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Abstract

We develop a novel geometric approach to mechanism design using an important result
in convex analysis: the duality between a closed convex set and its support function. By
deriving the support function for the set of feasible interim values we extend the well-
known Maskin–Riley–Matthews–Border conditions for reduced-form auctions to social
choice environments. We next refine the support function to include incentive constraints
using a geometric characterization of incentive compatibility. Borrowing results from ma-
jorization theory that date back to the work of Hardy, Littlewood, and Pólya (1929) we
elucidate the “ironing” procedure introduced by Myerson (1981) and Mussa and Rosen
(1978). The inclusion of Bayesian and dominant strategy incentive constraints result in
the same support function, which establishes equivalence between these implementation
concepts. Using Hotelling’s lemma we next derive the optimal mechanism for any social
choice problem and any linear objective, including revenue and surplus maximization.
We extend the approach to include general concave objectives by providing a fixed-point
condition characterizing the optimal mechanism. We generalize reduced-form implemen-
tation to environments with multi-dimensional, correlated types, non-linear utilities, and
interdependent values. When value interdependencies are linear we are able to include in-
centive constraints into the support function and provide a condition when the second-best
allocation is ex post incentive compatible.
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1. Introduction

Mechanism design concerns the creation of optimal social systems by maximizing a well-defined

social welfare function taking into account resource constraints and participants’ incentives and

hidden information. It provides a framework to address questions like “what auction format

assigns goods most efficiently or yields the highest seller revenue” and “when should a public

project such as building a highway be undertaken?” The difficulty in answering these questions

stems from the fact that the designer typically does not possess detailed information about

bidders’ valuations for the goods or about voters’ preferences for the public project. A well-

designed mechanism should therefore elicit participants’ private information in a truthful, or

incentive compatible, manner and implement the corresponding social optimum.

The constraints imposed by incentive compatibility are generally treated separately from

other more basic constraints, such as resource constraints. As a result, mechanism design theory

appears to have developed differently from classical approaches to consumer and producer choice

theory despite some obvious parallels. For example, in producer choice theory, the firm also

maximizes a well-defined objective, its profit, over a feasible production set that reflects its

resource constraints. A well-known result is that a firm’s optimal production plan follows

by evaluating the gradient of the profit function at output and factor prices – Hotelling’s

lemma. One contribution of this paper is to draw a parallel between classical choice theory and

mechanism design by showing how standard micro-economics tools such as Hotelling’s lemma

can be used to derive optimal mechanisms.

Our approach is geometric in nature and utilizes convexity of the set of feasible outcomes,

which consists of a collection of probability simplices, one for each type profile. To conveniently

parameterize this high-dimensional set we employ techniques from convex analysis, a subfield

of mathematics that studies properties of convex sets and functions. A key result in convex

analysis is the duality between a closed convex set and its support function, which is convex

and homogeneous of degree one (e.g. a firm’s profit function). We exploit this duality to derive,

in a surprisingly simple manner, the support function of the feasible set for a general class of

social choice problems.

Despite this simplicity, our geometric approach provides a powerful new perspective on

reduced form implementation. Maskin and Riley (1984) first noted that with risk-averse bidders

the optimal mechanism typically cannot be found by point-wise maximization but instead

requires maximization over the set of interim allocation rules. This raises the issue of reduced

form implementation: “which interim allocation rules are implementable, i.e. for which interim
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allocation rule does there exist an ex post allocation rule that generates it?” For the symmetric

case, Matthews (1984) provided a set of inequalities and conjectured they were both necessary

and sufficient, a conjecture that was subsequently proven by Border (1991).1 Our geometric

approach clarifies the origin of the so called “Maskin-Riley-Matthews-Border” conditions. They

are standard duality inequalities for the set of interim feasible allocations. Importantly, our

approach generalizes these conditions to arbitrary social choice problems.2

We next refine the support function to include incentive constraints using a geometric

characterization of incentive compatibility. Borrowing results from majorization theory due to

Hardy, Littlewood, and Pólya (1929) we provide a reinterpretation of the “ironing” procedure

introduced by Mussa and Rosen (1978) and Myerson (1981). We show that the support function

for the set of feasible and incentive compatible outcomes is simply the support function for the

feasible set, evaluated at ironed weights.3

A major question in mechanism design is whether dominant strategy incentive compati-

bility is more stringent than Bayesian incentive compatibility. For example, does requiring

dominant strategies limit a seller’s revenue? A recent contribution by Manelli and Vincent

(2010) shows that for the special case of single-unit, independent private-value auctions the

answer is negative: Bayesian incentive compatibility and dominant strategy incentive compat-

ibility are equivalent in this setting. Gershkov et al. (2013) extend this equivalence result to

social choice environments by generalizing a theorem due to Gutmann et al. (1991).4 Here

we provide a simpler proof by showing that the support functions of the sets of interim values

under Bayesian and dominant-strategy incentive compatibility are identical.

Using the support function for the set of feasible and incentive compatible outcomes we

derive the optimal mechanism by applying Hotelling’s lemma. In particular, we determine the

optimal allocation for any social choice problem and any linear objective and show that the

optimal allocation can be implemented in dominant strategies. As an illustration, we determine

1Extensions to asymmetric bidders were first provided by Border (2007), see also Mierendorff (2011) and
Che et al. (2010). Alternative approaches can be found in Che, Mierendorff, and Kim (2011) who study
reduced-form auctions in terms of network flow problems, Hart and Reny (2011) who characterize reduced-
form auctions using second-order stochastic dominance, and Vohra (2011) who employs a linear-programming
approach to reduced-from auctions.

2Economics papers that rely on reduced-form implementability include Armstrong (2000), Brusco and
Lopomo (2002), Pai (2009), Che, Condorelli, Kim (2010), Pai and Vohra (2010, 2011, 2012), Manelli and
Vincent (2010), Asker and Cantillon (2010), Belloni, Lopomo, and Wang (2010), Hörner and Samuelson (2011),
Mierendorff (2011), and Miralles (2012). See Alaei et al. (2012) and Cai et al. (2012a, 2012b) for papers in
computer science literature.

3Hence, the geometric approach is an alternative to Lagrangian methods that are typically used to charac-
terize feasible and incentive compatible outcomes (see Ledyard and Palfrey, 1999, 2007).

4See Kushnir (2013) for an extension of this result to the environments with correlated types.
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the optimal auction for shares when bidders have decreasing marginal valuations.

We finally discuss some extensions and applications of the geometric approach. First, for

general concave objectives that depend on both agent values and transfers we provide a fixed-

point condition that characterizes the optimal mechanism. Second, we further extend the

reduced-form implementation to richer environments with multi-dimensional, correlated types,

non-linear utilities, and interdependent values. Third, in environments with linear interdepen-

dencies we illustrate that the equivalence between Bayesian and ex post incentive compatibility

breaks down. Furthermore, when the surplus maximizing allocation, i.e. first-best, is not

achievable we provide a condition when the second-best allocation rule is ex post incentive

compatible.

1.1. Organization

In Section 2 we illustrate our approach via an example of a single-unit auction with two ex ante

symmetric bidders and two possible types. For this example, we demonstrate how to derive

the support function for the feasible set, how to refine it to include incentive constraints, and

how the optimal mechanism follows from Hoteling’s lemma. Section 3 develops the approach

for social choice problems, discusses its implications for reduced form implementability, estab-

lishes equivalence of Bayesian and dominant strategy implementation, and provides the optimal

(dominant strategy) mechanism for any linear objective. Section 4 presents the extensions and

applications. Section 5 discusses further developments and concludes. The Appendix contains

most of the proofs.

2. A Simple Auction Example

A central result in convex analysis concerns the duality between a closed convex set C ⊂ IRn

and its support function SC : IRn → IR, defined as

SC(W) = sup{V ·W |V ∈ C},

with V·W =
∑n

i=1 ViWi being the usual inner product. The support function is homogeneous of

degree one, convex, and lower semi-continuous. Conversely, any function with these properties

is the support function of a closed convex set, defined as the intersection of half spaces

C =
{
V ∈ IRn |V ·W ≤ SC(W) ∀W ∈ IRn

}
.
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Figure 1. Illustration of duality. The left panel shows how the support function is determined by

maximizing V ·W over the simplex. The right panel shows how the simplex can be recovered from

the inequalities V ·W ≤ S(W) = max(0,W1,W2) for W ∈ IR2.

Consider, for instance, the two-dimensional simplex shown in the left panel of Figure 1. In

this panel, the blue dots show the outcomes of the maximization problem. It is readily verified

that the support function for the simplex is

S(W) = max(0,W1,W2).

In turn, the simplex can be recovered from the duality inequalities V ·W ≤ S(W), which

define half spaces of possible V for each W ∈ IR2. In the right panel of Figure 1 these half

spaces are bounded by the green lines and their intersection reproduces the simplex.

To illustrate our approach consider a single-unit auction with two ex ante symmetric bidders

and two equally likely types, x < x. Let Q (Q) denote a bidder’s expected probability of winning

when her type is low (high) and define Q = (Q,Q). The set of all feasible symmetric allocations

is indicated by the shaded area in the left panel of Figure 2.5 The support function for this set

is given by:

Sinterim(W) =
1

4
max(0,W ) +

1

2
max(0,W ,W ) +

1

4
max(0,W )

which is simply the probability-weighted sum of the support functions for the two-dimensional

simplices, S(W) = max(0,W1,W2), one for each of the four possible profiles.6

5Symmetry implies that a bidder wins with probability 1
2 when facing a rival of the same type, which occurs

with probability 1
2 . Hence, the maximum expected probability of winning is 1

2 ·
1
2 + 1

2 · 1 = 3
4 .

6The four possible profiles for (W1,W2) are (W,W ), (W,W ), (W,W ), and (W,W ), each of which occur
with probability 1

4 .
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Figure 2. The figure illustrates for a single-unit auction with two-bidders and two equally-likely types

that the set of feasible and Bayesian incentive compatible allocations (right panel) can be described

as intersection of the set of feasible allocations (left panel) with the half-space that is “above the

45-degree line” (middle panel).

For our example, Bayesian incentive compatibility is equivalent to the monotonicity of the

allocation rule, i.e. Q ≥ Q (see Section 3). To derive the support function for the set of

feasible and Bayesian incentive compatible allocations it is convenient to describe this set as

the intersection of the feasible set and the half-space “above the 45-degree line,” see Figure 2.

The half-space can be written as (−1, 1) ·Q ≥ 0 and its support function equals

SH(W) =

{
0 if W = −Λ(−1, 1)

∞ if W 6= −Λ(−1, 1)

for any Λ ≥ 0. The support function for the intersection follows from the convolution:

SBICinterim(W) = inf{Sinterim(W1) + SH(W2) |W1 + W2 = W}

= inf
Λ≥ 0
Sinterim(W + Λ(−1, 1))

It is readily verified that in optimum Λ = 0 when W ≤ W and Λ = 1
2
(W −W )) otherwise.

To summarize, the support function for the set of feasible and Bayesian incentive-compatible

allocations is simply

SBICinterim(W) = Sinterim(W+)

where W+ denote the “ironed” weights

W+ =

{
(W,W ) if W ≤ W

1
2
(W +W,W +W ) if W > W
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Figure 3. The figure illustrates the maximization of the linear objective over the set of feasible and

Bayesian incentive compatible allocations. The lines are level-surfaces for the linear objective W ·Q
and the dots are optimal allocations when 0 < W < W (blue) and 0 < W < W (red).

We consider now the maximization of the linear objective W · Q over the feasible and

Bayesian incentive compatible set when the weights satisfy 0 < W < W , see the solid blue line

on Figure 3. The support function reduces to Sinterim(W+) = 1
4
W+ 3

4
W and the optimal interim

allocations follow from Hotelling’s lemma: Q = ∇Sinterim(W+) = (1
4
, 3

4
) (blue dot). These

expected probabilities of winning result when using an efficient symmetric allocation rule. Next

suppose the weights satisfy W > W > 0, see the dashed red line on Figure 3. Now the support

function simplifies to Sinterim(W+) = 1
2
(W + W ), which yields Q = ∇Sinterim(W+) = (1

2
, 1

2
)

(red dot). This allocation results from using a random mechanism. We next generalize the

above steps to social choice problems with an arbitrary number of agents and alternatives.

3. Social Choice Implementation

We consider an environment with a finite set I = {1, 2, . . . , I} of agents and a finite set

K = {1, 2, . . . , K} of social alternatives. When alternative k is selected, agent i’s payoff equals

aki xi where aki is some constant and agent i’s type, xi, is distributed according to probability

distribution fi(xi) with discrete support Xi = {x1
i , . . . , x

Ni
i }, where the xji are non-negative with

xj−1
i < xji for j = 2, . . . , Ni.

7 Let x = (x1, ..., xI) ∈ X =
∏

i∈I Xi denote the profile of agents’

types. Without loss of generality we restrict attention to direct mechanisms characterized by

7This formulation includes many important applications, e.g. single or multi-unit auctions, public goods
provision, bilateral trade, etc. For example, single-unit auctions are captured by setting aki = δki for i = 1, . . . , I
and k = 1, . . . , I + 1, where alternative i = 1, . . . , I corresponds to the case where bidder i wins the object and
alternative I + 1 corresponds to the case where the seller keeps the object. As another example, public goods
provision can be summarized by two alternatives, i.e. k = 1 when the public good is implemented and k = 2
when it is not, and aki = δk1 for i = 1, . . . , I.
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K + I functions, {qk(x)}k∈K and {ti(x)}i∈I , where ti(x) ∈ IR is agent i’s payment and qk(x)

is the probability alternative k is selected. We define the ex post value vi(x) =
∑

k∈K a
k
i q
k(x)

so that agent i’s utility from truthful reporting, assuming others report truthfully as well, is

ui(x) = xivi(x)− ti(x).

3.1. Feasibility

The probabilities with which the alternatives occur satisfy the usual feasibility conditions

qk(x) ≥ 0 for k ∈ K and
∑

k∈K q
k(x) = 1. In other words, for each type profile x ∈ X,

the qk(x) define a simplex in IRK . The support function for the cartesian product of sets equals

the sum of support functions (see Section 13 in Rockafellar, 1970), so we can simply write the

support function S : IRK|X| → IR as a sum, over all type profiles, of simplex support functions

S(w) =
∑
x∈X

max
k∈K

wk(x)

Let C ∈ IRn be a closed convex set and let A : IRn → IRm be a linear transformation. Recall

that Av · w = v · ATw where AT denotes the transpose of A. The support function for the

transformed set AC is thus given by SAC(w) = SC(ATw) for w ∈ IRm. The support function

for the set of ex post values is therefore

Sex post(w) =
∑
x∈X

max
k∈K

∑
i∈I

akiwi(x)

Throughout we distinguish interim variables using capital letters: Vi(xi) denotes the interim

value, Ti(xi) denotes the interim payment, and Ui(xi) = Vi(xi)xi − Ti(xi) denotes the interim

utility of agent i ∈ I. Since interim values are linear transformations of ex post values, Vi(xi) =∑
x−i

f−i(x−i)vi(x), we can once more invoke the above rule for the support function of the

transformed set. To arrive at expressions that are symmetric in the probabilities we define the

interim support function using the probability-weighted inner product

V ·W =
∑
i∈I

∑
xi ∈Xi

fi(xi)Vi(xi)Wi(xi).

In other words, we multiply the interim weight Wi(xi) associated with Vi(xi) by fi(xi) so that

all terms are weighted by f(x) =
∏

i fi(xi). Using this definition of the support function we

obtain the following result.
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Proposition 1. The support function for the set of feasible interim expected values is

Sinterim(W) = Ex

(
max
k∈K

∑
i∈I

akiWi(xi)
)

(1)

and the feasible interim values V satisfy V ·W ≤ Sinterim(W) for all W ∈ IR
∑

i |Xi|.

It is insightful to work out the duality inequalities for single-unit private-value auctions, which

fit the social choice framework as follows: alternative k = 1, . . . , I corresponds to the event

when bidder i wins, i.e. aii = 1 and aki = 0 for k 6= i, and alternative I + 1 corresponds to the

event when the seller keeps the object. In this case, the reduced form value Vi(xi) is equal to

a bidder i’s interim expected chance of winning Qi(xi) = Ex−i
(qi(x)) and the support function

in Proposition 1 simplifies to

Sinterim(W) = Ex

(
max
i∈I

(0,Wi(xi))
)

An exhaustive set of inequalities follow by choosing, for each i ∈ I, a subset Si ⊆ Xi and

setting Wi(xi) = 1 for xi ∈ Si and 0 otherwise and then varying the set Si.

Proposition 2. For single unit auctions, the duality inequalities simplify to

∑
i∈I

∑
xi ∈Si

fi(xi)Qi(xi) ≤ 1−
∏
i∈I

∑
xi 6∈Si

fi(xi) (2)

for any subset Si ⊆ Xi, i = 1, . . . , I.

The inequalities in Proposition 2 are known as the Maskin-Riley-Matthews-Border conditions

for reduced form implementation, an approach to optimal auctions initiated by Maskin and

Riley (1984). They were conjectured to be necessary and sufficient by Matthews (1984) based

on the following intuition: the probability that a certain bidder with a certain type wins (left

side) can be no higher than the probability that such a bidder exists (right side). The conjecture

was subsequently proven and generalized by Border (1991, 2007). Besides clarifying their origin

as basic duality inequalities, Proposition 1 extends these conditions to social choice problems.

In Section 4 we further extend the reduced form implementation to environments with multi-

dimensional, correlated types, non-linear utilities, and interdependent values.
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3.2. Incentive Compatibility

A mechanism is dominant strategy incentive compatible (DIC) if truthful reporting is a dominant

strategy equilibrium.8 Necessary and sufficient conditions for a mechanism (q, t) to be DIC is

that the ex post values and payments satisfy

(vi(x
j
i ,x−i)− vi(x

j−1
i ,x−i))x

j−1
i ≤ ti(x

j
i ,x−i)− ti(x

j−1
i ,x−i) ≤ (vi(x

j
i ,x−i)− vi(x

j−1
i ,x−i))x

j
i (3)

for j = 2, . . . , Ni. Moreover, ex post individual rationality (EXIR) requires that ui(x) ≥ 0 for

x ∈ X, i ∈ I. Since agent utilities satisfy the single crossing condition the EXIR constraints are

binding only for the lowest type: ti(x
1
i ,x−i) ≤ vi(x

1
i ,x−i)x

1
i . This constraint can be included

as the upward incentive constraint (3) for j = 1 if we set vi(x
0
i ,x−i) = ti(x

0
i ,x−i) = 0.

Similarly, a mechanism (q, t) is Bayesian incentive compatible (BIC) if truthful reporting

is a Bayes-Nash equilibrium. Bayesian incentive compatibility holds if and only if the interim

values and payments satisfy

(Vi(x
j
i )− Vi(x

j−1
i ))xj−1

i ≤ Ti(x
j
i )− Ti(x

j−1
i ) ≤ (Vi(x

j
i )− Vi(x

j−1
i ))xji (4)

for j = 2, . . . , Ni. Furthermore, interim individual rationality (INIR) requires that Ui(xi) ≥ 0

for all xi ∈ Xi, i ∈ I, which again holds if Ti(x
1
i ) ≤ Vi(x

1
i )x

1
i . This constraint can also be

included as the upward incentive constraint for j = 1 if we set Vi(x
0
i ) = Ti(x

0
i ) = 0.

To evaluate the BIC and DIC constraints from an agent’s viewpoint we determine how

they affect the interim support function. In Section 2 we illustrate how to obtain the support

function of the intersection of interim feasible set and the incentive constraint represented by

a half space. If incentive constraints include several half spaces Bm ·V ≥ 0 for m = 1, . . . ,M

the support functions of intersection can be calculated as (see Section 13 Rockafellar, 1970)

inf
Λm≥ 0

Sinterim(W +
M∑

m= 1

ΛmBm) (5)

The DIC constraints in (3) imply that ex post values are non-decreasing.9 Furthermore, each

of the vi(x
j
i ,x−i) appears in two constraints: vi(x

j+1
i ,x−i) − vi(xji ,x−i) ≥ 0 and vi(x

j
i ,x−i) −

vi(x
j−1
i ,x−i) ≥ 0. Let λi(x

j
i ,x−i) be associated with the first constraint and λi(x

j−1
i ,x−i) with

8More precisely, qi(xi,x−i)xi−ti(xi,x−i) ≥ qi(x′i,x−i)xi−ti(x′i,x−i) for all i ∈ I, x′i, xi ∈ Xi and x−i ∈ X−i.
9Moreover, monotonicity of ex post values is also sufficient for DIC implementation: given non-decreasing

ex post values one can always finds transfers that satisfy (3).
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the second. Likewise, the BIC constraints in (4) imply that interim values are non-decreasing

and each Vi(x
j
i ) appears in two constraints, for which we similarly denote Λi(x

j
i ) and Λi(x

j−1
i ).10

Define for j = 1, . . . , Ni the differences

∆λi(x
j
i ,x−i) ≡ λi(x

j
i ,x−i)− λi(x

j−1
i ,x−i)

∆Λi(x
j
i ) ≡ Λi(x

j
i )− Λi(x

j−1
i )

with λi(x
0
i ,x−i) = λi(x

Ni
i ,x−i) = 0 and Λi(x

0
i ) = Λi(x

Ni
i ) = 0. Using the notion of the

support function based on the probability-weighted inner product and formula (5) we obtain

the following result.

Proposition 3. The support function for the set of feasible interim expected values that satisfy

dominant strategy incentive compatibility is given by

SDIC(W) = inf
0≤λi(x)

Ex

(
max
k∈K

∑
i∈I

aki (Wi(xi)−
∆λi(x)

fi(xi)
)
)

(6)

Likewise, the support function for the set of feasible interim expected values that satisfy Bayesian

incentive compatibility is

SBIC(W) = inf
0≤Λi(xi)

Ex

(
max
k∈K

∑
i∈I

aki (Wi(xi)−
∆Λi(xi)

fi(xi)
)
)

(7)

The minimization problem that defines the DIC support function involves more parameters,

which could result in a lower support function (reflecting a smaller set). This is not the case,

however, if the solutions to the minimization problems satisfy λi(xi,x−i) = Λi(xi) for all x−i.

Example 1. Consider again the single-unit auction example of Section 2 with two agents and

two equally-likely types. Unlike in Section 2, however, we do not impose symmetry. We first

include only the DIC constraints for agent 1 to the interim support functions.11

S(W) = inf
0≤λ1,λ1

1
4

max(0,W 1 − λ1,W 2) + 1
4

max(0,W 1 + λ1,W 2)

+ 1
4

max(0,W 1 − λ1,W 2) + 1
4

max(0,W 1 + λ1,W 2)

where W i and W i are weights associated with x and x for agent i respectively, and λ1 and λ1

are associated with constraints v1(x, x)− v1(x, x) ≥ 0 and v1(x, x)− v1(x, x) ≥ 0 respectively.

10Monotonicity of interim values is also sufficient for BIC implementation.
11Without loss of generality we scale the λ parameters by 1

2 .
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Surprisingly, there is always exists a solution to the minimization problem that does not depend

on agent 2’s weights λ1 = λ1 = max(0, 1
2
(W 1 −W 1)). Similarly, if we introduce now the DIC

constraints for agent 2 there is an optimal solution that does not depend on agent 1’s weights

λ2 = λ2 = max(0, 1
2
(W 2 −W 2)). We can consider the minimization over parameters λ1 and

λ2 sequentially only because of their geometric interpretation: each minimization corresponds

to the intersection of the feasible set with the corresponding incentive constraint. For our

example then the DIC minimization problem for any weights gives the same outcome as the

BIC minimization problem. Therefore, the BIC and DIC support functions coincide. �

To show the equivalence more generally we rely on results from majorization theory. Let

p1, . . . , pn denote arbitrary non-negative numbers and consider two sequences σ and ς with

elements σj, ςj for j = 1, . . . , n. We will write σ �p ς if

l∑
j= 1

pjσj ≥
l∑

j= 1

pjςj for l = 1, . . . , n− 1

n∑
j= 1

pjσj =
n∑

j= 1

pjςj

The following result dates back to Hardy, Littlewood, and Polya (1929), see also Fuchs (1947).

Lemma 1. If σ, ς are non-decreasing sequences and σ �p ς then we say that σ p-majorizes ς

and we have
n∑

j= 1

pjg(σj) ≤
n∑

j= 1

pjg(ςj)

for any continuous convex function g : IR→ IR.

Consider any sequence σ, not necessarily non-decreasing, and let σ+ denote the non-decreasing

sequence such that (i) σ �p σ+ and (ii) any other non-decreasing sequence ς that satisfies

σ �p ς is p-majorized by σ+. The latter property motivates calling σ+ the largest non-

decreasing sequence that satisfies σ �p ς. Lemma A1 in the Appendix establishes that sequence

σ+ is well defined and that ς = σ+ is the solution to

min
σ�p ς

n∑
j= 1

pjg(ςj)

where the minimization considers all possible sequences, which are not necessary non-decreasing.
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Now consider the BIC minimization problem in (7). Note that the shifted weights

Ŵi(xi) = Wi(xi)−
∆Λi(xi)

fi(xi)

satisfy Wi �fi Ŵi for all i ∈ I.12 In other words, varying the Λi(xi) results in sequences

Ŵi that are fi-majorized by Wi. Lemma A1 implies the Λi(xi) should be chosen such that

Ŵi = W+
i . Importantly, the same solution applies to the DIC minimization problem in (6).

Proposition 4. The support function for the set of feasible interim expected values that satisfy

BIC or DIC incentive compatibility constraints is given by

SBIC(W) = SDIC(W) = Sinterim(W+)

for any W ∈ IR
∑

i |Xi| with Sinterim given in Proposition 1.

3.3. Optimal Mechanisms: Linear Objectives

The mechanism that maximizes the linear objective V ·Ω over the set of feasible and incentive

compatible interim values follows from applying Hotelling’s lemma to the support function of

Proposition 4 (see Section 13 Rockafellar, 1970). The BIC-DIC equivalence result of Proposi-

tion 4 ensures that the resulting mechanism can be written as a dominant strategy incentive

compatible mechanism.

Proposition 5. For any social choice problem and any linear objective V · Ω, an optimal

dominant strategy incentive compatible allocation is given by

qk(x) =

{
1/|M| if k ∈ M
0 otherwise

(8)

whereM≡ arg maxk∈K
∑

i∈I a
k
i Ω

+
i (xi). Given vi(x) =

∑
k∈K a

k
i q
k(x), optimal payments equal

ti(x) = xivi(x)−
∑
xji <xi

(xj+1
i − xji )vi(x

j
i ,x−i) (9)

Commonly studied objectives are expected surplus and expected revenue, both of which are

linear in the interim expected values. Expected surplus Ex(
∑

i∈I Vi(xi)xi) is readily written as

12Since
∑l

j=1 ∆Λi(x
j
i ) = Λi(x

l
i)− Λi(x

0
i ) ≥ 0 for l = 1, . . . , Ni with equality for l = Ni.
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V · x. Likewise, the upward binding incentive compatibility constraints (3) allow us to rewrite

expected revenue Ex(
∑

i ti(x)) as V ·MR, where the marginal revenues are defined as

MRi(x
j
i ) = xji −

(
xj+1
i − xji

)1− Fi(xji )
fi(x

j
i )

(10)

and Fi(x
j
i ) =

∑j
l=1 fi(x

l
i). Hence, as an immediate corollary, Proposition 5 results in the efficient

and the revenue maximizing mechanisms for any social choice problems.

With the next example we illustrate that the support function approach can be immediately

extended to some environments with non-linear utilities and a continuous set of alternatives.

Example 2. Consider an auction for a single perfectly-divisible good among I ≥ 1 ex ante

symmetric bidders. Bidders’ types are distributed according to a common probability distri-

bution f(·) with support X = {x1, . . . , xN} for some N ≥ 1. Suppose bidders have dimin-

ishing marginal valuations, i.e. they value winning a fraction qi(x) at vi(x) = qi(x)1−γ where

0 ≤ γ ≤ 1. The interim support function equals

Sinterim(W) = Ex

( I∑
i= 1

max(0,Wi(xi))
1/γ
)γ

For the surplus-maximizing allocation rule we do not need to majorize agent weights and the

optimal allocation equals

q∗i (x) =
x

1/γ
i∑I

j= 1 x
1/γ
j

and the payment rule is given by

t∗i (x) = xiq
∗
i (x)1−γ −

∑
xji <xi

(xj+1
i − xji )q∗i (x

j
i ,x−i)

1−γ

Similarly, the revenue-maximizing allocation rule is13

q∗∗i (x) =
max(0,MR+(xi))

1/γ∑I
j= 1 max(0,MR+(xj))1/γ

and the optimal payments are similarly defined.14 When γ tends to one, the efficient allocation

rule assigns shares proportionally to bidders’ types while the optimal allocation rule assigns

13Where we interpret 0/0 as 0.
14See Polishchuk and Tonis (2013) for results on optimal mechanisms in divisible good allocation problems.
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shares proportionally to bidders’ marginal revenues. For intermediate values, 0 < γ < 1,

the efficient and optimal allocation rules resemble “Tullock-type” success functions. Finally,

Myerson’s (1981) familiar result for the optimal auction is obtained in the limit when γ tends

to zero, which corresponds to a linear value function vi(x) = qi(x). Now the efficient allocation

rule is to assign all shares to the highest-type bidder while the revenue-maximizing allocation

rule assigns all shares to the bidder with the highest positive marginal revenue (and assigns

nothing if all marginal revenues are negative). �

4. Extensions and Applications

4.1. Optimal Mechanisms: Concave Objectives

General objectives that differ from pure profit and efficiency maximization are widespread.

Many governmental programs give preferences to some groups to alleviate their economic and

social disadvantages. For example, the US Federal Communications Commission gives substan-

tial bidding preferences to minority firms in the form of bidder-subsides (Ayres and Crampton,

1996), i.e. by charging only a portion of a winning bid. In the same way, the Department of

Defense charges 50% bid penalty to foreign agents in US defense contracts.15 Many firms have

also objectives that differ from pure profit maximization. European Civil Law countries such

as France and Germany view big firms as “mini-societies” that take into account the impact

of their decisions on the welfare of their employers, consumers, and suppliers (see, e.g. Tirole,

2001; and Magill, Quinzii, and Rochet, 2010).16

We analyze objectives that depend on both agent interim expected values and transfers.

To include interim expected transfers Ti(xi) into the support function we denote their corre-

sponding weights as Zi(xi) for xi ∈ Xi, i = 1, ..., I. Since transfers are unrestricted the support

function that corresponds to their feasible set (not yet taking into account incentive constraints)

equals Ex

(
δ(Zi(xi) = 0, ∀xi,∀i), where we use the standard definition of δ-function that equals

0 if its argument is true and +∞ otherwise. Combining this result with Proposition 1 we obtain

the expression for the support function of feasible expected interim values and transfers

Sinterim(W,Z) = Ex

(
max
k∈K

∑
i∈I

akiWi(xi)
)

+ Ex

(
δ(Zi(xi) = 0, ∀xi,∀i)

)
(11)

15“Defense Federal Acquisition Regulation Supplement,” Part 225: Foreign Acquisition (2008),
http://www.acq.osd.mil/.

16See Ledyard and Palfrey (1999) for a discussion about general welfare objectives in public good provision
settings.
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Let the weights Zi(xi) correspond to the interim expected payoffs Ti(xi) and define

MRZi
(xji ) = xjiZi(x

j
i )−

xj+1
i − xji
fi(x

j
i )

∑
l>j

fi(x
l
i)Zi(x

l
i) (12)

for j = 1, ..., Ni and xNi+1
i = xNi

i . Note that for Zi(x
j
i ) ≡ 1 the latter expression reduces to

the standard formula for marginal revenues (10). Parallel to Proposition 4 we now obtain the

support function of feasible and incentive compatible interim expected values and transfers.

Proposition 6. The support function for the set of feasible interim expected values and

transfers that satisfy BIC (DIC) constraints is given by

SDIC(W,Z) = SBIC(W,Z) = Ex

(
max
k∈K

∑
i∈I

aki
(
Wi(xi) +MRZi

(xi)
)+
)

(13)

for any W ∈ IR
∑

i |Xi| and Z ∈ IR
∑

i |Xi|
+ .17

We now consider an increasing, concave, and differentiable objective18

O(V,T),

and extend the logic of Subsection 3.3 to characterize the maximimum of objective O over the

set of feasible and incentive compatible interim expected values and transfers.

To characterize the optimal point we use that concave objectives have convex indifference

curves. Therefore, the tangent line to objective O at the optimal point should separate the

indifference curve of the objective and the feasible and incentive compatible set. Proposition

5 then implies that the optimal point belongs to the subdifferential of the support function at

the vector of weights equal to the gradient of objective O at the optimal point (see Figure 4).

As a result the following proposition follows.

Proposition 7. For any social choice problem and for any increasing, concave, and differen-

tiable objective O(V,T) the interim expected values and transfers that correspond to an optimal

17We consider ex post and interim individually rationality constraints as a part of DIC and BIC constraints
respectively. See the discussion in the beginning of Subsection 3.2.

18This class of objectives does not include functions that are decreasing in agent payments, like objectives
increasing in agent utilities. We consider this important class of objectives in a companion paper Goeree and
Kushnir (2013a).
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O

O′ < O ∇S

(V∗,T∗) ∈ ∇S(∇O(V∗,T∗))

Figure 4 Maximizing concave objectives using the geometric approach. The optimal interim expected

values and transfers belong to the subdifferential of the support function at the vector of weights equal

to the gradient of the objective function at the optimal interim expected values and transfers.

mechanism satisfy1920

(V∗,T∗) ∈ ∇SBIC(∇O(V∗,T∗)) (14)

We finally note that for increasing and concave objectives only the optimal values V∗ need

to be determined by the fixed-point equation (14). The optimal values V∗ in turn uniquely

determine the optimal payments. To understand this, we note that expression (13) links the

partial derivatives of the support function with respect to Wi(xi) and the partial derivatives

of the support function with respect to Zi(xi). Using the fixed point equation (14) we then

substitute the partial derivatives in this link with agent values V∗ and transfers T∗. As a

consequence we obtain the following

T ∗i (xi) = V ∗i (xi)xi −
∑
xki<xi

V ∗i (xki )(x
k+1
i − xki )

This expression is analogous to formula (9) for the ex post optimal payments. The ex post

optimal payments in (9), however, can be chosen with some flexibility. In contrast, when the

objective is increasing in both agent values and transfers the optimal values determine the

optimal payments uniquely. In this sense, the above expression is close to the seminal envelope

theorem (e.g. Milgrom and Segal, 2002).

19We consider a differentiable objective function only for ∇O(V∗,T∗) be a singleton. Otherwise, the optimal
mechanism belongs to the subdifferential of the support function at some point in ∇O(V∗,T∗).

20With some abuse of notation we consider the gradient ∇ for the support function that takes into account
the probability weighted inner product.
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4.2. Reduced Form Implementation for General Social Choice Problems

In Subsection 3.1 we show how the geometric approach extends the reduced form auctions to

social choice problems for models with private values and independently distributed types. Here,

we further develop this extension both to the problems with correlated and multi-dimensional

types see, which is known to the literature (see Border, 2007), and to the case when agents

have interdependent values, which is novel to the literature.

We consider settings with multi-dimensional types. Agent i’s type is Ti-dimensional and

the profile of agent types is x = (x1
1, . . . , x

T1
1 , . . . , x

1
I , . . . , x

TI
I ). We denote Xi =

∏Ti
j=1Xij, where

each Xij = {x1
ij, . . . , x

Nij

ij }, and X =
∏

iXi. We allow for correlation in types and denote their

joint probability distribution as f(x). Agent values are interdependent: when alternative k is

selected and the profile of agent types is x agent i’s value equals vki (x). We denote agent i’s ex

post and interim expected value as vi(x) =
∑

k∈K v
k
i (x)qk(x) and Vi(xi) =

∑
x−i

f−i(x−i)vi(x)

respectively.

This setup relaxes all assumptions of the main model: the values vki can be non-linear

functions of the types, the values are not private since they depend on others’ types, and types

are correlated and multi-dimensional. While the setup is much more general, the derivation of

the ex post and interim support functions parallels that of Proposition 1.

Proposition 8. The support function for the feasible interim values is

Sinterim(W) = Ex

(
max
k∈K

∑
i∈I

vki (x)Wi(xi)
)

and the feasible interim values V satisfy V ·W ≤ Sinterim(W) for all W ∈ IR
∑

i |Xi|.

Proposition 8 extends the reduced form implementation to the environments with interdepen-

dent values by providing the explicit formula for the support function for the set of agent feasible

values. Yet this support function does not include incentive constraints. For the general model,

determining the consequences of incentive constraints is complicated and requires more than

comparing adjacent types only. We leave a complete analysis to future research but illustrate

in the next subsection how our methodology applies to the case of linear interdependencies for

which adjacent comparisons are sufficient.
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4.3. Interdependent Values: Second-Best Mechanisms

For the environments with interdependent values a natural analog of dominant strategy in-

centive compatibility (DIC) is the notion of ex post incentive compatibility (EPIC), which

requires that, for each type profile, agents prefer to report their types truthfully when others

do. EPIC and DIC coincide if agent types are private and independent (Bergemann and Moris,

2005). Unlike DIC, however, EPIC does not depend on agents’ beliefs when there are value

interdependencies.

In this section we illustrate how the geometric approach can be applied to environments with

interdependent values. For these environments we consider settings when the maximum social

surplus, i.e. first-best, is not achievable and derive its second-best level, i.e. the maximum level

of social surplus under Bayesian incentive compatible (BIC) and interim individually rational

(INIR) constraints. We also provide a condition when the second-best level can be implemented

with EPIC and ex post individually rational (EXIR) mechanism.

Consider a single-unit auction with two bidders. Agent types are positive and independently

distributed. There are only three possible social alternatives. Alternative i corresponds to the

event that bidder i wins the unit, and alternative 0 to the event that the seller keeps the unit.

The utility of agent i equals xi+αxj if he wins the object and 0 otherwise. Hence, the expected

interim value of agent i is

Vi(xi) = xiQi(xi) + αExj(xjq
i(xi, xj)),

where Qi(xi) = Exj(q
i(xi, xj)) is bidder i’s interim expected chance of winning. In this en-

vironment, the incentive compatibility constraints reduce to monotonicity constraints on the

allocation rule.

Proposition 9. If mechanism (q, t) is BIC (EPIC) then Qi(xi) (qi(xi,x−i)) is non-decreasing

function of xi for each i ∈ I. Conversely, for any allocation rule q such that Qi(xi) (qi(xi,x−i))

is non-decreasing function of xi for each i ∈ I there exist transfers t such that mechanism (q, t)

is BIC (EPIC).

Given the above monotonicity conditions the support function for the set of interim expected

values that can be achieved with some BIC and INIR mechanism equals

SBIC(W) = inf
Λi(xi)≥0

Ex max
i 6=j

(
0, (xi + αxj)Wi(xi)−

∆Λi(xi)

fi(xi)

)
Similarly the support function for the set of interim expected values that can be achieved with
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some EPIC and EXIR mechanism equals

SEPIC(W) = inf
λi(x)≥0

Ex max
i 6=j

(
0, (xi + αxj)Wi(xi)−

∆λi(x)

fi(xi)

)
Maskin (1992) show for a continuous-type version of this example that the first-best social

surplus cannot be implemented with BIC and INIR (and, hence, EPIC and EXIR) mechanism

when α > 1. We now provide conditions when the second-best level of social surplus, which

equals the value of support function at unit weights SBIC(1), can be implemented with some

EPIC and EXIR mechanism. We first approach this question when the unit has to be always

allocated to the agents(see also Proposition 2 in Hernando-Veciana and Michelucci, 2011), and,

hence, there are no zeros in the support function expressions.

Proposition 10. If the unit has to be always allocated to the agents and α > 1 the second-best

level of social surplus can be implemented with some EPIC and EXIR mechanism and equals

SEPIC(1) = SBIC(1) = max
i∈I

(Ei(xi)) + αmin
i∈I

(Ei(xi))

We now identify a condition on α when one of the bidders always get the unit at the second-best

allocation, even though the auctioneer can keep the unit (see also Proposition 6 in Hernando-

Veciana and Michelucci, 2009). In this case the second-best level of social surplus can be again

implemented with some EPIC and EXIR mechanism.

Proposition 11. Consider the case when the auctioneer can keep the unit. The second-best

level of social surplus can be implemented with some EPIC and EXIR mechanism if

1 < α ≤ maxi∈I(
Ei(xi)

Ei(xi)−
∑

j∈I x
1
j

)

where Ei(xi) denotes the expected type of agent i.

We finally illustrate our results with a simple example of a single-unit auction with two sym-

metric bidders and two equally likely and independent types, x = 1 and x = 10. We compare

the sets of feasible outcomes that satisfy BIC and EPIC constraints respectively. Since the

bidders are ex ante symmetric, the allocation rule has no agent specific subscript and can be

represented by a matrix

q =
( q(x, x) q(x, x)

q(x, x) q(x, x)

)
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Figure 5. Application of the geometric approach to the environments with interdependent values.

Shown are the feasible outcomes with no incentive constraints imposed (light), Bayesian incentive

compatible outcomes (medium dark), and ex post incentive compatible outcomes (dark) for α = 0

(left panel), α = 1.2 (middle panel), and α = 2 (right panel). The largest blue dot indicates the

first-best outcome, the medium-sized blue dot the second-best outcome under BIC, and the smallest

blue dot indicates the allocation that delivers the maximum level of social surplus under EPIC.

where the rows correspond to (say) agent 1’s type and the columns to agent 2’s type, and the

entries correspond to the probabilities that the object is assigned to agent 1. The probability

that object is assigned to agent 2 can be obtained by the transposition of the matrix.

Figure 5 shows the sets of interim values that result when α = 0 (left panel), α = 1.2

(middle panel), and α = 2 (right panel). In each of the panels, the light area corresponds

to the set of feasible values without any incentive constraints imposed, the medium dark area

to the BIC values, and the dark area to the EPIC values. In case of pure private values, i.e.

α = 0, the latter two sets coincide as shown by the left panel. However, the equivalence between

Bayesian and ex post implementation generally fails when α > 0 as shown by the middle and

right panels.

The easiest way to describe the different sets is by their vertices.21 For instance, the set

of EPIC outcomes can be described by five vertices, which (clockwise starting at the origin)

correspond to the following allocation rules

qEPIC =
( 0 0

0 0

)
,
( 0 0

1 1
2

)
,
( 1

2
0

1 1
2

)
,
( 1

2
1
2

1
2

1
2

)
,
( 0 1

2

0 1
2

)
Likewise, for the BIC outcomes the six vertices correspond to the allocation rules

qBIC =
( 0 0

0 0

)
,
( 0 0

1 1
2

)
,
( 1

2
0

1 1
2

)
,
( 1

2
1
2

1
2

1
2

)
,
( 0 3

4
1
4

1
2

)
,
( 0 1

2
1
2

0

)
21The vertices follow from the gradient of the support function at points of differentiability. The five EPIC

vertices (0, 0), (0, 152 + 3α), ( 1
4 + 1

4α,
15
2 + 3α), ( 1

2 + 11
4 α, 5 + 11

4 α), ( 1
4 + 5

2α,
5
2 + 5

2α). The first four plus ( 3
8 +

15
4 α,

15
4 + 21

8 α), ( 1
4 + 5

2α,
5
2 + 1

4α) constitute the six BIC vertices.
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Bayesian incentive compatibility requires that the sum of entries in the top row does not exceed

the sum of entries in the bottom row. In contrast, ex post incentive compatibility requires that

the entries in the top row do not exceed the entries in the bottom row for both columns (see

Proposition 9). Notice that the final two BIC matrices violate this more stringent condition.

The blue dots in Figure 5 indicate the optimal outcomes: the largest blue dot indicates

the first-best outcome, the medium-sized blue dot indicates the second-best outcome under

BIC, and the smallest blue dot indicates the allocation that delivers the maximum level of

social surplus under EPIC. For α ≤ 1, the first-best outcome can be implemented with EPIC

mechanism and correspond to the third EPIC matrix. When 1 < α ≤ E(x)
E(x)−2x

= 11
7

the first-best

cannot be achieved, but the second-best outcome can be implemented with EPIC mechanisms

and correspond to the penultimate EPIC matrix. If α > 11
7

the second-best outcome can be

implemented only with BIC mechanism, and correspond to the penultimate BIC matrix. In

this case BIC implementation leads to more social surplus than EPIC.

5. Conclusions

This paper develops a novel geometric approach to mechanism design based on the duality

between a convex closed set and its support function. Using this duality, we first extend

the literature on reduced form auctions to social choice problems with interdependent values.

Second, we show that the “ironing” procedure (Mussa and Rosen, 1978; and Myerson, 1981)

can be reinterpreted in terms of majorization theory (Hardy, Littlewood, and Pólya, 1929).

We also provide a simple proof that the feasible sets of interim expected values and transfers

that remain after imposing Bayesian and dominant strategy incentive compatibility constraints

coincide (see Gershkov et. al, 2013). Third, the knowledge of the support function admits the

direct derivation of the optimal mechanism using standard tools such as Hotelling’s lemma.

We determine the optimal mechanism for any social choice problem and any linear objective,

including revenue and surplus maximization. We also provide a fixed point equation that

characterizes an optimal mechanism for general concave objectives. Finally, for environments

with linear value interdependencies we provide a condition when the second-best allocation is

ex post incentive compatible.

Importantly, our geometric approach applies to questions that go beyond the scope of this

paper. The geometric interpretation of the incentive compatibility constraints extend to other

types of constraints, such as capacity constraints and budget balance. For instance, we consider

the maximization of general concave welfare objectives when agent transfers needs to be budget
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balanced in a companion paper Goeree and Kushnir (2013a). Next, the geometric approach

can be immediately adapted to continuous type spaces. An analog of support functions for

infinite-dimensional type-spaces are support functionals. They possess the same properties

as support functions with respect to additions, intersections, and linear transformations, as

well as there is an analog of Hotelling’s lemma for continuous type-spaces (see Chapter 7.10

in Aliprantis and Border, 2006). Moreover, the geometric approach can be readily applied to

the environments with multi-dimensional types and non-linear utilities. For these environments

the incentive compatibility constraints are equivalent to cycle-monotonicity conditions (Rochet,

1987), which can be incorporated into the support function (Goeree and Kushnir, 2013b).

To summarize, our geometric approach applies to a wide spectrum economic problems. As

such it may provide a powerful tool to study mechanism design problems that have hitherto

resisted thorough analysis because of analytical intractability. We leave this exciting prospect

as a topic for future research.
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A. Appendix

Proof of Proposition 2. Necessity of the inequalities follows from the definition of the

support function. Sufficiency also follows easily from our approach by interpreting (2) in terms

of hyperplanes that bound the interim expected probability set. Any boundary point of the

interim expected probability set, i.e. any Q that satisfies Q ·W = S(W) for some W, can be

written as Q = ∇S(W) at points of differentiability of the support function from the envelope

theorem.22 Furthermore, if S(W) is not differentiable at W then the subdifferential ∇S(W)

produces a face on the boundary. For any Q 6= Q′ that belong to such a face we have

(Q−Q′) ·W = S(W)− S(W) = 0.

Each point of non-differentiability, W, therefore defines a normal vector to the face of the

polyhedron, formed by ∇S(W). For the support function (1) the points of non-differentiability

are weight vectors with several equal entries, and those equal entries are the largest entries for

some profile of types x. Since non-maximum entries does not change the value of the support

function we can consider only such weights where these entries are 0. Since the support function

is homogeneous of degree one we can restrict ourselves to weights with only 1 and 0 entries.

Then considering all non-trivial W ∈ {0, 1}
∑

iXi exhausts all hyperplanes that contain one of

the faces of the boundary of the interim expected probability set. �

Lemma A1. For any σ sequence σ+ is well defined and ς = σ+ solves

min
σ�p ς

n∑
j= 1

pjg(ςj) (A.1)

for any convex function g : IR→ IR.

Proof: We first show that sequence σ+ is well defined. For this purpose let us define for any

non-decreasing sequence ς ∈ IRn function fl(ς) =
∑l

j=1 pjςj and αl = supσ�pς fl(ς), l = 1, .., n,

where the supremum is taken only over non-decreasing sequences. Define now sequence σ+

as σ+
l = (αl − αl−1)/pl, where α0 = 0. Clearly, we have σ �p σ+. To prove that σ+ is

non-decreasing notice that

fl(ς)
pl

+ fl−2(ς)

pl−1
≥ ( 1

pl
+ 1

pl−1
)fl−1(ς)

for any non-decreasing ς and l = 2, ..., n. Therefore,

sup
σ�pς

(fl(ς)
pl

+ fl−2(ς)

pl−1

)
≥ ( 1

pl
+ 1

pl−1
) sup
σ�pς

fl−1(ς)

22We consider the gradient ∇ that takes into account the probability weighted inner product.
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where the supremums are taken over only non-decreasing sequences. Hence, (αl − αl−1)/pl ≥
(αl−1 − αl−2)/pl−1.

We now consider minimization problem (A.1). We show that, without loss of generality, we

can restrict attention to non-decreasing sequences ς. Suppose not and ςl > ςk for l < k. Then

define the sequence ς̃ with elements ς̃l = ςl−ε(ςl− ςk)/pl and ς̃k = ςk+ε(ςl− ςk)/pk while ς̃j = ςj
for j 6= l, k. The sequence ς̃ also satisfies σ �p ς̃. Since g(·) is convex we have

plg(ς̃l) + pkg(ς̃k) ≤ plg(ςl) + pkg(ςk)

and, hence,
∑n

j= 1 pjg(ς̃j) ≤
∑n

j= 1 pjg(ςj). Repeatedly applying this procedure results in a

non-decreasing sequence ς̃ that satisfies σ �p ς̃. But any such sequence is p-majorized by σ+.

Hence, the statement of the lemma follows from Lemma 1. �

Proof of Proposition 4. The statement of the proposition follows from a more general result

established in Proposition 6 that also incorporates transfers into the support function. �

Proof of Proposition 5. Using Proposition 4 and the definition of the interim support

function we have

SDIC(Ω) = Sinterim(Ω+) = max
{∑
k∈K

Ex

(
qk(x)

∑
i∈I

aki Ω
+
i (xi)

)
|q is feasible

}
.

This establishes the optimality of the allocation rule in equation (8). To derive the payments

that are ex post individually rational and implement allocation (8) in dominant strategies we

consider constraints (3). Considering the payments binding the upward incentive constraints

and the ex post individually rationality constraint for the lowest type we recursively calculate

ti(x) = vi(x)−
∑
xji <xi

(
xj+1
i − xji

)
vi(x

j
i ,x−i)

for x ∈ X and i ∈ I. This establishes the claim of the proposition. �

Proof of Proposition 6. Let us first derive the support function of feasible interim expected

values and transfers that also satisfy Bayesian incentive compatibility (BIC) constraints (4) and

interim individual rationality (INIR) constraints. For convenience we rewrite these constraints

as

Ti(x
j
i )− Ti(x

j−1
i ) ≥ xj−1

i

(
Vi(x

j
i )− Vi(x

j−1
i )

)
(A.2)

Ti(x
j
i )− Ti(x

j−1
i ) ≤ xji

(
Vi(x

j
i )− Vi(x

j−1
i )

)
(A.3)

Ti(x
j
i ) ≤ xjiVi(x

j
i ) (A.4)
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The support function of the intersection of non-empty closed convex sets is the convolution of

the support functions of these sets (see Rockafelar, 1970). When some sets are half spaces the

support function of the intersection can be calculated using formula (5) and, hence, we obtain

SBIC(W,Z) = inf
Λ,γ,µ≥0

Ex

(
max
k∈K

∑
i

aki Ŵi(xi)
)

+ Ex

(
δ(Ẑi(xi) = 0, ∀xi,∀i)

)
(A.5)

where

Ŵi(x
j
i ) = Wi(x

j
i ) + 1

fi(x
j
i )

(−xj−1
i Λi(x

j−1
i ) + xjiΛi(x

j
i ) + xjiγi(x

j
i )− x

j+1
i γi(x

j+1
i ) + xjiµi(x

j
i ))

Ẑi(x
j
i ) = Zi(x

j
i ) + 1

fi(x
j
i )

(Λi(x
j−1
i )− Λi(x

j
i )− γi(x

j
i ) + γi(x

j+1
i )− µi(xji ))

and parameters Λi(x
j−1
i ), γi(x

j
i ), µi(x

j
i ) correspond to constraints (A.2), (A.3), and (A.4) re-

spectively. Note that our convention is that Λi(x
0
i ) = Λi(x

Ni
i ) = 0 and γi(x

1
i ) = γi(x

Ni+1
i ) = 0.

Since agents’ utilities satisfy the single crossing condition with respect to xi and Vi(xi) the

INIR constraints are binding only for the lowest type, i.e. µi(x
j
i ) = 0 for j = 2, ..., Ni. Using

this fact and that (Ẑi(xi) = 0, ∀xi,∀i) we deduce

µi(x
1
i ) =

Ni∑
l=1

Zi(x
l
i)fi(x

l
i),

γi(x
j
i ) =

Ni∑
l=j

Zi(x
l
i)fi(x

l
i) + Λi(x

j−1
i ) for j = 2, ..., Ni

Note that constraints µi(x
1
i ) ≥ 0 and γi(x

j
i ) ≥ 0 are satisfied for any vector Z ∈ IR

∑
i |Xi|

+ .

With some abuse of notation we replace (xj+1
i − xji )Λi(x

j
i ) with Λi(x

j
i ). Substituting the above

expressions in the formula (A.5) the support function for the set of feasible interim expected

values and transfers that satisfy BIC and INIR constraints reduces to

SBICinterim(W,Z) = inf
0≤Λi(xi)

Ex

(
max
k∈K

∑
i∈I

aki
(
Wi(xi) +MRZi

(xi)−
∆Λi(xi)

fi(xi)

))

Let us now define shifted weights

Ŵi(xi) = Wi(xi) +MRZi
(xi)−

∆Λi(xi)

fi(xi)

It is straightforward to verify that Wi + MRZi
�fi Ŵi for all i ∈ I.23 Therefore, Lemma A1

implies that (Wi + MRZi
)+ delivers the minimum to the above expression, which establishes

the claim of the proposition for the BIC support function.

23Note that
∑l

j=1 ∆Λi(x
j
i ) = Λi(x

l
i)− Λi(x

0
i ) ≥ 0 for l = 1, . . . , Ni with equality for l = Ni.
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We now show that the introduction of the dominant strategy incentive compatibility (DIC)

constraints

ti(x
j
i ,x−i)− ti(x

j−1
i ,x−i) ≥ xj−1

i

(
vi(x

j
i ,x−i)− vi(x

j−1
i ,x−i)

)
(A.6)

ti(x
j
i ,x−i)− ti(x

j−1
i ,x−i) ≤ xji

(
vi(x

j
i ,x−i)− vi(x

j−1
i ,x−i)

)
, (A.7)

and ex post individual rationality (EXIR) constraints

ti(x
j
i ,x−i) ≤ xjivi(x

j
i ,x−i) (A.8)

lead to the same support function as the introduction of BIC and INIR constraints. To accom-

plish this we use the geometric interpretation of incentive constraints: the support function

minimization problem corresponds to the intersection of the feasible set with the corresponding

incentive constraint. Hence, we can include the constraints to support function (11) for one

agent at a time.

Using arguments similar to the BIC support function we first include agent 1’s DIC and

EXIR constraints to the support function. Therefore,

SDICagent1
(W,Z) = inf

0≤λ1(x)
Ex

(
max
k∈K

( ak1(W1(x1) +MRZ1(x1)− ∆λ1(x)
f1(x1)

) +

∑
i 6=1 a

k
i

(
Wi(xi) +MRZi

(xi)
))

where parameters λ1(xj−1
1 ,x−1) correspond to constraints (A.6), λ1(x0

1,x−1) = λ1(xN1
1 ,x−1) =

0, and ∆λ1(xj1,x−1) = λ1(xj1,x−1)− λ1(xj−1
1 ,x−1). We again consider the shifted weights

Ŵ1(x) = W1(x1) +MRZ1(x1)− ∆λ1(x)
f1(x1)

For each x−1 vector Ŵ1(·,x−1) satisfies W1 + MRZ1 �f1 Ŵ1(·,x−1) and the above minimiza-

tion problem can be rewritten as

∑
x−1

inf
W1+MRZ1

�f1
Ŵ1(·,x−1)

∑
x1

f1(x1)g1(Ŵ1(x1,x−1))

where g1(y) = f−1(x−1) maxk∈K
(
ak1y +

∑
j 6=1 a

k
j

(
Wj(xj) + MRZj

(xj)
)

is a convex function

of y. Lemma A1 asserts that Ŵ1(·,x−1) = (W1 + MRZ1)+ for each x−1 solves the above

minimization problem.

Let us now assume that we have introduced the constraints of i−1 agents. The minimization

problem that corresponds to the introduction of the constraints of agent i is

∑
x−i

inf
Wi+MRZi

�fi
Ŵi(·,x−i)

∑
xi

fi(xi)gi(Ŵi(xi,x−i))
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where

Ŵi(x) = Wi(xi) +MRZi
(xi)− ∆λi(x)

fi(xi)

and function

gi(y) = f−i(x−i) max
k∈K

(∑
j<i

akj
(
Wj(xj) +MRZj

(xj)
)+

+ aki y +
∑
j>i

akj
(
Wj(xj) +MRZj

(xj)
))

is a convex function of y. Lemma A1 again asserts that Ŵi(·,x−i) = (Wi + MRZi
)+ for each

x−i solves the above minimization problem. Proceeding in this way for all agents, we finally

obtain that the support function for the feasible set of agent interim expected values and trans-

fers that satisfies the DIC and EXIR constraints coincides with SBIC(W,Z). �

Proof of Proposition 7. Vector (V∗,T∗) belongs to ∇SBIC(∇O(V∗,T∗)) if and only if (see

Theorem 23.5 in Rockafellar, 1970)

(V∗,T∗) ∈ argmax((V,T) ◦ ∇O(V∗,T∗) | (V,T) ∈ C)

where C is the set of feasible incentive compatible and individually rational interim expected

values and transfers. This is equivalent to ∇O(V∗,T∗) be tangent to set C at (V∗,T∗) (see

p. 15, Rockafellar, 1997). Finally, Theorem 27.4 in Rochafellar (1997) establishes that this is

equivalent to (V∗,T∗) be a vector where maximum of O(V,T) relative to C is attained. �

Proof of Proposition 8. We show in Subsection 3.1 that the support function for allocation

probabilities qk(x) equals

S(w) =
∑
x∈X

max
k∈K

wk(x)

Taking into account how the support function changes under a linear transformation (see Sub-

section 3.1) we derive the support function for ex post agent values vi(x) =
∑

k v
k
i (x)qk(x):

Sex post(w) =
∑
x∈X

max
k∈K

∑
i∈I

vki (x)wi(x)

The interim expected values are given by Vi(xi) =
∑

x−i
f(x|xi)vi(x), where f(x|xi) denotes

the conditional distribution of agent types. Therefore,

Sinterim(W) = Ex

(
max
k∈K

∑
i∈I

vki (x)Wi(xi)
)

where, as before, we multiplied by fi(xi), i.e. we used the probability weighted inner product

to define the set of interim expected values. �
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Proof of Proposition 9. The statement for BIC mechanisms directly follows from Theorem

3.1 in Jehiel and Moldovanu (2001). The extension to EPIC mechanisms is immediate. �

Proof of Proposition 10. The second-best level of social surplus equals the value of support

function at unit weights SBIC(1). If the auctioneer has to always allocate the unit we have

SBIC(1) = α
(
Ei(xi) + Ej(xj)

)
+ inf

Λi≥0
Ex max

i 6=j

(
(1− α)xi −

∆Λi(xi)

fi(xi)

)
If we denote the shifted weights Ŵi(xi) = (1 − α)xi − ∆Λi(xi)

fi(xi)
Lemma A1 establishes that f-

majorized values ((1 − α)xi)
+ = (1 − α)Ei(xi) deliver the minimum to the above expression.

After some rearrangement the second-best level of social surplus equals

SBIC(1) = max
i
Ei(xi) + αmin

i
Ei(xi)

The expression of SEPIC(1) can be written similarly. The only differences is that the min-

imization takes place over λi(x) ≥ 0 that depend on the whole vector of agent types. The

argument of Proposition 6 establishes that ((1− α)xi)
+ delivers also the minimum to support

function SEPIC(1) with the same optimal value. Hence, the second-best allocation can be im-

plemented with some EPIC and EXIR mechanism mechanism. �

Proof of Proposition 11. If the auctioneer can keep the unit the value of support function

at unit weights equals

SBIC(1) = α
(
Ei(xi) + Ej(xj)

)
+ inf

Λi≥0
Ex max

i 6=j

(
−α(xi + xj), ((1− α)xi −

∆Λi(xi)

fi(xi)

)
Given the condition on α stated in the proposition and that agent types are positive we have

((1− α)xi)
+ = (1− α)Ei(xi) > −α(xi + xj)

for each realization of xi and xj for at least some i 6= j = 1, 2. Hence, the shifted weights

Ŵi(xi) = ((1−α)xi)
+ identified in Proposition 10 still deliver the minimum to the minimization

problem for SBIC(1). The same argument applies to SDIC(1). �
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Fuchs, Ladislas (1947) “A New Proof of an Inequality of Hardy-Littlewood-Polya,” Mat.

Tidsskr. B, 53–54.

Gershkov, Alex, Jacob K. Goeree, Alexey Kushnir, Benny Moldovanu, and Xianwen Shi (2013)

“On the Equivalence of Bayesian and Dominant-Strategy Implementation,” Economet-

rica, 81, 197–220.

Goeree, Jacob K. and Alexey Kushnir (2013a) “Optimal Mechanisms for General Welfare Ob-

jectives,” Working Paper, University of Zürich.
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