendix

Proof of Proposition 1. When all agents allocate attention z to the various sources of informa-

tion, the continuation game that starts after the agents receive their signals xj and must choose

their actions has a unique continuation equilibrium where all agents follow the linear strategy (4).

This step follows from arguments similar to those that lead to Proposition 3 in Angeletos and Pavan

(2009) and hence the proof is omitted.

Next, let

U j(zj ; ẑ) = E[u(kj ,K, σk, θ)|zj ]− C(zj)

denote agent j’s expected payoff when all agents i 6= j pay attention ẑ to the different sources of

information and then choose their actions according to (4), whereas agent j allocates attention zj

to the various sources and then chooses his actions optimally. It is easy to show that U j(zj ; ẑ) is

continuously right-differentiable in zjn, any n, any (zj ; ẑ), and that, for any zjn > 0 the derivative

∂U j(zj ; ẑ)/∂zjn coincides with the partial derivative of the agent’s expected payoffunder the optimal

(linear) strategy. If follows that, in any symmetric equilibrium, for any source n that receives

positive attention,
∂U j(ẑ; ẑ)

∂zjn
=
ukk
2

∂

∂zjn
V ar[kj −K | ẑ, k(·; ẑ)]− C ′n(ẑ) (19)

where the derivative in the right hand side of (19) is computed holding fixed the mapping k(·; ẑ) from
each agent’s information to his actions, as given by (4). To see this, note that, by usual envelope

arguments, the left hand side of (19) coincides with the partial derivative of the agent’s payoff,

holding fixed the mapping from the agent’s information to his actions and letting this mapping be

given by (4) by optimality. Next observe that, when all agents (including agent j) follow (4), then

U j(zj ; ẑ) = E[u(K,K, σk, θ) | zj , k(·; ẑ)] +
ukk
2
V ar[kj −K | zj , k(·; ẑ)]− C(zj) (20)

where the first term in the right-hand side of (20) is the expected payoff of an agent whose action

coincides with the average action in the population in every state, while the second term is the

ex-ante dispersion of an agent’s action around the mean action. Note that, when all agents follow

the linear strategy in (4) – more generally, when their actions are determined by any linear

mapping of their signals – then the distribution of K is independent of the allocation of attention.

Furthermore, when all agents follow the mapping in (4),

V ar[kj −K | zj , k(·; ẑ)] = κ2
1

∑N

n=1

(γn(ẑ))2

zjntn
.

I conclude that, in any symmetric equilibrium, for any source of information that receives strictly

positive attention, the following optimality condition must hold:

C ′n(ẑ) =
|ukk|

2

(κ1γn(ẑ))2(
ẑjn
)2
tn

.
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By continuity of the right-hand derivative ∂U j+(zj ; ẑ)/∂zjn, I also have that, for any source that

receives no attention, the following optimality condition must hold

C ′n(ẑ) ≥ |ukk|κ2
1(1− α)2tn

2
[
πθ +

∑N
s=1

(1−α)πs(ẑ)
1−αρs(ẑ)

]2 ,

which is equivalent to the condition that ∂U j+(ẑ; ẑ)/∂zjn ≤ 0 at ẑn = 0.

Lastly, to see that the symmetric equilibrium is unique, let U denote the family of quadratic
payoff functions satisfying all the conditions in the model setup. From arguments similar to those

that lead to Proposition 2 in Angeletos and Pavan (2009), one can show that, given any u ∈ U ,
there exists a unique u′ ∈ U such that any symmetric equilibrium of the game where payoffs are

given by u coincides with an effi cient allocation for the economy with payoffs given by u′. That the

effi cient allocation for the economy with payoffs given by u
′
is unique follows from the fact that

the planner’s problem that consists in choosing a vector z ∈ RN+ along with a function k : RN → R
so as to maximize the ex-ante expectation of u′ is strictly concave. This in turn implies that the

symmetric equilibrium for the economy with payoffs given by u is also unique, which establishes

the result. Q.E.D.

Proof of Corollary 1. From Proposition 1, any source that receives strictly positive attention

in equilibrium must satisfy (2). Substituting for

γn(ẑ) =

(1−α)ẑntnηn
(1−α)ẑntn+ηn

πθ +
∑N

l=1
(1−α)ẑltlηl

(1−α)ẑltl+ηl

condition (2) can be rewritten as

ẑn =
ηn√
tn

{
1√
C ′n(ẑ)

√
|ukk|

2

κ1

M1(ẑ)
− 1

(1− α)
√
tn

}
(21)

where

M1(z) ≡ πθ +

N∑
l=1

(1− α)ηlzltl
(1− α)zltl + ηl

> 0. (22)

For the right-hand-side in (21) to be positive, it must be that

tn
C ′n(ẑ)

> R ≡ 2 (M1(ẑ))2

(1− α)2κ2
1|ukk|

, (23)

which establishes the first claim in the Corollary.

Next, I prove that, for any source that receives no attention in equilibrium, condition (23) must

be violated. To see this, suppose that, by contradiction, there exists a source n for which (23) holds

and such that ẑn = 0. Suppose that the individual were to increase locally the attention allocated
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to this source. The continuity of the right-hand derivative of the agent’s payoff ∂U j+(ẑ; ẑ)/∂zjn

implies that the net effect on the agent’s expected payoff is

|ukk|
2

(κ1γn(ẑ))2

(ẑn)2 tn
− C ′n(ẑ) =

|ukk|κ2
1

2

(1− α)2tn

(M1(ẑ))2 − C
′
n(ẑ) > 0,

contradicting the optimality of the equilibrium allocation of attention. Q.E.D.

Proof of Example 1. Suppose that all sources receive strictly positive attention in equilib-

rium. The amount of attention allocated to each source n is then equal to

ẑn =

√
|ukk|κ2

1

2c̄

γn(ẑ)√
tn
. (24)

It follows that the influence of each source n is given by

γn(ẑ) =

√
2c̄

|ukk|κ2
1

√
tnẑn. (25)

Combining the above with the fact that

γn(ẑ) =

(1−α)πn(ẑ)
1−αρn(ẑ)

πθ +
∑N

s=1
(1−α)πs(ẑ)
1−αρs(ẑ)

(26)

I then have that

N∑
n=1

γn(ẑ) =

∑N
s=1

(1−α)πs(ẑ)
1−αρs(ẑ)

πθ +
∑N

s=1
(1−α)πs(ẑ)
1−αρs(ẑ)

=

√
2c̄

|ukk|κ2
1

N∑
n=1

√
tnẑn.

This implies that

πθ +
N∑
s=1

(1− α)πs(ẑ)

1− αρs(ẑ)
=

πθ

1−
√

2c̄
|ukk|κ2

1

∑N
s=1

√
tsẑs

.

Replacing the latter expression into the definition of γn(ẑ) in (26) and using the fact that

(1− α)πn(ẑ)

1− αρn(ẑ)
=

(1− α)ηnẑntn
ẑntn(1− α) + ηn

I then have that

γn(ẑ) =

(1−α)ηnẑntn
ẑntn(1−α)+ηn

πθ

1−
√

2c̄

|ukk|κ2
1

∑N
s=1

√
tsẑs

.

Combining this expression with (24) I then have that

ẑn =

 1

πθ
√

2c̄
|ukk|κ2

1

− 1

πθ

N∑
s=1

√
tsẑs

 1√
tn
ηn −

ηn
(1− α)tn

. (27)
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Multiplying both sides of (27) by
√
tn, summing over n, and rearranging, I then obtain that

1

πθ

N∑
s=1

√
tsẑs =

∑N
s=1 ηs

πθ

√
2c̄

|ukk|κ2
1

− 1
(1−α)

∑N
s=1

ηs√
ts

πθ +
∑N

s=1 ηs
. (28)

Replacing (28) into (27), I conclude that

ẑn =
ηn√

tn(1− α)

(1− α)

√
|ukk|κ2

1
2c̄ +

∑N
s=1

ηs√
ts

πθ +
∑N

s=1 ηs
− 1√

tn


as claimed. Q.E.D.

Proof of Proposition (3). The proof for parts (i) and (iii) follows directly from the results

in Corollary 2. Thus consider part (ii). Note that, in these economies, for any z, and any n,

the discrepancy between the social and the private benefit of increasing the attention allocated to

source n is proportional to the difference14

(γ∗n(z))2

(zn)2 tn
− (γn(z))2

(zn)2 tn
. (29)

Using the expressions for γ and γ∗, the difference in (29) is equal to

m∗(z)
tnη

2
n

[(1− α∗)zntn + ηn]2
−m(z)

tnη
2
n

[(1− α)zntn + ηn]2

where

m(z) ≡ (1− α)2[
πθ +

∑N
l=1

(1−α)zltlηl
(1−α)zltl+ηl

]2 and m
∗(z) ≡ (1− α∗)2[

πθ +
∑N

l=1
(1−α∗)zltlηl

(1−α∗)zltl+ηl

]2 .

It follows that, starting from the equilibrium allocation of attention ẑ, the social benefit of increasing

the attention allocated to source n exceeds the private benefit if and only if

(1− α)ẑntn + ηn
(1− α∗)ẑntn + ηn

≥

√
m(ẑ)

m∗(ẑ)
. (30)

Now note that, when α > α∗, m(ẑ) < m∗(ẑ). This means that the social benefit exceeds the private

benefit for any source that receives no attention in equilibrium. The opposite conclusion holds

when α < α∗. Thus consider sources that receive strictly positive attention in equilibrium. Using

(21),

ẑntn =
ηn
√
tn√

C ′n(ẑ)
Q(ẑ)− ηn

(1− α)
(31)

where

Q(z) ≡
√
|ukk|

2

κ1

M1(z)

14Note that the comparison here applies also to sources that receive no attention, i.e., for which zn = 0.
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with the function M1(·) as defined in (22). Using (31), the left-hand-side of (30) becomes

(1− α)Q(ẑ)
√

tn
C′n(ẑ)

(1− α∗)Q(ẑ)
√

tn
C′n(ẑ)+α∗−α

1−α

which is decreasing in tn/C ′n(ẑ) for α > α∗ and increasing in tn
C′n(ẑ) for α < α∗.

I conclude that, when α > α∗, there exists a critical value R∗ > 0 such that, starting from

the equilibrium allocation of attention ẑ, the planner would like the agents to locally increase the

attention allocated to any source of information that receives positive attention in equilibrium and

such that tn/C ′n(ẑ) < R∗ and decrease the attention allocated to any source that receives positive

attention and for which tn/C ′n(ẑ) > R∗. The opposite conclusions hold for α < α∗.

Lastly, consider the case where C(z) = c(Ẑ) with Ẑ ≡
∑N

s=1 zs and with c(·) strictly increasing,
convex, and continuously differentiable. To prove the two claims in the proposition, note that, in

these economies, the effi cient allocation (z∗, k(·; z∗)) coincides with the equilibrium allocation of

another economy that differs from the original one only in the degree of coordination. It thus

suffi ces to show that the equilibrium total attention Ẑ (as well as the number of sources #N̂ that

receive strictly positive attention in equilibrium) decrease with α.

Let N̂(α) denote the subset of sources that receive strictly positive attention when the equi-

librium degree of coordination is α. Now use the results in the proof of Corollary 1 to see that the

attention allocated in equilibrium to each source n is given by

ẑn(α) =
ηn√

tn(1− α)
max

{
T (α)− 1√

tn
; 0

}
(32)

where

T (α) =
1− α√
c′(Ẑ(α))

√
|ukk|

2

κ1

M1(ẑ(α))
(33)

with

Ẑ(α) =

N∑
l=1

ẑl(α) (34)

and

M1(ẑ(α)) = πθ +

N∑
l=1

(1− α)ηlẑl(α)tl
(1− α)ẑl(α)tl + ηl

. (35)

Combining (32)-(35), we obtain that, for any α, T (α) is the unique solution to the equation

T

1− α

√√√√c′

(
N∑
l=1

ηl√
tl(1− α)

max

{
T − 1√

tl
; 0

})πθ +

N∑
l=1

ηl
√
tl max

{
T − 1√

tl
; 0
}

√
tl max

{
T − 1√

tl
; 0
}

+ 1

 = κ1

√
|ukk|

2
.

(36)

Because the left-hand-side of (36) is increasing in both α and T, we then have that T (α) is decreasing

in α. This means that the critical level of transparency required for each source to receive positive
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attention in equilibrium increases with α. In turn, this implies that that N̂(α′) ⊂ N̂(α) for any

α′ > α, which in turn implies that #N̂(α) decreases with α, as claimed.

Next, to see that the total attention Ẑ(α) also decreases with α, follow steps similar to those

in the proof of Example 1 to see that, for each source n ∈ N̂(α) that receives strictly positive

attention,

ẑn(α) =
ηn√

tn(1− α)


(1− α)

√
|ukk|κ2

1

2c′
(∑

s∈N̂(α) ẑs(α)
) +

∑
s∈N̂(α)

ηs√
ts

πθ +
∑

s∈N̂(α) ηs
− 1√

tn

 .
Holding fixed N̂(α), it follows that

∂ẑn(α)

∂α
= − ηn√

tn

√
|ukk|κ2

1c
′′
(∑

s∈N̂(α) ẑs(α)
)(∑

s∈N̂(α)
∂ẑs(α)
∂α

)
[
2c′
(∑

s∈N̂(α) ẑs(α)
)]3/2 (

πθ +
∑

s∈N̂(α) ηs

) +
ηn
∑

s∈N̂(α)
ηs√
ts

√
tn

(
πθ +

∑
s∈N̂(α) ηs

)
(1− α)2

− ηn

tn (1− α)2 .

Summing over all sources in N̂(α) we then have that

∑
s∈N̂(α)

∂ẑs(α)

∂α
= −


√
|ukk|κ2

1c
′′
(∑

s∈N̂(α) ẑs(α)
)(∑

s∈N̂(α)
∂ẑs(α)
∂α

)
[
2c′
(∑

s∈N̂(α) ẑs(α)
)]3/2 (

πθ +
∑

s∈N̂(α) ηs

)
(∑

s∈N̂(α)

ηn√
tn

)

+

(∑
s∈N̂(α)

ηs√
ts

)2(
πθ +

∑
s∈N̂(α) ηs

)
(1− α)2

−
∑

s∈N̂(α)

ηn

tn (1− α)2 .

Rearranging,

∂
(∑

s∈N̂(α) ẑs(α)
)

∂α

1 +

√
|ukk|κ2

1c
′′
(∑

s∈N̂(α) ẑs(α)
)(∑

s∈N̂(α)
ηn√
tn

)
[
2c′
(∑

s∈N̂(α) ẑs(α)
)]3/2 (

πθ +
∑

s∈N̂(α) ηs

)
 (37)

=

(∑
s∈N̂(α)

ηs√
ts

)2(
πθ +

∑
s∈N̂(α) ηs

)
(1− α)2

−
∑

s∈N̂(α)

ηn

tn (1− α)2 .

Because the term in curly brackets in the left-hand-side of (37) is positive, the sign of ∂
∂α

(∑
s∈N̂(α) ẑs(α)

)
is determined by the sign of the right-hand-side of (37) which in turn coincides with the sign of the

following expression (∑
s∈N̂(α)

ηs√
ts

)2

πθ +
∑

s∈N̂(α) ηs
−
∑

s∈N̂(α)

ηn
tn
. (38)

Hereafter, we show that(∑
j∈N̂(α)

ηj√
tj

)2

−
(∑

j∈N̂(α)

ηj
tj

)(∑
j∈N̂(α)

ηj

)
≤ 0
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which implies that the sign of (38) is always negative.

To see this, it suffi ces to note that ∑
s∈N̂(α)

ηs√
ts

2

−

 ∑
s∈N̂(α)

ηs
ts

 ∑
s∈N̂(α)

ηs

 =
∑

s∈N̂(α)

η2
s

ts
+

∑
s∈N̂(α)

∑
k∈N̂(α),k 6=s

ηsηk√
ts
√
tk

−
∑

s∈N̂(α)

η2
s

ts
−

∑
s∈N̂(α)

∑
k∈N̂(α),k 6=s

ηsηk
ts

=
∑

s,k∈N̂(α),k 6=s

[
ηsηk

(
2√
tstk
− 1

ts
− 1

tk

)]
< 0.

Along with the property established above that N̂(α′) ⊂ N̂(α) for any α′ > α, this result

implies that Ẑ(α) decreases with α. Q.E.D.

Derivation of Condition (13). I start by noting that, for any given z, welfare under the

equilibrium strategy k(·; z) is given by (see Angeletos and Pavan (2007)):

w(z) ≡ E[u(k,K, σk, θ) | z, k(·; z)]− C(z) = E[W (κ, 0, θ)]− L(z)− C(z), (39)

where W (K, 0, θ) ≡ u(K,K, 0, θ) is the payoff that each agent obtains when all agents take the

same action (W (κ, 0, θ) is thus welfare under the complete-information equilibrium allocation κ =

κ0 + κ1θ), whereas

L(z) ≡ |ukk + uσσ|
2

· V ar[k −K | z, k(·; z)] +
|ukk + 2ukK + uKK |

2
· V ar[K − κ | z, k(·; z)]

− Cov [K − κ,WK(κ, 0, θ) | z, k(·; z)]

are the welfare losses due to incomplete information. The first two terms in L measure the welfare
losses due to, respectively, the dispersion of individual actions around the aggregate action and

the volatility of the aggregate action around its complete-information counterpart. The last term

captures losses (or gains) due to the correlation between the ‘aggregate error’due to incomplete

information, K − κ, and WK , the social return to aggregate activity. Following steps similar to

those in Angeletos and Pavan (2007) one can show that:

Cov [K − κ,WK(κ, 0, θ) | z, k(·; z)] = |ukk + 2ukK + uKK |κ2
1

(
κ∗1 − κ1

κ1

)
[
∑

nγn(z)− 1]

πθ
,

V ar[K − κ | z, k(·; z)] = κ2
1

[∑N
s=1γs(z)− 1

]2

πθ
+
∑N

s=1

(κ1γs(z))
2

ηs
,

and

V ar[k −K | z, k(·; z)] =

N∑
s=1

(κ1γs(z))
2

zsts
.
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Welfare under the equilibrium strategy k(·; z) can thus be expressed as

w(z) = E[W (κ, 0, θ)]

− |ukk + uσσ|κ2
1

2
·
{

N∑
s=1

(γs(z))
2

zsts

}

− |ukk + 2ukK + uKK |κ2
1

2
·


[∑N

s=1γs(z)− 1
]2

πθ
+
∑N

s=1

(γs(z))
2

ηs


+ |ukk + 2ukK + uKK |κ2

1 ·
(
κ∗1 − κ1

κ1

)
·
∑N

s=1γs(z)− 1

πθ
− C(z).

The (gross) marginal effect on welfare of an increase in the attention allocated to the n-th source

is thus equal to

|ukk + uσσ|
2

(κ1γn(z))2

(zn)2 tn
− |ukk + uσσ|κ2

1 ·
{

N∑
s=1

γs(z)

zsts

∂γs(z)

∂zn

}
(40)

− |ukk + 2ukK + uKK |κ2
1


[∑N

s=1γs(z)− 1
] (∑N

s=1
∂γs(z)
∂zn

)
πθ

+
∑N

s=1

γs(z)

ηs

∂γs(z)

∂zn


+
|ukk + 2ukK + uKK |κ2

1

πθ

(
κ∗1 − κ1

κ1

){∑N
s=1

∂γs(z)

∂zn

}
.

Substituting |ukk + 2ukK + uKK | = (1 − α∗)|ukk + uσσ|, I can rewrite the sum of the second and

third addendum in (40) as

− |ukk + uσσ|κ2
1

(1− α∗)
[∑N

s=1γs(z)− 1
] (∑N

s=1
∂γs(z)
∂zn

)
πθ

+
∑N

s=1

[
1− α∗
ηs

+
1

zsts

]
γs
∂γs(z)

∂zn


= −|ukk + uσσ|κ2

1

∑N
s=1


[

1−α∗
ηs

+ 1
zsts

]
(1−α)πs(z)
1−αρs(z) − (1− α∗)

πθ +
∑N

n=1
(1−α)πn(z)
1−αρn(z)

 ∂γs(z)

∂zn

 .

Using

πs(z) ≡
ηszsts
zsts + ηs

and ρs(z) =
zsts

zsts + ηs

I then have that [
1− α∗
ηs

+
1

zsts

]
(1− α)πs(z)

1− αρs(z)
− (1− α∗)

=
[(1− α∗)zsts + ηs] (1− α)

[(1− α)zsts + ηs]
− [(1− α)zsts + ηs] (1− α∗)

[(1− α)zsts + ηs]

=
[(1− α∗)zsts + ηs] (1− α)− [(1− α)zsts + ηs] (1− α∗)

[(1− α)zsts + ηs]

= − ηs(α− α∗)
[(1− α)zsts + ηs]

.
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The sum of the second and third addendum in (40) can thus be rewritten as

|ukk + uσσ|κ2
1(α− α∗)

∑N
s=1

 ηs

[(1− α)zsts + ηs]
[
πθ +

∑N
n=1

(1−α)πn(z)
1−αρn(z)

]
 ∂γs(z)

∂zn

 .

Next, note that
ηs

[(1− α)zsts + ηs]
[
πθ +

∑N
n=1

(1−α)πn(z)
1−αρn(z)

] =
γs(z)

(1− α)zsts
.

I conclude that the gross marginal benefit of increasing the attention allocated to the n-th source

is given by

|ukk + uσσ|
2

(κ1γn(z))2

(zn)2 tn
+ |ukk + uσσ|κ2

1(α− α∗)
{∑N

s=1

(
γs(z)

(1− α)zsts

)
∂γs(z)

∂zn

}
+
|ukk + 2ukK + uKK |κ2

1

πθ

(
κ∗1 − κ1

κ1

){∑N
s=1

∂γs(z)

∂zn

}
.

Q.E.D.

Proof of Proposition 4. Consider first part (b). Using (13), note that, in these economies,

the net benefit of inducing the agents to pay more attention to source n is given by

∂w(ẑ)

∂zn
=
|ukk|

2

(κ1γn(ẑ))2

(ẑn)2 tn
+ |ukk|κ2

1(α− α∗)
{∑N

s=1

(
γs(ẑ)

(1− α)ẑsts

)
∂γs(ẑ)

∂zn

}
− C ′n(ẑ).

Using the fact that the private net marginal benefit is equal to

|ukk|
2

(κ1γn(ẑ))2

(ẑn)2 tn
− C ′n(ẑ)

I then have that the social benefit exceeds the private benefit if and only if

sign {α− α∗} = sign

{∑N

s=1

(
γs(ẑ)

(1− α)ẑsts

)
∂γs(ẑ)

∂zn

}
.

Next, observe that∑N

s=1

(
γs(ẑ)

(1− α)ẑsts

)
∂γs(ẑ)

∂zn

= −
∑N

s=1

 γs(ẑ)

(1− α)ẑsts

(1−α)ηsẑsts
(1−α)ẑsts+ηs(

πθ +
∑N

l=1
(1−α)ηlẑltl

(1−α)ẑltl+ηl

)2

∂

∂zn

(
(1− α)ηnẑntn

(1− α)ẑntn + ηn

)
+

γn(ẑ)

(1− α)ẑntn

∂
∂zn

(
(1−α)ηnẑntn

(1−α)ẑntn+ηn

)
πθ +

∑N
l=1

(1−α)ηlẑltl
(1−α)ẑltl+ηl

=

∂
∂zn

(
(1−α)ηnẑntn

(1−α)ẑntn+ηn

)
πθ +

∑N
l=1

(1−α)ηlẑltl
(1−α)ẑltl+ηl

{
γn(ẑ)

(1− α)ẑntn
−
∑N

s=1

(
(γs(ẑ))

2

(1− α)ẑsts

)}
.
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Clearly,
∂
∂zn

(
(1−α)ηnẑntn

(1−α)ẑntn+ηn

)
πθ +

∑N
l=1

(1−α)ηlẑltl
(1−α)ẑltl+ηl

> 0.

Hence,

sign

{∑N

s=1

(
γs(ẑ)

(1− α)ẑsts

)
∂γs(ẑ)

∂zn

}
= sign

{
γn(ẑ)

(1− α)ẑntn
−
∑N

s=1

(
(γs(ẑ))

2

(1− α)ẑsts

)}
.

This means that the social benefit exceeds the private benefit if and only if

sign {α− α∗} = sign

{
γn(ẑ)

(1− α)ẑntn
−M0(ẑ)

}
,

where M0(z) ≡
∑N

s=1

(
(γs(z))2

(1−α)zsts

)
> 0 does not depend on the source of information. Now observe

that
γn(ẑ)

(1− α)ẑntn
=

ηn
(1− α)ẑntn + ηn

1

M1(ẑ)

whereM1(·) is the function defined in (22). Lastly use (2) to note that, for any source that receives
positive attention in equilibrium,

(1− α)ẑntn + ηn = M2(ẑ)

√
tnη2

n

C ′n(ẑ)

where M2(z) ≡
√
|ukk|κ2

1(M1(z))2(1−α)2

2 . I conclude that there exists a constant

M(ẑ) ≡ [M0(ẑ)M1(ẑ)M2(ẑ)]2 > 0

such that

sign

{
γn(ẑ)

(1− α)ẑntn
−M0(ẑ)

}
= sign

{
C ′n(ẑ)

tn
−M(ẑ)

}
.

The result in the proposition then follows.

Next, consider part (a). The result for the economies that are effi cient in their use of information

follows directly from Proposition 3, given that, in these economies, the impossibility to dictate to

the agents how to use their information is inconsequential. The result for the economies where the

ineffi ciency in the allocation of attention originates in the ineffi ciency of the complete-information

actions follows from (13) along with the fact that, in these economies,15

∂w(ẑ)

∂zn
=
|ukk|

2

(κ1γn(ẑ))2

(ẑn)2 tn
+
|ukk + 2ukK + uKK |κ2

1

πθ

(
κ∗1 − κ1

κ1

){∑N
s=1

∂γs(z)

∂zn

}
− C ′n(ẑ)

and the fact that ∑N

s=1
γs(z) =

1
πθ∑N

s=1
(1−α)ηszsts

(1−α)zsts+ηs

+ 1

15 If ẑn = 0, then interpret the derivative as the right-hand derivative.
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is increasing in zn. Q.E.D.

Proof of Proposition 5. First I prove that, when all agents assign attention z to the various

sources of information, the continuation game that starts when the agents, after observing their

posterior beliefs, must choose their actions has a unique continuation equilibrium where all agents

follow the linear strategy

ki = k(x̄i; z) = κ0 + κ1γ(z)x̄i. (41)

To see this, recall that observing the posterior mean x̄i is informationally equivalent to observing

the signal
x̄i∑N

n=1 δn(z)
=

(
πX(z) + πθ
πX(z)

)
x̄i ≡ θ +

∑N

n=1

πn(z)

πX(z)
(εn + ξin)

with precision πX(z) ≡
∑N

s=1 πs(z) and with an error whose correlation across any pair of agents

i, j ∈ [0, 1], j 6= i, is given by

ρX(z) ≡ Corr
(∑N

n=1

πn(z)

πX(z)
(εn + ξjn);

∑N

n=1

πn(z)

πX(z)
(εn + ξin)

)
=
∑N

s=1

(
πs(z)

πX(z)

)
ρs(z).

This game is isomorphic to the one in Section 2, with the only difference that each agent receives

a single signal. From Proposition 1 I then have that, in the unique continuation equilibrium,

individual actions are given by (41).

Next, I characterize the allocation of attention in any symmetric equilibrium. To this purpose,

suppose that all agents i 6= j assign attention zi = z to the different sources of information and

then use (41) to determine their actions. Let U j(zj ; z) denote the payoff of agent j when he assigns

attention zj to the different sources and then chooses optimally the mapping from his posterior

into his actions. Using the envelope theorem, in any symmetric equilibrium, for any source for

which z#
n > 0, ∂U j(z#; z#)/∂zjn must coincide with the partial derivative of the agent’s expected

payoff with respect to zjn, holding fixed the mapping k(·; z#) from the agent’s posterior means to

his actions and letting this mapping be the one in (41).16

Next observe that, when all agents (including agent j) follow (41), then

U j(zj ; z) = E[u(K,K, σk, θ) | zj , z] + E[uk(K,K, σk, θ)(k
j −K) | zj , z]

+
ukk
2
E[
(
kj −K

)2 | zj , z]− C(zj)

where the first term in the right-hand side of (20) is the expected payoff of an agent whose ac-

tion coincides with the average action in the population in every state. Importantly, note that,

because the mapping k(·; z) is kept fixed, E[u(K,K, σk, θ) | zj , z] is independent of the agent’s own
16Furthermore, for any source for which z#

n = 0, the right-hand derivative ∂U j+(z
#; z#)/∂zjn must coincide with

the limit for zn → 0+ of the derivative ∂U j((zn, z
#
−n); (zn, z

#
−n))/∂z

j
n by continuity of the right-hand derivative.
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information and that all expectations are computed assuming all agents’actions are determined by

following the linear strategy in (41).

Next observe that

E[
(
kj −K

)2 | zj , z] = E[
(
kj −Kj

)2
+ (Kj −K)2 + 2

(
kj −Kj

)
(Kj −K) | zj , z]

where Kj ≡ E[kj | (θ, ε), zj ] denotes the agent’s own average action given (θ, ε), when his attention

is zj . Using the fact that, for any z and zj , kj − Kj = κ1γ(z)
{∑

nδn(zj)ξjn
}
is orthogonal to

Kj −K = κ1γ(z)
{∑

n(δn(zj)− δn(z))(θ + εn)
}
, I then have that

∂

∂zjn
E[
(
kj −K

)2 | z, z] =
∂

∂zjn
E[
(
kj −Kj

)2 | z, z] +
∂

∂zjn
E[
(
Kj −K

)2 | z, z]
=

∂

∂zjn
E[
(
kj −Kj

)2 | z, z] =
∂

∂zn
V ar [k −K | z, k(·; z)]

where all derivatives are computed holding fixed the agents’strategies, as given by (41). Note that

the second equality follows from the fact that, at a symmetric equilibrium (i.e., for zj = z),

∂

∂zjn
E[
(
Kj −K

)2 | z, z] = 0

whereas the third equality uses the fact that, in a symmetric equilibrium, the dispersion of each

agent’s action around his own average action coincides with the dispersion of each agent’s action

around the mean action in the cross-section of the population (in the notation for such dispersion,

I explicitly write the strategy k(·; z) to make clear that the distribution of individual and aggregate
actions is obtained by letting the agents follow the mapping in (41)). Importantly, note that the

derivative
∂

∂zn
V ar [k −K | z, k(·; z)]

is again computed holding fixed the agents’ strategies and takes into account the fact that, an

increase in zn affects the dispersion of individual actions both directly by changing the distribution

of xj and indirectly by changing the weights δs(z) in the agents’posterior means.

Finally, consider the term E[uk(K,K, σk, θ)(k
j −K) | zj , z]. Using the fact that

uk(K,K, σk, θ) = uk(κ, κ, 0, θ) + (ukk + ukK) (K − κ),

along with the fact that uk(κ, κ, 0, θ) = 0 by definition of the complete-information equilibrium, I

then have that

E[uk(K,K, σk, θ)(k
j −K) | zj , z] = (ukk + ukK) · E[(K − κ)(kj −K) | zj , z]

= (ukk + ukK) · E[(K − κ)(Kj −K) | zj , z]
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where the second equality uses the fact that kj −Kj is orthogonal to K − κ. Now observe that

∂

∂zjn
E[(K − κ)(Kj −K) | z, z] = E

[
(K − κ)

∂(Kj −K)

∂zjn
| z, z

]
= κ1γ(z)E

[
(K − κ)

(
N∑
s=1

∂δs(z)

∂zn
(θ + εs)

)
| z, z

]

= κ2
1γ(z) · Cov

[(
γ(z)

N∑
s=1

δs(z) (θ + εs)− θ
)

;

(
N∑
s=1

∂δs(z)

∂zn
(θ + εs)

)
| z, z

]

= κ2
1γ(z) ·

{(
γ(z)

N∑
s=1

δs(z)− 1

)(
N∑
s=1

∂δs(z)

∂zn

)
1

πθ
+ γ(z)

N∑
s=1

(
δs(z)

∂δs(z)

∂zn

)
1

ηs

}
.

Let ∂
∂zn

V ar [K − κ | z, k(·; z)] denote the marginal change in the dispersion of K around κ that

obtains when one changes the attention allocated to the n-th source, holding fixed the strategy in

(41). Then observe that

1

2

∂

∂zn
V ar [K − κ | z, k(·; z)] (42)

=
1

2

∂

∂zn
V ar

[
κ1

(
γ(z)

N∑
s=1

δs(z) (θ + εs)− θ
)
| z, k(·; z)

]

=
κ2

1

2

∂

∂zn
V ar

[(
γ(z)

N∑
s=1

δs(z)− 1

)
θ + γ(z)

N∑
s=1

δs(z)εs

]

=
κ2

1

2

∂

∂zn

(γ(z)

N∑
s=1

δs(z)− 1

)2
1

πθ
+ (γ(z))2

N∑
s=1

δs(z)
2 1

ηs


= κ2

1γ(z)

{(
γ(z)

N∑
s=1

δs(z)− 1

)(
N∑
s=1

∂δs(z)

∂zn

)
1

πθ
+ γ(z)

N∑
s=1

(
δs(z)

∂δs(z)

∂zn

)
1

ηs

}

=
∂

∂zjn
E[(K − κ)(Kj −K) | z, z].

Combining the different pieces and using the fact that |ukk|(1−α) = −(ukk +ukK), I conclude

that

∂U j(z; z)

∂zjn
= −|ukk|

2

∂

∂zn
V ar [k −K | z, k(·; z)] (43)

− |ukk|
2

(1− α)
∂

∂zn
V ar [K − κ | z, k(·; z)]− C ′n(z).

Clearly, in any symmetric equilibrium, for any source of information n = 1, ..., N that receives

strictly positive attention, it must be that the above derivative vanishes, which yields (15) in the

main text.

Finally, the uniqueness of the symmetric equilibrium follows from arguments similar to those

that establish uniqueness in the model with perfect recall; the proof is thus omitted for brevity.

Q.E.D.
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Proof of Corollary 3. The proof consists in expressing the various terms in (15) as a function

of the parameters of the information structure. To simplify the exposition, hereafter I drop z from

the arguments of the various functions when there is no risk of confusion.

First observe that

∂

∂zn
V ar [k −K | z, k(·; z)] = (κ1γ)2 ∂

∂zn
V ar

(
N∑
s=1

δsξs

)
.

Next observe that

∂

∂zn
V ar

(
N∑
s=1

δsξs

)
=

∂

∂zn

[
N∑
s=1

δ2
s

tszs

]
=

N∑
s=1

2δs
tszs

∂δs
∂zn
− δ2

n

tnz2
n

= 2
N∑
s6=n

δs
tszs

∂δs
∂zn

+ 2
δn
tnzn

∂δn
∂zn
− δ2

n

tnz2
n

= −2
N∑
s 6=n

δs
tszs

πs
∂πn
∂zn

(πθ + πX)2
+ 2

δn
tnzn

(
−

πn
∂πn
∂zn

(πθ + πX)2
+

∂πn
∂zn

πθ + πX

)
− δ2

n

tnz2
n

= −2
∂πn
∂zn

(πθ + πX)2

N∑
s=1

δsπs
tszs

+ 2
δn
tnzn

∂πn
∂zn

πθ + πX
− δ2

n

tnz2
n

= −2
∂πn
∂zn

(πθ + πX)2

(
N∑
s=1

δsπs
tszs

− δn
tnzn

(πθ + πX)

)
− δ2

n

tnz2
n

= −2
∂πn
∂zn

(πθ + πX)2

(
πX

πθ + πX

N∑
s=1

πs
πX

πs
tszs
− πn
tnzn

)
− πn

(πθ + πX)2

πn
tnzn

1

zn
.

Now recall that πs = ηszsts
zsts+ηs

, which means that πs
tszs

= ηs
zsts+ηs

and that ∂πn
∂zn

= πn
zn

πn
tnzn

. I thus

have that

∂

∂zn
V ar

(
N∑
s=1

δsξs

)
=

−2

(πθ + πX)2

πn
tnzn

πn
zn

[
πX

πθ + πX

N∑
s=1

(
πs
πX

)
πs
tszs
− πn
tnzn

]
− 1

(πθ + πX)2

πn
tnzn

πn
zn

= − 1

(πθ + πX)2

η2
ntn

(zntn + ηn)2

{
1 + 2

[
πX

πθ + πX

N∑
s=1

(
πs
πX

)
ηs

zsts + ηs
− ηn
zntn + ηn

]}
.

This means that

− |ukk|
2

∂

∂zn
V ar [k −K | z, k(·; z)]

=
|ukk| (κ1γ)2

2 (πθ + πX)2

η2
ntn

(zntn + ηn)2

{
1 + 2

[
πX

πθ + πX

N∑
s=1

(
πs
πX

)
ηs

zsts + ηs
− ηn
zntn + ηn

]}
.

Next, use (42) to observe that

− |ukk|(1− α)

2

∂

∂zn
V ar [K − κ | z, k(·; z)]

= −|ukk|(1− α)κ2
1γ

{(
γ

N∑
s=1

δs − 1

)(
N∑
s=1

∂δs
∂zn

)
1

πθ
+ γ

N∑
s=1

(
δs
∂δs
∂zn

)
1

ηs

}
.

Note that

N∑
s=1

∂δs
∂zn

=
∂πn
∂zn

πθ

(πX + πθ)
2 and that γ

N∑
s=1

δs − 1 =
γπX

πX + πθ
− 1 = −(1− γ)πX + πθ

πX + πθ
.
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Hence (
γ

N∑
s=1

δs − 1

)(
N∑
s=1

∂δs
∂zn

)
1

πθ
= −(1− γ)πX + πθ

(πX + πθ)
3

∂πn
∂zn

.

Also note that

γ
N∑
s=1

(
δs
∂δs
∂zn

)
1

ηs
= γ

N∑
s=1

(
∂δs
∂zn

)
ρs

πθ + πX
= −γ ∂πn

∂zn

N∑
s=1

(
πsρs

(πθ + πX)3

)
+ γ

∂πn
∂zn

ρn

(πθ + πX)2 .

It follows that

− |ukk|(1− α)

2

∂

∂zn
var [K − κ | z, k(·; z)]

= −|ukk|(1− α)κ2
1γ

{
−(1− γ)πX + πθ

(πX + πθ)
3

∂πn
∂zn
− γ ∂πn

∂zn

N∑
s=1

(
πsρs

(πθ + πX)3

)
+ γ

∂πn
∂zn

ρn

(πθ + πX)2

}

= |ukk|(1− α)κ2
1γ

2
∂πn
∂zn

(πX + πθ)
2

{
(1− γ)πX + πθ

(πX + πθ) γ
−
(
ρn −

πX
πθ + πX

ρX

)}
=
|ukk|(1− α)κ2

1γ
2

(πX + πθ)
2

η2
ntn

(zntn + ηn)2

{
(1− γ)πX + πθ

(πX + πθ) γ
−
(
ρn −

πX
πθ + πX

ρX

)}
.

I conclude that, in any symmetric equilibrium, for any source that receives strictly positive attention

C ′n(z) =
|ukk| (κ1γ)2

(πθ + πX)2

η2
ntn

(zntn + ηn)2

{
1

2
+

πX
πθ + πX

N∑
s=1

(
πs
πX

)
ηs

zsts + ηs
− ηn
zntn + ηn

}

+
|ukk|(1− α) (κ1γ)2

(πX + πθ)
2

η2
ntn

(zntn + ηn)2

{
(1− γ)πX + πθ

(πX + πθ) γ
+

πX
πθ + πX

ρX − ρn
}

or, equivalently,

C ′n(z) =
|ukk| (κ1γ)2

(πθ + πX)2

η2
ntn

(zntn + ηn)2

{
−1

2
+

πX
πθ + πX

+
(1− γ)πX + πθ

(πX + πθ) γ

}
− α |ukk| (κ1γ)2

(πθ + πX)2

η2
ntn

(zntn + ηn)2

{
(1− γ)πX + πθ

(πX + πθ) γ
+

πX
πθ + πX

ρX − ρn
}

When πθ = 0, γ = 1 and the above reduces to

C ′n(z) =
|ukk| (κ1)2

(πX)2

η2
ntn

(zntn + ηn)2

{
1

2
+ α (ρn − ρX)

}
.

Q.E.D.

Proof of Proposition 6. From Proposition 1, one can see that, with perfect recall, the gross

benefit of increasing (locally) the attention to any source of information, around the equilibrium

level ẑn, is given by (again, I drop the dependence of the various functions on z when there is no
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risk of confusion):

|ukk| (κ1)2

2

1

(ẑn)2 tn

(
π̂n

1−αρ̂n∑N
s=1

π̂s
1−αρ̂s

)2

(44)

=
|ukk| (κ1)2

2 (π̂X)2

(ηnẑntn)2

(ẑntn + ηn)2 (ẑn)2 tn

1

(1− αρ̂n)2
(∑N

s=1
π̂s
π̂X

1
1−αρ̂s

)2

=
|ukk| (κ1)2

2 (π̂X)2

η2
ntn

(ẑntn + ηn)2

1

(1− αρ̂n)2
(∑N

s=1
π̂s
π̂X

1
1−αρ̂s

)2

where

π̂X ≡
∑N

s=1
π̂s, π̂s ≡

ηsẑsts
ẑsts + ηs

and ρ̂s ≡
π̂s
ηs
.

From (16), one can also see that, starting from ẑ, the gross benefit of increasing (locally) the

attention to the n-th source for an agent with bounded recall is given by

|ukk| (κ1)2

2 (π̂X)2

η2
ntn

(ẑntn + ηn)2 {1 + 2α (ρ̂n − ρ̂X)} (45)

where ρ̂X ≡
∑N

s=1
π̂s
π̂X
ρ̂s. Comparing (44) with (45), it is then easy to see that the gross benefit is

larger in the presence of bounded recall if

1 + 2α (ρ̂n − ρ̂X) >
1

(1− αρ̂n)2
(∑N

s=1
π̂s
π̂X

1
1−αρ̂s

)2 (46)

and lower if the inequality is reversed. Now, let f(ρ) the function defined by

f(ρ) ≡ 1

1− αρ

and note that this function is convex. By Jensen inequality, it then follows that

N∑
s=1

π̂s
π̂X

1

1− αρ̂s
>

1

1− αρ̂X
.

Furthermore, fixing the term
N∑
s=1

π̂s
π̂X

1

1− αρ̂s
,

the function
1

(1− αρ̂n)2
(∑N

s=1
π̂s
π̂X

1
1−αρ̂s

)2

in the right-hand-side of (46) is convex in ρ̂n.

The properties above imply that, for ρ̂n = ρX , the inequality in (46) holds. Along with the

fact that the left-hand-side of (46) is linear in ρ̂n and the right-hand-side is convex in ρ̂n, they also
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imply that there exist ρ′, ρ′′ ∈ [0, 1] with 0 ≤ ρ′ < ρ̂X < ρ′′ ≤ 1 such that the inequality in (46)

holds if and only if ρ̂n ∈ [ρ′, ρ′′]. Lastly note that, when α = 1, the inequality in (46) is reversed for

ρ close to 1. By continuity, I then have that ρ′′ < 1 for α large enough. Likewise, one can verify

that, for α large enough, the inequality in (46) can be reversed when evaluated at ρn close to zero.

This means that there can be situations in which ρ′ > 0 for α large enough. Q.E.D.

Proof of Corollary 4. The result follows from Proposition 6 along with the fact that, when

the attention cost depends only on total attention, there is a monotone relationship between the

exogenous transparency of the sources and their endogenous publicity. Namely, if tn > tn′ , then

δn(ẑ) ≥ δn′(ẑ). The proof follows from arguments similar to those in Proposition 5 in Myatt and

Wallace and is thus omitted. Q.E.D.

Proof of Proposition 7. The result follows directly from applying the envelope theorem to

the welfare function under the effi cient actions, as given in (18). Q.E.D.

Proof of Proposition 8. Using the derivations in the proof of Corollary 3, the private benefit

of increasing the attention allocated to any source of information is given by

|ukk| (κ1)2

(πX)2

η2
ntn

(zntn + ηn)2

{
1

2
+ α (ρn − ρX)

}
(47)

where I drop the dependence of πX , ρn and ρX on z to ease the exposition. Because γ(z) = γ∗∗(z) =

1 for all z, when πθ = 1, following steps similar to those in the proof of proof of Corollary 3, it is

then easy to see that the social benefit of increasing the attention allocated to any source is given

by
|ukk + uσσ| (κ∗1)2

(πX)2

η2
ntn

(zntn + ηn)2

{
1

2
+ α∗ (ρn − ρX)

}
. (48)

The results in the proposition then follows by comparing (47) with (48). Q.E.D.
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