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1. Introduction

We consider identification and estimation in a nonparametric triangular system with a binary en-

dogenous regressor and nonseparable errors. For identification we take a control function approach

utilizing the Dynkin system idea developed in Jun, Pinkse, and Xu (2010b, JPX10). We show our

method to be an alternative (but potentially more general) approach to the use of local instruments, as

in e.g. Carneiro and Lee (2009), Heckman and Vytlacil (1999). We propose a nonparametric estima-

tor of the structural function evaluated at particular values. Our estimator uses nonparametric kernel

regression techniques and its statistical properties are derived using the functional delta method. We

establish that it is n2=7–convergent and has a limiting normal distribution. We apply the method to

estimate the returns to a college education.

Most papers on nonparametric triangular models with nonseparable errors focus on nonparametric

identification rather than estimation, especially when there is a discrete endogenous regressor. Based

on the identification result of Chesher (2003, CH03), Ma and Koenker (2006) and Jun (2009) propose

parametric and semiparametric estimation methods, respectively, but both require that endogenous

regressors are continuous. Chesher (2005, CH05) establishes partial identification of the structural

function at a given value in a triangular system with a discrete endogenous regressor, but CH05

contains little discussion on estimation and inference. JPX10 reconsider CH05’s result and provide

tighter bounds under a weaker rank condition using an independence assumption on instruments, but

also stop short of estimation and inference.

JPX10 and CH05 serve as our starting point. The two papers study the same model, albeit that

JPX10 use a global independence condition of instruments and errors to weaken CH05’s rank con-

dition and to tighten identification bounds. The difference between the two approaches is most pro-

found in the presence of a binary endogenous regressor since CH05, unlike JPX10, does not allow for

a binary endogenous regressor. JPX10 in fact establish conditions under which point identification

obtains in the case of continuous instruments.

One of our objectives in this paper is to show how the Dynkin system idea can be used to obtain

point identification in the triangular model with a binary endogenous regressor. Unlike the local

instrument approach of Heckman and Vytlacil (1999, 2001) and Carneiro and Lee (2009, CL09)

the differentiability of the propensity score is not needed for identification albeit that it is useful for

estimation. More formal discussions can be found in section 2.
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Once we have articulated conditions for identification we turn our attention to nonparametric

estimation. We propose a kernel–based nonparametric estimator, which allows for the full flexibility

of the triangular model with nonseparable errors. We then develop limit results for the proposed

estimator. These results are derived in section 3.

2. Identification

JPX10 show that the identified bounds provided in CH05 can be substantially tightened under a

weaker rank condition when instruments are independent of the errors in a two equation triangular

system. In an extreme case with independent and continuous instruments, the structural function

evaluated at particular values of its arguments can even be point–identified. In this section we show

that this general result is in fact closely related with existing results on the identification of treatment

effects (e.g., CL09 and Heckman and Vytlacil (1999, 2001)) and also with the results for continuous

endogenous regressors of CH03.

The approach taken in JPX10 and CH05 is general in that partial identification is discussed under

the setup of a triangular system with discrete endogenous regressors. The source of the weaker rank

condition and the tighter bounds of JPX10 is the independence between instrumental variables and

unobserved errors, which makes it possible to combine multiple values of the instrumental variables

to obtain identified bounds. The idea is best explained when an endogenous regressor is binary,

which is the case we focus on in the current paper.

Consider the model 8<: y D g.x;u/;

x D �.z; v/;
(1)

where x is a binary regressor, z 2 Sz � Rdz is a vector of observed ‘demographics,’ and y is a

scalar–valued outcome; u and v are scalar–valued errors.1 We omit covariates in the identification

analysis but they will be introduced in the estimation section. We permit the errors to enter non-

additively, so g.1;u/ � g.0;u/ can vary with u. Consequently there is a distinction between the

difference between (conditional) quantiles of g.1;u/ and g.0;u/ and the (conditional) quantiles of

the difference g.1;u/�g.0;u/. We follow Doksum (1974) and many others and focus on the former.
1For issues in models with vector–valued errors, see Kasy (2011).
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Thus, for generic random variables a and b let Qajb.� jb/ be the � quantile of a given b D b. The

parameter of interest is

 � D  �.x�; ��jv�/ D gfx�;Qujv.�
�
jv�/g D Qg.x�;u/jv.�

�
jv�/; (2)

for given values of x�; ��; v�, where the last equality follows from assumptions D and E below.2

The function  � can be used to define causal parameters of interest. For instance, we will call

LMTE.��jv�/ D  �.1; ��jv�/ �  �.0; ��jv�/ (3)

the local marginal treatment effect, which is the quantile version of the marginal treatment effect of

e.g. Heckman and Vytlacil (2005). Integrating LMTE over �� yields the marginal treatment effect

(MTE). Integrating the MTE over v� with various weight functions is discussed in Heckman and

Vytlacil (2005), and for one such choice results in the average treatment effect.

We make the following model assumptions, which are based on those in JPX10 and CH05.

Assumption A. u; v have (marginal) U.0; 1�–distributions.

Assumption B. u; v are independent of z.

Assumption C. �.z; v/ is left–continuous and nondecreasing in v for all values of z.

Assumption D. g.x�; u/ is nondecreasing on .0; 1�.

Assumption E. g.x�; u/ is left–continuous in u at Qujv.�
�jv�/.

Assumption F. For all � 2 .0; 1�, Qujv.� jv/ is nondecreasing in v.

Assumption A is fairly standard in the literature and is essentially a normalization. Assumption B

is strong, but indispensable here. The conditions on � in assumption C are also common. Assump-

tions A to C imply that one can represent the relationship between x; z; v as x D 1fv > p.z/g,

where 1 is the indicator function and p.z/ D P.x D 0jz D z/ is (one minus) the propensity score;

see e.g. Vytlacil (2006). Assumptions D and E are needed for the last equality in (2), as noted before.

Note that assumptions D and E are weaker than strict monotonicity of g in u on .0; 1�. In particular,

if for instance y represents earnings then assumptions D and E allow for the case where there is a

mass point at the minimum wage and the minimum wage is below the desired quantile. Note also

that g.x�; �/ is allowed to have a discontinuous jump at Qujv.�
�jv�/.

2We define quantiles in the standard way, i.e. Qajb.� jb/ D inffa W P.a � ajb D b/ � �g.
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The positive dependence condition in assumption F is used in both JPX10 and CH05.3 We use

assumption F to obtain identifiable bounds for �, but it is not needed to establish point identification

of  � if there are continuous instruments and g.x�; u/ is continuous at Qujv.�
�jv�/.

Let VL; VU be arbitrary subsets (of positive measure) of .0; v�� and .v�; 1�, respectively. Then

assumptions A, D and F imply that

gfx�;Qujv.�
�
jVL/g �  

�
� gfx�;Qujv.�

�
jVU /g; (4)

which can be seen by inverting the inequality e.g.

Pfg.x�;u/ � yjv 2 VU g D
1

P.v 2 VU /

Z
VU

Pfg.x�;u/ � yjv D vgdv

�
1

P.v 2 VU /

Z
VU

Pfg.x�;u/ � yjv D v�gdv D Pfg.x�;u/ � yjv D v�g:

The bounds in (4) are discussed in detail in CH05 and JPX10. Since it is important for our discus-

sion to understand when these bounds are identified, we briefly discuss CH05 and JPX10 focusing

on the case x� D 0.

Let V.0/ D
˚�
0; p.z/

�
W z 2 Sz

	
and V.1/ D

˚�
p.z/; 1

�
W z 2 Sz

	
. If VL 2 V.0/ then

assumptions B, D and E imply that

gf0;Qujv.�
�
jVL/g D Qg.0;u/jv.�

�
jVL/ D Qyjx;z.�

�
j0; z/;

which is identified, where z 2 Sz is such that VL D
�
0; p.z/

�
. However, exclusively relying on sets

of the form
�
0; p.z/

�
leads to a trivial upper bound of the identified set because there is no set of that

form that lies in its entirety above v�. Similarly, relying on V.1/ leads to a trivial lower bound in the

case of x� D 1. CH05 stops here and interprets this problem as a violation of his rank condition.

JPX10 go on to show that the bounds in (4) are identified when sets not belonging to V.0/ are

utilized. For instance, suppose that there exist z and Qz in Sz such that v� � p. Qz/ < p.z/. Then�
p. Qz/; p.z/

�
D
�
0; p.z/

�
�
�
0; p.Qz/

�
� v�, i.e. all elements in the majorant side set are no less

than v�. Hence one can choose VU D
�
p. Qz/; p.z/

�
in (4) to obtain an upper bound, namely the ��

quantile of the conditional distribution given by

Pfg.0;u/ � yjv 2 VU g

3Negative dependence can be dealt with similarly. The essence of this assumption is the monotonicity of Qujv.� j�/.
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D
1

p.z/ � p. Qz/

˚
P.y � yjx D 0; z D z/p.z/ � P.y � yjx D 0; z D Qz/p. Qz/

	
: (5)

A Dynkin system D.x�/ generated by V.x�/ can be obtained by applying various set operations

to V.x�/ and ensures that gfx�;Qujv.�
�jV /g is identified whenever V 2 D.x�/. Such a Dynkin

system can used to identify the tightest bounds in (4). The following definition was first introduced

in JPX10.

Definition 1 (Dynkin System, JPX10). A Dynkin system D.x�/ is defined by the collection D1 in

the following iterative scheme. Let D0 D V.x�/. Then for all t � 0, DtC1 consists of all sets A�

such that at least one of the following three conditions is satisfied.

(i) A� 2 Dt ,

(ii) 9A1; A2 2 Dt W A1 � A2; �.A2 � A1/ > 0; A� D A2 � A1,

(iii) 9A1; A2 2 Dt W A1 \ A2 D ;; �.A1 [ A2/ > 0; A� D A1 [ A2.

Since fDt W t D 0; 1; � � � g is an increasing sequence of collections of sets, we have D.x�/ D

[1tD0Dt . It can be shown that the conditional distribution function of g.x�;u/ given v 2 V is

identified whenever V 2 D.x�/.

Let DL.x�; v�/ D fV 2 D.x�/ W V � v�g and let DU .x�; v�/ be similarly defined. Then

JPX10 have shown4 that under assumptions A to F the tightest identified bounds for  � are given by

sup
V 2DL.x�;v�/

gfx�;Qujv.�
�
jV /g �  � � inf

V 2DU .x�;v�/
gfx�;Qujv.�

�
jV /g: (6)

We now discuss how additional continuity conditions can be used to obtain the point identification

of  �.

Assumption G. Qujv.�
�jv/ is left–continuous in v at v�.

Assumption H. There exists a sequence fztg in Sz such that p.zt / is (strictly) increasing in t with

supremum v�.

Left–continuity in assumptions E and G can be replaced with right–continuity. Please note that

left–continuity does not rule out the presence of discrete jumps in the function g and it hence allows

for mass points in the distribution of y . A sufficient condition for assumption H is that at least one

element of the vector of instruments z has continuous variation (given the other elements) and p is

continuous in that element of z.
4The conditions in JPX10 are slightly different from the ones here.
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We can now strengthen the result in (6).

Theorem 1. (i) Suppose that assumptions E to H are satisfied. Then

sup
VL2DL.x�;v�/

gfx�;Qujv.�
�
jVL/g D  

�
� inf
VU2DU .x�;v�/

gfx�;Qujv.�
�
jVU /g: (7)

(ii) If moreover assumptions A to D are satisfied then  � is point–identified.

Theorem 1 implies that the Dynkin system approach of JPX10 can be used to achieve point identi-

fication of  � using continuous variation in the propensity score p.z/. This result can be compared

to CH03 where point identification is achieved assuming strong monotonicity of �.z; v/ in v, which

implies that x is continuously distributed. If left–continuity (assumptions E and G) is strengthened

to continuity then the inequality in (7) becomes an equality such that the intersection bounds in (6)

collapse to  �.

Continuity of g.x�; u/ at u D Qujv.�
�jv�/ is more helpful for the identification of  � than

continuity of Qujv.�
�jv/ at v�. Indeed, continuity of Qujv.�

�jv/ is of at most modest help to relax

assumption H whereas continuity of g.x�; u/ obviates the need for monotonicity assumptions on

Qujv.� jv/ in v (assumption F) for the identification of  �, as theorem 2 demonstrates. However,

as we have pointed out before, assuming continuity rather than left–continuity of g will exclude the

possibility that the outcome has a mass point at gfx�;Qujv.�
�jv�/g, which would be undesirable.

Assumption I. g.x�; u/ is continuous at Qujv.�
�jv�/.

Theorem 2. Suppose that assumptions A to D and G to I are satisfied. Then  � is identified.

Please note that theorems 1 and 2 rely on monotonicity/continuity but not on smoothness (i.e.

differentiability). We now discuss how these results are connected with the existing results of iden-

tification via local instruments in the treatment effects literature.

It is well–known in the treatment effects literature that differentiability can result in point iden-

tification of the distribution functions of counterfactual outcomes conditional on p.z/ D v�.5 We

now explain how this treatment effects literature result is related to the results in theorems 1 and 2.

Let @zp.z�/ be the partial derivative of p with respect to z at z� andG�.yjx�; z/ D P.y � yjx D

x�; z D z/.

Assumption J. For any y 2 R, G�.yjx�; z/ is continuously differentiable in z at z�.

5See e.g. CL09 and Heckman and Vytlacil (1999, 2001).
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Assumption K. For some z� in the interior of Sz , (i) p.z�/ D v� and (ii) @zp.z�/ ¤ 0.

It is useful to compare assumptions E, G and H with assumptions J and K. If the propensity score

is differentiable then it follows from (8) that assumption J is equivalent to continuity of Fujv.ujv/ in

v at v� and indeed to the differentiability of Fuv.u; v/ in v at v�.

We now show that the smoothness conditions in assumptions J and K provide an alternative path to

identification. Suppose that z is scalar–valued. Since x D 0 and z D z is equivalent to v 2
�
0; p.z/

�
and z D z, we have that for any y 2 R,

G�.yjx�; z/ D P
˚
g.0;u/ � yjv 2 .0; p.z/�

	
D

1

p.z/

Z p.z/

0

P
˚
g.0;u/ � yjv D v

	
dv: (8)

Differentiating both sides in (8) and evaluating at z� yields

P
˚
g.0;u/ � yjv D v�

	
D G�.yjx�; z�/C v�

@zG
�.yjx�; z�/

@zp.z�/
: (9)

The right hand side in (9) is identified and  � is defined as the smallest value of y for which the left

hand side in (9) is equal to ��. An expression similar to (9) can be found in CL09.

For vector–valued z it is more natural to work with the propensity score. Thus, let G.yjx; p/ D

Pfy � yjx D x; p.z/ D pg so that assumption B implies G�.yjx; z/ D Gfyjx; p.z/g . Then, as

was shown by CL09, we have

P
˚
g.0;u/ � yjv D v�

	
D G.yj0; v�/C v�@pG.yj0; v

�/;

P
˚
g.1;u/ � yjv D v�

	
D G.yj1; v�/ � .1 � v�/@pG.yj1; v

�/:
(10)

Theorem 3. If assumptions A to D, J and K are satisfied then  � is identified.

Theorems 1 to 3 articulate a trade–off between monotonicity, continuity, and smoothness assump-

tions. Continuity of Fujv.ujv/ in v and differentiability of the propensity score are convenient for

estimation but neither condition is necessary for identification.

Finally, we note that the Dynkin system idea in theorems 1 and 2 has applications far beyond

the simple binary endogenous variable model of this paper: see e.g. JPX10; Jun, Pinkse, and Xu

(2010a); Jun, Pinkse, Xu, and Yildiz (2010).

3. Estimation

3.1. Assumptions. We now proceed to describe and motivate our estimation procedure, for which

we will focus on the case x� D 0. We add a subscript i to y;x; z;u; v and assume that we have an
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i.i.d. sample of size n. We allow for the presence of exogenous covariates ai 2 Rda in the function

g, i.e. we now consider

y i D g.xi ; ai ;ui /: (11)

The covariates ai are contained in the vector of instruments zi , which contains one or more additional

elements qi and is assumed to be independent of ui ; vi , as is formally assumed here.

Assumption L. Assumptions A to D and K are for some q� satisfied with zi D .qi ; ai /, z� D

.q�; a�/, and with g.x�; a�; u/ in lieu of g.x�; u/.

Let Fj W Rdz ! R denote the class of functions which are j times continuously differentiable on

Z and j C 2 times boundedly differentiable with respect to z1. We replace assumption J with the

stronger assumption M.

Assumption M. G�.yj0; z/ 2 F2.

The addition of the covariates ai does not complicate the identification argument much. Indeed,

one can simply condition on ai D a� in which case the entire argument of section 2 can be repeated

with qi assuming the role of zi . For estimation we adopt the identification argument of theorem 3,

because it is the most convenient. Assumption M is introduced to obtain the desired convergence

rate.

Thus, let bi D Œpi ; a
|

i �
|, zi D Œq

|

i ; a
|

i �
|, pi D p.zi /, and (re)define

G.yjx; a; p/ D P.y i � yjxi D x; ai D a;pi D p/: (12)

We start by estimating

 � D  �.x�; ��ja�; v�/ D Qg.x�;a�;ui /jvi .�
�
jv�/ D g

˚
x�; a�;Qui jvi .�

�
jv�/

	
: (13)

We propose estimating  � by inverting the functions H.�ja�; v�/ defined by

H.yja; v/ D Pfg.0; a;ui / � yjvi D vg;

which under assumption L satisfies

H.yja; v/ D G.yj0; a; v/C v@pG.yj0; a; v/:

So whereas the estimator in CL09 is semiparametric and the object of interest is the mean, our

approach is nonparametric and we estimate quantiles which entails an additional inversion step which
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requires some empirical process theory. However, in section 4 we discuss the possibility of using

single index restrictions allowing for the possibility of semiparametric estimation, albeit in a more

structural fashion than CL09.

Let G.yja; v/ D G.yj0; a; v/ and by assumptions B to D forwi D w.zi / for some function w to

be introduced later,

G.yja�; v�/ D
Ef1.y i � y/wi jxi D 0; ai D a�;pi D v�g

E.wi jxi D 0; ai D a�;pi D v�/
: (14)

Since the function p is estimable, so is the function G, and thence H . We propose estimating both

G and @vG by nonparametric kernel (derivative) regression estimation and inverting the resulting

estimator of H.�ja�; v�/ to estimate  �.

It is well–known that kernel regression estimation has problems in the tails of the distribution,

or more precisely wherever the density of conditioning variables is close to zero. In the estimation

we hence only use observations i for which zi belongs to some convex and compact set Z on which

the density f of zi is bounded away from zero and which is further constrained below. Not using

all data does have efficiency implications, but the commonly used alternative of sample–size depen-

dent trimming is practically cumbersome, technically messy, and any meaningful gains of such a

procedure in empirical work are phantasmic. In what follows we will assume zi to be continuously

distributed even though in empirical work discrete covariates and instruments are prevalent. Kernel

estimation with discrete regressors can be accommodated (see e.g. Delgado and Mora, 1995) at the

expense of longer proofs. However, because in practice the index version of the estimator proposed

in section 4 will often be more attractive and since for the index version only one of the elements

of ai and one of the elements in zi that are not in ai must be continuously distributed, we do not

weaken the assumption here.

The function w in (14) is chosen to be nonnegative on Z and zero elsewhere. Let Ixi D 1.xi D

0/wi , I i .y/ D Ixi1.y i � y/, let fap be the joint density of ai ;pi , and let

S0x D S0x.a
�; v�/ D E.Ixi jai D a�;pi D v�/fap.a�; v�/; S1x D @vS0x;

S0.y/ D S0.yI a
�; v�/ D EfI i .y/jai D a�;pi D v�gfap.a�; v�/; S1.y/ D @vS0.y/:

Then, noting that G.yja�; v�/ D S0.y/=S0x , it follows that

H.yja�; v�/ D
S0.y/S0x C v

�S1.y/S0x � v
�S0.y/S1x

S20x
:
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We now develop our estimator. Let k be a kernel, K be a product kernel based on k whose

dimension is determined by its argument, and let h0; h1; hz be bandwidths. DefineKzi .z/ D K
˚
.z�

zi /=hz
	ı
h
dz
z , and Opi D Op.zi /, where

Op.z/ D

Pn
iD1Kzi .z/1.xi D 0/Pn

iD1Kzi .z/
:

Let furtherKaij D K
˚
.a� � ai /=hj

	ı
h
da
j , k.s/ij D k

.s/
˚
.v� �pi /=hj

	ı
hsC1j , Ok

.s/
ij D k

.s/
˚
.v� �

Opi /=hj
	ı
hsC1j , and

OS s.yIp/ D
1

n

nX
iD1

k
.s/
is KaisI i .y/;

OS s.yI Op/ D
1

n

nX
iD1

Ok
.s/
is KaisI i .y/; (15)

The proposed estimator is then given by

OOH .yja�; v�/ D

OOS 0.y/
OOS 0x C v

� OOS 1.y/
OOS 0x � v

� OOS 0.y/
OOS 1x

OOS 20x

;

where OOS 0.y/ D OS 0.yI Op/,
OOS 0x D

OOS 0.1/,
OOS 1.y/ D OS 1.yI Op/, and OOS 1x D

OOS 1.1/.

The bandwidths h0; h1, and hz vary with n according to

h0 � n
��0 ; h1 � n

��1 ; and hz � n��z (16)

for some �0; �1; �z > 0 to be constrained in assumption S.

So there are a total of five different input parameters here: a kernel, the w–function, and three

bandwidths. The number of bandwidths can be reduced to two by choosing h0 D hz , but our

conditions require that h0 and hz converge to zero faster than h1.

We make the following assumptions.

Assumption N. G.�ja�; v�/ and @pG.�ja�; v�/ are differentiable in y, and hence so isH.�ja�; v�/.

Assumption N is sufficient for the quantile of interest to be uniquely defined and is needed for the

empirical process results that are used.

Assumption O. Z D Z1 � QZ is a subset of the interior of the support Sz of zi D Œzi1; Qz
|

i �
|, for

which QZ � Rdz�1;Z1 D Œ
N
z1; Nz1� for some

N
z1 < Nz1 are compact and convex. On Z the density

f 2 F2 of zi is bounded away from zero. Finally, Z contains points of the form .q; a�/ and for any

such points and any vector � 2 Rda there exists an � > 0 such that .q; a� � ��/ and .q; a� C ��/

are also in Z.
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Assumption P. p 2 F2 is (strictly) increasing in its first argument and 0 < Pfp. Nz1; Qzi / � v
�g <

Pfp.
N
z1; Qzi / � v

�g < 1.

Assumptions M, O and P are typical for the kernel derivative estimation literature, albeit that we

require the existence of one extra derivative in the first argument. There is nothing special about the

first argument (other than that it is an element of qi rather than ai ); one of the instruments used must

satisfy this condition, but there is no need to know, or indeed specify, which one. The number of

required derivatives with respect to z1 can possibly be reduced by one at the expense of much more

restrictive conditions on the bandwidth sequences (assumption S) and permitted dimensions da; dz .

The remaining assumptions (assumptions Q to S below) pertain to the choice of input parameters

and are hence of lesser importance as long as input parameters that satisfy the properties exist.

Assumption Q. w 2 F2 is positive on the interior of Z, zero everywhere else, and nowhere greater

than one.

Assumption Q is there both to ensure that only observations i with zi 2 Z are used (the need

for which was explained earlier) and to allow us to use standard kernel bias expansions by removing

discontinuities on the boundaries of Z.

We now state our conditions for the kernel and bandwidth choices.

Assumption R. The kernel k is even, everywhere nonnegative, infinitely many times boundedly

differentiable, and integrates to one. It further satisfies �s2 D
R
fk.s/.t/g2dt <1 for s D 0; 1, and

�2 D
R
k.t/t2dt <1.

Conditions on the kernel similar to those in assumption R are standard in the kernel estimation

literature. Since we get to choose k, assumption R is innocuous. It is possible to require a smaller

number of derivatives at the expense of longer proofs and possibly stronger restrictions on the band-

widths than those found in assumption S.

Assumption S. The constants �0; �1; �z defined in (16) are such that for �� D max.2dz�z � 1; 0/,

�1 � 1 � 4=.da C 7/ and

max
˚
��; 1 � 4�z; 2.da C 2/�0 C �

�
� 1

	
< .da C 3/�1 < min

˚
.da C 3/min.�0; �z/; 1 � �

�
	
:

The choice of bandwidths in assumption S results in the convergence rate

�n D n
f1�.3Cda/�1g=2: (17)
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While assumption S allows for undersmoothing, the choice of �1 D 1=.7C da/ leads to the op-

timal rate of �n D n2=.7Cda/ for kernel derivative estimators (using second order kernels). Faster

convergence rates are feasible under additional smoothness conditions (more derivatives) using bias

reduction techniques such as higher order kernels or local polynomial estimation. Such an exten-

sion is a well–trodden path, which adds no new theoretical insights, and its promised performance

improvements are not often realized in samples of finite size.

To see that �0; �1; �z exist for many (but certainly not all) combinations of da; dz , we present

table 1 which for �1 D 1=.7 C da/ lists the values of 1,000 times the values of �0; �z which are

the ‘points of gravity’ of the regions of �0; �z combinations for which assumption S is satisfied and

which are in some sense hence farthest from violating assumption S. If there is no entry in the table

for a particular da � dz�1 combination then that means that for �1 D 1=.7Cda/ there are no values

of �0; �z to satisfy assumption S. Of course, �0; �1; �z only indicate a rate; the constant multiplying

n��0 for instance still needs to be chosen.

3.2. Limit results for our estimator of H . Before stating our formal results, we introduce some

notation. Let �b D limn!1.�nh
2
1/, �v D limn!1.�

2
n=nh

3Cda
1 /, py.yjz/ D P.y i � yjxi D

0; zi D z/

�.y; a�; v�/ D v�fap.a
�; v�/�12Efpy.yjzi /w

2
i jai D a

�;pi D v
�
g;

and

C.y; y�/ D C.y; y�I a�; v�/ D �fmin.y; y�/; a�; v�g � �.y; a�; v�/G.y�ja�; v�/

� �.y�; a�; v�/G.yja�; v�/CG.yja�; v�/G.y�ja�; v�/�.1; a�; v�/: (18)

Let further

C.y; y�/ D C.y; y�I a�; v�/ D �v
v�2C.y; y�I a�; v�/

S20x.a
�; v�/

;

and

B.y/ D B.yI a�; v�/ D
�bv
��2

2S0x
tr
n
@v@bb|S0.yI a

�; v�/ �G.yja�; v�/@v@bb|S0x.a
�; v�/

o
:

Theorem 4. Under assumptions L to S,

�nf
OOH .�ja�; v�/ �H.�ja�; v�/g

w
! G;
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dz
da # 1 2 3 4 5 6 7 8 9

0

249

142

271

249

142

249

249

142

190

250

142

160

1

186

125

249

186

125

186

187

125

155

187

125

136

2

153

111

176

152

111

145

152

111

127

153

111

115

3

129

100

136

129

100

119

129

100

107

4

113

90

113

113

90

101

113

90

94

5

101

83

97

101

83

89

6

90

76

85

91

76

79

7

83

71

75

8

76

66

68

Table 1. Suggested choices for 1,000 times �0; �1; �z for various combinations of da; dz .

on the space of bounded functions on Y D fy W 9u 2 U W g.0; a�; u/ D yg, L1.Y/, where G is a

Gaussian process with mean B and covariance kernel C .

Please note that table 1 implies that it is possible for the limit distribution not to be affected by the

first step estimation of p — the ‘oracle property’ — even in some cases in which dz > daC 1. This

may appear to be at odds with other results in the voluminous literature on nonparametric generated

regressors (Rilstone, 1996; Pinkse, 2001; Mammen, Rothe, and Schienle, 2012, inter multa alia)

in which nonparametrically estimated regressors do affect the optimal convergence rate unless the

estimated regressors are functions whose vector of arguments is of smaller dimension than the vector

of arguments of the the function of interest. However, here we are not evaluating Op at a fixed point,
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say z�, to obtain our estimate OOH .yja�; v�/. Instead we only use Opi ’s which are averaged in some

sense which reduces their contribution to the variance, thereby allowing us to use smaller hz values

to reduce the bias, also.

3.3. Limit results for our estimator of  �. We finally turn to our estimator of  � itself. We

use the standard approach for defining quantiles to define our quantile estimate using the estimated

conditional distribution function, i.e.

O � D inf
˚
Q W

OOH . Q ja�; v�/ � ��
	
:

The asymptotic behavior can then be inferred from theorem 4. Indeed, we have theorem 5.

Theorem 5. Under assumptions L to S, �n. O � �  �/
d
! N.B ;V /, where

B D �
B. �/

H 0. �ja�; v�/
; V D

C. �;  �/

fH 0. �ja�; v�/g2
:

3.4. Bias and variance estimation. The bias and variance in theorem 5 can be consistently esti-

mated by standard methods. Since the bias can be removed by undersmoothing, the Jackknife, or

other methods, we focus on estimation of the variance below. Note that

H 0.yja�; v�/ D
S
.1/
0 .y/S0x C v

�S
.1/
1 .y/S0x � v

�S
.1/
0 .y/S1x

S20x
;

where letting fy.�jx; z/ be the conditional density of y i given xi D x and zi D z,8̂<̂
:S

.1/
0 .y/ D @yS0.y/ D E

˚
Ixify.yjxi ; zi /jpi D v

�
	
fap.a

�; v�/;

S
.1/
1 .y/ D @yS1.y/ D @yvS0.y/:

For s D 0; 1, we can estimate S .1/s .y/ by

OOS .1/s .y/ D
1

n

nX
iD1

Kais
Ok
.s/
is kyi .y/Ixi ;

where kyi .y/ D k
˚
.y � y i /=hy

	
=hy with hy a bandwidth. Also, C.y; yI a�; v�/ can be estimated

by

OC.y; yI a�; v�/ D
h
1Cda
1

n

nX
iD1

K2
ai1

Ok2i11.xi D 0/w
2
i

n
1.y i � y/ �

OS 0.y/

OS 0x

o2
:

The final estimator of V can be obtained by using OOS
.1/
s and OC evaluated at y D y� D O �. The

following theorem establishes the consistency of OOS
.1/
s . O �/ and OC. O �; O �/.
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Theorem 6. Suppose that assumptions L and N to S are satisfied with hy D o.1/ and 1 D o.�nhy/

and sups jk.s/j <1. Then, for s D 0; 1,

OOS .1/s . O �/
p
! S .1/s . �/ and OC. O �; O �/

p
! C. �;  �; v�/:

4. Index

In most applications the dimensions of the ai ; zi vectors are too large for estimates to be suffi-

ciently precise. One solution to this problem is to impose semiparametric restrictions on the g and

p functions or, said differently, to assume that ai ; zi enter as indices. As a leading example, we

consider6 8<: y i D gfxi ; a
|

i �0;ui /;

xi D 1
˚
vi > p.z

|

i 0/
	
:

(19)

It follows from the copious work on index models that several normalizations are needed. First, ai ; zi
should not include a constant term and even so the vectors �0; 0 are (at best) identified up to scale.

Second, one should be able to move xi exogenously without changing ai , i.e. at least one of the –

coefficients on the qi component of zi should be nonzero. Indeed, if one lets z|

i 0 D a
|

i 0aCq
|
i
0q

then the conditions of sections 2 and 3 can be verified conditional on a|

i �0 D a
�|
�0 and taking z in

sections 2 and 3to equal q|
i
0q , which requires that 0q ¤ 0.

From now on, we take identification of  � and that of 0; �0 as given. We also take as given that
p
n–consistent estimators O; O� of 0; �0 exist. We are not generally fans of high–level assumptions.

However, the structure of (19) fits well into the index model estimation literature of which Powell,

Stock, and Stoker (1989); Ichimura (1993); Klein and Spady (1993) are prominent examples. Indeed,

P.xi D 1jzi D z/ D p.z
|
0/, which yields an estimate of 0. Further, E.yjx D x; z D z/ is an

unknown function of x; z|
0; a

|
�0, which can be used to construct an estimate of �0.

The main task for this section, then, is to establish that the estimation of the nuisance parameters

0; �0 does not affect the limit distribution of the estimator of  �.

Let OO � be defined as O �, replacing ai with a|

i O and zi with z|

i
O� .

Theorem 7. Suppose that O; O� are
p
n–consistent estimates of 0; �0, respectively. Then theorems 5

and 6 hold for OO � when ai ; zi are replaced with a|

i O and z|

i
O� , respectively.

6Other parametric link functions or multiple indices can be accommodated but they complicated the identification condi-
tions.
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5. Application

We now apply our method to estimate the returns to college education using the NSLY 1979 data.

The same data set was used by CL09 and Carneiro, Heckman, and Vytlacil (2011) among others. The

sample consists of 1,747 white males with or without college education. A more detailed description

of the data can be found in Carneiro, Heckman, and Vytlacil (2011) and their supplementary material,

and we will not repeat it here.

Table?? shows the exogenous variables (i.e. controls and instruments) and their index coefficients

in the propensity score, which are estimated by Ichimura’s method. We used the logit regression

coefficients as a starting value.
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Appendix A. Lemmas for Identification

Lemma A1. Suppose that assumptions G and H are satisfied. Then,

lim
t!1

Qujv.�
�
jVt / D Qujv.�

�
jv�/;

where Vt D
�
p.zt /; p.ztC1/

�
and fp.zt /g is as in assumption H.

Proof. Choose � > 0. By assumption G there exists a v� < v� such that for all v 2 .v�; v��,

Qujv.�
�
jv�/ � � < Qujv.�

�
jv/ < Qujv.�

�
jv�/C �:

Recalling that Qujv.�
�jv�/ is the smallest value of u for which P.u � ujv D v�/ � ��, it follows

that for all v 2 .v�; v��,

P
˚
u � Qujv.�

�
jv�/ � �jv D v

	
< �� � P

˚
u � Qujv.�

�
jv�/C �jv D v

	
:

Hence, if one picks t large enough to ensure that v� < p.zt / < p.ztC1/ < v� then

P
˚
u � Qujv.�

�
jv�/C �jv 2 Vt

	
D

R p.ztC1/
p.zt /

P
˚
u � Qujv.�

�jv�/C �jv D v
	
dv

p.ztC1/ � p.zt /
� ��; (20)

and similarly

P
˚
u � Qujv.�

�
jv�/ � �jv 2 Vt

	
< ��: (21)

Hence, it follows from (20) and (21) that

Qujv.�
�
jv�/ � � < Qujv.�

�
jVt / � Qujv.�

�
jv�/C �:

Since � > 0 was arbitrarily chosen, the proof is done. �

Lemma A2. Suppose that assumptions F to H are satisfied. Then,

sup
V 2DL.x�;v�/

Qujv.�
�
jV / D Qujv.�

�
jv�/ � inf

V 2DU .x�;v�/
Qujv.�

�
jV /: (22)
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Proof. By assumption F and definition of DL.x�; v�/ and DU .x�; v�/, we have

sup
V 2DL.x�;v�/

Qujv.�
�
jV / � Qujv.�

�
jv�/ � inf

V 2DU .x�;v�/
Qujv.�

�
jV /: (23)

Now let Vt D
�
p.zt /; p.ztC1/

�
, where fp.zt /g be as in assumption G. Since Vt 2 DL.x�; v�/, we

have

8t; Qujv.�
�
jVt / � sup

V 2DL.x�;v�/
Qujv.�

�
jV /:

Therefore, it follows from lemma A1 that

Qujv.�
�
jv�/ � sup

V 2DL.x�;v�/
Qujv.�

�
jV /: (24)

Combining (23) with (24) completes the proof. �

Appendix B. Technical Lemmas

Lemma B1. Let„n D
Pn
iD1 �ni , where f�nig is an i.i.d. mean zero sequence of functions whose el-

ements can depend onn. For any compact set‡ , suppose that Q�n � 1 is such that sup�2‡k@�„n.�/k �
Q�n, let �2

n�
D sup�2‡ V�ni .�/ and let N�n be such that P

˚
sup�2‡ j�ni .�/j > N�n

	
D 0. If

�2
n�
� 1=n log Q�n and N�n � 1= log Q�n then sup�2‡ j„n.�/j � 1:

Proof. Cover ‡ using �n balls ‡1; : : : ; ‡�n with centroids �1; : : : ; ��n , in such a way that for any n,

maxtD1;:::;�n sup�2‡t k� � �tk � C=�
1=d�
n for some C independent of n. Then

sup
�2‡

j„n.�/j � max
tD1;:::;�n

sup
�2‡t

j„n.�/ �„n.�t /j C max
tD1;:::;�n

j„n.�t /j: (25)

Choose any � > 0. For ı > 0 to be chosen, let �n D .ı Q�n=�/d� .

For RHS2 in (25) we have by the Bernstein inequality that

P
n

max
tD1;:::;�n

j„n.�t /j > �
o
�

�nX
tD1

P
˚
j„n.�t /j > �

	
� 2�n exp

n
�

�2

2.n�2
n�
C N�n�/

o
� 1:

Finally, for RHS1 in (25) we have by the mean value theorem that

P
n

max
tD1;:::;�n

sup
�2‡t

j„n.�/ �„n.�t /j > �
o
� P

n
sup
�2‡

k@�„n.�/k max
tD1;:::;�n

sup
�2‡t

k� � �tk > �
o

� P
n
sup
�2‡

k@�„n.�/k >
��
1=d�
n

C

o
� P

n
sup
�2‡

k@�„n.�/k >
ı Q�n

C

o
:

Let n!1 followed by ı !1. �
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Lemma B2. Let f��
ni
g be an i.i.d. sequence of mean zero functions defined on a compact set ‡

for which for some C < 1, supn
�
n�CE

˚
sup�2‡k@��

�
ni
.�/k

	�
< 1. Let further �2

n��
D

sup�2‡ V��
ni
.�/ and supn P

�
sup�2‡ j�

�
ni
.�/j > N��n

�
D 0. Then for any

�n � max
�q
�2
n��

log n=n; N��n log n=n
�
,

sup
�2‡

ˇ̌̌
n�1

nX
iD1

��
ni
.�/
ˇ̌̌
� �n:

Proof. In lemma B1 take �ni D ��
ni
=n�n. �

Lemma B3. Let f�ig be an i.i.d. sequence, let �i include y i as an element, and let f OAig be such

that OAi D An.�i ; �1; : : : ; �i�1; �iC1; : : : ; �n/ for arbitrary function An. If P
�
k OA1k > �

�
� 1=n

and supy2Y P
nPn�1

iD1
OAiI i .y/

 > �o � 1=n, then supy2Y

P
i

OAiI i .y/
 � 1.

Proof.

P
n
sup
y2Y

 nX
iD1

OAiI i .y/
 > 2�o D P

n
max
tD1;:::;n

 nX
iD1

OAiI i .y t /
 > 2�o � nX

tD1

P
n nX
iD1

OAiI i .y t /
 > 2�o

� n sup
y2Y

P
nn�1X
iD1

OAiI i .y/
 > �oC nP

˚
k OA1k > �

	
� 1: �

Appendix C. V–statistics

Let @n D f1; : : : ; ng, ‡n` D @`n, and let ‡n j̀ be the set of vectors in ‡n` with exactly j distinct

elements. Let further for any � 2 ‡n`, �� D .��1 ; : : : ; ��` /
|.

Lemma C1. ForVn` D
P
�2‡n`

m.��/ andU .`;j /n D
P
�2‡n j̀

m.��/, we haveVn` D
P`
jD1U

.`;j /
n ,

whereU .`;j /n is a U–statistic of order j whose kernelm.`;j / consists of a sum of
Pj
tD1.�1/

j�t t`�1=f.j�

t /Š.t � 1/Šg elements.7

Proof. See Lee (1990, theorem 1 on p.183). �

For instance,

X
i1i2i3

m.�i1 ; �i2 ; �i3/ D
X
i1

X
i2¤i1

X
i3¤i1;i2

m.�i1 ; �i2 ; �i3/

7These are Stirling numbers of the second kind.
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C

X
i1

X
i2¤i1

˚
m.�i1 ; �i1 ; �i2/Cm.�i1 ; �i2 ; �i1/Cm.�i2 ; �i1 ; �i1/„ ƒ‚ …P2

tD1
.�1/2�t t3�1

.2�t/Š.t�1/Š
D3 terms

	
C

X
i1

m.�i1 ; �i1 ; �i1/ (26)

Lemma C2. For any symmetric j–th order U–statistic kernel m.j /, let Unj D
P
�2‡njj

m.j /.��/.

Let further for 0 � t � j and any a1; : : : ; at , m
.j /
t .a/ D Em.j /.a1; : : : ; at ; �1; : : : ; �j�t /, Unjt DP

�2‡ntt
m
.j /
t .��/, and U cnjt the corresponding canonical U–statistic (De la Peña and Giné, 1999).

Then if �.j / D Em.j /.�1; : : : ; �j /,

Unj D
nŠ

.n � j /Š
�.j / C

jX
tD1

 
j

t

!
.n � t /Š

.n � j /Š
U cnjt :

Proof. This is essentially the Hoeffding decomposition (Lee, 1990, theorem 1 on p.26) combined

with a rearrangement of terms.8 �

For instance, noting that all m–functions are symmetric in their arguments,

X
i1

X
i2¤i1

X
i3¤i1;i2

m.3/.�i1 ; �i2 ; �i3/ D n.n � 1/.n � 2/�
.3/

C 3.n � 1/.n � 2/
X
i1

˚
m
.3/
1 .�i1/ � �

.3/
	

C 3.n � 2/
X
i1

X
i2¤i1

˚
m
.3/
2 .�i1 ; �i2/ �m

.3/
1 .�i1/ �m

.3/
1 .�i2/C �

.3/
	

C

X
i1

X
i2¤i1

X
i3¤i1;i2˚

m.3/.�i1 ; �i2 ; �i3/�m
.3/
2 .�i1 ; �i2/�m

.3/
2 .�i1 ; �i3/�m

.3/
2 .�i2 ; �i3/Cm

.3/
1 .�i1/Cm

.3/
1 .�i2/Cm

.3/
1 .�i3/��

.3/
	

Lemma C3. For U cnjt defined in lemma C2, we have

P
�
jU cnjt j > �

�
� Ct exp

h
�

�2=t=Ct

n�
2=t
jt C ˇ

2=.tC1/
jt n.t�1/=.tC1/�2=ft.tC1/g

i
;

where Ct is a constant which only depends on t , ǰ t D supm
.j /
t .�/, �2jt D Vm.j /t .�1; : : : ; � t /.

8The representation is slightly different here from the one in Lee (1990) because the U–statistic kernel incorporates a
number of permutations in his case.
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Proof. Follows from Arcones and Giné (1993, proposition 2.3(c)). �

Lemma C4. For an `–th order V–statistic Vn` as defined in lemma C1 with symmetric kernelm, let

for 1 � t � j � `, m.`;j / be defined as in lemma C1, �.`;j / D Em.`;j /.�1; : : : ; �j /, m
.`;j /
t .a/ D

Em.`;j /.a1; : : : ; at ; �1; : : : ; �j�t /, ˇ
.`;j /
t D supm

.`;j /
t , and � .`;j /t D

q
Vm.`;j /t .�1; : : : ; � t /.

Then P.Vn` > �n/ decreases faster than any polynomial of n, where

�n D max
1�t�j�`

h
.log n/tC1max

n
nt=2�

.`;j /
t ; n.t�1/=2ˇ

.`;j /
t ; nj�.`;j /

oi
:

Proof. In lemma C1 the V–statistic is separated into a number (independent of n) of U–statistics.

Each of these U–statistics is further separated into a number (again independent of n) of canonical

U–statistics in lemma C2 plus a mean. Finally, apply lemma C3 to each element individually.9 �

Appendix D. Z

Let � be such that �fp.z1; Qz/; Qzg D z1 for all .z1; Qz/ 2 Z. The function � is well–defined by

assumption P.

Lemma D1. For all p and any c > 0, fp.pj Qz/ is four times boundedly differentiable with respect

to p, uniformly in Qz for which Qf . Qz/ � c.

Proof. Note that Fp.pj Qz/ D P.pi � pjQzi D Qz/ D Pfzi1 � �.p; Qz/jQzi D Qzg; such that fp.pj Qz/ D

@p�.p; Qz/f f�.p; Qz/; Qzg= Qf . Qz/. The stated result then follows from assumption O. �

Lemma D2. For all p for which 9z 2 Z W p.z/ D p and all t times boundedly differentiable

functions � for which �.z/ D 0 for all z 62 Z, Ef�.zi /jpi D pgfp.p/ is min.t; 3/ times boundedly

differentiable in p.

Proof. Let � be as in lemma D1. Then for any z 2 Z and p D p.z/,

Ef�.zi /jpi D pgfp.p/ D

Z
�f�.p; Qz/; Qzgf f�.p; Qz/; Qzg@p�.p; Qz/d Qz: �

9Because the number of canonical U–statistics has an upper bound independent of n, looking at each individual term
separately is sufficient.
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Appendix E. Kernels

Lemma E1. Let f.�i ; zi /g be i.i.d., and suppose that �.z/f .z/ with �.z/ D E.�i jzi D z/ has two

bounded derivatives. Then

sup
z2Z

ˇ̌̌
E
˚
Kzi .z/�i

	
� �.z/f .z/

ˇ̌̌
� h2z :

Proof. This follows from a standard kernel bias expansion. �

Lemma E2 can be found, often in slightly different form, in many other sources, including Pagan

and Ullah (1999).

Lemma E2. Let f.�i ; zi /g be i.i.d., �i uniformly bounded, and �2
�
.z/ D V .�i jzi D z/ is continuous

on Z. Then

sup
z2Z

ˇ̌̌1
n

nX
iD1

�
Kzi .z/�i � E

˚
Kzi .z/�i

	�ˇ̌̌
�

log nq
nh
dz
z

:

Proof. Follows directly from lemma B2. �

Let

˛n D log n=
p
nhdzz C h

2
z : (27)

Let further Or D Op Of , where Of is the kernel density estimator of f using bandwidth hz and kernel

K.

Lemma E3. (i) supz2Z j
Of .z/� f .z/j � ˛n, (ii) supz2Z j Or.z/� r.z/j � ˛n, (iii) supz2Z j Op.z/�

p.z/j � ˛n,

Proof. The first two results follows by combining lemmas E1 and E2 and the third one from the first

two by noting that for any Qz 2 Z,

r. Qz/ � supz2Z j Or.z/ � r.z/j

f . Qz/C supz2Z j
Of .z/ � f .z/j

� Op. Qz/ �
r. Qz/C supz2Z j Or.z/ � r.z/j

f . Qz/ � supz2Z j
Of .z/ � f .z/j

: �

Lemma E4. For some � > 0, limn!1 Pfinfz2Z
Of .z/ < �g D 0.

Proof. Note that

P
n
inf
z2Z

Of .z/ < �
o
� I

n
inf
z2Z

f .z/ < 2�
o
C P

n
sup
z2Z

j Of .z/ � f .z/j > �
o
:

Apply lemma E3. �
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Appendix F. Expansions

Recalling (15), let E.yIp/ D EfI i .y/jai D a�;pi D pg, E.y/ D E.yI v�/, and

NS s.yIp/ D
1

n

nX
iD1

k
.s/
is KaisE.y/;

NS s.yI Op/ D
1

n

nX
iD1

Ok
.s/
is KaisE.y/: (28)

Let further Kzij D Kzi .zj /.

Lemmas F1 to F3 serve as inputs into establishing two results, namely

sup
y

ˇ̌
OS s.yI Op/ � NS s.yI Op/ � OS s.yIp/C NS s.yIp/

ˇ̌
� 1=�n (29)

for s D 0; 1 and

sup
y

ˇ̌
NS 0.yI Op/ � NS 0.yIp/

ˇ̌
� 1=�n; (30)

i.e. lemmas F6 and F7. Each of these expression is expanded using the mean value theorem to some

order J to apply lemmas F1 to F3. For instance, by assumption R, the RHS of (29) is bounded above

by

J�1X
jD1

1

j Š
sup
y2Y

ˇ̌̌̌
1

n

nX
iD1

k
.sCj /
is Kais.pi � Opi /

j
˚
I i0.y/ � E.y/

	ˇ̌̌̌

C sup
y2Y

1

nhsC1CJs J Š

nX
iD1

ˇ̌̌̌
Kais.pi � Opi /

J
˚
I i0.y/ � E.y/

	ˇ̌̌̌
; (31)

where the first term is covered by lemmas F1 and F2 and the second term is dealt with in lemma F3.

Lemma F1. Let �1; : : : ; �j ; �� 2 F2, and Tj � Rj consist of vectors whose elements are all either

equal to one or zero and let u�
`i

be such that E.u�
`i
jzi / D 0 a.s. and E.u�2

`i
jzi D z/ is continuous

on Z. Then for s D 0; 1, j D 1; 2; : : : , and all t 2 Tj ,

sup
y2Y

ˇ̌̌̌
1

njC1

nX
i0D1

� � �

nX
ijD1

k
.sCj /
i0s

Kai0s�
�
i0

˚
I i0.y/ � E.y/

	 jY
`D1

Kzi0i`u
�t`
`i`
.�`i` � �`i0/

1�t`

ˇ̌̌̌
� 1=�n; (32)

where �`i D �`.zi / and similarly for other � symbols.

Proof. As will become apparent in lemma F6, for every j the LHS in (32) corresponds to the j–th

term in a Taylor expansion of OS s.yI Op/� NS s.yI Op/ around OS s.yIp/� NS s.yIp/; see (31). Because by

lemma E3 Opi �pi converges faster (uniformly in i ) than the extra 1=hs incurred for each additional
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derivative, the convergence rate is slowest for s D j D 1, so we establish convergence at the

promised rate for that case; all other cases can be verified similarly, albeit sometimes more painfully.

Thus, we use lemma C4 to obtain a rate for

sup
y2Y

ˇ̌̌̌
1

n2

nX
i0D1

nX
i1D1

k00i01Kai01�
�
i0

˚
I i0.y/ � E.y/

	
Kzi0i1u

�t1
1i1
.�1i1 � �1i0/

1�t1

ˇ̌̌̌
: (33)

Let �i contain all random variables pertaining to observation i . Noting that (33) is a V statistic

and that lemma C4 is based on a decomposition of the V statistic into a sum of U statistics, we have

for the m–symbols of lemma C4 and for some N�; Q� 2 F0,

m.2;2/.�i0 ; �i1/ D
1

2n2

h
k00i01Kai01�

�
i0

˚
I i0.y/ � E.y/

	
Kzi0i1u

�t1
1i1
.�1i1 � �1i0/

1�t1

C k00i11Kai11�
�
1i1

˚
I i1.y/ � E.y/

	
Kzi0i1u

�t1
1i0
.�1i0 � �1i1/

1�t1
i
;

m
.2;2/
1 .�i / D E

˚
m.2;2/.�i ; �i1/j�i

	
(i1 ¤ i )

'

8̂̂̂̂
<̂
ˆ̂̂:
h2z
2n2

h
k00i1Kai1�

�
i

˚
I i .y/ � E.y/

	
N�i ;

Ck00i1Kai1

˚
E.yIpi ; ai / � E.yI v�; a�/

	
Q�i

i
; t1 D 0;

h2z
2n2
k00i1Kai1�

�
i

˚
I i .y/ � E.y/

	
N�iu
�
1i ; t1 D 1;

m
.2;1/
1 .�i / D

8̂<̂
:0; t1 D 0;

1
n2
k00i1Kai1�

�
i

˚
I i .y/ � E.y/

	
Kzi iu

�
1i ; t1 D 1:

n2�.2;2/ � h2z; (34)

n�.2;1/ �
1

nh
dz
z

; (35)

p
nˇ

.2;2/
2 �

1

n3=2h
dz
z h

3Cda
1

; (36)

ˇ
.2;2/
1 �

h2z

n2h
3Cda
1

; (37)

ˇ
.2;1/
1 �

1

n2h
dz
z h

3Cda
1

; (38)

n�
.2;2/
2 �

1

nh
3Cda
1

; (39)

p
n�

.2;2/
1 �

h2z

n3=2h
.5Cda/=2
1

; (40)
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p
n�

.2;1/
1 �

1

n3=2h
.5Cda/=2
1 h

dz
z

: (41)

Sufficient conditions for (34) to (41) to converge at a rate faster than 1=�n are respectively

.3C da/�1 > 1 � 4�z; (42)

.3C da/�1 > 2dz�z � 1; (43)

.3C da/�1 < 2 � 2�zdz; (44)

.3C da/�1 < 3C 4�z; (45)

.3C da/�1 < 3 � 2�zdz; (46)

.3C da/�1 < 1; (47)

�1 < 1C 2�z; (48)

�1 < 1 � �zdz : (49)

Conditions (45) to (49) are implied by (44) and/or standard kernel estimation conditions needed

for consistency of the estimator of H without nuisance parameters. Thus, only (42) to (44) are

potentially relevant and the lemma statement holds if

max.1 � 4�z; 2dz�z � 1; 0/ < .3C da/�1 < min.2 � 2�zdz; 1/;

which is satisfied by assumption S. �

Lemma F2. Using essentially the same notation and conditions as in lemma F1, for j D 1; 2; : : : ,ˇ̌̌̌
1

njC1

nX
i0D1

� � �

nX
ijD1

k
.j /
i00
Kai00

jY
`D1

Kzi0i`u
�t`
`i`
.�`i` � �`i0/

1�t`

ˇ̌̌̌
� 1=�n: (50)

Proof. This lemma is used in lemma F7 to deal with the expansion of NS 0.yI Op/ around NS 0.yIp/.

Using the same strategy and rationale for focusing on the case s D 1 as in lemma F1, we have

m.2;2/.�i0 ; �i1/ D
1

2n2

h
k0i00Kai00Kzi0i1u

�t
1i1
.�i1 � �i0/

1�t

C k0i10Kai10Kzi0i1u
�t
1i0
.�i0 � �i1/

1�t
i
;

m
.2;2/
1 .�i / '

8̂<̂
:
h2z
n2
k0i0Kai0

N�i ; t D 0;

1
2n2
k0i0Kai0

N�iu
�
1i ; t D 1:
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m
.2;1/
1 .�i / D

8̂<̂
:0; t D 0;

1
n2
k0i0Kai0Kzi iu

�
1i ; t D 1;

n2�.2;2/ � h2z; (51)

n�.2;1/ �
1

nh
dz
z

; (52)

p
nˇ

.2;2/
2 �

1

n3=2h
daC2
0 h

dz
z

; (53)

ˇ
.2;2/
1 �

1

n2h
daC2
0

; (54)

ˇ
.2;1/
1 �

1

n2h
daC2
0 h

dz
z

; (55)

n�
.2;2/
2 �

1

nh
daC2
0

; (56)

p
n�

.2;2/
1 �

1

n3=2h
.daC3/=2
0

; (57)

p
n�

.2;1/
1 �

1

n3=2h
.daC3/=2
0

: (58)

Some of the numbered equations above were already shown to be� 1=�n in lemma F1 The remaining

conditions are implied by

.3C da/�1 > 2�0.da C 2/C 2 � �z � dz � 2; (59)

.3C da/�1 > 2�0.da C 2/ � 1; (60)

.3C da/�1 > .da C 3/�0 � 2; (61)

which follow from assumption S. �

Lemma F3. Using the same notation as in lemma F1, for some 0 < J <1 and s D 0; 1,

sup
y2Y

1

nhsC1CJs

nX
iD1

ˇ̌
Kais�

�
i fI i .y/ � E.y/g

ˇ̌
sup
z2Z

ˇ̌
Op.z/ � p.z/

ˇ̌J
� 1=�n:

Proof. By lemma E3, the stated result is implied by ˛n=hs decreasing to zero at a polynomial rate

since for any polynomial ��n then ��n .˛n=hs/J � 1. The requirement that ˛n=hs decrease to zero

at a polynomial rate is guaranteed by �s < min
˚
2�z; .1��zdz/=2

	
, which was assumed in assump-

tion S. �
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Lemma F4. For any J � 1,

sup
z2Z

ˇ̌̌̌
ˇ Op.z/ � p.z/ �

Or.z/ � r.z/

f .z/

J�2X
jD0

�f .z/ � Of .z/

f .z/

�j
� p.z/

J�1X
jD1

�f .z/ � Of .z/

f .z/

�j ˇ̌̌̌ˇ � ˛Jn :
Proof. From the recursion of f= Of D 1C .f � Of /= Of , we have f= Of D

PJ�1
jD0

˚
.f � Of /=f

	j
C˚

.f � Of /=f
	J
f= Of . Therefore, the LHS in the lemma statement is bounded by

sup
z2Z

ˇ̌̌̌
ˇ� Or.z/ � r.z/

f .z/

��f .z/ � Of .z/

f .z/

�J�1 f .z/
Of .z/
C

�f .z/ � Of .z/

f .z/

�J f .z/
Of .z/

ˇ̌̌̌
ˇ:

Apply lemmas E3 and E4. �

Let Nf .z/ D E Of .z/, Nr.z/ D E Or.z/, Of � D Of =f , Or� D Or=f , Nr� D Nr=f , Nf � D Nr=f .

Lemma F5. For given j; J , let ƒj be the collection of vectors ` of dimension four containing non-

negative integers satisfying `1C `2 � j and `1C `2C `3C `4 < J . Then for all sufficiently large

n and any 1 � j < J and some constants Cj` independent of n; z,

sup
z2Z

ˇ̌̌
f Op.z/�p.z/gj�

X
`2ƒj

Cj`f Or
�.z/�Nr�.z/g`1fNr�.z/�p.z/g`2f Of �.z/� Nf �.z/g`3f Nf �.z/�1g`4

ˇ̌̌
� ˛Jn :

Proof. Follows directly from lemma F4 combined with the multinomial theorem. �

Lemma F6. For s D 0; 1, supy2Y

ˇ̌
OS s.yI Op/ � NS s.yI Op/ � OS s.yIp/C NS s.yIp/

ˇ̌
� 1=�n:

Proof. Let J be sufficiently large as in lemma F3. Then, expand the LHS of the lemma statement

to order J using the mean value theorem to obtain an upper bound of (31). The second term in (31)

is covered by lemma F3 and the first term in (31) is dealt with in lemma F1, using lemmas F4

and F5. �

Lemma F7. supy2Y

ˇ̌
NS 0.yI Op/ � NS 0.yIp/

ˇ̌
� 1=�n:

Proof. The proof is entirely analogous to that of lemma F6, albeit using lemma F2 instead of lemma F1,

and is hence omitted. �

Below we will write Ss.yIp/ for Ss.y/ D Ss.yI a�; v�/ for s D 0; 1.

Lemma F8.

sup
y2Y

ˇ̌
OS 0.yIp/ � S0.yIp/

ˇ̌
� 1=�n: (62)
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Proof. By standard kernel estimation theory, the squared LHS in (62) is� h40C 1
ı
nh
1Cda
0 � 1=�2n

by assumption S. �

Lemma F9.

sup
y2Y

ˇ̌
OS 0.yI Op/ � S0.yIp/

ˇ̌
� 1=�n: (63)

Proof. The LHS in (63) is bounded above by the sum of

sup
y2Y

ˇ̌
OS 0.yI Op/ � NS 0.yI Op/ � OS 0.yIp/C NS .yIp/

ˇ̌
; (64)

sup
y2Y

ˇ̌
NS 0.yI Op/ � NS 0.yIp/

ˇ̌
: (65)

sup
y2Y

ˇ̌
OS 0.yIp/ � S0.yIp/

ˇ̌
; (66)

Apply lemmas F6 to F8. �

Lemma F10. For all y 2 Y, f NS 1.y; Op/� NS 1.y; p/gS0.1; p/ D f NS 1.1; Op/� NS 1.1; p/gS0.y; p/:

Proof. Trivial. �

Lemma F11. Let OH .yI Op/ D
OOH .yja�; v�/ and H.yIp/ D H.yja�; v�/. Then

sup
y2Y

ˇ̌̌̌
OH .yI Op/�H.yIp/�v�

˚
OS 1.yIp/ � S1.yIp/

	
S0.1Ip/ �

˚
OS 1.1Ip/ � S1.1Ip/

	
S0.yIp/

S20 .1Ip/

ˇ̌̌̌
� 1=�n: (67)

Proof. For the remainder of this lemma, let '� mean that the left and right hand sides differ by a

term � 1=�n, uniformly in y. By lemma F9,

OH .y; Op/ '�
S0.yIp/S0.1Ip/C v

�
˚

OS 1.yI Op/S0.1Ip/ � OS 1.1I Op/S0.yIp/
	

S20 .1Ip/
:

Since by lemma F6 OS 1.yI Op/ '� OS 1.yIp/C NS 1.yI Op/� NS 1.yIp/, it follows from lemma F10 that

OH .y; Op/ '�
S0.yIp/S0.1Ip/C v

�
˚

OS 1.yIp/S0.1Ip/ � OS 1.1Ip/S0.yIp/
	

S20 .1Ip/
: (68)

Claim (67) then follows by subtracting and adding S1.yIp/ and S1.1Ip/ in the numerator of (68).

�
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Appendix G. Weak Convergence

Let OS s.y/ D OS s.yIp/. We first show the weak convergence of OG�ns.�/ D

q
nh
2sC1Cda
s

˚
OS s.�/�

E OS s.�/
	

in L1.I/, where I is an arbitrary compact subset of R. Let !nsc.x; y; z; p/ D w.z/1.x D

0/1.y � c/Kf.a� � a/=hsgk.s/f.v� � p/=hsg=

q
h
1Cda
s and consider

Fns D Fns.I/ D
˚
.x; y; z; p/ 7! !nsc.x; y; z; p/ W c 2 I

	
:

Define Ens by Ens.x; y; z; p/ D
ˇ̌
Kf.a� � a/=hsgk

.s/f.v� � p/=hsg
ˇ̌ıq

h
1Cda
s so that it is an

envelope function ofFns . Below we will write Ens.a; p/ for Ens.x; y; z; p/ given that Ens.x; y; z; p/

depends only on a; p.

Lemma G1. For s D 0; 1, EE2ns.ai ;pi / � 1. Also, for any � > 0, E
�
E2ns.ai ;pi /1

˚
Ens.ai ;pi / >

�
p
n
	�
� 1.

Proof. The first statement follows from a change of variables and assumption R. The second state-

ment follows from 1
˚
Ens.a; p/ > �

p
n
	
� 1

˚
supt1;t2 jK.t1/k

.s/.t2/j > �

q
nh
1Cda
s

	
D 0 for

sufficiently large n by assumption S. �

Lemma G2. For any ın � 1 and s D 0; 1,

sup
jc�c�j�ın

E
h
Ixi

˚
1.y i � c/ � 1.y i � c

�/
	
K
�a� � ai

hs

�
k.s/

�v� � pi
hs

�i2ı
h1Cdas � 1:

Proof. The LHS of the lemma statement is bounded by twice of

sup
jc�c�j�ın

E
h
1
˚
min.c; c�/ < y i � max.c; c�/

	
w.zi /K

�a� � ai
hs

�
k.s/

�v� � pi
hs

�i2ı
h1Cdas

� Cın sup
y;z;p

fyzp.y; z; p/ � 1;

where C is a constant and fyzp is the density of y i ; zi ;pi . �

Lemma G3. For s D 0; 1, Fns is a Vapnik–Cervonenkis (VC) class with VC index uniformly

bounded in n.

Proof. Let J D fy 7! 1.y � c/ W c 2 Ig and let �ns.x; z; p/ D 1.x D 0/w.z/K
˚
.a� �

a/=hs
	
k.s/

˚
.v��p/=hs

	
=

q
h
1Cda
s . Then, by van der Vaart and Wellner (1996, lemma 2.6.18), the

VC index of Fns D �ns � J D f�ns NJ W NJ 2 J g is bounded by the VC index of J times 2 minus 1.
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Therefore, the VC index of Fns is bounded and independent of n, because J is a VC class that does

not depend on n. �

Lemma G4. For s D 0; 1, OG�ns
w
! G�s in L1.R/, where G�s is a mean–zero Gaussian process.

Proof. Convergence of finite marginals easily follows by a central limit theorem. Now, for ` D 1; 2,

let F`
ns;ı

be a set defined byn
.x; y; z; p/ 7!

˚
!nsc.x; y; z; p/ � !nsc�.x; y; z; p/

	`
W jc � c�j < ı; !nsc ; !nsc� 2 Fns.I/

o
Since

˚
1.z 2 Z; x D 0; y � c/ � 1.z 2 Z; x D 0; y � c�/

	` is left– or right–continuous for

every c; c� and since I is separable, F`
ns;ı

contains a countable subclass G `
ns;ı

such that for every

� 2 F`
ns;ı

there exists a sequence f�j g � G `
ns;ı

with �j .x; y; z; p/ ! �.x; y; z; p/. Therefore,

by the same reasoning as van der Vaart and Wellner (1996, example 2.3.4), F`
ns;ı

for ` D 1; 2 is a

measurable class for every ı > 0. Therefore, it follows from lemmas G1 to G3 and van der Vaart and

Wellner (1996, theorem 2.11.22) that OG�ns
w
! G�s in L1.I/. Since I is an arbitrary compact set in

R, we know by van der Vaart and Wellner (1996, theorem 1.6.1) that OG�ns
w
! G�s in L1.I1; I2; � � � /,

where fIj g is an increasing sequence of compact sets such that [jIj D R. Finally note that for all

n, OG�ns;G
�
s 2 L1.R/ � L1.I1; I2; � � � /. �

Lemma G5. OG�n1.�/�
OG�n1.1/G.�ja

�; v�/
w
! G�.�/ in L1.R/, where G� is a mean–zero Gaussian

process with the covariance kernel given by C in (18).

Proof. By a central limit theorem, OG�n1.1/G.yja
�; v�/

d
! ‰G.yja�; v�/ for a mean–zero normal

random variable‰ . SinceG.�ja�; v�/ is uniformly continuous in I, where I is an arbitrary compact

set in R, we have OG�n1.1/G.�ja
�; v�/

w
! ‰G.�ja�; v�/ in L1.I/. Therefore, by van der Vaart and

Wellner (1996, theorem 1.6.1), we have OG�n1.1/G.�ja
�; v�/

w
! ‰G.�ja�; v�/ in L1.I1; I2; � � � /,

where fIj g is an increasing sequence of compact sets such that [jIj D R. Now note that for all n,
OG�n1.1/G.�ja

�; v�/ and ‰G.�ja�; v�/ are in L1.R/ � L1.I1; I2; � � � / and the lemma statement

follows from the continuous mapping theorem. �

Lemma G6. For s D 0; 1,

sup
y2Y

ˇ̌̌̌
E
˚
Kaisk

.s/
is I i .y/

	
� @svS0.y/ �

h2s�2

2
tr
˚
@sv@bb|S0.yI a

�; v�/
	ˇ̌̌̌
�
1

�n
:

Proof. This is nothing but a standard kernel bias expansion after noting that EfI i .y/jai D a;pi D

pg D S0.yI a; p/=fap.a; p/. �
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Appendix H. Index lemmas

Let OOp.z/ D OOrL.z/=
OOf L.z/, where

OOf L.z/ D n
�1

nX
iD1

OKzLi and OOrL.z/ D n
�1

nX
iD1

OKzLi1.xi D 0/;

where OKzLi D
OKzLi .z/ D Kf.z � zi /

|
O=hzg=hz and KzLi D Kf.z � zi /

|
0=hzg=hz . OKaLi

and KaLi are similarly defined.

Lemma H1. Let

Q�.z/ D
1

201fL.z/

Z
@z1p

�z|
0 � Qt

|
Q0

01
; Qt
�
f
�z|

0 � Qt
|
Q0

01
; Qt
��z|

0 � Qt
|
Q0

01
; Qt
�
d Qt

Then

sup
z2Z

ˇ̌̌̌
OOp.z/ � Op.z/ � Q�

|
.z/. O � 0/

ˇ̌̌̌
�

1

��n
p
n
;

for some fractional power ��n .

Proof. Note that both OOf L.z/ � Of L.z/ and OOrL.z/ � OrL.z/ can be expanded as

J�1X
jD1

1

nj Š

nX
iD1

K
.j /
zLi�i

˚
.z � zi /

|
. O � 0/

	j
C

1

nJ ŠhJC1z

nX
iD1

K.J /.�/�i
˚
.z � zi /

|
. O � 0/

	J
;

for bounded �i for which ��.�/ D E.�i jzi D �/ 2 F2.

The J –th order term in the above expansion is of order n�J=2h�J�1z (uniformly in z 2 Z) which,

for sufficiently large J , is � 1=
p
n. For the j–th order term, 1 � j � J � 1, note that for any

1 � `1; : : : ; j̀ � dz ,

sup
z2Z

ˇ̌̌̌
E

�
K
.j /
zLi�i

jY
tD1

.z`t�zi`t /

�ˇ̌̌̌
�

1

h
max.0;j�2/
z

; sup
z2Z

ˇ̌̌̌
V

�
K
.j /
zLi�i

jY
tD1

.z`t�zi`t /

�ˇ̌̌̌
�

1

h
2jC1
z

:

Consequently, analogous to lemma E2, the j–th term in the above expansion is for j � 2 of order

no greater than
1

nj=2
max

�
1

h
max.0;j�2/
z

;
log nq
nh
2jC1
z

�
�

1
p
n
;

uniformly in z 2 Z.
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So we only need to consider the case j D 1. Note first that by standard kernel derivative estimation

theory for any function � 2 F0,

1

h2z

Z
k0
�.z � t /|0

hz

�
�.t/dt �

1

201

Z
@z1�

�z|
0 � Qt

|
Q0

01
; Qt
�
d Qt � 1;

uniformly in z 2 Z. Thus, noting that 1 � 3�z > 1 by ????, it follows that analogous to lemma F4

sup
z2Z

ˇ̌̌̌
OOp.z/ � Op.z/ � Q�

|
.z/. O � 0/

ˇ̌̌̌
'

sup
z2Z

ˇ̌̌̌ ˚
OOrL.z/ � OrL.z/

	
� p.z/

˚ OOf L.z/ � Of L.z/
	

fL.z/
� Q�

|
.z/. O � 0/

ˇ̌̌̌
�

1

��n
p
n
;

for some ��n increasing as a fractional power of n. �

Lemma H2. Let �i .y/ be of the form ��.zi /I i .y/C �
��.zi /E.y/ and be such that E

˚
�i .y/jzi D

z
	
2 F2. Then for s D 0; 1,

sup
y2Y

ˇ̌̌̌
1

n

nX
iD1

� OOk
.s/
is

OKaLi �
Ok
.s/
is KaLi

�
�i .y/

ˇ̌̌̌
� 1=�n:

Proof. We have to deal both with the presence of OOpi in lieu of Opi and with O�
|
ai in lieu of �|

0 ai .

Since the former is more difficult than the latter, we shall establish below that

sup
y2Y

ˇ̌̌̌
1

n

nX
iD1

� OOk
.s/
is �

Ok
.s/
is

�
KaLi�i .y/

ˇ̌̌̌
� 1=�n; (69)

where the remaining results can be established similarly but more simply. We again use lemma B3

repeatedly. By the mean value theorem, the LHS average in (69) can be expanded as

J�1X
jD1

1

nj Š

nX
iD1

Ok
.sCj /
is KaLi�i .y/

�
OOpi � Opi

�j
C

1

nJ ŠhsC1CJs

nX
iD1

k.sCJ/.�/KaLi�i .y/
�

OOpi � Opi
�J
: (70)

The last term in (70) is of order h�s�1�Js n�J=2 (uniformly in y) which, for sufficiently large J , is

� 1=�n. Further, for 1 � j < J , we expand Ok
.sCj /
is around .v� � pi /=hs to obtain

1

n

nX
iD1

Ok
.sCj /
is KaLi�i .y/

�
OOpi� Opi

�j
D

J��1X
j�D0

1

nj �Š

nX
iD1

k
.sCjCj�/
is KaLi�i .y/

�
OOpi� Opi

�j �
Opi�pi

�j�
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C
1

nJ �Šh
sC1CjCJ�

s

nX
iD1

k.sCjCJ
�/.�/Kai�i .y/

�
OOpi � Opi

�j �
Opi � pi

�J� (71)

The last term in (71) is � 1=�n (uniformly in y) for sufficiently large J � because ˛n=hs vanishes

as a (fractional) power of n. For j C j � > 1 the terms in the RHS sum in (71) are of order

h
�s�j�j�

s n�j=2˛
j�

n � h
�s�j
s n�j=2 � 1=�n.

For j D 0 the expansion in (71) is redundant, which leaves the case j D 1, j � D 0. Thus, we

must analyze
1

n

nX
iD1

k
.sC1/
is KaLi�i .y/

�
OOpi � Opi

�
;

which by lemma H1 and standard kernel estimation arguments equals

1

n3=2

nX
iD1

k
.sC1/
is KaLi�i .y/ Q�.zi / (72)

plus a term of order 1=�n��n � 1=�n (uniformly in y). Finally, (72) is of order 1=
p
n, uniformly in

y. �

Appendix I. Proofs of Theorems

Proof of Theorem 1. Part (i) follows from lemma A2 and assumption E. For (ii), please recall that

the LHS in (6) was shown to be identified in JPX10. �

Proof of Theorem 2. It follows from lemma A1 and assumption I that gfx�;Qujv.�
�jVt /g !  �.

Identification of gfx�;Qujv.�
�jVt /g follows from the fact that Vt 2 D.x�/. �

Proof of Theorem 3. It follows from (10) and the monotonicity of g. �

Proof of Theorem 4. By lemma F11,

�n
˚ OOH .yja�; v�/ �H.yja�; v�/

	
' �nv

�

˚
OS 1.yIp/ � S1.yIp/

	
�
˚

OS 1.1Ip/ � S1.1Ip/
	
G.yI a�; v�/

S0.1Ip/

D
v�

S0x

h˚
OG�n1.y/ � OG�n1.1/G.yja

�; v�/
	

C
˚
E OS 1.yIp/ � S1.yIp/

	
�
˚
E OS 1.1Ip/ � S1.1Ip/

	
G.yja�; v�/

i
:

The stated result then follows from lemmas G5 and G6. �
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Proof of Theorem 5. Let D be a collection of CADLAG functions and define a mapping T W D �

U ! R such that for F � 2 D and � 2 U, T .F �; �/ D inff Q 2 Y W F �. Q / � �g. We then

have O � D T
˚ OOH .�ja�; v�/; ��

	
and  � D T

˚
H.�ja�; v�/; ��

	
. We now use the functional delta–

method; see e.g. Van der Vaart (2000, theorem 20.8). In particular, by Van der Vaart (2000, lemma

21.3), T .�; ��/ is Hadamard–differentiable atH.�ja�; v�/ tangentially to the set of functions F 2 D

that are continuous at  � with derivative TH .F; ��/ D �F. �/=H 0. �ja�; v�/. Therefore, by the

functional delta–method and theorem 4, we have

�n
�
T
˚ OOH .�ja�; v�/; ��

	
� T

˚
H.�ja�; v�/; ��

	� d
! TH .G; �

�/ D �
G. �/

H 0. �ja�; v�/
: �

Proof of Theorem 6. First consider OC. We have

OC.y; y/ D
1

nh
1Cda
1

nX
iD1

K2
�a� � ai

h1

�
k2
�v� � Opi

h1

�
IxiI i .y/

�
2

nh
1Cda
1

nX
iD1

K2
�a� � ai

h1

�
k2
�v� � Opi

h1

�
IxiI i .y/

OS 0.y/

OS 0x

C
1

nh
1Cda
1

nX
iD1

K2
�a� � ai

h1

�
k2
�v� � Opi

h1

�
1.xi D 0/w

2
i

OS 20.y/

OS 20x

: (73)

By ?? and as in the proof of theorem 4, we have supy2Y j
OS 0.y/= OS 0x � S0.y/=S0xj � 1 and

sup
y2Y

ˇ̌̌ 1

nh
1Cda
1

nX
iD1

K2
�a� � ai

h1

�
k2
�v� � Opi

h1

�
IxiI i .y/

�
1

nh
1Cda
1

nX
iD1

K2
�a� � ai

h1

�
k2
�v� � pi

h1

�
IxiI i .y/

ˇ̌̌
� 1:

Therefore, Opi ; OS 0.y/; OS 0x in (73) can be replaced with pi ; S0.y/; S0x without changing the (uni-

form) probability limit of OC. Then, standard kernel estimation theory the uniform consistency of
OC.

For OS
.1/
s , let NS

.1/
s be defined as OS

.1/
s with Opi replaced with pi . Noting that supy2Y jkf.y �

y i /=hygj=hy � C=hy for some C , a slight modification of ?? shows that

sup
y2Y

ˇ̌
OS
.1/
s .yI a�; v�/ � NS

.1/
s .yI a�; v�/

ˇ̌
�

1

�nhy
� 1;
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using �nhy � 1. Then, standard kernel estimation theory shows the uniform consistency of NS
.1/
s .�I a�; v�/.

�
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