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1 Introduction

A large amount of empirical work has demonstrated the usefulness of panel data to control

for unobserved individual heterogeneity. In applications, a common approach is to specify

a model that contains a finite-dimensional vector of parameters that are common across

individuals, and to allow one or various parameters to be unit-specific, in order to reflect

heterogeneity in ability, preferences, or technology.

Since the important paper by Neyman and Scott (1948), it is known that a maximum

likelihood approach that treats the individual fixed effects as parameters to be estimated

may provide inconsistent estimates of common parameters. This “incidental parameter”

problem arises because the number of parameters grows with the sample size, violating a

condition for consistency of maximum likelihood.

For several decades, econometricians and statisticians have proposed various solutions

to the incidental parameter problem (see Lancaster, 2000). In linear panel data models,

differencing out the individual effects yields moment restrictions on common parameters

alone. In various nonlinear models, ingenious methods have been proposed to difference out

the fixed effects. A celebrated example is the conditional maximum likelihood approach of

Andersen (1970) in the static logit model.1

In a likelihood context, one reaction to the problem is to try to isolate a component in

the likelihood that does not depend on the individual effects. This can be done when the

likelihood factors, as in the Poisson counts model. In general, however, exact separation is not

possible. Cox and Reid (1987) proposed an approximate separation procedure, a Bayesian

variant of which was applied to panel data models by Lancaster (2002). Estimators based

on this idea are first-order unbiased as T increases, although they are not fixed-T consistent

in general.2

Another reaction to the incidental parameter problem is to impose some structure on

the distribution of unobserved heterogeneity, thereby following a (correlated) random-effects

approach (e.g., Chamberlain, 1984). Parametric specifications are popular in applied work.

More general semiparametric approaches based on sieve and penalized sieve estimators are

1Honoré and Kyriazidou (2000) provide a dynamic generalization of this insight. Other nonlinear models
where a modified differencing approach has been applied are censored regression models with fixed effects
(Honoré, 1992, 1993, Hu, 2002), sample selection models (Kyriazidou, 1997, 2001), and linear models with
variance dynamics (Meghir and Windmeijer, 2000).

2See Arellano and Hahn (2006) for a survey of the bias correction literature in panel data. Recent
references include Hahn and Newey (2004), Carro (2007), and Arellano and Bonhomme (2009a).
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now available.3 In panel data applications, however, the presence of conditioning regressors

and initial conditions may complicate the practical implementation of sieve-based methods.

In this paper, we propose a systematic approach to difference out the individual effects.

We adopt a likelihood setup where T is fixed and, following a “fixed-effects” perspective, the

conditional distribution of individual effects given exogenous regressors and initial conditions

is left unrestricted. Then, for a given value of common parameters, the panel data model

maps the unknown distribution function of individual effects to the distribution function

of the data. The main idea is to search for functions that are orthogonal to the range

(or image) of that mapping. By construction, such functions will be orthogonal to the

distribution function of the data, providing moment restrictions on common parameters.

Our approach thus transforms the difficult problem of removing the “incidental” indi-

vidual effects into a well-defined mathematical problem: constructing functions that are

orthogonal to a set of functions. To illustrate the idea, we consider three examples where

ingenious ways of differencing out the individual effects have been proposed: the random

coefficients model of Chamberlain (1992a), the censored regression model of Honoré (1992),

and the static logit model. In all three examples, our systematic characterization of the

range of the model delivers the proposed methods as special cases. Moreover, as our ap-

proach is general, we may use it in models where differencing strategies are not yet known.

We illustrate this point with a censored random coefficients model.4

In a given nonlinear model, there may exist no solution to the problem at hand. This

will happen when the range of the model spans the whole space. We refer to such models

as surjective. We show that non-surjectivity holds generally in random coefficients models,

nonlinear regression models with independent additive errors, and censored regression models

with normal errors, as soon as T is strictly greater than the dimension of the vector of

individual effects. We conjecture that models with continuous dependent variables that

satisfy the latter condition will generally be non-surjective. In contrast, static binary choice

models are generally surjective, with the important exception of the logit. In those models,

3See Shen (1997), Ai and Chen (2003), and the recent paper by Chen and Pouzo (2009) for a very general
setting that can deal with non-smooth residuals and non-compact sieve spaces. Hu and Schennach (2008)
use a sieve maximum likelihood approach in a nonlinear measurement error model where the distribution of
the unknown true regressor given the observed error-ridden regressor is left unrestricted. Bester and Hansen
(2007) propose to adopt a similar approach in panel data models.

4As a possible empirical application of random coefficients models with censoring, one can mention earn-
ings dynamics models with individual-specific slopes (Hause, 1980, Guvenen, 2009), in the presence of top
or bottom-coded data.
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our approach will not be informative about common parameters.

To describe our approach to construct moment functions, we start with the special

case where the data and unobserved heterogeneity distributions have known finite supports.

Then, the range of the model is the finite-dimensional vector space spanned by the columns

of a matrix of conditional probabilities that depends on common parameters. Elements that

belong to the orthogonal of the range can then be constructed using a “within” projec-

tion matrix. In effect, this projection differences out the unknown vector of probabilities of

individual effects. We refer to this procedure as functional differencing.

The finite support case is interesting, as our approach then results in a finite number of

conditional moment restrictions on common parameters. We characterize the optimal instru-

ments (Chamberlain, 1987) in this context. Moreover we show that, when the columns of the

matrix that defines the model are linearly independent, our differencing strategy achieves

the semiparametric information bound of the panel data model. This is not true more gen-

erally, however. Additional restrictions can be obtained by imposing that the probabilities

of individual effects lie in the unit interval. Exploiting those additional constraints will be

essential in panel data models with discrete dependent variables that do not satisfy the

non-surjectivity condition.5

When supports are infinite, the matrix of conditional probabilities becomes a linear inte-

gral operator, whose range may be infinite-dimensional. We build on the recent econometric

literature on inverse problems (Carrasco, Florens and Renault, 2008, Carrasco and Florens,

2009) and endow the spaces of distributions with scalar products, making them Hilbert

spaces. Moreover, we impose regularity conditions that ensure operator compactness. This

construction allows us to define a “within” projection operator that projects functions of

the dependent variables onto the orthogonal of the range of the model operator. Evaluated

at the distribution function of the data, this projection yields a set of restrictions on com-

mon parameters alone. Although the within projection operator is generally not available in

closed form, it can be computed in a convenient basis of functions.

As in the finite support case, the functional differencing restrictions can be equivalently

written as a system of moment restrictions, conditional on regressors. This means that a

5Some important recent work has pointed out that, in those models, the parameters of interest may be
partially identified. See Honoré and Tamer (2006), who compute the identified sets for the autoregressive
parameter in a dynamic probit model, and Chernozhukov et al. (2009), who estimate bounds on marginal
effects in binary dependent variables models.
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nonparametric estimate of the outcome distribution function is not needed to estimate com-

mon parameters. Under identification and regularity conditions that we provide, functional

differencing estimates of common parameters will be root-N consistent and asymptotically

normal. Thus, via our approach, common parameters are estimated at a parametric rate in

nonlinear models where the conditional distribution of individual effects is left unrestricted.

In addition, we show how to use the functional differencing moment restrictions to test para-

metric random-effects specifications, which are popular in applied work. This provides an

analog of the Hausman specification test (Hausman, 1978) in a nonlinear setting.

Lastly, the framework introduced in this paper is also useful to estimate average marginal

effects, which are expectations of structural functions relative to the unknown distribution

of individual effects. Interesting policy parameters can often be written in this form. For

given common parameters, estimating average marginal effects amounts to estimating a

linear functional of the distribution function of individual effects. It is well-known that the

problem of nonparametrically recovering that distribution from an empirical estimate of the

outcome distribution is ill-posed in general, in the sense that small sampling errors in the

latter possibly translate into large errors in the distribution to be estimated.6 This problem

may also affect the estimation of linear functionals (Goldenshluger and Pereverzev, 2003,

Severini and Tripathi, 2007).

To deal with ill-posedness, we use a regularization approach, which trades off an increase

in bias (as the regularized solution is approximate) for a decrease in variance (as the reg-

ularized problem is well-posed). The average marginal effects estimates that we construct

are large-N consistent and asymptotically normal, although their rate of convergence is less

than root-N in general. This situation contrasts with the estimation of common parameters.

Unlike the (generalized) inverse of the model operator, the within projection operator is

continuous in its functional argument, so ill-posedness does not arise in the estimation of

common parameters.

The rest of the paper is as follows. In Section 2, we describe the model and our general

approach. In Section 3, we present the differencing approach in the case where the data and

individual effects have known finite supports. The finite support assumption is relaxed in

6Ill-posedness has generated a large amount of work in applied mathematics, statistics, and more recently
in econometrics, mostly in the context of nonparametric instrumental variables models. Recent references
on ill-posed inverse problems in econometrics include Darolles et al. (2009), Newey and Powell (2003), Hall
and Horowitz (2005), Horowitz and Lee (2007), Blundell et al. (2007), and Gagliardini and Scaillet (2008).

4



Section 4, where we introduce some elements of Hilbert space theory and define the within

operator. Estimation of common parameters and average marginal effects is presented in

Sections 5 and 6, respectively. We then provide the asymptotic theory of our estimators in

Section 7. Section 8 presents a small-scale numerical illustration. Lastly, Section 9 concludes.

2 Incidental parameters

In this section, we present the model and outline our approach.

2.1 Likelihood models with fixed effects

Let (yit, x
′
it)

′, i = 1, ..., N and t = 1, ..., T be the set of observations of an endogenous variable

yit and a vector of strictly exogenous variables xit, that we assume i.i.d. across individuals.

The population contains an infinite number of individual units (large N), and a finite number

of time periods (fixed T ).

The distribution function of yi = (yi1, ..., yiT ) conditioned on xi = (x′i1, ..., x
′
iT ) and �i is

given by fy∣x,�;�0 (.∣xi, �i), where fy∣x,�;� is a known function given � ∈ Θ. The individual

effects �i are i.i.d. draws from an unrestricted conditional distribution f�∣x. The population

distribution function of yi given xi = x is thus given by:

fy∣x(y∣x) =
∫

A
fy∣x,�;�0(y∣x, �)f�∣x (�∣x) d�. (1)

The model that we consider is semiparametric, because the distribution of the individual

effects is not restricted. In particular, we do not restrict the dependence between �i and xi,

thus following a “fixed-effects” approach. Conditional on the effects, however, the model is

fully parametric. In addition, the model may incorporate dynamics such as:

fy∣x,�;�0(y∣x, �) =
T∏

t=1

fyt∣y(t−1),x,�;�0(yt∣y(t−1), x, �),

where y(t) = (yt, yt−1, ...), in which case x will contain strictly exogenous regressors and initial

conditions.

Since Neyman and Scott (1948), it is known that the maximum likelihood estimator of

�0 is generally inconsistent for fixed T . Our aim is to provide restrictions on �0 that are free

from the “incidental parameters” �1, ..., �N , thus leading to fixed-T consistent estimators

of common parameters. Our approach is general, and covers all semiparametric likelihood
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models of the form (1). To facilitate exposition, we will illustrate how the approach works

in three panel data models where standard maximum likelihood fails.

Example 1: Chamberlain’s random coefficients model. As a first illustrative

example, let us consider the model:

yi = a (xi, �0) +B (xi, �0)�i + vi, (2)

where a (T×1) and B (T ×dim�i) are known given x and �. Chamberlain (1992a) considers

a version of (2) where errors are mean independent of regressors and effects. He proposes

a quasi-differencing strategy that removes the fixed effects �i, and provides restrictions on

common parameters alone.7

In addition, here we assume that errors are normally distributed:

vi∣xi, �i ∼ N [0,Σ (xi, �0)] ,

where Σ (., .) is known. This framework includes as special cases linear models with individual-

specific intercepts, models with interactive fixed effects, and dynamic autoregressive models.

In this model, the conditional density of the data is given by:

fy∣x,�;� (y∣x, �) = (2�)−
T
2 ∣Σ∣− 1

2 exp

[
−1

2
(y − a− B�)′ Σ−1 (y − a− B�)

]
, (3)

where we have suppressed the reference to (x, �) for conciseness.

Example 2: censored random coefficients model. In our second example, latent

outcomes follow a normal random coefficients model:

y∗i = a (xi, �0) +B (xi, �0)�i + vi, (4)

where vi∣xi, �i ∼ N [0,Σ (xi, �0)]. The difference with Example 1 is that only yit = max (y∗it, ct)

is observed, where for simplicity we assume that the censoring thresholds c1, ..., cT are known

to the researcher. In particular, note that (3) still holds in the censored model, for any y

such that yt > ct for all t ∈ {1, ..., T}.
When the model includes a single heterogeneous intercept: yit = max (x′it�0 + �i + vit, ct),

Honoré (1992) has derived restrictions on �0. His approach does not require errors to be

7Moreover, Chamberlain (1992a) points out that joint estimation of �0 and �1, ..., �N will result in an
inconsistent estimator for �0 when B (x, �) depends on �. This emphasizes the presence of an incidental
parameter problem in this model.
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normally distributed, though it relies on an i.i.d. assumption. To our knowledge, no solution

has been proposed to deal with censored models with general random coefficients.8

Example 3: Static binary choice model. Our third example is a static panel data

model with a binary dependent variable. That is, we assume that yit ∈ {0, 1} and yis are

independent given individual effects and regressors for any t ∕= s.

Let Ft (xit, �i, �) = Pr (yit = 1∣xit, �i, �). In this case, fy∣x,�;� is a conditional probability

mass function that satisfies:

fy∣x,�;� (y∣x, �) =
T∏

t=1

Ft (x, �, �)
yt (1− Ft (x, �, �))

1−yt .

When errors are logistic, the conditional maximum likelihood estimator based on the

sufficient statistic yi1+yi2 (for T = 2) is root-N consistent for �0 (Andersen, 1970). However,

when errors are not logistic the semiparametric information bound for �0 is zero and there

exists no root-N consistent estimator, although �0 may still be point-identified (Chamberlain,

1992b).

2.2 Orthogonality

The methods used to solve the incidental parameter problem in the three examples outlined

above are a priori not obvious, and require the researcher to show considerable ingenuity.

Moreover, once a solution has been discovered in one specific model, it is not always clear

how to generalize the approach to even closely related models. The comparison between

static logit and static probit models illustrates this difficulty.

Our approach relies on the representation (1), understood as a mapping that, for a given

value of �, relates the distribution function of individual effects to that of the data. We will

denote this mapping as L�,x, and write:

[L�,xg] (y) =

∫

A
fy∣x,�;�(y∣x, �)g (�) d�.

The mapping L�,x is an integral operator which maps functions g(�) to functions [L�,xg] (y).

In particular, (1) is equivalent to: L�0,xf�∣x = fy∣x. We differ the precise mathematical

definition and properties of L�,x until Section 4.

8Note that the random coefficients framework covers as a special case censored regression models with
lagged (latent) dependent variables as considered in Hu (2002).
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To derive restrictions on common parameters alone, we proceed as follows. We start by

characterizing the range of the model operator, that is the set of functions [L�,xg] (y) that

can be obtained by using all functions g(�):

ℛ (L�,x) = {L�,xg, for all functions g} .

Then, we look for functions that are orthogonal to ℛ (L�,x). Assuming that we have

found a function ' (., x, �) which is orthogonal to any function of the form L�0,xg, it then

necessarily follows that ' (., x, �0) is orthogonal to L�0,xf�∣x = fy∣x. So, by orthogonality, �0

satisfies the following conditional moment restriction (denoting as Y the support of yi):

E [' (yi, xi, �0) ∣xi = x] =

∫
' (y, x, �0) fy∣x (y∣x) dy

=

∫
' (y, x, �0)

[
L�0,xf�∣x

]
(y)dy = 0.

Thus, differencing out the “incidental” individual effects amounts to solving a well-defined

mathematical problem: finding some functions that are orthogonal to the space of functions

ℛ (L�,x). When the solutions to this problem are not available in closed form, we will show

how to compute them numerically. The next section presents our approach to solve this

mathematical problem, starting with the finite support case.

In the rest of this section, we illustrate the general approach outlined here in our three

main examples.

Example 1 (cont.) We introduce some useful notation. Denoting as
[
Σ− 1

2B
]†

the

Moore-Penrose generalized inverse of the matrix Σ− 1
2B we define Q = Σ− 1

2B
[
Σ− 1

2B
]†
, and

W = IT − Q. Note that Q and W are orthogonal projectors, and that WΣ− 1
2B = 0. Note

also the identity:

(y − a− B�)′Σ−1 (y − a− B�) = (y − a− B�)′ Σ− 1
2QΣ− 1

2 (y − a−B�)

+ (y − a)′ Σ− 1
2WΣ− 1

2 (y − a) .

Denoting as A the support of �i we have, for any function g(�):

[L�,xg] (y) =

∫

A
fy∣x,�;� (y∣x, �) g (�) d�

= (2�)−
T
2 ∣Σ∣− 1

2

{∫

A
exp

[
−1

2
(y − a−B�)′ Σ− 1

2QΣ− 1
2 (y − a−B�)

]
g (�) d�

}

×
{
exp

[
−1

2
(y − a)′ Σ− 1

2WΣ− 1
2 (y − a)

]}
.
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So, if we find a function ' that is orthogonal to:

ℎ
(
QΣ− 1

2y
)
exp

[
−1

2
(y − a)′Σ− 1

2WΣ− 1
2 (y − a)

]
(5)

for any function ℎ, then ' will be orthogonal to the range ℛ (L�,x). Finding moment re-

strictions on �0 thus amounts to solving the mathematical problem of constructing such a

function '.

As Q and W are orthogonal themselves, it is easy to see that if we define ' (y) =

Σ− 1
2WΣ− 1

2 (y − a) then ' is orthogonal to all functions in ℛ (L�,x). This implies:

E

[
Σ− 1

2WΣ− 1
2 (yi − a) ∣xi

]
= 0. (6)

In a version of model (2) that only assumes E (vi∣xi, �i) = 0, Chamberlain (1992a) shows that

basing the estimation of �0 on the generalized within-group conditional moment restrictions

(6) achieves the semiparametric information bound, using a suitable sample counterpart for

the matrix Σ.

Note that in the version of model (2) that imposes normality our approach yields addi-

tional moment restrictions. As an example, we also have:

E

[(
Σ− 1

2WΣ− 1
2 (yi − a) (yi − a)′ Σ− 1

2WΣ− 1
2

)
− Σ− 1

2WΣ− 1
2 ∣xi
]
= 0.

Lastly, note that for this approach to have content we need that there exists some non-

zero function that is orthogonal to ℛ (L�,x). This will require the range not to be dense

in the whole space of functions, according to a certain topology to be defined below. We

will refer to this condition as non-surjectivity. In the present case, non-surjectivity will be

satisfied provided that rankQ < T , hence in particular when T > dim�i.

Example 2 (cont.) In the censored regression model, any function in the range of L�,x

will satisfy, for some function ℎ and for any y > c:9

[L�,xg] (y) = ℎ
(
QΣ− 1

2 y
)
exp

[
−1

2
(y − a)′ Σ− 1

2WΣ− 1
2 (y − a)

]
.

As an interesting special case, let us start with a simple censored regression model with

heterogeneous intercept: yit = max (x′it�0 + �i + vit, 0), T = 2, and vit i.i.d. N(0, �2
0). Let

also �0 = (�0, �
2
0). Then any element in the range of L�,x satisfies, for y1 > 0, y2 > 0:

[L�,xg] (y) = ℎ (y, x) exp

[
− 1

4�2
(Δy −Δx′�)

2

]
, (7)

9By y > c we denote that yt > ct for each t ∈ {1, ..., T }.
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where y = (y1 + y2)/2, Δy = y2 − y1, and Δx = x2 − x1.

So, any function ' orthogonal to the functions given by (7), and with support strictly

included in the positive orthant, will provide moment conditions on �0. Consider for example

a rectangle included in the positive orthant:

{(y1, y2), (y,Δy) ∈ [a, b]× [c, d]} ⊂ {(y1, y2), y1 > 0, y2 > 0} ,

and the following function supported on that rectangle:

'(y1, y2) = '2 (Δy)1 {y ∈ [a, b]} 1 {Δy ∈ [c, d]} .

Orthogonality will hold provided that:

∫ d

c

'2 (�) exp

[
− 1

4�2
(� −Δx′�)

2

]
d� = 0. (8)

In particular, (8) will be satisfied for '2 (�) = sign (� −Δx′�) and '2 (�) = � − Δx′�

for example, provided c and d are taken symmetric around Δx′�. Taking the union of all

such rectangles in the positive orthant, we obtain restrictions on �0 that were first derived

in Honoré (1992).10 Note that, as shown by Honoré, those restrictions do not depend on

the normality assumption, and will be satisfied when the errors vi1 and vi2 are i.i.d. How-

ever, when assuming normality, our approach suggests additional restrictions which can be

obtained by constructing other functions '2 (possibly dependent on x) such that (8) holds.

This strategy will also deliver restrictions on �2
0.
11

This approach can be used to derive restrictions on �0 in the more general random

coefficients model with censoring (4). To see how, let us assume for simplicity that B (x, �)

has full-column rank q, for all �, almost surely in x. Let us define V a T × q matrix such

that Q = V V ′ and V ′V = Iq. Let also U be a T × (T − q) matrix such that W = UU ′, and

U ′U = IT−q. Lastly, let us denote (�, �) =
(
V ′Σ− 1

2 y, U ′Σ− 1
2 y
)
.

Then, let us consider a region in ℝ
T of the form:

{
y ∈ ℝ

T , (�, �) ∈ R1 ×R2

}
⊂
{
y ∈ ℝ

T , y1 > c1, ..., yT > cT
}
,

10In the censored regression model, Honoré’s restrictions are slightly different. This is because he uses
observations that are partly censored: (y1 = 0, y2 > 0) and (y1 > 0, y2 = 0), while in the present discussion
we focus only on fully uncensored observations.

11As an example, it can be shown that, when c and d are taken symmetric around Δx′�, '2 (�) =

(� −Δx′�)2 − 2�2 satisfies (8).

10



where R1 and R2 are subsets of ℝ
q and ℝ

T−q, respectively. Finally, let us define the following

function supported on that Cartesian product:

'(y) = '2 (�)1 {� ∈ R1}1 {� ∈ R2} .

Orthogonality will hold if '2 and R2 are chosen such that:

∫

R2

'2 (�) exp

[
−1

2

(
� − U ′Σ− 1

2a
)′ (

� − U ′Σ− 1
2a
)]

d� = 0. (9)

This example and the previous one suggest that, in a likelihood model with continuous

or censored dependent variables, it may be possible to derive many (in effect, a continuum

of) restrictions on common parameters. This paper proposes a systematic way to generate

those restrictions by constructing all the functions that are orthogonal to the range of L�,x.

Example 3 (cont.) In a static binary choice panel data model, our approach consists

in finding a vector
{
'(y, x, �), y ∈ {0, 1}T

}
, such that:

∑

y∈{0,1}T
'(y, x, �) Pr(y∣x, �, �) = 0, x, �− a.s. (10)

that is, such that:

∑

y∈{0,1}T
'(y, x, �)

T∏

t=1

F yt
t (1− Ft)

1−yt = 0, x, �− a.s. (11)

It can be shown that finding a {'(y, x, �)} that satisfies (10) is equivalent to all 2T

products of distinct F ’s being linearly dependent: F k1
1 × ...× F kT

T , (k1, ..., kT ) ∈ {0, 1}T (see

Appendix C). Ft being a nonlinear function of individual effects, finding such a ' is often

impossible. The reason is that the range of the mapping L�,x is likely to span the whole

space of vectors in {0, 1}T . An example is the static probit model, where Ft = Φ(x′it� + �i),

with Φ the standard normal cdf. This situation contrasts with Examples 1 and 2, where a

condition of non-surjectivity was guaranteed when T > dim�i.

In contrast, when errors are logistic the situation is very different. In this case, Ft =

Λ (x′it� + �i), where Λ(u) = eu/ (1 + eu) is the standard logistic cdf. We show in Appendix

C that (11) is equivalent to:

∑

y∈{0,1}T
1

{
T∑

t=1

yt = s

}
'(y, x, �)e

∑T
t=1 ytx

′
t� = 0, for all s ∈ {0, 1, ..., T}. (12)
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This system of equations has non-trivial solutions as soon as T ≥ 2. For example, if

T = 2, (12) implies that: '00 = '11 = 0, and:

'10e
x′
i1� + '01e

x′
i2� = 0, (13)

where with some abuse of notation we have denoted: 'y1y2
≡ '((y1, y2)

′, x, �).

This yields the following conditional moment restriction on �0:

E

(
e[xi2−xi1]

′�0yi1 [1− yi2]− [1− yi1] yi2∣xi
)
= 0, (14)

which point-identifies �0 provided that xi2 − xi1 is not identically zero.

In non-logistic binary choice models, the information bound for �0 is zero (Chamberlain,

1992b). The present discussion suggests that those models are surjective, implying that our

approach will not yield informative restrictions on �0. This result is related to Johnson (2004)

who shows that, in discrete choice panel data models, common parameters are unidentified

unless equation (10) holds for at least some value of the covariates, and that when (10) does

not hold for any value of x the information bound for �0 is zero.12

3 The finite-dimensional case

In this section, we present our differencing approach in the special case where the distribu-

tions of the data and individual effects have known finite supports.

3.1 Functional differencing

When yi and �i have known finite supports, the linear restrictions (1) simply map the

probabilities of �i to those of yi, for a given value of xi. Specifically, let Ny be the number

of points of support of yi, and let N� be the number of points of support of �i. Equation

(1) can be equivalently written as:

fy∣x = L�0,xf�∣x, (15)

where fy∣x is the Ny × 1 vector of marginal probabilities of yi (for a given value xi = x), f�∣x

is the N� × 1 vector of marginal probabilities of �i, and L�,x is the matrix of conditional

probabilities of yi given �i (for given values of x and �).

12Buchinsky, Hahn and Kim (2008) build on Johnson’s results to provide a procedure to test whether the
information bound for �0 is zero.
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Denoting as y
1
, ..., y

Ny
and �1, ..., �N�

the points of support of yi and �i, respectively, we

thus have:

fy∣x =

⎛
⎜⎜⎝

Pr
(
yi = y

1
∣xi = x

)

...

Pr
(
yi = y

Ny
∣xi = x

)

⎞
⎟⎟⎠ , f�∣x =

⎛
⎝

Pr (�i = �1∣xi = x)
...

Pr
(
�i = �N�

∣xi = x
)

⎞
⎠ ,

and:

L�,x =

⎛
⎜⎜⎝

Pr
(
yi = y

1
∣xi = x, �i = �1; �

)
... Pr

(
yi = y

1
∣xi = x, �i = �N�

; �
)

... ... ...

Pr
(
yi = y

Ny
∣xi = x, �i = �1; �

)
... Pr

(
yi = y

Ny
∣xi = x, �i = �N�

; �
)

⎞
⎟⎟⎠ .

When supports are finite, the range of the matrix L�,x is a finite-dimensional vector space

spanned by its columns. To construct vectors ' in ℝ
Ny that are orthogonal to the range of

L�,x one can use the following “within” projection matrix:

W�,x = INy
− L�,xL

†
�,x, (16)

where INy
denotes the Ny × Ny identity matrix, and L†

�,x is the Moore-Penrose generalized

inverse of L�,x.

The Ny × Ny matrix W�,x is simply the orthogonal projection matrix on the null-space

of L′
�,x. As such it is symmetric and idempotent. In particular, because L†

�,x is a generalized

inverse, W�,x is such that:

W�,xL�,x = L�,x − L�,xL
†
�,xL�,x = 0,

and:

L′
�,xW�,x = 0.

The within projection matrix satisfies our purpose, as it projects vectors of ℝNy onto

the orthogonal of the range of the matrix L�,x. So, given any vector ℎ ∈ ℝ
Ny , the vector

'�,x = W�,xℎ ∈ ℝ
Ny is orthogonal to the columns of L�,x. Moreover, any element that is

orthogonal to the columns of L�,x is of the form W�,xℎ, for some ℎ.

Let us denote as '
(
y
s
, x, �

)
the sth element of '�,x, where ys, s = 1, ..., Ny, index the

points of support of yi. Then, as '�,x is orthogonal to the columns of L�,x, it follows that:

E [' (yi, xi, �0) ∣xi] = 0. (17)

13



To interpret our approach, note that the moment restrictions are obtained by left-

multiplying (15) by the within projection matrix W�0,x, yielding W�0,xfy∣x = W�0,xL�0,xf�∣x,

and thus:

W�0,xfy∣x = 0. (18)

The functional differencing restrictions (18) are thus obtained by differencing out the prob-

ability distribution function of individual effects, yielding a set of restrictions on �0 alone.

This is reminiscent of first-differencing and within-group approaches commonly used in linear

panel data models.

As a second interpretation, notice thatW�,xℎ = ℎ−L�,xL
†
�,xℎ is the least-squares residual

in the linear regression of a vector ℎ ∈ ℝ
Ny on the columns of the matrix L�,x. By construc-

tion, this residual is orthogonal to the columns of L�,x. In particular, at the true value �0,

W�0,xℎ is orthogonal to L�0,xf�∣x = fy∣x. This means that the moment functions in (17) can

be obtained as residuals in a linear regression. Bajari et al. (2009) use a related idea in a

game-theoretic context.

Lastly, note that the moment restrictions (17) are uninformative about �0 when the rows

of L�,x are linearly independent (i.e., when Rank (L�,x) = Ny), as in this case the null-space

of L′
�,x is zero. For example, if L�,x is square and non-singular then the Moore-Penrose

inverse coincides will the standard matrix inverse, and W�,x = INy
−L�,xL

−1
�,x = 0. Thus, our

differencing approach requires a condition of non-surjectivity to be satisfied. In the finite

support case, this condition is automatically satisfied when Ny > N�.

Example 3 (cont.) For example, the non-surjectivity condition will be satisfied in the

static binary choice model provided that N� < 2T . When �i has more than 2T points of

support the condition will not be satisfied in general, an exception being when errors are

logistic.

3.2 Estimation

In the finite support case, the functional differencing restrictions can be equivalently written

as a system of Ny conditional moment restrictions. To see why, let us denote as � (yi) the

index in {1, ..., Ny} such that yi = y
�(yi)

. Let also !�,x [s1, s2] denote the (s1, s2)th element

of the matrix W�,x. Then, (18) is equivalent to:

E (!�0,xi
[s, � (yi)] ∣xi) = 0, s ∈ {1, ..., Ny}. (19)

14



This motivates estimating �0 using the following generalized method-of-moments (GMM)

estimator, which relies on a set of R ≥ 1 unconditional moment restrictions based on (19):

�̂ = argmin
�∈Θ

R∑

r1=1

R∑

r2=1

�r1,r2Ê
[
'r1

(yi, xi, �)
]
Ê
[
'r2

(yi, xi, �)
]
, (20)

where

'r (yi, xi, �) = !�,xi
[sr, � (yi)] �r (xi) , (21)

and where Ê (zi) =
1
N

∑N
i=1 zi denotes an empirical mean, �1, ..., �R are functions of covariates,

s1, ..., sR are indexes in {1, ..., Ny}, and Υ = [�r1,r2](r1,r2)∈{1,...,R}2 is a symmetric weight

matrix.

Under standard identification and regularity conditions (e.g., Theorems 2.6 and 3.2 in

Newey and McFadden, 1994), �̂ is root-N consistent and asymptotically normal for �0. The

asymptotic results derived in Section 7 cover finite supports as a special case, so we refer the

reader to that section for the expression of the asymptotic variance.

Note that non-surjectivity is clearly necessary for �0 to be point-identified, as when the

model is surjective W�,x is identically zero. However, it is not sufficient. From Lemma 2.3 in

Newey and McFadden (1994), a sufficient condition is that fy∣x does not belong to the range

of L�,x for any � ∕= �0, with positive probability in x. In practice, local point-identification

may be verified by checking that a rank condition is satisfied at �0.

Lastly, note that the standard regularity conditions in GMM require the moment func-

tions to be continuous in �. In the present case, in addition to imposing smoothness condi-

tions on � 7→ fy∣x,�;� (y∣x, �), this requires that the rank of L�,x be constant on the parameter

space Θ, almost surely in x. Then, Corollary 3.5 in Stewart (1977) shows that � 7→ L†
�,x is

continuous on Θ, a.s in x, implying the continuity of the within projection matrixW�,x. Rank

constancy is intuitively necessary to ensure the continuity of a projection matrix, as varia-

tions in the rank of L�,x induce jumps in its number of non-zero eigenvalues. In particular,

rank constancy will be satisfied if L�,x has almost surely full column rank.

Optimal instruments. Following Chamberlain (1987), it is possible to derive the optimal

instruments for this GMM estimation problem. For this purpose, it is useful to introduce

a Ny × (Ny − rankL�,x) matrix U�,x with orthogonal columns such that U�,xU
′
�,x = W�,x.

Working with this matrix allows to remove redundant restrictions. As a convention, we

denote the rows of a matrix A as A [s, .] and its columns as A [., s].
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Let ��0,x = E
(
U�0,xi

[� (yi) , .]
′ U�0,xi

[� (yi) , .] ∣xi = x
)
. The optimal instruments derived

in Appendix A yield the optimal unconditional moment restrictions:

E

(
U�0,xi

[� (yi) , .]�
−1
�0,xi

E

[
U ′
�0,xi

∂L�0,xi

∂�k
L†
�0,xi

[., � (yi)]
∣∣∣xi
])

= 0, k = 1, ..., dim �. (22)

The optimal instruments in (22) are infeasible. To construct feasible counterparts and

estimate �0 efficiently on the basis of the functional differencing restrictions (19), one can

follow the approach of Newey (1990) and replace the unknown conditional expectations by

series estimators.

Example 3 (cont.). Consider the static logit model with T = 2. Chamberlain’s optimal

unconditional moment restrictions in (14) are:

E

[
(xi2 − xi1)

1

e[xi2−xi1]
′�0 + 1

(
e[xi2−xi1]

′�0yi1 [1− yi2]− [1− yi1] yi2

)]
= 0. (23)

This coincides exactly with the score equations of the conditional maximum likelihood esti-

mator (CMLE) based on the sufficient statistic yi1 + yi2 (compare with Arellano, 2003).13

3.3 Efficiency

As the way we have derived the above restrictions on �0 may seem arbitrary, it is of interest

to know whether the conditional moment restrictions derived using the functional differenc-

ing approach lead to efficient estimation of �0. The next result gives the semiparametric

information bound when the range of L�,x spans the whole space, that is when the model is

surjective.

Proposition 1 Assume that the range of L�,x coincides with ℝ
Ny , for all � ∈ Θ and x.

Then the semiparametric information bound for �0 is equal to zero.

This result was first derived in Johnson (2004), and an intuition for the result was pro-

vided in Buchinsky et al. (2008). For completeness, we provide a simple sketch of the proof

in Appendix A. In particular, Proposition 1 implies that, in surjective models, there ex-

ists no root-N consistent estimator of �0 (Chamberlain, 1987). In those models, the within

projection matrix is equal to zero, and our differencing approach has no identification power.

13See also Buchinsky et al. (2008). Interestingly, this optimality property of the CMLE is not limited to
the case T = 2. See Appendix C for the case T = 3. However, this result does not necessarily imply that
the CMLE is semiparametrically efficient, as we argue below.
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The next result complements Proposition 1 by showing that, in the special case where

the columns of L�,x are linearly independent, basing the estimation of �0 on the functional

differencing moment restrictions (19) will achieve the semiparametric information bound of

the panel data model. We prove the result in Appendix A, for the case where covariates xi

have finite support.

Theorem 1 Assume that the supports of yi, �i and xi are known and finite. Suppose also

that:

i) � 7→ fy∣x,�;� (y∣x, �) is continuous on Θ, for all y, �, x.

ii) L�,x has full-column rank, for all �, x.

Then the semiparametric information bound of the panel data model coincides with the bound

associated with the functional differencing restrictions (19).

When the columns of L�,x are not linearly independent, it may be that the functional

differencing approach is inefficient. In Section 5 we shall see that this situation arises in a

simple dynamic logit model. Nevertheless, Theorem 1 suggests that the way our approach

removes the “incidental” individual effects exploits most of the information of the panel data

model, at least when columns are independent.

Extension: exploiting inequality constraints. The reason why functional differencing

may be inefficient is that it does not enforce the fact that the unknown probabilities of

individual effects lie in the unit interval. Exploiting those additional constraints in estimation

may be helpful to improve finite-sample precision, even if the conditions of Theorem 1 are

satisfied.

Moreover, in models where the information bound for �0 is zero, exploiting those restric-

tions will be essential. Examples that fall into this category are set identified models with

discrete dependent variables, such as the dynamic probit model considered in Honoré and

Tamer (2006). This situation may also happen when �0 is point identified, but not estimable

at a root-N rate, an example being a static probit model with an unbounded regressor

(Chamberlain, 1992b).

To outline an extension that exploits those additional constraints, let SA denote the unit

simplex in ℝ
N� , and let us define the following projection, for any given ℎ ∈ ℝ

Ny :

Q+
�,x (ℎ) = argmin

ℎ̃∈L�,x(SA)

∥∥∥ℎ̃− ℎ
∥∥∥ , (24)

17



where ∥.∥ denotes the Euclidean norm. Let us also define the constrained within projection

as W+
�,x = INy

−Q+
�,x.

It is easy to see that, by construction:

W+
�0,x

(
fy∣x
)

= 0. (25)

Using the constrained functional differencing restrictions (25) for estimation and inference

has intuitive appeal. Indeed, it may be that (25) is informative about �0 while the within

projection matrix W�,x is zero. In particular, in models where �0 partially identified, the

constrained restrictions (25) may still characterize useful bounds on common parameters.

However, using those restrictions is not direct as, because of the constraints, W+
�0,x

is not

a matrix but a nonlinear function. In particular, it does not seem possible to write (25) as

a set of conditional moment restrictions. A proper treatment of the difficulties that arise in

this extension is left to future work.

4 Linear operators and within transformations

In this section and the next, we provide a generalization of the functional differencing ap-

proach to the case where �i, and possibly yi, have infinite support.

4.1 Linear operators

When �i has infinite support, L�,x becomes a linear integral operator.14 We will make

assumptions that ensure that the operator L�,x is compact, hence allowing to replicate the

analysis of the finite-dimensional case in a more general setting.

Formally, let X be the support of xi, and let x ∈ X . Let � ∈ Θ be a given value of the

common parameters. Let A ⊂ ℝ
q and Y ⊂ ℝ

T be the supports of �i and yi, respectively,

where q is the dimension of the vector of individual effects and T is the number of time

periods. Let also G� and Gy be two spaces of functions with domains A and Y , respectively.

We define L�,x as the integral operator that maps g ∈ G� to L�,xg ∈ Gy such that, for all

y ∈ Y :

[L�,xg] (y) =

∫

A
fy∣x,�;�(y∣x, �)g (�) d�.

14See Carrasco, Florens and Renault (2008) for an excellent overview of linear operators and their appli-
cations to econometrics.
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The operator L�,x can be understood as an infinite-dimensional analog of the matrix of

conditional probabilities considered in the previous section.

Next, we define G� and Gy as the spaces of square integrable functions with respect to

two positive functions �� > 0 and �y > 0, respectively:15

G� =

{
g : A → ℝ,

∫

A
g(�)2��(�)d� <∞

}
,

Gy =

{
ℎ : Y → ℝ,

∫

Y
ℎ(y)2�y(y)dy <∞

}
.

Then, G� and Gy are Hilbert spaces, endowed with two scalar products that with some

abuse of notation we denote similarly: ⟨g1, g2⟩ =
∫
A g1(�)g2(�)��(�)d�, and ⟨ℎ1, ℎ2⟩ =

∫
Y ℎ1(y)ℎ2(y)�y(y)dy, respectively. The associated norms are denoted as ∥g∥ = ⟨g, g⟩1

2 .

The functions �� and �y are selected in order to ensure compactness of the operator L�,x,

as stated in the following assumption (see Carrasco and Florens, 2009, for a similar setup).

Assumption 1 The two following statements hold true:

i) ∫

A
f�∣x(�∣x)2��(�)d� <∞,

ii) ∫

Y

∫

A
fy∣x,�;�(y∣x, �)2

�y(y)

��(�)
dyd� <∞.

Assumption 1 restricts the distribution of individual effects. For example, if f�∣x is

assumed square integrable with respect to the Lebesgue measure, we can choose �� = 1.16

Then, �y needs to be chosen such that ii) is satisfied. If yi and �i have bounded support,

one can choose �� = 1 and �y = 1.

Part ii) in Assumption 1 ensures that L�,xg ∈ Gy for any function g ∈ G�, and that

the operator L�,x : G� → Gy is Hilbert-Schmidt, hence compact (Theorem 2.32 in Carrasco

et al., 2008). An alternative, which does not require to assume compactness, would be to

define G� and Gy as L1 spaces of integrable functions. This is the approach pursued in Hu

15Note that �� and �y may depend on x, which is kept fixed in this subsection, although we omit the x
subscript for conciseness.

16A sufficient condition for square-integrability is that f�∣x be bounded, as in this case:

∫

A

f�∣x(�∣x)2d� ≤
(
sup
A
f�∣x

)∫

A

f�∣x(�∣x)d� = sup
A
f�∣x <∞.
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and Schennach (2008), who use general results from the spectral theory of linear operators.

In our case, the compactness assumption will be useful for estimation, as it will allow us to

compute the singular value decomposition of the operator L�,x, and thus to compute explicit

moment functions for �0.
17

4.2 The within projection operator

We now generalize the concepts of the transpose of a matrix, the Moore-Penrose inverse, and

the within projection matrix, to the infinite-dimensional case. We refer to Kress (1989) and

Engl, Hanke, and Neubauer (2000) for proofs of the statements in this section and additional

background on the theory of compact linear operators on Hilbert spaces.

First, let N (L�,x) denote the null-space of the operator L�,x:

N (L�,x) = {g ∈ G�, L�,xg = 0} ,

and let ℛ (L�,x) denote its range:

ℛ (L�,x) = {L�,xg ∈ Gy, g ∈ G�} .

We say that L�,x is injective if and only if:

N (L�,x) = {0}. (26)

Examples of non-injective panel data models are models with discrete dependent variables.

Operator injectivity has recently received some attention in econometrics (see Hu and Schen-

nach, 2008, and references therein). It will play an important role in the discussion of

marginal effects in Section 6.

In addition, we will say that L�,x is surjective if:

ℛ (L�,x) = Gy, (27)

where A denotes the closure of A in Gy. As in the finite-dimensional case, non-surjectivity

of L�,x will be an essential requirement of the functional differencing approach.

Next, we define the adjoint of the operator L�,x, denoted as L∗
�,x, which is the unique

operator that maps Gy onto G� such that, for all (g, ℎ) ∈ G� × Gy:

⟨L�,xg, ℎ⟩ =
〈
g, L∗

�,xℎ
〉
.

17In contrast, in Hu and Schennach (2008) operator theory is used for identification only, while estimation
is done using sieve maximum likelihood.
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It follows from this definition that:

[
L∗
�,xℎ
]
(�) =

∫

Y
fy∣x,�;�(y∣x, �)ℎ (y)

�y(y)

��(�)
dy.

As L�,x is compact, L∗
�,x is also compact, and is simply the operator analog of the transpose

of a matrix. An important remark is that the orthogonal of ℛ (L�,x), relative to the scalar

product ⟨., .⟩, is N
(
L∗
�,x

)
. So, non-surjectivity of L�,x is equivalent to N

(
L∗
�,x

)
∕= {0}.

We can now define the Moore-Penrose generalized inverse of the operator L�,x, and the

associated within operator. The Moore-Penrose inverse L†
�,x is defined by the following limit:

L†
�,x = lim

�
>→0

(
L∗
�,xL�,x + �I�

)−1
L∗
�,x,

where I� is the identity operator on G�, i.e. I�g = g for all g ∈ G�. The domain of L†
�,x is

strictly included in Gy in general, unless the range of L�,x is closed.18 This means that L†
�,xℎ

will generally not be defined for all ℎ ∈ Gy. Note that the range ℛ (L�,x) is closed when yi

has finite support. Also, L†
�,x satisfies the generalized inverse property:

L�,xL
†
�,xL�,x = L�,x.

The within operator W�,x is then defined as:

W�,x = lim
�
>→0

Iy − L�,x

(
L∗
�,xL�,x + �I�

)−1
L∗
�,x,

where Iy denotes the identity operator on Gy. The operator W�,x has domain D (W�,x) = Gy,

and it is bounded, hence continuous (see Theorem 2.16 in Carrasco et al., 2008). Note that

for any ℎ ∈ D
(
L†
�,x

)
we have: W�,xℎ =

(
Iy − L�,xL

†
�,x

)
ℎ. The within operator is simply

the continuous extension of
(
Iy − L�,xL

†
�,x

)
on Gy, with W�,xℎ = 0 for all ℎ ∈ ℛ (L�,x). In

addition, it can be shown that W�,x is the orthogonal projector on N
(
L∗
�,x

)
. In particular,

W�,x is self-adjoint and idempotent, i.e. W ∗
�,x =W�,x, and W

2
�,x = W�,x.

Singular value decompositions. Given that we are working with compact operators, it

is convenient to introduce their singular value decomposition (SVD, see Theorem 15.16 in

Kress, 1989):

L�,xg =
∑

j

�j�j
〈
 j , g

〉
, for all g ∈ G�, (28)

18This is because L†
�,x has domain: D

(
L†
�,x

)
= ℛ (L�,x) +ℛ (L�,x)

⊥
.
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where �1 ≥ �2 ≥ �3... > 0 is a sequence of positive real numbers,  1,  2, ... is an orthonormal

sequence in G�, and �1, �2, ... is an orthonormal sequence in Gy. The sum in (28) ranges from

1 to the (possibly infinite) rank of L�,x. Note that { j} does not form a basis of G�, unless

L�,x is injective. Likewise, {�j} does not form a basis of Gy, except when L�,x is surjective.

Note also that �j,  j, and �j, j = 1, 2, ..., depend on � and x, which are kept fixed in the

present discussion.

With this representation, it is easily verified that the Moore-Penrose inverse of L�,x is

given by (see Theorem 2.8 in Engl et al., 2000):

L†
�,xℎ =

∑

j

 j

1

�j

〈
�j, ℎ

〉
, for all ℎ ∈ D

(
L†
�,x

)
, (29)

and the within operator is given by:

W�,xℎ = ℎ−
∑

j

�j

〈
�j , ℎ

〉
, for all ℎ ∈ Gy. (30)

Note that the singular values and functions, and thus the within operator W�,x, do not

depend on the distribution of the data. Although they are generally not available in closed

form, they can be computed in a suitable basis of functions. In Section 8 we will use a nu-

merical approximation method due to Nashed and Wahba (1974) for this purpose. Working

with the proposed approximation will result in an expression for the moment functions that

is similar to the one we derived in the finite support case.

In the infinite-dimensional case, L†
�,x is not bounded (hence not continuous) in general.

The reason is that, whenℛ (L�,x) is not closed, the singular values �j of the compact operator

L�,x tend to zero as j tends to infinity (e.g., Engl et al., 2000, p. 37). Hence, L†
�,xℎ is not

continuous in ℎ, and it is very sensitive to any noise in ℎ possibly arising in estimation. In

contrast, W�,xℎ is always continuous in ℎ.

A finite-dimensional intuition for this result is as follows. In the least-squares interpreta-

tion of Subsection 3.1, L†
�,xℎ and W�,xℎ are understood as the least-squares coefficients and

residuals, respectively, in the linear regression of ℎ on the columns of L�,x. Now, when yi and

�i have large supports, the columns of L�,x tend to be close to collinear. This will typically

affect the precision of the coefficient estimates. However, the fitted values and predicted

residuals will not be sensitive to the multicollinearity problem, as good prediction does not

require to accurately estimate the contributions of the various regressors separately.
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5 Restrictions on common parameters

In this section, we derive moment restrictions on �0. Then, we propose method-of-moments

estimators of common parameters, and introduce a specification test for parametric random-

effects models.

5.1 Functional differencing restrictions

The next theorem provides the key restrictions on �0.

Theorem 2 Let Assumption 1 hold. Then the two following equivalent conditions are sat-

isfied:

W�0,xfy∣x = 0, or, equivalently (31)

E

(
�y(yi) [W�0,xi

ℎ] (yi)
∣∣∣xi
)
= 0, for all ℎ ∈ Gy. (32)

Theorem 2 provides a set of restrictions on �0. As in the finite-dimensional case described

in Section 3, those restrictions are obtained using a functional differencing approach that

differences out the distribution of individual effects. Moreover, through (32), those restric-

tions are equivalently written as a set of conditional moment restrictions, leading the way

to estimation. Note that the distribution function fy∣x enters (32) only via the expectation.

Efficiency. It is of interest to know whether the equivalent restrictions (31) and (32)

exhaust all the information contained in the panel data model. The next theorem shows

that this is not the case.

Theorem 3 Let Assumption 1 hold. Then the two following statements are equivalent.

i) There exists f�∣x ∈ G� such that f�∣x ≥ 0,
∫
A f�∣x (�∣x) d� = 1, and L�0,xf�∣x = fy∣x.

ii) W�0,xfy∣x = 0, fy∣x ∈ D
(
L†
�0,x

)
, and there exists g ∈ G� such that

L†
�0,x

fy∣x +
(
I� − L†

�0,x
L�0,x

)
g ≥ 0. (33)

Theorem 3 shows that the restrictions implied by the panel data model are equivalent

to either of the two equivalent conditions (31) and (32), plus two extra conditions. The

first requires that fy∣x belongs to the domain of L†
�0,x

. This is an existence condition, which
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imposes that a solution to: fy∣x = L�0,xf�∣x exists (see Definition 3.2 in Carrasco et al., 2008).

Using the singular value decomposition (29), this condition can be written as:

∑

j

1

�2j

〈
�j , fy∣x

〉2
<∞, (34)

where �j and �j depend on (�0, x). Equation (34) imposes conditions on the respective

rates of convergence to zero of �j and
〈
�j, fy∣x

〉
, respectively, and requires fy∣x to belong

to a certain smoothness class. The second extra condition not exploited by (31) is a set of

inequality constraints, which comes from the fact that the distribution function of individual

effects f�∣x needs to be non-negative.19

We will not exploit non-negativity constraints (33) to estimate �0. As the following

example illustrates, our approach may thus result in inefficient estimates.

Example 4: Dynamic logit model. Consider the simple dynamic logit model

yit = 1{�0yi,t−1 + �i + vit ≥ 0}, t = 2, ..., T,

yi1 = 1{�i + vi1 ≥ 0},

with vit i.i.d. logistic, and where we take T = 3. This setting has been considered in Hahn

(2001). It follows from some simple calculations reported in Appendix C that the functional

differencing restrictions can be written as:20

E
[
e�0yi1 (1− yi2) yi3 − (1− yi1) yi2yi3

]
= 0. (35)

We note that (35) is the first-order condition of the conditional maximum likelihood esti-

mator (CMLE), based on the density of (yi1, yi2) given the sufficient statistic (yi1 + yi2, yi3).

Interestingly, Hahn (2001) shows that the CMLE does not achieve the information bound

for �0 in this model. This provides an example of a (non-injective) panel data model where

the functional differencing approach is inefficient. In this situation, efficient estimation of �0

should exploit the non-negativity constraints on f�∣x.
21

19Note that I� − L†
�0,x

L�0,x is the orthogonal projection operator on N (L�0,x). So, (33) simply means
that there exists a non-negative solution g ∈ G� to the problem fy∣x = L�0,xg.

20See also Buchinsky et al. (2008).
21When supports are infinite, an operator analog of the constrained projection function W+

�,x that we
introduced in Section 3 can be constructed using the techniques employed in Section 5.4 in Engl et al.
(2000). Then, W+

�,x becomes a nonlinear operator that can be computed by means of projected Landweber
iterations, as explained in Eicke (1992) and Sabharwal and Potter (1998).
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Non-surjectivity. From Theorem 2, �0 satisfies a continuum of restrictions given by (31).

For �0 to be point-identified from those restrictions, we need the equation: W�,xfy∣x = 0 to

have a unique solution �0 that is an interior point of Θ. Though this condition guarantees

global identification of �0, it is little explicit. The following proposition states that non-

surjectivity is necessary for �0 to be point-identified.

Proposition 2 Let Assumption 1 hold, and suppose that �0 is globally identified from the

functional differencing restrictions (31). Then, for all � ∕= �0 in Θ, the two following equiv-

alent conditions hold with positive probability in x:

N
(
L∗
�,x

)
∕= {0}, (36)

ℛ (L�,x) ∕= Gy. (37)

Non-surjectivity of L�,x implies that the functional differencing restrictions given by equa-

tion (32) have (potentially) some identification content for �0. If on the contrary L�,x is sur-

jective for all � in a neighborhood of �0, then those restrictions are completely uninformative

about �0, because W�,x is identically zero.

Note that, as in the finite support case, non-surjectivity is necessary for �0 to be point-

identified from the functional differencing restrictions, but it is not sufficient. In analogy with

simultaneous equations models, non-surjectivity may be understood as an order condition

for identification. As a complement, the asymptotic analysis in Section 7 will highlight rank

conditions, that will ensure that �0 is locally point-identified.

As anticipated in Section 2, it can be formally shown that the non-surjectivity condition

is satisfied in the random coefficients model (Example 1)22 and the censored coefficients

model (Example 2) with normal errors, provided that T > dim�i. Non-surjectivity is not

satisfied in static probit model (though it is satisfied in the static logit model).

In appendix C, we study non-surjectivity in two additional models: a random coefficients

model and a nonlinear regression model with independent additive errors (possibly non-

normal). In those examples, we derive closed-form restrictions on �0 that involve the charac-

teristic function of time-varying errors. For those restrictions to be informative, T > dim�i is

sufficient in the random coefficients model, though not in the nonlinear regression model. In

this case, non-surjectivity requires that the image of the regression function be non-dense in

22When T = dim�i and B is non-singular, Q = IT and W = 0 in equation (5), and the non-surjectivity
condition is not satisfied.
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ℝ
T . When T > dim�i, this rules out space-filling mappings such as Peano curves (surjective

mappings from ℝ onto ℝ
2).

Those various examples lead us to conjecture that, in models where the dependent vari-

ables are continuous, and provided that T be strictly larger than the number of individual

effects, the non-surjectivity condition should generally be satisfied.

5.2 Method of moments

Let {yi, xi}i=1,...,N be a random sample. Motivated by the conditional moment restrictions

(32) of Theorem 2, we propose to estimate �0 by minimizing a GMM criterion of the form

(20), with moment functions:

'r (yi, xi, �) = �y (yi) [W�,xi
ℎr] (yi) �r (xi) , (38)

where ℎ1, ..., ℎR are elements of Gy, and �1, ..., �R are functions of covariates xi.

Under regularity conditions given in Section 7 (which include point-identification of �0),

�̂ will be root-N consistent and asymptotically normal. The main reason for this is the

boundedness of the within projection operator.

Turning to the choice of functions ℎr and �r in (38), one approach is to choose a finite

family ℎr, r = 1, ..., R, that covers (in some sense) Gy. A possibility is to take orthogonal

polynomials on ℝ
T (e.g., section 6.12 in Judd, 1998). As a closely related option, one may

choose {ℎr} as a “flexible” family of densities, such as normal mixtures. In the simulation

experiments reported in Section 8 we have set ℎr (y) = � (y − �r), with � the standard

normal pdf, and �1, ..., �R elements of ℝT .

In the presence of covariates, one could let the coefficients of the orthogonal polynomials–

or of the chosen “flexible” family of densities– depend on xi in some way, e.g. letting �r in

� (y − �r) depend linearly on xi. In addition, one may also want to choose the functions

�r and the matrix Υ so as to maximize efficiency, for example using suitable empirical

counterparts of Chamberlain’s (1987) optimal instruments, given a choice of functions ℎr.

Optimal moment restrictions. A different approach to the choice of functions ℎr is to

derive the optimal combination of the moment restrictions that functional differencing deliv-

ers. When supports are finite, (22) provides the optimal unconditional moment restrictions.

When supports are infinite, one can follow the approach of Carrasco and Florens (2000) to

construct a finite-dimensional set of instrument functions ℎoptk ∈ Gy, k ∈ {1, ..., dim �}. The
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expression of the instrument functions given in Appendix A is similar to (22), with U�0,xi
,

L�0,xi
and ��0,xi

being linear operators. Then, estimation of �0 may be based on the following

dim � unconditional moment restrictions:

E
(
�y(yi)

[
U�0,xi

ℎoptk

]
(yi)
)
= 0, k = 1, ..., dim �.

To construct feasible counterparts of the optimal instrument functions, the covariance

operator ��0,xi
must be regularized (Carrasco and Florens, 2000). In addition, a regularization

of L†
�0,xi

fy∣x (which appears in the expression of the optimal instrument functions given in

the appendix) is also needed.

5.3 Specification test

In applied work, a common approach is to assume a parametric model for the individual

effects. Here we show how to use the functional differencing restrictions for the purpose of

specification testing.

Let:

fy∣x(y∣x) =
∫

A
fy∣x,�;�0(y∣x, �)f�∣x;�0 (�∣x) d�

be a complete parametric specification of the distribution of the data, which includes a

parametric model for the individual effects. A popular choice is to let f�∣x;�0 (�∣x) be a

Gaussian density, with means and variances that are parsimonious functions of covariates xi

(Chamberlain, 1984).

We wish to test the null hypothesis that f�∣x is correctly specified. For this, we consider

the random-effects maximum likelihood estimator (MLE) of �0, which solves:

�̃ = argmax
�

[
argmax

�

N∑

i=1

ln

(∫

A
fy∣x,�;�(yi∣xi, �)f�∣x;� (�∣xi) d�

)]
.

Then, we define the following statistic:

S =
1

N

N∑

i=1

'
(
yi, xi, �̃

)
,

where ' = ('1, ..., 'R)
′, with 'r given by (38). The statistic S is simply an empirical

counterpart of the functional differencing moment restrictions, evaluated at the random-

effects MLE.
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We show in Appendix A that, under the null, and under regularity conditions given in

Section 7 and standard regularity assumptions on the MLE:

√
NS

d→ N (0, VS) ,

where the expression of VS is provided in the appendix.

Let us assume that VS is non-singular. In particular, this requires that the vector of

moment functions ' is not identically zero, thus restricting the model to be non-surjective.

As N tends to infinity we then have, under the null of correct specification:

NS ′V̂ −1
S S

d→ �2
R, (39)

where V̂S is a consistent estimator of VS. Thus, (39) provides a simple way to test the

validity of random-effects specifications in non-surjective models. This provides an analog

of the Hausman test (Hausman, 1978) in a nonlinear context.

6 Average marginal effects

In this section, we study average marginal effects, or policy parameters, of the form:

M = E [m (xi, �i)] ,

where m() is a known function. We focus on scalar marginal effects to simplify the notation,

although our approach could easily be extended to vector-valued m(). Average marginal

effects are often of interest in applications. Examples include the average effect of a covariate

on a conditional mean, or moments of individual fixed effects.

6.1 Identification

Let us denote M = E [M (xi)], where

M(x) =

∫

A
m (x, �) f�∣x(�∣x)d�.

In the following we assume that �0 is point-identified. Moreover, we suppose that m/��

belongs to G�, so that M(x) is well-defined.

The distinctive feature of average marginal effects is that they involve the unknown

distribution of individual effects. This distribution may be not point-identified for fixed T .

The next result gives a condition for M(x) to be identified.
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Proposition 3 Suppose that Assumption 1 holds. Suppose also that �0 is point-identified.

Then M(x) is point-identified if:
m

��

∈ ℛ
(
L∗
�0,x

)
. (40)

Moreover, in this case:

M(x) =

〈
m

��

, L†
�0,x

fy∣x

〉
. (41)

Proposition 3 gives a sufficient condition forM(x) to be point-identified. The reason why

this condition is not necessary is that (40) does not take into account that the distribution

function of individual effects f�∣x is non-negative. Note that (40) holds obviously when L�0,x

is injective. Intuitively, in that case the distribution of individual effects can be uniquely

recovered from the data, so any marginal effect is point-identified. In non-injective mod-

els, average marginal effects may be partially identified, as happens in models with binary

dependent variables (e.g., Chernozhukov et al., 2009).

Examples 1 and 2 (cont.) In Chamberlain’s (1992a) random coefficients model with

normal errors, and in the censored random coefficients model with normal errors, a necessary

and sufficient condition for L�,x to be injective is that rankB = dim�i (see Appendix C).

In this case, any average marginal effect is point-identified.

Example 3 (cont.) In the static logit model, the only M(x) that are identified by

Proposition 3 are averages of the form M(x) = E [ℎ (yi) ∣xi = x], where ℎ ∈ Gy. The reason

is that, in this case, ℛ
(
L∗
�0,x

)
is finite-dimensional, so it is closed in G�. So, (40) holds if

and only if m
��

∈ ℛ
(
L∗
�0,x

)
.

6.2 Estimation

We now explain how to estimate an average marginal effect M = E [M (xi)]. We distinguish

two different cases. To proceed, note that the singular value decomposition (SVD) of the

Moore-Penrose generalized inverse L†
�0,x

given by equation (29) implies the following SVD

for the adjoint of L†
�0,x

, for g in its domain:
(
L†
�0,x

)∗
g =

∑

j

�j

1

�j

〈
 j , g

〉
, (42)

where �j, �j, and  j depend on (x, �0).

Just as L†
�0,x

, its adjoint is not defined everywhere, and is not bounded. The following

condition is key to assess the precision of marginal effects estimates.
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Condition 1 The function m/�� belongs to the domain of
(
L†
�0,x

)∗
, that is:

∑

j

1

�2j

〈
 j ,

m

��

〉2

<∞. (43)

Condition 1 requires that
〈
 j,

m
��

〉
tends fast enough to zero as j tends to infinity relative

to �j. In the random coefficients model of Example 1, this condition requires the Fourier

transform of m/�� to decay fast enough to zero, as we argue in Appendix C.

More generally, it can be shown that Condition 1 holds if and only if m
��

∈ ℛ
(
L∗
�0,x

)
,

that is if there exists a function ℎ ∈ Gy such that m (x, �) = E [�y (yi) ℎ (yi) ∣x, �]. Hence,

the set of marginal effects that satisfy Condition 1 is very special, as it corresponds to mean

effects of the form: M(x) = E [�y (yi) ℎ (yi) ∣x]. As intuition suggests, estimating averages of

those marginal effects across x’s will not be difficult in general.23

The importance of Condition 1 is shown by the next proposition.

Proposition 4 Assume that the identification condition (40) is satisfied, and let Condition

1 hold. Then

M(x) = E

(
�y(yi)

[(
L†
�0,xi

)∗ m
��

]
(yi)

∣∣∣xi = x

)
. (44)

Proposition 4 suggests to estimate M by:

M̂ = Ê

(
�y(yi)

[(
L†
�̂,xi

)∗ m
��

]
(yi)

)
, (45)

where �̂ is root-N consistent for �0, and where Ê (zi) =
1
N

∑N
i=1 zi is an empirical mean. When

Condition 1 holds, M̂ will be, under standard regularity conditions, a root-N consistent

estimator of M . When the condition does not hold, M can be consistently estimated using

a data-dependent regularization scheme, as we now explain.

Regularization. When Condition 1 does not hold, the empirical average in (45) will not

be large-N consistent for M . Our solution involves replacing the operator
(
L†
�0,x

)∗
by a

suitably chosen approximation, whose domain contains m/��. This type of approximation

is referred to as a regularization in the literature on inverse problems.

23Note that, in injective models: ℛ
(
L∗
�0,x

)
= N (L�0,x)

⊥
= G�. So, when L�0,x is injective the set of

marginal effects that satisfy Condition 1 is dense in G�. More generally, this set is always dense in the set
of identified marginal effects, as shown by Proposition 3.
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Specifically, we consider the following regularized version of
(
L†
�0,x

)∗
(see Definition 3.9

in Carrasco et al., 2008). Given any � > 0, it is defined by the following SVD:

∑

j

qj(�)�j

1

�j

〈
 j, .

〉
, (46)

where for some constant a > 0:
{

∣qj(�)∣ ≤ a
�2
j

�
,

lim
�→0

qj(�) = 1.
(47)

The first condition in (47) ensures that m/�� belongs to the domain of the regularized

version of
(
L†
�0,x

)∗
. Technically, the presence of qj(�) decreases the contribution of those

terms for which �j is small, hence 1/�j is large, in the sum (46). The second condition

implies that the regularized operator tends to the operator
(
L†
�0,x

)∗
as the regularization

parameter � tends to zero.

An important example of regularization scheme is Tikhonov regularization, in which case

qj(�) =
�2j

�2j + �
. (48)

Other popular regularization schemes that satisfy (47) are spectral cut-off and Landweber-

Fridman (see Section 3.3 in Carrasco et al., 2008).

Working with the regularization scheme qj(�) allows us to define the following regularized

version of M(x), which is well-defined for any � > 0 whether or not Condition 1 holds:

M�(x) =
∑

j

qj(�)
〈
�j , fy∣x

〉 1

�j

〈
 j,

m

��

〉
. (49)

In estimation, we will let � = �N tend to zero as N tends to infinity at a rate to be

specified. We propose to estimate M by an empirical analog of (49) averaged over xi:

M̂�N = Ê

[∑

j

qj (�N) �y(yi)�j(yi)
1

�j

〈
 j ,

m

��

〉]
. (50)

Note that �j,  j and �j all depend on xi, although the subscript is implicit. They also

depend on common parameter estimates �̂. We derive the asymptotic rate of convergence of

M̂�N in the next section.

7 Asymptotic properties

In this section, we study the asymptotic properties of the estimators of common parameters

and average marginal effects that we have introduced in Sections 5 and 6.
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7.1 Common parameter estimates

We start by studying the properties of �̂, which we write in a more compact form as:24

�̂ = argmin
�

Ê
[
' (yi, xi, �)

′]ΥÊ [' (yi, xi, �)] ,

where the moment functions are given by:

' (yi, xi, �) =

⎛
⎝

�y(yi) [W�,xi
ℎ1] (yi) �1 (xi)
...

�y(yi) [W�,xi
ℎR] (yi) �R (xi)

⎞
⎠ . (51)

We make the following assumptions that ensure the consistency of �̂ as N tend to infinity.

For clarity, we now indicate with a subscript that �j,�,x,  j,�,x and �j,�,x depend on (�, x).

Assumption 2 The following statements hold true.

i) Θ is compact.

ii) E ([W�,xi
ℎr] (yi) �r (xi)) = 0, r = 1, ..., R, has a unique solution �0 that is an interior

point of Θ.

iii) The function � 7→ fy∣x,�;� (y∣x, �) is continuous on Θ, almost surely in y, x, �.

iv) Almost surely in x:

sup
�∈Θ

∫

Y

∫

A
fy∣x,�;�(y∣x, �)2

�y(y)

��(�)
dyd� <∞.

Moreover, for any r = 1, ..., R:

v) For any j:

E

⎡
⎣
⎛
⎝ 1

inf
�∈Θ

�2j,�,xi

⎞
⎠∥∥fy∣x

∥∥ ∥ℎr∥ ∣�r (xi)∣

⎤
⎦ <∞.

vi) Almost surely in x:

sup
�∈Θ

(∑

j>J

〈
�j,�,x, fy∣x

〉2
)

J→∞→ 0.

vii)

E

[
sup
y∈Y

(
fy∣x (y∣xi)�y (y)

)
∥ℎr∥2 �r (xi)2

]
<∞.

viii)

E
[∥∥fy∣x

∥∥ ∥ℎr∥ ∣�r (xi)∣
]
<∞.

24Note that the weight matrix Υ is assumed known. It can be replaced by a consistent estimate, with no
change in the proof.
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ix)

E

[∥∥fy∣x
∥∥2 ∥ℎr∥2 �r (xi)2

]
<∞.

The compactness assumption i) is standard. Condition ii) requires �0 to be point-

identified from the moment restrictions. In particular, as argued in Section 5, this condition

may fail when the non-surjectivity condition does not hold.

Conditions iii) and iv) impose that the conditional distribution of the data given �i vary

continuously with �. This will imply that the mapping � 7→ L�,x is continuous on Θ with

respect to the operator norm,25 almost surely in x.

In the consistency proof given in Appendix B we find it useful to introduce a modified

version of the within operator, which is defined as

W
(�)
�,x = Iy − L�,x

(
L∗
�,xL�,x + �I�

)−1
L∗
�,x. (52)

As a consequence of iii) and iv), for any fixed � > 0, the mapping � 7→ W
(�)
�,x is continuous.

Then, Conditions v) and vi) ensure that the convergence of W
(�)
�,x fy∣x to W�,xfy∣x as � tends

to zero is uniform on Θ.

Condition v) requires that �j,�,x be bounded from below. This requires rankL�,x, when

finite, to be constant on Θ. A sufficient condition for L�,x to have constant rank is that it

is injective.26 When the rank of L�,x is infinite, it will always be the case that inf
�∈Θ

�j,�,x > 0,

a.s. in x.27

Condition vi) requires that
∑

j>J

〈
�j,�,x, fy∣x

〉2
tends to zero as J tends to infinity, uni-

formly on Θ. Note that the convergence to zero at each � value is ensured by the fact that

fy∣x ∈ Gy. Condition vi) imposes the stronger requirement that the convergence be uniform,

thus restricting the behavior of Fourier coefficients
〈
�j,�,x, fy∣x

〉
across � parameters. For this

reason, we refer to Condition vi) as uniform Fourier convergence.

Note that uniform Fourier convergence holds trivially when L�,x has finite rank. When

the rank is infinite, the rate of convergence to zero of Fourier coefficients is allowed to be

arbitrarily slow. This shows that Condition vi) does not restrict the distribution of the data

25The norm of a bounded operator L is defined as: ∥L∥ = max
∥ℎ∥≤1

∥Lℎ∥
∥ℎ∥ .

26Rank constancy is also (locally) satisfied in the static and dynamic logit models considered above. In

Example 3, dimN
(
L∗
�,x

)
= 1, so rankL�,x = 2T − 1 = 3 irrespective of (�, x). In Example 4, rankL� =

2T − 2 = 6 when � ∕= 0, and rankL� = 2T − 4 = 4 when � = 0 (see Appendix C).
27This is because the function � 7→ �j,�,x is continuous on Θ. See Theorem 15.17 in Kress (1989).
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fy∣x to belong to a certain smoothness class, unlike the source conditions often considered in

the literature on ill-posed inverse problems. We will invoke source conditions when studying

the asymptotic properties of average marginal effects, but we do not need them for the

estimation of common parameters.

Condition vi) seems new in the literature. In Appendix C, we analytically verify uniform

Fourier convergence in Chamberlain’s (1992a) random coefficients model (Example 1) with

known error variance. In addition, in Section 8 we provide numerical evidence supporting

uniform Fourier convergence in the two simple models that we use as illustrations.

Condition vii) is useful to show the uniform convergence of the sample moment functions

to the population ones. This condition is stronger than actually needed for consistency.

However, it guarantees that the following variance-covariance matrix is well-defined:

Σ (�) = E
[
' (yi, xi, �)' (yi, xi, �)

′] . (53)

This property will be useful to derive the asymptotic distribution of �̂.28 This implies that

there is no need to regularize the estimates of the moment functions, and contrasts with the

need to regularize marginal effects estimates.

Finally, Conditions viii) and ix) are moment existence conditions.

We then can state the following consistency result.

Theorem 4 Let Assumptions 1 and 2 hold. Then �̂
p→ �0.

We now state assumptions that ensure that �̂ is a root-N consistent, asymptotically

normal estimator of �0.

Assumption 3 There exists a neighborhood V of �0 such that:

i) The function � 7→ fy∣x,�;� (y∣x, �) is continuously differentiable on V, almost surely in

y, x, �.

ii) Almost surely in x and for (k, ℓ) ∈ {1, ..., dim �}2:

sup
�∈V

∫

Y

∫

A

∣∣∣∣
∂fy∣x,�;�
∂�k

(y∣x, �)∂fy∣x,�;�
∂�ℓ

(y∣x, �)
∣∣∣∣
�y(y)

��(�)
dyd� <∞.

For any r = 1, ..., R:

28In particular, vii) requires that fy∣x�y be bounded on the support Y (x-a.s.). See Carrasco and Florens
(2009) for a related assumption.
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iii) Almost surely in x:

sup
�∈V

(∑

j>J

〈
�j,�,x, ℎr

〉2
)

J→∞→ 0.

iv)

E

[(
sup
�∈V

∥∥∥∥
∂L�,xi

∂�k

∥∥∥∥
)
∥ℎr∥

∥∥∥L†
�0,xi

fy∣x

∥∥∥ ∣�r (xi)∣
]
<∞, k = 1, ..., dim �.

v) The R× dim � matrix:

G =

[
−E

(〈
∂L∗

�0,xi

∂�k
W�0,xi

ℎr, L
†
�0,xi

fy∣x

〉
�r (xi)

)]

r,k

is such that G′ΥG is nonsingular.

vi) As N tends to infinity:

√
NÊ [' (yi, xi, �0)]

d→ N [0,Σ (�0)] .

Moreover, for any � ∈ V:
√
N
(
Ê [' (yi, xi, �)− ' (yi, xi, �0)]− E [' (yi, xi, �)]

)
d→ N [0,Σ (�, �0)] ,

where Σ (�, �0) = Var [' (yi, xi, �)− ' (yi, xi, �0)].

Conditions i) and ii) impose regularity restrictions on the conditional density fy∣x,�;� as

a function of common parameters. In particular, they allow us to define a bounded integral

operator
∂L�,x

∂�k
associated with the kernel

∂fy∣x,�;�

∂�k
, for any k ∈ {1, ..., dim �}.

Condition iii) is similar in spirit to Condition v) of Assumption 2. Indeed, as ℎ ∈ Gy the

partial sums of squared Fourier coefficients converge to zero at each �. Condition iii) requires

this convergence to be uniform, here in a local neighborhood around �0. Together with �j,�,x

being bounded from below, this guarantees that the mapping � 7→ W�,xℎr is continuous on

V, almost surely in x.

Condition iv) requires some moments to be finite. This will ensure the differentiability

of the population objective function at �0. Then, Condition v) is a familiar condition on the

non-singularity of the Jacobian matrix. G having full-column rank can be understood as a

rank condition for local point-identification of �0.

The two parts in Condition vi) will be satisfied if one can apply a central limit theorem

to the empirical moment functions. As, by Assumption 2, Σ (�) is finite for all � ∈ V, and
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given that data are i.i.d, the conditions of application of the Lindeberg-Levy central limit

theorem are satisfied if Σ (�) ∕= 0. In particular, this requires the model to be non-surjective.

We now can state the next result, which proves the root-N consistency and asymptotic

normality of �̂.

Theorem 5 Let the assumptions of Theorem 4 be satisfied and let Assumption 3 hold. Then:

√
N
(
�̂ − �0

)
d→ N

[
0, (G′ΥG)

−1
G′ΥΣ(�0) ΥG (G′ΥG)

−1
]
. (54)

Importantly, the proof of Theorem 5 does not require the empirical moment functions

� 7→ Ê [' (yi, xi, �)] to be continuous. In practice, working with the following slightly modified

version of the within operator will typically ensure that the objective function varies smoothly

with �:

W�,x ≈ Iy −
J∑

j=1

〈
�j,�,x, .

〉
�j,�,x, (55)

where J ≥ 1 is some integer. In order for this modification not to affect the asymptotic

distribution of
√
N
(
�̂ − �0

)
, J = JN needs to tend to infinity fast enough as N tends to

infinity.29 When implementing this approach, we found it convenient to set J such that

very small singular values (possibly leading to numerical errors due to finite precision) are

discarded. In Section 8 we will provide evidence that the estimate �̂ is little sensitive to the

choice of J .

In order to estimate the asymptotic variance of �̂, we need to compute consistent estimates

of Σ and G. The outer product Σ is readily estimated as:

Σ̂ = Ê

[
'
(
yi, xi, �̂

)
'
(
yi, xi, �̂

)′]
.

In contrast, to estimate the Hessian term G, a regularization is needed. The reason is

that G involves the Moore-Penrose inverse L†
�0,xi

, so G is analogous to an average marginal

effect. A simple truncated estimate can be obtained as

Ĝ =

[
−Ê

(
J∑

j=1

�y (yi)�j,�̂,xi
(yi)

1

�
j,�̂,xi

〈
∂L∗

�̂,xi

∂�
W

�̂,xi
ℎr,  j,�̂,xi

〉
�r (xi)

)]

r,k

. (56)

29Technically, we need to choose JN such that the bias of the moment function scaled by root-N tends to
zero as N tends to infinity.
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In practice, when using a finite number of singular functions in (55) to ensure that the GMM

objective function is regular, Ĝ can simply be estimated as the (numerical) derivatives of the

empirical moment functions at the optimum. The next subsection details the asymptotic

properties of estimates of average marginal effects, in particular providing conditions under

which Ĝ is consistent for G.

7.2 Marginal effects estimates

As explained in Subsection 6.2, we distinguish two cases. First, let us assume that Condition

1 holds, and let us suppose for simplicity that �0 is known. Then the asymptotic properties

of marginal effects estimates are standard. To see why, define

mi (�0) = �y(yi)

[(
L†
�0,xi

)∗ m
��

]
(yi),

and write the average marginal effect estimate as M̂ = Ê [mi (�0)]. The variance of mi (�0)

being finite is enough to apply a central limit theorem, and to prove that M̂ is root-N

consistent and asymptotically normal.30

When Condition 1 does not hold we consider the regularized estimator M̂�N as defined

by (50). Let:

mi,�N =
∑

j

qj (�N)�y(yi)�j(yi)
1

�j

〈
 j,

m

��

〉
. (57)

In (57) all singular values and singular functions are computed at (�0, xi). In practice, �0 is

replaced by a root-N consistent estimate �̂. As the final rate of convergence in Theorem 6

below is slower than root-N , this does not affect the asymptotic distribution of M̂�N . For

conciseness, we drop the (�0, xi) subscript in the rest of this subsection.

We have:

M̂�N −M =
[
Ê (mi,�N )− E (mi,�N )

]

︸ ︷︷ ︸
AN

+ [E (mi,�N )−M ]︸ ︷︷ ︸
BN

.

30Root-N consistency may also hold when �0 is not known, under the assumptions needed for two-step
GMM estimation. In particular, it can be shown that under the identification conditions of Proposition 3:

∂

∂�k

∣∣∣
�0
E [mi (�)] = −

〈(
L†
�0,xi

)∗ m
��

,
∂L�0,x

∂�k
L†
�0,x

fy∣x

〉

is well-defined. Estimating this term– which appears in the asymptotic variance of Ê
[
mi

(
�̂
)]

– will require

the use of regularization.
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The term BN is responsible for the asymptotic bias of M̂�N , while AN is related to its

asymptotic variance. To derive the asymptotic properties of M̂�N we make the following

assumptions.

Assumption 4 The following conditions hold.

i) There exists � > 1 such that

C� (xi) ≡
∑

j

〈
�j, fy∣x

〉2

�2�j
<∞. (58)

ii)
√
N�NE

[(
sup
j

∣∣∣��−1
j (qj (�N)− 1)

∣∣∣
)
C� (xi)

1
2

∥∥∥∥
m

��

∥∥∥∥
]

N→∞→ 0. (59)

iii)

E

[(
sup
j

∣∣∣∣
�Nqj (�N )

�j

∣∣∣∣
2
)
sup
y∈Y

(
fy∣x (y∣xi)�y (y)

) ∥∥∥∥
m

��

∥∥∥∥
2
]
<∞.

iv)

E

[(
sup
j

∣∣∣∣
�Nqj (�N )

�j

∣∣∣∣
2
)
∥∥fy∣x

∥∥2
∥∥∥∥
m

��

∥∥∥∥
2
]
<∞.

v) As N tends to infinity:

√
N�N

[
Ê (mi,�N )− E (mi,�N )

]
d→ N [0,ΣM ] ,

where

ΣM = lim
N→∞

Var [�N ⋅mi,�N ] <∞.

Part i) in Assumption 4 imposes smoothness conditions on the distribution of the data,

requiring that fy∣x belongs to a regularity space (see Definition 3.4 in Carrasco et al., 2008).

Source conditions like (58) are routinely assumed in the ill-posed inverse problems literature.

In econometrics, several variants of this assumption have already been applied.31

Recall that smoothness restrictions were not needed for estimating common parameters.

In a given model, (58) may substantially restrict the class of data distributions. For example,

in the classical nonparametric deconvolution model yi = �i + vi, Condition i) with � = 1

will require the distribution of vi to be less smooth than that of �i (Carrasco and Florens,

2009).

31See for example Darolles, Florens and Renault (2009). Related assumptions have been made in Blundell
et al. (2007), and in Hall and Horowitz (2005).
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Part ii) guarantees that the bias term BN is small when N tends to infinity. Consider

for example the case where Tikhonov regularization (48) is used. Then:

sup
j

∣∣∣��−1
j (qj (�N )− 1)

∣∣∣ = O (�N) , (60)

with  = min
(
1, �−1

2

)
. By comparison, when using spectral cut-off or Landweber-Fridman

regularization, (60) holds with  = �−1
2
, for any smoothness parameter �. See Proposition

3.11 in Carrasco et al. (2008).

Parts iii), iv) and v) ensure that AN satisfies a central limit theorem. In particular,

Conditions iii) and iv) guarantee that Var [�N ⋅mi,�N ] is finite, in close analogy to Theorem

4. Note that, by (47),
∣∣∣ �N qj(�N )

�j

∣∣∣ ≤ a�j is bounded, as the operator L�,x is compact. Condition

v) requires additional moments to be finite, in order for a Liapunov central limit theorem to

be applicable.

Under those conditions, the mean squared error (MSE) of the marginal effects estimator

satisfies:

E

[(
M̂�N −M

)2]
= O

(
1

N�2N

)
+O

(
�2N
)
,

where the first term on the right-hand side accounts for the variance of the estimator, while

the second term accounts for the squared bias. The usual trade-off arises, as a smaller

regularization parameter �N decreases the bias, but increases the variance at the same time.

The rate of convergence of the estimator is thus always slower than the one obtained for

�N = N− 1
2+2 , where the rate of convergence in terms of root-MSE is N


2+2 .32

Finally, the next result gives the asymptotic distribution of M̂�N .

Theorem 6 Let Assumptions 1 and 4 hold. Then:

√
N�N

[
M̂�N −M

]
d→ N [0,ΣM ] . (61)

To conclude this section, note that the asymptotic variance of M̂�N can simply be esti-

mated as:

V̂ar
(
M̂�N

)
=

V̂ar [mi,�N ]

N
, (62)

32Since when using Tikhonov regularization  is always lower than 1, the rate of convergence is thus
slower than N

1

4 , irrespective of the degree of smoothness of fy∣x. Using spectral cut-off or Landweber-
Fridman instead, one obtains better rates of convergence when � in (58) is large, i.e. when the distribution
of the data is very smooth.
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where V̂ar [mi,�N ] denotes the sample variance of mi,�N . Note also that one can use the MSE

calculations to choose �N in practice, as a minimizer of V̂ar
(
M̂�N

)
+ B̂ias

2
, where

B̂ias = Ê

[∑

j

(qj (�N)− 1)
〈
 j , f�∣x

〉〈
 j,

m

��

〉]
.

In practice, f�∣x is unknown, and can be replaced by an estimate of L†
�0
fy∣x, possibly reg-

ularized. See Carrasco and Florens (2009) and Gagliardini and Scaillet (2008) for related

approaches to choose the regularization parameter.

8 Numerical illustration

In this section we illustrate the functional differencing approach in two simple models. We

start by discussing implementation issues.

8.1 Practical implementation

To implement our method in practice, we approximate the within projection operator using

a method due to Nashed and Wahba (1974).33 The approximation method works well in

our context, as it uses the parametric probability model of yi given (xi, �i) to generate

natural bases of functions. Singular values and singular functions are then computed in

those bases.34 We present the approach in some detail in Appendix D, where we also explain

how we compute estimates of average marginal effects.

In practice, the method leads to approximating moment functions for common parameters

as follows. First, we sample Ny values y
s
from �y, and N� values �n from a user-specified

density � whose support contains A. Then, we define the Ny × 1 and N� × 1 vectors (for a

given y ∈ Y):

ℎr =
[
ℎr

(
y
s

)]
s
, and f (y)

�,x
=

[
1√

�� (�n)� (�n)
fy∣x,�;� (y∣x, �n)

]

n

,

and the Ny ×N� matrix:

L�,x =

[
1√

�� (�n)� (�n)
fy∣x,�;�

(
y
s
∣x, �n

)]

s,n

.

33The approach is presented in Kress (1989, Chapter 17) and Engl et al. (2000, Section 3.3). In the econo-
metric literature, Carrasco and Florens (2009) have applied this approach to a nonparametric deconvolution
model.

34GAUSS codes implementing the approach are available from the author.
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We approximate the moment functions in (38) as:

'r (yi, xi, �) ≈ �y (yi)

[
ℎr (yi)−

(
f (yi)

�,xi

)′
L†
�,xi
ℎr

]
�r (xi) . (63)

So, approximating the moment functions in this way yields an expression that is similar to

the one that we derived in the finite support case.

As Ny and N� tend to infinity, the right-hand side in (63) converges almost surely to the

true moment function (see Appendix D). Note that, as the operator L�,xi
is parametric, i.e.

known for given � and xi, we are not limited in the precision of the approximation. This

means (at least conceptually) that we can choose unrestrictedly large values for Ny and N�.
35

When the dimensions of the matrix L�,x are large, the numerical computation of the

Moore-Penrose generalized inverse may be affected by errors due to finite machine precision.

For this reason, we compute a modified generalized inverse that uses only J eigenvalues.36

This amounts to approximating the modified version of the within operator given by the

right-hand side of (55). The simulation evidence below suggests that taking any J in a

reasonable range leads to very similar results.

8.2 Simulation evidence

The first model we consider is a tobit model with fixed effects:

y∗it = �i + vit, t = 1, 2, (64)

where the distribution of vit given �i is i.i.d normal (0, �2). In addition, y∗it is observed only

when y∗it ≥ ct, where the thresholds ct are known. Our interest will center on the common

parameter � and the average marginal effect E (�i). To generate the data, we take �i to be

standard normal and ct = 0 (50% censoring).

The second model is a simple version of Chamberlain’s (1992a) random coefficients model:

yi1 = �i + vi1,

yi2 = ��i + vi2,

35In practice, however, one may want to assess the effect of approximation error. In our context, this could
be done along the lines of Carrasco and Florens (2009), who work in an asymptotic where the size of the
discretization grows at the same rate as the sample size.

36This modification is easily implemented using the singular value decomposition: L�,xi
= Φ ⋅Λ ⋅Ψ′, the J-

modified Moore-Penrose inverse being equal to Ψ [., 1 : J ]
(
Λ [1 : J, 1 : J ]

−1
)
Φ [., 1 : J ]

′
, where A[1 : J, 1 : J ]

and A[., 1 : J ] denote self-explanatory selections of a matrix A.

41



where vi1 and vi2 are i.i.d standard normal. We are interested in the common parameter �

and the mean of �i. In the simulations we take �i to be normal with mean 1 and unitary

variance.

Common parameters. In the two upper panels of Figure 1 we show the mean of �̂ and

�̂, as well as asymptotic 95%-confidence intervals, across 1000 simulations, for a sample size

N = 100. In the tobit model we let �y be the density of an homogeneous tobit model with

underlying normal innovations (0, 3). In the random coefficients model we let �y be a normal

density (1, 3). In both models �� is set to one, and we set ℎr (y) = � (y − �r), where � is

the standard normal pdf and where �r takes 49 different values in ℝ
2:

{(0, 0), (0, 1), (0,−1), (0, 2), (0,−2), (0, 3), (0,−3), ..., (−3,−3)} .

The weighting matrix Υ is chosen to be the identity. In addition, we let � be uniform

on [−5, 5]. Moreover, we take Ny = 500 and N� = 50, and we use Halton’s quasi-random

sequences to generate {y
s
} and {�n}, in view of their superior convergence properties relative

to standard Monte-Carlo methods (see Chapter 9 in Judd, 1998).

On the x-axis of the figure we report the number of singular values used in the numerical

computation of the within operator, i.e. J in (55). We see that the results quickly stabilize

around the true value (�0 = 1 and �0 = 1, respectively). This result is consistent with the

absence of ill-posedness in the estimation of common parameters.

Next, we provide some numerical evidence on uniform Fourier convergence in the two

models. In Section 7 we assumed uniform Fourier convergence to show root-N consistency

and asymptotic normality of common parameter estimates. In Figure 2 we report the sum
∑

j>J

〈
�j,�, fy

〉2
, for various J and for common parameters (� and �) in a grid of values

ranging between .5 and 1.5.37 Figure 2 shows that the Fourier coefficients tend quickly to

zero, and there is visual evidence that the convergence is uniform over the set of parameters

that we have considered. This provides numerical support for uniform Fourier convergence

in those two models.

37In our experiments, we observed that estimates of singular vectors associated with very small singular

values were affected by numerical error. In Chamberlain’ s model, the sum
∑J

j=1

〈
�j,�, fy

〉2
increased steadily

with J and seemed to reach a plateau after a few singular values, yet the sum jumped after the 19th singular
value (and actually became >> ∥fy∥2). For this reason, we discarded the singular values �j,�, j ≥ 19 in
the sum. For the tobit model, this phenomenon occurred after the 14th singular value, and we proceeded
similarly.
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Returning to common parameter estimates, Table 1 reports the mean and standard de-

viation of �̂ and �̂ across 1000 simulations, for two sample sizes: N = 100 and N = 500. We

report the results for three choices of functions ℎr, taking �r as an element of either of three

increasing sets containing 9, 25, and 49 points, respectively.38 Lastly, we have used J = 12

singular values to compute the within operator.

To provide a benchmark, we also report in the table the maximum likelihood estimates

of � and �. Note that those estimates require knowledge of the true distribution of �i. In

addition, for the random coefficients model we report Chamberlain’s (1992a) GMM estima-

tor: �̃ = Ê (yi2) /Ê (yi1). This last estimator does not require knowledge of the distribution

of �i.

Table 1 shows that functional differencing estimates behave well, with moderate biases.

However, comparison with the infeasible random-effects estimator shows that the loss of

efficiency relative to maximum likelihood is large. In the tobit model for N = 100, the

standard deviation of the best functional differencing estimate (R = 49) is 60% higher than

the one of the infeasible MLE.

The results for the random coefficients model (lower part of the table) suggest that

our choice of moment functions is not optimal, and that there exist potential efficiency

gains within the functional differencing framework. Indeed, when N = 100 the standard

deviation of the simple GMM estimator �̃ is 30% lower than the one of the best functional

differencing estimate. As we have seen in Section 2, the mean restrictions that motivate �̃

are strictly contained in the full set of restrictions that the functional differencing approach

can potentially exploit. Exploring those efficiency gains is an important avenue for future

research.

Average marginal effects. We then report in the lower panels of Figure 1 the mean and

95%-confidence intervals of the functional differencing estimates of E (�i) in the two models.

We take qj = 1{j ≤ J} in (50), and report the number J of singular values used in the

computation on the x-axis. This amounts to using a truncated singular value decomposition

as regularization scheme.

In sharp contrast with common parameters (upper part of the figure) the variance of the

estimates increases rapidly as one uses a larger number of singular values in the computation.

38Those three sets are {(0, 0), (0, 1), (0,−1)..., (−1,−1)}, {(0, 0), (0, 1), (0,−1), (0, 2), (0,−2), ..., (−2,−2)},
and {(0, 0), (0, 1), (0,−1), (0, 2), (0,−2), (0, 3), (0,−3), ..., (−3,−3)}.
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This is consistent with ill-posedness affecting the estimation of the mean individual effect.39

Interestingly, there is also evidence of ill-posedness in the estimation of E (�i) in the

random coefficients model. In this case, and given our choice of functions �� and �y, the

identity function m0 (�) = � does not satisfy Condition 1 (actually, m0 /∈ G�). Still, the

increase in variance with the number of singular values is less dramatic than for the tobit

model, suggesting that ill-posedness is less severe in the random coefficients model.

Lastly, we report in Table 2 the estimates of the unweighted mean of �i, and of the

weighted mean E [�i� (�i)] /E [� (�i)], where � is the standard normal pdf. The results show

strong evidence of ill-posedness when estimating the unweighted mean, while the estimates

of the weighted mean behave better. Intuitively, weighting the mean of �i by the normal

density acts as an implicit regularization.40

9 Conclusion

Dealing with the incidental parameter problem in nonlinear panel data models remains a

challenge to econometricians. Available solutions are often based on ingenious, model-specific

methods. In a likelihood setup, we have proposed a systematic approach to construct moment

restrictions on common parameters that are free from the “incidental” individual effects.

The approach consists in finding functions that are orthogonal to the range of the model

operator. When supports are finite, this can be done using a simple “within” projection

matrix, which differences out the unknown probabilities of individual effects. When supports

are infinite, we have shown how to use a linear projection operator for the same purpose.

This approach yields conditional moment restrictions on common parameters alone which

may be informative when a condition of non-surjectivity holds.

The resulting method-of moments estimators are root-N consistent (for fixed T ) and

asymptotically normal, under suitable regularity conditions. We have used the moment

restrictions obtained from functional differencing to construct an analog of the Hausman

specification test of random versus fixed effects in a nonlinear setting. We have also studied

estimation of average marginal effects and found that, in contrast with common parameters,

39We also applied the method outlined in Section 7 to choose the regularization parameter. The mini-
mization of the approximate MSE worked well, implying that keeping between 2 and 3 singular values is
optimal to estimate the mean of �i in the tobit model.

40In Chamberlain’s model and given our choice of weighting function �y, it can be shown that m1(�) =
��(�) and m2(�) = �(�) satisfy Condition 1. This explains why ill-posedness does not affect the estimation
of the weighted mean of �i in this model, as evidenced by Table 2.
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a problem of ill-posedness arises in this case.

This paper raises a number of open questions. First, in infinite dimensions, the orthogonal

of the range of the model operator is often infinite-dimensional. The preliminary simulation

evidence that we have presented suggests that using one set of moment functions or another

in estimation may very much affect finite-sample precision. Direct implementation of the

optimal instruments is likely to be difficult, because of the necessary regularizations involved.

It is thus of interest to suggest alternative moment functions to use in practice.

A second avenue for future work is the treatment of partially identified models. In those

models, it is essential to exploit the non-negativity constraints implied by the panel data

model. With this aim, we have outlined a constrained functional differencing approach that

yields additional restrictions on common parameters. It seems promising to develop this

insight, particularly to deal with partially identified marginal effects in general models.

Lastly, a maintained assumption in this paper is that, while the distribution of individ-

ual effects given regressors is unspecified, the conditional distribution of the data given the

effects is parametric. It may be important to relax the parametric assumption. For example,

Hu and Schennach (2008) prove general identification results in models with latent variables

under conditional independence restrictions. Hu and Shum (2009) discuss the nonparametric

identification of Markovian dynamic models with unobserved states. In panel data models

with continuous dependent variables, the functional differencing approach generates a con-

tinuum of identifying restrictions on common parameters. In linear models, this allows to

relax the parametric setting, provided that some restrictions are imposed on the dynamics

of time-varying errors (Arellano and Bonhomme, 2009b). The framework introduced in this

paper should be useful to extend those results to nonlinear panel data models.
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APPENDIX

A Proofs

Optimal moment restrictions (finite support). To proceed, let r = rankL�,x. For
simplicity, we assume that r does not depend on x. Let also U�,x be Ny × (Ny − r) such that
W�,x = U�,xU

′
�,x and U ′

�,xU�,x = INy−r. Then the restrictions from functional differencing can be
written as:

E [' (yi, xi, �0) ∣xi] = 0, (A1)

where ' (yi, xi, �) = U�,xi
[� (yi) , .]

′ is (Ny − r)×1. This is a finite set of Ny−r conditional moment
restrictions. The next proposition gives the optimal instruments in this case. Note that, in the
special case where there are no exogenous regressors, the optimal GMM estimator associated with
the optimal instruments (A2) coincides with (A5) below.

Proposition A1 Assume that rankL�,x is constant for all � in a neighborhood V of �0, a.s. in x,
and that � 7→ fy∣x,�;� (y∣x, �) is continuously differentiable on V, a.s. Lastly, assume that ��0,xi

=

E
(
U�0,xi

[� (yi) , .]
′ U�0,xi

[� (yi) , .] ∣xi
)
is a.s. non-singular.

Then the optimal instruments corresponding to (A1) are given by:

�−1
�0,xi

E

[
U ′
�0,xi

∂L�0,xi

∂�k
L†
�0,xi

[., � (yi)]
∣∣∣xi
]
, k = 1, ...,dim �. (A2)

Proof.

As the rank of L�,x is independent of � and L�,x is continuous, � 7→ W�,x is continuous in a
neighborhood of �0 (Stewart, 1977, Theorem 4.1), and so is � 7→ U�,x. We have:

E [' (yi, xi, �) ∣xi]− E [' (yi, xi, �0) ∣xi] = U ′
�,xi

fy∣x − U ′
�0,xi

fy∣x

= U ′
�,xi

L�0,xi
L†
�0,xi

fy∣x − U ′
�0,xi

L�0,xi
L†
�0,xi

fy∣x

= U ′
�,xi

L�0,xi
L†
�0,xi

fy∣x

= −U ′
�,xi

(L�,xi
− L�0,xi

)L†
�0,xi

fy∣x,

where we have used that fy∣x = L�0,xL
†
�0,xi

fy∣x, and that

U ′
�,xL�,x = U ′

�,xU�,xU
′
�,xL�,x = U ′

�,xW�,xL�,x = 0.

As U�,x is continuous and as � 7→ fy∣x,�;� (y∣x, �) is continuously differentiable in a neighborhood
of �0, it follows that the moment functions are differentiable at �0 with derivatives:

∂

∂�

∣∣∣
�0
E [' (yi, xi, �) ∣xi] = −U ′

�0,xi

∂L�0,xi

∂�k
L†
�0,xi

fy∣x

= −E

[
U ′
�0,xi

∂L�0,xi

∂�k
L†
�0,xi

[., � (yi)]
∣∣∣xi
]
.

The conclusion then follows from Chamberlain (1987).
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Sketch of the proof of Proposition 1. Following the standard semiparametric efficiency
bounds setup (e.g., Bickel et al., 1993), consider a regular parametric submodel f�∣x;� for the
unknown probability function of individual effects indexed by a scalar parameter �, which coincides
with the true f�∣x when � = 0. The partial score with respect to � is, at y

s
:

∂

∂�

∣∣∣
�=0

ln

(
N�∑

n=1

fy∣x,�;�0

(
y
s
∣x, �n

)
f�∣x;� (�n∣x)

)
=

∑N�

n=1 fy∣x,�;�0

(
y
s
∣x, �n

)
∂
∂�

∣∣∣
�=0

f�∣x;� (�n∣x)
∑N�

n=1 fy∣x,�;�0

(
y
s
∣x, �n

)
f�∣x (�n∣x)

.

The nonparametric tangent space is the span of such scores (which is finite-dimensional, hence
closed in ℝ

Ny).
Now,

as ≡
N�∑

n=1

fy∣x,�;�0

(
y
s
∣x, �n

) ∂

∂�

∣∣∣
�=0

f�∣x;� (�n∣x) = L�0,x [s, .]
∂

∂�

∣∣∣
�=0

f�∣x;�

may take any value, subject to the restriction
∑Ny

s=1 as = 0. This is because L�0,x is surjective,

and ∂
∂�

∣∣∣
�=0

f�∣x;� is unrestricted, apart from the fact that its elements need to sum to zero. This

suggests that the nonparametric tangent set is the full set of scores in ℝ
Ny , hence that �0 has zero

information.

Proof of Theorem 1. To simplify the notation we assume x away in the proof. Let Ny and
N� denote the number of points of supports of yi and �i, respectively. In this case, the information
bound for �0 is achieved by the minimum-distance (MD) estimator based on L�0g = fy, subject to
the restrictions

∑
n gn = 1, and gn ≥ 0 for all n ∈ {1, ..., N�}.

First, note that L�0g = fy implies that
∑

n gn = 1. This is because:

1 =
∑

s

fy

(
y
s

)
=

∑

s

∑

n

fy∣�;�0

(
y
s
∣�n

)
gn

=
∑

n

(∑

s

fy∣�;�0

(
y
s
∣�n

))
gn =

∑

n

gn.

This shows that the following MD estimator achieves the information bound for �0:

�̂ = argmin
�∈Θ

{
argmin
g,gn≥0

(
f̂y − L�g

)′
Υ"N

(
f̂y − L�g

)}
, (A3)

where f̂y is a nonparametric estimate of fy, and the weighting matrix is chosen as:

Υ"N =
(
Var

(
f̂y

)
+ "N ∗ INy

)−1
,

where "N > 0 tends to zero as N tends to infinity. For technical reasons we take "N = N− 1
4 .

If the information bound for �0 were zero, then the information bound associated with (31)
would also be zero. Let us thus focus on the case where the bound is not zero. In particular, �̂ is
root-N consistent for �0.

Next, consider, for given � ∈ Θ:

ĝ� = argmin
g∈ℝN�

(
f̂y − L�g

)′
Υ"N

(
f̂y − L�g

)
,
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where the non-negativity constraints on g are not imposed. Note that:

ĝ� =

[
Υ

1
2
"NL�

]†
Υ

1
2
"N f̂y.

As L� is injective, and as � 7→ L� is continuous on Θ we have:

ĝ
�̂

=
[
L′
�̂
Υ"NL�̂

]−1
L′
�̂
Υ"N f̂y

=
[
L′
�0
Υ"NL�0

]−1
L′
�0
Υ"N fy + op (1)

=
[
L′
�0
Υ"NL�0

]−1
L′
�0
Υ"NL�0f� + op (1)

= f� + op (1) ,

where in the second equality we have used that "N tends to zero more slowly than N− 1
2 .

As f� > 0, it follows that ĝ
�̂
> 0 with probability approaching one. This shows that, with

probability approaching one, �̂ coincides with:

argmin
�∈Θ

(
f̂y − L�

[
Υ

1
2
"NL�

]†
Υ

1
2
"N f̂y

)′

Υ"N

(
f̂y − L�

[
Υ

1
2
"NL�

]†
Υ

1
2
"N f̂y

)
. (A4)

To see that (A4) coincides with the optimal MD estimator based on the functional differencing
restrictions (31), let U� be Ny × (Ny −N�) such that W� = U�U

′
� and U ′

�U� = INy−N� . Notice that
W�fy = 0 is equivalent to U ′

�fy = 0.

As Υ
1
2
"NL� is injective we can apply a standard result on partitioned matrices and obtain:

INy −Υ
1
2
"NL�

[
Υ

1
2
"NL�

]†
= U�

(
U ′
�Υ

−1
"N
U�

)−1
U ′
�.

Note that U ′
�Υ

−1
"N
U� can be replaced by U ′

� Var
(
f̂y

)
U� with no effect on the first-order asymp-

totic properties of the estimator. So, with probability approaching one, �̂ coincides with the fol-
lowing MD estimator:

�̃ = argmin
�∈Θ

f̂ ′y

[
U�

(
U ′
� Var

(
f̂y

)
U�

)−1
U ′
�

]
f̂y. (A5)

This implies that �̂ and �̃ are asymptotically equivalent.41 As �̃ coincides with the optimal MD
estimator based on the functional differencing restrictions (31), the conclusion follows.

Proof of Theorem 2. First note that W�0,xfy∣x = W�0,xL�0,xf�∣x = 0, with probability one.
Hence (31). To show that (31) and (32) are equivalent, note that:

W�0,xfy∣x = 0 ⇔
〈
ℎ,W�0,xfy∣x

〉
= 0 for all ℎ ∈ Gy

⇔
〈
W ∗

�0,x
ℎ, fy∣x

〉
= 0 for all ℎ ∈ Gy

⇔
〈
W�0,xℎ, fy∣x

〉
= 0 for all ℎ ∈ Gy

⇔
[∫

Y
[W�0,xℎ] (y)fy∣x(y∣x)�y(y)dy = 0 for all ℎ ∈ Gy

]

⇔
[
E

(
�y(yi) [W�0,xi

ℎ] (yi)
∣∣∣xi = x

)
= 0 for all ℎ ∈ Gy

]
.

41For this, note that, as 1
{
�̂ = �̃

}
p→ 1 and: 1

{
�̂ = �̃

}√
N
(
�̃ − �0

)
= 1

{
�̂ = �̃

}√
N
(
�̂ − �0

)
, it follows

that:
√
N
(
�̃ − �0

)
= (1 + op(1))

√
N
(
�̂ − �0

)
.
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Proof of Theorem 3. We start with a lemma.

Lemma A1 Let ℎ ∈ D
(
L†
�0,x

)
. A necessary and sufficient condition for L�0,xg = ℎ to have a

solution is that W�0,xℎ = 0, in which case the general solution is: L†
�0,x

ℎ+
(
I� − L†

�0,x
L�0,x

)
g̃, for

some g̃ ∈ G�.

Proof. Clearly, if L�0,xg = ℎ then W�0,xℎ = 0. Conversely, suppose that W�0,xℎ = 0. From
Theorem 2.5 in Engl et al. (2000, p. 34), the set of solutions is:

L†
�0,x

ℎ+N (L�0,x) .

Now, from Proposition 2.3 in Engl et al. (2000, p. 33),
(
I� − L†

�0,x
L�0,x

)
is the orthogonal projector

onto N (L�0,x). Hence: N (L�0,x) = ℛ
(
I� − L†

�0,x
L�0,x

)
.

This ends the proof.

Suppose that i) holds. Then f�∣x satisfies L�0,xf�∣x = fy∣x. So, fy∣x ∈ ℛ (L�0,x) ⊂ D
(
L†
�0,x

)
,

and W�0,xfy∣x = 0. So, using Lemma A1, there exists g ∈ G� such that f�∣x = L†
�0,x

fy∣x +(
I� − L†

�0,x
L�0,x

)
g, and f�∣x ≥ 0 a.s. Hence ii).

Suppose ii). Then let f�∣x ≡ L†
�0,x

fy∣x +
(
I� − L†

�0,x
L�0,x

)
g ≥ 0 with probability one. By

Lemma A1, W�0,xfy∣x = 0 implies that L�0,xf�∣x = fy∣x. Moreover:

∫

Y

∣∣∣∣
∫

A
fy∣x,�;�0(y∣x, �)f�∣x(�∣x)d�

∣∣∣∣ dy =

∫

Y
fy∣x(y∣x)dy = 1 <∞.

So we can apply the Fubini theorem and obtain:

1 =

∫

Y
fy∣x(y∣x)dy =

∫

A

[∫

Y
fy∣x,�;�0(y∣x, �)dy

]
f�∣x(�∣x)d�

=

∫

A
f�∣x(�∣x)d�.

This implies i) and ends the proof.

Proof of Proposition 2. Assume that �0 is globally identified from (31), and suppose that

N
(
L∗
�,x

)
= {0} with probability one for some � ∕= �0 in Θ.

Then, as W�,x is the orthogonal projector on N
(
L∗
�,x

)
, it follows that W�,x = 0. So W�,xfy∣x =

0, contradicting the fact that �0 is globally identified. Hence (36). The equivalence with (37) comes
from standard results on linear operators in Hilbert spaces.

Optimal moment restrictions (infinite support). Let us define the following linear op-
erator:

U�,x =
∑

j

⟨�j, .⟩ �j,�,x,

where {�j} is any orthonormal family in Gy, {�j,�,x} is any orthonormal basis of N
(
L∗
�,x

)
, and the

sum ranges from j = 1 to the (possibly infinite) dimension of N
(
L∗
�,x

)
.
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By construction, W�,x = U�,xU
∗
�,x. Moreover:

W�0,xfy∣x = 0 ⇔
∑

j

〈
�j,�0,x, fy∣x

〉
�j,�0,x = 0

⇔
〈
�j,�0,x, fy∣x

〉
= 0 for all j

⇔
∑

j

〈
�j,�0,x, fy∣x

〉
�j = 0

⇔ U∗
�0,x

fy∣x = 0.

Now, this set of restrictions can be equivalently written as a set of conditional moment restric-
tions indexed by y ∈ Y. To see this, note that from the Riesz representation theorem42 for each
� ∈ Θ and x ∈ X there exists a set of functions {! (y, ., x, �) ∈ Gy, y ∈ Y} such that, for any ℎ ∈ Gy:

[
U∗
�,xℎ

]
(y) =

∫

Y
! (y, ỹ, x, �)ℎ(ỹ)�y(ỹ)dỹ.

Hence (31) is equivalent to

E [�y(yi)! (y, yi, xi, �0) ∣x] =
[
U∗
�0,x

fy∣x
]
(y)

= 0, for all y ∈ Y. (A6)

This shows that �0 is characterized as the solution of a set of conditional moment restrictions,
which becomes a continuum when Y is continuous.

The analogy with the finite-dimensional case motivates considering the following instruments:

ℎoptk = �−1
�0,xi

U∗
�0,xi

∂L�0,xi

∂�k
L†
�0,xi

fy∣x, k = 1, ...,dim �. (A7)

In this expression,
∂L�0,xi
∂�k

is an operator with kernel
∂fy∣x,�;�

∂�k
. Regularity conditions that ensure

that the population moment functions are differentiable, and that this operator is well-defined, are
given in Section 7. The operator �x : Gy → Gy is a non-singular covariance operator (Carrasco and
Florens, 2000) given by:

[�xℎ] (y) =

∫

Y
E
[
�y(yi)

2! (y, yi, xi, �0)! (ỹ, yi, xi, �0) ∣x
]
ℎ(ỹ)dỹ, for all ℎ ∈ Gy.

Hausman specification test. Let us denote ℓi (�, �) = ln
[∫

A fy∣x,�;�(yi∣xi, �)f�∣x;� (�∣xi) d�
]
,

and L�� = E

[
∂2ℓi(�0,�0)

∂�∂�′

]
, with a similar notation for the three other components of the Hessian:

L��, L��, and L��. Then, under standard regularity conditions and under the null of correct
specification: √

N
(
�̃ − �0

)
d→ N

(
0, V

�̃

)
,

where V
�̃
=
[
L�� − L��L

−1
�� L��

]−1
.

Let 'i (�) = ' (yi, xi, �). It is easy to show that, under the null, and under the regularity
conditions of Theorem 5 and standard regularity assumptions on the MLE (see Arellano, 1991):

√
NS

d→ N (0, VS) ,

42The Riesz representation theorem can be applied here because U∗
�,x is bounded, see Theorem 2.18 in

Carrasco et al. (2008).
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where:
VS = E

[(
'i (�0)−GV

�̃
si
) (
'i (�0)−GV

�̃
si
)′]

,

with si =
∂ℓi(�0,�0)

∂�
− L��L

−1
��

∂ℓi(�0,�0)
∂�

, and G = E

[
∂'i(�0)

∂�′

]
.

A consistent estimator of VS is then obtained as:

V̂S = Ê

[(
'i

(
�̃
)
− ĜV̂

�̃
ŝi

)(
'i

(
�̃
)
− ĜV̂

�̃
ŝi

)′]
,

where V̂
�̃
is a consistent estimator of V

�̃
, ŝi =

∂ℓi(�̃,�̃)
∂�

− L̂��L̂
−1
��

∂ℓi(�̃,�̃)
∂�

, with L̂�� and L̂�� consistent

estimators of L�� and L��, respectively, and Ĝ is given by (56) with �̃ in place of �̂.

Proof of Proposition 3. First, note that
(
I� − L†

�,xL�,x

)
is the orthogonal projection operator

on N (L�,x). So,
m
��

∈ N (L�0,x)
⊥ = ℛ

(
L∗
�0,x

)
if and only if:

(
I� − L†

�0,x
L�0,x

) m

��
= 0.

Suppose that �0 is point-identified. Let f� and g� be such that fy∣x = L�0,xf� and fy∣x =
L�0,xg�. Then, as L�0,x (f� − g�) = 0, it follows from Lemma A1 that there exists g ∈ G� such that

g� − f� =
(
I� − L†

�0,x
L�0,x

)
g.

Now, note that: M(x) =
〈

m
��
, f�

〉
. We have:

〈
m

��
, g�

〉
= M(x) +

〈
m

��
, g� − f�

〉

= M(x) +

〈
m

��
,
(
I� − L†

�0,x
L�0,x

)
g

〉

= M(x) +

〈(
I� − L†

�0,x
L�0,x

) m
��
, g

〉
=M(x),

provided that (40) holds, where we have used that I� − L†
�0,x

L�0,x is self-adjoint. Hence M(x) is
identified.

In particular, noticing that fy∣x = L�0,xL
†
�0,x

fy∣x, we have:

M(x) =

〈
m

��
, L†

�0,x
fy∣x

〉
.

This ends the proof.

Proof of Proposition 4. From the fact that
(
L†
�0,x

)∗
m
��

∈ Gy we have:

M(x) =

〈
m

��
, L†

�0,x
fy∣x

〉

=

〈(
L†
�0,x

)∗ m
��
, fy∣x

〉

= E

(
�y(yi)

[(
L†
�0,x

)∗ m
��

]
(yi)

∣∣∣xi = x

)
.
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B Proofs of asymptotic results

Proof of Theorem 4. We verify the conditions of Theorem 2.1 in Newey and McFadden (1994).
First, note that observations are i.i.d., and that the global identification condition holds, with Θ
compact. The rest of the proof consists of two steps.

Step 1 consists in showing that the population objective function is continuous on the parameter
space. We start with the following result.

Lemma B1 Let iii), iv), and viii) in Assumption 2 hold. Then, for any r and for � > 0 given,
the function:

� 7→ E

([
W

(�)
�,xi

ℎr

]
(yi)�y (yi) �r (xi)

)

is continuous on Θ.

Proof. Conditions iii) and iv) imply that the mapping � 7→ L�,x is continuous on Θ with

respect to the operator norm, x-a.s. This statement follows from the fact that, if �s
s→∞→ �, then

(e.g., Section 2.2 in Carrasco et al., 2008):

∥L�s,x − L�,x∥2 ≤ sup
�∈Θ

∫

Y

∫

A

[
fy∣x,�;�s(y∣x, �)− fy∣x,�;�(y∣x, �)

]2 �y(y)
��(�)

dyd�,

which tends to zero by iii), iv), and an application of Lebesgue’s dominated convergence theorem.

Thus, by (52), the mapping � 7→ W
(�)
�,x is also continuous on Θ with respect to the operator

norm, a.s. in x. Now, note that the singular values ofW
(�)
�,x are either equal to 1 or to some �

�+�2
j,�,x

,

for j ∈ {1, 2, ...}. It thus follows that
∥∥∥W (�)

�,x

∥∥∥ ≤ 1 for any �, x. So, letting again �s
s→∞→ � we have:

∣∣∣E
([(

W
(�)
�s,xi

−W
(�)
�,xi

)
ℎr

]
(yi)�y (yi) �r (xi)

)∣∣∣ =
∣∣∣E
(〈(

W
(�)
�s,xi

−W
(�)
�,xi

)
ℎr, fy∣x

〉
�r (xi)

)∣∣∣

≤ E

(∥∥∥
(
W

(�)
�s,xi

−W
(�)
�,xi

)
ℎr

∥∥∥
∥∥fy∣x

∥∥ ∣�r (xi)∣
)
.

The term within the expectation tends to zero by continuity of � 7→W
(�)
�,x . Moreover, it is dominated

by 2 ∥ℎr∥
∥∥fy∣x

∥∥ ∣�r (xi)∣, which has finite expectation by viii). The conclusion follows from the
dominated convergence theorem.

Lemma B2 Let v), vi) and viii) in Assumption 2 hold. Then, for any r:

E

([
W

(�)
�,xi

ℎr

]
(yi)�y (yi) �r (xi)

)
�→0→ E ([W�,xi

ℎr] (yi)�y (yi) �r (xi))

where the convergence holds uniformly on Θ.

Proof. We have:

B ≡ E

([(
W

(�)
�,xi

−W�,xi

)
ℎr

]
(yi) �y (yi) �r (xi)

)

= E

(〈(
W

(�)
�,xi

−W�,xi

)
ℎr, fy∣x

〉
�r (xi)

)

= E

⎛
⎝∑

j

−�
�+ �2j,�,xi

〈
�j,�,xi

, fy∣x
〉 〈
�j,�,xi

, ℎr
〉
�r (xi)

⎞
⎠ .
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So, for any J ≥ 1:

∣B∣ ≤ �
∑

j≤J

E

⎛
⎝ 1

inf
�∈Θ

�2j,�,xi

∣∣〈�j,�,xi
, fy∣x

〉 〈
�j,�,xi

, ℎr
〉
�r (xi)

∣∣
⎞
⎠

+E

⎛
⎝∑

j>J

∣∣〈�j,�,xi
, fy∣x

〉 〈
�j,�,xi

, ℎr
〉
�r (xi)

∣∣
⎞
⎠ .

So, using the Cauchy-Schwartz inequality:

sup
�∈Θ

∣B∣ ≤ �
∑

j≤J

E

⎛
⎝ 1

inf
�∈Θ

�2j,�,xi

∥∥fy∣x
∥∥ ∥ℎr∥ ∣�r (xi)∣

⎞
⎠

+E

⎡
⎢⎣sup
�∈Θ

⎛
⎝∑

j>J

〈
�j,�,xi

, fy∣x
〉2
⎞
⎠

1
2

∥ℎr∥ ∣�r (xi)∣

⎤
⎥⎦ .

Fix " > 0. By vi), viii) and the dominated convergence theorem, the second term on the
right-hand side tends to zero as J tends to infinity. So there exists a J such that this term is < "/2.
For that J , take � small enough such that the first term is < "/2. Such a � exists by v). This
shows the lemma.

Combining Lemmas B1 and B2 then shows that

� 7→ E ([W�,xi
ℎr] (yi)�y (yi) �r (xi))

is continuous on Θ, for any r. This ends Step 1 of the proof.
Lastly, in Step 2 we show uniform convergence in probability of the sample moment restrictions

to the population moment restrictions. To do this, let us denote

'r = �y (yi) [W�,xi
ℎr] (yi) �r (xi) .

We will show:

sup
�∈Θ

E

([
Ê ('r)− E ('r)

]2) N→∞→ 0. (B1)

For this, we will show two lemmas.

Lemma B3 Let ix) in Assumption 2 hold. Then

sup
�∈Θ

Var (E ([W�,xi
ℎr] (yi)�y (yi) �r (xi) ∣xi)) <∞.

Proof.

Var (E ([W�,xi
ℎr] (yi) �y (yi) �r (xi) ∣xi)) = Var

(〈
W�,xi

ℎr, fy∣x
〉
�r (xi)

)

≤ E

(〈
W�,xi

ℎr, fy∣x
〉2
�r (xi)

2
)

≤ E

(
∥W�,xi

ℎr∥2
∥∥fy∣x

∥∥2 �r (xi)2
)

≤ E

(
∥ℎr∥2

∥∥fy∣x
∥∥2 �r (xi)2

)
,

where we have used that ∥W�,xi
∥ ≤ 1. The conclusion follows from ix).
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Lemma B4 Let vii) in Assumption 2 hold. Then

sup
�∈Θ

E (Var ([W�,xi
ℎr] (yi)�y (yi) �r (xi) ∣xi)) <∞.

Proof. We have:

Var ([W�,xℎr] (yi)�y (yi) ∣x) ≤
∫

Y
{[W�,xℎr] (y)�y (y)}2 fy∣x (y∣x) dy

≤ sup
y∈Y

(
fy∣x (y∣x) �y (y)

) ∫

Y
{[W�,xℎr] (y)}2 �y (y) dy

= sup
y∈Y

(
fy∣x (y∣x) �y (y)

)
∥W�,xℎr∥2

≤ sup
y∈Y

(
fy∣x (y∣x) �y (y)

)
∥ℎr∥2 ,

where we have used that ∥W�,x∥ ≤ 1.

So, by vii), E
[
Var ([W�,xi

ℎr] (yi) �y (yi) ∣xi) �r (xi)2
]
is uniformly bounded, and the conclusion

follows.

Finally, combining Lemmas B3 and B4, Var ('r) is uniformly bounded. So, the left-hand side
in (B1) is bounded by a constant divided by N . This shows convergence in mean squares, which
implies convergence in probability.

So the consistency of �̂ is proved.

Proof of Theorem 5. We verify the conditions of Theorem 7.2 in Newey and McFadden (1994).
First, we prove that � 7→ E (' (yi, xi, �)) is differentiable at �0 with derivative G. For this, note
that:

E ('r (yi, xi, �))− E ('r (yi, xi, �0)) = E
(〈
W�,xi

ℎr, fy∣x
〉
�r (xi)

)
− E

(〈
W�0,xi

ℎr, fy∣x
〉
�r (xi)

)

= E
(〈
(W�,xi

−W�0,xi
) ℎr, fy∣x

〉
�r (xi)

)

= E

(〈
(W�,xi

−W�0,xi
)ℎr, L�0,xi

L†
�0,xi

fy∣x
〉
�r (xi)

)

= E

(〈
L∗
�0,xi

W�,xi
ℎr, L

†
�0,xi

fy∣x
〉
�r (xi)

)

= −E

(〈
(L�,xi

− L�0,xi
)∗W�,xi

ℎr, L
†
�0,xi

fy∣x
〉
�r (xi)

)
,

where we have used that fy∣x = L�0,xi
L†
�0,xi

fy∣x, and that L∗
�,xi

W�,xi
= 0 for all �.

By i) and ii) in Assumption 3 the mapping � 7→ L�,x is continuously differentiable on V, x-a.s.
It follows from the mean-value theorem that

E ('r (yi, xi, �))− E ('r (yi, xi, �0)) = −E

(〈
∂L∗

�̃,xi

∂�′
W�,xi

ℎr, L
†
�0,xi

fy∣x

〉
�r (xi)

)
(� − �0) ,

where �̃ lies between � and �0.
Now, as in the proof of Theorem 4 and using in addition Condition iii), the function � 7→W�,xℎr

is continuous on V, a.s. in x. To see this, note that, for any J ≥ 1:

∥∥∥W (�)
�,x ℎr −W�,xℎr

∥∥∥
2

≤ �2
J∑

j=1

1

�4j,�,x

〈
�j,�,x, ℎr

〉2
+
∑

j>J

〈
�j,�,x, ℎr

〉2
.
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The second term on the right-hand side tends uniformly to zero as J tends to infinity by iii).

Moreover, as �j,�,x is bounded from below for j ∈ {1, ..., J}, and as
〈
�j,�,x, ℎr

〉2 ≤ ∥ℎr∥2, the first

term tends uniformly to zero as � tends to zero (for fixed J). This shows that W
(�)
�,x ℎr tends to

W�,xℎr as � tends to zero, uniformly on V.
It follows that, for any k ∈ {1, ...,dim �} and a.s. in x:

〈
∂L∗

�̃,x

∂�k
W�,xℎr, L

†
�0,x

fy∣x

〉
�→�0→

〈
∂L∗

�0,x

∂�k
W�0,xℎr, L

†
�0,x

fy∣x

〉
.

Thus, by iv) and the dominated convergence theorem, � 7→ E (' (yi, xi, �)) is differentiable at �0
with derivative G.

Next, by the first part of vi) the empirical moment functions tend in distribution to N [0,Σ (�0)].
The theorem will thus be proved if we can show stochastic equicontinuity. Now, by the second part
of vi) we have:

√
N
(
Ê [' (yi, xi, �)− ' (yi, xi, �0)]− E [' (yi, xi, �)]

)
d→ N [0,Var (' (yi, xi, �)− ' (yi, xi, �0))] .

As in the proof of Lemma B3 we have:

Var (E ([(W�,xi
−W�0,xi

)ℎr] (yi) �y (yi) �r (xi) ∣xi)) ≤ E

(
∥W�,xi

ℎr −W�0,xi
ℎr∥2

∥∥fy∣x
∥∥2 �r (xi)2

)
.

The term inside the expectation tends to zero as � tends to �0, as � 7→W�,xℎr is continuous. Con-
dition ix) in Assumption 2 and the dominated convergence theorem thus imply that the between-x
variance tends to zero as � tends to �0.

Lastly, as in the proof of Lemma B4 we have:

Var ([W�,xℎr −W�0,xℎr] (yi)�y (yi) ∣x) ≤ sup
y∈Y

(
fy∣x (y∣x) �y (y)

)
∥W�,xℎr −W�0,xℎr∥2 .

The right-hand side in this expression tends to zero as � tends to �0, again by the continuity
of � 7→ W�,xℎr. Moreover, Condition vii) in Assumption 2 shows that this term (multiplied by
�r (xi)

2) is dominated in expectation, and the dominated convergence theorem concludes that the
within-x variance tends to zero as � tends to �0.

This shows stochastic equicontinuity and ends the proof.

Proof of Theorem 6. We start with the following lemma.

Lemma B5 Let Conditions iii) and iv) in Assumption 4 hold. Then Var [�N ⋅mi,�N ] <∞.

Proof. We have:

Var [�N ⋅mi,�N ] = Var

⎛
⎝∑

j

�Nqj (�N )�y(yi)�j(yi)
1

�j

〈
 j,

m

��

〉⎞
⎠

= E

⎡
⎣Var

⎛
⎝∑

j

�Nqj (�N ) �y(yi)�j(yi)
1

�j

〈
 j ,

m

��

〉 ∣∣∣xi

⎞
⎠
⎤
⎦

+Var

⎛
⎝∑

j

�Nqj (�N )
〈
�j , fy∣x

〉 1

�j

〈
 j,

m

��

〉⎞
⎠ .
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Starting with the second term in the sum:

Var

⎛
⎝∑

j

�Nqj (�N )
〈
�j, fy∣x

〉 1

�j

〈
 j ,

m

��

〉⎞
⎠ ≤ E

(
sup
j

∣∣∣∣
�Nqj (�N )

�j

∣∣∣∣
2 ∥∥fy∣x

∥∥2
∥∥∥∥
m

��

∥∥∥∥
2
)

where we have used the Cauchy-Schwartz inequality. This term is bounded by iv).

As for the first term in the sum, define: K m
��

≡∑j �Nqj (�N ) 1
�j

〈
 j ,

m
��

〉
�j . We have:

Var

⎛
⎝∑

j

�Nqj (�N ) �y(yi)�j(yi)
1

�j

〈
 j ,

m

��

〉 ∣∣∣xi

⎞
⎠ = Var

(
�y(yi)

[
K
m

��

]
(yi)

∣∣∣xi
)

≤
∫

Y
�y(y)

2

([
K
m

��

]
(y)

)2

fy∣x (y∣xi) dy

≤ sup
y∈Y

(
fy∣x (y∣xi) �y (y)

) ∥∥∥∥K
m

��

∥∥∥∥
2

. (B2)

Noticing that ∥K∥2 ≤ sup
j

∣∣∣ �N qj(�N )
�j

∣∣∣
2
by Cauchy-Schwartz inequality, the expectation of (B2)

is bounded by iii).
This ends the proof.

From part v) in Assumption 4, we have:

√
N�NAN

d→ N [0,ΣM ] .

So from the Mann-Wald theorem we only need to verify that

√
N�NBN

p→ 0.

Now, we have:

BN = Eyi,xi

⎡
⎣∑

j

��−1
j (qj (�N )− 1) �y(yi)�j(yi)

1

��j

〈
 j,

m

��

〉⎤
⎦

= Exi

⎡
⎣∑

j

��−1
j (qj (�N )− 1)

〈
�j, fy∣x (.∣xi)

〉 1

��j

〈
 j,

m

��

〉⎤
⎦ .

From (58) and the Cauchy-Schwartz inequality we have:

∣∣∣∣∣∣
∑

j

〈
�j , fy∣x (.∣xi)

〉 1

��j

〈
 j,

m

��

〉∣∣∣∣∣∣
≤ C� (xi)

1
2

∥∥∥∥
m

��

∥∥∥∥ .

Hence:

∣BN ∣ ≤ Exi

[(
sup
j

∣∣∣��−1
j (qj (�N )− 1)

∣∣∣
)
C� (xi)

1
2

∥∥∥∥
m

��

∥∥∥∥

]
.

The conclusion follows from part ii) in Assumption 4.
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C Examples

Operator injectivity in the random coefficients model (normal errors). Here we
show that rankB = q (where q = dim�i) is necessary and sufficient for L�,x to be injective in
Example 1. To prove the result we take �� = 1, so that G� = L2 (ℝq).

Let g ∈ G� such that L�,xg = 0, that is:

(2�)−
T
2 ∣Σ∣− 1

2

{∫

A
exp

[
−1

2
(y − a−B�)′ Σ− 1

2QΣ− 1
2 (y − a−B�)

]
g (�) d�

}

×
{
exp

[
−1

2
(y − a)′ Σ− 1

2WΣ− 1
2 (y − a)

]}
= 0.

This implies that:

∫

A
exp

[
−1

2
(y − a−B�)′Σ− 1

2QΣ− 1
2 (y − a−B�)

]
g (�) d� = 0.

Using the properties of Q this is equivalent to:

∫

A
exp

[
−1

2

((
Σ− 1

2B
)†

Σ− 1
2 (y − a)− �

)′
B′Σ−1B

((
Σ− 1

2B
)†

Σ− 1
2 (y − a)− �

)]
g (�) d� = 0.

Now, if B has full-column rank, then
(
Σ− 1

2B
)†

Σ− 1
2 is surjective. So we have, for all z ∈ ℝ

q:

∫

A
exp

[
−1

2
(z − �)′B′Σ−1B (z − �)

]
g (�) d� = 0. (C1)

As G� = L2 (ℝq), we can take L2-Fourier transforms in (C1) and obtain, using that B′Σ−1B is
non-singular:

[ℱg] (�) e− 1
2
� ′(B′Σ−1B)

−1
� = 0, � ∈ ℝ

q,

where ℱ is the L2-Fourier transform operator (Yoshida, 1971, p. 154). This implies that ℱg = 0,
hence that g = 0. This shows that L�,x is injective.

Conversely, when B does not have full-column rank, let r = dimN (B). Let Ṽ be a q × (q − r)
matrix such that Ṽ Ṽ ′ = B†B and Ṽ ′Ṽ = Iq−r, and let Ũ be a q×r matrix such that Ũ Ũ ′ = Iq−B†B
and Ũ ′Ũ = Ir. Let g̃1 ∈ L2 (ℝq−r) and g̃2 ∈ L1 (ℝr) ∩ L2 (ℝr) such that g̃1 ∕= 0, g̃2 ∕= 0, and∫
ℝr g̃2 (�) d� = 0. Lastly, let g (�) = g̃1

(
Ṽ ′�

)
g̃2

(
Ũ ′�

)
. Note that g ∈ G� by construction.

Then, noting that B = BB†B = BṼ Ṽ ′ we have, letting C = (2�)−
T
2 ∣Σ∣− 1

2 :

[L�,xg] (�) = C

∫

A
exp

[
−1

2
(y − a−B�)′ Σ−1 (y − a−B�)

]
g (�) d�

= C

∫

A
exp

[
−1

2

(
y − a−BṼ Ṽ ′�

)′
Σ−1

(
y − a−BṼ Ṽ ′�

)]
g̃1

(
Ṽ ′�

)
g̃2

(
Ũ ′�

)
d�

= C

∫

ℝq−r

exp

[
−1

2

(
y − a−BṼ �

)′
Σ−1

(
y − a−BṼ �

)]
g̃1 (�) d�

∫

ℝr

g̃2 (�) d�

= 0,

where we have used the change in variables (�, �) =
(
Ṽ ′�, Ũ ′�

)
.

So L�,x is not injective. This ends the proof.

62



Uniform Fourier convergence in the random coefficients model (normal errors).
Consider model (2) with normal errors, where in addition we assume that Σ is known. We also
assume that rankB = q, i.e. that L�,x is injective.

Let us take �� = 1, and �y (y) = exp
[
−1

2�y
′Σ−1y

]
, where � > 0. Let Q = Σ− 1

2B
[
Σ− 1

2B
]†
,

and define V a T × q matrix such that Q = V V ′ and V ′V = Iq. Let also W = IT −Q, and define
U a T × (T − q) matrix such that W = UU ′, and U ′U = IT−q.

Let us define ℋ the Hilbert space of functions  : ℝq → ℝ
q such that:

∫

ℝq

 (�)2 exp

[
−1

2
��′�

]
d� <∞,

endowed with its canonical scalar product. Lastly, let Lℋ : ℋ → ℋ be the integral operator such
that, for all  ∈ ℋ:

[Lℋ ] (z) =
∫

ℝq

exp

[
−1

4
(z − �)′ (z − �)

]
× exp

[
−1

2
��′�

]
 (�) d�, for all z ∈ ℝ

q.

We note that Lℋ is Hilbert-Schmidt, so it admits a singular value decomposition, and that Lℋ is
self-adjoint.

We have the following result.

Proposition C1 The left singular functions of the operator L�,x : G� → Gy are given by:

�j (y) = C (�)Hj

(
V ′Σ− 1

2 y
)
exp

[
−1

2
(y − a)′Σ− 1

2UU ′Σ− 1
2 (y − a)

]
, (C2)

where Hj, j = 1, 2, ... are the singular functions of the self-adjoint operator Lℋ, and where C (�) is
a positive constant, uniformly bounded on Θ provided that a() is continuous in � and Θ is compact.

Proof.

Let Y = ℝ
T , and A = ℝ

q. We have:

[
L�,xL

∗
�,xℎ

]
(y) =

∫

Y

∫

A
fy∣x,�;� (y∣x, �) fy∣x,�;� (ỹ∣x, �) �y (ỹ)ℎ (ỹ) d�dỹ

=

∫

Y

{∫

A
fy∣x,�;� (y∣x, �) fy∣x,�;� (ỹ∣x, �) d�

}

︸ ︷︷ ︸
k(y,ỹ)

�y (ỹ)ℎ (ỹ) dỹ.

Moreover:

fy∣x,�;� (y∣x, �) ∝ exp

[
−1

2

(
V ′Σ− 1

2 (y − a)− V ′Σ− 1
2B�

)′ (
V ′Σ− 1

2 (y − a)− V ′Σ− 1
2B�

)]

× exp

[
−1

2
(y − a)′ Σ− 1

2UU ′Σ− 1
2 (y − a)

]
.

Let A ∝ B denote the fact that A and B are equal up to a multiplicative constant (possibly

dependent on �, x). Using the change of variables � = V ′Σ− 1
2B�, and noting that V ′Σ− 1

2B is
non-singular, we obtain:

k (y, ỹ) =

∫

A
fv∣x;� (y − a−B�) fv∣x;� (ỹ − a−B�) d�

∝
∫

A
exp

[
− 1

2

(
V ′Σ− 1

2 (y − a)− �
)′ (

V ′Σ− 1
2 (y − a)− �

)

−1

2

(
V ′Σ− 1

2 (ỹ − a)− �
)′ (

V ′Σ− 1
2 (ỹ − a)− �

) ]
d�

× exp

[
−1

2
(y − a)′Σ− 1

2UU ′Σ− 1
2 (y − a)− 1

2
(ỹ − a)′Σ− 1

2UU ′Σ− 1
2 (ỹ − a)

]
.
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So, from the usual decomposition of quadratic forms:

k (y, ỹ) ∝ exp

[
−1

4

(
V ′Σ− 1

2 (y − ỹ)
)′ (

V ′Σ− 1
2 (y − ỹ)

)]

× exp

[
−1

2
(y − a)′Σ− 1

2UU ′Σ− 1
2 (y − a)− 1

2
(ỹ − a)′Σ− 1

2UU ′Σ− 1
2 (ỹ − a)

]
.

As the left singular function �j belongs to the range of L�,x, there exists a function ℎj such
that:

�j (y) = ℎj

(
V ′Σ− 1

2 y
)
exp

[
−1

2
(y − a)′ Σ− 1

2UU ′Σ− 1
2 (y − a)

]
.

The function �j satisfies:

[
L�,xL

∗
�,x�j

]
(y) ∝ �j (y) .

This is equivalent to:

ℎj

(
V ′Σ− 1

2 y
)

∝
∫

Y

{
exp

[
−1

4

(
V ′Σ− 1

2 (y − ỹ)
)′ (

V ′Σ− 1
2 (y − ỹ)

)]

× exp

[
−1

2
(ỹ − a)′Σ− 1

2UU ′Σ− 1
2 (ỹ − a)

]
�y (ỹ)ℎj

(
V ′Σ− 1

2 ỹ
)}

dỹ.

Then, we note that, as V V ′ + UU ′ = IT :

�y (ỹ) = exp

[
−1

2
�ỹ′Σ−1ỹ

]

= exp

[
−1

2
�
(
V ′Σ− 1

2 ỹ
)′
V ′Σ− 1

2 ỹ

]
× exp

[
−1

2
�ỹ′Σ− 1

2UU ′Σ− 1
2 ỹ

]
.

We thus obtain, using the change in variables (�, �) =
(
V ′Σ− 1

2 ỹ, U ′Σ− 1
2 ỹ
)
:

ℎj

(
V ′Σ− 1

2 y
)

∝
∫

ℝq

exp

[
−1

4

(
V ′Σ− 1

2 y − �
)′ (

V ′Σ− 1
2 y − �

)]
exp

[
−1

2
��′�

]
ℎj (�) d�.

So, (C2) follows. Lastly, as
∥∥�j
∥∥ = 1 the proportionality constant C (�) satisfies:

1

C (�)2
=

∫

Y

(
Hj

(
V ′Σ− 1

2 y
)
exp

[
−1

2
(y − a)′Σ− 1

2UU ′Σ− 1
2 (y − a)

])2

exp

[
−1

2
�y′Σ−1y

]
dy

= ∣Σ∣ 12
∫

ℝq

Hj (�)
2 exp

[
−1

2
��′�

]
d�

×
∫

ℝT−q

exp

[
−
(
� − U ′Σ− 1

2 a
)′ (

� − U ′Σ− 1
2 a
)]

exp

[
−1

2
�� ′�

]
d�

= ∣Σ∣ 12
(

2�

2 + �

)T−q
2

exp

[
− �

2 + �
a′Σ− 1

2UU ′Σ− 1
2 a

]
,

where we have used that ∥Hj∥ = 1. As a() is continuous in � and Θ is compact, and as W = UU ′

is a projector, a′Σ− 1
2UU ′Σ− 1

2a is bounded. So, C (�) is uniformly bounded.
The result follows.

Using the expression for the left singular functions, we then verify uniform Fourier convergence
for model (2).
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Corollary C1 The following condition is satisfied for any ℎ ∈ Gy, a.s. in x:

sup
�∈Θ

⎛
⎝∑

j>J

〈
�j, ℎ

〉2
⎞
⎠ J→∞→ 0. (C3)

Proof.

We start by checking Condition (C3) when ℎ is a polynomial. It is enough to check the result

for ℎ of the form
(
Σ− 1

2 y
)(k)

, where y(k) = yk11 × ... × ykTT . Let (�, �) =
(
V ′Σ− 1

2 y, U ′Σ− 1
2 y
)
. We

have: (
Σ− 1

2 y
)(k)

=
(
V V ′Σ− 1

2 y + UU ′Σ− 1
2 y
)(k)

= (V �+ U�)(k) .

We note that (V �+ U�)(k) is a polynomial in � and �, the coefficients of which are uniformly
bounded as U and V are orthogonal matrices. So it is sufficient to check the result for ℎ of the

form
(
V ′Σ− 1

2 y
)(m) (

U ′Σ− 1
2 y
)(ℓ)

.

For such an ℎ, we have:

〈
�j, ℎ

〉
= C (�)

∫

Y

{(
V ′Σ− 1

2 y
)(m) (

U ′Σ− 1
2 y
)(ℓ)

Hj

(
V ′Σ− 1

2 y
)

× exp

[
−1

2
(y − a)′Σ− 1

2UU ′Σ− 1
2 (y − a)

]
�y (y)

}
dy

= C (�) ∣Σ∣ 12
∫

ℝq

�(m)Hj (�) exp

[
−1

2
��′�

]
d�

×
∫

ℝT−q

�(ℓ) exp

[
−1

2

(
� − U ′Σ− 1

2a
)′ (

� − U ′Σ− 1
2 a
)]

exp

[
−1

2
�� ′�

]
d�,

where we have factored �y as in the proof of Proposition C1, and where we have used the change

in variables (�, �) =
(
V ′Σ− 1

2 y, U ′Σ− 1
2 y
)
.

Now, as �(m) belongs to ℋ:

∑

j>J

(∫

ℝq

�(m)Hj (�) exp

[
−1

2
��′�

]
d�

)2
J→∞→ 0.

In addition:
∣∣∣∣
∫

ℝT−q

�(ℓ) exp

[
−1

2

(
� − U ′Σ− 1

2 a
)′ (

� − U ′Σ− 1
2a
)]

exp

[
−1

2
�� ′�

]
d�

∣∣∣∣

≤
∫

ℝT−q

∣�∣(ℓ) exp
[
−1

2
�� ′�

]
d� <∞.

This shows uniform Fourier convergence for polynomial ℎ.
Lastly let ℎ ∈ Gy, and fix " > 0. We start by noting that polynomials are dense in Gy. For

example, when T = 1 the (generalized) Hermite polynomials form an orthogonal basis of the

weighted L2 space Gy. So, there exists a polynomial ℎ̃ such that:
∥∥∥ℎ− ℎ̃

∥∥∥
2
< "

4 .

For this ℎ̃, and by the previous result, there exists a J1 such that, for all J ≥ J1:

sup
�∈Θ

∑

j>J

〈
�j, ℎ̃

〉2
<
"

4
.
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Therefore:

sup
�∈Θ

∑

j>J

〈
�j , ℎ

〉2 ≤ sup
�∈Θ

∑

j>J

2

(〈
�j , ℎ̃

〉2
+
〈
�j , ℎ− ℎ̃

〉2)

≤ 2× sup
�∈Θ

∑

j>J

〈
�j , ℎ̃

〉2
+ 2×

∥∥∥ℎ− ℎ̃
∥∥∥
2

< 2× "

4
+ 2× "

4
= ",

and the corollary is proved.

Average marginal effects in the random coefficients model (normal errors). As
before we take �� = 1, and �y (y) = exp

[
−1

2�y
′Σ−1y

]
, where � > 0. Let us assume that L�0,x is

injective. Suppose that Condition 1 holds, so that there exists ℎ ∈ Gy such that m = L∗
�0,x

ℎ (as
�� = 1). If L�0,x is non-surjective, there are many ℎ that satisfy this equation. Without loss of
generality we assume that:

ℎ ∈ N
(
L∗
�0,x

)⊥
= ℛ (L�0,x).

So, by (5), and using the same notation as in the proof of Proposition C1, there exists a function
H such that:

ℎ(y) = H
(
V ′Σ− 1

2 y
)
exp

(
−1

2
(y − a)′Σ− 1

2UU ′Σ− 1
2 (y − a)

)
,

where H is such that
∫
ℝq H (�)2 exp

[
−1

2��
′�
]
d� <∞.

It thus follows that:

m (�) =
[
L∗
�0,x

ℎ
]
(�)

=

∫

Y
fv∣x,�;�0 (y∣x, �)�y (y) ℎ (y) dy

∝
∫

ℝq

∫

ℝT−q

H (�) exp

[
−1

2

(
�− V ′Σ− 1

2 (a+B�)
)′ (

�− V ′Σ− 1
2 (a+B�)

)]

× exp

[
−
(
� − U ′Σ− 1

2a
)′ (

� − U ′Σ− 1
2 a
)]

exp

[
−1

2
��′�

]
× exp

[
−1

2
�� ′�

]
d�d�

∝
∫

ℝq

H (�) exp

[
−1

2

(
�− V ′Σ− 1

2 (a+B�)
)′ (

�− V ′Σ− 1
2 (a+B�)

)]
exp

[
−1

2
��′�

]
d�,

where we have used the change in variables (�, �) =
(
V ′Σ− 1

2 y, U ′Σ− 1
2 y
)
.

Taking Fourier transforms we obtain, for � ∈ ℝ
q:

[ℱm]
(
B′Σ− 1

2V �
)

∝
[
ℱH̃

]
(�) e−

√
−1� ′V ′Σ− 1

2 ae−
1
2
� ′� .

where H̃ (�) = H (�) exp
[
−1

2��
′�
]
, and ℱ is the L2-Fourier transform operator. Note that � 7→

H (�) exp
[
−1

4��
′�
]
belongs to L2 (ℝq), so ℱH̃ is well-defined.

As ℱH̃ is square integrable, it follows that, as a consequence of Condition 1:43

� 7→ [ℱm] (�) e
1
2
� ′(B′Σ−1B)

−1
�

43Note that: B′Σ− 1

2 V V ′Σ− 1

2B = B′Σ−1B.
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must be square integrable. This imposes restrictions on the rate at which [ℱm] (�) tends to zero
as ∣� ∣ tends to infinity.44

Operator injectivity in the censored random coefficients model (normal errors).
In the censored random coefficients model, we define A = ℝ

q, and Y = {y ∈ ℝ
T , yt ≥ ct for all t}.

The next proposition shows that L�,x is injective when vit is normally distributed and B has full-
column rank. To show the result we take �� = 1.

Proposition C2 Suppose that rankB (x, �) = q for all �, x-a.s. Then L�,x : G� → Gy is injective
in Example 2.

Proof.

In the proof we drop the reference to x to simplify the notation. Let g ∈ G� such that L�g = 0.
Then, for all y > c (where y > c denotes that yt > ct for all t):

∫

A
fv (y − a−B�) g(�)d� = 0.

This implies:

∫

A
e−

1
2
[y−a−B�]′Σ−1[y−a−B�]g(�)d� = 0,

or equivalently:

∫

A
e−

1
2
�′B′Σ−1B�e(y−a)′Σ−1B�g(�)d� = 0.

As B′Σ−1B is positive definite, one can differentiate under the integral sign and obtain, for all
y > c, and all k = (k1, ..., kT ) ∈ {0, 1, 2, ...}T :

∫

A
e−

1
2
�′B′Σ−1B�

[
Σ−1B�

]⊗k
e(y−a)′Σ−1B�g(�)d� = 0,

where
y⊗k = y1 ⊗ ...⊗ y1︸ ︷︷ ︸

k1 times

⊗ ...⊗ yT ⊗ ...⊗ yT︸ ︷︷ ︸
kT times

.

For any 0 < � < 1/2 we thus have:

∫

A

([
Σ−1B�

]⊗k
e−��′B′Σ−1B�

)
e−(

1
2
−�)�′B′Σ−1B�e(y−a)′Σ−1B�g(�)d� = 0.

As B has full-column rank,
{[

Σ−1B�
]⊗k

e−��′B′Σ−1B�, k ∈ {0, 1, 2, ...}T
}

is a complete family

in L2 (ℝq).45 It follows that:

e−(
1
2
−�)�′B′Σ−1B�e(y−a)′Σ−1B�g(�) = 0, a.s. in �, y > c,

which implies that g = 0. This ends the proof.

44Condition 1 imposes more than square integrability, as H̃ is the product of a function in L2 (ℝq) with
the rapidly decaying function � 7→ exp

[
− 1

4
��′�

]
.

45This is because polynomials form a complete family in the weighted L2 space with weighting function
� (�) = e−��′B′

Σ
−1B�. For example, for q = 1 the (generalized) Hermite polynomials are dense in that space.
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Lastly, note that, to show injectivity, it is important that the support of vi be large enough. To
see this, consider the simple model (with T = 1):

yi1 = max
(
x′i1�0 + �i + vi1, c1

)
,

where Supp (vi1) = [a, b]. Clearly, if � ≤ c1 − x′1�− b, then fv1∣x1
(y1 − x′1� − �) = 0 for all y1 ≥ c1.

So, any function g in G� that is zero on ]c1−x′1�− b,+∞[ belongs to the null-space of the operator
L�,x. Hence L�,x is not injective.

Random coefficients model (non-normal errors). Consider model (2), where now the
distribution of vi given xi and �i is known given � (possibly non-normal), and is independent of
�i with zero mean. We let Y = ℝ

T , A = ℝ
q, and we take �� and �y such that Assumption 1 is

satisfied.
We start by obtaining restrictions on L�,xg for g ∈ G� ∩ L1 (ℝq). Note that, in this case,

L�,xg ∈ Gy ∩ L1
(
ℝ
T
)
. Moreover, G� ∩ L1 (ℝq) is dense in G�,

46 and Gy ∩ L1
(
ℝ
T
)
is dense in Gy.

We have, for any g ∈ G�:

[L�,xg] (y) =

∫

A
fv∣x;� (y − a−B�) g (�) d�.

So, if in addition g ∈ L1 (ℝq) we can take Fourier transforms and obtain:

[ℱ [L�,xg]] (�) = e
√
−1�′a ⋅ [ℱg]

(
B′�
)
⋅Ψv∣x;� (�∣x) , � ∈ ℝ

T ,

where Ψv∣x;� = ℱfv∣x;� is the conditional characteristic function of vi given xi.

Denoting W = IT −BB†, and noting that B′W = 0, we obtain:

[ℱ [L�,xg]] (� +W�∣x)Ψv∣x;� (�∣x) = e
√
−1�′Wa [ℱ [L�,xg]] (�∣x)Ψv∣x;� (� +W�∣x) , (�, �) ∈ ℝ

2T .

(C4)

Equation (C4) suggests that the non-surjectivity condition is satisfied unless W = 0, that is
N (B′) = {0}. In addition, evaluating (C4) at � = �0 and g = f�∣x yields:

Ψy∣x (� +W�∣x)Ψv∣x;�0 (�∣x) = e
√
−1�′WaΨy∣x (�∣x)Ψv∣x;�0 (� +W�∣x) , (�, �) ∈ ℝ

2T ,

that is:

E

[
e
√
−1(�+W�)′yiΨv∣x;�0 (�∣xi)− e

√
−1�′Wae

√
−1�′yiΨv∣x;�0 (� +W�∣xi)

∣∣∣xi
]

= 0, (�, �) ∈ ℝ
2T .

(C5)

Equation (C5) shows that �0 satisfies a continuum of conditional moment restrictions, which
are informative when N (B′) ∕= {0}. Moreover, in this model those restrictions are analytical.

46To see this, let g ∈ G� and consider gM (�) = 1{∣�∣ ≤M}g(�). We have:

∥g − gM∥2 =

∫

∣�∣>M

g2(�)��(�)d�
M→+∞→ 0.
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Nonlinear regression model (non-normal errors). Let us consider the model:

yi = m (xi, �i, �0) + vi, i = 1, ..., N, (C6)

where m() is a known T × 1 function. The distribution of vi given xi and �i is known given �0,
and is independent of �i. For example, (C6) may be used to model nonlinear production functions
with heterogeneous technology parameters. We define Y = ℝ

T , A = ℝ
q, and we take �� and �y

such that Assumption 1 holds.
We make the following assumption.

Assumption C1 For � ∈ Θ and with probability one:

{m (x, �, �) , � ∈ ℝq} ⊂
∕=
ℝ
T , (C7)

where the closure is relative to the Euclidean topology in ℝ
T .

Assumption C1 will typically hold if T > dim�i, that is when the number of time periods is
strictly greater than the number of heterogeneous components. In this case, the assumption rules
out space-filling mappings (such as Peano curves) that map surjectively ℝ

q onto ℝ
T . Assumption

C1 will fail to hold, however, when T = dim�i and m is one-to-one.
As in the linear case we let g ∈ G� ∩ L1 (ℝq) and we derive restrictions on L�,xg. We have:

[L�,xg] (y) =

∫

A
fv∣x;� (y −m (x, �, �)) g (�) d�.

Taking Fourier transforms we obtain:

[ℱ [L�,xg]] (�) =

(∫

A
e
√
−1�′m(x,�,�)g (�) d�

)
⋅Ψv∣x;� (�∣x) , � ∈ ℝ

T . (C8)

We have the next result.

Proposition C3 Let Assumption C1 hold, and assume that Ψv∣x;� does not vanish on ℝ
T . Then,

for any � /∈ {m (x, �, �) , � ∈ ℝq} and any g ∈ G� ∩ L1 (ℝq):

lim
"→0

∫

ℝT

e−
1
2
"�′�e−

√
−1�′�

(
[ℱ [L�,xg]] (�)

Ψv∣x;� (�∣x)

)
d� = 0. (C9)

Proof. Let " > 0. We have, using the Fubini theorem:

A (") ≡
∫

ℝT

e−
1
2
"�′�e−

√
−1�′�

(∫

A
e
√
−1�′m(x,�,�)g (�) d�

)
d�

=

∫

A

(∫

ℝT

e−
√
−1�′�e

√
−1�′m(x,�,�)e−

1
2
"�′�d�

)
g (�) d�

=

∫

A

(
(2�)

T
2 "−

T
2 e−

1
2"

(�−m(x,�,�))′(�−m(x,�,�))
)
g (�) d�,

where we have used the expression of the Fourier transform of a Gaussian distribution.
Now, as � does not belong to the closure of the range of m():

inf
�∈ℝq

∣�−m (x, �, �) ∣2 ≥ � > 0.
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It thus follows that:

∣A (")∣ ≤ (2�)
T
2 "−

T
2 e−

�
2"

∫

A
∣g (�)∣ d� →

"→0
0.

Lastly, by (C8) and the fact that Ψv∣x;� is non-vanishing:

A (") =

∫

ℝT

e−
1
2
"�′�e−

√
−1�′�

(
[ℱ [L�,xg]] (�)

Ψv∣x;� (�∣x)

)
d�.

This ends the proof.

Proposition C3 provides a set of restrictions on L�,xg, which is non-empty when Assumption
C1 holds. This suggests that L�,x is not surjective under that assumption, provided that Ψv∣x;�
is non-vanishing. This last assumption is commonly made in the nonparametric deconvolution
literature (e.g., Carrasco and Florens, 2009).

In addition, the proposition allows us to derive simple restrictions on �0. Evaluating (C9) at
� = �0 and g = f�∣x we obtain, for any � outside the closure of the range of m (x, .; �0):

lim
"→0

∫

ℝT

e−
1
2
"�′�e−

√
−1�′� Ψy∣x (�∣x)

Ψv∣x;�0 (�∣x)
d� = 0.

This yields a continuum of restrictions on �0 (indexed by �), when Assumption C1 holds.

Static probit model. To see why finding a set {'y} that satisfies (10) is equivalent to all 2T

products of distinct F ’s being linearly dependent: F k1
1 × ... × F kT

T , (k1, ..., kT ) ∈ {0, 1}T , consider
the case T = 2. Then, (10) can be written as:

'00 + ('10 − '00)F1 + ('01 − '00)F2 + ('11 − '10 − '01 + '00)F1F2 = 0,

and we have:
⎛
⎜⎜⎝

'00

'10 − '00

'01 − '00

'11 − '10 − '01 + '00

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 0 0
−1 1 0 0
0 −1 1 0
1 −1 −1 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

'00

'10

'01

'11

⎞
⎟⎟⎠ .

This triangular structure holds for any T ≥ 2.

Static logit model. We first prove (12). We have:

(11) ⇔
∑

y∈{0,1}T
'y(x, �)

T∏

t=1

Λ
(
x′t� + �

)yt (1− Λ
(
x′t� + �

))1−yt = 0

⇔
∑

y∈{0,1}T
'y(x, �)

T∏

t=1

[
ex

′
t�+�

1 + ex
′
t�+�

]yt [
1

1 + ex
′
t�+�

]1−yt

= 0

⇔
∑

y∈{0,1}T
'y(x, �)e

∑T
t=1 yt(x

′
t�+�) = 0

⇔
∑

y∈{0,1}T
'y(x, �)e

∑T
t=1 ytx

′
t�e�

∑T
t=1 yt = 0.
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So, as es�, s = 0, ..., T , are linearly independent, (12) follows.
Next, we characterize the optimal linear combination of functional differencing restrictions

when T = 3. In this case, the elements ' ∈ N
(
L∗
�,x

)
are characterized by the following equations,

obtained from (12): '000 = '111 = 0, and

'100e
x′
i1� + '010e

x′
i2� + '001e

x′
i3� = 0,

'110e
(xi1+xi2)

′� + '101e
(xi1+xi3)

′� + '011e
(xi2+xi3)

′� = 0.

This shows that dimN
(
L∗
�,x

)
= 4 (a.s in x), and the full set of conditional moment restrictions

from functional differencing can be written as:

E

[
yi1 (1− yi2) (1− yi3) e

x′
i2�0 − (1− yi1) yi2 (1− yi3) e

x′
i1�0 ∣xi

]
= 0,

E

[
yi1 (1− yi2) (1− yi3) e

x′
i3�0 − (1− yi1) (1− yi2) yi3e

x′
i1�0 ∣xi

]
= 0,

E

[
yi1yi2 (1− yi3) e

x′
i3�0 − yi1 (1− yi2) yi3e

x′
i2�0 ∣xi

]
= 0,

E

[
yi1yi2 (1− yi3) e

x′
i3�0 − (1− yi1) yi2yi3e

x′
i1�0 ∣xi

]
= 0.

Let ej = ex
′
i1�0 , a = 1

e1+e2+e3
, b = 1

e1e2+e2e3+e3e1
, and

dstw = ysi1 (1− yi1)
1−s yti2 (1− yi2)

1−t ywi3 (1− yi3)
1−w .

Computing Chamberlain’s (1987) optimal unconditional moments for this set of conditional moment
restrictions yields, after some calculation:

E

[
ad100 ((x2 − x1) e2 + (x3 − x1) e3) + ad010 (− (x2 − x1) (e2 + e3) + (x3 − x1) e3)

+ad001 ((x2 − x1) e2 − (x3 − x1) (e1 + e2)) + bd110 ((x3 − x2) e1e3 + (x3 − x1) e2e3)

+bd101 (− (x3 − x2) e2 (e1 + e3) + (x3 − x1) e2e3)

+bd011 ((x3 − x2) e1e3 − (x3 − x1) e1 (e2 + e3))
]

= 0.

(C10)

We check that (C10) coincides exactly with the score equation from the CMLE, using yi1 +
yi2 + yi3 as a sufficient statistic.

Dynamic logit model. The eight probabilities of yi given �i = � are, denoting X = e� and
Y = e�+�:

P (yi1 = 0, yi2 = 0, yi3 = 0∣�) = (1 +X)−3

P (yi1 = 1, yi2 = 0, yi3 = 0∣�) = X (1 +X)−2 (1 + Y )−1

P (yi1 = 0, yi2 = 1, yi3 = 0∣�) = X (1 +X)−2 (1 + Y )−1

P (yi1 = 0, yi2 = 0, yi3 = 1∣�) = X (1 +X)−3

P (yi1 = 1, yi2 = 1, yi3 = 0∣�) = XY (1 +X)−1 (1 + Y )−2

P (yi1 = 1, yi2 = 0, yi3 = 1∣�) = X2 (1 +X)−2 (1 + Y )−1

P (yi1 = 0, yi2 = 1, yi3 = 1∣�) = XY (1 +X)−2 (1 + Y )−1

P (yi1 = 1, yi2 = 1, yi3 = 1∣�) = XY 2 (1 +X)−1 (1 + Y )−2 .
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From (10) it thus follows that:

0 = (1 +X)−3 '000 +X (1 +X)−2 (1 + Y )−1 '100 +X (1 +X)−2 (1 + Y )−1 '010

+X (1 +X)−3 '001 +XY (1 +X)−1 (1 + Y )−2 '110 +X2 (1 +X)−2 (1 + Y )−1 '101

+XY (1 +X)−2 (1 + Y )−1 '011 +XY 2 (1 +X)−1 (1 + Y )−2 '111.

So, multiplying by (1 +X)3 (1 + Y )2 and setting the coefficients of degree 0 to 5 of the poly-
nomial in e� to zero, we obtain:

0 = '000

0 = '100 + '010 + '001

0 = (Y −X) ('001 + '110)

0 = (Y −X) (Y '001 +X'110)

0 = X'110 +X'101 + Y '011

0 = '111.

So, if � ∕= 0 then Y ∕= X and we obtain '000 = '001 = '110 = '111 = 0 and:

'100 + '010 = 0

'101 + e�'011 = 0.

In this case dimN (L∗
�) = 2. Hence the functional differencing restrictions:

E

[
yi1 (1− yi2) yi3e

�0 − (1− yi1) yi2yi3

]
= 0 (C11)

E [yi1 (1− yi2) (1− yi3)− (1− yi1) yi2 (1− yi3)] = 0. (C12)

Moreover, as the moment functions in (C11) and (C12) are orthogonal, it is equivalent to base the
estimation of �0 on (C11) only.

If � = 0 then '000 = '111 = 0 and:

'100 + '010 + '001 = 0

'110 + '101 + '011 = 0.

In this case dimN (L∗
�) = 4.

D Computation

In this section of the appendix we explain how we implement our approach in practice.

Discretization. Estimating common parameters and average marginal effects requires comput-
ing the singular values and singular functions of L�,x: {�j}, {�j}, and { j}.

Let us first consider the right singular functions { j}. From (28) we have (for all j):

L∗
�,xL�,x j = �2j j.

Using the expressions for L�,x and L∗
�,x we also have, for any � ∈ A:

[
L∗
�,xL�,x j

]
(�) =

∫

Y
f (y∣x, �)

[
L�,x j

]
(y)

�y (y)

�� (�)
dy

=

∫

Y

∫

A
f (y∣x, �) f (y∣x, a) j (a)

�y (y)

�� (�)
dyda,
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where for clarity we have denoted f ≡ fy∣x,�;�.
Following the least squares approach of Nashed and Wahba (1974), we sample Ny values from

�y and replace the integral with respect to y by an empirical mean:

[
L∗
�,xL�,x j

]
(�) ≈ 1

Ny

Ny∑

s=1

∫

A
f
(
y
s
∣x, �

)
f
(
y
s
∣x, a

)
 j (a)

1

�� (�)
da. (D1)

Equating the right-hand side of (D1) with �2j j (�), we see that the solutions are of the form:

 ̃j (�) =

Ny∑

s=1

ajs
1

�� (�)
f
(
y
s
∣x, �

)
, (D2)

for some ajs that depend on x and �.

This key observation shows that one can use
{
f
(
y
s
∣x, �

)
/��

}
s
as an approximate generating

family of ℛ
(
L∗
�,x

)
, hence as a natural basis for the singular functions { j}. Replacing  j by  ̃j

in (D1) and equating with �̃
2

j  ̃j (�), we obtain that {ajs} and {�̃j} satisfy:

1

�� (�)

1

Ny

Ny∑

s=1

⎛
⎝

Ny∑

s′=1

ajs′

∫

A

1

�� (a)
f
(
y
s
∣x, a

)
f
(
y
s′
∣x, a

)
da

⎞
⎠ f

(
y
s
∣x, �

)

= �̃
2

j

Ny∑

s=1

ajs
1

�� (�)
f
(
y
s
∣x, �

)
.

This will be satisfied if:

1

Ny

Ny∑

s′=1

ajs′

∫

A

1

�� (a)
f
(
y
s
∣x, a

)
f
(
y
s′
∣x, a

)
da = �̃

2

jajs, s = 1, ..., Ny .

So, �̃
2

j and {ajs}s can be chosen as the jth eigenvalue and (one of) the jth eigenvector(s),
respectively, of:

P =

[
1

Ny

∫

A

1

�� (a)
f
(
y
s
∣x, a

)
f
(
y
s′
∣x, a

)
da

]

(s,s′)

. (D3)

Then, computing  ̃j according to (D2), we need to rescale  ̃j such that it as unitary norm,
that is:

 ̃j (�)
/(∫

A
 ̃
2

j (a)�� (a) da

) 1
2

. (D4)

When Ny tends to infinity, �̃
2

j and the rescaled  ̃j will converge to the true �2j and  j, respectively,
provided that {y

s
} becomes dense in Y as Ny increases (see Engl et al., 2000, p. 67-68).

Once �j and  j have been computed, we obtain the left singular vector �j from:

�j (y) =
1

�j

[
L�,x j

]
(y)

=
1

�j

∫

A
f (y∣x, �) j (�) d�.

73



Replacing  j by  ̃j and �j by �̃j, we thus obtain that �j (y) ≈ �̃j (y), where

�̃j (y) =
1

�̃j

Ny∑

s=1

ajs

∫

A

1

�� (�)
f (y∣x, �) f

(
y
s
∣x, �

)
d�. (D5)

So,
{∫

A
1

��(�)
f (y∣x, �) f

(
y
s
∣x, �

)
d�
}
s
is a natural basis for the singular functions {�j}. Here

also, �̃j needs to be rescaled so that it has unitary norm.
In sum, the singular values and functions are computed in four steps.

Algorithm

∙ In a first step, for any j and given values of x, � we compute the jth eigenvalue �̃
2

j and the
(arbitrarily normalized) jth eigenvector {ajs}s of the matrix P given by (D3).

∙ In a second and third steps, we compute  ̃j and �̃j using (D2) and (D5).

∙ Finally, in a fourth step  ̃j and �̃j are rescaled so that
∥∥∥ ̃j

∥∥∥ =
∥∥∥�̃j
∥∥∥ = 1.

In practice, one can discretize the integrals in (D2), (D3), and (D5). For example, drawing �n,
n = 1, ..., N�, from a density � whose support contains A we can replace the matrix P in (D3) by:

P̃ =

[
1

Ny

1

N�

N�∑

n=1

1

�� (�n)

1

� (�n)
f
(
y
s
∣x, �n

)
f
(
y
s′
∣x, �n

)]

(s,s′)

. (D6)

Common parameters. To estimate common parameters, we need to compute [W�,xi
ℎr] (yi),

for all functions ℎr and all observations i = 1, ..., N . We propose to proceed as follows.
For each value of covariates xi = x, we compute the first J singular values and vectors �̃j,  ̃j ,

and �̃j as explained above. In practice, J will be chosen large enough such that �j is very close to
zero for j > J . For example, one could set a threshold " that depends on machine precision, and
discard all singular values that are below ". Then we set:

[W�,xℎr] (y) ≈ ℎr (y)−
J∑

j=1

�̃j (y)
〈
�̃j, ℎr

〉
, (D7)

where the integral
〈
�̃j, ℎr

〉
=
∫
Y �̃j (y) ℎr (y)�y (y) dy can be discretized using {y

s
} as points of

support.
When discretizing the integrals, the expression of the approximate moment functions coincides

with (63). To see this, in the notation of Section 8 we let L = Φ ⋅Λ ⋅Ψ′ be the SVD of L, where we
remove the �, x subscript for conciseness. Then, discretizing the integral in (D5) we obtain, up to
a multiplicative constant:

�̃j (y) ∝
(
f (y)

)′
L′aj .

Now, as P̃ ∝ L ⋅L′, the vector aj = {ajs}s coincides with the jth column of Φ, which we denote
as �

j
. So:

�̃j (y) ∝
(
f (y)

)′
L′�

j

∝
(
f (y)

)′
 
j
.
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The squared norm of �̃j is approximated as:

1

Ny

Ny∑

s=1

�̃j

(
y
s

)2
=

1

Ny
 ′
j
L′L 

j
= �2j

(
�′
j
�
j

Ny

)
=
�2j
Ny

,

where �j is the jth diagonal element of Λ.
This means that, after rescaling:

�̃j (y) ≈
√
Ny

�j

(
f (y)

)′
 
j
.

In particular:

〈
�̃j , ℎr

〉
=

∫

Y
�̃j (y) ℎr (y)�y (y) dy

≈ 1

Ny

Ny∑

s=1

�̃j

(
y
s

)
ℎr

(
y
s

)

≈ 1

Ny

(√
Ny

�j
L 

j

)′

ℎr =
1√
Ny

�′
j
ℎr.

Finally, W�,xℎr is approximated as:

[W�,xℎr] (y) ≈ ℎr (y)−
J∑

j=1

√
Ny

�j

(
f (y)

)′
 
j

〈
�̃j, ℎr

〉

≈ ℎr (y)−
J∑

j=1

√
Ny

�j

(
f (y)

)′
 
j

1√
Ny

�′
j
ℎr

= ℎr (y)−
(
f (y)

)′
⎛
⎝

J∑

j=1

 
j

1

�j
�′
j

⎞
⎠ℎr.

This coincides with (63), using the J-modified Moore-Penrose inverse of L.

Average marginal effects. Turning to marginal effects estimates, we approximate M̂�N in
(50) by:

M̂�N ≈ Ê

⎡
⎣

J∑

j=1

qj (�N )�y(yi)�̃j(yi)
1

�̃j

〈
 ̃j,

m

��

〉⎤
⎦ , (D8)

and discretize the integral
〈
 ̃j ,

m
��

〉
=
∫
A  ̃j (�)m (�) d� on the support {�n}.

Denoting as m the N� × 1 vector with elements

[
1√

�(�n)��(�n)
m (�n)

]

n

we obtain, after some

calculation:

M̂�N ≈ Ê

⎡
⎣

J∑

j=1

qj (�N )�y(yi)
Ny

�2j

(
f (yi)

)′
 
j
 ′
j
m

⎤
⎦ .
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Table 1: Common parameter estimates (T = 2)

Tobit model: � (true=1)

N = 100 N = 500

Mean Std Mean Std
Grid (R = 9) 1.021 .175 .998 .085
Grid (R = 25) 1.022 .169 .994 .071
Grid (R = 49) 1.011 .146 .994 .065
Infeasible REML .996 .090 .997 .043

Chamberlain’s model: � (true=1)

N = 100 N = 500

Mean Std Mean Std
Grid (R = 9) 1.040 .286 1.022 .152
Grid (R = 25) 1.028 .221 1.011 .101
Grid (R = 49) 1.024 .191 1.009 .084
Infeasible REML 1.000 .125 .997 .054
GMM 1.006 .146 .999 .062

Note: Mean and standard deviations of �̂ and �̂ across 1000 simulations. “Grid (R)” refers to using

� (.− �r), r = 1, ..., R, to construct moment functions, where the set of values �r is indicated in
the text. “Infeasible REML” is the infeasible random-effects maximum likelihood estimate,
which assumes knowledge of f�. “GMM” is Chamberlain’s (1992a) estimator of �.
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Table 2: Average marginal effects estimates (T = 2)

Tobit model

N = 100 N = 500 N = 100 N = 500

Unweighted mean Weighted mean
(true=0) (true=0)

Mean Std Mean Std Mean Std Mean Std
J = 2 -.046 .238 -0.042 .108 .014 .021 .016 .009
J = 5 -.029 .431 -.016 .200 -.024 .275 -.021 .128
J = 8 .139 12.10 -.106 5.69 .147 1.047 .017 .436

Chamberlain’s model

N = 100 N = 500 N = 100 N = 500

Unweighted mean Weighted mean
(true=1) (true=.5)

Mean Std Mean Std Mean Std Mean Std
J = 2 1.117 .227 1.116 .102 .485 .094 .478 .040
J = 5 .938 .374 .939 .170 .514 .140 .514 .060
J = 8 1.071 1.212 1.037 .534 .510 .134 .510 .058

Note: Mean and standard deviations of the estimates of the unweighted mean E (�i) and the

weighted mean E [�i� (�i)] /E [� (�i)] across 1000 simulations. J refers to the number of singular

values used in estimation.
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Figure 1: Parameter estimates (N = 100, T = 2)
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Note: On the x-axis we report the number of singular values used in estimation, while the y-

axis shows parameter estimates. The functions used to construct moment functions are � (.− �r),

r = 1, ..., 49, where the set of values for �r is indicated in the text (upper panels). The solid and

discontinuous lines show the mean estimate and asymptotic 95%-confidence intervals, respectively.

The thin solid line indicates the true parameter value.
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Figure 2: Uniform Fourier convergence (T = 2)
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