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Abstract

I investigate empirically the relationship between accumulated experience complet-
ing wind power projects and the installed costs of wind generating capacity in the
United States for the period 2001-2009. I develop a modeling framework that: (i)
disentangles accumulated experience from other determinants of cost — in particular,
input prices, scale economies, and technical change; and (ii) allows for alternative mea-
sures of experience and multiple channels through which experience can accumulate.
For a variety of model specifications, I find evidence of small or modest firm-specific
learning-by-doing but no evidence of knowledge spillovers across firms. I also find
evidence consistent with firms being able to share experience with and purchase ex-
perience from competitors via joint ventures and acquisitions, respectively. Finally,
I find evidence that firms’ experience depreciates rapidly over time. These findings
suggest that the cost-reducing benefits of experience in wind capacity installations are
fully captured by the entity that undertakes these installations (and, subsequently, any
acquiring entity thereof), rather than by other participants in the industry.

1 Introduction

Productivity change due to accumulated experience with a production process or technology
— the phenomenon now known as learning-by-doing — has long been of interest to aca-
demics, managers, and policymakers.1 In recent years, amid growing concern about climate

∗Department of Economics, Stanford University. I am grateful for financial support from the Stanford
Institute for Economic Policy Research (SIEPR) and the Kapnick Foundation.

1Alchian (1963), Hirsch (1956), and Wright (1936) were among the first to empirically investigate this
type of productivity change, while Arrow (1962) was first to propose a comprehensive theoretical framework.
The Boston Consulting Group (1968) later encouraged its clients to leverage such productivity change to
their competitive advantage.
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change and energy security, there has emerged a literature investigating whether learning-
by-doing is characteristic of renewable energy technologies in general, and wind power in
particular. Anecdotal evidence suggests that learning-by-doing on the part of wind power
developers — the firms that design and build wind power projects — contributed to the
dramatic fall in average wind power project costs in the United States from the early 1980s
to the early 2000s.2 Indeed, owing to this and other episodes of costs falling with accumu-
lated experience, learning-by-doing has become a basis for a number of policies to promote
wind and other renewables in the United States, including production and investment tax
credits at the federal level and renewable portfolio standards at the state level.3 For much
of the 2000s, however, average wind power project costs in the United States increased,
despite unprecedented investment in new wind generating capacity. The purpose of this
paper is to investigate whether anecdotal evidence of learning-by-doing is corroborated by
econometric evidence based on a much larger sample of wind power projects; in other words,
does rhetoric match reality on the subject of learning-by-doing in U.S. wind?

Econometric estimation of learning-by-doing in this or any other setting is challenging for two
principal reasons. First, it is necessary to define experience and explain how and to whom
it accumulates. Most existing research defines experience in terms of cumulative output. I
consider two alternative measures of output for U.S. wind power developers: megawatts of
installed capacity and number of installed projects. Because the U.S. wind energy industry
has witnessed significant technological change and has endured several boom-bust cycles, I
allow for the possibility that output from the distant past counts less towards experience
than does output from the recent past — i.e. I allow for the possibility that experience
depreciates, as is the case in Argote et al. (1990), Benkard (2000), Kellogg (2011), Nemet
(2012), and Thompson (2007).4 Moreover, because the U.S. wind energy industry consists
of many competing developers, and because I have assembled a project-level dataset, I
quantify separately the accumulated experience of each individual developer. This makes
it possible to distinguish between firm-specific learning-by-doing and inter-firm knowledge
spillovers, which is important because these two learning effects have very different policy
implications.5 Finally, because there is a history of joint ventures and acquisitions in the U.S.

2According to Wiser and Bolinger (2010), average U.S. wind power project costs declined in real terms
from about $4,800/kW in 1984 to about $1,300/kW in 2001.

3In his August 12, 2008 column, Thomas L. Friedman of the New York Times writes: “Tax credits [...]
stimulate investments by many players in solar and wind so these technologies can quickly move down the
learning curve and become competitive with coal and oil.” In a February, 2012 interview, Minh Le of the
U.S. Department of Energy states: “Renewable portfolio standards help drive down the learning curve and
reduce solar energy cost in the long run.”

4Baloff (1970) and Hirsch (1952) discuss how interruptions to production might adversely affect future
productivity; Barradale (2010) discusses how unpredictability concerning the federal renewable electricity
production tax credit (PTC) — the most important government incentive available to U.S. wind power
projects — has caused such interruptions in the U.S. wind energy industry.

5If one firm’s installation of wind generating capacity yields cost-reducing knowledge that is expropriable
even by idle competitors, then the firm has a disincentive to invest in capacity. In this case, subsidies can
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wind development business, I allow for the possibilities that developers can share experience
with and purchase experience from one another.

The second challenge arises because accumulated experience is but one of many possible
factors that determine costs. For instance, the increase in average U.S. wind power project
costs during the 2000s is in large part attributable to higher prices for primary inputs
like steel as well as technological changes like the advent of larger wind turbines (Bolinger
and Wiser, 2011). Indeed, failure to account for other likely determinants of cost besides
experience is a major shortcoming of much existing empirical work on learning-by-doing in
wind and other renewable energy technologies (Nordhaus, 2009). It is therefore necessary
to have a modeling framework that can disentangle learning from other contemporaneous
determinants of cost. In this paper, I estimate minimum cost functions for installed wind
generating capacity derived from an economic model of firm behavior in the U.S. wind
energy industry. This approach allows me to estimate firm-specific learning-by-doing, inter-
firm knowledge spillovers, the rate at which experience depreciates, and the degrees to
which experience is shareable and transferable while controlling for the effects on costs of
scale economies, changing input prices, and technical progress exogenous to wind power
developers.

For a variety of model specifications, I find evidence consistent with small or modest firm-
specific learning-by-doing: the estimation results suggest that doubling a firm’s experience
decreases its per-megawatt costs of installed wind generating capacity by 0.9-2.4 percent, all
other things being equal. For no specification, however, do I find evidence consistent with
inter-firm knowledge spillovers. Altogether, these findings suggest that the cost-reducing
benefits of experience in wind capacity installations — slight as they may be — are fully
captured by the entity that undertakes these installations, rather than by other industry
participants. This calls into question the need for government subsidies to stimulate cost
reductions in the U.S. wind energy industry.

I also find evidence consistent with the hypothesis that experience depreciates over time:
the estimation results suggest that at most 62 percent of a firm’s accumulated experience
persists after one full year of inactivity — a finding in line with estimates produced elsewhere
in the literature. Moreover, the results imply that one full year of inactivity increases a firm’s
per-megawatt costs of installed wind generating capacity by 1.6-2.1 percent, all other things
being equal. This finding could in part explain why the largest U.S. wind power developers
undertake new projects at fairly regular intervals: they may seek to prevent or at least slow
the erosion of competitive advantages stemming from their comparatively large experience

serve to compensate the firm for the positive externality it bestows on its competitors. If, on the other hand,
cost-reducing knowledge that results from the installation of capacity remains entirely within the firm, then
there is no market failure; subsidies are not justified by a non-expropriable learning effect.
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bases. At the same time, however, the finding that experience depreciates rather quickly
could explain why fringe developers are able to compete for business.

Finally, evidence regarding the degrees to which firm-specific experience can be shared and
transferred is inconclusive but nonetheless informative. For example, the data cannot reject
the hypothesis that experience resulting from projects undertaken as joint ventures is equally
as valuable as experience resulting from projects undertaken by just one firm. Likewise,
the data cannot reject the hypothesis that acquired experience is a perfect substitute for
organic experience — a result borne out by the fact that most acquisitions in the U.S. wind
development business involve the purchase of an experienced incumbent by an inexperienced
entrant.

The remainder of the paper is organized as follows: section 2 discusses anecdotal evidence
of learning-by-doing in the design and construction of U.S. wind power projects, the growth
of the U.S. wind energy industry, and the policies in place to support wind and other
renewables. Section 3 introduces notation and discusses the unique dataset assembled for
this paper. In section 4, I derive minimum cost functions for installed wind generating
capacity from an optimizing model of firm behavior in the U.S. wind energy industry. In
section 5, I discuss my estimation strategy and estimation results. I conclude in section 6.

2 Motivation

Figure 1 illustrates that average wind power project costs fell substantially in the United
States from the early 1980s to the early 2000s, and there is much anecdotal evidence that
this was due in part to learning-by-doing by wind power developers. As they accumulated
design and construction experience, developers became adept at identifying sites well-suited
for wind power projects — not just in terms of wind resource quality, but also proximity
to transmission lines and other infrastructure.6 Likewise, developers learned to navigate
the myriad federal, state, and local regulations that govern the siting and construction of
wind power projects.7 Developers learned to optimize the logistics of transporting literally
thousands of cargo loads to remote project sites and the logistics of managing complex
construction operations: for instance, how best to build foundations in different types of
terrain, how to optimize large networks of access roads and electrical wiring, and even

6Construction of new transmission is an extremely expensive undertaking — especially in the case of
wind power projects, which are generally smaller than conventional power plants (e.g. gas and coal) and
farther from major electricity demand centers.

7At just the federal level, a developer may need to obtain project permits from each of the Environmental
Protection Agency, Federal Aviation Administration, Federal Communications Commission, Fish & Wildlife
Service, and Army Corps of Engineers.
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Figure 1: Average U.S. wind power project costs

 

2009 Wind Technologies Market Report 45 

$2,700/kW over this period45), but have more recently increased.46  Among the sample of 
projects built in 2009, for example, the capacity-weighted average installed cost was $2,120/kW.  
This average increased by $170/kW (9%) from the weighted-average cost of $1,950/kW for 
projects installed in 2008, and increased by $820/kW (63%) from the average cost of projects 
installed from 2001 through 2004.  Project costs have clearly risen, on average, over the last five 
years.47

 
  

Some of the cost pressures facing the industry in recent years (e.g., rising materials costs, the 
weak dollar, and turbine and component shortages) have eased since late 2008.  As a result, 
while costs may – on average – remain high for a period of time as developers continue to work 
their way through the dwindling backlog of turbines purchased in early 2008 at peak prices under 
long-term frame agreements,48

 

 there are expectations that average installed costs will decline 
over time (see next section, on wind turbine price trends).  

Source:  Berkeley Lab (some data points suppressed to protect confidentiality) 

Figure 27.  Installed Wind Power Project Costs Over Time 
                                                 
45 Limited sample size early on – particularly in the 1980s – makes it difficult to pin down this number with a high 
degree of confidence. 
46 Learning curves have been used extensively to understand past cost trends and to forecast future cost reductions 
for a variety of energy technologies, including wind energy.  Learning curves start with the premise that increases in 
the cumulative production or installation of a given technology leads to a reduction in its costs.  The principal 
parameter calculated by learning curve studies is the learning rate:  for every doubling of cumulative 
production/installation, the learning rate specifies the associated percentage reduction in costs.  Based on the 
installed cost data presented in Figure 27 and global cumulative wind power installations, learning rates can be 
calculated as follows:  9.4% (using data from 1982 through 2009) or 14.4% (using data only during the period of 
cost reduction, 1982-2004). 
47 It is important to recognize that wind power projects were not alone in seeing upward pressure on project costs – 
other types of power plants experienced similar increases in capital costs.  For example, the IHS CERA Power 
Capital Cost Index of coal, gas, and wind power plants shows a 74% capital cost increase from 2000 to the end of 
2009 (IHS CERA 2009). 
48 For example, data compiled by Berkeley Lab show an estimated weighted-average cost for a sample of more than 
4,300 MW of projects likely to be built in 2010 of $2,230/kW, or $110/kW higher than for the sample of projects 
completed in 2009. 
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how best to move equipment around a project site. Developers’ experience designing and
building wind power projects also facilitated cost-reducing innovations upstream in the
manufacturing of wind turbines: one example is the advent of modular tower sections, which
are not only cheaper to manufacture but also to transport and install. Further anecdotal
evidence of learning-by-doing in the design and construction of U.S. wind power projects is
provided in appendix A1.

Figure 1, however, also shows that for much of the 2000s average wind power project costs
actually increased in the United States; moreover, this increase in costs occurred during
a period of unprecedented investment in new wind generating capacity, as can be seen in
figure 2. An important question, then, is did learning-by-doing occur during the 2000s?
Federal and state policies to promote wind and other renewable energy technologies are
premised in part on the notion that costs will fall as experience accumulates. The federal
renewable electricity production tax credit (PTC) pays generators $22 per megawatt-hour
of electricity generated from eligible renewable resources; the U.S. Treasury Department
estimates the PTC will cost $1.5 billion per year for each of the next ten years. Renewable
portfolio standards (RPSs), state-level laws that require retailers of electricity to end users
(e.g. public and investor-owned utilities) to procure from eligible renewable resources a
certain percentage of their annual electricity sales, effectively guarantee wind generators
higher-than-market prices for their power.8,9 Finally, the Section 1603 grant program, part

8In practice, for the PTC and RPSs, “eligible renewable resources” more often than not means wind: as
table A2 in appendix A2 makes clear, wind accounted for the vast majority of additions to U.S. renewable
generating capacity in each of the years 2001-2011.

9Strictly speaking, the PTC and RPSs incentivize production of wind-generated electricity; because,
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Figure 2: Annual and cumulative growth in U.S. wind generating capacity

 

2009 Wind Technologies Market Report 3 

2. Installation Trends 
 
Wind Power Additions in 2009 Shattered Old Records, with roughly 10 GW 
of New Capacity Added in the United States and $21 Billion Invested 
 
The U.S. wind power market delivered another record-shattering year in 2009, with 9,994 MW 
of new capacity added, bringing the cumulative total to more than 35,000 MW (Figure 1).3  This 
growth translates into nearly $21 billion (real 2009 dollars) invested in wind power project 
installation in 2009, for a cumulative investment total of $66 billion since the beginning of the 
1980s.4

 
 

Source: AWEA project database 

Figure 1.  Annual and Cumulative Growth in U.S. Wind Power Capacity 

 
Wind power installations in 2009 were not only the largest on record in the United States, but 
were 20% higher than the previous U.S. record, set in 2008.  Cumulative wind power capacity 
grew by 40% in 2009.  This was achieved despite the financial crisis that roiled the wind power 
industry in 2009, and the significant reductions in wholesale electricity prices that began in mid- 
to late-2008 and have continued to the present. A variety of market drivers allowed year-on-year 
installation growth to persist in 2009: carryover of projects initially planned for completion in 
2008 (but, when the production tax credit was extended through 2012, ultimately came online in 
                                                 
3 When reporting annual wind power capacity additions, this report focuses on gross capacity additions of large 
wind turbines. The net increase in capacity each year can be somewhat lower, reflecting turbine decommissioning.  
Some of the methodological differences between the figures presented here and by AWEA (2010a) are summarized 
in footnote 2.  These difference lead AWEA (2010a) to report 10,010 MW of wind power capacity additions in 2009 
(including large and small wind turbines), for a cumulative total of 35,086 MW 
4 These investment figures are based on an extrapolation of the average project-level capital costs reported later in 
this report, and do not include investments in manufacturing facilities, research & development expenditures, or 
O&M costs. 
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of the American Recovery and Reinvestment Act (ARRA) passed in the wake of the 2008
financial crisis, had awarded almost $10 billion in cash grants to wind power projects as of
September, 2012. Insofar as federal and state policies are intended to address knowledge
spillovers in the renewable energy sector, the results in this paper should provide some
evidence as to whether this rationale has any basis in actual market outcomes.

3 Data

According to the American Wind Energy Association (AWEA), 470 utility-scale wind power
projects had been completed in the United States by the end of the year 2009. For each of
these projects, I obtained data from AWEA on: the project’s nameplate generating capacity,
q; the state, s, in which the project is situated; the developer(s), d, that designed and built
the project; the nationality, n, of the manufacturer of the project’s wind turbines; and the
year, T , in which the project was completed. Approximately ten percent of the projects
completed through 2009 were undertaken as joint ventures between two or more developers,
such that d, strictly speaking, is a set. For example, d = {BP,Clipper} for the 60 MW Silver
Star wind farm in Texas, whereas d = {Iberdrola} for the 160 MW Barton wind farm in
Iowa. I also used the U.S. Energy Information Administration (EIA) Form EIA-860 database

however, there is generally no excess wind generating capacity in the United States from which to squeeze
additional output, these policies strongly incentivize investment in new wind generating capacity.
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Table 1: Project-level data variables and definitions

Variable Definition
q Nameplate generating capacity (MW)
s State
d Developer(s)
n Nationality of turbine manufacturer
T Year of completion
t Quarter of completion
C Total completion cost ($M)

to identify the year-quarter, t, in which each project was completed (e.g. t = 2008:Q3 for
Silver Star), and to verify the accuracy of much of the AWEA data.

Project cost estimates were identified for 225 of the 339 projects completed between 2001
and 2009, and are from a variety of sources: Bloomberg New Energy Finance, business
publications (in particular, Project Finance, Power Finance & Risk, and Global Power
Report), state public utilities commissions’ filings and testimony, corporate press releases,
national and regional newspapers, and personal correspondence with wind power developers.
A project’s total completion cost, C, is the sum of its development, equipment purchase,
and construction costs. Development costs include the costs of measuring and assessing
the wind resource at a candidate project site, acquiring land usage rights, and completing
environmental impact assessments. Equipment purchase costs are the costs of procuring
the materials necessary to construct the wind power project, such as turbines, towers, and
wires. Construction costs are the costs of erecting the wind turbines and connecting them
and their attendant equipment to the electrical grid.

Table 1 summarizes the key project-level variables used throughout this paper. Appendix
A2 presents annual summary statistics, while appendix A3 examines heterogeneity across
developers in terms of number of projects completed, frequency with which projects are
undertaken, market shares, and costs. Because reliable cost estimates could not be identified
for all 339 projects completed from 2001 to 2009, appendix A4 makes a case for missing
instances of cost data that occur at random.

4 Model

Econometric estimation of learning-by-doing is challenging for two main reasons: first, it is
necessary to define experience and explain how and to whom it accumulates, and second, it
is necessary to account for other determinants of cost besides accumulated experience. In
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section 4.1, I develop a framework for quantifying experience in the U.S. wind development
business that: (i) allows for alternative definitions of experience; (ii) differentiates between
experience internal and external to firms; (iii) allows experience to depreciate over time;
and (iv) allows experience to accumulate through non-conventional channels — i.e. joint
ventures and acquisitions. In section 4.2, I derive a minimum cost function for installed
wind generating capacity that integrates my experience measures into a coherent economet-
ric model from which I can estimate firm-specific learning-by-doing, inter-firm knowledge
spillovers, the rate at which experience depreciates, and the degrees to which experience
is shareable and transferable while controlling for the effects on costs of scale economies,
changing input prices, and exogenous technical progress.

4.1 Quantifying experience

This section constructs variables Qdi,ti and Q−di,ti that quantify two distinct stocks of
accumulated experience available to the developer(s) of project i at the time of the project’s
undertaking. The former quantifies experience internal to firm(s) di and will be used to
estimate firm-specific learning-by-doing; the latter quantifies experience external to di and
will be used to estimate inter-firm knowledge spillovers. Experience is typically measured
in terms of cumulative output, and here I consider two different measures of output for
U.S. wind power developers: megawatts of installed wind generating capacity and number
of installed wind power projects.10 If learning is thought to be proportional to project size,
then megawatts of installed capacity is arguably the better measure of output: a 100 MW
project counts twice as much as a 50 MW project. On the other hand, if learning is thought
to be invariant to project size, then number of installed projects is arguably the better
measure of output: two 50 MW projects count twice as much as one 100 MW project. The
remainder of this section assumes megawatts of installed capacity is the measure of output;
the exposition is analogous, however, for the case where number of installed projects is the
measure of output (each occurrence of q is replaced with 1).

As a first step, define firm d’s organic experience at time t:

QOd,t =
∑
j∈J

(1− δ)t−tj−1 · λ|dj | · qj · 1 {d ∈ dj} · 1 {tj < t} (1)

where J is the set of all U.S. wind power projects completed through 2009, |dj | is the car-
dinality of the set dj (i.e. the number of firms that developed project j — in most cases

10I also considered a third measure of output: number of installed wind turbines; however, this produced
results very similar to those for the first measure of output (megawatts of installed capacity). Estimation
results for this third measure of output/experience are thus relegated to appendix A6.
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just one), and 1 {·} is the indicator function. In keeping with recent work on organizational
forgetting — the hypothesis that production experience depreciates over time — in settings
as diverse as aircraft manufacturing (Benkard, 2000), oil drilling (Kellogg, 2011), shipbuild-
ing (Argote et al., 1990; Thompson, 2007), and wind power production (Nemet, 2012), the
parameter δ measures the quarterly rate of depreciation of experience, such that all other
things being equal, capacity installed in the distant past counts less towards experience than
does capacity installed in the recent past. That experience accumulated by U.S. wind power
developers should depreciate seems plausible for at least two reasons. First, wind turbine
technology has evolved considerably (see figures A10 and A11 in appendix A5) and expe-
rience with antiquated technology may not be as useful as experience with state-of-the-art
technology. Second, the U.S. wind energy industry has endured several boom-bust cycles
on account of the pattern of repeated expiration and short-term renewal of the PTC (Bar-
radale, 2010). Periods of actual or anticipated unavailability of the PTC tend to result in
significant labor force turnover — one of the most recognized explanations in the literature
for organizational forgetting.11

Approximately ten percent of all wind power projects completed in the United States
through 2009 were undertaken as joint ventures between two or more firms; accordingly,
the λ parameters in equation (1) allow a project’s relative contribution to developer d’s or-
ganic experience base to depend on the number of co-developers. In my dataset, no project
has more than three co-developers — i.e. |dj | ∈ {1, 2, 3} for all j ∈ J . I normalize λ1 = 1
such that capacity completed by a single firm is the numeraire against which I measure
capacity completed by joint ventures between two or three firms. I can then test a variety of
hypotheses about the manner in which firms share experience. For instance, if λ2 = λ3 = 1,
each partner in a joint venture is credited with having installed the total capacity of the
project; alternatively, if λ2 = 1/2 and λ3 = 1/3, each partner is credited with having
installed an equal proportion of the project’s total capacity.

In addition to growing their experience bases organically as described by equation (1), it
seems plausible that firms can accumulate experience by purchasing competitors. Table 2
reports ten major acquisitions in the U.S. wind development business through 2009; no-
tably, eight of these acquisitions involved the purchase of an experienced incumbent by an
inexperienced entrant.12 We might therefore define firm d’s acquired experience at time t

11Incidentally, the PTC is once again set to expire at the end of this year. Recent headlines in the New
York Times include “An Expiring Tax Credit Threatens the Wind Power Industry” (Sept. 13, 2012), and
“Tax Credit in Doubt, Wind Power Industry Is Withering” (Sept. 20, 2012).

12According to a Nov. 1, 2008 article in Windpower Monthly magazine, new entrants to the U.S. wind
development business may need six or more months to get their bearings; acquiring an incumbent could be
a means of short-circuiting this process. Indeed, an executive at one of the acquiring firms listed in table 2
explained to me that the target firm’s experience in the U.S. wind development business was an important
motivation behind the acquisition.

9



Table 2: Major acquisitions in the U.S. wind development business

Date Acquired Firm Acquiring Firm Acquisition
Marks Entry

1997:Q1 Zond Enron Yes
2002:Q2 Enron GE Yes
2003:Q1 Navitas Gamesa No
2005:Q1 Atlantic PPM No
2005:Q1 SeaWest AES Yes
2006:Q1 PacifiCorp MidAmerican Yes
2006:Q3 Padoma NRG Yes
2006:Q4 Orion BP Yes
2007:Q2 PPM Iberdrola Yes
2008:Q3 Catamount Duke Yes

as follows:
QAd,t = µ ·

∑
d′∈a(d,t)

QOd′,t (2)

where a (d, t) is the set of all firms acquired by d as of time t. Organic experience transfers
from d′ to d — that is, from first to second owner — at rate µ. If µ = 1, for instance,
then acquired experience is a perfect substitute for a firm’s own organic experience. Table
2, however, shows two instances in which an acquiring firm later found itself the target of
an acquisition (Enron in 2002 and PPM in 2007). Accordingly, I generalize equation (2) to
allow for the possibility that experience can change owners twice:

QAd,t = µ ·
∑

d′∈a(d,t)

QOd′,t + µ ·
∑

d′′∈a(d′,t)

QOd′′,t

 (3)

In equation (3), organic experience transfers from d′′ to d — that is, from first to third
owner — at rate µ2.

Firm d’s total accumulated experience at time t is just the sum of its organic experience
and its acquired experience:

Qd,t = QOd,t +QAd,t (4)

Then, for a given wind power project i, the stock of accumulated experience that is internal
to developer(s) di at the time of the project’s undertaking, ti, is:

Qdi,ti (δ, λ2, λ3, µ) = λ|di| ·
∑
d∈di

Qd,ti (5)

where I have made explicit the dependency of Qdi,ti on the parameters δ, λ2, λ3, and µ.

10



Notice that if project i has just one developer (i.e. |di| = 1) then (5) reduces to (4). If, on
the other hand, project i is a joint venture between two or three developers (i.e. |di| > 1)
then the interpretation of (5) hinges on the λ parameters. If λ|di| = 1 then Qdi,ti is the sum
of the joint venture partners’ individual experience bases, as given by (4); alternatively, if
λ|di| = 1/|di| then Qdi,ti is the mean of the partners’ individual experience bases.

Finally, for a given project i, the stock of accumulated experience that is external to devel-
oper(s) di at time ti is:

Q−di,ti (δ) =
∑
j∈J

(1− δ)t−tj−1 · qj · 1 {dj ∩ di = ∅} · 1 {tj < ti} · 1 {dj ∩ a (d, ti) = ∅ ∀d ∈ di}

(6)
where I have made explicit the dependency of Q−di,ti on the parameter δ. Equation (6) is
simply the depreciated sum of all U.S. wind generating capacity installed prior to time ti
by developers other than di (or any acquirees thereof).

4.2 Technology and behavior

The production function for installed wind generating capacity is:

qi = fD
(
KD
i , L

D
i , E

D
i ,M

D
i ,Wi;Adi,ti

)
(7)

where KD
i , LDi , EDi , and MD

i are, respectively, the quantities of capital, labor, energy, and
materials used “downstream” in installing project i, Wi is the quantity of wind turbines
installed at project i, and Adi,ti is total factor productivity of the developer(s) of project
i at the time of the project’s undertaking. Wind turbines, however, are likewise produced
by using capital, labor, energy, and materials, albeit “upstream” such that the production
function for the wind turbines installed at project i can be written:

Wi = fU
(
KU
i , L

U
i , E

U
i ,M

U
i

)
(8)

Hence, the effective production function for the completed wind power project i is:

qi = f
(
KU
i , L

U
i , E

U
i ,M

U
i ,K

D
i , L

D
i , E

D
i ,M

D
i ;Adi,ti

)
(9)

Assume the production function f (·) is Cobb-Douglas, such that:

qi = Adi,ti ·
(
KU
i

)αKU · (LUi )αLU · . . . · (MD
i

)αMD (10)
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It follows that γ = αKU +αLU +αEU +αMU +αKD +αLD +αED +αMD measures returns
to scale in the design and construction of wind power projects. Assume as well the following
functional form for total factor productivity:13

Adi,ti = [Qdi,ti (δ, λ2, λ3, µ)]β [Q−di,ti (δ)]θ exp
(
φTFPTi + ψTFPsi + εTFPi

)
(11)

In equation (11), the parameter β measures the extent to which productivity is enhanced
by the stock of accumulated experience that is internal to developer(s) di (i.e. learning-by-
doing), whereas the parameter θ measures the extent to which productivity is enhanced by
the stock of accumulated experience that is external to di (i.e. knowledge spillovers). A
fixed effect for the year in which project i was completed provides a means of controlling
for technological advancements that, while exogenous to U.S. wind power developers, might
nonetheless affect the costs of designing and building wind power projects. Likewise, a
fixed effect for the state in which project i is situated provides a means of controlling for
different policy environments that, all other things being equal, make the designing and
building of wind power projects more costly in some states than in others.14 Finally, total
factor productivity depends on a mean-zero, project-specific productivity shock, εTFPi , the
realization of which is observed by developer(s) di once work on project i is underway, but
unobserved by the econometrician.

Profit-maximizing wind power developers are assumed to minimize the costs of completing
wind power projects of predetermined capacities given prevailing input prices. Many firms
in the U.S. wind development business are publicly traded and, as such, have fiduciary
obligations to maximize profits (and therefore minimize costs) for their shareholders; it
seems probable that other firms in the business will likewise minimize costs in order to
compete with the publicly-traded firms. Moreover, in the United States, developers generally
build wind power projects to the specifications of other entities, such as independent power
producers (IPPs) or electric utilities; consequently, the sizes of U.S. wind power projects
can be thought of as predetermined to the developers that build them. Finally, the prices
of the upstream and downstream inputs to the production function (10) are set in large
markets in which wind power developers are relatively small actors — as such, these prices
can be taken as exogenous to individual developers. Altogether, these assumptions lead to

13Equation (11) is based on Irwin and Klenow (1994), who use a similar specification in their study of
learning-by-doing and knowledge spillovers in the semiconductor industry. The key differences are: (i) the
experience variables in equation (11) are functions of unknown parameters (δ, λ2, λ3, and µ); and (ii)
equation (11) includes deterministic terms (year and state fixed effects) in addition to a stochastic term.

14Wiser and Bolinger (2012) present evidence that average wind power project costs in the United States
vary by region. In particular, Texas is regularly the lowest-cost region, whereas California and New England
are regularly the highest-cost regions.
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Table 3: Assumed temporal and geographical variation in input prices

Upstream

Input Price Description

Capital PKU
i

= φK
U

Ti
Completion-year FE

Labor PLUi = PL,Ti,ni Avg. manufacturing wage in year Ti in country ni

Energy PEUi = PE,Ti,ni Avg. crude oil spot price in year Ti in country ni

Materials PMU
i

= φM
U

Ti
+ πM

U

ni Completion-year and turbine country-of-origin FE

Downstream

Input Price Description

Capital PKD
i

= φK
D

Ti
Completion-year FE

Labor PLDi = PL,ti,si Avg. construction wage in quarter ti in state si

Energy PEDi = PE,ti,si Avg. gasoline price in quarter ti in state si

Materials PMD
i

= φM
D

Ti
+ ψM

D

si Completion-year and state FE

the following cost minimization problem for each wind power project i:

min
KU
i ,L

U
i ,...,M

D
i

PKU
i
·KU

i +PLUi ·L
U
i + . . .+PMD

i
·MD

i s.t. qi ≤ f
(
KU
i , L

U
i , . . . ,M

D
i ;Adi,ti

)
(12)

Table 3 summarizes the assumptions I make about temporal and geographical variation
in input prices for purposes of solving the cost minimization problem (12). The prices of
upstream and downstream capital are assumed to vary only over time — I capture this
variation with completion-year fixed effects. Likewise, materials prices vary over time on
account of changing supply and demand conditions, but different prices at different loca-
tions should merely reflect different (time-invariant) costs of transportation — otherwise
there would exist opportunities for arbitrage. Accordingly, I capture variation in upstream
materials prices with completion-year and turbine country-of-origin fixed effects, and varia-
tion in downstream materials prices with completion-year and state fixed effects. Upstream
labor and energy prices are assumed to vary by year and by country: I use manufacturing
wage data from the U.S. Bureau of Labor Statistics (BLS) to measure the former and crude
oil spot price data from the U.S. Energy Information Administration (EIA) to measure the
latter. Downstream labor and energy prices are assumed to vary by quarter and by state:
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I measure the former using construction wage data from BLS and the latter using gasoline
price data from EIA.

Under the stated assumptions concerning variation in input prices, the solution to (12) yields
the following cost function:

logCi =
αLU

γ
logPL,Ti,ni +

αEU

γ
logPE,Ti,ni +

αLD

γ
logPL,ti,si +

αED

γ
logPE,ti,si

+
1
γ

log qi −
β

γ
logQdi,ti (δ, λ2, λ3, µ)− θ

γ
logQ−di,ti (δ)

+ φTi + ψsi + πni + εi

(13)

The fixed effects φTi and ψsi in equation (13) now reflect both variation in input prices
and (exogenous) variation in total factor productivity — consequently, it is not possible to
separately identify the effects on cost of certain input prices, exogenous technical progress,
and time-invariant state characteristics. More importantly for purposes of this paper, it is
possible to identify from equation (13) firm-specific learning-by-doing, inter-firm knowledge
spillovers, the rate at which experience depreciates, and the degrees to which experience is
shareable and transferable while controlling for the effects on cost of changing input prices
and technical progress exogenous to wind power developers. The goal of the next section is
to estimate the parameters of equation (13).

5 Estimation

5.1 Estimation strategy

The assumption that capacity qi is predetermined when developer(s) di undertakes project i
means qi and εi are uncorrelated in the cost function (13), such that the parameters in (13)
are consistently estimated by a least squares estimation procedure. I believe this assumption
is in keeping with the manner in which most wind power projects are completed in the United
States. Before construction of a wind power project begins, the project’s owner (an IPP,
for instance) typically negotiates a long-term, fixed-price power purchase agreement (PPA)
with an electricity retailer; the revenue stream guaranteed by this PPA allows the owner to
secure financing for the project from a commercial or investment bank.15 The owner then
hires a wind power developer to design and construct the project with sufficient generating
capacity for the owner to meet its contractual obligations to the retailer. In preparation

15Barradale (2010), for instance, shows that long-term PPAs were the dominant offtake arrangement for
U.S. wind power projects completed in the 2000s.
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for construction of the project, orders are placed for the necessary wind turbines and their
attendant equipment. The revelation at this point that the project will be either more or less
costly to complete than anticipated has no bearing on the quantity of capacity the developer
must install: the owner still requires the previously decided-upon quantity of capacity to
fulfill its PPA obligations, and it may be costly to the developer to cancel or alter an
outstanding order for wind turbines. So, the productivity shock εi affects the completion
costs of project i, and hence the profits of developer(s) di, but does not affect the capacity
qi of project i — i.e. qi and εi are uncorrelated in equation (13).

I use nonlinear least squares (NLS) to estimate the parameters of the cost function (13).
Write equation (13) compactly as follows:

logCi = h (xi, ξ) + εi (14)

where ξ =
(
αLU , αEU , αLD , αED , γ, β, θ, δ, λ2, λ3, µ,φ

′,ψ′,π′
)′ is the vector of parameters

— including the year, state, and country fixed effects — to be jointly estimated and xi is the
data used to construct the ith observation. I wish to find the estimate ξ̂ of ξ that minimizes
the sum of the squared residuals:

SSR (ξ) =
N∑
i=1

[logCi − h (xi, ξ)]
2 (15)

Because I can compute analytically the gradient ∂SSR (ξ)/∂ξ′, I use a quasi-Newton algo-
rithm to search for a solution to the above minimization problem, subject to fixed bounds
on the parameters (such that the final solution is interior).

Let X̂ be the matrix with ith row ∂h
(
xi, ξ̂

)
/∂ξ′. Once a solution has been identified, I

compute a heteroskedasticity-consistent estimate of the covariance matrix of ξ̂ as follows:16

Var
(
ξ̂
)

=
(
X̂′X̂

)−1

X̂′ Ω̂ X̂
(
X̂′X̂

)−1

(16)

where
Ω̂ = diag (ω̂1, . . . , ω̂N ) (17)

and
ω̂i =

N

N − k

[
logCi − h

(
xi, ξ̂

)]2
(18)

N is the number of observations on (14), and k is the number of parameters estimated (i.e.
k = dim (ξ)).

16See, for instance, chapter 16 of Davidson and MacKinnon (1993).

15



5.2 Estimation results

Table 4 presents the results of NLS estimation of the cost function (13) for the case where
megawatts of installed wind generating capacity is the measure of cumulative output (model
1); table 5 does likewise for the case where number of installed wind power projects is the
measure of cumulative output (model 2). For each of models 1 and 2, I estimate seven model
variants. The first model variant is the most general: it uses all available data and imposes
no restrictions on equation (13). The second model variant, for reasons I will make clear
later, excludes from the analysis all wind power projects with three developers. The third
through seventh model variants impose on the parameters λ2 and µ restrictions of economic
interest that cannot be rejected by the estimation results for the second model variant. In
all cases, reported standard errors are heteroskedasticity-consistent.

Point estimates of αLU , αEU , αLD , and αED — i.e. the parameters in the Cobb-Douglas
production function (10) associated with those inputs whose prices are explicitly modeled
in (13) — have the expected positive signs in all cases except downstream energy in model
1. The point estimates suggest that of the four input prices explicitly modeled in (13),
the prices of upstream energy and downstream labor have the most bearing on wind power
projects’ total completion costs. While αLD is the only one of the four parameters that is
precisely estimated (in model 1 or 2), the hypothesis that αLU , αEU , αLD , and αED are
jointly zero is strongly rejected for all model variants.

Point estimates of the parameter γ range from 1.018 to 1.022, suggesting there are small
economies of scale in the installation of wind generating capacity in the United States.
These estimates imply that, all other things being equal, doubling a wind power project’s
nameplate generating capacity reduces the project’s per-megawatt cost by 1.2-1.5 percent.17

For all model variants, however, the hypothesis γ = 1 — i.e. constant returns to scale —
cannot be rejected. Similarly, Wiser and Bolinger (2012) present evidence of weak returns
to scale among small U.S. wind power projects (i.e. less than 20 MW) and constant returns
to scale among larger projects.

Point estimates of β are positive and for the most part precisely estimated (no p-value is
larger than 0.05 in the case of model 1 or 0.13 in the case of model 2). Point estimates of θ,
on the other hand, are very imprecisely estimated — especially in the case of model 2, where
the estimates actually show the wrong sign. Thus, there is evidence of firm-specific learning-
by-doing, but no evidence of inter-firm knowledge spillovers.18 Notice from equation (13)

17The percentage change in per-megawatt cost from doubling a project’s capacity is 100×
`
2(1−γ)/γ − 1

´
.

18It is instructive perhaps to compare this qualitative finding to other studies of knowledge spillovers
in electricity generation technologies: Joskow and Rose (1985) do not find evidence of spillovers in the
construction of coal power plants, while Nemet (2012) and Zimmerman (1982) do find evidence of spillovers
in the operation of wind power plants and the construction of nuclear power plants, respectively.
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that the elasticity of cost with respect to firm-specific experience is −β/γ. Estimates of this
elasticity range from -0.013 to -0.017 in the case of model 1 and from -0.028 to -0.035 in the
case of model 2. All other things equal, then, doubling a firm’s experience base decreases its
per-megawatt costs of installed wind generating capacity by 0.9-1.2 percent in the case of
model 1 and by 1.9-2.4 percent in the case of model 2.19 Ultimately, the results suggest that
cost-reducing knowledge arising from the design and construction of wind power projects —
slight as it may be — remains entirely within the firm. There is no market failure, it seems,
due to non-appropriability of knowledge, which calls into question the need for government
subsidies to stimulate cost reductions in the design and construction of U.S. wind power
projects.

Point estimates of δ are in general quite large, and although they are more precisely esti-
mated in the case of model 1 (p-values range from 0.03 to 0.07) than in the case of model 2
(p-values range from 0.14 to 0.23), they are consistent with the hypothesis that experience
depreciates over time. In the case of model 1, just 23-34 percent of a firm’s accumulated
experience persists after one full year of inactivity, whereas in the case of model 2 the cor-
responding range is 53-62 percent. For comparison, estimates elsewhere in the literature of
the percentage of experience that persists after one year include: 51-61 percent in aircraft
manufacturing (Benkard, 2000), 40 percent in oil drilling (Kellogg, 2011), 5-65 percent in
shipbuilding (Argote et al., 1990; Thompson, 2007), and 3 percent in wind power produc-
tion (Nemet, 2012). Figures 3 and 4 plot the percentage increase in per-megawatt costs of
installed wind generating capacity due to prolonged inactivity for the cases of models 1 and
2, respectively. After one year of inactivity, for instance, costs are about 2 percent higher
in the case of model 1 and about 1.8 percent higher in the case of model 2, all other things
being equal.20 This finding could in part explain why the largest U.S. wind power devel-
opers undertake new projects at fairly regular intervals. Table A3 in appendix A3 shows
that from 2005 to 2009 the average spell of inactivity among large developers lasted just
two quarters; it is possible these developers seek to prevent or at least slow the erosion of
competitive advantages stemming from their comparatively large experience bases. At the
same time, however, the finding that experience depreciates rather quickly could explain
why fringe developers are able to compete for business — see, for instance, the market share
figures A7 and A8 in appendix A3.

For each of models 1 and 2, the point estimate of λ3 in the first model variant is very
nearly zero and is imprecisely estimated. In my dataset, just six of the wind power projects
completed through 2009 were undertaken as joint ventures between three firms. These six
projects, however, constitute one super-project of nearly 600 MW total capacity that was

19The percentage change in per-megawatt cost from doubling a firm’s experience base is 100×
`
2−β/γ − 1

´
.

20The percentage change in per-megawatt cost due to R quarters of inactivity is 100×
“
(1− δ)

−Rβ/γ − 1
”
.
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Figure 3: Predicted percentage increase in cost due to inactivity (model 1)
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Figure 4: Predicted percentage increase in cost due to inactivity (model 2)
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completed in phases between 2003 and 2007; moreover, it was the same three firms that
partnered to develop all phases of this super-project. I therefore exclude projects with three
co-developers from the remaining analysis. For each of models 1 and 2, the second model
variant produces positive but imprecise estimates of λ2 and µ: I cannot reject either of the
hypotheses λ2 = 1 or λ2 = 1/2, nor can I reject either of the hypotheses µ = 1 or µ = 0.
The third through sixth model variants impose restrictions on one of λ2 or µ in an effort
to improve the precision with which the other is estimated — however, this makes little
difference. Ultimately, I estimate the seventh model variant, in which both λ2 and µ are
set to one. This is consistent with anecdotal evidence that one of the reasons developers
undertake joint ventures is to take advantage of the experience that results from more or
larger projects at a fraction of the cost. Likewise, this is consistent with the circumstantial
evidence presented previously in table 2 that experience can be acquired. In any case,
imposing restrictions on λ2 and µ has no qualitative effect and little quantitative effect on
the estimates of the other parameters in the model.

To conclude this section, consider a counterfactual scenario in which all wind power projects
in the United States were completed by a single monopolistic developer. I use the parameter
estimates in tables 4 and 5 to predict the cost to a large developer in my sample of completing
a hypothetical wind power project given the developer’s accumulated experience in each of
the factual (competitive) and counterfactual (monopoly) cases.21 I assume a project with
the following attributes: 100 MW nameplate generating capacity, American-made wind
turbines, completed in mid-2009, and situated in California. Based on the model 1 results,
predicted per-megawatt costs are up to 3.6 percent lower in the monopoly case than in the
competitive case; based on the model 2 results, predicted per-megawatt costs are up to
7.5 percent lower in the monopoly case than in the competitive case. Thus, granting one
developer a monopoly in the U.S. wind development business — as extreme as it may sound
— evidently is a means of reducing project completion costs through learning-by-doing. It
is uncertain, however, whether lower project completion costs would in this case lead to
lower prices to end users of wind-generated electricity.

6 Conclusion

If knowledge spillovers occur during the installation or operation of renewable generating
capacity, then profit-maximizing firms will engage in these activities less than is socially
desirable; public subsidies can overcome this market failure by compensating firms for the

21Because no point estimate of the spillover parameter, θ, is statistically significantly different from zero,
I set θ equal to zero when computing predicted costs.

21



positive externalities their activities generate. For the particular case of the U.S. wind energy
industry, however, I have found no empirical evidence of inter-firm knowledge spillovers in
the design and construction of wind power projects — I have only found evidence of firm-
specific learning-by-doing, which entails no externality. Thus, while federal and state policies
like tax credits and renewable portfolio standards might accelerate reductions in wind power
project costs, the empirical evidence presented in this paper suggests that cost reductions
will occur even in the absence of government financial interventions.

I have presented evidence that experience accumulated by U.S. wind power developers de-
preciates over time. Ironically, the phasing out of the PTC could be beneficial to wind
power developers insofar as this would reduce labor force turnover in the wind development
business. The empirical evidence presented here also suggests learning-related cost reduc-
tions can be achieved through greater consolidation in the U.S. wind development business.
Such consolidation could be either temporary, as in the case of joint ventures, or perma-
nent, as in the case of acquisitions. In the former, firms reap the full experience benefits of
undertaking large or numerous projects without having to bear the full costs. In the latter,
not only is existing experience consolidated in a single firm, but socially-wasteful, duplica-
tive learning is potentially avoided in the future. Owing to the number of firms active in
the U.S. wind development business, it seems unlikely that greater consolidation poses any
significant threat to competition.

Finally, I have argued that the assumptions that give rise to my econometric model of firm
behavior in the U.S. wind energy industry are consistent with the manners in which this
industry is organized and operates. Importantly, the key empirical results in this paper are
qualitatively, if not always quantitatively, robust to minor changes in these assumptions.
Alternative assumptions concerning functional forms and the nature of uncertainty in the
model are potential areas for future research. Likewise, it would be interesting to see if
similar models can be derived (if the assumptions are plausible) and estimated (if the data
is available) for other technologies and countries. A better empirical understanding of
the extent to which learning-by-doing is characteristic of renewable electricity generation
technologies can help to ensure efficient use of public funds to support renewable energy.

Appendix

A1 Further anecdotal evidence of learning-by-doing in U.S. wind

This appendix elaborates on the anecdotal evidence of learning-by-doing in the design and
construction of U.S. wind power projects presented in section 2 with regard to: (i) trans-
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portation logistics; (ii) construction logistics; and (iii) induced wind turbine innovations.

The developers with whom I have spoken have all made clear that experience plays an
important role in keeping transportation costs down. Completion of a wind power project
can entail hundreds or even thousands of cargo loads delivered to the project site. Delivery
of just a single wind turbine, for instance, can require up to eight oversize loads: one
for the nacelle, three for the blades, and four for the tower sections. Developers have
learned to schedule and route deliveries to make best use of existing roads — in particular,
those sufficiently flat, wide, and strong to accommodate oversize and overweight vehicles —
without unduly disrupting local traffic patterns (due to road or bridge closures, for example).
Moreover, they have learned to anticipate obstacles en route to a project site that could
force the unloading and reloading of equipment or the complete rerouting of entire convoys
of trucks. Consider the left-hand panel of figure A1: it was not left to chance that trucks
hauling tower sections would ultimately fit across the bridge. Where unloading and reloading
of equipment are unavoidable, however, as in the right-hand panel of figure A1, developers
have learned how to do so quite effectively.

There is also anecdotal evidence that developer experience has lowered the construction
costs of wind power projects. Wind turbine foundations, for instance, can require 20-40
tons of rebar and 250-450 cubic yards of concrete — see the left-hand panel of figure A2 —
and can account for up to 16 percent of a project’s capital costs (International Renewable
Energy Agency (IRENA), 2012). Experienced developers have learned to adapt foundations
to different turbine types and different ground and wind conditions so as to complete each
foundation at low cost while (hopefully) avoiding the fate depicted in the right-hand panel
of figure A2. Likewise, developers have learned how best to maneuver heavy equipment
around a project site. For example, according to a contractor experienced in wind farm
construction, the disassembling, transporting, and reassembling of a large crawler crane
(e.g. the red cranes in figure A3) can take up to five days and cost as much as $70,000.
Experienced developers therefore carefully sequence their construction activities so as to
prevent or at least minimize such costly delays.

Finally, developers’ experience designing and building wind power projects has also facil-
itated cost-reducing innovations upstream in the manufacturing of wind turbines. One
example is the advent of modular tower sections, which as discussed in section 2 are cheaper
not only to manufacture but also to transport and install. (According to IRENA (2012),
towers make up about 17 percent of a wind power project’s capital costs.) The left-hand
panel of figure A1 shows a tower section in transit, while the left-hand panel of figure A3
shows tower sections being installed. A second example is rotors that can be assembled
at ground level (left-hand panel of figure A3) and then lifted and installed in one piece
(right-hand panel of figure A3).
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Figure A1: Wind turbine transportation logistics

Figure A2: Wind turbine foundations (done right and done wrong)

Figure A3: Modular tower sections and ground-level rotor assembly
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A2 Annual summary statistics

For the subset of 225 U.S. wind power projects completed from 2001 to 2009 and for which
cost estimates are available, table A1 reports annual summary statistics for average cost of
installed capacity (measured in millions of current-year dollars per megawatt) and nameplate
generating capacity (measured in megawatts). As discussed elsewhere in this paper, average
wind power project costs approximately doubled during the 2000s despite the completion
of more and larger wind power projects than had ever previously been the case (i.e. despite
potential for cost reductions due to learning-by-doing and economies of scale). Higher prices
for primary inputs and the advent of larger wind turbines are two often-cited explanations
for this period of rising costs (e.g. Bolinger and Wiser (2011)). Regarding the former,
figure A4 plots four price indices for inputs important to the U.S. wind energy industry
together with a GDP deflator; notably, all four price series increased at rates greater than
the rate of overall inflation during the 2000s.22 Regarding the latter, the hub height, rotor
diameter, and capacity rating of the average wind turbine installed in the U.S. all increased
significantly during the 2000s (see figure A11 in appendix A5); larger turbines are generally
more costly because they require disproportionately more materials to support their greater
weight and withstand severe wind forces. Table A1 is also indicative of the importance of
government intervention to the growth of the U.S. wind energy industry: fewer and smaller
projects were completed in 2002 and 2004 when the PTC was unavailable to new projects,
whereas more and larger projects were completed during the later years of the sample when
the PTC was consistently available and many more states adopted RPSs.23,24

Table A2 presents annual U.S. capacity additions for wind and four other renewable elec-
tricity generation technologies for the years 2001-2011. The table is presented simply to
show that “wind energy” has become nearly synonymous with “renewable energy” in the
United States. Not surprisingly, then, government subsidies to renewable electricity gen-
eration technologies in the U.S. accrue overwhelmingly to wind — see, for instance, EIA
(2011).

A3 Developer heterogeneity

68 different wind development firms completed at least one wind power project in the United
States between 2001 and 2009. Figure A5 shows the distribution of these firms by total

22The U.S. dollar-Euro exchange rate is included because many wind turbine components are imported
from Europe.

23Of the wind power projects completed in 2002 and 2004, some were ineligible for the PTC (e.g. those
owned by electric cooperatives or municipal utilities), while others received the credit retroactively.

24According to the Database of State Incentives for Renewables and Efficiency (DSIRE), the total number
of states to have adopted mandatory RPSs was 5 in 2001, 11 in 2005, and 26 in 2009.
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Table A1: Summary statistics, U.S. wind power project data, 2001-2009

Average cost ($M/MW) Capacity (MW)
Year Projects Min Med Max Min Med Max
2001 16 0.63 1.09 1.67 1.3 65.0 299.6
2002 9 0.84 1.11 1.55 3.8 40.9 160.5
2003 19 0.93 1.09 1.39 2.6 50.4 204.0
2004 4 1.09 1.19 1.37 11.6 23.7 60.0
2005 15 0.84 1.19 1.60 10.5 114.0 213.0
2006 17 1.05 1.57 2.17 7.5 100.5 231.0
2007 29 1.33 1.59 2.11 14.7 100.7 400.5
2008 54 1.30 1.92 2.67 4.5 99.0 300.3
2009 62 0.95 2.00 3.27 2.0 100.5 400.3

Figure A4: Selected U.S. price indices of relevance to wind energy industry
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Table A2: Annual additions to U.S. renewable generating capacity, 2001-2011 (MW)

Technology
Year Biomass Geothermal Hydro Solar Wind
2001 97 0 132 5 1,403
2002 38 7 344 2 773
2003 105 0 83 0 1,609
2004 95 0 79 0 393
2005 44 30 30 2 2,156
2006 170 53 20 2 2,646
2007 114 39 20 107 5,148
2008 170 48 18 34 8,262
2009 279 213 26 89 9,766
2010 151 24 6 263 4,633
2011 222 7 151 579 6,189

Source: Form EIA-860 data; excludes CHP and non-grid-connected units.

number of projects completed from 2001 to 2009. Evidently, there are a number of large,
experienced actors in this business; however, there are also many fringe competitors. Figure
A6 plots average costs of installed capacity by year for eight of the largest developers in
the sample. These firm-specific cost figures show the same upward trend over time as the
industrywide figures presented in table A1. Admittedly, figure A6 disregards potentially
important heterogeneity across projects (in terms of size and location, for instance) that
might explain within-year variance in average costs across firms. Nevertheless, it is telling
that the firms’ per-megawatt cost rankings change from year to year — in particular, no
firm is lowest-cost for a significant span of the 2001-2009 period. Perhaps for this reason, no
firm has seen its market share grow to the significant detriment of other large competitors
(figures A7 and A8). Thus, while the literature in industrial organization (e.g. Cabral and
Riordan (1994) and Spence (1981)) recognizes that learning-by-doing can increase industry
concentration through the emergence of a low-cost dominant firm, the evidence suggests
this is not a concern in the present setting. Finally, it is noteworthy that among large
developers, spells of inactivity are of relatively short duration. Table A3 shows that for
the 2005-2009 period, rarely did more than two consecutive quarters pass without a large
developer completing a new wind power project.
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Figure A5: Distribution of wind developers by number of projects completed 2001-2009
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Figure A6: Average costs of installed capacity by year, selected developers
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Figure A7: Market shares by year, selected developers (percent of installed MW)
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Figure A8: Market shares by year, selected developers (percent of completed projects)
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Table A3: Duration of spells of inactivity, selected developers, 2005-2009

Developer N Duration (quarters)
spells Mean SD Min Max

Cielo 5 3.2 2.3 1 7
enXco 7 1.7 0.8 1 3
Horizon 5 1.8 0.8 1 3
Infigen 6 2.2 1.0 1 3

Invenergy 5 1.6 0.9 1 3
NextEra 4 1.3 0.5 1 2

PPM-Iberdrola 4 1.5 0.6 1 2
RES 4 3.0 2.2 1 6

A4 Randomness of missing cost data

Here, I consider the econometric problems that could arise on account of my having cost data
for only 225 of the 339 U.S. wind power projects completed between 2001 and 2009. It is
well established in the economics literature that estimation based on nonrandomly selected
samples can result in biased estimates of parameters of economic interest. Although Heck-
man (1976, 1979) proposed a two-step estimation procedure to overcome this selection bias,
implementing his procedure requires additional modeling assumptions (a second equation
explaining entrance into the sample) and data (to estimate the second equation). Because
neither requirement is necessarily straightforward, it behooves the researcher to weigh the
evidence for and against the randomness of his sample before abandoning least squares in
favor of a more complicated estimation procedure.

Table A4 compares the subsample of 225 U.S. wind power projects for which cost data is
non-missing to the subsample of 114 projects for which cost data is missing. If the proportion
of projects sharing a particular attribute within each subsample does not differ significantly
across the two subsamples, then there is evidence that the 114 instances of missing cost data
occur at random. From the table, it is apparent that the biggest differences between the
two subsamples concern project size and geography. First, projects with non-missing cost
data tend to be larger (in terms of total installed capacity) than projects with missing cost
data — perhaps because large projects attract public scrutiny and require that developers
disclose significant information. Second, among projects with non-missing cost data, greater
proportions are located in the NPCC and RFC reliability regions, and smaller proportions
are located in the MRO and TRE regions, than is the case among projects with missing
cost data. (Figure A9 presents a map of NERC reliability regions in the U.S.) This could
reflect attitudes or policies towards the disclosure of project information that differ across
states or regions. For both capacity and NERC region, a multinomial test of equality of
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Figure A9: North American Electric Reliability Corporation (NERC) U.S. region map

proportions rejects the null hypothesis that within-subsample proportions are jointly equal
across the two subsamples, although binomial tests of equality of proportions in many cases
fail to reject pairwise equality across the two subsamples.25

With respect to the remaining attributes in table A4, the differences between the two sub-
samples of wind power projects are much less pronounced. The proportion of projects
completed in a given year or quarter does not appear to vary significantly across the two
subsamples. Moreover, projects completed by multiple or foreign developers, and projects
owned by independent power producers (IPPs), make up only slightly greater proportions
of the subsample of projects with missing cost data than the subsample of projects with
non-missing cost data — possibly because such projects are subject to less onerous disclo-
sure requirements. No joint or pairwise test rejects the null hypothesis of within-subsample
proportions that are equal across the two subsamples. Table A5 presents an additional com-
parison of project sizes across the two subsamples. Consistent with table A4, mean project
capacity is in most years greater for projects with non-missing cost data than for projects
with missing cost data; for all years except 2001, however, pairwise t-tests fail to reject the
hypothesis that mean project capacity is equal across the two subsamples. Likewise, for all
years except 2001, mean turbine rating is not statistically significantly different across the

25For joint hypothesis tests, the p-values in table A4 are based on the chi-squared distribution. For
pairwise hypothesis tests, the p-values are based on the normal approximation to the binomial distribution.
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Table A4: Attributes of wind power projects with and without cost data

Non-missing cost data Missing cost data
Attribute Count Percent Count Percent p-value*

Capacity (MW) 0.0193
q ∈ (0, 25] 34 15.1% 32 28.1% 0.0074
q ∈ (25, 50] 34 15.1% 14 12.3% 0.4671
q ∈ (50, 100] 54 24.0% 33 28.9% 0.3333
q ∈ (100, 150] 61 27.1% 20 17.5% 0.0390
q ∈ (150, 500] 42 18.7% 15 13.2% 0.1786

Completion year 0.2256
2001 16 7.1% 7 6.1% 0.7313
2002 9 4.0% 1 0.9% 0.0469
2003 19 8.4% 4 3.5% 0.0512
2004 4 1.8% 4 3.5% 0.3711
2005 15 6.7% 7 6.1% 0.8507
2006 17 7.6% 13 11.4% 0.2660
2007 29 12.9% 18 15.8% 0.4772
2008 54 24.0% 31 27.2% 0.5270
2009 62 27.6% 29 25.4% 0.6751

Completion quarter 0.4254
Q1 44 19.6% 17 14.9% 0.2754
Q2 37 16.4% 26 22.8% 0.1705
Q3 32 14.2% 18 15.8% 0.7046
Q4 112 49.8% 53 46.5% 0.5668

NERC region 0.0001
ASCC 1 0.4% 0 0.0% 0.3162
HICC 1 0.4% 2 1.8% 0.3163
MRO 51 22.7% 39 34.2% 0.0278
NPCC 15 6.7% 2 1.8% 0.0175
RFC 35 15.6% 4 3.5% 0.0001
SERC 6 2.7% 0 0.0% 0.0130
SPP 20 8.9% 9 7.9% 0.7530
TRE 32 14.2% 28 24.6% 0.0264
WECC 64 28.4% 30 26.3% 0.6767

Industry sector 0.3746
Electric Utility 42 18.7% 17 14.9% —
IPP 183 81.3% 97 85.1% —

Multiple developers 0.4431
No 195 86.7% 102 89.5% —
Yes 30 13.3% 12 10.5% —

Foreign developer(s) 0.4349
No 167 74.2% 80 70.2% —
Yes 58 25.8% 34 29.8% —

* Test of equality of proportions: boldface for joint test, lightface for pairwise test.
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Table A5: Mean capacity and turbine rating of projects with and without cost data, by year

Capacity (MW) Turbine rating (MW)

Year Non-missing
cost data

Missing cost
data p-value* Non-missing

cost data
Missing cost

data p-value*

2001 87.8 18.0 0.0097 1.06 0.68 0.0014
2002 48.9 97.7 0.3539 1.22 0.66 0.1997
2003 72.7 49.5 0.4745 1.41 1.44 0.9280
2004 29.8 59.7 0.4724 1.28 1.45 0.5983
2005 102.0 65.5 0.1668 1.50 1.29 0.1335
2006 95.4 89.3 0.8367 1.68 1.54 0.4099
2007 124.7 89.1 0.1240 1.76 1.86 0.4941
2008 105.4 88.1 0.2624 1.82 1.78 0.6594
2009 108.3 86.8 0.1437 1.85 1.84 0.9005
* Pairwise t-test of equality of means.

two subsamples. On balance, I believe the evidence tilts in the direction of cost data that
is missing at random; as such, I use a least squares estimation procedure in section 5 rather
than a more complicated two-step procedure.

A5 Installed cost of capacity vs. levelized cost of energy (LCOE)

In studying learning-by-doing and the evolution of costs in this paper, I have focused on
installed costs of wind generating capacity; it could be argued, however, that what really
matters is the cost of wind-generated electricity. For a given wind power project, define the
levelized cost of energy, LCOE, to be the constant per-megawatt-hour cost that solves the
following equation:

T∑
t=1

LCOE · Et
(1 + r)t

=
T∑
t=0

Ct

(1 + r)t
(A1)

where Et is electricity generated by the project in period t, Ct is project costs incurred in
period t, T is the useful life of the project, and r is the discount rate. The sum on the right-
hand side of equation (A1) begins at t = 0 because installed costs, C0, are incurred before
the project produces any electricity. Operating and maintenance (O&M) costs, C1, . . . , CT ,

are incurred in each production period, but pale in comparison to C0. From equation (A1)
it is apparent that LCOE is the cost of electricity at which the project’s owners will just
break even on their investment.

Figure A10 shows that wind turbine technology has evolved considerably over the past sev-
eral decades — notably, average hub height, rotor diameter, and turbine capacity rating
have all increased (figure A11 depicts these increases for the period 2000-2009). On account
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Figure A10: Antiquated vs. state-of-the-art wind turbine technology

Figure A11: Average U.S. wind turbine hub height, rotor diameter, and capacity rating
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of such technological advances, newer wind power projects ought to be capable of generat-
ing more electricity than older wind power projects with the same amount of total installed
capacity, all other things being equal. Accordingly, increasing costs of installed wind gener-
ating capacity, insofar as they result from deployment of larger wind turbines (see appendix
A2), are not necessarily indicative of increasing costs of wind-generated electricity. In fact,
equation (A1) shows that an increase in C0, if accompanied by sufficiently large increases
in E1, . . . , ET , can actually decrease the levelized cost of wind-generated electricity.

As it happens, however, all other things were not equal over the course of the 2000s: as figure
A12 shows, wind resource quality at projects completed in the late 2000s was, on average,
poorer than wind resource quality at projects completed in the early 2000s.26 Indeed,
the turbine innovations discussed in the previous paragraph were in large part intended to
improve electrical output of projects built at low wind speed sites (Wiser and Bolinger,
2012). The net effect of progressively larger wind turbines installed at progressively lower
wind speed sites was project capacity factors that, on average, were stagnant for most of
the 2000s, as shown in figure A13.27 Because projects completed in the late 2000s do not
appear to systematically outperform projects completed in the early 2000s, increasing costs
of installed wind generating capacity over the course of the 2000s (as depicted in figure 1
in section 2 and table A1 in appendix A2) are likely indicative of increasing costs of wind-
generated electricity. In other words, an empirical analysis of learning-by-doing based on
wind power projects’ levelized costs (were such data available) would likely arrive at the
same conclusions found in this paper.

A6 Additional estimation results

Table A6 presents NLS estimation results for seven model variants of the cost function (13)
in which number of installed turbines is the measure of output/experience; the results are
very similar to those presented in table 4 for the case where megawatts of installed capacity
is the measure of output.

26This is not to say that all high-wind-resource-quality sites in the United States have already been
developed; rather, constraints such as inadequate access to transmission presently make development of
many otherwise high-quality sites uneconomical.

27The capacity factor of a power plant is the ratio of the plant’s actual electrical output over a period of
time to its potential electrical output were it to operate at full capacity for the same period of time.
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Figure A12: Index of average U.S. wind resource quality at 80 meters by completion period
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Figure A13: 2010 project capacity factors by commercial operation date
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Figure 33 presented cumulative, sample-wide capacity factors by calendar year. Figure 34 (as 
well as Figure 35 and Table 7) shows capacity factor data in a different way, by focusing just on 
capacity factors in the year 2010, rather than in each calendar year.67

 

  Specifically, Figure 34 
shows individual project as well as capacity-weighted average 2010 capacity factors broken out 
by each project’s commercial operation date.  The capacity-weighted average 2010 capacity 
factors in the Berkeley Lab sample increase from 21% for wind power projects installed before 
1998 to 27% for projects installed from 1998-2001, 31% for projects installed from 2002-2003, 
and 32-33% for projects installed in 2004-2007.  Once again, higher hub heights and larger rotor 
diameters (particularly relative to turbine nameplate capacity) are likely to be largely responsible 
for these increases in capacity factors.   

Source:  Berkeley Lab 

Figure 34.  2010 Project Capacity Factors by Commercial Operation Date 
 
Projects installed in 2008 and 2009, however, feature capacity-weighted average 2010 capacity 
factors of 30%-31%, and as such have bucked the general trend of rising capacity factors among 
newer projects.  Though further analysis would be needed to fully assess the reasons for this 
leveling of capacity factors in recent years, potential explanations include: 
 
x Project Siting:  Developers may be reacting to increasing transmission constraints (or even 

just regionally differentiated wholesale electricity prices, or siting constraints) by focusing on 
those projects in their pipeline that may not be located in the best wind resource areas, but 
that do have access to transmission (or higher-priced markets or readily available sites 
without long permitting times). 

                                                 
67 Although focusing just on 2010 tends to limit the effects of inter-annual fluctuations in the nationwide wind 
resource (which do impact the year-to-year results in Figure 33), it also means that the absolute capacity factors 
shown in Figure 34 may not be representative if 2010 was not a representative year in terms of the strength of the 
wind resource.  Note also that by including only 2010 capacity factors, variations in the quality of the wind resource 
year in 2010 across regions could skew the regional results presented in Figure 35 and Table 7.   
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